Sample records for na densidade mineral

  1. High Capacity Na+/H+ Exchange Activity in Mineralizing Osteoblasts

    PubMed Central

    Liu, Li; Schlesinger, Paul H.; Slack, Nicole M.; Friedman, Peter A.; Blair, Harry C.

    2015-01-01

    Osteoblasts synthesize bone in polarized groups of cells sealed by tight junctions. Large amounts of acid are produced as bone mineral is precipitated. We addressed the mechanism by which cells manage this acid load by measuring intracellular pH (pHi) in non-transformed osteoblasts in response to weak acid or bicarbonate loading. Basal pHi in mineralizing osteoblasts was ∼7.3 and decreased by ∼ 1.4 units upon replacing extracellular Na+ with N-methyl-d-glucamine. Loading with 40 mM acetic or propionic acids, in normal extracellular Na+, caused only mild cytosolic acidification. In contrast, in Na+-free solutions, weak acids reduced pHi dramatically. After Na+ reintroduction, pHi recovered rapidly, in keeping with Na+/H+exchanger (NHE) activity. Sodium-dependent pHi recovery from weak acid loading was inhibited by amiloride with the Ki consistent with NHEs. NHE1 and NHE6 were expressed strongly, and expression was upregulated highly, by mineralization, in human osteoblasts. Antibody labeling of mouse bone showed NHE1 on basolateral surfaces of all osteoblasts. NHE6 occurred on basolateral surfaces of osteoblasts mainly in areas of mineralization. Conversely, elevated HCO3- alkalinized osteoblasts, and pH recovered in medium containing CI-, with or without Na+, in keeping with Na+-independent CI-/HCO3- exchange. The exchanger AE2 also occurred on the basolateral surface of osteoblasts, consistent with CI-/HCO3- exchange for elimination of metabolic carbonate. Overexpression of NHE6 or knockdown of NHE1 in MG63 human osteosarcoma cells confirmed roles of NHE1 and NHE6 in maintaining pHi. We conclude that in mineralizing osteoblasts, slightly basic basal pHi is maintained, and external acid load is dissipated, by high-capacity Na+/H+ exchange via NHE1 and NHE6. PMID:21413028

  2. Kinetic measurements of bone mineral metabolism: The use of Na-22 as a tracer for long-term bone mineral turnover studies

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1978-01-01

    Sodium-22 was studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with (22)Na which is released through the metabolic turnover of the bone. The (22)Na which is not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high but nontoxic levels of NaCl. The (22)Na tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.

  3. The use of Na-22 as a tracer for long-term bone mineral turnover studies.

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.; Rieksts, G. A.; Palmer, R. F.; Gillis, M. F.

    1979-01-01

    Sodium-22 has been studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with Na-22, which is released through the metabolic turnover of the bone. The Na-22 not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high, but nontoxic levels of NaCl. The Na-22 tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.

  4. Borate mineral assemblages in the system Na2OCaOMgOB2O3H2O

    USGS Publications Warehouse

    Christ, C.L.; Truesdell, A.H.; Erd, Richard C.

    1967-01-01

    he significant known hydrated borate mineral assemblages (principally of the western United States) in the system Na2OCaOz.sbnd;MgOB2O3H2O are expressible in three ternary composition diagrams. Phase rule interpretation of the diagrams is consistent with observation, if the activity of H2O is generally considered to be determined by the geologic environment. The absence of conflicting tie-lines on a diagram indicates that the several mineral assemblages of the diagram were formed under relatively narrow ranges of temperature and pressure. The known structural as well as empirical formulas for the minerals are listed, and the more recent (since 1960) crystal structure findings are discussed briefly. Schematic Gibbs free energy-composition diagrams based on known solubility-temperature relations in the systems Na2B4O7-H2O and Na2B4O7-NaCl-H2O, are highly useful in the interpretation and prediction of the stability relations in these systems; in particular these diagrams indicate clearly that tincalconite, although geologically important, is everywhere a metastable phase. Crystal-chemical considerations indicate that the same thermodynamic and kinetic behavior observed in the Na2B4O7-H2O system will hold in the Ca2B6O11-H2O system. This conclusion is confirmed by the petrologic evidence. The chemical relations among the mineral assemblages of a ternary diagram are expressed by a schematic "activity-activity" diagram. These activity-activity diagrams permit the tracing-out of the paragenetic sequences as a function of changing cation and H2O activities. ?? 1967.

  5. Physicochemical characterization of mineral (iron/zinc) bound caseinate and their mineral uptake in Caco-2 cells.

    PubMed

    Shilpashree, B G; Arora, Sumit; Kapila, Suman; Sharma, Vivek

    2018-08-15

    Milk proteins (especially caseins) are widely accepted as good vehicle for the delivery of various bioactive compounds including minerals. Succinylation is one of the most acceptable chemical modification techniques to enhance the mineral binding ability of caseins. Addition of minerals to succinylated proteins may alter their physicochemical and biochemical properties. Physicochemical characteristics of succinylated sodium caseinate (S.NaCN)-mineral (iron/zinc) complexes were elucidated. Chromatographic behaviour and fluorescence intensity confirmed the structural modification of S.NaCN upon binding with minerals. The bound mineral from protein complexes showed significantly higher (P < 0.05) in vitro bioavailability (mineral uptake) than mineral salts in Caco-2 cells. Also, iron bound S.NaCN showed higher cellular ferritin formation than iron in its free form. These mineral bound protein complexes with improved bioavailability could safely replace inorganic fortificants in various functional food formulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Simmonsite, Na2LiAlF6, a new mineral from the Zapot amazonite-topazzinnwaldite pegmatite, Hawthorne, Nevada, U.S.A

    USGS Publications Warehouse

    Foord, E.E.; O'Connor, J. T.; Hughes, J.M.; Sutley, S.J.; Falster, A.U.; Soregaroli, A.E.; Lichte, F.E.; Kile, D.E.

    1999-01-01

    Simmonsite, Na2LiAlF6, a new mineral of pegmatitic-hydrothermal origin, occurs in a late-stage breccia pipe structure that cuts the Zapot amazonite-topaz-zinnvvaldite pegmatite located in the Gillis Range, Mineral Co., Nevada, U.S.A. The mineral is intimately intergrown with cryolite, cryolithionite and trace elpasolite. A secondary assemblage of other alumino-fluoride minerals and a second generation of cryolithionite has formed from the primary assemblage. The mineral is monoclinic, P21 or P21/m, a = 7.5006(6) A??, b = 7.474(1) A??, c = 7.503(1) A??, ??= 90.847(9) ??, V=420.6(1) A??3, Z = 4. The four strongest diffraction maxima [d(A??), likl, I/I100] are (4.33, 111 and 111, 100); (1.877, 400 and 004, 90); (2.25, 13T, 113, 131 and 311, 70); and (2.65, 220, 202, 022, 60). Simmonsite is pale buff cream with white streak, somewhat greasy, translucent to transparent, Mohs hardness of 2.5-3, no distinct cleavage, subconchoidal fracture, no parting, not extremely brittle, Dm is 3.05(2) g/cm3, and Dc is 3.06(1) g/cm3. The mineral is biaxial, very nearly Isotropie, N is 1.359(1) for ?? = 589 nm, and birefringence is 0.0009. Electron microprobe analyses gave (wt%) Na = 23.4, Al = 13.9, F = 58.6, Li = 3.56 (calculated), with a total of 99.46. The empirical formula (based on 6 F atoms) is Na1.98Li1.00 ooAl|ooF6. The crystal structure was not solved, presumably because of unit-cell scale twinning, but similarities to the perovskite-type structure exist. The mineral is named for William B. Simmons, Professor of Mineralogy and Petrology, University of New Orleans, New Orleans.

  7. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on new Minerals and Mineral names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1997-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association, Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemicalsymbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on the ratio Si:Al except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and overhydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba, chabazite-Ca, -Na, -K, clinoptilolite-K, -Na, -Ca, dachiardite-Ca, -Na, erionite-Na, erionite-Na, -K, -Ca, faujasite-Na, -Ca, -Mg, ferrierite-Mg, -K, -Na, gmelinite-Na, -Ca, -K, heulandite-Ca, -Na, -K, -Sr, levyne-Ca, -Na, paulingite-K, -Ca, phillipsite-Na, -Ca, -K, and stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species

  8. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4

  9. Recommended nomenclature for zeolite minerals: Report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1998-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is alloowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely in Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba; chabazite-Ca, -Na, -K; clinoptilolite-K, -Na, -Ca; dechiardite-Ca, -Na; erionite-Na, -K, -Ca,; faujasite-Na, -Ca, -Mg; ferrierite-Mg, -K, -Na; gmelinite-Na, -Ca, -K; heulandite-Ca, -Na, -K, -Sr; levyne-Ca, -Na; paulingite-K, -Ca; phillipsite-Na, -Ca, -K stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral

  10. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission of New Minerals and Mineral Names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1998-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission of New Minerals and Mineral Names. In a working definition of a zeolite mineral used for review, interrupted tetrahedral framework structures are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundance in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr.-Ba: chabazite-Ca.-Na.-K; clinoptilolite-K, -Na, -Ca: dachiardite-Ca, -Na; erionite-K, -Ca: faujasite-Na, -Ca, -Na: paulingite-K. -Ca; phillipsite-Na, -Ca, -Ka; stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data. IZA structure-type symbols, space-group symmetry; unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite, and wellsite are discredited as mineral species names. Obsolete and

  11. Optically stimulated luminescence of natural NaCl mineral from Dead Sea exposed to gamma radiation.

    PubMed

    Roman-Lopez, J; Piña López, Y I; Cruz-Zaragoza, E; Marcazzó, J

    2018-08-01

    In this work, the continuous wave - optically stimulated luminescence (CW-OSL) emissions of natural salt minerals, collected from Dead Sea in summer of 2015, were studied. The CW-OSL dose response of natural salt showed a linear range between 0.5Gy and 10Gy of gamma radiation of 60 Co. Samples exposed at 3Gy exhibited good repeatability with a variation coefficient of 4.6%. The CW-OSL response as function of the preheating temperature (50-250°C) was analyzed. An increase of 15% of the CW-OSL response was observed in NaCl samples during storage period of 336h. The results showed that the natural Dead Sea salt minerals could be applied as natural dosimeter of gamma radiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Crystal structure of the mineral (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4: a triclinic representative of the amphibole family

    NASA Astrophysics Data System (ADS)

    Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-05-01

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Å, b = 18.0457(3) Å; c = 9.8684(2) Å, α = 90.016(2)°, β = 105.543(4)°, γ = 89.985(2)°. The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with | F| > 3σ( F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4 has some symmetry and structural features that distinguish it from other minerals of this family.

  13. Mineral concentrations in diets, water, and milk and their value in estimating on-farm excretion of manure minerals in lactating dairy cows.

    PubMed

    Castillo, A R; St-Pierre, N R; Silva del Rio, N; Weiss, W P

    2013-05-01

    Thirty-nine commercial dairies in Merced County, California were enrolled in the present study to (1) compare lactating cow mineral intakes (via drinking water and total mixed ration) to the National Research Council (NRC) requirements, (2) evaluate the association between dietary concentrations of minerals with and without drinking water and adjusted for mineral concentrations in milk, and (3) compare 4 different methods to estimate excretion of minerals using either assays or estimations of milk mineral outputs and total daily mineral intake per cow with or without minerals coming from drinking water. Dairies were selected to represent a range of herd milk yields and a range of water mineral contents. Samples of total mixed ration, drinking water, and bulk tank milk were taken on 2 different days, 3 to 7d apart in each farm. Across-farm medians and percentile distributions were used to analyze results. The herd median milk yield interquartile ranged (10th to 90th percentile) from less than 25 to more than 39 kg/d and the concentration of total solids in water interquartile ranged from less than 200 to more than 1,490 mg/L. Including drinking water minerals in the diets increased dietary concentrations by <4% for all minerals except for Na and Cl, which increased by 9.3 and 6.5%, respectively. Concentrations of P and K in milk were essentially the same as the NRC value to estimate lactation requirements. However, NRC milk values of Ca, Cl, and Zn were 10 to 20% greater than dairy farm values; and Na, Cu, Fe, and Mn were no less than 36% below NRC values. Estimated excretion of minerals via manure varied substantially across farms. Farms in the 10th percentile did have 2 to 3 times less estimated mineral excretions than those in the 90th percentile (depending on the mineral). Although including water minerals increased excretion of most minerals, the actual median effect of Ca, Mg, S, Cu, Fe, and Mn was less than 5%, and about 8% for Na and Cl. Replacing assayed

  14. Möhnite, (NH4)K2Na(SO4)2, a new guano mineral from Pabellón de Pica, Chile

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Aksenov, Sergey M.; Rastsvetaeva, Ramiza K.; Pekov, Igor V.; Belakovskiy, Dmitry I.; Britvin, Sergey N.

    2015-10-01

    The new mineral möhnite, ideally (NH4)K2Na(SO4)2, the ammonium analogue of aphthitalite, is found in a guano deposit on the Pabellón de Pica mountain, near Chanabaya, Iquique Province, Tarapacá Region, Chile. It is associated with salammoniac, halite, joanneumite, natroxalate, nitratine, chanabayaite, and a clay mineral. Möhnite occurs as random aggregates and clusters of brown imperfect bipyramidal or spindle-shaped crystals. The mineral is brittle, with Mohs' hardness of 3; Dmeas is 2.4(1) g/cm3 and Dcalc is 2.461 g/cm3. The IR spectrum shows the presence of NH4 + cations (the bands at 1431, 3076 and 3240 cm-1). Möhnite is almost isotropic, optically neutral; ɛ = ω = 1.505(2). The chemical composition (electron-microprobe data, N determined by gas chromatography of products of ignition, H calculated by stoichiometry, wt%) is: (NH4)2O 7.99, Na2O 9.49, K2O 32.34, SO3 51.32, total 101.14. The empirical formula is (NH4)0.95Na0.95 K2.14S1.99O8. The crystal structure was solved and refined to R = 0.049 based on 241 unique reflections with I > 2σ( I). Möhnite is trigonal, space group P m1, a = 5.7402(3) Å, c = 7.435(1) Å, V = 212.16(4) Å3, Z = 1. The strongest reflections of the powder X-ray diffraction pattern [ d, Å ( I,%) ( hkl)] are: 4.955 (27) (100), 4.122 (37) (101, 011), 3.708 (29) (002), 2.969 (74) (102, 012), 2.861 (100) (110), 2.474 (20) (003), 2.060 (33) (022). The mineral is named in honour of the German amateur mineralogist Gerhard Möhn (born 1959).

  15. A vibrational spectroscopic study of the silicate mineral lomonosovite Na5Ti2(Si2O7)(PO4)O2

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Theiss, Frederick L.; Graça, Leonardo M.; Scholz, Ricardo

    2015-01-01

    The mineral lomonosovite has been studied using a combination of scanning electron microscopy with energy dispersive X-ray analysis and vibrational spectroscopy. Qualitative chemical analysis gave Si, P, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and Al. The mineral lomonosovite has a formula Na5Ti2(Si2O7)(PO4)O2. Raman bands observed at 909, 925 and 939 cm-1 are associated with phosphate units. Raman bands found at 975, 999, 1070, 1080 and 1084 cm-1 are attributed to siloxane stretching vibrations. The observation of multiple bands in both the phosphate stretching and bending regions supports the concept that the symmetry of the phosphate anion in the structure of lomonosovite is significantly reduced. Infrared spectroscopy identifies bands in the water stretching and bending regions, thus suggesting that water is involved with the structure of lomonosovite either through adsorption on the surface or by bonding to the phosphate units.

  16. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions.

    PubMed

    Zhao, Yafei; Zhang, Bing; Zhang, Xiang; Wang, Jinhua; Liu, Jindun; Chen, Rongfeng

    2010-06-15

    Well-ordered cubic NaA zeolite was first synthesized using natural halloysite mineral with nanotubular structure as source material by hydro-thermal method. SEM and HRTEM images indicate that the synthesized NaA zeolite is cubic-shaped crystal with planar surface, well-defined edges and symmetrical and uniform pore channels. The adsorption behavior of ammonium ions (NH(4)(+)) from aqueous solution onto NaA zeolite was investigated as a function of parameters such as equilibrium time, pH, initial NH(4)(+) concentration, temperature and competitive cations. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 44.3 mg g(-1) of NH(4)(+) was achieved. The regeneration and reusable ability of this adsorbent was evaluated, and the results indicated that the recovered adsorbent could be used again for NH(4)(+) removal with nearly constant adsorption capacity. Thermodynamic parameters such as change in free energy (DeltaG(0)), enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were also determined, which indicated that the adsorption was a spontaneous and exothermic process at ambient conditions. Compared with other adsorbents, the as-synthesized NaA zeolite displays a faster adsorption rate and higher adsorption capacity, which implies potential application for removing NH(4)(+) pollutants from wastewaters. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Spatial and mineralogic variation of Na-Ca alteration in Laramide porphyry systems of Arizona

    NASA Astrophysics Data System (ADS)

    Runyon, S.; Seedorff, E.; Barton, M. D.; Mazdab, F. K.; Lecumberri-Sanchez, P.; Steele-MacInnis, M.

    2017-12-01

    Na-Ca alteration is characterized by the metasomatic addition of Ca ± Na and the loss of K. Minor volumes of Na-Ca alteration in Laramide porphyry systems develops from 3 to 8 km paleodepth. Mineral assemblages, mineral compositions, hydrogen isotopes, whole-rock analyses, and reconnaissance fluid inclusion characteristics have been documented for Na-Ca alteration in Laramide porphyry systems such as Tea Cup and Sierrita. Volumetrically minor Na-Ca alteration in Laramide porphyry systems documented in this study commonly takes the form of one of three mineral assemblages: albite-epidote-chlorite, Na-plagioclase-actinolite ± epidote, and garnet- or diopside-stable Na-plagioclase-actinolite ± epidote. These different Na-Ca mineral assemblages have broad spatial relationships, from shallow albite-chlorite-epidote to deeper Na-plagioclase-actinolite within a given district. Hydrogen isotope data on Na-Ca alteration minerals shows consistently distinct δD compositions of Na-Ca alteration minerals compared to igneous minerals in a given district. Further, calculated hydrogen isotope composition of fluids in equilibrium with Na-Ca alteration minerals are consistently enriched in δD compared to magmatic-hydrothermal fluids. Whole-rock analyses show consistent losses of K and variable addition of Na and Ca across different Na-Ca alteration assemblages. Na-Ca alteration has been well documented associated with the Jurassic arc. Previous studies demonstrated through mass balance, timing and spatial relationships, isotopic, and fluid inclusion studies that Na-Ca alteration associated with the Jurassic arc likely formed from the circulation of external, highly saline, non-magmatic fluids (e.g., Battles and Barton, 1995; Dilles et al., 1995). Na-Ca alteration documented in Laramide systems is generally similar to Na-Ca alteration documented along the Jurassic arc in mineral assemblages, compositions, and timing, but the volume of Na-Ca alteration in the Laramide systems is

  18. Densidad de desarrollo alta y baja en Puerto Rico

    Treesearch

    William A. Gould; Sebastian Martinuzzi; Olga M. Ramos Gonzalez

    2008-01-01

    Este mapa demuestra la distribución de terrenos de alta y baja densidad de desarrollo urbano en Puerto Rico (Martinuzzi et al. 2007). El mapa fue creado mediante el analisis de un mosaico de imagenes de satelite Landsat ETM+ de los años 2000 – 2003. La clasificacion no supervisada ISODATA (“Iterative Self-Organizing Data Analysis Technique”) (ERDAS 2003) fue utilizada...

  19. Protein–Mineral Interactions: Molecular Dynamics Simulations Capture Importance of Variations in Mineral Surface Composition and Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Amity; Reardon, Patrick N.; Chacon, Stephany S.

    Molecular dynamics simulations, conventional and metadynamics, were performed to determine the interaction of model protein Gb1 over kaolinite (001), Na+-montmorillonite (001), Ca2+-montmorillonite (001), goethite (100), and Na+-birnessite (001) mineral surfaces. Gb1, a small (56 residue) protein with a well-characterized solution-state nuclear magnetic resonance (NMR) structure and having α-helix, four-fold β-sheet, and hydrophobic core features, is used as a model protein to study protein soil mineral interactions and gain insights on structural changes and potential degradation of protein. From our simulations, we observe little change to the hydrated Gb1 structure over the kaolinite, montmorillonite, and goethite surfaces relative to its solvatedmore » structure without these mineral surfaces present. Over the Na+-birnessite basal surface, however, the Gb1 structure is highly disturbed as a result of interaction with this birnessite surface. Unraveling of the Gb1 β-sheet at specific turns and a partial unraveling of the α-helix is observed over birnessite, which suggests specific vulnerable residue sites for oxidation or hydrolysis possibly leading to fragmentation.« less

  20. Cancrinite-group minerals behavior at non-ambient conditions

    NASA Astrophysics Data System (ADS)

    Lotti, Paolo; Gatta, G. Diego; Kahlenberg, Volker; Merlini, Marco; Alvaro, Matteo; Cámara, Fernando

    2014-05-01

    Cancrinite-group minerals occur in the late stages of alkaline (SiO2)-undersaturated magmatism and in related effusive or contact rocks. So far only few studies have been devoted to the description of the thermo-elastic behavior, phase-stability and P /T -structure evolution (at the atomic scale) of this mineral group. Cancrinite-group minerals have an open-framework structure characterized by the [CAN]-topology. The [CAN]-framework shows large 12-ring channels, parallel to the c crystallographic axis, bound by columns of cages, the so-called can units. While very limited chemical variation is observed in the framework composition (the composition is almost always [Si6Al6O24]) a remarkable chemical variability is reported for the extraframework components in the cancrinite-group minerals. Two subgroups can be identified according to the extraframework content of the can units: the cancrinite- and the davyne-subgroups, showing Na-H2O and Ca-Cl chains, respectively. The channels are stuffed by cations, anions and molecules. We aimed to model the thermo-elastic behavior and the mechanisms of the (P ,T)-induced structure evolution of cancrinite-group minerals, with special interest on the role played by the extraframework population. The study was restricted to the following (CO3)-rich and (SO4)-rich end-members: cancrinite sensu stricto {[(Na,Ca)6(CO3)1.2-1.7][Na2(H2O)2][Al6Si6O24]}, vishnevite {[(Na,Ca,K)6(SO4)][Na2(H2O)2][Al6Si6O24]}, balliranoite {[(Na,Ca)6(CO3)1.2-1.7][Ca2Cl2][Al6Si6O24]} and davyne {[(Na,Ca,K)6((SO4),Cl)][Ca2Cl2][Al6Si6O24]}. Their high-P and low-T (T < 293 K) behavior was investigated by means of in-situ single-crystal X-ray diffraction, using diamond-anvil cells and (N2)-cryosystems, respectively. The high-T behavior of cancrinite has also been studied by means of in-situ single-crystal X-ray diffraction with a resistive heater. Cancrinite minerals share a similar volume compressibility and thermal expansivity at ambient conditions (cancrinite

  1. Mineral intake independent from gastric irritation or pica by cell-dehydrated rats.

    PubMed

    Constancio, Juliana; Pereira-Derderian, Daniela T B; Menani, José V; De Luca, Laurival A

    2011-10-24

    Gavage of 2 M NaCl (IG 2 M NaCl), a procedure to induce cell-dehydration-and water and 0.15 M NaCl intake in a two-bottle choice test-is also a potential gastric irritant. In this study, we assessed whether mineral intake induced by IG 2 M NaCl is associated with gastric irritation or production of pica in the rat. We first determined the amount of mineral solution (0.15 M NaCl, 0.15 M NaHCO3, 0.01 M KCl and 0.05 mM CaCl2) and water ingested in response to IG 2 M NaCl in a five-bottle test. Then, we used mineral solutions (0.01 M KCl and 0.15 M NaHCO3), whose intakes were significantly increased compared to controls, and water in three-bottle tests to test the gastric irritation hypothesis. The IG 2 M NaCl induced KCl and NaHCO3 intake that was not inhibited by gavage with gastric protectors Al(OH)3 or NaHCO3. IG 2 M NaCl or gavage of 0.6 N acetic acid induced mild irritation, hyperemia, of the glandular part of the stomach. A gavage of 50% ethanol induced strong irritation seen as pinpoint ulcerations. Neither ethanol nor acetic acid induced any fluid intake. Neither IG 2 M NaCl nor acetic acid induced kaolin intake, a marker of pica in laboratory rats. Ethanol did induce kaolin intake. These results suggest that IG 2 M NaCl induced a mineral fluid intake not selective for sodium and independent from gastric irritation or pica. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Crystal structure of the mineral (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4}: a triclinic representative of the amphibole family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Aksenov, S. M.

    2012-05-15

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Angstrom-Sign , b = 18.0457(3) Angstrom-Sign ; c = 9.8684(2) Angstrom-Sign , {alpha} = 90.016(2) Degree-Sign , {beta} = 105.543(4) Degree-Sign , {gamma} = 89.985(2) Degree-Sign . The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with |F| > 3{sigma}(F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{submore » 44}](F,O){sub 4} has some symmetry and structural features that distinguish it from other minerals of this family.« less

  3. Extraction of Mg(OH)2 from Mg silicate minerals with NaOH assisted with H2O: implications for CO2 capture from exhaust flue gas.

    PubMed

    Madeddu, Silvia; Priestnall, Michael; Godoy, Erik; Kumar, R Vasant; Raymahasay, Sugat; Evans, Michael; Wang, Ruofan; Manenye, Seabelo; Kinoshita, Hajime

    2015-01-01

    The utilisation of Mg(OH)2 to capture exhaust CO2 has been hindered by the limited availability of brucite, the Mg(OH)2 mineral in natural deposits. Our previous study demonstrated that Mg(OH)2 can be obtained from dunite, an ultramafic rock composed of Mg silicate minerals, in highly concentrated NaOH aqueous systems. However, the large quantity of NaOH consumed was considered an obstacle for the implementation of the technology. In the present study, Mg(OH)2 was extracted from dunite reacted in solid systems with NaOH assisted with H2O. The consumption of NaOH was reduced by 97% with respect to the NaOH aqueous systems, maintaining a comparable yield of Mg(OH)2 extraction, i.e. 64.8-66%. The capture of CO2 from a CO2-N2 gas mixture was tested at ambient conditions using a Mg(OH)2 aqueous slurry. Mg(OH)2 almost fully dissolved and reacted with dissolved CO2 by forming Mg(HCO3)2 which remained in equilibrium storing the CO2 in the aqueous solution. The CO2 balance of the process was assessed from the emissions derived from the power consumption for NaOH production and Mg(OH)2 extraction together with the CO2 captured by Mg(OH)2 derived from dunite. The process resulted as carbon neutral when dunite is reacted at 250 °C for durations of 1 and 3 hours and CO2 is captured as Mg(HCO3)2.

  4. Prenatal programming of adult mineral metabolism: relevance to blood pressure, dietary prevention strategies, and cardiovascular disease.

    PubMed

    Schulter, Günter; Goessler, Walter; Papousek, Ilona

    2012-01-01

    Mounting evidence indicates that adult health outcomes such as the development of cardiovascular disease or diabetes can trace some of their roots back to prenatal development. This study investigated the epigenetic impact of a particular prenatal hormonal condition on specific health-related consequences, i.e., on concentrations of minerals and mineral metabolism in adults. In 70 university students, the second-to-fourth digit length (2D:4D) was measured as a proxy of prenatal sex steroid action, and the concentrations of sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) were determined in hair samples by inductively coupled plasma-mass spectrometry. Mineral concentrations and the mineral ratios Na/K, Na/Mg, and Na/Ca were analyzed in multivariate analyses of variance, with digit ratios and sex of participants as grouping variables. The results were validated in a replication cohort from the general population, and with a wider age-range. In addition, the correlation of mineral concentrations and mineral ratios with blood pressure was examined. Men with relatively lower (i.e., more masculine) and women with relatively higher (i.e., more feminine) digit ratios had higher Na/K, Na/Mg, and Na/Ca ratios than their counterparts. Virtually identical results were obtained in the replication study. Moreover, Na concentrations and Na/K ratios were significantly correlated with systolic blood pressure. The findings suggest that the individual variation in mineral metabolism can be predicted by 2D:4D, indicating that prenatal sex steroid action may be involved in the epigenetic programming of specific metabolic conditions which are highly relevant to adult health and disease. 2011 Wiley Periodicals, Inc.

  5. Raman spectroscopy of stercorite H(NH 4)Na(PO 4)·4H 2O--A cave mineral from Petrogale Cave, Madura, Eucla, Western Australia

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Palmer, Sara J.

    2011-09-01

    Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the mineral stercorite H(NH 4)Na(PO 4)·4H 2O. The mineral stercorite originated from the Petrogale Cave, Madura, Eucla, Western Australia. This cave is one of many caves in the Nullarbor Plain in the South of Western Australia. These caves have been in existence for eons of time and have been dated at more than 550 million years old. The mineral is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm -1 defines the presence of phosphate in the mineral. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm -1. Raman spectroscopy shows the mineral is based upon the phosphate anion and not the hydrogen phosphate anion. Raman and infrared bands are found and assigned to PO 43-, H 2O, OH and NH stretching vibrations. The detection of stercorite by Raman spectroscopy shows that the mineral can be readily determined; as such the application of a portable Raman spectrometer in a 'cave' situation enables the detection of minerals, some of which may remain to be identified.

  6. Net mineral requirements of dairy goats during pregnancy.

    PubMed

    Härter, C J; Lima, L D; Castagnino, D S; Silva, H O; Figueiredo, F O M; St-Pierre, N R; Resende, K T; Teixeira, I A M A

    2017-09-01

    Mineral requirements of pregnant dairy goats are still not well defined; therefore, we investigated the net Ca, P, Mg, Na and K requirements for pregnancy and for maintenance during pregnancy in two separate experiments. Experiment 1 was performed to estimate the net Ca, P, Mg, Na and K requirements in goats carrying single or twin fetuses from 50 to 140 days of pregnancy (DOP). The net mineral requirements for pregnancy were determined by measuring mineral deposition in gravid uterus and mammary gland after comparative slaughter. In total, 57 dairy goats of two breeds (Oberhasli or Saanen), in their third or fourth parturition, were randomly assigned to groups based on litter size (single or twin) and day of slaughter (50, 80, 110 and 140 DOP) in a fully factorial design. Net mineral accretion for pregnancy did not differ by goat breed. The total daily Ca, P, Mg, Na and K requirements for pregnancy were greatest in goats carrying twins (P<0.05), and the requirements increased as pregnancy progressed. Experiment 2 was performed to estimate net Ca, P, Mg, Na and K requirements for dairy goat maintenance during pregnancy. In total, 58 dairy goats (Oberhasli and Saanen) carrying twin fetuses were assigned to groups based on slaughter day (80, 110 and 140 DOP) and feed restriction (ad libitum, 20% and 40% feed restriction) in a randomized block design. The net Ca, P and Mg requirements for maintenance did not vary by breed or over the course of pregnancy. The daily net requirements of Ca, P and Mg for maintenance were 60.4, 31.1 and 2.42 mg/kg live BW (LBW), respectively. The daily net Na requirement for maintenance was greater in Saanen goats (11.8 mg/kg LBW) than in Oberhasli goats (8.96 mg/kg LBW; P<0.05). Daily net K requirements increased as pregnancy progressed from 8.73 to 15.4 mg/kg LBW (P<0.01). The findings of this study will guide design of diets with adequate mineral content for pregnant goats throughout their pregnancy.

  7. Vibrational spectroscopy of synthetic stercorite H(NH 4)Na(PO 4)·4H 2O—A comparison with the natural cave mineral

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.; Millar, Graeme J.; Tan, Keqin; Pogson, Ross E.

    2011-12-01

    In order to mimic the chemical reactions in cave systems, the analogue of the mineral stercorite H(NH 4)Na(PO 4)·4H 2O has been synthesised. X-ray diffraction of the stercorite analogue matches the stercorite reference pattern. A comparison is made with the vibrational spectra of synthetic stercorite analogue and the natural Cave mineral. The mineral in nature is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm -1 (Cave) and 922 cm -1 (synthesised) defines the presence of hydrogen phosphate in the mineral. In the synthetic stercorite analogue, additional bands are observed and are attributed to the dihydrogen and phosphate anions. The vibrational spectra of synthetic stercorite only partly match that of the natural stercorite. It is suggested that natural stercorite is more pure than that of synthesised stercorite. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm -1. Raman spectroscopy shows the stercorite mineral is based upon the hydrogen phosphate anion and not the phosphate anion. Raman and infrared bands are found and assigned to PO 43-, H 2O, OH and NH stretching vibrations. Raman spectroscopy shows the synthetic analogue is similar to the natural mineral. A mechanism for the formation of stercorite is provided.

  8. Reactivity of clay minerals with acids and alkalies

    USGS Publications Warehouse

    Carroll, Dorothy; Starkey, Harry C.

    1971-01-01

    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6⋅45 N, 1:1), acetic acid (4⋅5 N, 1:3), sodium hydroxide (2⋅8 N), sodium chloride solution (pH 6⋅10; Na = 35‰; Cl = 21⋅5‰), and natural sea water (pH 7⋅85; Na = 35⋅5‰; Cl = 21⋅ 5‰) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective.

  9. The measurement of sulfate mineral solubilities in the Na-K-Ca-Cl-SO 4-H 2O system at temperatures of 100, 150 and 200°C

    NASA Astrophysics Data System (ADS)

    Freyer, Daniela; Voigt, Wolfgang

    2004-01-01

    At T > 100°C development of thermodynamic models suffers from missing experimental data, particularly for solubilities of sulfate minerals in mixed solutions. Solubilities in Na +-K +-Ca 2+-Cl --SO 42-/H 2O subsystems were investigated at 150, 200°C and at selected compositions at 100°C. The apparatus used to examine solid-liquid phase equilibria under hydrothermal conditions has been described. In the system NaCl-CaSO 4-H 2O the missing anhydrite (CaSO 4) solubilities at high NaCl concentrations up to halite saturation have been determined. In the system Na 2SO 4-CaSO 4-H 2O the observed glauberite (Na 2SO 4 · CaSO 4) solubility is higher than that predicted by the high temperature model of Greenberg and Møller (1989), especially at 200°C. At high salt concentrations, solubilities of both anhydrite and glauberite increase with increasing temperature. Stability fields of the minerals syngenite (K 2SO 4 · CaSO 4 · H 2O) and goergeyite (K 2SO 4 · 5 CaSO 4 · H 2O) were determined, and a new phase was found at 200°C in the K 2SO 4-CaSO 4-H 2O system. Chemical and single crystal structure analysis give the formula K 2SO 4 · CaSO 4. The structure is isostructural with palmierite (K 2SO 4 · PbSO 4). The glaserite ("3 K 2SO 4 · Na 2SO 4") appears as solid solution in the system Na 2SO 4-K 2SO 4-H 2O. Its solubility and stoichiometry was determined as a function of solution composition.

  10. Raman spectroscopic study of the mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3, a pegmatite phosphate mineral from Santa Ana pegmatite, Argentina.

    PubMed

    Frost, Ray L; Xi, Yunfei; Scholz, Ricardo; López, Andrés; Moreira, Caio; de Lena, Jorge Carvalho

    2013-10-01

    The pegmatite mineral qingheiite Na2(Mn(2+),Mg,Fe(2+))2(Al,Fe(3+))(PO4)3 has been studied by a combination of SEM and EMP, Raman and infrared spectroscopy. The studied sample was collected from the Santa Ana pegmatite, Argentina. The mineral occurs as a primary mineral in lithium bearing pegmatite, in association with beausite and lithiophilite. The Raman spectrum is characterized by a very sharp intense Raman band at 980 cm(-1) assigned to the PO4(3-) symmetric stretching mode. Multiple Raman bands are observed in the PO4(3-) antisymmetric stretching region, providing evidence for the existence of more than one phosphate unit in the structure of qingheiite and evidence for the reduction in symmetry of the phosphate units. This concept is affirmed by the number of bands in the ν4 and ν2 bending regions. No intensity was observed in the OH stretching region in the Raman spectrum but significant intensity is found in the infrared spectrum. Infrared bands are observed at 2917, 3195, 3414 and 3498 cm(-1) are assigned to water stretching vibrations. It is suggested that some water is coordinating the metal cations in the structure of qingheiite. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Mineral content analysis of root canal dentin using laser-induced breakdown spectroscopy

    PubMed Central

    2018-01-01

    Objectives This study aimed to introduce the use of laser-induced breakdown spectroscopy (LIBS) for evaluation of the mineral content of root canal dentin, and to assess whether a correlation exists between LIBS and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods by comparing the effects of irrigation solutions on the mineral content change of root canal dentin. Materials and Methods Forty teeth with a single root canal were decoronated and longitudinally sectioned to expose the canals. The root halves were divided into 4 groups (n = 10) according to the solution applied: group NaOCl, 5.25% sodium hypochlorite (NaOCl) for 1 hour; group EDTA, 17% ethylenediaminetetraacetic acid (EDTA) for 2 minutes; group NaOCl+EDTA, 5.25% NaOCl for 1 hour and 17% EDTA for 2 minutes; a control group. Each root half belonging to the same root was evaluated for mineral content with either LIBS or SEM/EDS methods. The data were analyzed statistically. Results In groups NaOCl and NaOCl+EDTA, the calcium (Ca)/phosphorus (P) ratio decreased while the sodium (Na) level increased compared with the other groups (p < 0.05). The magnesium (Mg) level changes were not significant among the groups. A significant positive correlation was found between the results of LIBS and SEM/EDS analyses (r = 0.84, p < 0.001). Conclusions Treatment with NaOCl for 1 hour altered the mineral content of dentin, while EDTA application for 2 minutes had no effect on the elemental composition. The LIBS method proved to be reliable while providing data for the elemental composition of root canal dentin. PMID:29487841

  12. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    NASA Astrophysics Data System (ADS)

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong; Chorover, Jon; O'Day, Peggy A.

    2017-06-01

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium (U) concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this work, the dissolution rates of K- and Na-compreignacite (K2(UO2)6O4(OH)6·8H2O and Na2(UO2)6O4(OH)6·8H2O, respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved carbonate concentration (ca. 0.2 and 2.8 mmol L-1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area, and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total U mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved U was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered surfaces. Dissolution rates

  13. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this paper, the dissolution rates of K- and Na-compreignacite (K 2(UO 2) 6O 4(OH) 6·8H 2O and Na 2(UO 2) 6O 4(OH) 6·8H 2O respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved total carbonate content (ca. 0.2 and 2.8 mmolmore » L -1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total uranium mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved uranium was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered

  14. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    DOE PAGES

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong; ...

    2017-06-01

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this paper, the dissolution rates of K- and Na-compreignacite (K 2(UO 2) 6O 4(OH) 6·8H 2O and Na 2(UO 2) 6O 4(OH) 6·8H 2O respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved total carbonate content (ca. 0.2 and 2.8 mmolmore » L -1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total uranium mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved uranium was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered

  15. Mineral Metabolism in Singleton and Twin-pregnant Dairy Goats

    PubMed Central

    Härter, C. J.; Castagnino, D. S.; Rivera, A. R.; Lima, L. D.; Silva, H. G. O.; Mendonça, A. N.; Bonfim, G. F.; Liesegang, A.; St-Pierre, N.; Teixeira, I. A. M. A.

    2015-01-01

    During pregnancy, the maternal body undergoes significant physiological changes. The present study assessed the changes on calcium (Ca), phosphorus (P), magnesium (Mg), sodium (Na) and potassium (K) metabolism in singleton and twin-pregnant dairy goats. The 42 goats used (49.5 kg±7.6 body weight [BW]) were assigned at random to treatments that were factorially arranged to account for 2 breeds (Oberhasli and Saanen), 2 pregnancy types (singleton and twin) and 3 gestation periods (80, 110, and 140 days). Digestibility trials were performed at 80, 110, and 140 days of gestation. Mineral retention during pregnancy was determined in the maternal body, femur, uterus, mammary gland, fetus and fetal fluid. Blood samples were taken during pregnancy before and after a meal, and Ca, P, Mg, Na, K ions and alkaline phosphatase activity determined in serum. Bone mineral density was determined in the right femur. Statistical analyses were performed using the SAS MIXED procedure. Dry matter intake decreased linearly up to 140 days of gestation. Maternal BW gain, and Ca, P, and Mg retention (g/kg) decreased linearly with the advance of gestation days. Macromineral retention in maternal body (g/kg) was greater in Oberhasli than Saanen goats, and their fetuses had higher Ca, P, and Mg deposition (mg/g). Mineral retention (mg/g) increased in fetuses according to pregnancy development, with no differences between singleton and twin pregnancy. In the mammary gland, the retention of all minerals (g) increased with the days of pregnancy. In conclusion, related to Ca, P, and Mg metabolism can be divided into two stages. Up to 80 days of gestation, was characterized by the preparation of the maternal body reserves for future mineral demands. From 80 days of gestation onward, was characterized by the transfer of maternal body reserves for fetal development and colostrum production. Na and K supply was provided by adjustments in endogenous excretion and an increase in intestinal absorption

  16. Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals

    NASA Astrophysics Data System (ADS)

    Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald

    2014-07-01

    In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral

  17. Comparison of the Mineral Content of Tap Water and Bottled Waters

    PubMed Central

    Azoulay, Arik; Garzon, Philippe; Eisenberg, Mark J

    2001-01-01

    OBJECTIVES Because of growing concern that constituents of drinking water may have adverse health effects, consumption of tap water in North America has decreased and consumption of bottled water has increased. Our objectives were to 1) determine whether North American tap water contains clinically important levels of calcium (Ca2+), magnesium (Mg2+), and sodium (Na+) and 2) determine whether differences in mineral content of tap water and commercially available bottled waters are clinically important. DESIGN We obtained mineral analysis reports from municipal water authorities of 21 major North American cities. Mineral content of tap water was compared with published data regarding commercially available bottled waters and with dietary reference intakes (DRIs). MEASUREMENTS AND MAIN RESULTS Mineral levels varied among tap water sources in North America and among bottled waters. European bottled waters generally contained higher mineral levels than North American tap water sources and North American bottled waters. For half of the tap water sources we examined, adults may fulfill between 8% and 16% of their Ca2+ DRI and between 6% and 31% of their Mg2+ DRI by drinking 2 liters per day. One liter of most moderate mineralization European bottled waters contained between 20% and 58% of the Ca2+ DRI and between 16% and 41% of the Mg2+ DRI in adults. High mineralization bottled waters often contained up to half of the maximum recommended daily intake of Na+. CONCLUSION Drinking water sources available to North Americans may contain high levels of Ca2+, Mg2+, and Na+ and may provide clinically important portions of the recommended dietary intake of these minerals. Physicians should encourage patients to check the mineral content of their drinking water, whether tap or bottled, and choose water most appropriate for their needs. PMID:11318912

  18. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    PubMed

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  19. Structural mechanism of the formation of mineral Na-tveitite-a new type of phase with a fluorite-derivative structure-in the NaF-CaF{sub 2}-(Y,Ln)F{sub 3} natural system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golubev, A. M., E-mail: fluorides@ns.crys.ras.ru; Otroshchenko, L. P.; Sobolev, B. P.

    2012-03-15

    Relationships between the chemical compositions and structures of the mineral tveitite from the southern Norway pegmatites (with the idealized formula Ca{sub 14}Y{sub 5}F{sub 43}) and Na-tveitite from the Rov mountain (Keivy, Kola Peninsula) Na{sub 2.5}Ca{sub 10}Ln{sub 1.5}Y{sub 5}F{sub 42} are considered. According to the structural mechanism of its formation, Na-tveitite is a nanocomposite crystal based on the crystalline matrix Ca{sub 14}Y{sub 5}F{sub 43} with the ordered arrangement of {l_brace}Ca{sub 8}[CaY{sub 5}]F{sub 69}{r_brace} clusters which contain anionic {l_brace}F{sub 13}{r_brace} cuboctahedra with F{sup 1-} at the center. When Na-tveitite is formed, 29% of these clusters are statistically replaced by Na-'Y' clusters {l_brace}[Na{submore » 0.5}(Y,Ln){sub 0.5}]{sub 14}F{sub 64}{r_brace} with {l_brace}F{sub 8}{r_brace} cubes at the center (analogs of matrix fluorite groups {l_brace}Ca{sub 14}F{sub 64}{r_brace}). This replacement gives rise to composition-imperfect (Na, Ca, 'Y') cationic positions and occupancy-deficient F positions, which correspond to {l_brace}F{sub 13}{r_brace} cuboctahedra and the {l_brace}F{sub 8}{r_brace} cubes that replace them. The difference between Na-tveitite and fluorite phases M{sub 1-x}R{sub x}F{sub 2+x} is as follows: its matrix is the structure of the ordered phase (tveitite) into which Na-containing rare earth fragments of fluorite-type structure are incorporated instead of ordered-phase structural blocks (clusters).« less

  20. Pulse thermography for quantitative nondestructive evaluation of sound, de-mineralized and re-mineralized enamel

    NASA Astrophysics Data System (ADS)

    Ando, Masatoshi; Sharp, Nathan; Adams, Douglas

    2012-04-01

    Current limitations for diagnosing mineralization state of tooth enamel can lead to improper surgical treatments. A method is investigated by which the tooth health state is characterized according to its thermal response, which is hypothesized to be sensitive to increased porosity in enamel that is caused by demineralization. Several specimens consisting of previously extracted human teeth a re prepared by exposure to Streptococcus mutans A32-2 in trypticase-soy-borth supplemented with 5% sucrose at 37°C for 3 or 6 days to de-mineralize two 1×1mm2-windows on each tooth. One of these windows is then re-mineralized with 250 or 1,100ppm-F as NaF for 10 days by pH-cyclic-model. Pulse thermography is used to measure the thermal response of these sections as well as the sound (healthy) portions of the specimen. A spatial profile of the thermal parameters of the specimens is then extracted from the thermography data and are used to compare the sound, de-mineralized, and re-mineralized areas. Results show that the thermal parameters are sensitive to the mineralization state of the tooth and that this method has the potential to accurately and quickly characterize the mineralization state of teeth, thereby allowing future dentists to make informed decisions regarding the best treatment for teeth that have experienced demineralization.

  1. Impacts of Pantoea agglomerans strain and cation-modified clay minerals on the adsorption and biodegradation of phenanthrene.

    PubMed

    Tao, Kelin; Zhao, Song; Gao, Pin; Wang, Lijin; Jia, Hanzhong

    2018-06-06

    Interactions between microorganisms and minerals have the potential contribution to remove polycyclic aromatic hydrocarbons (PAHs) in model systems. In this study, phenanthrene (PHE) was used as a probe molecule to explore the potential adsorption and biotransformation processes in the presence of microorganisms and various reference clays, such as montmorillonite (M), kaolinite (K), and pyrophyllite (P). Equilibrium adsorption experiments and scanning electron microscopy (SEM) technique were used to investigate the sorption of Pantoea agglomerans strains on clay minerals saturated with cations (Na + and Fe 3+ ). The adsorption isotherms of PHE and Pantoea agglomerans strains on cation-modified clay minerals fitted to Langmuir equation, and their adsorbed amounts both followed the sequence: montmorillonite > kaolinite > pyrophyllite. For six types of cation-modified minerals, the behavior of PHE adsorbed and Pantoea agglomerans adhered onto mentioned minerals was in the order of Na(I)-M > Fe(Ⅲ)-M, Na(I)-K > Fe(Ⅲ)-K and Fe(Ⅲ)-P > Na(I)-P, respectively. The biodegradation results showed that cation-modified clay minerals could enhance the biodegradation of PHE, ascribing to their large specific surface area, and cation exchange capability, as well as the difference in zeta potential between minerals and Pantoea agglomerans strains. Comparison of biodegradation rates displayed that PHE was degraded the highest in the presence of Na-M (93.285%). In addition, the obtained results suggested that the adhesion of bacteria onto cation-exchanged clay minerals was beneficial to the biodegradation of PHE. Anthracen-9-ylmethanol and 3,4-dimethyl-2-(3-methylbutanoyl)benzoic acid were detected as the main intermediate compounds, which can be further biodegraded into small molecules. The overall results obtained in this study are of valuable significance for the understanding of the behavior of PHE in soil and associated environment. Copyright © 2018 Elsevier Inc. All

  2. Influência da termoablação com baixa e alta densidade de energia na junção safeno-femoral, utilizando laser endovenoso 1470 nm

    PubMed Central

    de Araujo, Walter Junior Boim; Erzinger, Fabiano Luiz; Caron, Filipe Carlos; Nejm, Carlos Seme; Timi, Jorge Rufino Ribas

    2017-01-01

    Resumo Contexto Faz-se importante o conhecimento técnico dos ajustes de potência e de densidade de energia linear endovenosa (linear endovenous energy density, LEED) adequados para atingir o objetivo final da termoablação endovenosa (endovenous laser ablation, EVLA). Objetivos Avaliar a influência de diferentes LEEDs em termos de patência e presença de refluxo, bem como determinar a evolução clínica. Métodos Foram incluídas 60 veias safenas magnas (VSM). Os pacientes foram randomizados em dois grupos: EVLA com baixa potência (7 W e LEED de 20-40 J/cm) e com alta potência (15 W e LEED de 80-100 J/cm). O acompanhamento com eco-Doppler e escore de severidade clínica venoso (VCSS) foi realizado nos intervalos de 3-5 dias, 30 dias, 180 dias e 1 ano após o procedimento. Resultados Dezoito pacientes (29 membros) tratados com 7W de potência e 13 pacientes (23 membros) com 15 W completaram o estudo. Não houve diferença significativa considerando idade, tempo de cirurgia e o uso de analgésicos, lateralidade, gênero e presença de comorbidades. O LEED médio foi de 33,54 J/cm no grupo de 7 W e de 88,66 J/cm no de 15 W. Ambos apresentaram melhora no VCSS, redução significativa dos diâmetros da JSF e ausência de diferença significativa quanto ao aumento do comprimento do coto da VSM e de refluxo após o tratamento. Conclusões A utilização de maior densidade de energia mostrou-se mais efetiva em relação à estabilização do comprimento do coto da VSM e do refluxo em 6 meses. Fazem-se necessários estudos com um período de acompanhamento maior para fundamentar essa hipótese. PMID:29930650

  3. Thermodynamic Analysis of Secondary Minerals Stability in Altered Carbonatites of the Oldoinyo Lengai Volcano, Northern Tanzania

    NASA Astrophysics Data System (ADS)

    Perova, E. N.; Zaitsev, A. N.

    2017-12-01

    Carbonatites from the Oldoinyo Lengai volcano, northern Tanzania, are unstable under normal atmospheric conditions. Owing to carbonatite interaction with water, the major minerals—gregoryite Na2(CO3), nyerereite Na2Ca(CO3)2, and sylvite KCl—are dissolved and replaced with secondary low-temperature minerals: thermonatrite Na2(CO3) · H2O, trona Na3(CO3)(HCO3) · 2H2O, nahcolite Na(HCO3), pirssonite Na2Ca(CO3)2 · 2H2O, calcite Ca(CO3), and shortite Na2Ca2(CO3)3. Thermodynamic calculations show that the formation of secondary minerals in Oldoinyo Lengai carbonatites are controlled by the pH of the pore solution, H2O and CO2 fugacity, and the ratio of Ca and Na activity in the Na2O-CaO-CO2-H2O system.

  4. Mineral replacement reactions and element mobilization

    NASA Astrophysics Data System (ADS)

    Putnis, Christine V.; Ruiz-Agudo, Encarnacion; King, Helen E.; Hövelmann, Jörn; Renard, François

    2016-04-01

    When a mineral is out of equilibrium with an aqueous fluid, reactions will take place in an attempt to reach a new equilibrium. Commonly in the Earth dissolution at a mineral-fluid interface initiates a coupled reaction involving dissolution and precipitation (Ruiz-Agudo et al., 2014). This is a ubiquitous reaction during such processes as metamorphism, metasomatism and weathering. When rock-forming minerals such as feldspars, olivine, pyroxenes are in contact with aqueous fluids (typically NaCl-rich) resultant new phases are formed and elements present in the parent mineral are released to the fluid and therefore mobilized for transport elsewhere. This has been shown in a number of systems such as the albitisation of feldspars (Hövelmann et al., 2010) when a Ca-bearing plagioclase is replaced by albite (NaAlSi3O8). However during this reaction not only is Ca released to the fluid but most other minor elements, such as Mg, Pb, rare earth elements amongst others, are almost totally mobilized and removed in solution. This interface-coupled dissolution-precipitation reaction has many implications for the redistributon of elements in the crust of the Earth. It is also of note that albitisation occurs often in areas of high mineralization, such as in the Curnamona Province in S. Australia (Au-Cu and Ag-Pb-Zn deposits) and the Bamble District of S. Norway. Secondly atomic force microscopy (AFM) has been used to image these reactions at a nanoscale, especially at the calcite-fluid interface, such as the formation of apatite from phosphate-bearing solutions, and the sequestration of toxic elements, eg., Se and As. References Ruiz-Agudo E., Putnis C.V., Putnis A. (2014) Coupled dissolution and precipitation at mineral-fluid interfaces. Chemical Geology, 383, 132-146. Putnis C.V. and Ruiz-Agudo E. (2013) The mineral-water interface: where minerals react with the environment. Elements, 9, 177-182. Hövelmann J., Putnis A., Geisler T., Schmidt B.C., Golla-Schindler U. (2009

  5. Evaluating Mineral-Associated Soil Organic Matter Pools as Indicators of Forest Harvesting Disturbance

    NASA Astrophysics Data System (ADS)

    Kellman, L. M.; Gabriel, C. E.

    2015-12-01

    Soil organic matter (SOM) in northern forest soils is associated with a suite of minerals that can confer SOM stability, resulting in the potential for long-term storage of carbon. Increasingly, evidence is suggesting that SOM in certain mineral phases is dynamic and vulnerable to soil disturbance. The objective of this research was to investigate changes in a suite of mineral-associated pools of SOM through depth in a temperate forest soil to determine which mineral-associated carbon pools are most sensitive to forest harvesting disturbance. Sequential selective dissolutions representing increasingly stable SOM pools (soluble minerals (deionized water); humus-mineral complexes (Na-pyrophosphate); poorly crystalline minerals (HCl hydroxylamine); and crystalline secondary minerals (Na-dithionite + HCl)) of mineral soils through depth to 50 cm were carried out in podzolic soils sampled from temperate red spruce forests of contrasting stand age in Nova Scotia, Canada. Results of this analysis point to a loss of carbon from SOM within the B-horizon of the most recently harvested site from the pyrophosphate-extracted humus mineral complexed SOM, suggesting that it is this exchangeable pool that appears to be destabilized following clearcut harvesting at these study sites. This suggests that recovery from this landuse disturbance is dependent upon increasing storage of this SOM pool, and that mineral-associated pools, particularly pyrophosphate-extractable SOM, may be a useful indicator of changes to soil carbon storage following land use change.

  6. [Analysis of mineral elements in different organs at different harvesting times of Schizonepeta tenuifolia on ICP-AES].

    PubMed

    Shan, Ming-Qiu; Yu, Sheng; Yu, Li-Xia; Ding, An-Wei

    2014-02-01

    To study the main storage organ of each mineral element in Schizonepeta tenuifolia, and explain its reasonable harvesting time and medicinal parts in view of mineral elements. The mineral elements of Schizonepeta tenuifolia in different organs at different harvesting times were determined by ICP-AES technique. The mineral elements, K, Ca, Na, P, Mg, Mn, Zn, Cu, Fe, Mo, were determined in the study. The results showed that at different harvesting times, (1) the contents of K, P, Cu in fringe and the contents of Mg, Ca, Na, Fe, Mn, Zn in leaf were highest among different organs. (2) among the macroelements, the contents of K and Ca were highest while the content of Na was lowest; among the microelements, the content of Fe was highest while the content of Mo was lowest. (3) in item, the proportion of K:P was highest while the proportion of Zn: Cu was lowest; in fringe, the proportions of Ca:Mg and Fe:Mn were lowest. (4) within the harvest period, variations of the mineral elements were not obvious. In the stem of Schizonepeta tenuifolia, the contents of every mineral elements were lower than other organs, including leaves and spikes. Considering the mineral elements, the correlations of harvesting time and content change were not remarkable.

  7. The Influence of Mineral Matrices on the Thermal Behavior of Glycine

    NASA Astrophysics Data System (ADS)

    Dalai, Punam; Pleyer, Hannes Lukas; Strasdeit, Henry; Fox, Stefan

    2017-12-01

    On the Hadean-Early Archean Earth, the first islands must have provided hot and dry environments for abiotically formed organic molecules. The heat sources, mainly volcanism and meteorite impacts, were also available on Mars during the Noachian period. In recent work simulating this scenario, we have shown that neat glycine forms a black, sparingly water-soluble polymer ("thermomelanoid") when dry-heated at 200 °C under pure nitrogen. The present study explores whether relevant minerals and mineral mixtures can change this thermal behavior. Most experiments were conducted at 200 or 250 °C for 2 or 7 days. The mineral matrices used were phyllosilicates (Ca-montmorillonites SAz-1 and STx-1, Na-montmorillonite SAz-1-Na, nontronite NAu-1, kaolinite KGa-1), salts (NaCl, NaCl-KCl, CaCl2, artificial sea salt, gypsum, magnesite), picritic basalt, and three Martian regolith simulants (P-MRS, S-MRS, JSC Mars-1A). The main analytical method employed was high-performance liquid chromatography (HPLC). Glycine intercalated in SAz-1 and SAz-1-Na was well protected against thermomelanoid formation and sublimation at 200 °C: after 2 days, 95 and 79 %, respectively, had either survived unaltered or been transformed into the cyclic dipeptide (DKP) and linear peptides up to Gly6. The glycine survival rate followed the order SAz-1 > SAz-1-Na > STx-1 ≈ NAu-1 > KGa-1. Very good protection was also provided by artificial sea salt (84 % unaltered glycine after 200 °C for 7 days). P-MRS promoted the condensation up to Gly6, consistent with its high phyllosilicate content. The remaining matrices were less effective in preserving glycine as such or as peptides.

  8. Mineral Content and Biochemical Variables of Aloe vera L. under Salt Stress

    PubMed Central

    Murillo-Amador, Bernardo; Córdoba-Matson, Miguel Víctor; Villegas-Espinoza, Jorge Arnoldo; Hernández-Montiel, Luis Guillermo; Troyo-Diéguez, Enrique; García-Hernández, José Luis

    2014-01-01

    Despite the proven economic importance of Aloe vera, studies of saline stress and its effects on the biochemistry and mineral content in tissues of this plant are scarce. The objective of this study was to grow Aloe under NaCl stress of 0, 30, 60, 90 and 120 mM and compare: (1) proline, total protein, and enzyme phosphoenolpyruvate carboxylase (PEP-case) in chlorenchyma and parenchyma tissues, and (2) ion content (Na, K, Ca, Mg, Cl, Fe, P. N, Zn, B, Mn, and Cu) in roots, stems, leaves and sprouts. Proline and PEP-case increased as salinity increased in both parenchyma and chlorenchyma, while total protein increased in parenchyma and decreased in chlorenchyma, although at similar salt concentrations total protein was always higher in chlorenchyma. As salinity increased Na and Cl ions increased in roots, stems, leaves, while K decreased only significantly in sprouts. Salinity increases typically caused mineral content in tissue to decrease, or not change significantly. In roots, as salinity increased Mg decreased, while all other minerals failed to show a specific trend. In stems, the mineral concentrations that changed were Fe and P which increased with salinity while Cu decreased. In leaves, Mg, Mn, N, and B decreased with salinity, while Cu increased. In sprouts, the minerals that decreased with increasing salinity were Mg, Mn, and Cu. Zinc did not exhibit a trend in any of the tissues. The increase in protein, proline and PEP-case activity, as well as the absorption and accumulation of cations under moderate NaCl stress caused osmotic adjustment which kept the plant healthy. These results suggest that Aloe may be a viable crop for soil irrigated with hard water or affected by salinity at least at concentrations used in the present study. PMID:24736276

  9. X-ray photoelectron spectroscopic study of the interaction of xanthate with coal pyrite and mineral pyrite surfaces

    NASA Astrophysics Data System (ADS)

    Khan, S. U. M.; Baltrus, J. P.; Lai, R. W.; Richardson, A. G.

    1991-06-01

    Coal pyrite and mineral pyrite surfaces were examined by X-ray photoelectron spectroscopy (XPS) before and after treatment in acidic and basic solutions of sodium ethyl xanthate (NaEtX). XPS showed that the degree of oxidation of coal and mineral pyrite surfaces increased when these pyrites were conditioned in basic solutions. However, conditioning in acidic solutions led to partial removal of surface oxidation from the pyrites. Addition of NaEtX to the acidic and basic solutions enhanced the removal of oxidation from pyrite surfaces. Pretreatment with sulfur dioxide further enhanced the removal of surface oxidation in the presence of NaEtX. Surface oxidation was typically less on mineral pyrite than coal pyrite surfaces following identical treatments. The flotation recoveries of the pyrites in the presence of NaEtX are greatest for the pyrites with the least amount of surface oxidation.

  10. Mineral-solution equilibria—III. The system Na 2OAl 2O 3SiO 2H 2OHCl

    NASA Astrophysics Data System (ADS)

    Popp, Robert K.; Frantz, John D.

    1980-07-01

    Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500-700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant ( K) for the reaction NaAlSi 3O 8 + HCl o = NaCl o + 1/2Al 2SiO 5, + 5/2SiO 2 + 1/2H 2O Albite Andalusite Qtz. K = (a NaCl o) /(a H 2O ) 1/2/(a HCl o) can be described by the following equation: log k = -4.437 + 5205.6/ T( K) The data from this study are consistent with experimental results reported by MONTOYA and HEMLEY (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaCl o and HCl o in the range 400-700°C and 1-2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KCl o and HCl o. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.

  11. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na+/K+ Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress

    PubMed Central

    Mostofa, Mohammad G.; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na+ and the Na+/K+ ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015

  12. Mineral Analysis of Pine Nuts (Pinus spp.) Grown in New Zealand

    PubMed Central

    Vanhanen, Leo P.; Savage, Geoffrey P.

    2013-01-01

    Mineral analysis of seven Pinus species grown in different regions of New Zealand; Armand pine (Pinus armandii Franch), Swiss stone pine (Pinus cembra L.), Mexican pinyon (Pinus cembroides Zucc. var. bicolor Little), Coulter pine (Pinus coulteri D. Don), Johann’s pine (Pinus johannis M.F. Robert), Italian stone pine (Pinus pinea L.) and Torrey pine (Pinus torreyana Parry ex Carrière), was carried out using an inductively coupled plasma optical emission spectrophotometer (ICP-OES) analysis. Fourteen different minerals (Al, B, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S and Zn) were identified in all seven varieties, except that no Al or Na was found in Pinus coulteri D. Don. New Zealand grown pine nuts are a good source of Cu, Mg, Mn, P and Zn, meeting or exceeding the recommended RDI for these minerals (based on an intake of 50 g nuts/day) while they supplied between 39%–89% of the New Zealand RDI for Fe. Compared to other commonly eaten tree-nuts New Zealand grown pine nuts are an excellent source of essential minerals. PMID:28239104

  13. Mineral Analysis of Pine Nuts (Pinus spp.) Grown in New Zealand.

    PubMed

    Vanhanen, Leo P; Savage, Geoffrey P

    2013-04-03

    Mineral analysis of seven Pinus species grown in different regions of New Zealand; Armand pine ( Pinus armandii Franch), Swiss stone pine ( Pinus cembra L.), Mexican pinyon ( Pinus cembroides Zucc. var. bicolor Little), Coulter pine ( Pinus coulteri D. Don), Johann's pine ( Pinus johannis M.F. Robert), Italian stone pine ( Pinus pinea L.) and Torrey pine ( Pinus torreyana Parry ex Carrière), was carried out using an inductively coupled plasma optical emission spectrophotometer (ICP-OES) analysis. Fourteen different minerals (Al, B, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S and Zn) were identified in all seven varieties, except that no Al or Na was found in Pinus coulteri D. Don. New Zealand grown pine nuts are a good source of Cu, Mg, Mn, P and Zn, meeting or exceeding the recommended RDI for these minerals (based on an intake of 50 g nuts/day) while they supplied between 39%-89% of the New Zealand RDI for Fe. Compared to other commonly eaten tree-nuts New Zealand grown pine nuts are an excellent source of essential minerals.

  14. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria

  15. Davinciite, Na12K3Ca6Fe{3/2+}Zr3(Si26O73OH)Cl2, a New K,Na-Ordered mineral of the eudialyte group from the Khibiny Alkaline Pluton, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Khomyakov, A. P.; Nechelyustov, G. N.; Rastsvetaeva, R. K.; Rozenberg, K. A.

    2013-12-01

    This paper presents a description of a new zirconosilicate of the eudialyte group, which was named davinciite in honor of Leonardo da Vinci (1452-1519), a famous Italian scientist, painter, sculptor and architect. The new mineral has been found in hyperagpaitic pegmatite at the Rasvumchorr Mountain, Khibiny Pluton, Kola Peninsula, as relict inclusions, up to 1-2 mm in size in a rastsvetaevite matrix. It is associated with nepheline, sodalite, potassium feldspar, delhayelite, aegirine, shcherbakovite, villiaumite, nitrite, nacaphite, rasvumite, and djerfisherite. Davinciite is dark lavender and transparent, with a vitreous luster and white streak. The new mineral is brittle, with conchoidal fracture; the Mohs' hardness is 5. No indications of cleavage or parting were observed. The measured density is 2.82(2) g/cm3 (volumetric method); the calculated density is 2.848 g/cm3. Davinciite is optically uniaxial, positive; ω = 1.603(2), ɛ = 1.605(2). It is nonpleochroic and nonfluorescent in UV light. The new mineral slowly breaks down and gelates in 50% HCl and HNO3. It is trigonal, space group R3m. The unit-cell dimensions are a = 14.2956(2), c = 30.0228(5) Å, V=5313.6(2) Å3. The strongest reflections in the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are as follows: 2.981(100)(315), 2.860(96)(404), 4.309(66)(205), 3.207(63)(208), 6.415(54)(104), 3.162(43)(217). The chemical composition (electron microprobe, H2O calculated from X-ray diffraction data) is as follows, wt %: 12.69 Na2O, 3.53 K2O, 11.02 CaO, 0.98 SrO, 0.15 BaO, 5.33 FeO, 0.37 MnO, 0.07 Al2O3, 51.20 SiO2, 0.39 TiO2, 11.33 ZrO2, 0.21HfO2, 0.09 Nb2O5, 1.89 Cl, 0.93H2O, -O = Cl2 0.43; total is 99.75. The empirical formula calculated on the basis of Si + Al + Zr + Hf + Ti + Nb = 29 ( Z = 3) is (Na1l.75Sr0.29Ba0.03)Σ12.07(K2.28Na0.72)Σ3Ca5.99(Fe2.26Mn0.16)Σ2.42(Zr2.80Ti0.15Hf0.03Nb0.02) Σ3(Si1.96Al0.04)Σ2[Si3O9]2 [Si9O27]2[(OH)1.42O0.58]Σ2[Cl1.62(H2O)0.38]Σ2 · 0.48H2O. The simplified

  16. [Analysis of changes in minerals contents during cider fermentation process by inductively coupled plasma mass spectrometry].

    PubMed

    Ye, Meng-qi; Yue, Tian-li; Gao, Zhen-peng; Yuan, Ya-hong; Nie, Gang

    2015-01-01

    The changes in mineral elements during cider fermentation process were determined using ICP-MS. The results showed that the main minerals in the fermentation liquor included K, Na, Ca, Mg, Fe, Mn, Zn, Cu, Sr and B. The content of K was the highest in both the apple juice and the cider, being 1 853. 83 and 1 654. 38 mg . L-1 respectively. The content of minerals was in dynamic changes along with the fermentation process. As a whole, during 72-120 h and 144-216 h, most of the minerals contents underwent great fluctuation. Especially when fermented for 192 h, the content of most of the minerals reached peak value or valley value. The content of Fe and Zn achieved their peak value, while the content of K, Na, Ca, Mg, Mn and B achieved valley value. But during the following 24 h, the content of minerals underwent a sharp reversal. After fermentation, the content of K, Mg, Cu, Zn and B decreased significantly, while the content of Na, Ca, Mn, Fe and Sr did not change significantly. The correlational analysis was conducted to evaluate the correlation between the mineral elements, and the result showed that the correlation between Ca and Mn was the most significant, with the correlation index reaching 0. 924. The information of this study will supply sufficient data for the fermentation process control and quality improvement of cider.

  17. Quantitative Characterization Guidelines of Erionite Series Minerals for Regulatory Agencies

    NASA Astrophysics Data System (ADS)

    Dogan, A.; Dogan, M.

    2013-05-01

    Erionite is a major health problem where contaminates an environment, which human population exists. Erionite - mesothelioma relationship was first observed in Turkey in 1980's and now the problem is emerging in other places in the world including Mexico. In the past, there have been in vivo or in vitro biological experiments performed using "not correctly characterized" erionite minerals. In addition, in 1997, the erionite was elevated to series status and new erionite minerals - erionite-Na, -K, -Ca - have been proposed. In 2008, erionite characterization guidelines have been proposed (Dogan and Dogan, 2008) and using these criteria, published data was re-evaluated and re-classified; and new mean chemical formula of erionite-Na, -K, -Ca was proposed. If data do not pass the E% and Mg-tests, then any reference to them in the literature is proposed to be disregarded. In some cases, different results have been reported for erionites from the same location by different authors. In these cases, if data do pass both tests but are characterized as from more than one type of erionite, then the mineral should be classified as "undifferentiated" until further clarification. Therefore, we propose (i) Erionite should be correctly characterized using proposed "positive" identification guidelines. (ii) Erionite species (whether it is -Na or -K or -Ca) should be correctly identified. (iii) There should be a close collaboration between medical community researchers and mineralogists in this field so that animal and cell experiments should be performed only with minerals that have passed "positive" identification tests. (iv) An international data bank should be established at one of the mineralogical societies and new data must be evaluated rigorously before being accepted. (v) Regulatory Agencies should ensure that the proposed guidelines for "positive" identification of erionite series minerals, both for a single fiber and a bulk mineral, are followed closely. (vi) Finally, the

  18. Effects of mineral dust on global atmospheric nitrate concentrations

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Pozzer, A.; Astitha, M.; Lelieveld, J.

    2016-02-01

    This study assesses the chemical composition and global aerosol load of the major inorganic aerosol components, focusing on mineral dust and aerosol nitrate. The mineral dust aerosol components (i.e., Ca2+, Mg2+, K+, Na+) and their emissions are included in the ECHAM5/MESSy Atmospheric Chemistry model (EMAC). Gas/aerosol partitioning is simulated using the ISORROPIA-II thermodynamic equilibrium model that considers K+, Ca2+, Mg2+, NH4+, Na+, SO42-, NO3-, Cl-, and H2O aerosol components. Emissions of mineral dust are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. Presence of metallic ions can substantially affect the nitrate partitioning into the aerosol phase due to thermodynamic interactions. The model simulates highest fine aerosol nitrate concentration over urban and industrialized areas (1-3 µg m-3), while coarse aerosol nitrate is highest close to deserts (1-4 µg m-3). The influence of mineral dust on nitrate formation extends across southern Europe, western USA, and northeastern China. The tropospheric burden of aerosol nitrate increases by 44 % when considering interactions of nitrate with mineral dust. The calculated global average nitrate aerosol concentration near the surface increases by 36 %, while the coarse- and fine-mode concentrations of nitrate increase by 53 and 21 %, respectively. Other inorganic aerosol components are affected by reactive dust components as well (e.g., the tropospheric burden of chloride increases by 9 %, ammonium decreases by 41 %, and sulfate increases by 7 %). Sensitivity tests show that nitrate aerosol is most sensitive to the chemical composition of the emitted mineral dust, followed by the soil size distribution of dust particles, the magnitude of the mineral dust emissions, and the aerosol state assumption.

  19. Modelo semi-empírico de protuberancia solar a partir del diagnóstico de densidades

    NASA Astrophysics Data System (ADS)

    Cirigliano, D.; Vial, J. C.; Rovira, M.

    A partir de la observación del espectro del quintuplete de C III alrededor de 1175 Å, se ha realizado el diagnóstico de la densidad y presión electrónica, basado en el cálculo del cociente de las intensidades observadas. Una vez establecida la densidad electrónica, y con el cálculo de las velocidades Doppler, hemos investigado el flujo de masa en la protuberancia en función de la temperatura. Estableciendo como hipótesis la conservación del número de partículas que ingresan y salen del cuerpo de la protuberancia, se investiga la variación del área de un tubo de flujo semi-empírico en función de la temperatura. A partir de dicho diagnóstico, se examina el comportamiento del radio del tubo magnético en función de la temperatura, los que dan cuenta de la abertura de las líneas de campo magnético que confinan el plasma y de la divergencia del campo magnético en diferentes alturas de la atmósfera solar.

  20. Inadequate dietary intake of minerals: prevalence and association with socio-demographic and lifestyle factors.

    PubMed

    Sales, Cristiane H; Fontanelli, Mariane de M; Vieira, Diva A S; Marchioni, Dirce M; Fisberg, Regina M

    2017-01-01

    This cross-sectional, population-based study aimed to estimate the prevalence of dietary mineral inadequacies among residents in urban areas of Sao Paulo, to identify foods contributing to mineral intake and to verify possible associations between socio-demographic and lifestyle factors and mineral intake. Data were obtained from the 2008 Health Survey of Sao Paulo (n 1511; mean age 43·6 (sd 23·2), range 14-97 years). Dietary intake of minerals was measured using two 24-h dietary recalls. Socio-demographic and lifestyle data were collected. The prevalence of inadequate intake was estimated according to Dietary Reference Intakes methods. Associations between mineral intake and baseline factors were determined using multiple linear regression. Na, Ca and Mg showed the highest dietary inadequacies. Some age/sex groups had lower intakes of P, Zn, Cu and Se. Rice, beans and bread were the main foods contributing towards mineral intake. Female sex was negatively associated with K, Na, P, Mg, Zn and Mn intakes. All age groups were positively associated with the intakes of K, P, Mg and Mn. Family income above one minimum wage was positively associated with Se intake. Living in a household whose head completed ≥10 years of education was positively associated with Ca and negatively associated with Na intake. Former smoker status was negatively associated with Ca intake. Current smoker status was inversely associated with K, Ca, P and Cu intakes. Sufficient physical activity was positively associated with K, Ca and Mg intakes. Overall, the intakes of all major minerals were inadequate and were influenced by socio-demographic and lifestyle factors.

  1. Role of background ions in guar gum adsorption on oxide minerals and kaolinite.

    PubMed

    Ma, Xiaodong; Pawlik, Marek

    2007-09-15

    Adsorption of guar gum onto alumina, titania (rutile), hematite, quartz, and kaolinite was investigated as a function of pH, ionic strength (from distilled water to saturated NaCl and KCl), and the type of background electrolyte (0.01 mol/L LiCl, NaCl, KCl, and CsCl). It was demonstrated that the adsorption density of the polymer does not depend on pH for any of the tested minerals, so only hydrogen bonding was identified as the dominant adsorption mechanism. The minerals could, however, be divided into two groups depending on the effect of the salt type on polymer adsorption. Guar gum adsorption onto quartz and kaolinite significantly increased in the presence of even a small amount of KCl, while NaCl equally enhanced guar gum adsorption on these two minerals only at concentrations approaching saturation. In contrast, no significant differences between the effects of KCl and NaCl on polysaccharide adsorption were observed on titania, alumina, and hematite. The results were correlated with the chaotropic (KCl) and kosmotropic (NaCl) properties of the background salts, and-based on a review of the available literature data-with the presence (quartz) or absence (titania, alumina, hematite) of an extensive hydration layer on the oxide surfaces. It was concluded that the main role of background ions in the studied systems was to control the stability of the interfacial water layer on oxide particles whose presence serves as a barrier to guar gum adsorption.

  2. Structure of chitosan gels mineralized by sorption

    NASA Astrophysics Data System (ADS)

    Modrzejewska, Z.; Skwarczyńska, A.; Douglas, T. E. L.; Biniaś, D.; Maniukiewicz, W.; Sielski, J.

    2015-10-01

    The paper presents the structural studies of mineralized chitosan hydrogels. Hydrogels produced by using sodium beta-glycerophosphate (Na-β-GP) as a neutralizing agent. Mineralization was performed method "post loading", which consisted in sorption to the gels structure Ca ions. In order to obtain - in the structure of gels - compounds similar to the hydroxyapatites present naturally in bone tissue, gels after sorption were modified in: pH 7 buffer and sodium hydrogen phosphate. In order to determine the structural properties of the gels, the following methods were used: infrared spectroscopy with Fourier transformation, FTIR, X-ray diffractometry, XRD, scanning electron microscopy, SEM.

  3. Minerals in the foods and diet of diademed sifakas: Are they nutritional challenges?

    PubMed

    Irwin, Mitchell T; Raharison, Jean-Luc; Chapman, Colin A; Junge, Randall E; Rothman, Jessica M

    2017-04-01

    Minerals, though needed in small quantities, are essential to metabolic processes, and deficiencies can seriously threaten health, reproduction and survival. Despite this, few studies have measured mineral composition of wild primate foods and fewer have quantified mineral intake. Here we measured the concentration of nine minerals in 75 foods of diademed sifakas (Propithecus diadema; five groups) in habitats with varying levels of disturbance at Tsinjoarivo and estimated daily intakes using focal-animal feeding data and intake rates over one year. For six minerals (Ca, P, Na, Fe, Zn, and Cu), mean concentrations in foods fell short of the National Research Council's (NRC) recommendations for captive primates. Concentrations were highest in lianas, herbs, and epiphytes, and hemiparasites had exceptionally high Na. Leaves tended to have higher concentrations than fruits or flowers, but overlap was extensive. Mineral concentrations in daily diets varied little seasonally, but absolute intakes (g/day) were higher in the abundant season, due to the increase in food ingested. Disturbed habitat groups' diets had higher mineral concentrations for five minerals, but this translated into increased intakes only for Cu, as these groups ate less food overall. Overall, comparisons with percentage-based NRC recommendations suggests deficiencies, but this is contradicted by: (1) the fact that mass-specific intakes exceeded human recommendations, and (2) the lack of observed signs of deficiency. Ongoing efforts to quantify mineral consumption across wild primate populations and better understanding requirements on both a percentage and absolute basis will help in understanding effects on food selection, managing primate habitats and formulating captive diets. © 2017 Wiley Periodicals, Inc.

  4. Dietary minerals, reproductive hormone levels and sporadic anovulation: associations in healthy women with regular menstrual cycles.

    PubMed

    Kim, Keewan; Wactawski-Wende, Jean; Michels, Kara A; Schliep, Karen C; Plowden, Torie C; Chaljub, Ellen N; Mumford, Sunni L

    2018-04-20

    Although minerals are linked to several reproductive outcomes, it is unknown whether dietary minerals are associated with ovulatory function. We hypothesised that low intakes of minerals would be associated with an increased risk of anovulation. We investigated associations between dietary mineral intake and both reproductive hormones and anovulation in healthy women in the BioCycle Study, which prospectively followed up 259 regularly menstruating women aged 18-44 years who were not taking mineral supplements for two menstrual cycles. Intakes of ten selected minerals were assessed through 24-h dietary recalls at up to four times per cycle in each participant. Oestradiol, progesterone, luteinising hormone (LH), follicle-stimulating hormone (FSH), sex-hormone-binding globulin and testosterone were measured in serum up to eight times per cycle. We used weighted linear mixed models to evaluate associations between minerals and hormones and generalised linear models for risk of anovulation. Compared with Na intake ≥1500 mg, Na intake <1500 mg was associated with higher levels of FSH (21·3 %; 95 % CI 7·5, 36·9) and LH (36·8 %; 95 % CI 16·5, 60·5) and lower levels of progesterone (-36·9 %; 95 % CI -56·5, -8·5). Na intake <1500 mg (risk ratio (RR) 2·70; 95 % CI 1·00, 7·31) and Mn intake <1·8 mg (RR 2·00; 95 % CI 1·02, 3·94) were associated with an increased risk of anovulation, compared with higher intakes, respectively. Other measured dietary minerals were not associated with ovulatory function. As essential minerals are mostly obtained via diet, our results comparing insufficient levels with sufficient levels highlight the need for future research on dietary nutrients and their associations with ovulatory cycles.

  5. MX Siting Investigation. Mineral Resources Survey, Seven Additional Valleys, Nevada/Utah Siting Area. Volume II.

    DTIC Science & Technology

    1981-06-23

    Minerals Inc. Box 90 W. Grace #100 Reno NV 89509 Anaconda Copper Co. 555 17th Street Denver CO 80217 Argus Resources Inc. Box 56 Austin NV 93099 Armenian...Donald F. 7272 Lindale Drive Sacramento CA 95828 Combined Metals Red. 1865 S. Main St. Salt Lake City UT 84115 Conlan, Mary Helen N/A Copper Range Co...hApl. Co. Mineral Services co. N/A Miragliotta, Vito 1184 S. 1000 E. Clearfield UT 84015 Neeser, Earl Francis Box 495 Goldfield NV 89013 Nev. Porphyry

  6. Net mineral requirements for the growth and maintenance of Somali lambs.

    PubMed

    Pereira, E S; Lima, F W R; Campos, A C N; Carneiro, M S S; Silva, L P; Pereira, M W F; Medeiros, A N; Bezerra, L R; Oliveira, R L

    2018-04-22

    Minerals are limiting factors in animal production, and the knowledge of mineral requirements for livestock is crucial to the success of a commercial enterprise. Hair sheep may have different mineral requirements than those presents by the international committees. A study was carried to evaluate the net calcium (Ca), phosphorus (P), magnesium (Mg), sodium (Na), potassium (K), zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) requirements for the growth and maintenance of Brazilian Somali lambs. A total of 48 hair lambs (13.5±1.8 kg) aged 60±15 days were allocated to individual pens. Eight animals were slaughtered at the beginning of the experiment to serve as a reference group to estimate initial empty BW (EBW) and initial body composition. The remaining lambs (n=40) were assigned to a completely randomized design with eight replications in five levels of metabolizable energy (ME; 4.93, 8.65, 9.41, 10.12 and 11.24 MJ/kg DM). When the lambs of a given treatment reached an average BW of 28 kg, they were slaughtered. Initial body composition was used to calculate the retention of minerals. Mineral body composition was fit using a logarithmic equation in the form of a nonlinear model. The maintenance requirements were estimated from regressions of mineral retention in the empty body on mineral intake. The body mineral concentration decreased in lambs with a BW ranging from 15 to 30 kg. The net mineral requirements (100 g/day of average daily gain (ADG)) decreased from 0.52 to 0.51 g for Ca, 0.28 to 0.23 g for P, 0.02 to 0.02 g for Mg, 0.09 to 0.08 g for Na, 0.11 to 0.09 g for K, 1.30 to 1.08 mg for Zn, 3.77 to 3.22 mg for Fe, 0.08 to 0.06 mg for Mn and 0.09 to 0.08 mg for Cu when BW increased from 15 to 30 kg. The daily net requirements for maintenance per kilogram of BW were 30.13 mg of Ca, 27.58 mg of P, 1.26 mg of Mg, 4.12 mg of Na, 8.11 mg of K, 0.133 mg of Zn, 0.271 mg of Fe, 0.002 mg of Mn and 0.014 mg of Cu. The results of this study indicate that the net

  7. Siudaite, Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.

    2018-03-01

    The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish

  8. Mineral catalysis of a potentially prebiotic aldol condensation

    NASA Technical Reports Server (NTRS)

    De Graaf, R. M.; Visscher, J.; Xu, Y.; Arrhenius, G.; Schwartz, A. W.

    1998-01-01

    Minerals may have played a significant role in chemical evolution. In the course of investigating the chemistry of phosphonoacetaldehyde (PAL), an analogue of glycolaldehyde phosphate, we have observed a striking case of catalysis by the layered hydroxide mineral hydrotalcite ([Mg2Al(OH)6][Cl.nH2O]). In neutral or moderately basic aqueous solutions, PAL is unreactive even at a concentration of 0.1 M. In the presence of a large excess of NaOH (2 M), the compound undergoes aldol condensation to produce a dimer containing a C3-C4 double-bond. In dilute neutral solutions and in the presence of the mineral, however, condensation takes place rapidly, to produce a dimer which is almost exclusively the C2-C3 unsaturated product.

  9. Exogenic and endogenic Europa minerals

    NASA Astrophysics Data System (ADS)

    Maynard-Casely, H. E.; Brand, H. E. A.; Wilson, S. A.

    2016-12-01

    The Galileo Near Infrared Mapping Spectrometer (NIMS) identified a significant `non-ice' component upon the surface of Jupiter's moon Europa. Current explanations invoke both endogenic and exogenic origins for this material. It has long been suggested that magnesium and sodium sulfate minerals could have leached from the rock below a putative ocean (endogenic) 1 and that sulfuric acid hydrate minerals could have been radiologically produced from ionised sulfur originally from Io's volcanoes (exogenic) 2. However, a more recent theory proposes that the `non-ice' component could be radiation damaged NaCl leached from Europa's speculative ocean 3. What if the minerals are actually from combination of both endogenic and exogenic sources? To investigate this possibility we have focused on discovering new minerals that might form in the combination of the latter two cases, that is a mixture of leached sulfates hydrates with radiologically produced sulfuric acid. To this end we have explored a number of solutions in the MgSO4-H2SO4-H2O and Na2SO4-H2SO4-H2O systems, between 80 and 280 K with synchrotron x-ray powder diffraction. We report a number of new materials formed in this these ternary systems. This suggests that it should be considered that the `non-ice' component of the Europa's surface could be a material derived from endogenic and exogenic components. 1 Kargel, J. S. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368-390 (1991). 2 Carlson, R. W., Anderson, M. S., Mehlman, R. & Johnson, R. E. Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate. Icarus 177, 461-471, doi:10.1016/j.icarus.2005.03.026 (2005). 3 Hand, K. P. & Carlson, R. W. Europa's surface color suggests an ocean rich with sodium chloride. Geophysical Research Letters, 2015GL063559, doi:10.1002/2015gl063559 (2015).

  10. Hyper-localized carbon mineralization in diffusion-limited basalt fractures

    NASA Astrophysics Data System (ADS)

    Menefee, A. H.; Giammar, D.; Ellis, B. R.

    2017-12-01

    Basalt formations could enable secure carbon sequestration through mineral trapping. CO2 injection acidifies formation brines and drives dissolution of the host rock, which releases divalent metal cations that combine with dissolved carbonate ions to form stable carbonate minerals. Here, a series of high-pressure flow-through experiments was conducted to evaluate how transport limitations and geochemical gradients drive microscale carbonation reactions in fractured basalts. To isolate advection- and diffusion-controlled zones, surfaces of saw-cut basalt cores were milled to create one primary flow channel adjoined by four dead-end fracture pathways. In the first experiment, a representative basalt brine (6.3 mM NaHCO3) equilibrated with CO2 (100ºC, 10 MPa) was injected at 1 mL/h under 20 MPa confining stress. The second experiment was conducted under the same physical conditions but [NaHCO3] was elevated to 640 mM, and in the third, temperature was also raised to 150ºC. Effluent chemistry was monitored via ICP-MS to infer dissolution trends and calibrate reactive transport models. Reacted cores were characterized using x-ray computed tomography (xCT), optical microscopy, scanning electron microscopy, and Raman spectroscopy. Carbonation occurred in all experiments but increased in experiments with higher alkalinity and higher temperature. At low [NaHCO3], secondary precipitate coatings formed distinct reaction fronts that varied with distance into dead-end fractures. Reactive transport modeling demonstrated that these reactions fronts were due to sharp gradients in pH and dissolved inorganic carbon. Carbonation was restricted to transport-limited vugs and pores between the confined core surfaces and was highly localized on reactive primary mineral grains (e.g. pyroxene) that contributed major divalent cations. Increasing [NaHCO3] by two orders of magnitude significantly enhanced carbonation and promoted Mg and Fe uptake into carbonates. While xCT scans revealed

  11. CO2 hydrate nucleation kinetics enhanced by an organo-mineral complex formed at the montmorillonite-water interface.

    PubMed

    Kyung, Daeseung; Lim, Hyung-Kyu; Kim, Hyungjun; Lee, Woojin

    2015-01-20

    In this study, we investigated experimentally and computationally the effect of organo-mineral complexes on the nucleation kinetics of CO2 hydrate. These complexes formed via adsorption of zwitter-ionic glycine (Gly-zw) onto the surface of sodium montmorillonite (Na-MMT). The electrostatic attraction between the −NH3(+) group of Gly-zw, and the negatively charged Na-MMT surface, provides the thermodynamic driving force for the organo-mineral complexation. We suggest that the complexation of Gly-zw on the Na-MMT surface accelerates CO2 hydrate nucleation kinetics by increasing the mineral–water interfacial area (thus increasing the number of effective hydrate-nucleation sites), and also by suppressing the thermal fluctuation of solvated Na(+) (a well-known hydrate formation inhibitor) in the vicinity of the mineral surface by coordinating with the −COO(–) groups of Gly-zw. We further confirmed that the local density of hydrate-forming molecules (i.e., reactants of CO2 and water) at the mineral surface (regardless of the presence of Gly-zw) becomes greater than that of bulk phase. This is expected to promote the hydrate nucleation kinetics at the surface. Our study sheds new light on CO2 hydrate nucleation kinetics in heterogeneous marine environments, and could provide knowledge fundamental to successful CO2 sequestration under seabed sediments.

  12. Mineral requirements for growth and maintenance of F1 Boer × Saanen male kids.

    PubMed

    Teixeira, I A M A; Härter, C J; Pereira Filho, J M; Sobrinho, A G da Silva; Resende, K T

    2015-05-01

    The objective of this study was to determine the net requirements of minerals for the growth and maintenance of intact male F1 Boer × Saanen goat kids in the initial phase of growth. The following 2 experiments were performed: Exp. 1 was performed to determine the net growth requirements for Ca, P, Mg, Na, and K by F1 Boer × Saanen goat kids from 5 to 25 kg of BW and Exp. 2 was performed to determine the maintenance requirements of F1 Boer × Saanen goats from 15 to 25 kg BW. In Exp. 1, 32 intact male goat kids were distributed in a completely randomized design and mineral body composition was fit to an allometric equation in the form of a nonlinear model. To determine the mineral requirements for maintenance in Exp. 2, 21 intact male goat kids were distributed in a randomized block design, where the goat kids were subjected to 3 levels of feed restriction (0, 30, and 60% feed restriction). At the onset of Exp. 2, 7 goat kids were harvested and used to estimate the initial body composition (15 kg BW). Initial body composition was used to calculate the retention of minerals. The maintenance requirements were estimated by regressions obtained from the retention of minerals in the empty body and the intake of the mineral. The concentration of Ca, P, Na, and K in the empty BW decreased by 11, 13, 26, and 23% with the increase in BW from 5 to 25 kg (P < 0.01). As a consequence, our results showed that net requirements of Ca, P, Mg, Na, and K for weight gain decreased by 27.5, 27.8, 4.25, 43.2, and 39.7%, respectively, with the increase in BW from 5 to 25 kg (P < 0.01). The net requirements (g/kg of ADG) decreased from 9.7 to 7.0 for Ca, 6.5 to 4.7 for P, 0.38 to 0.36 for Mg, 0.88 to 0.50 for Na, and 1.9 to 1.2 for K when BW increased from 5 to 25 kg. The daily net requirements for maintenance per kilogram of BW were 38 mg of Ca, 42 mg of P, 1.6 mg of Mg, 5.0 mg of Na, and 19 mg of K. These results for the nutritional requirements of minerals may help to formulate more

  13. Middendorfite, K3Na2Mn5Si12(O,OH)36 · 2H2O, a new mineral species from the Khibiny pluton, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Dubinchuk, V. T.; Zadov, A. E.

    2007-12-01

    Middendorfite, a new mineral species, has been found in a hydrothermal assemblage in Hilairite hyperperalkaline pegmatite at the Kirovsky Mine, Mount Kukisvumchorr apatite deposit, Khibiny alkaline pluton, Kola Peninsula, Russia. Microcline, sodalite, cancrisilite, aegirine, calcite, natrolite, fluorite, narsarsukite, labuntsovite-Mn, mangan-neptunite, and donnayite are associated minerals. Middendorfite occurs as rhombshaped lamellar and tabular crystals up to 0.1 × 0.2 × 0.4 mm in size, which are combined in worm-and fanlike segregations up to 1 mm in size. The color is dark to bright orange, with a yellowish streak and vitreous luster. The mineral is transparent. The cleavage (001) is perfect, micalike; the fracture is scaly; flakes are flexible but not elastic. The Mohs hardness is 3 to 3.5. Density is 2.60 g/cm3 (meas.) and 2.65 g/cm3 (calc.). Middendorfite is biaxial (-), α = 1.534, β = 1.562, and γ = 1.563; 2 V (meas.) = 10°. The mineral is pleochroic strongly from yellowish to colorless on X through brown on Y and to deep brown on Z. Optical orientation: X = c. The chemical composition (electron microprobe, H2O determined with Penfield method) is as follows (wt %): 4.55 Na2O, 10.16 K2O, 0.11 CaO, 0.18 MgO, 24.88 MnO, 0.68 FeO, 0.15 ZnO, 0.20 Al2O3, 50.87 SiO2, 0.17 TiO2, 0.23 F, 7.73 H2O; -O=F2-0.10, total is 99.81. The empirical formula calculated on the basis of (Si,Al)12(O,OH,F)36 is K3.04(Na2.07Ca0.03)Σ2.10(Mn4.95Fe0.13Mg0.06Ti0.03Zn0.03)Σ5.20(Si11.94Al0.06)Σ12O27.57(OH)8.26F0.17 · 1.92H2O. The simplified formula is K3Na2Mn5Si12(O,OH)36 · 2H2O. Middenforite is monoclinic, space group: P21/ m or P21. The unit cell dimensions are a = 12.55, b = 5.721, c = 26.86 Å; β = 114.04°, V = 1761 Å3, Z = 2. The strongest lines in the X-ray powder pattern [ d, Å, ( I)( hkl)] are: 12.28(100)(002), 4.31(81)(11overline 4 ), 3.555(62)(301, 212), 3.063(52)(008, 31overline 6 ), 2.840(90)(312, 021, 30overline 9 ), 2.634(88)(21overline 9 , 1.0.overline 1 0

  14. Physical properties of evaporite minerals

    USGS Publications Warehouse

    Robertson, Eugene C.

    1962-01-01

    The data in the following tables were abstracted from measurements of physical properties of evaporite minerals or of equivalent synthetic compounds. The compounds considered are the halide and sulfate salts which supposedly precipitated from evaporating ocean water and which form very extensive and thick "rock salt" beds. These beds are composed almost entirely of NaCl. In places where the beds are deeply buried and where fractures occur in the overlying rocks, the salt is plastically extruded upward as in a pipe to form the "salt domes". Most of the tables are for NaCl, both the natural (halite) and the synthetic salt, polycrystalline and single crystals. These measurements have been collected for use 1) in studies on storage of radioactive wastes in salt domes or beds, 2) in calculations concerned with nuclear tests in salt domes and beds, and 3) in studies of phenomena in salt of geologic interest. Rather than an exhaustive compilation of physical property measurements, there tables represent a summary of data from accessible sources. As limitations of time have presented making a more systematic and comprehensive selection, the data given may seem arbitrarily chosen. Some of the data listed are old, and newer, more accurate data are undoubtedly available. Halite (an synthetic NaCl) has been very thoroughly studied because of its relatively simple and highly symmetrical crystal structure, its easy availability naturally or synthetically, both in single crystals and polycrystalline, its useful and scientifically interesting properties, and its role as a compound of almost purely ionic bonding. The measurements of NaCl in the tables, however, represent only a small part of the total number of observations; discrimination was necessary to keep the size of the tabulations manageable. The physical properties of the evaporite minerals other than halite and sylvite have received only desultory attention of experiementalists, and appear in only a few tables. The

  15. Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O

    NASA Astrophysics Data System (ADS)

    Pabalan, Roberto T.; Pitzer, Kenneth S.

    1987-09-01

    Mineral solubilities in binary and ternary electrolyte mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O are calculated to high temperatures using available thermodynamic data for solids and for aqueous electrolyte solutions. Activity and osmotic coefficients are derived from the ion-interaction model of Pitzer (1973, 1979) and co-workers, the parameters of which are evaluated from experimentally determined solution properties or from solubility data in binary and ternary mixtures. Excellent to good agreement with experimental solubilities for binary and ternary mixtures indicate that the model can be successfully used to predict mineral-solution equilibria to high temperatures. Although there are currently no theoretical forms for the temperature dependencies of the various model parameters, the solubility data in ternary mixtures can be adequately represented by constant values of the mixing term θ ij and values of ψ ijk which are either constant or have a simple temperature dependence. Since no additional parameters are needed to describe the thermodynamic properties of more complex electrolyte mixtures, the calculations can be extended to equilibrium studies relevant to natural systems. Examples of predicted solubilities are given for the quaternary system NaCl-KCl-MgCl 2-H 2O.

  16. Effect of lipid peroxidation, antioxidants, macro minerals and trace elements on eczema.

    PubMed

    Amin, Mohammad Nurul; Liza, Kaniz Fatema; Sarwar, Md Shahid; Ahmed, Jamiuddin; Adnan, Md Tareek; Chowdhury, Manjurul Islam; Hossain, Mohammad Zahid; Islam, Mohammad Safiqul

    2015-09-01

    The exact etiology and pathogenesis of eczema are not yet fully understood, although different factors are considered as pathogenic mechanisms in the development of eczema. Our study was designed to determine extent of serum lipid peroxidation, antioxidants, macro minerals and trace elements in patients with eczema, and thereby, find any pathophysiological correlation. The study was conducted as a case-control study with 65 eczema patients as cases and 65 normal healthy individuals as controls. Lipid peroxidation was assessed by measuring the serum level of malondialdehyde (MDA). Antioxidants- vitamin A and E concentration was determined by RP-HPLC method whereas vitamin C was evaluated for serum ascorbic acid by UV spectrophotometric method. Serum macro minerals (Na, K, Ca) and trace elements (Zn, Fe) were determined by Atomic Absorption Spectroscopy (AAS). This study found significantly higher level of MDA (p < 0.001) and lower level of antioxidants (p < 0.05) in patients in comparison to the control subjects. Analysis of serum macro minerals (Na, K and Ca) and trace elements (Zn, Fe) found that the mean values of Na, K, Ca, Zn and Fe were 2771.60 ± 75.64, 66.33 ± 3.03, 48.41 ± 2.50, 0.30 ± 0.02 and 0.29 ± 0.009 mg/L for the patient group and 3284.81 ± 34.51, 162.18 ± 3.72, 87.66 ± 2.10, 0.75 ± 0.06 and 0.87 ± 0.06 mg/L for the control group, accordingly. There was a significant difference for all the minerals between the patients and controls (p < 0.001). This study suggests a strong association between the pathogenesis of eczema with the elevated level of MDA and depleted level of antioxidants, macro minerals, and trace elements.

  17. Mineralization of organic-matter labile fragments in the humus-accumulative horizon of soddy-podzolic soil

    NASA Astrophysics Data System (ADS)

    Trofimov, S. Ya.; Lazarev, A. S.; Fokin, A. D.

    2012-12-01

    The mineralization rate of the 14C-labeled organic matter (OM) in the humus-accumulative AE horizon of a soddy-podzolic soil was determined in a laboratory experiment. The labeling was performed in a field experiment when microamounts of 14C-labeled glucose, glycine, and uracil were added to tree waste in sacks embedded in the upper layer of the forest litter. Samples containing 14C were taken from the AE horizon (above which the sacks with the labeled material were placed) 7 and 20 months after the beginning of the experiment. The soil samples were wetted to a water content corresponding to ˜80% of the total water capacity and placed in hermetic vessels containing vials with a periodically renewed alkali solution. The incubation was performed at room temperature for 3.5 months; the alkali solutions in the vials were replaced and titrated 12 times during this period. Mineralization curves were plotted from the amounts of carbon dioxide absorbed by a 0.3 N NaOH solution, which were calculated for each time interval; its 14C content was determined by the scintillation method. The experimental treatments also included the determination of the OM mineralization rate in material from the AE horizon pretreated with a heavy liquid or a heavy liquid and a 0.1 N NaOH solution. The differences between the mineralization rates of the labeled organic matter applied to the soil in the form of glucose, glycine, and uracil under the field conditions after the interaction for 7 and 20 months were revealed. The changes in the mineralization rate after the successive extraction of the labile organic matter with a heavy liquid and a 0.1 N NaOH solution were studied. It was shown that the transformation of the labeled low-molecular-weight organic compounds in the soil over 20 months included their strong inclusion into the humus composition, which was confirmed by the similar values of the mineralization constants of the native and 14C-labeled OM. In addition, the treatments with the

  18. Impact of environmental chemistry on mycogenic Mn oxide minerals

    NASA Astrophysics Data System (ADS)

    Santelli, C. M.; Farfan, G. A.; Post, A.; Post, J. E.

    2012-12-01

    Manganese (Mn) oxide minerals are ubiquitous in aquatic and terrestrial environments and their presence can have broad environmental consequences. In particular, Mn oxides scavenge nutrients and metals, degrade complex organics, and oxidize a variety of inorganic contaminants. The "reactivity" of Mn oxides, however, is highly dependent upon crystallite size, composition, and structure, which are largely determined by environmental factors such as solution chemistry. It is has been suggested that most Mn oxides in terrestrial and aquatic environments are formed by microbial activity; indeed, a diversity of Mn(II)-oxidizing bacteria and fungi have been isolated and their mineral byproducts are consistent with those observed in natural systems. Previous studies showed that Mn(II)-oxidizing Ascomycete fungi produce highly-disordered, nanocrystalline Mn oxides that are structurally similar to synthetic δ-MnO2 or natural vernadite. Unlike related studies with Mn-oxidizing bacteria, Mn oxides produced by these fungi did not "age" or transform to more crystalline mineral phases with time. We hypothesize that fungal growth conditions, in particular the low concentration of cations, are inhibiting secondary mineral formation. The overall goal of this research is to examine the structure and speciation of fungally-precipitated Mn oxides with respect to fungal species, time, and concentration of soluble Mn(II), Na, and Ca - three environmentally relevant cations that promote the transformation of δ-MnO2 to more crystalline mineral phases such as feitknechtite, birnessite, or ranciéite. For this study, we examined the Mn oxides formed by different species of Mn(II)-oxidizing fungi (Pyrenochaeta sp., Stagonospora sp., Plectosphaerella cucumerina., and Acremonium strictum). Isolates were grown for 8 or 16 days in a nutrient lean media consisting of yeast extract, trace elements and 0.2 mM MnCl2 supplemented with varying concentrations of Na, Ca, or Mn(II) compounds. The

  19. Effect of electrolyte on surface free energy components of feldspar minerals using thin-layer wicking method.

    PubMed

    Karagüzel, C; Can, M F; Sönmez, E; Celik, M S

    2005-05-01

    Application of the thin-layer wicking (TLW) technique on powdered minerals is useful for characterizing their surfaces. Albite (Na-feldspar) and orthoclase (K-feldspar) are feldspar minerals which are frequently found in the same matrix. Despite similarities in their physicochemical properties, separation of these minerals from each other by flotation is generally possible in the presence of monovalent salts such as NaCl. Both albite and orthoclase exhibit the same microflotation properties and rather close electrokinetic profiles in the absence of salt. In this study, contact angles of albite and orthoclase determined by the TLW technique yielded close values in the absence and presence of amine collector. While the calculated surface energies and their components determined using contact angle data reveal that the energy terms remain farther apart in the absence of the collector, the differences narrow down at collector concentrations where full flotation recoveries are obtained. However, the effect of addition of NaCl on contact angles and surface free energy components at constant amine concentration indicates that albite is significantly affected by salt addition, whereas orthoclase remains marginally affected. This interesting finding is explained on the basis of ion-exchange properties, the stability of the interface, flotation data, and zeta potential data in the presence of NaCl.

  20. Changes in mineral-associated soil organic carbon pools across a harvested temperate forest chronosequence

    NASA Astrophysics Data System (ADS)

    MacIntyre, S.; Kellman, L. M.; Gabriel, C. E.; Diochon, A.

    2016-12-01

    Due to their substantial pool size, changes in mineral soil carbon (C) stores have the potential to generate significant changes in forest soil C budgets. Harvesting represents a significant land use disturbance that can alter soil organic carbon (SOC) stores, with a number of field studies documenting large losses of SOC following clearcut harvesting. However, little is known about how the distribution of SOC changes amongst mineral-associated pools of differing crystallinity following this disturbance. The objective of this study was to quantify changes in mineral-associated SOC pool sizes through depth and time for podzol soils (mineral soil depths of 0-5, 5-10, 10-15, 15-20, 20-35, and 35-50 cm) of a temperate red spruce harvest chronosequence (representing stand ages of 1yr, 15yr, 45yr, 80yr, and 125+yr) in Nova Scotia, Canada. Samples were subjected to a 4-step sequential chemical dissolution to selectively extract C from mineral pools of increasing crystallinity: soluble minerals (deionized water), organo-metal complexes (Na-pyrophosphate), poorly crystalline minerals (hydroxylamine), and crystalline minerals (Na-dithionite HCl). Carbon concentrations were calculated for the solutions acquired during each stage of the selective dissolution process, providing a time series of changes in mineral-associated C through depth and time following harvesting. A loss of SOC from the organo-metal complexed pool following harvesting was observed, particularly in the deeper mineral soil (20-50cm), with this pool dominating the results. In the soluble and poorly crystalline pools, losses of C were also observed from the deeper mineral soil. Of the 5 sites, the 125+yr age class had the highest concentration of SOC associated with crystalline minerals, with the 0-5cm depth stratum holding a large portion of this C. This study may be useful as a model system for understanding how harvesting disturbance alters mineral pool SOM dynamics in humid temperate forest ecosystems.

  1. An Investigation of Mineral Dynamics in Sea Ice by Solubility Measurements

    NASA Astrophysics Data System (ADS)

    Butler, B.; Kennedy, H.; Papadimitriou, S.

    2016-02-01

    Sea ice is a composite material with a sponge-like structure. The framework of the structure is composed of pure ice, and within the pores exists a concentrated seawater brine. When the temperature is reduced, the volume of this residual brine decreases, while its salinity increases. As a result of the paired changes to temperature and salinity, the brine becomes supersaturated with respect to a mineral at several points when cooling sea ice towards -30°C, creating a sequence of minerals that precipitate. The presence of countless microscopic salt crystals encapsulated within the ice, coupled with changes in brine volume associated with their precipitation/dissolution, results in changes to the optical and structural properties of the medium that contribute to the surface energy balance in sea ice environments. Furthermore, attainment of mineral equilibrium can result in abrupt changes in brine composition and osmotic conditions in the isolated brine pockets, imposing challenging conditions upon the biota that habitat the sea ice environment. Mirabilite (Na2SO4.10H2O), gypsum (CaSO4.2H2O) and hydrohalite (NaCl.2H2O) each represent minerals that are understood to exist within sea ice. Previous research has focused upon mineral extraction/detection, and the specific temperature for the onset of each minerals precipitation in sea ice; rather than the overarching dynamics. For this reason, solubility measurements of mirabilite, gypsum and hydrohalite in conditions representative of equilibrium sea ice brines were carried between 0 and -28°C, covering a range of undersaturated and supersaturated conditions for each mineral. Results provide accurate data for the onset of each minerals formation in sea ice, as well as important information on the way in which precipitation and dissolution reactions are affected when sea ice warms or cools. By incorporating the solubility data into a model that simluates the temperature-salinity profiles of first-year sea ice, the

  2. Propham mineralization in aqueous medium by anodic oxidation using boron-doped diamond anode: influence of experimental parameters on degradation kinetics and mineralization efficiency.

    PubMed

    Ozcan, Ali; Sahin, Yücel; Koparal, A Savaş; Oturan, Mehmet A

    2008-06-01

    This study aims the removal of a carbamate herbicide, propham, from aqueous solution by direct electrochemical advanced oxidation process using a boron-doped diamond (BDD) anode. This electrode produces large quantities of hydroxyl radicals from oxidation of water, which leads to the oxidative degradation of propham up to its total mineralization. Effect of operational parameters such as current, temperature, pH and supporting electrolyte on the degradation and mineralization rate was studied. The applied current and temperature exert a prominent effect on the total organic carbon (TOC) removal rate of the solutions. The mineralization of propham can be performed at any pH value between 3 and 11 without any loss in oxidation efficiency. The propham decay and its overall mineralization reaction follows a pseudo-first-order kinetics. The apparent rate constant value of propham oxidation was determined as 4.8 x 10(-4)s(-1) at 100 mA and 35 degrees C in the presence of 50mM Na(2)SO(4) in acidic media (pH: 3). A general mineralization sequence was proposed considering the identified oxidation intermediates.

  3. Secondary Sulfate Mineralization and Basaltic Chemistry of Craters of the Moon National Monument, Idaho: Potential Martian Analog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Doc Richardson; Nancy W. Hinman; Lindsay J. McHenry

    2012-05-01

    Secondary deposits associated with the basaltic caves of Craters of the Moon National Monument (COM) in southern Idaho were examined using X-ray powder diffraction, X-ray fluorescence spectrometry, Fourier transform infrared spectrometry, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The secondary mineral assemblages are dominated by Na-sulfate minerals (thenardite, mirabilite) with a small fraction of the deposits containing minor concentrations of Na-carbonate minerals. The assemblages are found as white, efflorescent deposits in small cavities along the cave walls and ceilings and as localized mounds on the cave floors. Formation of the deposits is likely due to direct and indirectmore » physiochemical leaching of meteoritic water through the overlying basalts. Whole rock data from the overlying basaltic flows are characterized by their extremely high iron concentrations, making them good analogs for martian basalts. Understanding the physiochemical pathways leading to secondary mineralization at COM is also important because lava tubes and basaltic caves are present on Mars. The ability of FTICR-MS to consistently and accurately identify mineral species within these heterogeneous mineral assemblages proves its validity as a valuable technique for the direct fingerprinting of mineral species by deductive reasoning or by comparison with reference spectra.« less

  4. Thermal infrared emission spectroscopy of the pyroxene mineral series

    NASA Astrophysics Data System (ADS)

    Hamilton, Victoria E.

    2000-04-01

    The thermal infrared emissivity spectra of coarse particulate samples of compositions in the pyroxene series display reststrahlen features (absorptions) that distinguish not only orthorhombic from monoclinic structures, but also major end-members within the two structural groups, as well as minerals within solid solution series. The exact number of reststrahlen features observed and their positions are dependent on mineral structure and cation occupancy of the M1 and M2 sites. End-member quadrilateral pyroxenes (Mg2Si2O6-Fe2Si2O6-Ca[Mg,Fe]Si2O6) are easily distinguished from each other and from minerals in the nonquadrilateral series (NaFeSi2O6-Na[Al,Fe]Si2O6-LiAlSi2O6). Furthermore, among quadrilateral pyroxenes, variations in Mg/(Mg+Fe) are linearly correlated with several band locations, as are variations in Ca content in high-Ca clinopyroxenes. In both quadrilateral and nonquadrilateral compositions, Christiansen feature positions are also diagnostic. No correlations with minor constituents (of the order of 0.05 atoms per formula unit) were observed. The detailed spectral characteristics of pyroxenes and their variability as a function of structure and cation occupancy are presented here with determinative curves for the identification of pyroxene composition. These data have important implications for the interpretation of spectral data from both laboratory and remote sensing instruments because they should permit a more detailed determination of pyroxene composition in measured unknown pure mineral and bulk compositions dominated by surface scattering, i.e., all particulates greater than ~65 μm, and solid samples.

  5. Geochemistry and Minerality of Wine

    NASA Astrophysics Data System (ADS)

    Oze, C.; Horton, T. W.; Beaman, M.

    2010-12-01

    Kaolinite (Al2Si2O5(OH)4) and gibbsite (Al(OH)3) are capable of forming in a variety of environments including anthropogenic solutions such as wine. Here, we evaluate the geochemistry of twelve white wines in order to assess the potential relationship between kaolinite/gibbsite saturation and minerality, a common wine descriptor used to express the rock and/or soil character in the aromas and flavors of wines. Aluminum and Si concentrations ranged from 228-1,281 µg L-1 and 6,583-19,746 µg L-1, respectively, where Si and Al are the only elements to demonstrate positive covariance with minerality scores. Sulfur levels varied from 25,013-167,383 µg L-1 and show the strongest negative covariance with minerality scores. However, like all of the elements studied (Al, Si, Na, Mg, S, K, Ca, and Fe), these trends were not significantly different than random at the 95% confidence level. In contrast, the relative degrees of gibbsite/kaolinite saturation display strong positive covariance with minerality scores and these trends are not random at the greater than 95% confidence level. Overall, our tasters were able to accurately assess the degree of gibbsite/kaolinite saturation amongst the twelve wines based on the objective of assessing minerality. Although the wines were undersaturated with respect to gibbsite/kaolinite, geochemical modeling reveals that increasing the wines’ pHs from ~3.3 to 4.1-4.6 (which is achievable on the palate where saliva has a pH of 7.4) results in gibbsite/kaolinite oversaturation. By considering that minerality is a function of gibbsite/kaolinite saturation and decreasing S, the origin of minerality’s taste and chemical origin in wine with known physical standards becomes increasingly crystalline.

  6. Statistical differentiation of bananas according to their mineral composition.

    PubMed

    Forster, Markus Paul; Rodríguez Rodríguez, Elena; Martín, Jacinto Darias; Díaz Romero, Carlos

    2002-10-09

    The concentrations of Na, K, Ca, Mg, Fe, Cu, Zn, and Mn were determined in banana cultivars Gran enana and Pequeña enana cultivated in Tenerife and in cv. Gran enana bananas from Ecuador. The mineral concentrations in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the mineral concentrations except in the case of Fe. Variations according to cultivation method (greenhouse and outdoors) and farming style (conventional and organic) in the mineral concentrations in the bananas from Tenerife were observed. The mineral concentrations in the internal part of the banana were higher than those in the middle and external parts. Representation of double log correlations K-Mg and Zn-Mn tended to separate the banana samples according to origin. Applying factor and cluster analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife, and therefore, these are useful tools for differentiating the origin of bananas.

  7. Infrared and Raman spectroscopic characterization of the carbonate mineral weloganite - Sr3Na2Zr(CO3)6·3H2O and in comparison with selected carbonates

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Belotti, Fernanda Maria; Filho, Mauro Cândido

    2013-05-01

    The mineral weloganite Na2Sr3Zr(CO3)6·3H2O has been studied by using vibrational spectroscopy and a comparison is made with the spectra of weloganite with other carbonate minerals. Weloganite is member of the mckelveyite group that includes donnayite-(Y) and mckelveyite-(Y). The Raman spectrum of weloganite is characterized by an intense band at 1082 cm-1 with shoulder bands at 1061 and 1073 cm-1, attributed to the CO32- symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of CO32- symmetric stretching vibration varies with mineral composition. The Raman bands at 1350, 1371, 1385, 1417, 1526, 1546, and 1563 cm-1 are assigned to the ν3 (CO3)2- antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for weloganite is significant in that it shows distortion of the carbonate anion in the mineral structure. The Raman band observed at 870 cm-1 is assigned to the (CO3)2- ν2 bending mode. Raman bands observed for weloganite at 679, 682, 696, 728, 736, 749, and 762 cm-1 are assigned to the (CO3)2- ν4 bending modes. A comparison of the vibrational spectra is made with that of the rare earth carbonates decrespignyite, bastnasite, hydroxybastnasite, parisite, and northupite.

  8. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    NASA Astrophysics Data System (ADS)

    Richardson, C. Doc; Hinman, Nancy W.; Scott, Jill R.

    2013-10-01

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compounds associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.

  9. Can Iberian red deer (Cervus elaphus hispanicus) discriminate among essential minerals in their diet?

    PubMed

    Ceacero, Francisco; Landete-Castillejos, Tomás; García, Andrés J; Estévez, José A; Gallego, Laureano

    2010-02-01

    Optimal foraging predicts that animals should be able to assess the content of important nutrients in food. Ungulates discriminate salt and P, but discrimination of other minerals is controversial even though they are also essential and often limiting. Animal scientists have explained this taste through palatability, which predicts the same pattern of discrimination for calves and hinds and greater consumption by the latter. Social learning may also be involved, predicting a correlation between mother and calf and less consumption by the latter. The present study examines the consumption behaviour of free-choice supplemented minerals by hinds and calves of Iberian red deer (Cervus elaphus hispanicus) to discern between these hypotheses. Behavioural indices of intake correlated with actual mineral consumption (P < 0.001). Mother and calf behavioural indices correlated only for salt-mixed minerals. Calves showed overall behavioural indices of consumption greater than hinds (P < 0.01 and P < 0.001), and also for all single supplements except NaCl, as expected from growth needs and in contrast to the palatability hypothesis. Calves showed a greater consumption of CuSO(4) and lower of Na(2)SeO(3) than pure salt. Hinds showed a different pattern, ingesting lower amounts of all minerals except CuSO(4) and salt. Additional analyses also showed discrimination between minerals unmixed with salt, such as CaHPO(4) and CaCO(3) (P = 0.012 and P = 0.020). The greater intake of growing calves and the different consumption patterns for hinds and calves suggest that deer can discriminate among minerals, and that they do not consume minerals for their palatability or driven by social learning. Therefore, deer may be selecting minerals according to nutritional requirements.

  10. Seasonal changes of the mineral contents in the rumen of wild Yeso sika deer (Cervus nippon yesoensis).

    PubMed

    Hayashida, Maki; Souma, Kousaku; Hanagata, Osamu; Okamoto, Masayo; Masuko, Takayoshi

    2012-03-01

    The rumen contents were collected from 36 wild Yeso sika deer (Cervus nippon yesoensis) captured by deer culling or by hunting in the spring, summer, autumn and winter in Hokkaido, Japan. Botanical classification was conducted, and the contents of mineral (calcium (Ca), phosphorus (P), potassium (K), sodium (Na), iron (Fe), copper (Cu) and zinc (Zn)) were measured. The animals were captured around pastures or fallow field areas in the Kushiro area. The rumen contents consisted of grasses and Sasa sp. leaves regardless of the season. Leaves and bark were ingested in the spring, autumn and winter. The macro-mineral contents in the rumen showed seasonal changes. In the summer, the Ca, K and P contents were high, and the Na content was low. There were no seasonal changes in the Fe content. The P, Na and Fe contents were higher than the animals' requirements. In a future survey, it is needed to determine the mineral contents of the food ingested by wild Yeso sika deer. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  11. Urinary Mineral Concentrations in European Pre-Adolescent Children and Their Association with Calcaneal Bone Quantitative Ultrasound Measurements †

    PubMed Central

    Van den Bussche, Karen; Herrmann, Diana; De Henauw, Stefaan; Kourides, Yiannis A.; Lauria, Fabio; Marild, Staffan; Molnár, Dénes; Moreno, Luis A.; Veidebaum, Toomas; Ahrens, Wolfgang; Sioen, Isabelle

    2016-01-01

    This study investigates differences and associations between urinary mineral concentrations and calcaneal bone measures assessed by quantitative ultrasonography (QUS) in 4322 children (3.1–11.9 years, 50.6% boys) from seven European countries. Urinary mineral concentrations and calcaneal QUS parameters differed significantly across countries. Clustering revealed a lower stiffness index (SI) in children with low and medium urinary mineral concentrations, and a higher SI in children with high urinary mineral concentrations. Urinary sodium (uNa) was positively correlated with urinary calcium (uCa), and was positively associated with broadband ultrasound attenuation and SI after adjustment for age, sex and fat-free mass. Urinary potassium (uK) was negatively correlated with uCa but positively associated with speed of sound after adjustment. No association was found between uCa and QUS parameters after adjustment, but when additionally adjusting for uNa, uCa was negatively associated with SI. Our findings suggest that urinary mineral concentrations are associated with calcaneal QUS parameters and may therefore implicate bone properties. These findings should be confirmed in longitudinal studies that include the food intake and repeated measurement of urinary mineral concentrations to better estimate usual intake and minimize bias. PMID:27164120

  12. Fluorcanasite, K3Na3Ca5Si12O30(F,OH)4 · H2O, a new mineral species from the Khibiny alkaline pluton, Kola Peninsula, Russia, and new data on canasite

    NASA Astrophysics Data System (ADS)

    Khomyakov, A. P.; Nechelyustov, G. N.; Krivokoneva, G. K.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Rozhdestvenskaya, I. V.

    2009-12-01

    Fluorcanasite is described, a new mineral species found in dumps of the Kirovsk apatite mine, Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. The new mineral is associated with microcline, nepheline, aegirine, scherbakovite, lamprophyllite, pectolite, mosandrite, villiaumite, rasvumite, and molybdenite. It occurs as prismatic crystals up to 0.2-0.3 × 1-2 mm in size extending along [010]. Fluorcanasite is purple, transparent, with white streak and vitreous luster. The fracture is hackly along the extension and stepped in other directions. The mineral is brittle. The cleavage is eminent parallel to {100} and {201} and perfect parallel to {001}. D(meas) = 2.68(2) g/cm3 (volumetric method); D(calc) = 2.69 g/cm3. Fluorcanasite is biaxial, negative, n α = 1.538(1), n β = 1.546(1), n γ = 1.549(1), 2 V(meas) = 60(2)°, 2 V(calc) = 63°. Dispersion r > v. The new mineral is pleochroic according to the scheme N β > N γ > N α; N β is purple, N γ is lilac, and N α is amber-yellow. Orientation is as follows: b = N β, a∧ N γ = 3°, c∧ N α = 19°. Fluorcanasite is not luminescent in UV light and slowly decomposes in acid. The new mineral is monoclinic, space group Cm, a = 18.846(4), b = 7.242(1), c = 12.650(2) Å, β = 111.84(2)°, V = 1602.6(4) Å3, Z = 2. The strongest reflections [ d, Å( I)] in the X-ray powder pattern of a grainoriented sample are 2.915(100), 4.204(40), 5.872(36), 4.712(36), 2.358(32), 3.012(24), 2.310(24), 3.082(24) and the same reflections in a randomly oriented sample are 3.082(100), 2.915(85), 4.712(46), 4.204(41), 3.340(35), 5.872(33), 2.658(30). The chemical composition, determined with an electron microprobe, is as follows, wt %: 7.19 Na2O, 10.91 K2O, 19.55 CaO, 0.27 FeO, 2.08 MnO, 55.84 SiO2, 4.10 F, 2.22 H2O (determined on the basis of structural data), 1.73-O = F2; the total is 100.43. The empirical formula, calculated on the basis of Si = 12, is K2.99Na3.00(Ca4.50Mn0.38·Fe{0.05/2+})Σ4.93Si12O29.93(F2.79OH1

  13. Evolution of ribozymes in the presence of a mineral surface

    PubMed Central

    Stephenson, James D.; Popović, Milena; Bristow, Thomas F.

    2016-01-01

    Mineral surfaces are often proposed as the sites of critical processes in the emergence of life. Clay minerals in particular are thought to play significant roles in the origin of life including polymerizing, concentrating, organizing, and protecting biopolymers. In these scenarios, the impact of minerals on biopolymer folding is expected to influence evolutionary processes. These processes include both the initial emergence of functional structures in the presence of the mineral and the subsequent transition away from the mineral-associated niche. The initial evolution of function depends upon the number and distribution of sequences capable of functioning in the presence of the mineral, and the transition to new environments depends upon the overlap between sequences that evolve on the mineral surface and sequences that can perform the same functions in the mineral's absence. To examine these processes, we evolved self-cleaving ribozymes in vitro in the presence or absence of Na-saturated montmorillonite clay mineral particles. Starting from a shared population of random sequences, RNA populations were evolved in parallel, along separate evolutionary trajectories. Comparative sequence analysis and activity assays show that the impact of this clay mineral on functional structure selection was minimal; it neither prevented common structures from emerging, nor did it promote the emergence of new structures. This suggests that montmorillonite does not improve RNA's ability to evolve functional structures; however, it also suggests that RNAs that do evolve in contact with montmorillonite retain the same structures in mineral-free environments, potentially facilitating an evolutionary transition away from a mineral-associated niche. PMID:27793980

  14. Metal cation exchange reactions of ore minerals in Fe-Mn crusts of the Marcus Wake Rise (Pacific Ocean) in aqueous-salt solutions

    NASA Astrophysics Data System (ADS)

    Novikov, G. V.; Bogdanova, O. Yu.; Melnikov, M. E.; Drozdova, A. N.; Lobus, N. V.; Shulga, N. A.

    2017-12-01

    It is shown that the reaction ability of metal cations of ore minerals in Fe-Mn crusts of the Marcus Wake Rise increases in the following manner: (Co2+ < Cu2+ < Ni2+) < (Mg2+ < Mn2+ < K+ ≈ Ca2+ ≈ Na+). The composition of the exchange complex of the ore minerals is constant and includes these metal cations. Ca2+ and Na+ are major contributors to the exchange capacity of the ore minerals. The capacity of the ore minerals by cations of alkali and base metals is 0.43-0.60 and 2.08-2.70 mg-equiv/g, respectively. The exchange capacity of the ore minerals by cations of base metals increases linearly with the increase in the MnO2 content of the crust and does not depend on the geographical locations of the Marcus Wake guyots.

  15. Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor.

    PubMed

    Moreno, Teresa; Querol, Xavier; Castillo, Sonia; Alastuey, Andrés; Cuevas, Emilio; Herrmann, Ludger; Mounkaila, Mohammed; Elvira, Josep; Gibbons, Wes

    2006-10-01

    The Sahara-Sahel Dust Corridor runs from Chad to Mauritania and expels huge amounts of mineral aerosols into the Atlantic Ocean. Data on samples collected from Algeria, Chad, Niger, and Western Sahara illustrate how corridor dust mineralogy and chemistry relate to geological source and weathering/transport history. Dusts sourced directly from igneous and metamorphic massifs are geochemically immature, retaining soluble cations (e.g., K, Na, Rb, Sr) and accessory minerals containing HFSE (e.g., Zr, Hf, U, Th) and REE. In contrast, silicate dust chemistry in desert basins (e.g., Bodélé Depression) is influenced by a longer history of transport, physical winnowing (e.g., loss of Zr, Hf, Th), chemical leaching (e.g., loss of Na, K, Rb), and mixing with intrabasinal materials such as diatoms and evaporitic salts. Mineral aerosols blown along the corridor by the winter Harmattan winds mix these basinal and basement materials. Dusts blown into the corridor from sub-Saharan Africa during the summer monsoon source from deeply chemically weathered terrains and are therefore likely to be more kaolinitic and stripped of mobile elements (e.g., Na, K, Mg, Ca, LILE), but retain immobile and resistant elements (e.g., Zr, Hf, REE). Finally, dusts blown southwestwards into the corridor from along the Atlantic Coastal Basin will be enriched in carbonate from Mesozoic-Cenozoic marine limestones, depleted in Th, Nb, and Ta, and locally contaminated by uranium-bearing phosphate deposits.

  16. Jujube honey from China: physicochemical characteristics and mineral contents.

    PubMed

    Zhou, Juan; Suo, Zhirong; Zhao, Pinpin; Cheng, Ni; Gao, Hui; Zhao, Jing; Cao, Wei

    2013-03-01

    We investigated and compared the physicochemical properties (moisture, color, ash, pH, electrical conductivity, free acidity, lactonic acidity, total acidity, fructose, glucose, sucrose, diastase activity, and HMF) and mineral contents (Al, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, As, Cd, Pb, and Zn), as well as total proline and total protein contents of 23 jujube honey samples collected from different regions of China. The mineral content was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The physicochemical values were in the range of approved limits (conforming to EU legislation) in all 23 samples. The physicochemical properties of jujube honey showed significant variations among samples. The mean pH value of the jujube honeys was 6.71. The most abundant minerals were potassium, calcium, sodium, and magnesium, ranging between 1081.4 and 2642.9, 97.1 and 194.2, 7.79 and 127.8, and 10.36 and 24.67 mg/kg, respectively, and potassium made up 71% of the total mineral content. This study demonstrated remarkable variation in physicochemical parameters and mineral contents of jujube honey, mainly depending on its geographic source. © 2013 Institute of Food Technologists®

  17. An isopiestic study of aqueous NaBr and KBr at 50 °C: Chemical equilibrium model of solution behavior and solubility in the NaBr-H 2O, KBr-H 2O and Na-K-Br-H 2O systems to high concentration and temperature

    NASA Astrophysics Data System (ADS)

    Christov, Christomir

    2007-07-01

    The isopiestic method has been used to determine the osmotic coefficients of the binary solutions NaBr-H 2O (from 0.745 to 5.953 mol kg -1) and KBr-H 2O (from 0.741 to 5.683 mol kg -1) at the temperature t = 50 °C. Sodium chloride solutions have been used as isopiestic reference standards. The isopiestic results obtained have been combined with all other experimental thermodynamic quantities available in literature (osmotic coefficients, water activities, bromide mineral's solubilities) to construct a chemical model that calculates solute and solvent activities and solid-liquid equilibria in the NaBr-H 2O, KBr-H 2O and Na-K-Br-H 2O systems from dilute to high solution concentration within the 0-300 °C temperature range. The Harvie and Weare [Harvie C., and Weare J. (1980) The prediction of mineral solubilities in naturalwaters: the Na-K-Mg-Ca-Cl-SO 4-H 2O system from zero to high concentration at 25 °C. Geochim. Cosmochim. Acta44, 981-997] solubility modeling approach, incorporating their implementation of the concentration-dependent specific interaction equations of Pitzer [Pitzer K. (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem.77, 268-277] is employed. The model for binary systems is validated by comparing activity coefficient predictions with those given in literature, and not used in the parameterization process. Limitations of the mixed solutions model due to data insufficiencies are discussed. This model expands the variable temperature sodium-potassium model of Greenberg and Moller [Greenberg J., and Moller N. (1989) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Cl-SO 4-H 2O system to high concentration from 0 to 250 °C. Geochim. Cosmochim. Acta53, 2503-2518] by evaluating Br - pure electrolyte and mixing solution parameters and the chemical potentials of three bromide solid phases: NaBr-2H 2O (cr), NaBr (cr) and KBr (cr).

  18. Structure and chemical characteristics of natural mineral deposit Terbunskaya (Lipetsk region, Russia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motyleva, S., E-mail: motyleva-svetlana@mail.ru; Mertvishcheva, M.; Shchuchka, R.

    New knowledge about the mineralogical features Terbunsky mineral. Investigated 5 fractions isolated from the incision (2-2,5 m). Terbunskaya deposit belongs to minerals Santonian age. Scanning electron microscopy and energy dispersive analysis of fractions isolated studied in detail. In the coarse fractions found ancient organic remains of algae and micro-organisms that have been sedimented together with the mineral component during geological periods. The share of organic inclusions does not exceed 1.5%. Chemical composition confirms the presence of silicon and carbonate organisms. Advantageously proportion of minerals having a layered structure with a plurality of micro and nano pore size 600 - 80-nm andmore » an average chemical composition (wt%): Na (0,64), Mg (0,54), Al (13.48), Si (27 57), K (2.39) Ca (0.75)« less

  19. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Doc Richardson; Nancy W. Hinman; Jill R. Scott

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compoundsmore » associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.« less

  20. Towards sustainable processing of columbite group minerals: elucidating the relation between dielectric properties and physico-chemical transformations in the mineral phase.

    PubMed

    Sanchez-Segado, Sergio; Monti, Tamara; Katrib, Juliano; Kingman, Samuel; Dodds, Chris; Jha, Animesh

    2017-12-21

    Current methodologies for the extraction of tantalum and niobium pose a serious threat to human beings and the environment due to the use of hydrofluoric acid (HF). Niobium and tantalum metal powders and pentoxides are widely used for energy efficient devices and components. However, the current processing methods for niobium and tantalum metals and oxides are energy inefficient. This dichotomy between materials use for energy applications and their inefficient processing is the main motivation for exploring a new methodology for the extraction of these two oxides, investigating the microwave absorption properties of the reaction products formed during the alkali roasting of niobium-tantalum bearing minerals with sodium bicarbonate. The experimental findings from dielectric measurement at elevated temperatures demonstrate an exponential increase in the values of the dielectric properties as a result of the formation of NaNbO 3 -NaTaO 3 solid solutions at temperatures above 700 °C. The investigation of the evolution of the dielectric properties during the roasting reaction is a key feature in underpinning the mechanism for designing a new microwave assisted high-temperature process for the selective separation of niobium and tantalum oxides from the remainder mineral crystalline lattice.

  1. Chladniite: A New Mineral Honoring the Father of Meteoritics

    NASA Astrophysics Data System (ADS)

    McCoy, T. J.; Steele, I. M.; Keil, K.; Leonard, B. F.; Endress, M.

    1993-07-01

    The IIICD irons are a small group of meteorites, three of which (Maltahohe, Carlton, and Dayton) contain silicate-bearing inclusions rich in troilite, graphite, schreibersite, and phosphates [1]. The Na,Ca,Mg-rich phosphates bnanite and panethite were first described in Dayton [2]. We have discovered a new mineral, Na(sub)2CaMg(sub)7(PO(sub)4)(sub)6, as a single grain within a silicate-bearing inclusion in the Carlton (IIICD) iron meteorite. The mineral and mineral name have been approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association. Chladniite occurs as a single grain near the edge of a silicate-bearing inclusion in polished section USNM 2707. This inclusion is dominated by chlorapatite and contains olivine, pyroxene, plagioclase, schreibersite, and troilite. Chladniite occurs as a single, massive grain (975 x 175 micrometers) and is cross-cut by hydrated iron oxides of terrestrial origin. In polished section, it is gray, dark, and weakly anisotropic. Cleavage is rhomboidal in plan and very likely rhombohedral in three dimension. The formula for chladniite (derived from five microprobe analyses) is Na(sub)1.77Si(sub)0.08 Ca(sub)0.98(Mg(sub)6.96Fe(sub)0.26Mn(sub)0.04)(sub)Sigma = 7.26(Po(sub)0.98 O(sub)4)(sub)6. The idealized formula is Na(sub)2CaMg(sub)7(PO(sub)4)(sub)6. Chladniite is related to two rare minerals, fillowite [3] and johnsomervilleite [4], where fillowite is the Mn-dominated and johnsomervilleite the Fe-dominated analog of chladniite. The unique occurrence of chladniite, the relatively small size of the grain, and the presence of terrestrial weathering veins all presented challenges for removing material for X-ray studies. A 30-micrometer-diameter spindle of material was removed after microdrilling a shallow trench and breaking the spindle with a surgical scalpel. Studies were performed using both a Gandolfi camera to obtain a powder pattern and a four-circle diffractometer to determine the unit

  2. A vibrational spectroscopic study of the anhydrous phosphate mineral sidorenkite Na3Mn(PO4)(CO3)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Belotti, Fernanda Maria; Xi, Yunfei

    2015-02-01

    Sidorenkite is a very rare low-temperature hydrothermal mineral, formed very late in the crystallization of hyperagpaitic pegmatites in a differentiated alkalic massif (Mt. Alluaiv, Kola Peninsula, Russia). Sidorenkite Na3Mn(PO4)(CO3) is a phosphate-carbonate of sodium and manganese. Such a formula with two oxyanions lends itself to vibrational spectroscopy. The sharp Raman band at 959 cm-1 and 1012 cm-1 are assigned to the PO43- stretching modes, whilst the Raman bands at 1044 cm-1 and 1074 cm-1 are attributed to the CO32- stretching modes. It is noted that no Raman bands at around 800 cm-1 for sidorenkite were observed. The infrared spectrum of sidorenkite shows a quite intense band at 868 cm-1 with other resolved component bands at 850 and 862 cm-1. These bands are ascribed to the CO32- out-of-plane bend (ν2) bending mode. The series of Raman bands at 622, 635, 645 and 704 cm-1 are assigned to the ν4 phosphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the carbonate anion from D3h or even C2v.

  3. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    PubMed

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Characterization and Thermodynamics Studies of Feldspar and Feldspathoid Minerals

    NASA Astrophysics Data System (ADS)

    Rudow, M.; Lilova, K.

    2015-12-01

    The application of thermal analysis and calorimetry for the studies of minerals has a history as long as the existence of the thermal methods themselves. New advanced calorimetric techniques have been developed for more accurate characterization of both bulk and nano materials thus impacting their design, processing, and applications. TG-DTA and TG-DSC are used to characterize the composition of complex minerals (e.g. [KxNa1-x(AlSi3)O8]) based on the weight changes and phase transformations observed with temperature increase. Additionally, those techniques allow to determine the quantity of the different types of water contained in natural feldspars and feldspathoids (absorbed, interlayer, structural). The results for several clays will be discussed. The geochemical properties and thermal stability of another class of minerals - aluminosilicate frameworks (alkali sodalities, natrolites, etc.) as related to high-level nuclear waste treatment facilities, radioactive waste storage and management were studied. The natural sodalite Na8[Al6Si6O24]Cl2 and similar frameworks with different anions are part of sodium-aluminosilicate (NAS) low activity radioactive waste produced during steam reforming process treatment. The enthalpies and entropies of formation and the hydration enthalpies of the above-mentioned feltspathoids are obtained and the effect of the different cations and anions on the thermodynamic stability was studied. The results will allow to predict the long term behavior of the compounds in the environment under different conditions.

  5. Level of minerals and trace elements in the urine of the participants of mountain ultra-marathon race.

    PubMed

    Jablan, Jasna; Inić, Suzana; Stosnach, Hagen; Hadžiabdić, Maja Ortner; Vujić, Lovorka; Domijan, Ana-Marija

    2017-05-01

    The aim of the present study was to explore impact of endurance exercise on urinary level of minerals and trace elements as well as on some oxidative stress and biochemical parameters. Urine samples were collected from participants (n=21) of mountain ultra-marathon race (53km; Medvednica, Zagreb, Croatia), before (baseline value), immediately after, 12h and 24h after the race. In urine samples level of minerals (Ca, P, K and Na) and trace elements (Se, Zn, Mn, Cu, Fe and Co) were assessed using the bench top Total reflection X-ray Fluorescence (TXRF) spectrometer. Oxidative stress was determined as level of malondialdehyde (MDA). Immediately after the race level of minerals, trace elements, MDA, creatinine, ketones, erythrocytes and specific gravity increased compared to their baseline value. In 24h follow-up trace elements involved in antioxidant defence, MDA and biochemical parameters returned to their baseline values, Cu and Co remained increased as after the race, Fe and K tended to return to baseline values while Ca, P and Na continued to increase. Mountain ultra-marathon resulted in alteration of physiologically important minerals and trace elements that for some minerals and trace elements persist, indicating their involvement in recovery processes. However, due to their loss in urine, level of minerals and trace elements in athletes participating in endurance exercise should be monitored. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Sulphation of secreted phosphoprotein I (SPPI, osteopontin) is associated with mineralized tissue formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, T.; Todescan, R.; Goldberg, H.A.

    Secreted phosphoprotein I (SPPI) is a prominent structural protein in mineralized connective tissues. Rat bone cells in culture produce several forms of SPPI that differ in post-translational modifications such as phosphorylation and sulphation. To determine the significance of protein sulphation in bone formation, the synthesis of SPPI was studied in vitro using rat bone marrow cells (RBMC) which form bone-like tissue when grown in the presence of dexamethasone (Dex) and beta-glycerophosphate (beta-GP). In the presence of 10(-7) M Dex SPPI expression was stimulated 4-5-fold. Radiolabelling multilayered RBMCs for 48 h with (35S)-methionine, Na2(35SO4), or Na3(32PO4) revealed that two major phosphorylatedmore » forms of SPPI were secreted into the culture medium: a highly phosphorylated form migrating at 44 kDa on 15% SDS-PAGE and a less phosphorylated 55 kDa form. In the mineralized tissue formed in the presence of Dex and beta-GP, both forms of SPPI, in addition to proteoglycans and a 67 kDa protein, incorporated significant amounts of (35SO4). Sulphation of SPPI was not observed in the absence of mineral formation, indicating that the sulphation of SPPI is closely associated with mineralization and that it can be used as a sensitive and specific marker for the osteoblastic phenotype.« less

  7. A spectral reflectance study (0.4-2.5 μm) of selected playa evaporite mineral deposits and related geochemical processes

    USGS Publications Warehouse

    Crowley, James K.

    1990-01-01

    Playa evaporite mineral deposits show major compositional variations related to differences in lithology, hydrology, and groundwater geochemistry. The use of visible and near-infrared (VNIR) spectral reflectance measurements as a technique for investigating the mineralogy of playa efflorescent crusts is examined. Samples of efflorescent crust were collected from 4 playa: Bristol Dry Lake, Saline Valley, Teels Marsh, and Rhodes Marsh--all located in eastern California and western Nevada. Laboratory and field spectral analyses coupled with X-ray diffraction analyses of the crusts yielded the following observations: VNIR spectra of unweathered salt crusts can be used to infer the general chemistry of near-surface brines; VNIR spectra are very sensitive for detecting minor hydrate mineral phases contained in mixtures with anhydrous, spectrally featureless, minerals such as halite (NaCl) and thernardite (Na2So4); borate minerals exhibit particularly strong VNIR spectral features that permit small amounts of borate to be detected in efflorescent salt crusts; remote sensing spectral measurements of playa efflorescent crusts may have applications in global studies of playa brines and minerals.

  8. The phosphate mineral arrojadite-(KFe) and its spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Horta, Laura Frota Campos

    2013-05-01

    The arrojadite-(KFe) mineral has been analyzed using a combination of scanning electron microscopy and a combination of Raman and infrared spectroscopy. The origin of the mineral is Rapid Creek sedimentary phosphatic iron formation, northern Yukon. The formula of the mineral was determined as KNaCaNa(FeMgMn)Al(PO)10.85(POOH)(OH)2. The complexity of the mineral formula is reflected in the spectroscopy. Raman bands at 975, 991 and 1005 cm-1 with shoulder bands at 951 and 1024 cm-1 are assigned to the PO43- ν1 symmetric stretching modes. The Raman bands at 1024, 1066, 1092, 1123, 1148 and 1187 cm-1 are assigned to the PO43- ν3 antisymmetric stretching modes. A series of Raman bands observed at 540, 548, 557, 583, 604, 615 and 638 cm-1 are attributed to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The ν2 PO4 and H2PO4 bending modes are observed at 403, 424, 449, 463, 479 and 513 cm-1. Hydroxyl and water stretching bands are readily observed. Vibrational spectroscopy enables new information about the complex phosphate mineral arrojadite-(KFe) to be obtained.

  9. Geochemical Composition of Surface Water in the Mineralized Lom Basin, East Cameroon: Natural and Anthropogenic Sources.

    NASA Astrophysics Data System (ADS)

    Mimba, M. E.; Ohba, T.; Nguemhe Fils, S. C.; Wirmvem, M. J.

    2016-12-01

    Thousands of people in East Cameroon depend on surface water for consumption and domestic purposes. The Lom basin, north of the region, is heavily mineralized especially in gold owing to its regional geological setting. Although research has been done regarding the rock type, age, formation history and reconnaissance gold surveys, surface water investigation in the area has received limited attention. Thus, this study appraises the first regional hydrogeochemical program for environmental assessment of the mineralized Lom basin. Fifty-two representative stream water samples were collected under base flow conditions and analysed for major cations (Ca2+, Mg2+, Na+, K+ ), major anions (HCO3-, F-, Cl-, NO2-, NO3-, Br-, PO43-, SO42- ) and stable isotopes (δD and δ18O). Calcium and HCO3- were the dominant ions. The chemical facies were CaHCO3 and NaHCO3 indicating surface water draining igneous/metamorphic rocks in hot and humid equatorial climate, resulting in the discordant dissolution of primary silicate minerals. From the isotopic evaluation, the stream water is of meteoric origin, shows negligible evaporation effect and has a common recharge source. The major ion geochemistry demonstrated the potential to discriminate between natural and anthropogenic origins. Distribution trends of Ca2+, Mg2+, Na+, K+, HCO3- and SO42- showed a correlation with the lithology and the occurrence of sulphide minerals associated with hydrothermal gold mineralization in the area. The distribution patterns of NO3- and Cl- reflect pollution from settlement. Overall, the chemistry of stream water in the Lom basin is mainly controlled by rock weathering compared to anthropogenic influence. Surface water quality is easily influenced by anthropogenic activities, and stream sediment collects effectively trace metals resulting from such activities. Hence, geochemical mapping incorporating stream water and stream sediment is of considerable value in future investigations within the Lom basin.

  10. Minerals Yearbook, volume I, Metals and Minerals

    USGS Publications Warehouse

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  11. Kinetic aspects of bone mineral metabolism

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1973-01-01

    Two techniques were studied for measuring changes in bone mass in rats. One technique measures the Ar-37 produced from calcium during neutron irradiation and the other measures the changes in the Na-22 content which has been incorporated within the rat bone. Both methods are performed in VIVO and cause no significant physiological damage. The Ar-37 leaves the body of a rat within an hour after being produced, and it can be quantitatively collected and measured with a precision of - or + 2% on the same rat. With appropriate irradiation conditions it appears that the absolute quantity of calcuim in any rat can be determined within - or + 3% regardless of animal size. The Na-22 when uniformly distributed in bone, can be used to monitor bone mineral turnover and this has been demonstrated in conditions of calcium deficiency during growth and also pregnancy coupled with calcium deficiency.

  12. Growth and characterization of struvite-Na crystals

    NASA Astrophysics Data System (ADS)

    Chauhan, Chetan K.; Joshi, Mihirkumar J.

    2014-09-01

    Sodium magnesium phosphate heptahydrate [NaMgPO4·7H2O], also known as struvite-Na, is the sodium analog to struvite. Among phosphate containing bio-minerals, struvite has attracted considerable attention, because of its common occurrence in a wide variety of environments. Struvite and family crystals were found as urinary calculi in humans and animals. Struvite-Na crystals were grown by a single diffusion gel growth technique in a silica hydro gel medium. Struvite-Na crystals with different morphologies having transparent to translucent diaphaneity were grown with different growth parameters. The phenomenon of Liesegang rings was also observed with some particular growth parameters. The powder XRD study confirmed the structural similarity of the grown struvite-Na crystals with struvite and found that struvite-Na crystallized in the orthorhombic Pmn21 space group with unit cell parameters such as a= 6.893 Å, b=6.124 Å, c=11.150 Å, and α=β=γ=90°. FT-IR spectra of struvite-Na crystals revealed the presence of functional groups. The TGA, DTA and DSC were carried out simultaneously. The kinetic and thermodynamic parameters of dehydration/decomposition process were calculated. The variation of dielectric constant with frequency of applied field was studied in the range from 400 Hz to 100 kHz.

  13. Mineral dissolution and secondary precipitation on quartz sand in simulated Hanford tank solutions affecting subsurface porosity

    NASA Astrophysics Data System (ADS)

    Wang, Guohui; Um, Wooyong

    2012-11-01

    Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the US Department of Energy's Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89 °C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.

  14. Observation of nitrate coatings on atmospheric mineral dust particles

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Shao, L. Y.

    2009-03-01

    Nitrate compounds have received much attention because of their ability to alter the hygroscopic properties and cloud condensation nuclei (CCN) activity of mineral dust particles in the atmosphere. However, very little is known about specific characteristics of ambient nitrate-coated mineral particles on an individual particle scale. In this study, sample collection was conducted during brown haze and dust episodes between 24 May and 21 June 2007 in Beijing, northern China. Sizes, morphologies, and compositions of 332 mineral dust particles together with their coatings were analyzed using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray (EDX) microanalyses. Structures of some mineral particles were verified using selected-area electron diffraction (SAED). TEM observation indicates that approximately 90% of the collected mineral particles are covered by visible coatings in haze samples whereas only 5% are coated in the dust sample. 92% of the analyzed mineral particles are covered with Ca-, Mg-, and Na-rich coatings, and 8% are associated with K- and S-rich coatings. The majority of coatings contain Ca, Mg, O, and N with minor amounts of S and Cl, suggesting that they are possibly nitrates mixed with small amounts of sulfates and chlorides. These nitrate coatings are strongly correlated with the presence of alkaline mineral components (e.g., calcite and dolomite). CaSO4 particles with diameters from 10 to 500 nm were also detected in the coatings including Ca(NO3)2 and Mg(NO3)2. Our results indicate that mineral particles in brown haze episodes were involved in atmospheric heterogeneous reactions with two or more acidic gases (e.g., SO2, NO2, HCl, and HNO3). Mineral particles that acquire hygroscopic nitrate coatings tend to be more spherical and larger, enhancing their light scattering and CCN activity, both of which have cooling effects on the climate.

  15. The effect of sodium hypochlorite application on the success of calcium hydroxide and mineral trioxide aggregate pulpotomies in primary teeth.

    PubMed

    Akcay, Merve; Sari, Saziye

    2014-01-01

    This study's purpose was to evaluate the success of calcium hydroxide (CH) and mineral trioxide aggregate (MTA) pulpotomies following the use of five percent sodium hypochlorite (NaOCl) as an antibacterial agent to clean the chamber prior to application of the pulpotomy agent. A total of 128 teeth were randomly divided into two pulpotomy groups (CH or MTA). The teeth in each pulpotomy group, CH and MTA, were further randomly divided into subgroups to receive either the NaOCl (experimental) or saline (control) cleaning agent prior to applying the pulpotomy agent. The treatments were followed clinically and radiographically for 12 months. The radiographic success rates were 84 percent for CH NaOCl, 74 percent for CH saline control, 97 percent for MTA NaOCl, and 100 percent for MTA saline control. There were no significant differences between the radiographic success rates in the CH and MTA subgroups (CH NaOCl-CH control and MTA NaOCl-MTA control); no significant differences were observed when comparing the CH NaOCl-MTA NaOCl groups and the CH NaOCl-MTA control groups. Use of sodium hypochlorite as an antibacterial agent prior to application of the pulpotomy agent improved the success of calcium hydroxide pulpotomies to equal the success of mineral trioxide aggregate pulpotomies for observation up to 12 months.

  16. FT-IR study of CO 2 interaction with Na-rich montmorillonite

    DOE PAGES

    Krukowski, Elizabeth G.; Goodman, Angela; Rother, Gernot; ...

    2015-05-27

    Here, carbon capture, utilization and storage (CCUS) in saline reservoirs in sedimentary formations has the potential to reduce the impact of fossil fuel combustion on climate change by reducing CO 2 emissions to the atmosphere and storing the CO 2 in geologic formations in perpetuity. At pressure and temperature (PT) conditions relevant to CCUS, CO 2 is less dense than the pre-existing brine in the formation, and the more buoyant CO 2 will migrate to the top of the formation where it will be in contact with cap rock. Interactions between clay-rich shale cap rocks and CO 2 are poorlymore » understood at PT conditions appropriate for CCUS in saline formations. In this study, the interaction of CO 2 with clay minerals in the cap rock overlying a saline formation has been examined using Na + exchanged montmorillonite (Mt) (Na +-STx-1) (Na + Mt) as an analog for clay-rich shale. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) was used to discern mechanistic information for CO 2 interaction with hydrated (both one- and two-water layers) and relatively dehydrated (both dehydrated layers and one-water layers) Na+-STx-1 at 35 °C and 50 C and CO 2 pressure from 0 5.9 MPa. CO 2-induced perturbations associated with the water layer and Na+-STx-1 vibrational modes such as AlAlOH and AlMgOH were examined. Data indicate that CO 2 is preferentially incorporated into the interlayer space, with relatively dehydrated Na +-STx-1 capable of incorporating more CO 2 compared to hydrated Na +-STx-1. Spectroscopic data provide no evidence of formation of carbonate minerals or the interaction of CO 2 with sodium cations in the Na +-STx-1 structure.« less

  17. Empirical electronic polarizabilities: deviations from the additivity rule. I. M2+SO4·nH2O, blödite Na2M2+(SO4)2·4H2O, and kieserite-related minerals with sterically strained structures

    NASA Astrophysics Data System (ADS)

    Gagné, Olivier; Hawthorne, Frank; Shannon, Robert D.; Fischer, Reinhard X.

    2017-09-01

    Empirical electronic polarizabilities allow the prediction of total mineral polarizabilities and mean refractive indices of the vast majority of minerals and synthetic oxides. However, deviations from the valence-sum rule at cations in some minerals are associated with large deviations of observed from calculated total polarizabilities. We have identified several groups of minerals and compounds where deviations from the valence-sum rule at cations lead to polarizability deviations of 2-5%: M(SO4)·nH2O, n = 1-6, blödite-group minerals [Na2M2+(SO4)2·4H2O], and the kieserite-related minerals: isokite, panasqueiraite and tilasite. In these minerals, the environment of the M ions contains both O and H2O: Mg[O4(H2O)2] in kieserite, szmikite, and szomolnokite; Mg[O2(H2O)4] in starkeyite, ilesite, and rozenite, and Mg[(H2O)6] in hexahydrite. In compounds where the ligands are only H2O, deviations from the valence-sum rule at the M(H2O)6 groups are not accompanied by significant polarizability deviations. This is the case for epsomite, MgSO4·7H2O; bieberite, CoSO4·7H2O; goslarite, ZnSO4·7H2O, six silicofluorides, MSiF6·6H2O; eighteen Tutton's salts, M2M'(SO4)2·6H2O, where M = K, Rb, Cs and M' = Mg, Mn, Fe, Co, Ni, Cu, and Zn; and eleven MM'(SO4)2·12H2O alums, where M = Na, K, Rb and Cs, and M' = Al, Cr, Ga and In. This is also the case for the sulfates alunogen, Al2(SO4)3·17H2O and halotrichite, FeAl2(SO4)4·22H2O; three hydrated nitrates; one phosphate; three antimonates and two hydrated perchlorates. A possible explanation for this different behavior is that the bond-valence model treats O and H separately, whereas polarizability calculations treat the polarizability of the entire H2O molecule.

  18. Co-Binding of Pharmaceutical Compounds at Mineral Surfaces: Molecular Investigations of Dimer Formation at Goethite/Water Interfaces.

    PubMed

    Xu, Jing; Marsac, Rémi; Costa, Dominique; Cheng, Wei; Wu, Feng; Boily, Jean-François; Hanna, Khalil

    2017-08-01

    The emergence of antibiotic and anti-inflammatory agents in aquatic and terrestrial systems is becoming a serious threat to human and animal health worldwide. Because pharmaceutical compounds rarely exist individually in nature, interactions between various compounds can have unforeseen effects on their binding to mineral surfaces. This work demonstrates this important possibility for the case of two typical antibiotic and anti-inflammatory agents (nalidixic acid (NA) and niflumic acid (NFA)) bound at goethite (α-FeOOH) used as a model mineral surface. Our multidisciplinary study, which makes use of batch sorption experiments, vibration spectroscopy and periodic density functional theory calculations, reveals enhanced binding of the otherwise weakly bound NFA caused by unforeseen intermolecular interactions with mineral-bound NA. This enhancement is ascribed to the formation of a NFA-NA dimer whose energetically favored formation (-0.5 eV compared to free molecules) is predominantly driven by van der Waals interactions. A parallel set of efforts also showed that no cobinding occurred with sulfamethoxazole (SMX) because of the lack of molecular interactions with coexisting contaminants. As such, this article raises the importance of recognizing drug cobinding, and lack of cobinding, for predicting and developing policies on the fate of complex mixtures of antibiotics and anti-inflammatory agents in nature.

  19. Selenium isotope fractionation during adsorption onto the modified clay minerals

    NASA Astrophysics Data System (ADS)

    Xu, W.; Jianming, Z.; Tan, D.; Qin, H.

    2016-12-01

    Currently, Selenium (Se) isotopes have been used as a paleoenvironmental proxy to trace Se evolution in Ancient Ocean. And many researchers considered the variation of Se isotopes in nature mainly result from the reduction of Se oxyanion, while Se isotope fractionation during adsorption onto minerals was rarely reported. Therefore, based on the previous studies [1, 2], we used three common clay minerals in supergene environment: montmorillonite, illite and kaolinite as an adsorbent to study Se isotope fractionation during adsorption. Before doing adsorption experiments, the adsorbent were modified as Na-clay minerals to remove the possibility of interference of Ca2+, Fe3+, Fe2+ as well as organic matters. A batch adsorption experiments were carried out at room temperature (23 ±2 °) under N2 atmosphere, initial Se concentration (SeO32-/ SeO42-) was respectively 200ng and 100ng, the solution ionic strength was 0.1mol/L NaCl; the ratio of liquid to solid is 2g / L, and pH = 5. Experimental results showed that adsorption reached a steady state during 48h, and the maximum adsorption for SeO32- was larger than SeO42-. The isotope data showed that SeO42- adsorbed onto three clay minerals didn't present obvious Se isotope fractionation, generally δ82/78Se is less than 0.1 ‰. Meanwhile, SeO32- during adsorption process also didn't show the significant fractionation, less than 0.3 ‰. However, interestingly, for SeO32- the δ82/78Se values of solution during adsorption onto kaolinite underwent a process of increasing by 0.5‰ compared to the initial solution and then decreasing to 0.3‰. We speculated the reason may not be related to the surface charge of the clay minerals, but mostly with the layered structure of clay minerals. Montmorillonite and illite are 2: 1; kaolinite is 1: 1 layered structure. The different layered structure may influence the isotope fraction between Se oxyanions and clay minerals. These still needs further and more experiments to definitely

  20. Rutile solubility in NaF-NaCl-KCl-bearing aqueous fluids at 0.5-2.79 GPa and 250-650 °C

    NASA Astrophysics Data System (ADS)

    Tanis, Elizabeth A.; Simon, Adam; Zhang, Youxue; Chow, Paul; Xiao, Yuming; Hanchar, John M.; Tschauner, Oliver; Shen, Guoyin

    2016-03-01

    The complex nature of trace element mobility in subduction zone environments is thought to be primarily controlled by fluid-rock interactions, episodic behavior of fluids released, mineral assemblages, and element partitioning during phase transformations and mineral breakdown throughout the transition from hydrated basalt to blueschist to eclogite. Quantitative data that constrain the partitioning of trace elements between fluid(s) and mineral(s) are required in order to model trace element mobility during prograde and retrograde metamorphic fluid evolution in subduction environments. The stability of rutile has been proposed to control the mobility of HFSE during subduction, accounting for the observed depletion of Nb and Ta in arc magmas. Recent experimental studies demonstrate that the solubility of rutile in aqueous fluids at temperatures >700 °C and pressures <2 GPa increases by several orders of magnitude relative to pure H2O as the concentrations of ligands (e.g., F and Cl) in the fluid increase. Considering that prograde devolatilization in arcs begins at ∼300 °C, there is a need for quantitative constraints on rutile solubility and the partitioning of HFSE between rutile and aqueous fluid over a wider range of temperature and pressure than is currently available. In this study, new experimental data are presented that quantify the solubility of rutile in aqueous fluids from 0.5 to 2.79 GPa and 250 to 650 °C. Rutile solubility was determined by using synchrotron X-ray fluorescence to measure the concentration of Zr in an aqueous fluid saturated with a Zr-bearing rutile crystal within a hydrothermal diamond anvil cell. At the PT conditions of the experiments, published diffusion data indicate that Zr is effectively immobile (log DZr ∼10-25 m2/s at 650 °C and ∼10-30 m2/s at 250 °C) with diffusion length-scales of <0.2 μm in rutile for our run durations (<10 h). Hence, the Zr/Ti ratio of the starting rutile, which was quantified, does not change

  1. Discovery of Ahrensite γ-Fe2SiO4 and Tissintite (Ca,Na,[])AlSi2O6, Two New Shock-induced Minerals from the Tissint Martian Meteorite: a Nanomineralogy Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.; Liu, Y.; Sinogeikin, S. V.; Zhuravlev, K. K.; Prakapenka, V.; Dera, P. K.; Taylor, L. A.

    2013-12-01

    The recent Martian meteorite fall, Tissint, is a fresh olivine-phyric shergottite, with strong shock features. During our nano-mineralogy investigation of the Tissint meteorite with a combined analytical scanning electron microscope and synchrotron diffraction approach, two new shock-induced minerals have been discovered; these provide new insights into understanding shock conditions and impact processes on Mars. Ahrensite (IMA 2013-028), the Fe-analogue (γ-Fe2SiO4) of ringwoodite, is a new high-pressure mineral identified in Tissint. Both ahrensite and ringwoodite occur in Tissint as fine-grained polycrystalline aggregates in the rims of olivines around some shock-melt pockets. The morphology and texture of these silicate-spinels suggest formation by a solid-state transformation from Fe-rich olivine. Associated with the ahrensite and ringwoodite, inside melt pockets, often resides a thin layer of vitrified silicate-perovskite and magnesio-wüstite or wüstite. Such transitions represent a unique pressure and temperature gradient. Tissintite (IMA 2013-027), (Ca,Na,[])AlSi2O6 with the C2/c clinopyroxene structure, is a new jadeite-like mineral in Tissint. It appears as fine-grained aggregates within plagioclase glass, inside many shock-melt pockets. Both ahrensite and tissintite are high-pressure minerals formed by shock during the impact event(s) on Mars that excavated and ejected the rock off Mars. We will discuss the path of structure analysis for both new-mineral cases. Such novel methodology be utilized for many cases of mineralogical phase identification or structure analysis; this demonstrates how nano-mineralogy can be addressed and how it may play a unique role in meteorite and Mars rock research, in general.

  2. Estimation of genetic parameters and detection of quantitative trait loci for minerals in Danish Holstein and Danish Jersey milk.

    PubMed

    Buitenhuis, Bart; Poulsen, Nina A; Larsen, Lotte B; Sehested, Jakob

    2015-05-21

    Bovine milk provides important minerals, essential for human nutrition and dairy product quality. For changing the mineral composition of the milk to improve dietary needs in human nutrition and technological properties of milk, a thorough understanding of the genetics underlying milk mineral contents is important. Therefore the aim of this study was to 1) estimate the genetic parameters for individual minerals in Danish Holstein (DH) (n=371) and Danish Jersey (DJ) (n=321) milk, and 2) detect genomic regions associated with mineral content in the milk using a genome-wide association study (GWAS) approach. For DH, high heritabilities were found for Ca (0.72), Zn (0.49), and P (0.46), while for DJ, high heritabilities were found for Ca (0.63), Zn (0.57), and Mg (0.57). Furthermore, intermediate heritabilities were found for Cu in DH, and for K, Na, P and Se in the DJ. The GWAS revealed a total of 649 significant SNP markers detected for Ca (24), Cu (90), Fe (111), Mn (3), Na (1), P (4), Se (12) and Zn (404) in DH, while for DJ, a total of 787 significant SNP markers were detected for Ca (44), Fe (43), K (498), Na (4), Mg (1), P (94) and Zn (3). Comparing the list of significant markers between DH and DJ revealed that the SNP ARS-BFGL-NGS-4939 was common in both breeds for Zn. This SNP marker is closely linked to the DGAT1 gene. Even though we found significant SNP markers on BTA14 in both DH and DJ for Ca, and Fe these significant SNPs did not overlap. The results show that Ca, Zn, P and Mg show high heritabilities. In combination with the GWAS results this opens up possibilities to select for specific minerals in bovine milk.

  3. Subarctic weathering of mineral wastes provides a sink for atmospheric CO(2).

    PubMed

    Wilson, Siobhan A; Dipple, Gregory M; Power, Ian M; Barker, Shaun L L; Fallon, Stewart J; Southam, Gordon

    2011-09-15

    The mineral waste from some mines has the capacity to trap and store CO(2) within secondary carbonate minerals via the process of silicate weathering. Nesquehonite [MgCO(3)·3H(2)O] forms by weathering of Mg-silicate minerals in kimberlitic mine tailings at the Diavik Diamond Mine, Northwest Territories, Canada. Less abundant Na- and Ca-carbonate minerals precipitate from sewage treatment effluent deposited in the tailings storage facility. Radiocarbon and stable carbon and oxygen isotopes are used to assess the ability of mine tailings to trap and store modern CO(2) within these minerals in the arid, subarctic climate at Diavik. Stable isotopic data cannot always uniquely identify the source of carbon stored within minerals in this setting; however, radiocarbon isotopic data provide a reliable quantitative estimate for sequestration of modern carbon. At least 89% of the carbon trapped within secondary carbonate minerals at Diavik is derived from a modern source, either by direct uptake of atmospheric CO(2) or indirect uptake though the biosphere. Silicate weathering at Diavik is trapping 102-114 g C/m(2)/y within nesquehonite, which corresponds to a 2 orders of magnitude increase over the background rate of CO(2) uptake predicted from arctic and subarctic river catchment data.

  4. A mineralogical study in contrasts: highly mineralized whale rostrum and human enamel

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Ai-Jawad, Maisoon; Siddiqui, Samera; Pasteris, Jill D.

    2015-11-01

    The outermost enamel of the human tooth and the rostrum of the whale Mesoplodon densirostris are two highly mineralized tissues that contain over 95 wt.% mineral, i.e., bioapatite. However, the same mineral type (carbonated hydroxylapatite) does not yield the same material properties, as revealed by Raman spectroscopy, scanning electron microscopy, electron microprobe analysis, and synchrotron X-ray diffraction analysis. Overall, the outermost enamel of a tooth has more homogeneous physical and chemical features than the rostrum. Chemical comparison of rostrum and enamel shows bioapatite in the rostrum to be enriched in Na, Mg, CO3, and S, whereas the outermost enamel shows only a slightly enriched Cl concentration. Morphologically, mineral rods (at tens of μm scale), crystallites and prisms (at μm and sub-μm scale), and platelets (at tens of nm scale) all demonstrate less organized texture in the rostrum than in enamel. Such contrasts between two mineralized tissues suggest distinct pathways of biomineralization, e.g., the nature of the equilibrium between mineral and body fluid. This study illustrates the remarkable flexibility of the apatite mineral structure to match its chemical and physical properties to specific biological needs within the same animal or between species.

  5. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production

    PubMed Central

    Rau, Greg H.; Carroll, Susan A.; Bourcier, William L.; Singleton, Michael J.; Smith, Megan M.; Aines, Roger D.

    2013-01-01

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 105-fold increase in OH− concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH− initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification. PMID:23729814

  6. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest... locations, mineral patents, and mineral leasing within National Forest Wilderness are contained in parts...

  7. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

  8. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

  9. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

  10. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

  11. CO2-induced changes in mineral stoichiometry of wheat grains

    NASA Astrophysics Data System (ADS)

    Broberg, Malin; Pleijel, Håkan; Högy, Petra

    2016-04-01

    A comprehensive review of experiments with elevated CO2 (eCO2) presenting data on grain mineral concentration in wheat grain was made. Data were collected both from FACE (Free-Air CO2 Enrichment) and OTC (Open-Top Chamber) experiments. Analysis was made i) by deriving response functions for the relative effect on yield and mineral concentration in relation to CO2 concentration, ii) meta-analysis to test the magnitude and significance of observed effects and iii) comparison of the CO2 effect on the accumulation of different minerals in relation to accumulation of biomass and accumulation of N. Data were obtained for the following minerals: N, Zn, Mn, K, Ca, Mg, P, Fe, S, Cr, Cu, Cd and Na. In addition, data for starch, the dominating carbohydrate of wheat grain, were extracted. The responses ranged from near zero effects to strong negative effects of eCO2 on mineral concentration. The order of effect size was the following (from largest to smallest effect) for the different elements: Fe, Ca, S, Zn, Cd, N, Mg, Mn, P, Cu, Cr, K and Na. Particularly strong negative impacts of eCO2 were found in the essential mineral elements Fe, S, Ca, Zn and Mg. Especially Fe, Zn and Mg are nutrients for which deficiency in humans is a problem in todaýs world. The rather large differences in response of different elements indicated that the CO2-induced responses cannot be explained by a simple growth dilution model. Rather, uptake and transport mechanisms may have to be considered in greater detail, as well as the link of different elements with the uptake of nitrogen, the quantitatively dominating mineral nutrient, to explain the observed pattern. No effect of eCO2 on starch concentration could be demonstrated. This substantiates the rejection of a simple dilution model, since one would expect starch concentrations to be elevated in order to explain reduced mineral concentrations by carbohydrate dilution. The concentrations of toxic Cd was negatively affected, in principle a

  12. Evaluation of the effects of pharmacological zinc oxide and phosphorus source on weaned piglet growth performance, plasma minerals and mineral digestibility.

    PubMed

    Walk, C L; Wilcock, P; Magowan, E

    2015-07-01

    Crossbred pigs (n=720; average age=28±3 days and weight=9.5±0.3 kg) were used in a 20-day trial in order to determine the influence of phosphorus (P) source and various doses of pharmacological zinc (Zn) on growth performance, plasma minerals and mineral digestibility. Pigs (five intact males and five females per pen) were randomly allotted to treatments in a 3×3 factorial arrangement with three sources of dietary P (4.5 g/kg digestible P, 4.5 g/kg digestible P plus 2500 phytase units (FTU)/kg, or 5.5 g/kg digestible P) and three dietary levels of supplemental Zn (0, 1750 or 3500 mg/kg) from ZnO (82% Zn) with eight pens per treatment. Diets were formulated to exceed all nutrient requirements, including calcium (Ca), P and Zn from day 0 to 20. Zn supplementation increased (quadratic P<0.05) average daily feed intake. There was a significant Zn level×P source interaction on average daily gain and feed conversion ratio (FCR). Pigs fed 4.5 g/kg digestible P without or with 2500 FTU/kg phytase gained more per day (quadratic P<0.05) and had better FCR (quadratic P<0.05) when they were fed 1750 mg/kg supplemental Zn. However, pigs fed 5.5 g/kg digestible P gained more per day (linear P<0.05) and were more efficient (linear P<0.05) when they were fed 3500 mg/kg supplemental Zn. Plasma Zn and Zn digestibility increased (linear P<0.05) as pharmacological Zn supplementation increased from 0 to 3500 mg/kg, irrespective of P source. However, Ca, P, sodium (Na), potassium (K) and copper (Cu) digestibility were reduced (P<0.05) as pharmacological Zn supplementation increased, and this was mitigated or exacerbated by the supplementation of 5.5 g/kg digestible P or phytase. In conclusion, increasing the dietary inclusion of pharmacological Zn may impact growth performance in young pigs through the interaction with minerals such as Ca, P, Na and K. Pharmacological Zn may reduce Na or K digestibility and indirectly reduce water secretion into the lumen, resulting in an increase

  13. Ameloblast Modulation and Transport of Cl−, Na+, and K+ during Amelogenesis

    PubMed Central

    Bronckers, A.L.J.J.; Lyaruu, D.; Jalali, R.; Medina, J.F.; Zandieh-Doulabi, B.; DenBesten, P.K.

    2015-01-01

    Ameloblasts express transmembrane proteins for transport of mineral ions and regulation of pH in the enamel space. Two major transporters recently identified in ameloblasts are the Na+K+-dependent calcium transporter NCKX4 and the Na+-dependent HPO42– (Pi) cotransporter NaPi-2b. To regulate pH, ameloblasts express anion exchanger 2 (Ae2a,b), chloride channel Cftr, and amelogenins that can bind protons. Exposure to fluoride or null mutation of Cftr, Ae2a,b, or Amelx each results in formation of hypomineralized enamel. We hypothesized that enamel hypomineralization associated with disturbed pH regulation results from reduced ion transport by NCKX4 and NaPi-2b. This was tested by correlation analyses among the levels of Ca, Pi, Cl, Na, and K in forming enamel of mice with null mutation of Cftr, Ae2a,b, and Amelx, according to quantitative x-ray electron probe microanalysis. Immunohistochemistry, polymerase chain reaction analysis, and Western blotting confirmed the presence of apical NaPi-2b and Nckx4 in maturation-stage ameloblasts. In wild-type mice, K levels in enamel were negatively correlated with Ca and Cl but less negatively or even positively in fluorotic enamel. Na did not correlate with P or Ca in enamel of wild-type mice but showed strong positive correlation in fluorotic and nonfluorotic Ae2a,b- and Cftr-null enamel. In hypomineralizing enamel of all models tested, 1) Cl− was strongly reduced; 2) K+ and Na+ accumulated (Na+ not in Amelx-null enamel); and 3) modulation was delayed or blocked. These results suggest that a Na+K+-dependent calcium transporter (likely NCKX4) and a Na+-dependent Pi transporter (potentially NaPi-2b) located in ruffle-ended ameloblasts operate in a coordinated way with the pH-regulating machinery to transport Ca2+, Pi, and bicarbonate into maturation-stage enamel. Acidification and/or associated physicochemical/electrochemical changes in ion levels in enamel fluid near the apical ameloblast membrane may reduce the transport

  14. Mineralogical, chemical, and crystallographic properties of supergene jarosite-group minerals from the Xitieshan Pb-Zn sulfide deposit, northern Tibetan Plateau, China

    USGS Publications Warehouse

    Chen, Lei; Li, Jian-Wei; Rye, Robert O.; Benzel, William H.; Lowers, H.A.; He, Ming-Zhong

    2013-01-01

    Supergene jarosite-group minerals are widespread in weathering profiles overlying Pb-Zn sulfide ores at Xitieshan, northern Tibetan Plateau, China. They consist predominantly of K-deficient natrojarosite, with lesser amounts of K-rich natrojarosite and plumbojarosite. Electron microprobe (EMP) analyses, scanning electron microcopy (SEM) investigation, and X-ray mapping reveal that the jarosite-group minerals are characterized by spectacular oscillatory zoning composed of alternating growth bands of K-deficient and K-bearing natrojarosite (K2O >1 wt.%). Plumbojarosite, whenever present, occurs as an overgrowth in the outermost bands, and its composition can be best represented by K0.29Na0.19Pb0.31Fe2.66Al0.22(SO4)1.65(PO4)0.31(AsO4)0.04(OH)7.37. The substitution of monovalent for divalent cations at the A site of plumbojarosite is charge balanced by the substitution of five-valent for six-valent anions in XO,4/sub> at the X site. Thermogravimetric analysis (TGA) of representative samples reveal mass losses of 11.46 wt.% at 446.6 °C and 21.42 wt.% at 683.4 °C due to dehydroxylation and desulfidation, respectively. TGA data also indicate that the natrojarosite structure collapses at 446.6 °C, resulting in the formation of NaFe(SO4)2 and minor hematite. The decomposition products of NaFe(SO4) are hematite and Na,2SO4. Powder X-ray diffraction (XRD) analyses show that the jarosite-group minerals have mean unit-cell parameters of a=7.315 ä and c=016.598 ä. XRD and EMP data support the view that substitutions of Na for K in the A site and full Fe occupancy in the B site can considerably decrease the unit-cell parameter c, but only slightly increase a. The results from this study suggest that the observed oscillatory zoning of jarosite-group minerals at Xitieshan resulted mainly from substitutions of K for Na at the A site and P for S at the X site.

  15. Preliminary Study on the Dissolutions of Ce, Nd, Y and La from Mineral Cassiterite by Acid and Alkaline Leaching

    NASA Astrophysics Data System (ADS)

    Firdiyono, F.; Andriyah, L.; Aini, F. N.; Arini, T.; Lalasari, L. H.

    2018-03-01

    Rare Earth Metal is a rare element that its availability in nature is very small. In Indonesia, the potential of rare earth metals is generally found as the associated mineral in major commodities, especially gold and alluvial tin. These associated minerals can be processed using a particular technology so that the result is a by-product that can increase the added value of the mineral. This purpose of this research was to investigate the dissolution of Cerium (Ce), Neodymium (Nd), Yttrium (Y) and Lanthanum (La) from mineral cassiterite by leaching process using dilute hydrochloric acid (HCl), sulfate acid (H2SO4) and sodium hydroxide (NaOH). Firstly, cassiterite was grinded to -100 mesh of particle size and characterized by X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) techniques. Secondly, 10 gram of cassiterite was leached in 100 ml solution of 3.26 N HCl, H2SO4 and NaOH at variation leaching time of 2, 4, 6, 24 and 48 hours in atmospheric conditions. The products were then filtered to separate filtrate and residue of cassiterite. Finally, to investigate the dissolution of Ce, La, Nd and Y, filtrate from dissolved cassiterite was analyzed by Induced Coupled Plasma-Optical Emission Spectrometry (ICP-OES), while to know the chemical composition of cassiterite leached by dilute HCl, H2SO4 and NaOH, residue products of cassiterite was characterized by XRF analysis. The result of ICP-OES analysis showed the dissolution of Ce element higher than Nd, Y and La elements for leaching cassiterite using HCl, H2SO4 and NaOH. The increase of leaching time was accompanied by the rise in the amount of dissolved elements from cassiterite. The result of XRF analysis showed the chemistry composition of Ce, Nd, Y and La elements on residue decreased insignificantly from chemistry composition of cassiterite (raw mineral) in all conditions. However, the dissolution of Ce, La, Nd and Y was insignificant in all conditions.

  16. A combined physicochemical-biological method of NaCl extraction from the irrigation solution in the BTLSS

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia

    2016-07-01

    The use of processed human wastes as a source of minerals for plants in closed biotechnical life support systems (BTLSS) leads to high salt levels in the irrigation solution, as urine contains high concentrations of NaCl. It is important to develop a process that would effectively decrease NaCl concentration in the irrigation solution and return this salt to the crew's diet. The salt-tolerant plants (Salicornia europea) used to reduce NaCl concentration in the irrigation solution require higher salt concentrations than those of the solution, and this problem cannot be resolved by concentrating the solution. At the same time, NaCl extracted from mineralized wastes by physicochemical methods is not pure enough to be included in the crew's diet. This study describes an original physicochemical method of NaCl extraction from the solution, which is intended to be used in combination with the biological method of NaCl extraction by using saltwort plants. The physicochemical method produces solutions with high NaCl concentrations, and saltwort plants serve as a biological filter in the final phase, to produce table salt. The study reports the order in which physicochemical and biological methods of NaCl extraction from the irrigation solution should be used to enable rapid and effective inclusion of NaCl into the cycling of the BTLSS with humans. This study was carried out in the IBP SB RAS and supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).

  17. A rapid and cost effective method for soil carbon mineralization under static incubations

    USDA-ARS?s Scientific Manuscript database

    Soil incubations with subsequent measurement of carbon dioxide (CO2) evolved are common soil assays to estimate C mineralization rates and active organic C. Two common methods used to detect CO2 in laboratory incubations are gas chromatography (GC) and alkali absorption followed by titration (NaOH)...

  18. Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS

    NASA Astrophysics Data System (ADS)

    Ushakova, S. A.; Kovaleva, N. P.; Gribovskaya, I. V.; Dolgushev, V. A.; Tikhomirova, N. A.

    The accumulation of solid and liquid wastes in manmade ecosystems presents a problem that has not been efficiently solved yet. Urine, containing NaCl, are part of these products. This is an obstacle to the creation of biological systems with a largely closed material cycling, because the amount of solid and liquid wastes in them must be reduced to a minimum. A possible solution to the problem is to select plant species capable of utilizing sufficiently high concentrations of NaCl, edible for humans, and featuring high productivity. Until recently, the life support systems have included the higher plants that were either sensitive to salinization (wheat, many of the legumes, carrot, potato, maize) or relatively salt-resistant (barley, sugar beet, spinach). Salicomia europaea, whose above-ground part is fully edible for humans, is one of the most promising candidates to be included in life support systems. It is reported in the literature that this plant is capable of accumulating up to 50% NaCl (dry basis). Besides, excessive accumulation of sodium ions should bring forth a decrease in the uptake of potassium ions and other biogenic elements. The aim of this work is to study the feasibility of using S. europaea plants in growth chambers to involve NaCl into material cycling. Plants were grown in vegetation chambers at the irradiance of 100 or 150 W/m 2 PAR (photosynthetically active radiation) and the air temperature 24 °C, by two methods. The first method was to grow the plants on substrate - peat. The peat was supplemented with either 3% NaCl (Variant 1) or 6% NaCl (Variant 2) of the oven-dry mass of the peat. The second method was to grow the plants in water culture, using the solution with a full complement of nutrients, which contained 0.0005% of NaCl, 1% or 2%. The study showed that the addition of NaCl to the substrate or to the solution resulted in the formation of more succulent plants, which considerably increased their biomass. The amount of NaCl uptake

  19. Mass change calculations of hydrothermal alterations within the volcanogenic metasediments hosted Cu-Pb (-Zn) mineralization at Halilar area, NW Turkey

    NASA Astrophysics Data System (ADS)

    Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite

  20. Mineral licks: motivational factors for visitation and accompanying disease risk at communal use sites of elk and deer.

    PubMed

    Lavelle, Michael J; Phillips, Gregory E; Fischer, Justin W; Burke, Patrick W; Seward, Nathan W; Stahl, Randal S; Nichols, Tracy A; Wunder, Bruce A; VerCauteren, Kurt C

    2014-12-01

    Free-ranging cervids acquire most of their essential minerals through forage consumption, though occasionally seek other sources to account for seasonal mineral deficiencies. Mineral sources occur as natural geological deposits (i.e., licks) or as anthropogenic mineral supplements. In both scenarios, these sources commonly serve as focal sites for visitation. We monitored 11 licks in Rocky Mountain National Park, north-central Colorado, using trail cameras to quantify daily visitation indices (DVI) and soil consumption indices (SCI) for Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) during summer 2006 and documented elk, mule deer, and moose (Alces alces) visiting licks. Additionally, soil samples were collected, and mineral concentrations were compared to discern levels that explain rates of visitation. Relationships between response variables; DVI and SCI, and explanatory variables; elevation class, moisture class, period of study, and concentrations of minerals were examined. We found that DVI and SCI were greatest at two wet, low-elevation licks exhibiting relatively high concentrations of manganese and sodium. Because cervids are known to seek Na from soils, we suggest our observed association of Mn with DVI and SCI was a likely consequence of deer and elk seeking supplemental dietary Na. Additionally, highly utilized licks such as these provide an area of concentrated cervid occupation and interaction, thus increasing risk for environmental transmission of infectious pathogens such as chronic wasting disease, which has been shown to be shed in the saliva, urine, and feces of infected cervids.

  1. Mineral contents of some plants used in Iran.

    PubMed

    Rahmatollah, Rahimi; Mahbobeh, Rabani

    2010-07-01

    In this work, mineral contents of 4 plants used in Iran were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry. The concentrations were calculated on a dry weight basis. All materials contained high amounts of Na, Al, Ca, Fe, K, Mg, P, Zn, and I. On a moisture-free basis, the highest levels of Ca, P, and Mg were found in spinach to be 3200 mg/100 g, 2150 mg/100 g, and 460 mg/100 g, respectively. Bi, Cd, Li, Pb, and Se contents of condiments were found to be very low. The results were compared with those from the Spanish, Turkish, and Indian. This work attempts to contribute to knowledge of the nutritional properties of these plants. These results may be useful for the evaluation of dietary information and concluded that the green vegetables are the good sources of minerals.

  2. The influence of pressure on the activity coefficients of the solutes and on the solubility of minerals in the system Na-Ca-Cl-SO 4-H 2O to 200°C and 1 kbar and to high NaCl concentration

    NASA Astrophysics Data System (ADS)

    Monnin, Christophe

    1990-12-01

    A model is presented which is used to calculate the effect of pressure on activity coefficients of aqueous solutes in the system Na-Ca-Cl-SO 4-H 2O to 200°C. Literature data for the density and compressibility of aqueous binary solutions of Na 2SO 4 and CaCl 2 to 200°C are used to calculate the first and second pressure derivatives of Pitzer's ion interaction model parameters, as well as the standard molal compressibility and volume of these two salts. Empirical correlations between the apparent molal volume and compressibility of the aqueous electrolytes are used to guide the choice of the temperature dependent expressions used for the numerical representation of the derivatives of Pitzer's parameters with respect to pressure. For sodium sulfate solutions, such correlations are used to extrapolate compressibilities to 200°C. The change in the thermodynamic properties of the-CaSO 04 ion pair with pressure is taken into account by the variation of its dissociation constant. The volumetric properties (partial molal volumes and compressibilities) of multicomponent solutions in the Na-Ca-Cl-SO 4-H 2O system can be predicted from the information generated here and the volumetric equations of ROGERS and PITZER (1982) for NaCl. This model is then combined with the high temperature model of MOLLER (1988) of the same system in order to calculate activity coefficients at high pressures to 200°C. The resulting model is validated by comparing calculated and measured solubilities of anhydrite and gypsum in pure water and in NaCl solutions up to 6 M. The agreement between the calculated and measured solubilities of the calcium sulfates is typically better than 10% up to 200°C and 1 kbar. The relevance of temperature and pressure corrections to the activity coefficients of aqueous solutes is discussed in regard to the assumed accuracy with which geochemical models are able to calculate mineral solubilities.

  3. Mineral composition of organically grown tomato

    NASA Astrophysics Data System (ADS)

    Ghambashidze, Giorgi

    2014-05-01

    In recent years, consumer concerns on environmental and health issues related to food products have increased and, as a result, the demand for organically grown production has grown. Results indicate that consumers concerned about healthy diet and environmental degradation are the most likely to buy organic food, and are willing to pay a high premium. Therefore, it is important to ensure the quality of the produce, especially for highly consumed products. The tomato (Lycopersicon esculentum) is one of the most widely consumed fresh vegetables in the world. It is also widely used by the food industries as a raw material for the production of derived products such as purees or ketchup. Consequently, many investigations have addressed the impact of plant nutrition on the quality of tomato fruit. The concentrations of minerals (P, Na, K, Ca and Mg) and trace elements (Cu, Zn and Mn) were determined in tomatoes grown organically in East Georgia, Marneuli District. The contents of minerals and Mn seem to be in the range as shown in literature. Cu and Zn were found in considerably high amounts in comparison to maximum permissible values established in Georgia. Some correlations were observed between the minerals and trace elements studied. K and Mg were strongly correlated with Cu and Zn. Statistically significant difference have shown also P, K and Mg based between period of sampling.

  4. Spine mineral change during osteoporosis therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, M.R.; Kolb, F.O.; Meier, K.A.

    1985-05-01

    Osteoporosis therapy has been handicapped by lack of means to quantitate the process. Dual photon absorptiometry (DPA) offers accurate (4%) and precise (2%) estimation of lumbar spine mineral. The authors followed 42 osteoporotics to determine response to therapy. There were 17 patients with normal menopause (NM), 4 with surgical menopause (SM), 3 with premature menopause (PM), and 18 with idiopathic osteoporoses (10). Intervals between DPA spine mineral estimation were 16.5 +- 5.2 mo. for NM, 14.3 +- 8.4 mo. for SM, 14.0 +- 7.5 mo. for PM and 16.7 +- 5.8 mo. for 10. Observed average percent change of spinemore » mineral under therapy for those intervals was 5.2 +- 7.9% for NM, +7.3 +- 1.7% for SM, -2.4 +- 6.3% for PM and +1.8 +- 12.3% for 10. Therapy invariably was with Ca, low dose Premarin in NM and PM, often with phosphates in IO, sometimes with thiazides, often with Vitamin D and with occasional other modalities, including NaF. The authors find DPA is a cost-effective way to measure osteopenia in the osteoporeses, document response to therapy, identify need for therapy change when there is continued bone loss under therapy, and to encourage the patient's compliance with long-term, complex therapies.« less

  5. An epidemiological study of salt miners in diesel and nondiesel mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, J.; Jones, W.; Hudak, J.

    1983-01-01

    A cross-sectional study of 5 NaCl mines and 259 miners addressed the following questions: 1) Is there an association of increased respiratory symptoms, radiographic findings, and reduced pulmonary function with exposure to nitrogen dioxide (NO2) and/or respirable particulate (RP) among these miners. 2) Is there increased morbidity of these miners compared to other working populations. Personal samples of NO2 and respirable particulate for jobs in each mine were used to estimate cumulative exposure. NO2 is used as a surrogate measure of diesel exposure. Cough was associated with age and smoking, dyspnea with age; neither symptom was associated with exposure (yearsmore » worked, estimated cumulative NO2 or RP exposure). Phlegm was associated with age, smoking, and exposure. Reduced pulmonary function (FVC, FEV1, peak, flow, FEF50, FEF75) showed no association with exposure. There was one case of small rounded and one case of small irregular opacities; pneumoconiosis was not analyzed further. Compared to underground coal miners, above ground coal miners, potash miners, and nonmining workers, the study population after adjustment for age and smoking generally showed no increased prevalence of cough, phlegm, dyspnea, or obstruction (FEV1/FVC less than 0.7). Obstruction in younger salt miners and phlegm in older salt miners was elevated compared to nonmining workers. Mean predicted pulmonary function was reduced 2-4% for FEV1 and FVC, 7-13% for FEF50, and 18-22% for FEF75 below all comparison populations.« less

  6. Effects of fertilization, crop year, variety, and provenance factors on mineral concentrations in onions.

    PubMed

    Ariyama, Kaoru; Nishida, Tadashi; Noda, Tomoaki; Kadokura, Masashi; Yasui, Akemi

    2006-05-03

    Mineral concentrations of onions (Allium cepa L.) grown under various conditions, including factors (fertilization, crop year, variety, and provenance), were investigated to clarify how much each factor contributes to the variation of their concentrations. This was because the mineral concentrations might be affected by various factors. The ultimate goal of this study was to develop a technique to determine the geographic origins of onions by mineral composition. Samples were onions grown under various conditions at 52 fields in 18 farms in Hokkaido, Japan. Twenty-six elements (Li, Na, Mg, Al, P, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Mo, Cd, Cs, Ba, La, Ce, Nd, Gd, W, and Tl) in these samples were determined by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Fertilization conditions and crop years of onions caused variations of P, Ni, Cu, Rb, Sr, Mo, Cs, and Tl concentrations in onions; different onion varieties also showed variations in numerous element concentrations. However, the variations of mineral compositions of onions by these factors were smaller than the differences between production places with a few exceptions. Furthermore, Na, Rb, and Cs in group IA of the periodic table, Ca, Sr, and Ba in group IIA, and Zn and Cd in group IIB showed similar concentration patterns by group; this result demonstrated that elements in the same periodic groups behaved similarly in terms of their absorption in onions.

  7. Effect of irrigation water salinity on the organic carbon mineralization in soil (laboratory incubation)

    NASA Astrophysics Data System (ADS)

    Mancer, Halima; Bouhoun, Mustapha Daddi

    2018-05-01

    In a laboratory study, the impact of salts on mineralization of organic carbon of soil was examined through the monitoring of the amount of CO2-C released from soil. The soil used was classified as a nonsaline soil which has been irrigated with artificially salinized water, a factorial combination of three types of salts (NaCl, MgCl2, CaCl2) with three levels of electrical conductivities (3, 6, and 9 dS.m-1) was used to assess the Carbon mineralization. The incubation was carried out under aerobic conditions and at a constant temperature of 28 °C during 70 days with moisture adjusted to 2/3 of the field capacity. No significant (P > 0.05) variation in the amount of CO2-C release from soil was observed until day 56 of the incubation, but it was significantly different due to the irrigation with salt solutions during the days: 70 (p ≤ 0.05). The results suggest that the rate of C-CO2 evolution decreased with the increase in water salinity compared to the control. Also this decrease of C-mineralization in the soils irrigated by the salts solutions of NaCl was the greatest compared to the other two salts (CaCl2, and MgCl2). These results suggest that C mineralization depended on the type of salts as well as the duration of incubation.

  8. Rutile solubility in NaF–NaCl–KCl-bearing aqueous fluids at 0.5–2.79GPa and 250–650°C

    DOE PAGES

    Tanis, Elizabeth A.; Simon, Adam; Zhang, Youxue; ...

    2016-01-14

    The complex nature of trace element mobility in subduction zone environments is thought to be primarily controlled by fluid-rock interactions, episodic behavior of fluids released, mineral assemblages, and element partitioning during phase transformations and mineral breakdown throughout the transition from hydrated basalt to blueschist to eclogite. Quantitative data that constrain the partitioning of trace elements between fluid(s) and mineral(s) are required in order to model trace element mobility during prograde and retrograde metamorphic fluid evolution in subduction environments. The stability of rutile has been proposed to control the mobility of HFSE during subduction, accounting for the observed depletion of Nbmore » and Ta in arc magmas. Recent experimental studies demonstrate that the solubility of rutile in aqueous fluids at temperatures >700 degrees C and pressures <2 GPa increases by several orders of magnitude relative to pure H2O as the concentrations of ligands (e.g., F and Cl) in the fluid increase. Considering that prograde devolatilization in arcs begins at similar to 300 degrees C, there is a need for quantitative constraints on rutile solubility and the partitioning of HFSE between rutile and aqueous fluid over a wider range of temperature and pressure than is currently available. In this study, new experimental data are presented that quantify the solubility of rutile in aqueous fluids from 0.5 to 2.79 GPa and 250 to 650 degrees C. Rutile solubility was determined by using synchrotron X-ray fluorescence to measure the concentration of Zr in an aqueous fluid saturated with a Zr-bearing rutile crystal within a hydrothermal diamond anvil cell. At the PT conditions of the experiments, published diffusion data indicate that Zr is effectively immobile (log D-Zr similar to 10(-25) m(2)/s at 650 degrees C and similar to 10(-30) m(2)/s at 250 degrees C) with diffusion length-scales of <0.2 mu m in rutile for our run durations (<10 h). Hence, the Zr

  9. Effects of curing conditions on the structure of sodium carboxymethyl starch/mineral matrix system: FT-IR investigation.

    PubMed

    Kaczmarska, Karolina; Grabowska, Beata; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-04-24

    Strength properties of the microwave cured molding sands containing binders in a form of the aqueous solution of sodium carboxymethyl starch (CMS-Na) are higher than the same molding composition cured by conventional heating. Finding the reason of this effect was the main purpose in this study. Structural changes caused by both physical curing methods of molding sands systems containing mineral matrix (silica sand) and polymer water-soluble binder (CMS-Na) were compared. It was shown, by means of the FT-IR spectroscopic studies, that the activation of the polar groups in the polymer macromolecules structure as well as silanol groups on the mineral matrix surfaces was occurred in the microwave radiation. Binding process in microwave-cured samples was an effect of formation the hydrogen bonds network between hydroxyl and/or carbonyl groups present in polymer and silanol groups present in mineral matrix. FT-IR studies of structural changes in conventional and microwave cured samples confirm that participation of hydrogen bonds is greater after microwave curing than conventional heating. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14C-tracer study.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2017-04-01

    Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A 14 C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Minerals

    MedlinePlus

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  12. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    NASA Astrophysics Data System (ADS)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel

  13. Mineral content as a basis for food selection by western lowland gorillas in a forest clearing.

    PubMed

    Magliocca, Florence; Gautier-Hion, Annie

    2002-06-01

    The forests in northwest Republic of Congo contain a number of herbaceous swamp clearings that provide foraging sites for lowland gorillas (G.g. gorilla). A 10-month study at the Maya Nord clearing (Parc National d'Odzala) showed that feeding activities occupied 72% of the time visiting gorillas spent on the clearing. They fed on four plant species: Enydra fluctuans (Asteraceae), Cyperus sp., Pycreus mundtii, and Rhynchospora corymbosa (Cyperaceae) among the 45 species recorded on the clearing. These clearing food species have higher mineral contents (especially Na and Ca) than the dominant Marantaceae species (Haumania liebrechtsiana) that constituted a staple food plant for gorillas in this forest. They also have higher potassium contents and contain less lignin than non-eaten clearing items/species. Finally, the most actively searched for clearing food (Enydra fluctuans) was characterized by the highest amount of Na and Ca. These results suggest that the mineral content (especially in Na, Ca, and/or K) could determine the feeding selectivity of gorillas at the clearing. They also tend to confirm that the amount of fiber plays a deterrent role in food selectivity, as has been found by many authors. The high density of gorillas in that region could result from the combination of the large areas of Marantaceae forests that provide abundant though monotonous food, and the number of clearings that provide sufficient mineral supplies. Clearings should thus be considered as key habitats for the conservation of gorillas. Copyright 2002 Wiley-Liss, Inc.

  14. Determination of platinum in mineral raw materials by switching chronoamperometry

    NASA Astrophysics Data System (ADS)

    Pakrieva, E.; Oskina, Y.; Ustinova, E.

    2014-08-01

    The technique of platinum (IV) determination in mineral raw materials with the application of switching chronoamperometry has been offered. The graphite electrode impregnated with polyethylene was used as the working electrode. The hydrolytic precipitation method with 3% NaOH solution has been developed to separate platinum from the sample matrix. The use of switching chronoamperometry applied to the assessment of the platinum content in geological objects has been demonstrated.

  15. Hydrothermal barite mineralization at Chenarvardeh deposit, Markazi Province, Iran: Evidences from REE geochemistry and fluid inclusions

    NASA Astrophysics Data System (ADS)

    Ehya, Farhad; Mazraei, Shaghayegh Moalaye

    2017-10-01

    Barite mineralization occurs at Chenarvardeh deposit as layers and lenses in Upper Eocene volcanic and pyroclastic rocks. The host rocks are intensely saussuritized in most places. Barite is accompanied by calcite, Mn-oxides, galena and malachite as subordinate minerals. The amount of Sr in barites is low and varies between 0.11 and 0.30 wt%. The concentration of Rb, Zr, Y, Ta and Hf is also low (<5 ppm) in barite samples. The amount of total REEs (∑REE) is low in barites, ranging from 7.51 to 30.50 ppm. Chondrite-normalized REE patterns reveal LREE enrichment with respect to HREE, and positive Ce anomalies. Fluid inclusions are common in barite samples, being dominantly from liquid-rich two phase (L + V) type. Salinity values in fluid inclusions range from 9.41 to 18.69 wt% NaCl equivalent with most frequent salinities falling in the range of 10-15 wt% NaCl equivalent. Homogenization temperatures (Th) range between 160 and 220 °C, being the 180-200 °C range as the most common Th interval. A combination of factors, including geologic setting, host rock, mineral assemblages, REE geochemistry and fluid inclusion data are consistent with a submarine volcanic hydrothermal model for barite formation at the Chenarvardeh deposit. Mineral-forming fluids originated from solutions related to submarine hydrothermal activities deposited barite on seafloor as they encountered sulfate-bearing seawater.

  16. Mineral contents of some plants used in Iran

    PubMed Central

    Rahmatollah, Rahimi; Mahbobeh, Rabani

    2010-01-01

    In this work, mineral contents of 4 plants used in Iran were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry. The concentrations were calculated on a dry weight basis. All materials contained high amounts of Na, Al, Ca, Fe, K, Mg, P, Zn, and I. On a moisture-free basis, the highest levels of Ca, P, and Mg were found in spinach to be 3200 mg/100 g, 2150 mg/100 g, and 460 mg/100 g, respectively. Bi, Cd, Li, Pb, and Se contents of condiments were found to be very low. The results were compared with those from the Spanish, Turkish, and Indian. This work attempts to contribute to knowledge of the nutritional properties of these plants. These results may be useful for the evaluation of dietary information and concluded that the green vegetables are the good sources of minerals. PMID:21808580

  17. Refinement of the evaluation of the role of CO2 in modifying estimates of the pressure of epithermal mineralization

    USGS Publications Warehouse

    Barton, P.B.; Chou, I.-Ming

    1993-01-01

    Pressure is the most important of the intensive parameters for relating epirthemal mineralization to the geologic setting. This paper describes the limitations on pressure (and therefore depth) of mineralization that may reasonably be derived from simple observations on the behaviour of fluid inclusions. It is based on the reasonable model that mineralization occurs from a hydrostatically pressured NaCl-CO2-H2O fluid, consistent with the probability that H2O and CO2 are the only gases contributing significantly to the total pressure. -from Authors

  18. Mineral Systems, Their Types, and Distribution in Nature: 2. Products of Contemporary Fumarole Activity at Tolbachik Volcano (Russia) and Vulcano (Italy)

    NASA Astrophysics Data System (ADS)

    Krivovichev, V. G.; Charykova, M. V.

    2017-12-01

    The number of mineral species in which a certain chemical element is species-defining (according to statistical data up to 2015) has been specified. Seventy chemical elements are species-defining for 5044 minerals. The following chemical elements lead in the composition of minerals (number of mineral species in parentheses): oxygen (4115), hydrogen (2800), silicon (1471), calcium (1167), sulfur (1056), aluminium (985), sodium (949), iron (945), copper (636), phosphorus (597), arsenic (594), and magnesium (571). The distribution of mineral species by various systems in the products of contemporary fumarole activity at two volcanoes, Tolbachik in Kamchatka, Russia, and Vulcano in Sicily, Italy, has been compared. These locations were also compared for the distribution of species-defining elements. Thus, it has been determined that in fumaroles of both volcanoes, Tl, S, Cl, F and Na are "excessive," present in minerals in elevated amounts, whereas H, Ca, Fe, and Mn are "deficient." The abundance of Cu, Se, V, Mg, Zn, As, and F in minerals at Tolbachik is higher than the global mean values of these elements in the Earth's crust, whereas the abundance is significantly lower at Vulcano. Sn, I, Br, K, Pb, Al, Fe, and Bi demonstrate the opposite behavior. Comparison of the Yadovitaya and Arsenatnaya fumaroles at the Tolbachik volcano showed that the products of the former are richer in H, Cl, Cu, S, K, O, Al, Fe, and Pb, and poorer in As, Ca, Mg, and Na as species-defining elements. In addition, V-and Mo-bearing minerals are found only at Yadovitaya, whereas minerals containing F, Ti, B, Te, and Zn are known only at Arsenatnaya.

  19. Proximate Composition, Amino Acid, Mineral, and Heavy Metal Content of Dried Laver

    PubMed Central

    Hwang, Eun-Sun; Ki, Kyung-Nam; Chung, Ha-Yull

    2013-01-01

    Laver, a red algae belonging to the genus Porphyra, is one of the most widely consumed edible seaweeds. The most popular commercial dried laver species, P. tenera and P. haitanensis, were collected from Korea and China, respectively, and evaluated for proximate composition, amino acids, minerals, trace heavy metals, and color. The moisture and ash contents of P. tenera and P. haitanensis ranged from 3.66~6.74% and 8.78~9.07%, respectively; crude lipid and protein contents were 1.96~2.25% and 32.16~36.88%, respectively. Dried lavers were found to be a good source of amino acids, such as asparagine, isoleucine, leucine, and taurine, and γ-aminobutyric acid. K, Ca, Mg, Na, P, I, Fe, and Se minerals were selected for analysis. A clear regional variation existed in the amino acid, mineral, and trace metal contents of lavers. Regular consumption of lavers may have heath benefits because they are relatively low in fat and high in protein, and contain functional amino acids and minerals. PMID:24471123

  20. Proximate composition, amino Acid, mineral, and heavy metal content of dried laver.

    PubMed

    Hwang, Eun-Sun; Ki, Kyung-Nam; Chung, Ha-Yull

    2013-06-01

    Laver, a red algae belonging to the genus Porphyra, is one of the most widely consumed edible seaweeds. The most popular commercial dried laver species, P. tenera and P. haitanensis, were collected from Korea and China, respectively, and evaluated for proximate composition, amino acids, minerals, trace heavy metals, and color. The moisture and ash contents of P. tenera and P. haitanensis ranged from 3.66~6.74% and 8.78~9.07%, respectively; crude lipid and protein contents were 1.96~2.25% and 32.16~36.88%, respectively. Dried lavers were found to be a good source of amino acids, such as asparagine, isoleucine, leucine, and taurine, and γ-aminobutyric acid. K, Ca, Mg, Na, P, I, Fe, and Se minerals were selected for analysis. A clear regional variation existed in the amino acid, mineral, and trace metal contents of lavers. Regular consumption of lavers may have heath benefits because they are relatively low in fat and high in protein, and contain functional amino acids and minerals.

  1. Fourier Transformed Infra-Red Imaging of Femoral Neck Bone: Reduced Heterogeneity of Mineral-to-Matrix and Carbonate-to-Phosphate and more Variable Crystallinity in Treatment-Naïve Fracture Cases compared to Fracture-Free Controls

    PubMed Central

    Gourion-Arsiquaud, Samuel; Lukashova, Lyudmilla; Power, Jon; Loveridge, Nigel; Reeve, Jonathan; Boskey, Adele L.

    2012-01-01

    After age 60 hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier Transform Infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age-matched fractured and non-fractured bones. Whole femoral neck cross sections, divided into quadrants along the neck’s axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro-computed Tomography. Although 3-dimensional micro-CT bone mineral densities were similar, the mineral-to-matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral-to-matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate-to-phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate-to-phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared to controls. While our treatment-naïve patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone’s toughness as a material. PMID:22865771

  2. Mineral Composition of Wild and Cultivated Blueberries.

    PubMed

    Dróżdż, Paulina; Šėžienė, Vaida; Pyrzynska, Krystyna

    2018-01-01

    The concentrations of 13 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn) were determined in several samples of native (wild) naturally growing and cultivated blueberry fruits. The total metal contents after mineralization were analyzed by inductively coupled plasma optical emission spectrometry. Reliability of the procedure was checked by the analysis of the certified reference materials Mixed Polish Herbs (INGT-MPH-2) and Leaves of Poplar (NCS DC 73350). In the fruits collected in the forest (wild blueberries), higher contents of Ca, Na, and Mg as well as Mn and Zn were observed. Similar levels of Cu, Cr, Fe, and Ni were detected in both wild-growing and cultivated plants. The significantly higher content of Fe and Cd in cultivated blueberries was connected with the content of these metals in soil samples collected from the same places. The metal extraction efficiency by hot water varied widely for the different blueberries (wild or cultivated) as well as their form (fresh or dried).

  3. Mineral profiling of ostrich (Struthio camelus) seminal plasma and its relationship with semen traits and collection day.

    PubMed

    Smith, A M J; Bonato, M; Dzama, K; Malecki, I A; Cloete, S W P

    2018-06-01

    Successful assisted reproduction techniques, with specific focus on in vitro semen storage for artificial insemination, are dependent on certain key elements which includes the biochemical profiling of semen. The objective of this study was to complete an ostrich seminal plasma (SP) evaluation by inductively coupled plasma mass spectrometry (ICP-MS) among seven males at different daily intervals (day 1, 3, 7, 11, 15, 19, 21, 23, 25, 26, 27, 28) for a period of 28 days during spring (August to September) for mineral profiling. The effect of collection day and male on sperm concentration, semen volume and seminal plasma volume, was explored as well as the relationships amongst these specific sperm traits and SP minerals. Variation amongst SP mineral concentrations, accounted for by the fixed effects of sperm concentration, semen volume, seminal plasma volume, collection day and male, ranged from 18% to 77%. Male had the largest effect on variation in SP minerals, namely: phosphorus (P), potassium (K), calcium (Ca), sodium (Na), boron (B), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), molybdenum (Mo), barium (Ba), arsenic (As) and selenium (Se). Sperm concentration instigated fluctuations of P, magnesium (Mg), B, zinc (Zn), Fe, aluminium (Al), Se, manganese (Mn) and lead (Pb). Semen volume had an effect on Na, K, B, Pb and Ba while seminal plasma volume only influenced variation in Na. There were fluctuations among collection days of specific micro minerals, Ni and Mo, with initial Ni concentrations being relatively greater and Mo at lesser concentrations. Semen volume, seminal plasma volume and sperm concentration varied amongst males. Sperm concentrations during the initial collection days, 1 and 3, were less than that for days 7 to 28. Significant variation of SP minerals and sperm characteristics among ejaculates and males suggest an association of these specific elements with sperm function and are, therefore, considered to be of potential importance to

  4. Mineral deficiency status of ranging zebu (Bos indicus) cattle around the Gilgel Gibe catchment, Ethiopia.

    PubMed

    Dermauw, Veronique; Yisehak, Kechero; Belay, Duguma; Van Hecke, Thomas; Du Laing, Gijs; Duchateau, Luc; Janssens, Geert P J

    2013-06-01

    Mineral deficiencies in cattle, widespread in East Africa, impair optimal health and production and consequently place a great burden on the farmers' income. Therefore, detection of shortages and imbalances of specific minerals is essential. Our objective was to evaluate the mineral status of grazing cattle around the Gilgel Gibe catchment in Ethiopia and associated factors. In study I, individual animal plasma and herd faecal Ca, P, Mg, Na, K, S, Fe, Zn, Mn and Cu concentrations were determined in adult zebu cattle (Bos indicus; n=90) grazing at three altitudes around the catchment, whilst recording body condition score and sex. In study II, liver samples of adult male zebu cattle (n=53) were analysed for Cu, Zn, Fe, Se and Mo concentrations and inspected for parasitic infections. Plasma and liver analyses revealed a Cu deficiency problem in the area, since 68 and 47 % of cattle, respectively, were Cu deprived according to diagnostic criteria for Bos taurus cattle. High hepatic Mo concentrations in 17 % of cases might reflect excessive dietary Mo intake. Liver Se and plasma Na concentrations were too low in 92 and 80 % of cattle. Plasma Mn concentrations were largely below the detection limit. Plasma Cu as well as Ca concentrations were lower in the lowest altitude compared to the highest altitude group (P<0.05), whereas lean to medium cattle had lower plasma Cu concentrations (P<0.05). No differences in hepatic mineral concentrations were detected between cattle with different types of parasitic infection. In conclusion, bovine mineral deficiencies were present in the Gilgel Gibe area and were associated with grazing altitude and body condition score.

  5. The Effect of Smoking on Mineral and Protein Compositionof Saliva.

    PubMed

    Fattahi Bafghi, Ali; Goljanian Tabrizi, Ali; Bakhshayi, Peyman

    2015-07-01

    To assess the salivary composition of proteins and minerals in smokers compared with non-smokers. In this study we compared the total protein and Ca, Na, K, Mg, Pb of whole saliva in two groups of men (28 smokers and 31nonsmokers) aged between 29-41years. Fifty-nine participants were evaluated. The mean age was 33.14±5.32 years among smokers and 32.15±5.12 years among non-smokers (P>0.05). The mean concentration of total protein, Ca, Pb, and Zn of whole saliva in smokers was lower than that in non-smokers, but the difference was not statistically significant (P>0.05). The mean concentration of Na, K, Mg in whole saliva was not significantly different between smokers and non-smokers (P>0.05). We specified that smoking reduced the value of total protein, Ca and Pb of saliva, however it did not have an impact on Na, K, and Mg of saliva.

  6. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the Wilderness...

  7. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the Wilderness...

  8. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the Wilderness...

  9. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the Wilderness...

  10. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the Wilderness...

  11. Effects of dietary chromium supplementation on muscle and bone mineral interaction in broiler chicken.

    PubMed

    Saeed, Abdullah A; Sandhu, Mansur A; Khilji, Muhammad S; Yousaf, Muhammad S; Rehman, Habib U; Tanvir, Zafar I; Ahmad, Tanveer

    2017-07-01

    The study was conducted to ascertain the effects of dietary chromium chloride (CrCl 3 ·6H 2 O) supplementation on mineral interaction in blood serum, leg muscles and bones of broilers at 35 th day of age. For this purpose, ninety male broiler chicks were divided into three groups. One served as control (group I) while, the other two groups were supplemented with CrCl 3 (group II-12.5mg/Kg feed; group III-25mg/Kg feed) from 12 to 28days of age. In serum, Cr concentration remained non-significant however, Zn, and K concentrations decreased (P<0.05) with both levels of Cr-supplementation. Furthermore, in muscles Cr, Cu, Ca and Na levels remained non-significant but concentrations of Zn and K decreased (P<0.05) with feed Cr enrichment. Chromium had a substantial effect on femur and fibula Zn retention with 25mg/Kg feed supplementation while, Cr deposition decreased (P<0.05) in fibula. Femur Ca (P<0.002), Na (P<0.001) and K (P<0.05) retention was inversely proportional to both Cr concentrations in feed. In tibia, Cu and Na concentration decreased (P<0.002) with high dietary Cr supplementation. Fibular Ca and Na concentrations remained significantly (P<0.001) lower in Cr supplemented groups. Bone robusticity index was non-significant but ash to weight ratio of femur, tibia and fibula decreased (P<0.05) in group III. Chromium supplementation has a major effect on serum or muscle Zn and K deposition while bone mineral interaction shows a major thrust on Zn, Ca and Na levels. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. [Analysis of mineral elements of sunflower (Helianthus annuus L.) grown on saline land in Hetao Irrigation District by ICP-AES].

    PubMed

    Tong, Wen-Jie; Chen, Fu; Wen, Xin-Ya

    2014-01-01

    The absorption and accumulation of ten mineral elements in four kinds of organs (root, steam, leaf and flower disc) in Helianthus annuus L. plants cultured in Hetao Irrigation District under different level of salinity stress were determined by ICP-AES with wet digestion (HNO3 + HClO4). The results showed that: (1) The contents of Fe, Mn, Zn, Ca, and Na were highest in roots, so was K in stems, B and Mg in leaves and P in flower discs, while no significant difference was detected in the content of Cu among these organs; (2) The cumulants of Ca, Mg, P, Cu, B and Zn were highest in flower discs, so were Na, Fe and Mn in roots and K in stems; (3) In sunflower plants, the proportion of mineral element cumulant for K : Ca : Mg : P : Na was 16.71 : 5.23 : 3.86 : 1.23 : 1.00, and for Zn : Fe : B : Mn: Cu was 56.28 : 27.75 : 1.93 : 1.17 : 1.00, respectively; (4) The effect of salinity stress on absorption of mineral elements differed according to the kind of organ and element, root was the most sensitive to soil salt content, followed by stem and leaf, and the effect on flower disc seemed complex.

  13. Mineral deposit densities for estimating mineral resources

    USGS Publications Warehouse

    Singer, Donald A.

    2008-01-01

    Estimates of numbers of mineral deposits are fundamental to assessing undiscovered mineral resources. Just as frequencies of grades and tonnages of well-explored deposits can be used to represent the grades and tonnages of undiscovered deposits, the density of deposits (deposits/area) in well-explored control areas can serve to represent the number of deposits. Empirical evidence presented here indicates that the processes affecting the number and quantity of resources in geological settings are very general across many types of mineral deposits. For podiform chromite, porphyry copper, and volcanogenic massive sulfide deposit types, the size of tract that geologically could contain the deposits is an excellent predictor of the total number of deposits. The number of mineral deposits is also proportional to the type’s size. The total amount of mineralized rock is also proportional to size of the permissive area and the median deposit type’s size. Regressions using these variables provide a means to estimate the density of deposits and the total amount of mineralization. These powerful estimators are based on analysis of ten different types of mineral deposits (Climax Mo, Cuban Mn, Cyprus massive sulfide, Franciscan Mn, kuroko massive sulfide, low-sulfide quartz-Au vein, placer Au, podiform Cr, porphyry Cu, and W vein) from 108 permissive control tracts around the world therefore generalizing across deposit types. Despite the diverse and complex geological settings of deposit types studied here, the relationships observed indicate universal controls on the accumulation and preservation of mineral resources that operate across all scales. The strength of the relationships (R 2=0.91 for density and 0.95 for mineralized rock) argues for their broad use. Deposit densities can now be used to provide a guideline for expert judgment or used directly for estimating the number of most kinds of mineral deposits.

  14. Effects of chelating agents on the mineral content of root canal dentin.

    PubMed

    Cobankara, Funda Kont; Erdogan, Hilal; Hamurcu, Mehmet

    2011-12-01

    The objective of this in vitro study was to assess the effect of several chelating agents on the mineral content of root dentin. Extracted human mandibular incisor roots were prepared and divided into groups according to the following irrigation protocols: 1) 17% ethylenediaminetetraacetic acid (EDTA); 2) 10% citric acid solution; 3) 18% etidronate; 4) 2.25% peracetic acid; 5) and deionized water (control). Dentin chips were obtained (Gates-Glidden nos. 3, 4, and 5). The levels of different minerals were analyzed with the use of inductively coupled plasma-atomic emission spectrometry (ICP-AES). 1) Peracetic acid significantly decreased P, K, Mg, Na, and S levels compared with the other groups (P < .05). 2) S decreased by different levels in all of the chelating solutions (P < .05), and the greatest decrease was observed in peracetic acid. 3) Ca levels significantly decreased in peracetic acid, citric acid, and EDTA (P < .05). 4) Mn levels significantly decreased in the citric acid and peracetic acid groups (P < .05). 5) Na and Zn levels significantly decreased in the peracetic acid, citric acid, and etidronate groups (P < .05). The chelation agents can create different effects on mineral contents of root dentin, so it is important to know what effects each solution will have on root dentin before their clinical use. In addition, according to the results of this in vitro study, it might be recommended that peracetic acid, in particular, should be used with caution. Copyright © 2011 Mosby, Inc. All rights reserved.

  15. Effect of excess dietary salt on calcium metabolism and bone mineral in a spaceflight rat model

    NASA Technical Reports Server (NTRS)

    Navidi, Meena; Wolinsky, Ira; Fung, Paul; Arnaud, Sara B.

    1995-01-01

    High levels of salt promote urinary calcium (UCa) loss and have the potential to cause bone mineral deficits if intestinal Ca absorption does not compensate for these losses. To determine the effect of excess dietary salt on the osteopenia that follows skeletal unloading, we used a spaceflight model that unloads the hindlimbs of 200-g rats by tail suspension (S). Rats were studied for 2 wk on diets containing high salt (4 and 8%) and normal calcium (0.45%) and for 4 wk on diets containing 8% salt (HiNa) and 0.2% Ca (LoCa). Final body weights were 9-11% lower in S than in control rats (C) in both experiments, reflecting lower growth rates in S than in C during pair feeding. UCa represented 12% of dietary Ca on HiNA diets and was twofold higher in S than in C transiently during unloading. Net intestinal Ca absorption was consistently 11-18% lower in S than in C. Serum 1,25-dihydroxyvitamin D was unaffected by either LoCa or HiNa diets in S but was increased by LoCa and HiNa diets in C. Despite depressed intestinal Ca absoption in S and a sluggish response of the Ca endocrine system to HiNa diets, UCa loss did not appear to affect the osteopenia induced by unloading. Although any deficit in bone mineral content from HiNa diets may have been too small to detect or the duration of the study too short to manifest, there were clear differences in Ca metabolism from control levels in the response of the spaceflight model to HiNa diets, indicated by depression of intestinal Ca absorption and its regulatory hormone.

  16. Nb sbnd Th sbnd Zr mineralization in microgranite—microsyenite at Jabal Tawlah, Midyan region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Drysdall, Alan R.; Douch, Colin J.

    A composite sill of mineralized and highly radioactive microgranite—microsyenite caps Jabal Tawlah, a low ridge in the extreme NW of the Arabian Shield. The leucocratic composition, distribution of quartz and low K 2O:Na 2O ratios indicate that deuteric processes, including separation of a silica-rich phase and albitization, played a major role. Mineralization is in the form of a disseminated enrichment in Nb, Ta, Sn, Th, Y, heavy REE and Zr. Four Y- and heavy REE-bearing minerals, gagarinite [NaCaY(F,Cl) 6], fergusonite [(Y,Er,Ce,Fe)(Nb,Ta,Ti)O 4], xenotime and yttrian fluorite, as well as zircon, columbite, thorite, sphalerite, galena, pyrite, ilmenite, hematite, limonite, magnetite, goethite, siderite, possible chrysocolla and an MnO-bearing mineral have been identified. The geochemical signature of the mineralization is similar to that which distinguishes alkali granites from other granitic rocks. Jabal az Zuhd, a major plutonic complex consisting largely of alkali granite, crops out only 5 km NW of Jabal Tawlah. However, there is no other evidence of possible derivation from a parental alkali granite magma. Reserves indicated by outcrop dimensions and three drill-hole intersections are 6.4 million tonnes to an average depth of 65 m below wadi level, grading 0.34% Nb, 0.52% Y, 0.47% Zn and approximately 4% zircon (plus 175 ppm Ta, 380 ppm Sn, 700 ppm Th and heavy REE).

  17. Mineral content of the honey produced in Zulia state, Venezuela.

    PubMed

    Sulbarán de Ferrer, Betzabé; Ojeda de Rodríguez, Graciela; Peña, Jorge; Martínez, Janeth; Morán, María

    2004-09-01

    The mineral content of the honey produced in five zones of the Zulia state, Venezuela, during dry and rainy seasons was determined. The analyzed elements were: sodium, potassium (by emission spectroscopy), calcium, magnesium, copper, iron, manganese (by atomic absorption spectroscopy), phosphorus (phosphate ions, by colorimetric method), and ash content of raw honey samples directly collected from different beekeepers. The mean values for Na, K, Ca, Mg, Cu, Fe, Mn, and P were 353+84; 1774+138; 237+66; 52+24; 0.76+0.43; 13.5+10.23; 0.92+0.42 and 1642+323 mg/kg respectively. The mean ash content was 0.431+0.15%. Potassium was the most abundant of the elements determined. This results confirm that Zulian honey can be considered a good source of minerals.

  18. Chemical composition and evolution of tourmaline-supergroup minerals from the Sb hydrothermal veins in Rožňava area, Western Carpathians, Slovakia

    NASA Astrophysics Data System (ADS)

    Bačík, Peter; Dikej, Jakub; Fridrichová, Jana; Miglierini, Marcel; Števko, Martin

    2017-09-01

    Tourmaline-supergroup minerals are common gangue minerals in Sb-hydrothermal veins on Betliar - Straková, Čučma - Gabriela and Rožňava - Peter-Pavol vein deposits in the Rožňava area, Slovakia. Tourmaline-supergroup minerals form relatively large prismatic to radial aggregates of parallel black to greyish-black crystals. Tourmaline-supergroup minerals from Betliar - Straková and Rožňava - Peter-Pavol are almost homogeneous with intermediate schorl-dravite composition. Čučma - Gabriela tourmaline have distinct zoning with massive core of the schorlitic-to-feruvitic shifting to schorlitic-to-dravitic composition, and dravitic to magnesio-foititic rim. The tourmaline composition is influenced by two main substitutions, namely Ca(Mg,Fe)Na-1Al-1 and X □AlNa-1(Mg,Fe)-1. Betliar - Straková and Rožňava - Peter-Pavol tourmaline-supergroup minerals exhibit only small extents of the X □AlNa-1(Mg,Fe)-1 substitution. This substitution shifts the composition to magnesio-foitite in Čučma - Gabriela tourmaline. The decrease of Al in the core of Čučma - Gabriela tourmaline crystals is caused by extensive Ca(Mg,Fe)Na-1Al-1 substitution. The unit-cell dimensions of all investigated tourmaline-supergroup minerals indicate an octahedral disorder with the Z (Fe3++Mg) proportion calculated from empirical equations varying between 0.85 and 0.87 apfu (atoms per formula unit). Based on Mössbauer spectra, the Z Fe3+ content varied between 0.25 apfu in Betliar - Straková tourmaline and 0.45 apfu in Čučma - Gabriela sample. Based on Fe/(Fe + Mg) ratio, Betliar - Straková tourmaline is slightly enriched in Fe compared to Rožňava - Peter-Pavol, suggesting the impact of the host-rock composition; first are grown in Fe-richer acidic metarhyolitic rocks, latter in metapelites. In Čučma - Gabriela, the variations in Fe/(Fe + Mg) are very likely reflecting the change in fluid composition. Magnesio-foitite is the product of second-stage crystallization forming rims and

  19. High Salt Diets, Bone Strength and Mineral Content of Mature Femur After Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.

    1998-01-01

    It is known that high salt diets increase urinary calcium (Ca) loss, but it is not known whether this effect weakens bone during space flight. The Bone Hormone Lab has studied the effect of high salt diets on Ca balance and whole body Ca in a space flight model (2,8). Neither the strength nor mineral content of the femurs from these studies has been evaluated. The purpose of this study was to determine the effect of high salt diets (HiNa) and skeletal unloading on femoral bone strength and bone mineral content (BMC) in mature rats.

  20. Synthesis and Characterization of Chukanovite, Fe2CO3(OH)2(s): An Elusive Ferrous Iron Carbonate Hydroxide Mineral

    NASA Astrophysics Data System (ADS)

    Jang, J. J. H.; Kim, S.; Burton, H.; Knox, J.; Marrs, C.; Sisk-Scott, C.

    2017-12-01

    The long-term effectiveness of an underground waste repository relies on understanding the chemical reaction products between intrusive brine and the reactive media in the repository. One such component of the stored media, iron, forms mineral precipitates in brine through anoxic corrosion. Chukanovite, Fe2CO3(OH)2(s), could be one of the precipitates and not much is known regarding its formation and thermodynamic stability. Thus, we have investigated eight mixtures of FeCl2 and NaHCO3 with NaOH for the synthesis of chukanovite in an anoxic glovebox. X-ray diffraction (XRD) scans of ten-month aged samples showed the paragenesis of three ferrous iron minerals in all tested conditions; siderite (FeCO3(s)), ferrous iron hydroxide (Fe(OH)2(s)), and chukanovite. Chukanovite was present alongside the two other minerals in between the pH values of 6 and 11. Comparison of relative intensities of major XRD peak heights of three minerals illustrated that the highest phase purity of chukanovite was achieved when the solution pH was approximately 9. XRD and solubility analysis will be performed periodically to determine when the experiments in the eight conditions reach steady state. Solid samples will be further characterized using Mossbauer and Raman spectroscopy.

  1. Campo de velocidade peculiar na teoria linear

    NASA Astrophysics Data System (ADS)

    Pires, N.

    2003-08-01

    Aglomerados e superaglomerados de galáxias são responsáveis pela chamada velocidade peculiar (movimentos relativos à expansão pura do universo) das galáxias. A amplitude destas perturbações depende da densidade de matéria do universo e do contraste de densidade no interior do volume onde está localizada a galáxia. Em 1980, Peebles introduziu o fator "f", que relaciona a amplitude das perturbações da velocidade com o campo gravitacional peculiar, no contexto da teoria linear. No presente trabalho obtemos uma solução geral analítica para o fator "f" de Peebles do campo de velocidades peculiares, em termos de funções hipergeométricas, válida para qualquer geometria do universo. Como um teste de nossa solução, os resultados encontrados originalmente por Peebles em 1980 e os resultados mais gerais encontrados por O. Lahav e colaboradores em 1991, são reobtidos.

  2. Tetragonal Almandine, (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12, a New High-Pressure Mineral from the Shergotty Impact on Mars: an Integrated FESEM-EPMA-Synchrotron Diffraction Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.

    2016-12-01

    The combination of FESEM-EDS-EBSD, EPMA, and synchrotron microdiffraction is developing into a powerful tool for identification of micron-scale minerals in rocks such as high-pressure phases in shocked meteorites. During a nanomineralogy investigation of the Shergotty meteorite using this approach, we have identified a new shock-induced high-pressure silicate, majoritic almandine with a tetragonal I41/a structure, in an impact melt pocket. The Shergotty meteorite, which fell in the Gaya district, Bihar, India in 1865, is a Martian basaltic shergottite with shock features. Tetragonal almandine in Shergotty occurs as aggregates of subhedral crystals, 0.8 - 2.5 µm in diameter, along with stishovite in the central region of a shock melt pocket, showing an empirical formula of (Fe1.16Ca0.75Mg0.61Na0.42Mn0.03K0.01)(Al1.16Si0.63Mg0.19Ti0.02)Si3O12. Its general formula is (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12. EBSD indicated this phase has a garnet-related structure. Synchrotron X-ray diffraction revealed that this garnet has actually a tetragonal structure (I41/a) with unit cell dimensions: a = 11.585(9) Å, c = 11.63(4) Å, V = 1561(7) Å3, and Z = 8. Tetragonal almandine is the polymorph of cubic almandine, a new high-pressure garnet mineral, formed by shock metamorphism via the Shergotty impact event on Mars. It apparently crystallized from Fe-rich shock-induced melt under high-pressure and high-temperature conditions.

  3. Esperanzaite, NaCa2Al2(As5+O4)2F4(OH)*2H2O, a new mineral species from the La Esperanza mine, Mexico: descriptive mineralogy and atomic arrangement

    USGS Publications Warehouse

    Foord, E.E.; Hughes, J.M.; Cureton, F.; Maxwell, C.H.; Falster, A.U.; Sommer, A.J.; Hlava, P.F.

    1999-01-01

    Esperanzaite, ideally NaCa2Al2(As5+O4)2F4(OH)??2H2O, Z = 2, is a new mineral species from the La Esperanza mine, Durango State, Mexico. The mineral occurs as blue-green botryoidal crystalline masses on rhyolite, with separate spheres up to 1.5 mm in diameter. The Mohs hardness is 4 1/2 , and the specific gravity, 3.24 (obs.) and 3.36(3) (calc.). Optical properties were measured in 589 nm light. Esperanzaite is biaxial (-), X = Y = Z = colorless, ?? 1.580(1), ?? 1.588(1), and ?? 1.593(1); 2V(obs) is 74(1)??and 2V(calc) is 76.3??. The dispersion is medium, r < v, and the optic axes are oriented according to a ?? Z = +50.5??, b = Y, c ?? X = +35??. The strongest five X-ray-diffraction maxima in the powder pattern [d in A??(I)(hkl)] are: 2.966(100)(131, 311, 031), 3.527(90)(220), 2.700(90)(221,002,040), 5.364(80)(001,020) and 4.796(80)(011). Esperanzaite is monoclinic, a 9.687(5), b 10.7379(6), c 5.5523(7) A??, ?? 105.32(1)??, space group P21/m. The atomic arrangement of esperanzaite was solved by direct methods and Fourier analysis (R = 0.032). The Fundamental Building Block (FBB) is formed of [001] stacks of heteropolyhedral tetramers; the tetramers are formed of two arsenate tetrahedra and two Al octahedra, corner-linked in four-member rings. The FBBs are linked by irregular Na??5 and Ca??8 polyhedra.

  4. Mineral Dissolution and Secondary Precipitation on Quartz Sand in Simulated Hanford Tank Solutions Affecting Subsurface Porosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guohui; Um, Wooyong

    2012-11-23

    Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energy’s Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89°C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineralmore » phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.« less

  5. The mineral economy of Brazil--Economia mineral do Brasil

    USGS Publications Warehouse

    Gurmendi, Alfredo C.; Barboza, Frederico Lopes; Thorman, Charles H.

    1999-01-01

    This study depicts the Brazilian government structure, mineral legislation and investment policy, taxation, foreign investment policies, environmental laws and regulations, and conditions in which the mineral industry operates. The report underlines Brazil's large and diversified mineral endowment. A total of 37 mineral commodities, or groups of closely related commodities, is discussed. An overview of the geologic setting of the major mineral deposits is presented. This report is presented in English and Portuguese in pdf format.

  6. Poliovirus adsorption by 34 minerals and soils.

    PubMed

    Moore, R S; Taylor, D H; Sturman, L S; Reddy, M M; Fuhs, G W

    1981-12-01

    The adsorption of radiolabeled infectious poliovirus type 2 by 34 well-defined soils and mineral substrates was analyzed in a synthetic freshwater medium containing 1 mM CaCl(2) and 1.25 mM NaHCO(3) at pH 7. In a model system, adsorption of poliovirus by Ottawa sand was rapid and reached equilibrium within 1 h at 4 degrees C. Near saturation, the adsorption could be described by the Langmuir equation; the apparent surface saturation was 2.5 x 10(6) plaque-forming units of poliovirus per mg of Ottawa sand. At low surface coverage, adsorption was described by the Freundlich equation. The soils and minerals used ranged from acidic to basic and from high in organic content to organic free. The available negative surface charge on each substrate was measured by the adsorption of a cationic polyelectrolyte, polydiallyldimethylammonium chloride. Most of the substrates adsorbed more than 95% of the virus. In general, soils, in comparison with minerals, were weak adsorbents. Among the soils, muck and Genesee silt loam were the poorest adsorbents; among the minerals, montmorillonite, glauconite, and bituminous shale were the least effective. The most effective adsorbents were magnetite sand and hematite, which are predominantly oxides of iron. Correlation coefficients for substrate properties and virus adsorption revealed that the elemental composition of the adsorbents had little effect on poliovirus uptake. Substrate surface area and pH, by themselves, were not significantly correlated with poliovirus uptake. A strong negative correlation was found between poliovirus adsorption and both the contents of organic matter and the available negative surface charge on the substrates as determined by their capacities for adsorbing the cationic polyelectrolyte, polydiallyldimethylammonium chloride.

  7. Hepatic minerals of white-tailed and mule deer in the southern Black Hills, South Dakota

    USGS Publications Warehouse

    Zimmerman, T.J.; Jenks, J.A.; Leslie, David M.; Neiger, R.D.

    2008-01-01

    Because there is a paucity of information on the mineral requirements of free-ranging deer, data are needed from clinically healthy deer to provide a basis for the diagnosis of mineral deficiencies. To our knowledge, no reports are available on baseline hepatic mineral concentrations from sympatric white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) using different habitats in the Northern Great Plains. We assessed variation in hepatic minerals of female white-tailed deer (n=42) and mule deer (n=41). Deer were collected in February and August 2002 and 2003 from study areas in Custer and Pennington Counties, South Dakota, in and adjacent to a wildfire burn. Hepatic samples were tested for levels (parts per million; ppm) of aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), boron (B), cadmium (Cd), calcium (Ca), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), phosphorus (P), potassium (K), selenium (Se), sodium (Na), sulfur (S), thalium (T1), and zinc (Zn). We predicted that variability in element concentrations would occur between burned and unburned habitat due to changes in plant communities and thereby forage availability. We determined that Zn, Cu, and Ba values differed (P???0.05) between habitats. Because of the nutritional demands of gestation and lactation, we hypothesized that elemental concentrations would vary depending on reproductive status; Cd, Cu, Ca, P, Mn, Mo, Na, and Zn values differed (P???0.05) by reproductive status. We also hypothesized that, due to variation in feeding strategies and morphology between deer species, hepatic elemental concentrations would reflect dietary differences; Ca, Cu, K, Co, Mo, Se, and Zn differed (P???0.05) between species. Further research is needed to determine causes of variation in hepatic mineral levels due to habitat, reproductive status, and species. ?? Wildlife Disease Association 2008.

  8. Biosedimentary and geochemical constraints on the precipitation of mineral crusts in shallow sulphate lakes

    NASA Astrophysics Data System (ADS)

    Cabestrero, Óscar; del Buey, Pablo; Sanz-Montero, M. Esther

    2018-04-01

    Seasonal desiccation of Mg2+-(Na+)-(Ca2+)-SO42--(Cl-) saline lakes in La Mancha (Central Spain) that host microbial mats led to the precipitation of hydrated Na-Mg sulphates and gypsum. Sulphates precipitated in the submerged conditions form extensive biolaminites, whilst in marginal areas they produce thin crusts. Sedimentological, mineralogical, petrographic and high resolution textural studies reveal that the crusts were formed within the benthic microbial mats that thrive at salinities ranging from 160 to 340 g·L-1. The minerals of the crusts are primary bloedite (Na2Mg(SO4)2·4H2O), epsomite (MgSO4·7H2O), gypsum (CaSO4·2H2O) and mirabilite (Na2SO4·10H2O), as well as secondary hexahydrite (MgSO4·6H2O) and thenardite (Na2SO4). Primary bloedite crystals, which form the framework of surficial and submerged crusts are seen to nucleate subaqueously and grow incorporatively within the matgrounds. Displacive and incorporative epsomite grows on previous bloedite crystals and also on the ground. Mirabilite is precipitated rapidly at the brine-air interface over bloedite and epsomite. Hexahydrite and thenardite are formed due to dehydration of epsomite and mirabilite, respectively. Hydrochemical modeling with PHREEQC indicated that evaporitic biolaminites are forming from brines undersaturated with respect to bloedite, epsomite and mirabilite, which suggests that the microorganisms contribute to the heterogeneous nucleation of the sulphates in the microbial mats. Unlike carbonates, the influence of microbes on the growth and morphology of complicated double salts such as bloedite has not been documented previously and provides a new perspective on the formation of hydrated sulphate minerals that are common on Earth as well as other planets.

  9. Eventos de Desconexao na Cauda de Plasma do Cometa P/Halley

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; Fahr, H. J.

    2001-08-01

    Observacoes cometárias e de vento solar sao comparadas com o propósito de determinar-se as condicoes do vento solar associadas aos eventos de desconexao (DEs) observados em caudas de plasma cometárias. Os dados cometários sao provenientes do The International Halley Watch Atlas of Large-Scale Phenomena. A análise visual sistemática das imagens do atlas revelou, entre outras estruturas morfológicas, 47 DEs ao longo da cauda de plasma do P/Halley. Estes 47 DEs registrados em 47 imagens distintas permitiram a descoberta de 19 origens de DEs, ou seja, o tempo em que as desconexoes iniciaram foi calculado. Os dados do vento solar sao provenientes de medidas feitas in situ pela sonda espacial IMP-8, as quais foram usadas para elaborar a variacao da velocidade do vento solar, densidade e pressao dinâmica durante o intervalo analisado. O presente trabalho compara as atuais teorias conflitantes, baseadas nos mecanismos de formacao, com o intuito de explicar o fenômeno cíclico dos DEs, ou seja, os efeitos de producao iônica, os efeitos de pressao e os efeitos de reconexao magnética sao analisados. Para cada uma das 19 origens de DEs comparou-se a densidade com a respectiva velocidade do vento solar com o intuito de determinar-se uma possível correlacao entre estas origens e os efeitos de pressao dinâmica. Quando da ocorrência de 6 origens de DEs o IMP-8 nao realizou medidas, nos outros 13 casos 10 origens (77%) mostraram uma anticorrelacao entre velocidade e densidade e apenas 3 (23%) revelaram uma tendência similar entre velocidade e densidade. Portanto, a análise inicial demonstra uma fraca correlacao entre as origens dos DEs e os efeitos de pressao.

  10. Late-stage magmatic to deuteric/metasomatic accessory minerals from the Cerro Boggiani agpaitic complex (Alto Paraguay Alkaline Province)

    NASA Astrophysics Data System (ADS)

    Comin-Chiaramonti, Piero; Renzulli, Alberto; Ridolfi, Filippo; Enrich, Gaston E. R.; Gomes, Celso B.; De Min, Angelo; Azzone, Rogério G.; Ruberti, Excelso

    2016-11-01

    This work describes rare accessory minerals in volcanic and subvolcanic silica-undersaturated peralkaline and agpaitic rocks from the Permo-Triassic Cerro Boggiani complex (Eastern Paraguay) in the Alto Paraguay Alkaline Province. These accessory phases consist of various minerals including Th-U oxides/silicates, Nb-oxide, REE-Sr-Ba bearing carbonates-fluorcarbonates-phosphates-silicates and Zr-Na rich silicates. They form a late-stage magmatic to deuteric/metasomatic assemblage in agpaitic nepheline syenites and phonolite dykes/lava flows made of sodalite, analcime, albite, fluorite, calcite, ilmenite-pyrophanite, titanite and zircon. It is inferred that carbonatitic fluids rich in F, Na and REE percolated into the subvolcanic system and metasomatically interacted with the Cerro Boggiani peralkaline and agpaitic silicate melts at the thermal boundary layers of the magma chamber, during and shortly after their late-stage magmatic crystallization and hydrothermal deuteric alteration.

  11. Mineral induced mechanochemical degradation: the imazaquin case.

    PubMed

    Nasser, Ahmed; Buchanovsky, Nadia; Gerstl, Zev; Mingelgrin, Uri

    2009-03-01

    The potential role of mechanochemical processes in enhancing degradation of imazaquin by soil components is demonstrated. The investigated components include montmorillonite saturated with Na(+), Ca(2+), Cu(2+)and Al(3+), Agsorb (a commercial clay mix), birnessite and hematite. The mechanical force applied was manual grinding of mixtures of imazaquin and the minerals, using mortar and pestle. The degradation rates of imazaquin in these mixtures were examined as a function of the following parameters: time of grinding, herbicide load (3.9, 8.9, 16.7 and 26.6 mg imazaquin per g mineral), temperature (10, 25, 40 and 70 degrees C), acidic/basic conditions, and dry or wet grinding. Dry grinding of imazaquin for 5 min with Al-montmorillonite or with hematite resulted in 56% and 71% degradation of the imazaquin, respectively. Wet grinding slightly reduced the degradation rate with hematite and entirely cancelled the enhancing effect of grinding with Al-montmorillonite. Wet grinding in the presence of the transition metals: Ni(2+), Cu(2+), Fe(3+) added as chlorides was carried out. Addition of Cu(2+) to Na-montmorillonite loaded with imazaquin was the most effective treatment in degrading imazaquin (more than 90% of the imazaquin degraded after 5 min of grinding). In this treatment, Cu-montmorillonite formation during the grinding process was confirmed by XRD and accordingly, grinding with Cu-montmorillonite gave similar degradation values. LC-MS analysis revealed that the mechanochemical transformation of imazaquin resulted in the formation of a dimer and several breakdown products. The reported results demonstrate once again that mechanochemical procedures offer a remediation avenue applicable to soils polluted with organic contaminants.

  12. Tracking hydrothermal alteration and mineralization in rock-forming and accessory minerals from the Lyon Mountain Granite and related iron oxide apatite (IOA) ores from the Adirondack Mountains, New York State

    NASA Astrophysics Data System (ADS)

    Buchanan, A.; Hanchar, J. M.; Steele-MacInnis, M. J.; Crowley, J. L.; Valley, P. M.; Fisher, C. M.; Fedo, C.; Piccoli, P. M.; Fournelle, J.

    2012-12-01

    The Lyon Mountain granite (LMG) is located in the northeastern Adirondack Mountains in New York State and hosts several low-titanium iron oxide apatite (IOA) ore deposits. The ores are predominately hosted by perthite bearing granite, which has been extensively altered to albite and microcline granite by Na and K metasomatism. This alteration results in several distinct groups of rocks that are dominated by either K or Na addition and a group composed of mixed Na and K addition. The different groups of altered perthite also lie on a trend suggestive of addition of Fe to each, consistent with a secondary mineralization origin. Previous work showed that the host rocks of the IOA ores have zircon with ~1150 Ma cores and 1060-1050 Ma rims and whole grains. This study aims to further constrain the timing of LMG emplacement, subsequent hydrothermal alteration, and Fe mineralization through geochemical analysis of the major, minor, and accessory phases and geochronology of accessory phases. SIMS analyses of zircon from several of the IOA ores reveal at least two periods of growth after LMG magmatism, at 1039 +/- 4.4 Ma and 1016 +/- 7 Ma to 1000 +/- 9 Ma. In situ EMPA and LA-ICPMS trace element analyses of the zircon rims and cores reveal that in two samples the zircon rims are enriched in rare earth elements (REE) compared to their cores, potentially pointing to a hydrothermal origin. Apatite has unusually high REE and Y concentrations (some total REE2O3 > 20 wt. % oxide and up to 8 wt. % oxide Y2O3), as does titanite, which allowed for the in situ analysis of Sm-Nd in apatite and titanite by LA-MC-ICP-MS. Initial Nd isotopic composition of both ore and host rock apatite and host rock titanite are consistent with published Adirondack initial Nd whole rock data, suggesting a local source for REE in these ores. EMPA and LA-ICPMS trace-element analyses of the major rock-forming minerals indicate that the feldspar have undergone Na-metasomatism and are depleted in REEs

  13. The composition of coexisting jarosite-group minerals and water from the Richmond mine, Iron Mountain, California

    USGS Publications Warehouse

    Jamieson, Heather E.; Robinson, Clare; Alpers, Charles N.; Nordstrom, D. Kirk; Poustovetov, Alexei; Lowers, Heather A.

    2005-01-01

    Jarosite-group minerals accumulate in the form of stalactites and fine-grained mud on massive pyrite in the D drift of the Richmond mine, Iron Mountain, California. Water samples were collected by placing beakers under the dripping stalactites and by extracting pore water from the mud using a centrifuge. The water is rich in Fe3+ and SO4 2−, with a pH of approximately 2.1, which is significantly higher than the extremely acidic waters found elsewhere in the mine. Electron-microprobe analysis and X-ray mapping indicate that the small crystals (<10 μm in diameter) are compositionally zoned with respect to Na and K, and include hydronium jarosite corresponding to the formula (H3O)0.6K0.3Na0.1Fe3 3+(SO4)2(OH)6. The proton-microprobe analyses indicate that the jarosite-group minerals contain significant amounts of As, Pb and Zn, and minor levels of Bi, Rb, Sb, Se, Sn and Sr. Speciation modeling indicates that the drip waters are supersaturated with respect to jarosite-group minerals. The expected range in composition of jarosite-group solid-solution in equilibrium with the pore water extracted from the mud was found to be consistent with the observed range in composition.

  14. Chlorhexidine binding to mineralized versus demineralized dentin powder

    PubMed Central

    Kim, Jongryul; Uchiyama, Toshikazu; Carrilho, Marcela; Agee, Kelli A.; Mazzoni, Annalisa; Breschi, Lorenzo; Carvalho, Ricardo M.; Tjäderhane, Leo; Looney, Stephen; Wimmer, Courtney; Tezvergil-Mutluay, Arzu; Tay, Franklin R.; Pashley, David H.

    2010-01-01

    Objectives The purposes of this work were to quantitate the affinity and binding capacity of chlorhexidine (CHX) digluconate to mineralized vs. demineralized dentin powder, and to determine how much debinding would result from rinsing with water, ethanol, hydroxyethylmethacrylate (HEMA) or 0.5 M NaCl in water. Methods Dentin powder was made from coronal dentin of extracted human third molars. Standard amounts of dentin powder were tumbled with increasing concentrations of CHX (0–30 mM) for 30 min at 37 C. After centrifuging the tubes, the supernatant was removed and the decrease in CHX concentration quantitated by UV-spectroscopy. CHX-treated dentin powder was resuspended in one of the four debinding solutions for 3 min. The amount of debound CHX in the solvents was also quantitated by UV-spectroscopy. Results As the CHX concentration in the medium increased, the CHX binding to mineralized dentin powder also increased up to 6.8 μmoles/g of dry dentin powder. Demineralized dentin powder took up significantly (p<0.01) more CHX, reaching 30.1 μmoles CHX/g of dry dentin powder. Debinding of CHX was in the order: HEMA < ethanol < 0.05 M NaCl < water. The highest CHX binding to demineralized dentin occurred at 30 mM (1.5 wt%). Significance As CHX is not debound by HEMA, it may remain bound to demineralized dentin during resin-dentin bonding. This may be responsible for the long-term efficacy of CHX as an MMP inhibitor in resin-dentin bonds. PMID:20472280

  15. Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe-Ankole belt, Central Africa

    NASA Astrophysics Data System (ADS)

    Dewaele, S.; De Clercq, F.; Hulsbosch, N.; Piessens, K.; Boyce, A.; Burgess, R.; Muchez, Ph.

    2016-02-01

    The vein-type tungsten deposit at Nyakabingo in the central Tungsten belt of Rwanda is located in the eastern flank of the complex Bumbogo anticlinal structure. The host rock is composed of alternating sequences of sandstones, quartzites, and black pyritiferous metapelitic rocks. Two types of W-mineralized quartz veins have been observed: bedding-parallel and quartz veins that are at high angle to the bedding, which are termed crosscutting veins. Both vein types have been interpreted to have been formed in a late stage of a compressional deformation event. Both vein types are associated with small alteration zones, comprising silicification, tourmalinization, and muscovitization. Dating of muscovite crystals at the border of the veins resulted in a maximum age of 992.4 ± 1.5 Ma. This age is within error similar to the ages obtained for the specialized G4 granites (i.e., 986 ± 10 Ma). The W-bearing minerals formed during two different phases. The first phase is characterized by scheelite and massive wolframite, while the second phase is formed by ferberite pseudomorphs after scheelite. These minerals occur late in the evolution of the massive quartz veins, sometimes even in fractures that crosscut the veins. The ore minerals precipitated from a H2O-CO2-CH4-N2-NaCl-(KCl) fluid with low to moderate salinity (0.6-13.8 eq. wt% NaCl), and minimal trapping temperatures between 247 and 344 °C. The quartz veins have been crosscut by sulfide-rich veins. Based on the similar setting, mineralogy, stable isotope, and fluid composition, it is considered that both types of W-mineralized quartz veins formed during the same mineralizing event. Given the overlap in age between the G4 granites and the mineralized quartz veins, and the typical association of the W deposits in Rwanda, but also worldwide, with granite intrusions, W originated from the geochemically specialized G4 granites. Intense water-rock interaction and mixing with metamorphic fluids largely overprinted the

  16. Crystal structure of ilyukhinite, a new mineral of the eudialyte group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastsvetaeva, R. K., E-mail: rast@crys.ras.ru; Rozenberg, K. A.; Chukanov, N. V.

    The crystal structure of ilyukhinite, a new mineral of the eudialyte group, is studied by X-ray diffraction. The mineral found in pegmatite bodies of the Kukisvumchorr Mountain (Khibiny alkaline complex) is characterized by low sodium content, high degree of hydration, and predominance of manganese over iron. The trigonal cell has the following parameters: a = 14.1695(6) and c = 31.026(1) Å; space group R3m. The structure is refined to final R = 0.046 in the anisotropic approximation of atomic displacements using 1527F > 3σF. The idealized formula of ilyukhinite (Z = 3) is written as (H{sub 3}O,Na){sub 14}Ca{sub 6}Mn{sub 2}Zr{submore » 3}Si{sub 26}O{sub 72}(OH){sub 2} · 3H{sub 2}O. The new mineral differs from other representatives of the eudialyte group by the predominance of both oxonium in the N positions of extra-framework cations and manganese in the Ðœ2 position centering the tetragonal pyramid.« less

  17. Singular value decomposition approach to the yttrium occurrence in mineral maps of rare earth element ores using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Romppanen, Sari; Häkkänen, Heikki; Kaski, Saara

    2017-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in analysis of rare earth element (REE) ores from the geological formation of Norra Kärr Alkaline Complex in southern Sweden. Yttrium has been detected in eudialyte (Na15 Ca6(Fe,Mn)3 Zr3Si(Si25O73)(O,OH,H2O)3 (OH,Cl)2) and catapleiite (Ca/Na2ZrSi3O9·2H2O). Singular value decomposition (SVD) has been employed in classification of the minerals in the rock samples and maps representing the mineralogy in the sampled area have been constructed. Based on the SVD classification the percentage of the yttrium-bearing ore minerals can be calculated even in fine-grained rock samples.

  18. Chemical composition, dietary fibre, tannins and minerals of grain amaranth genotypes.

    PubMed

    Mustafa, Arif F; Seguin, Philippe; Gélinas, Bruce

    2011-11-01

    The objective of this study was to determine the chemical composition of 28 white and coloured grain amaranth (Amaranthus spp.) genotypes. Neutral detergent fibre (NDF) concentration was greater while strach concentration was lower for coloured seeds genotypes than white seeds genotypes. Total dietary fibre followed a similar trend to that observed for NDF. Total tannin concentrations ranged between 20.7 and 0 g/kg with total and hydrolysed tannin concentrations being higher for white than for coloured seeds genotypes. Coloured seeds genotypes contained higher Mg and Ca concentrations than white seeds genotypes. However, seed colour had no influence on K, Na and P concentrations. Copper and Fe were the most variable micro-minerals in the evaluated genotypes with no significant effect of seed colour on the concentration of either mineral.

  19. The global impact of mineral dust on cloud droplet number concentration

    NASA Astrophysics Data System (ADS)

    Karydis, V.; Tsimpidi, A.; Bacer, S.; Pozzer, A.; Nenes, A.; Lelieveld, J.

    2016-12-01

    This study assesses the importance of mineral dust for cloud droplet formation by taking into account i) the adsorption of water on the surface of insoluble dust particles, ii) the coating of soluble material on the surface of mineral particles which augments their cloud condensation nuclei activity, and iii) the effect of dust on the inorganic aerosol concentrations through thermodynamic interactions with mineral cations. Simulations are carried out with the EMAC chemistry climate model that calculates the global atmospheric aerosol composition using the ISORROPIA-II thermodynamic equilibrium model and considers the gas phase interactions with K+-Ca2+-Mg2+-NH4+-Na+-SO42-NO3-Cl-H2O particle components. Emissions of the inert mineral dust and the reactive dust aerosol components are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide (Karydis et al., 2016). We have implemented the "unified dust activation parameterization" (Kumar et al., 2011; Karydis et al., 2011) to calculate the droplet number concentration by taking into account the inherent hydrophilicity from adsorption and the acquired hygroscopicity from soluble salts by dust particles. Our simulations suggest that mineral dust significantly increases the cloud droplet number concentration (CDNC) over the main deserts and the adjacent oceans. However, over polluted areas the CDNC decreases significantly in the presence of dust. Furthermore, we investigate the role of adsorption activation of insoluble aerosols and the mineral dust thermodynamic interactions with inorganic anions on the cloud droplet formation. The CDNC sensitivity to the emission load, chemical composition, and inherent hydrophilicity of mineral dust is also tested. ReferencesKarydis, et al. (2011). "On the effect of dust particles on global cloud condensation nuclei and cloud droplet number." J. Geophys. Res. Atmos. 116. Karydis, et al. (2016). "Effects of

  20. Mineralogical studies of the nitrate deposits of Chile. V. Iquiqueite, Na4K3Mg(CrO4)B24O39(OH).12H2O, a new saline mineral.

    USGS Publications Warehouse

    Ericksen, G.E.; Mrose, M.E.; Marinenko, J.W.; McGee, J.J.

    1986-01-01

    Iquiqueite (Na4K3Mg(CrO4)B24O39(OH).12H2O, a 11.6369(14), c 30.158(7) A, P31c, Z = 3) occurs as a widespread minor constituent in the nitrate fields of northern Chile. It is particularly abundant in the vicinity of Zapiga, Tarapaca province. Associated minerals include nitratite, halite, nitre, darapskite, blodite, glauberite, dietzeite, bruggenite, ulexite and gypsum. Iquiqueite forms thin, yellow, hexagonal platelets (5-50 mu m in diameter, <5 mu m in thickness) that are disseminated singly or in vermiform aggregates in nitrate ore. Observed forms are c(0001) and m(1010). Cleavage is perfect on (0001) and imperfect on (1010); H. = or <2. D(calc.) 2.05 g/cm3 and measured sp. gr. 2.05 + or - 0.09. The mineral is uniaxial negative, epsilon 1.447(2), omega 1.502(2). The XRD pattern has the six strongest lines 3.02(100), 2.856(100), 10.11(85), 6.04(85), 3.28(85), 3.22(85) A. The name is for the city of Iquique, Chile.-J.A.Z.

  1. A thermodynamic model for the prediction of phase equilibria and speciation in the H 2O-CO 2-NaCl-CaCO 3-CaSO 4 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to halite saturation

    NASA Astrophysics Data System (ADS)

    Li, Jun; Duan, Zhenhao

    2011-08-01

    A thermodynamic model is developed for the calculation of both phase and speciation equilibrium in the H 2O-CO 2-NaCl-CaCO 3-CaSO 4 system from 0 to 250 °C, and from 1 to 1000 bar with NaCl concentrations up to the saturation of halite. The vapor-liquid-solid (calcite, gypsum, anhydrite and halite) equilibrium together with the chemical equilibrium of H+,Na+,Ca, CaHCO3+,Ca(OH)+,OH-,Cl-, HCO3-,HSO4-,SO42-, CO32-,CO,CaCO and CaSO 4(aq) in the aqueous liquid phase as a function of temperature, pressure and salt concentrations can be calculated with accuracy close to the experimental results. Based on this model validated from experimental data, it can be seen that temperature, pressure and salinity all have significant effects on pH, alkalinity and speciations of aqueous solutions and on the solubility of calcite, halite, anhydrite and gypsum. The solubility of anhydrite and gypsum will decrease as temperature increases (e.g. the solubility will decrease by 90% from 360 K to 460 K). The increase of pressure may increase the solubility of sulphate minerals (e.g. gypsum solubility increases by about 20-40% from vapor pressure to 600 bar). Addition of NaCl to the solution may increase mineral solubility up to about 3 molality of NaCl, adding more NaCl beyond that may slightly decrease its solubility. Dissolved CO 2 in solution may decrease the solubility of minerals. The influence of dissolved calcite on the solubility of gypsum and anhydrite can be ignored, but dissolved gypsum or anhydrite has a big influence on the calcite solubility. Online calculation is made available on www.geochem-model.org/model.

  2. Novel Determination of the Orientation of Calcite on Mineral Substrates

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Ji, X.; Teng, H.

    2016-12-01

    In the threat of global warming, the transformation from CO2 to stable carbonate minerals is significant to geological CO2 sequestration in the long term.Previous efforts have found that when carbonate minerals nucleate on some mineral substrates ,the time of carbon capture can be shorted .Many efforts have been focused on the dynamics when carbonate minerals nucleate on mineral substrates, but few have studied the orientation of carbonate minerals on mineral substrates. In our experiment, we mainly focused on the orientation of calcite on mineral substrates.We mixed NaHCO3 and CaCl2 to nucleate when mineral substrates were added and a multi-parameter analyzer was used to monitor in real time to determine the induction time for nucleation. On the basis of classical nucleation theory, we got a brand new formula to decide the orientation of calcite on mineral substrates. lntind=(2-cosθ+cos3θ)*16πγ3vm2(12*(kBT)3*(lnS)2)+ln(1/N0v)+ ΔEa/(kBT)where θ is the angle between the substrate and the nuclei, tind is the induction time for nucleation, γ is he average surface free energy, N0 is the total number of particles per unit volume of solution, ΔEa is the activation energy for molecular motion across the embryo-matrix interface, S is the supersaturation index ,kB is the Boltzmann constant. Using the new formula above , when biotite was used as substrate mineral ,we found that the angle between the biotite and the nuclei was 119°. Angle measured on SEM images also supported our conclusion above. Combined with SEM and Debye ring analysed by Rigaku 2D data processing software, we only found one point of (006) in Debye ring, unlike (104)(many points in one ring and it meant that the orientation of (104) is random ). That meant (001) of calcite was first formed on biotite (001). In that case we inferred that 119° was formed by (001) of botite and (012) of calcite for the intersection angle of (001) and (012) was 120°. Future research will focus on the orientation of

  3. Characterization of Italian honeys (Marche Region) on the basis of their mineral content and some typical quality parameters

    PubMed Central

    Conti, Marcelo Enrique; Stripeikis, Jorge; Campanella, Luigi; Cucina, Domenico; Tudino, Mabel Beatriz

    2007-01-01

    Background The characterization of three types of Marche (Italy) honeys (Acacia, Multifloral, Honeydew) was carried out on the basis of the their quality parameters (pH, sugar content, humidity) and mineral content (Na, K, Ca, Mg, Cu, Fe, and Mn). Pattern recognition methods such as principal components analysis (PCA) and linear discriminant analysis (LDA) were performed in order to classify honey samples whose botanical origins were different, and identify the most discriminant parameters. Lastly, using ANOVA and correlations for all parameters, significant differences between diverse types of honey were examined. Results Most of the samples' water content showed good maturity (98%) whilst pH values were in the range 3.50 – 4.21 confirming the good quality of the honeys analysed. Potassium was quantitatively the most relevant mineral (mean = 643 ppm), accounting for 79% of the total mineral content. The Ca, Na and Mg contents account for 14, 3 and 3% of the total mineral content respectively, while other minerals (Cu, Mn, Fe) were present at very low levels. PCA explained 75% or more of the variance with the first two PC variables. The variables with higher discrimination power according to the multivariate statistical procedure were Mg and pH. On the other hand, all samples of acacia and honeydew, and more than 90% of samples of multifloral type have been correctly classified using the LDA. ANOVA shows significant differences between diverse floral origins for all variables except sugar, moisture and Fe. Conclusion In general, the analytical results obtained for the Marche honeys indicate the products' high quality. The determination of physicochemical parameters and mineral content in combination with modern statistical techniques can be a useful tool for honey classification. PMID:17880749

  4. Identification of Some Zeolite Group Minerals by Application of Artificial Neural Network and Decision Tree Algorithm Based on SEM-EDS Data

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Evren Çubukçu, H.; Akin, Lutfiye; Erkut, Volkan; Yurdakul, Yasin; Karayigit, Ali Ihsan

    2016-04-01

    Identification of zeolite group minerals is complicated due to their similar chemical formulas and habits. Although the morphologies of various zeolite crystals can be recognized under Scanning Electron Microscope (SEM), it is relatively more challenging and problematic process to identify zeolites using their mineral chemical data. SEMs integrated with energy dispersive X-ray spectrometers (EDS) provide fast and reliable chemical data of minerals. However, considering elemental similarities of characteristic chemical formulae of zeolite species (e.g. Clinoptilolite ((Na,K,Ca)2 -3Al3(Al,Si)2Si13O3612H2O) and Erionite ((Na2,K2,Ca)2Al4Si14O36ṡ15H2O)) EDS data alone does not seem to be sufficient for correct identification. Furthermore, the physical properties of the specimen (e.g. roughness, electrical conductivity) and the applied analytical conditions (e.g. accelerating voltage, beam current, spot size) of the SEM-EDS should be uniform in order to obtain reliable elemental results of minerals having high alkali (Na, K) and H2O (approx. %14-18) contents. This study which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK Project No: 113Y439), aims to construct a database as large as possible for various zeolite minerals and to develop a general prediction model for the identification of zeolite minerals using SEM-EDS data. For this purpose, an artificial neural network and rule based decision tree algorithm were employed. Throughout the analyses, a total of 1850 chemical data were collected from four distinct zeolite species, (Clinoptilolite-Heulandite, Erionite, Analcime and Mordenite) observed in various rocks (e.g. coals, pyroclastics). In order to obtain a representative training data set for each minerals, a selection procedure for reference mineral analyses was applied. During the selection procedure, SEM based crystal morphology data, XRD spectra and re-calculated cationic distribution, obtained by EDS have been used for the

  5. Storage and stability of mineral-associated soil organic matter pools in genetic horizons of harvested coniferous forest soils

    NASA Astrophysics Data System (ADS)

    Gabriel, C. E.; Kellman, L. M.; Ziegler, S.

    2016-12-01

    Mineral soil organic matter (SOM) is associated with a suite of secondary minerals that can confer stability, resulting in the potential for long-term storage of carbon (C). Not all interactions impart the same level of stability, however; evidence is suggesting that SOM in certain mineral phases is dynamic and vulnerable to soil disturbance, such as forest harvesting. The objective of this research was to characterize SOM-mineral interactions in horizons of harvested soils of contrasting stand age. Sequential selective dissolutions representing increasingly stable SOM pools from soluble minerals (deionized water (DI)), non-crystalline (Na-pyrophosphate), poorly-crystalline minerals (HCl hydroxylamine), to crystalline secondary minerals (Na-dithionite HCl)) were carried out for Ae, Bf and BC horizons sampled from a young and mature forest site (35 and 110 years post-harvest) in Mooseland, Nova Scotia, Canada. Selective dissolution extracts were analyzed for dissolved organic carbon (DOC), its δ13C, Fe and Al. Initial isotopic analysis indicates that separate operational SOM pools were isolated: δ13C values of pyrophosphate-extracted non-crystalline (NC) phases were -27 to -28‰, similar to δ13C of bulk C and to plant-derived humic acids and fungal biomass, whereas the δ13C of DI extracts were more depleted in 13C (1-2 ‰). These SOM pools retained their isotopic signature through depth despite an enrichment in bulk SOM δ13C. NC dominated the C distribution for all horizons, followed by poorly crystalline (PC) minerals, and the C content of these two phases explained the variation in bulk C, while C in crystalline pools were similar for the two sites through depth. The mature site had twice as much C in the NC pool as the young site in the Bf horizons, supported by higher C/Fe+Al ratios, suggesting a change in loading following harvesting. Despite the destabilizing processes that occur with forest harvesting and evidence for the increased destabilization of

  6. Mineral absorption by albino rats as affected by some types of dietary pectins with different degrees of esterification.

    PubMed

    el-Zoghbi, M; Sitohy, M Z

    2001-04-01

    Male albino rats were fed diets contained 6.85% mineral salts for 2 weeks (adaptation condition). Then they were fed the dietary pectin administered diet for 6 weeks to evaluate the effect of administration of pectin on the absorption of some monovalent, bivalent and heavy metals in the serum of rats. The experimental parameters included, monovalent minerals (K, Na), bivalent minerals (Zn, Cu, Ca, Fe), heavy metals (Pb, Cd), serum uric acid and serum creatinine. The obtained results indicated that the serum contents of monovalent minerals were negatively affected by pectin administration. The low degree of esterification of pectin was more effective on the absorption of bivalent minerals. Also, the rat serum levels of lead and cadmium were reduced by pectin administration. Serum total proteins were reduced by pectin administration. The level of rat serum of uric acid and creatinine fed different sources of pectin were within normal levels and were insignificantly lower than that recorded for control samples.

  7. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Wagner, Thomas

    2008-01-01

    We present the results of thermodynamic modeling of fluid-rock interaction in the system Si-Al-Fe-Mg-Ca-Na-H-O-Cl using the GEM-Selektor Gibbs free energy minimization code. Combination of non-ideal mixing properties in solids with multicomponent aqueous fluids represents a substantial improvement and it provides increased accuracy over existing modeling strategies. Application to the 10-component system allows us to link fluid composition and speciation with whole-rock mineralogy, mass and volume changes. We have simulated granite-fluid interaction over a wide range of conditions (200-600 °C, 100 MPa, 0-5 m Cl and fluid/rock ratios of 10-2-104) in order to explore composition of magmatic fluids of variable salinity, temperature effects on fluid composition and speciation and to simulate several paths of alteration zoning. At low fluid/rock ratios (f/r) the fluid composition is buffered by the silicate-oxide assemblage and remains close to invariant. This behavior extends to a f/r of 0.1 which exceeds the amount of exsolved magmatic fluids controlled by water solubility in silicate melts. With increasing peraluminosity of the parental granite, the Na-, K- and Fe-bearing fluids become more acidic and the oxidation state increases as a consequence of hydrogen and ferrous iron transfer to the fluid. With decreasing temperature, saline fluids become more Ca- and Na-rich, change from weakly acidic to alkaline, and become significantly more oxidizing. Large variations in Ca/Fe and Ca/Mg ratios in the fluid are a potential geothermometer. The mineral assemblage changes from cordierite-biotite granites through two-mica granites to chlorite-, epidote- and zeolite-bearing rocks. We have carried out three rock-titration simulations: (1) reaction with the 2 m NaCl fluid leads to albitization, chloritization and desilication, reproducing essential features observed in episyenites, (2) infiltration of a high-temperature fluid into the granite at 400 °C leads to hydrolytic

  8. 43 CFR 3873.1 - Segregation of mineral from non-mineral land.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Segregation of mineral from non-mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ADVERSE CLAIMS, PROTESTS AND CONFLICTS Segregation § 3873.1 Segregation of mineral from non-mineral land. Where a survey is...

  9. 43 CFR 3873.1 - Segregation of mineral from non-mineral land.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Segregation of mineral from non-mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ADVERSE CLAIMS, PROTESTS AND CONFLICTS Segregation § 3873.1 Segregation of mineral from non-mineral land. Where a survey is...

  10. 43 CFR 3873.1 - Segregation of mineral from non-mineral land.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Segregation of mineral from non-mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ADVERSE CLAIMS, PROTESTS AND CONFLICTS Segregation § 3873.1 Segregation of mineral from non-mineral land. Where a survey is...

  11. Determination of mineral contents of wild Boletus edulis mushroom and its edible safety assessment.

    PubMed

    Su, Jiuyan; Zhang, Ji; Li, Jieqing; Li, Tao; Liu, Honggao; Wang, Yuanzhong

    2018-04-06

    This study aimed to determine the contents of main mineral elements of wild Boletus edulis and to assess its edible safety, which may provide scientific evidence for the utilization of this species. Fourteen mineral contents (Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Na, Ni, Sr, V and Zn) in the caps and stipes of B. edulis as well as the corresponding surface soils collected from nine different geographic regions in Yunnan Province, southwest China were determined. The analyses were performed using inductively coupled plasma atomic emission spectrometer (ICP-AES) after microwave digestion. Measurement data were analyzed using variance and Pearson correlation analysis. Edible safety was evaluated according to the provisionally tolerable weekly intake (PTWI) of heavy metals recommended by United Nations Food and Agriculture Organization and World Health Organization (FAO/WHO). Mineral contents were significantly different with the variance of collection areas. B. edulis showed relative abundant contents of Ca, Fe, Mg and Na, followed by Ba, Cr, Cu, Mn and Zn, and the elements with the lower content less were Cd, Co, Ni, Sr and V. The elements accumulation differed significantly in caps and stipes. Among them, Cd and Zn were bioconcentrated (BCF > 1) while others were bioexcluded (BCF < 1). The mineral contents in B. edulis and its surface soil were positively related, indicating that the elements accumulation level was related to soil background. In addition, from the perspective of food safety, if an adult (60 kg) eats 300 g fresh B. edulis per week, the intake of Cd in most of tested mushrooms were lower than PTWI value whereas the Cd intakes in some other samples were higher than this standard. The results indicated that the main mineral contents in B. edulis were significantly different with respect to geographical distribution, and the Cd intake in a few of regions was higher than the acceptable intakes with a potential risk.

  12. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere.

    PubMed

    Watanabe, Nobuhisa; Takata, Mitsuyasu; Takemine, Shusuke; Yamamoto, Katsuya

    2018-03-01

    Waste disposal site is one of the important sinks of chemicals. A significant amount of perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexanoic acid (PFHxA) have been brought into it. Because of their aqueous solubility, PFASs are released to landfill effluent waters, from which PFASs are efficiently collected by adsorption technique using granular activated carbon (GAC). The exhausted GAC is reactivated by heating processes. The mineralization of PFASs during the reactivation process was studied. Being thermally treated in N 2 atmosphere, the recovery rate of mineralized fluorine and PFC homologues including short-chained perfluorocarboxylic acids was determined. If the reagent form of PFOA, PFHxA, and PFOS were treated at 700 °C, the recovery of mineralized fluorine was less than 30, 46, and 72 %, respectively. The rate increased to 51, 74, and 70 %, if PFASs were adsorbed onto GAC in advance; moreover, addition of excess sodium hydroxide (NaOH) improved the recovery to 74, 91, and 90 %. Residual PFAS homologue was less than 1 % of the original amount. Steamed condition did not affect destruction. The significant role of GAC was to suppress volatile release of PFASs from thermal ambient, whereas NaOH enhanced destruction and retained mineralized fluorine on the GAC surface. Comparing the recovery of mineralized fluorine, the degradability of PFOS was considered to be higher than PFOA and PFHxA. Whole mass balance missing 9~26 % of initial amount suggested formation of some volatile organofluoro compounds beyond analytical coverage.

  13. Solubility and dissolution kinetics of GaN in supercritical ammonia in presence of ammonoacidic and ammonobasic mineralizers

    NASA Astrophysics Data System (ADS)

    Schimmel, Saskia; Koch, Martina; Macher, Philipp; Kimmel, Anna-Carina L.; Steigerwald, Thomas G.; Alt, Nicolas S. A.; Schlücker, Eberhard; Wellmann, Peter

    2017-12-01

    Solubility and dissolution kinetics of GaN are investigated, as they represent essential parameters for ammonothermal crystal growth of GaN. In situ X-ray imaging is applied to monitor the dissolving crystal. Both ammonoacidic and ammonobasic conditions are investigated. Compared to NH4F, the dissolution is generally much slower using NaN3 mineralizer, leading to a much longer time needed to establish a saturated solution. The solubility of GaN at 540 °C and 260 MPa in supercritical ammonia with a molar concentration of NaN3 of 0.72 mmol/ml is determined to be 0.15 ± 0.01 mol%. This suggest a severe refinement of raw gravimetric literature data also for alkali metal based mineralizers, as we reported previously for ammonium halide mineralizers. The order of magnitude is in good agreement with refined gravimetric solubility data (Griffiths et al., 2016). The apparent discrepancy between the literature and this work regarding the temperature range in which retrograde solubility occurs is discussed. A possible reason for the occurrence of retrograde solubility at high temperatures is described. The paper is complemented by a section pointing out and partially quantifying potential, reactor-material-dependent sources of errors.

  14. Straczekite, a new calcium barium potassium vanadate mineral from Wilson Springs, Arkansas.

    USGS Publications Warehouse

    Evans, H.T.; Nord, G.; Marinenko, J.; Milton, C.

    1984-01-01

    Straczekite occurs as a rare secondary mineral in fibrous seams, along with other V minerals (A.M. 64-713), in ore from the vanadium mine in Wilson Springs (formerly Potash Sulfur Springs), Garland County, Arkansas. It forms soft, thin laths of dark greenish black crystals up to 0.5 mm in length. Indexed XRD data are tabulated; strongest lines 3.486(100), 10.449(50), 1.8306(50), 1.9437(15) A; a 11.679, b 3.6608, c 10.636 A, beta 100.53o; space group C2/m, C2 or Cm. Chemical analysis gave V2O5 66.4, V2O4 15.3, Fe2O3 0.9, Na2O 0.4, K2O 1.8, CaO 2.5, BaO 5.5, H2O 7.2, = 100.0, leading to the formula (Ca0.39Ba0.31K0.33Na0.11)- 196(V4+1.59V5+6.31Fe3+0.10)O20.02(H2O)2.9; Dcalc. 3.21 g/cm3. A possible layer structure is discussed. The name is for J. A. Straczek, Chief Geologist at Union Carbide Corp.-R.A.H.

  15. Medición de densidades medias de meteoritos: test del método de inmersión

    NASA Astrophysics Data System (ADS)

    Steren, G.

    Se evaluó una técnica simple para medir las densidades medias de meteoritos, basada en el Método de Arquímedes y que utiliza cuentas de vidrio de 40μ en lugar de un fluído esto presenta la ventaja de no ser intrusivo ni químicamente reactivo (D.Britt and G.Consolmagno, 1996, B.A.A.S.28,1106). El estudio, realizado en junio de este año por participantes de la VI Escuela de Verano del Observatorio del Vaticano, empleó 37 muestras de la colección del Observatorio del Vaticano, de las cuales 26 eran Condritas, 1 Pallasita y 1 Howardita; algunas de ellas ya habian sido estudiadas por otras técnicas aunque también se incluyeron muestras no estudiadas anteriormente.

  16. The Effect of Bicarbonate on the Microbial Dissolution of Autunite Mineral in the Presence of Gram-Positive Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepulveda-Medina, Paola; Katsenovich, Yelena; Wellman, Dawn M.

    Bacteria are key players in the processes that govern fate and transport of contaminants. The uranium release from Na and Ca-autunite by Arthrobacter oxydans strain G968 was evaluated in the presence of bicarbonate ions. This bacterium was previously isolated from Hanford Site soil and in earlier prescreening tests demonstrated low tolerance to U(VI) toxicity compared to other A.oxydans isolates. Experiments were conducted using glass serum bottles as mixed bioreactors and sterile 6-well cell culture plates with inserts separating bacteria cells from mineral solids. Reactors containing phosphorus-limiting media were amended with bicarbonate ranging between 0-10 mM and metaautunite solids to providemore » a U(VI) concentration of 4.4 mmol/L. Results showed that in the presence of bicarbonate, A.oxydans G968 was able to enhance the release of U(VI) from Na and Ca autunite at the same capacity as other A.oxydans isolates with relatively high tolerance to U(VI). The effect of bacterial strains on autunite dissolution decreases as the concentration of bicarbonate increases. The results illustrate that direct interaction between the bacteria and the mineral is not necessary to result in U (VI) biorelease from autunite. The formation of secondary calcium-phosphate mineral phases on the surface of the mineral during the dissolution can ultimately reduce the natural autunite mineral contact area, which bacterial cells can access. This thereby reduces the concentration of uranium released into the solution. This study provides a better understanding of the interactions between meta-autunite and microbes in conditions mimicking arid and semiarid subsurface environments of western U.S.« less

  17. The effect of dietary habits on mineral composition of human scalp hair.

    PubMed

    Chojnacka, Katarzyna; Zielińska, Agnieszka; Michalak, Izabela; Górecki, Henryk

    2010-09-01

    In the present work, hair mineral analysis of 117 individuals was carried out. The subjects were asked to fill a questionnaire concerning their dietary habits. The content of minerals in hair was determined by ICP-OES (macroelements) and ICP-MS technique (micro-, toxic and other trace elements). The results were elaborated statistically by Statisticaver. 8.0. It was found that consuming highly processed food causes increased levels of e.g. Na and P in hair, intake of slimming preparation resulted in increased content of Al, Cr, Ti, taking in laxative agents caused lower level of Pb (this element was probably eliminated by other excretory routes). Individuals which declared the use of analgesic agents had more Si in their hair. Drinking coffee was related with higher level of Al, Ni, S and Ti and lower Pb in hair. Drinking tea caused reduction in the level of Hg. These results show that hair mineral content reflects exposure of elements from the diet. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    NASA Astrophysics Data System (ADS)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  19. Mineralization/Anti-Mineralization Networks in the Skin and Vascular Connective Tissues

    PubMed Central

    Li, Qiaoli; Uitto, Jouni

    2014-01-01

    Ectopic mineralization has been linked to several common clinical conditions with considerable morbidity and mortality. The mineralization processes, both metastatic and dystrophic, affect the skin and vascular connective tissues. There are several contributing metabolic and environmental factors that make uncovering of the precise pathomechanisms of these acquired disorders exceedingly difficult. Several relatively rare heritable disorders share phenotypic manifestations similar to those in common conditions, and, consequently, they serve as genetically controlled model systems to study the details of the mineralization process in peripheral tissues. This overview will highlight diseases with mineral deposition in the skin and vascular connective tissues, as exemplified by familial tumoral calcinosis, pseudoxanthoma elasticum, generalized arterial calcification of infancy, and arterial calcification due to CD73 deficiency. These diseases, and their corresponding mouse models, provide insight into the pathomechanisms of soft tissue mineralization and point to the existence of intricate mineralization/anti-mineralization networks in these tissues. This information is critical for understanding the pathomechanistic details of different mineralization disorders, and it has provided the perspective to develop pharmacological approaches to counteract the consequences of ectopic mineralization. PMID:23665350

  20. High Pressure Strength Study on NaCl

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group

    2010-12-01

    Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.

  1. Brine evolution and mineral deposition in hydrologically open evaporite basins

    USGS Publications Warehouse

    Sanford, W.E.; Wood, W.W.

    1991-01-01

    A lumped-parameter, solute mass-balance model is developed to define the role of water outflow from a well-mixed basin. A mass-balance model is analyzed with a geochemical model designed for waters with high ionic strengths. Two typical waters, seawater and a Na-HCO3 ground water, are analyzed to illustrate the control that the leakage ratio (or hydrologic openness of the basin) has on brine evolution and the suite and thicknesses of evaporite minerals deposited. The analysis suggests that brines evolve differently under different leakage conditions. -from Authors

  2. Desorption induced by electronic transitions of Na from SiO2: relevance to tenuous planetary atmospheres.

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.; Madey, T. E.

    2000-04-01

    The authors have studied the desorption induced by electronic transitions (DIET) of Na adsorbed on model mineral surfaces, i.e. amorphous, stoichiometric SiO2 films. They find that electron stimulated desorption (ESD) of atomic Na occurs for electron energy thresholds as low as ≡4 eV, that desorption cross-sections are high (≡1×10-19cm2 at 11 eV), and that desorbing atoms are 'hot', with suprathermal velocities. The estimated Na desorption rate from the lunar surface via ESD by solar wind electrons is a small fraction of the rate needed to sustain the Na atmosphere. However, the solar photon flux at energies ≥5 eV exceeds the solar wind electron flux by orders of magnitude; there are sufficient ultraviolet photons incident on the lunar surface to contribute substantially to the lunar Na atmosphere via PSD of Na from the surface.

  3. An empirical NaKCa geothermometer for natural waters

    USGS Publications Warehouse

    Fournier, R.O.; Truesdell, A.H.

    1973-01-01

    An empirical method of estimating the last temperature of water-rock interaction has been devised. It is based upon molar Na, K and Ca concentrations in natural waters from temperature environments ranging from 4 to 340??C. The data for most geothermal waters cluster near a straight line when plotted as the function log ( Na K) + ?? log [ ??? (Ca) Na] vs reciprocal of absolute temperature, where ?? is either 1 3 or 4 3 depending upon whether the water equilibrated above or below 100??C. For most waters tested, the method gives better results than the Na K methods suggested by other workers. The ratio Na K should not be used to estimate temperature if ??? ( MCa) MNa is greater than 1. The Na K values of such waters generally yield calculated temperatures much higher than the actual temperature at which water interacted with the rock. A comparison of the composition of boiling hot-spring water with that obtained from a nearby well (170??C) in Yellowstone Park shows that continued water-rock reactions may occur during ascent of water even though that ascent is so rapid that little or no heat is lost to the country rock, i.e. the water cools adiabatically. As a result of such continued reaction, waters which dissolve additional Ca as they ascend from the aquifer to the surface will yield estimated aquifer temperatures that are too low. On the other hand, waters initially having enough Ca to deposit calcium carbonate during ascent may yield estimated aquifer temperatures that are too high if aqueous Na and K are prevented from further reaction with country rock owing to armoring by calcite or silica minerals. The Na-K-Ca geothermometer is of particular interest to those prospecting for geothermal energy. The method also may be of use in interpreting compositions of fluid inclusions. ?? 1973.

  4. Phosphovanadylite: a new vanadium phosphate mineral with a zeolite-type structure

    USGS Publications Warehouse

    Medrano, M.D.; Evans, H.T.; Wenk, H.-R.; Piper, D.Z.

    1998-01-01

    Phosphovanadylite, whose simplified formula is (Ba,Ca,K,Na)x([(Va,Al)4P2(P,OH)16].12H2), is a new vanadium phosphate zeolite mineral found in the Phosphoria Formation at Monsanto's Enoch Valley Mine, Soda Springs, Idaho. Its formula in more detail is (Ba0.38Ca0.20K0.006Na0.02)??0.66 [P2(V3.44Al0.046)??3.90O10.34(OH)5.66] .12H2O. The drusy mineral occurs as pale greenish-blue euhedral cubes (20-50 ??m edge) coating phosphatic, organic-rich mudstone. The chemical composition determined by electron microprobe is (in weight percent) V-28.02, P-9.91, Al-1.97, Ca-1.31, Ba-8.28, Cd-0.09, Zn-0.34, Na-0.15, K-0.73, O-46.57, and F-0.03. The index of refraction is nD = 1.566 (4) and specific gravity is 2.16 (3). The X-ray powder pattern shows strong reflections at 3.16 A (422), 2.58 (600), 2.44 (620), and 7.73 (200), which are indexed on the basis of a cubic body-centered unit cell with a = 15.470 (4) A. From the single-crystal structure analysis, its space group was determined to be I43m, Z = 6, and its structure consists of V4O18 16 octahedral clusters linked to each other by P atoms to form a cubic lattice, creating cavities 7.0 and 5.5 A in diameter where mainly H2O resides. Final residual indexes are R = 0.066, Rw = 0.061, goodness-of-fit = 0.75, and 93 observations and 24 parameters.

  5. Blood pressure, magnesium and other mineral balance in two rat models of salt-sensitive, induced hypertension: effects of a non-peptide angiotensin II receptor type 1 antagonist.

    PubMed

    Rondón, Lusliany Josefina; Marcano, Eunice; Rodríguez, Fátima; del Castillo, Jesús Rafael

    2014-01-01

    The renin-angiotensin system is critically involved in regulating arterial blood pressure (BP). Inappropriate angiotensin type-1 receptor activation by angiotensin-II (Ang-II) is related to increased arterial BP. Mg has a role in BP; it can affect cardiac electrical activity, myocardial contractility, and vascular tone. To evaluate the relationship between high BP induced by a high sodium (Na) diet and Mg, and other mineral balances, two experimental rat models of salt-sensitive, induced-hypertension were used: Ang-II infused and Dahl salt-sensitive (SS) rats. We found that: 1) Ang-II infusion progressively increased BP, which was accompanied by hypomagnesuria and signs of secondary hyperaldosteronism; 2) an additive effect between Ang-II and a high Na load may have an effect on strontium (Sr), zinc (Zn) and copper (Cu) balances; 3) Dahl SS rats fed a high Na diet had a slow pressor response, accompanied by altered Mg, Na, potassium (K), and phosphate (P) balances; and 4) losartan prevented BP increases induced by Ang II-NaCl, but did not modify mineral balances. In Dahl SS rats, losartan attenuated high BP and ameliorated magnesemia, Na and K balances. Mg metabolism maybe considered a possible defect in this strain of rat that may contribute to hypertension.

  6. Net mineral requirements for growth of Saanen goat kids in early life are similar among genders.

    PubMed

    Mendonça, A N; Härter, C J; Souza, S F; Oliveira, D; Boaventura Neto, O; Biagioli, B; Resende, K T; Teixeira, I A M A

    2017-02-01

    The current mineral requirements for growing goat kids are based on sheep and cattle studies without differentiating between the stages of development or gender. The aims of this study were to determine the net requirements for growth of Ca, P, Mg, Na and K of Saanen goat kids during the initial stages of growth and to analyse the effect of gender on the net requirements for growth of these macrominerals. Eighteen female, 19 intact male and 10 castrated male Saanen goat kids were studied. The kids were selected applying a completely randomized design and slaughtered when their body weight (BW) reached approximately 5, 10 and 15 kg to determine the mineral requirements for growth at these stages. The net mineral requirements for growth were similar among genders. The goat kids had slightly increased net requirements of Ca, P and Mg for growth with increasing BW from 5 to 15 kg. The net requirements for growth of Ca, P, Mg, Na and K ranged from 9.61 to 9.67 g/kg of BW gain, 7.14 to 7.56 g/kg of BW gain, 0.34 to 0.37 g/kg of BW gain, 1.26 to 1.13 g/kg of BW gain, 1.88 to 1.82 g/kg of BW gain as the animals grew from 5 to 15 kg respectively. In conclusion, when formulating diets for Saanen goat kids in early growth stage mineral levels do not need to adjusted based on gender. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  7. Ion Homeostasis in Chloroplasts under Salinity and Mineral Deficiency 1

    PubMed Central

    Schröppel-Meier, Gabriele; Kaiser, Werner M.

    1988-01-01

    Spinach (Spinacia oleracea var “Yates”) plants in hydroponic culture were exposed to stepwise increased concentrations of NaCl or NaNO3 up to a final concentration of 300 millimoles per liter, at constant Ca2+-concentration. Leaf cell sap and extracts from aqueously isolated spinach chloroplasts were analyzed for mineral cations, anions, amino acids, sugars, and quarternary ammonium compounds. Total osmolality of leaf sap and photosynthetic capacity of leaves were also measured. For comparison, leaf sap from salt-treated pea plants was also analyzed. Spinach plants under NaCl or NaNO3 salinity took up large amounts of sodium (up to 400 millimoles per liter); nitrate as the accompanying anion was taken up less (up to 90 millimoles per liter) than chloride (up to 450 millimoles per liter). Under chloride salinity, nitrate content in leaves decreased drastically, but total amino acid concentrations remained constant. This response was much more pronounced (and occurred at lower salt concentrations) in leaves from the glycophyte (pea, Pisum sativum var “Kleine Rheinländerin”) than from moderately salt-tolerant spinach. In spinach, sodium chloride or nitrate taken up into leaves was largely sequestered in the vacuoles; both salts induced synthesis of quarternary ammonium compounds, which were accumulated mainly in chloroplasts (and cytosol). This prevented impairment of metabolism, as indicated by an unchanged photosynthetic capacity of leaves. PMID:16666232

  8. 43 CFR 3873.1 - Segregation of mineral from non-mineral land.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Segregation of mineral from non-mineral... AND CONFLICTS Segregation § 3873.1 Segregation of mineral from non-mineral land. Where a survey is... satisfactorily established that there are existent prior unpatented mining claims, the segregation of the latter...

  9. Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems.

    PubMed

    Weber, Carolyn F

    2017-01-01

    Current malnourishment statistics are high and are exacerbated by contemporary agricultural practices that damage the very environments on which the production of nutritious food depends. As the World's population grows at an unprecedented rate, food systems must be revised to provide adequate nutrition while minimizing environmental impacts. One specific nutritional problem that needs attention is mineral (e.g., Fe and Zn) malnutrition, which impacts over two-thirds of the World's people living in countries of every economic status. Microgreens, the edible cotyledons of many vegetables, herbs, and flowers, is a newly emerging crop that may be a dense source of nutrition and has the potential to be produced in just about any locale. This study examined the mineral concentration of broccoli microgreens produced using compost-based and hydroponic growing methods that are easily implemented in one's own home. The nutritional value of the resulting microgreens was quantitatively compared to published nutritional data for the mature vegetable. Nutritional data were also considered in the context of the resource demands (i.e., water, fertilizer, and energy) of producing microgreens in order to gain insights into the potential for local microgreen production to diversify food systems, particularly for urban areas, while minimizing the overall environmental impacts of broccoli farming. Regardless of how they were grown, microgreens had larger quantities of Mg, Mn, Cu, and Zn than the vegetable. However, compost-grown (C) microgreens had higher P, K, Mg, Mn, Zn, Fe, Ca, Na, and Cu concentrations than the vegetable. For eight nutritionally important minerals (P, K, Ca, Mg, Mn, Fe, Zn, and Na), the average C microgreen:vegetable nutrient ratio was 1.73. Extrapolation from experimental data presented here indicates that broccoli microgreens would require 158-236 times less water than it does to grow a nutritionally equivalent amount of mature vegetable in the fields of

  10. Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems

    PubMed Central

    Weber, Carolyn F.

    2017-01-01

    Current malnourishment statistics are high and are exacerbated by contemporary agricultural practices that damage the very environments on which the production of nutritious food depends. As the World’s population grows at an unprecedented rate, food systems must be revised to provide adequate nutrition while minimizing environmental impacts. One specific nutritional problem that needs attention is mineral (e.g., Fe and Zn) malnutrition, which impacts over two-thirds of the World’s people living in countries of every economic status. Microgreens, the edible cotyledons of many vegetables, herbs, and flowers, is a newly emerging crop that may be a dense source of nutrition and has the potential to be produced in just about any locale. This study examined the mineral concentration of broccoli microgreens produced using compost-based and hydroponic growing methods that are easily implemented in one’s own home. The nutritional value of the resulting microgreens was quantitatively compared to published nutritional data for the mature vegetable. Nutritional data were also considered in the context of the resource demands (i.e., water, fertilizer, and energy) of producing microgreens in order to gain insights into the potential for local microgreen production to diversify food systems, particularly for urban areas, while minimizing the overall environmental impacts of broccoli farming. Regardless of how they were grown, microgreens had larger quantities of Mg, Mn, Cu, and Zn than the vegetable. However, compost-grown (C) microgreens had higher P, K, Mg, Mn, Zn, Fe, Ca, Na, and Cu concentrations than the vegetable. For eight nutritionally important minerals (P, K, Ca, Mg, Mn, Fe, Zn, and Na), the average C microgreen:vegetable nutrient ratio was 1.73. Extrapolation from experimental data presented here indicates that broccoli microgreens would require 158–236 times less water than it does to grow a nutritionally equivalent amount of mature vegetable in the fields of

  11. U.S. Geological Survey Mineral Resources Program—Mineral resource science supporting informed decisionmaking

    USGS Publications Warehouse

    Wilkins, Aleeza M.; Doebrich, Jeff L.

    2016-09-19

    The USGS Mineral Resources Program (MRP) delivers unbiased science and information to increase understanding of mineral resource potential, production, and consumption, and how mineral resources interact with the environment. The MRP is the Federal Government’s sole source for this mineral resource science and information. Program goals are to (1) increase understanding of mineral resource formation, (2) provide mineral resource inventories and assessments, (3) broaden knowledge of the effects of mineral resources on the environment and society, and (4) provide analysis on the availability and reliability of mineral supplies.

  12. Mineral and sensory profile of seasoned cracked olives packed in diverse salt mixtures.

    PubMed

    Moreno-Baquero, J M; Bautista-Gallego, J; Garrido-Fernández, A; López-López, A

    2013-05-01

    This work studies the effect of packing cracked seasoned olives with NaCl, KCl, and CaCl(2) mixture brines on their mineral nutrients and sensory attributes, using RSM methodology. The Na, K, Ca, and residual natural Mn contents in flesh as well as saltiness, bitterness and fibrousness were significantly related to the initial concentrations of salts in the packing solution. This new process led to table olives with a significantly lower sodium content (about 31%) than the traditional product but fortified in K and Ca. High levels of Na and Ca in the flesh led to high scores of acidity and saltiness (the first descriptor) and bitterness (the second) while the K content was unrelated to any sensory descriptor. The new presentations using moderate proportions of alternative salts will therefore have improved nutritional value and healthier characteristics but only a slightly modified sensory profile. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The role of minerals in the thermal alteration of organic matter. IV - Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments

    NASA Technical Reports Server (NTRS)

    Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, Isaac R.

    1987-01-01

    The effect of common sedimentary minerals (illite, Na-montmorillonite, or calcite) under different water concentrations on the generation and release of n-alkanes, acyclic isoprenoids, and select alkenes from oil-prone kerogens was investigated. Matrices containing Green River Formation kerogen or Monterey Formation kerogen, alone or in the presence of minerals, were heated at 200 or 300 C for periods of up to 1000 hours, and the pyrolysis products were analyzed. The influence of the first two clay minerals was found to be critically dependent on the water content. Under the dry pyrolysis conditions, both minerals significantly reduced alkene formation; the C12+ n-alkanes and acyclic isoprenoids were mostly destroyed by montmorillonite, but underwent only minor alteration with illite. Under hydrous conditions (mineral/water of 2/1), the effects of both minerals were substantially reduced. Calcite had no significant effect on the thermal evolution of the hydrocarbons.

  14. Analyses of Mineral Content and Heavy Metal of Honey Samples from South and East Region of Turkey by Using ICP-MS.

    PubMed

    Kılıç Altun, Serap; Dinç, Hikmet; Paksoy, Nilgün; Temamoğulları, Füsun Karaçal; Savrunlu, Mehmet

    2017-01-01

    The substantial of mineral ingredients in honey may symbolize the existence of elements in the plants and soil of the vicinity wherein the honey was taken. The aim of this study was to detect the levels of 13 elements (Potassium (K), Sodium (Na), Calcium (Ca), Iron (Fe), Zinc (Zn), Cadmium (Cd), Copper (Cu), Manganese (Mn), Lead (Pb), Nickel (Ni), Chromium (Cr), Aluminum (Al), and Selenium (Se)) in unifloral and multifloral honey samples from south and east regions of Turkey. Survey of 71 honey samples from seven different herbal origins, picked up from the south and east region of Turkey, was carried out to determine their mineral contents during 2015-2016. The mineral contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The most abundant minerals were K, Na, and Ca ranging within 1.18-268 ppm, 0.57-13.1 ppm, and 0.77-4.5 ppm, respectively. Zn and Cu were the most abundant trace element while Pb, Cd, Ni, and Cr were the lowest heavy metals in the honey samples surveyed, with regard to the concentrations of heavy metals such as Zn, Cu, Pb, Cd, Ni, and Cr suggested and influence of the botanical origin of element composition. Geochemical and geographical differences are probably related to the variations of the chemical components of honey samples.

  15. Clay Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studiesmore » of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.« less

  16. Avoiding Toxic Levels of Essential Minerals: A Forgotten Factor in Deer Diet Preferences

    PubMed Central

    Ceacero, Francisco; Landete-Castillejos, Tomás; Olguín, Augusto; Miranda, María; García, Andrés; Martínez, Alberto; Cassinello, Jorge; Miguel, Valentín; Gallego, Laureano

    2015-01-01

    Ungulates select diets with high energy, protein, and sodium contents. However, it is scarcely known the influence of essential minerals other than Na in diet preferences. Moreover, almost no information is available about the possible influence of toxic levels of essential minerals on avoidance of certain plant species. The aim of this research was to test the relative importance of mineral content of plants in diet selection by red deer (Cervus elaphus) in an annual basis. We determined mineral, protein and ash content in 35 common Mediterranean plant species (the most common ones in the study area). These plant species were previously classified as preferred and non-preferred. We found that deer preferred plants with low contents of Ca, Mg, K, P, S, Cu, Sr and Zn. The model obtained was greatly accurate identifying the preferred plant species (91.3% of correct assignments). After a detailed analysis of these minerals (considering deficiencies and toxicity levels both in preferred and non-preferred plants) we suggest that the avoidance of excessive sulphur in diet (i.e., selection for plants with low sulphur content) seems to override the maximization for other nutrients. Low sulphur content seems to be a forgotten factor with certain relevance for explaining diet selection in deer. Recent studies in livestock support this conclusion, which is highlighted here for the first time in diet selection by a wild large herbivore. Our results suggest that future studies should also take into account the toxicity levels of minerals as potential drivers of preferences. PMID:25615596

  17. Avoiding toxic levels of essential minerals: a forgotten factor in deer diet preferences.

    PubMed

    Ceacero, Francisco; Landete-Castillejos, Tomás; Olguín, Augusto; Miranda, María; García, Andrés; Martínez, Alberto; Cassinello, Jorge; Miguel, Valentín; Gallego, Laureano

    2015-01-01

    Ungulates select diets with high energy, protein, and sodium contents. However, it is scarcely known the influence of essential minerals other than Na in diet preferences. Moreover, almost no information is available about the possible influence of toxic levels of essential minerals on avoidance of certain plant species. The aim of this research was to test the relative importance of mineral content of plants in diet selection by red deer (Cervus elaphus) in an annual basis. We determined mineral, protein and ash content in 35 common Mediterranean plant species (the most common ones in the study area). These plant species were previously classified as preferred and non-preferred. We found that deer preferred plants with low contents of Ca, Mg, K, P, S, Cu, Sr and Zn. The model obtained was greatly accurate identifying the preferred plant species (91.3% of correct assignments). After a detailed analysis of these minerals (considering deficiencies and toxicity levels both in preferred and non-preferred plants) we suggest that the avoidance of excessive sulphur in diet (i.e., selection for plants with low sulphur content) seems to override the maximization for other nutrients. Low sulphur content seems to be a forgotten factor with certain relevance for explaining diet selection in deer. Recent studies in livestock support this conclusion, which is highlighted here for the first time in diet selection by a wild large herbivore. Our results suggest that future studies should also take into account the toxicity levels of minerals as potential drivers of preferences.

  18. Hydrothermal synthesis of ultralong and single-crystalline Cd(OH)2 nanowires using alkali salts as mineralizers.

    PubMed

    Tang, Bo; Zhuo, Linhai; Ge, Jiechao; Niu, Jinye; Shi, Zhiqiang

    2005-04-18

    Ultralong and single-crystalline Cd(OH)(2) nanowires were fabricated by a hydrothermal method using alkali salts as mineralizers. The morphology and size of the final products strongly depend on the effects of the alkali salts (e.g., KCl, KNO(3), and K(2)SO(4) or NaCl, NaNO(3), and Na(2)SO(4)). When the salt is absent, only nanoparticles are observed in TEM images of the products. The 1D nanostructure growth method presented herein offers an excellent tool for the design of other advanced materials with anisotropic properties. In addition, the Cd(OH)(2) nanowires might act as a template or precursor that is potentially converted into 1D cadmium oxide through dehydration or into 1D nanostructures of other functional materials (e.g., CdS, CdSe).

  19. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol; Herman, Connie; Crawford, Charles

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable tomore » glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.« less

  20. Dietary mixtures of sodium bicarbonate, sodium chloride, and potassium chloride: effects on lactational performance, acid-base status, and mineral metabolism of Holstein cows.

    PubMed

    Sanchez, W K; Beede, D K; Cornell, J A

    1997-06-01

    The objective of this study was to determine lactational, blood mineral, and blood acid-base responses to dietary mixtures of NaHCO3, NaCl, and KCl and dietary cation-anion difference by lactating diary cows. Three 100:0:0 (primary) blends, three 50:50:0 (binary) blends, and one 33:33:33 (tertiary) blend of NaHCO3, NaCl, and KCl, respectively, were formulated to replace 1% of the dry matter in a diet based on corn silage. Seven treatments were defined according to a simplex-centroid mixtures design using a partially balanced incomplete block arrangement. An eighth treatment served as a control and contained 1% SiO2 instead of the mineral blends. Dietary cation-anion difference ranged from +25 to +40 meq of (Na + K - Cl)/100 g of dietary dry matter. Diets were fed for three consecutive 28-d periods during summer to 36 midlactation cows. Cows that were fed the tertiary mixture had lower milk protein percentage, whole blood bicarbonate, and plasma K than did cows fed the other blends. With the exception of milk protein percentage and body weight gain, none of the mixtures had a significant impact on lactational performance. The lack of differences could have been due to the narrow range in the dietary cation-anion difference studied.

  1. Sodium-bicarbonated mineral water decreases aldosterone levels without affecting urinary excretion of bone minerals.

    PubMed

    Schoppen, Stefanie; Pérez-Granados, Ana M; Carbajal, Angeles; Sarriá, Beatriz; Navas-Carretero, Santiago; Pilar Vaquero, M

    2008-06-01

    AIM To assess in healthy postmenopausal women the influence of consuming sodium-bicarbonated mineral water on postprandial evolution of serum aldosterone and urinary electrolyte excretion. Eighteen postmenopausal women consumed 500 ml of two sodium-bicarbonated mineral waters (sodium-bicarbonated mineral water 1 and sodium-bicarbonated mineral water 2) and a low-mineral water with a standard meal. Postprandial blood samples were taken at 60, 120, 240, 360 and 420 min and aldosterone concentrations were measured. Postprandial urinary minerals were determined. Urinary and total mineral excretion and urinary mineral concentrations did not differ except for sodium concentration, which was significantly higher with sodium-bicarbonated mineral water 1 than with low-mineral water (P = 0.005). There was a time effect (P = 0.003) on the aldosterone concentration. At 120 min, aldosterone concentrations were lower with sodium-bicarbonated mineral water 1 (P = 0.021) and sodium-bicarbonated mineral water 2 (P = 0.030) compared with low-mineral water. Drinking a sodium-rich bicarbonated mineral water with a meal increases urinary sodium concentration excretion without changes in the excretion of potassium and bone minerals.

  2. Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns

    NASA Astrophysics Data System (ADS)

    Seiffert, Franz; Bandow, Nicole; Kalbe, Ute; Milke, Ralf; Gorbushina, Anna

    2016-04-01

    Sub-aerial biofilms (SAB) are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872) and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm) were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1) to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i) the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii) by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.

  3. The effect of bicarbonate on the microbial dissolution of autunite mineral in the presence of gram-positive bacteria.

    PubMed

    Sepulveda-Medina, Paola M; Katsenovich, Yelena P; Wellman, Dawn M; Lagos, Leonel E

    2015-06-01

    Bacteria are key players in the processes that govern fate and transport of contaminants. The uranium release from Na and Ca-autunite by Arthrobacter oxydans strain G968 was evaluated in the presence of bicarbonate ions. This bacterium was previously isolated from Hanford Site soil and in earlier prescreening tests demonstrated low tolerance to U(VI) toxicity compared to other A. oxydans isolates. Experiments were conducted using glass serum bottles as mixed bioreactors and sterile 6-well cell culture plates with inserts separating bacteria cells from mineral solids. Reactors containing phosphorus-limiting media were amended with bicarbonate ranging between 0 and 10 mM and meta-autunite solids to provide a U(VI) concentration of 4.4 mmol/L. Results showed that in the presence of bicarbonate, A. oxydans G968 was able to enhance the release of U(VI) from Na and Ca autunite at the same capacity as other A. oxydans isolates with relatively high tolerance to U(VI). The effect of bacterial strains on autunite dissolution decreases as the concentration of bicarbonate increases. The results illustrate that direct interaction between the bacteria and the mineral is not necessary to result in U(VI) biorelease from autunite. The formation of secondary calcium-phosphate mineral phases on the surface of the mineral during the dissolution can ultimately reduce the natural autunite mineral contact area, which bacterial cells can access. This thereby reduces the concentration of uranium released into the solution. This study provides a better understanding of the interactions between meta-autunite and microbes in conditions mimicking arid and semiarid subsurface environments of western U.S. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Iron Sulfide Minerals Record Microbe-Mineral Interactions in Anoxic Environments

    NASA Astrophysics Data System (ADS)

    Picard, A.; Gartman, A.; Cosmidis, J.; Clarke, D. R.; Girguis, P. R.

    2017-12-01

    The precipitation of most minerals in low-temperature environments on Earth is directly or indirectly influenced by the presence of organic substances and/or microbial biomass. Notably, the influence of microorganisms on the formation of Mn and Fe oxides/oxyhydroxides at the surface of the Earth has been well characterized (Chan et al., 2011; Estes et al., 2017). However, an oxygenated atmosphere is a unique feature of planet Earth. It is therefore critical for the search of life on other planetary bodies to characterize microbe-mineral interactions that form in anoxic conditions. Here we explore the role of microorganisms on the formation of iron sulfide minerals, which form under anoxic conditions. On modern Earth, sulfate-reducing microorganisms (SRM) are the major source of dissolved sulfide in low-temperature sedimentary environments. We experimentally demonstrate that SRM play a role in the nucleation and growth of iron sulfide minerals by acting as organic templates. The physical characteristics of the resulting minerals are different from those formed under abiotic conditions. Moreover, upon forming, iron sulfide minerals become associated with organic carbon, producing a potential organo-mineral signature. We also evaluate how the presence of various organic substances affect the formation of abiotic minerals and how this could produce false biosignatures that could be mistaken as biogenic minerals. Chan, C.S., Fakra, S.C., Emerson, D., Fleming, E.J. and Edwards, K.J. (2011) Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. Isme Journal 5, 717-727. Estes, E.R., Andeer, P.F., Nordlund, D., Wankel, S.D. and Hansel, C.M. (2017) Biogenic manganese oxides as reservoirs of organic carbon and proteins in terrestrial and marine environments. Geobiology 15, 158-172.

  5. Effects of feed supplementation on mineral composition, mechanical properties and structure in femurs of Iberian red deer hinds (Cervus elaphus hispanicus).

    PubMed

    Olguin, Cesar A; Landete-Castillejos, Tomas; Ceacero, Francisco; García, Andrés J; Gallego, Laureano

    2013-01-01

    Few studies in wild animals have assessed changes in mineral profile in long bones and their implications for mechanical properties. We examined the effect of two diets differing in mineral content on the composition and mechanical properties of femora from two groups each with 13 free-ranging red deer hinds. Contents of Ca, P, Mg, K, Na, S, Cu, Fe, Mn, Se, Zn, B and Sr, Young's modulus of elasticity (E), bending strength and work of fracture were assessed in the proximal part of the diaphysis (PD) and the mid-diaphysis (MD). Whole body measures were also recorded on the hinds. Compared to animals on control diets, those on supplemented diets increased live weight by 6.5 kg and their kidney fat index (KFI), but not carcass weight, body or organ size, femur size or cortical thickness. Supplemental feeding increased Mn content of bone by 23%, Cu by 9% and Zn by 6%. These differences showed a mean fourfold greater content of these minerals in supplemental diet, whereas femora did not reflect a 5.4 times greater content of major minerals (Na and P) in the diet. Lower content of B and Sr in supplemented diet also reduced femur B by 14% and Sr by 5%. There was a subtle effect of diet only on E and none on other mechanical properties. Thus, greater availability of microminerals but not major minerals in the diet is reflected in bone composition even before marked body effects, bone macro-structure or its mechanical properties are affected.

  6. Effects of Feed Supplementation on Mineral Composition, Mechanical Properties and Structure in Femurs of Iberian Red Deer Hinds (Cervus elaphus hispanicus)

    PubMed Central

    Olguin, Cesar A.; Landete-Castillejos, Tomas; Ceacero, Francisco; García, Andrés J.; Gallego, Laureano

    2013-01-01

    Few studies in wild animals have assessed changes in mineral profile in long bones and their implications for mechanical properties. We examined the effect of two diets differing in mineral content on the composition and mechanical properties of femora from two groups each with 13 free-ranging red deer hinds. Contents of Ca, P, Mg, K, Na, S, Cu, Fe, Mn, Se, Zn, B and Sr, Young’s modulus of elasticity (E), bending strength and work of fracture were assessed in the proximal part of the diaphysis (PD) and the mid-diaphysis (MD). Whole body measures were also recorded on the hinds. Compared to animals on control diets, those on supplemented diets increased live weight by 6.5 kg and their kidney fat index (KFI), but not carcass weight, body or organ size, femur size or cortical thickness. Supplemental feeding increased Mn content of bone by 23%, Cu by 9% and Zn by 6%. These differences showed a mean fourfold greater content of these minerals in supplemental diet, whereas femora did not reflect a 5.4 times greater content of major minerals (Na and P) in the diet. Lower content of B and Sr in supplemented diet also reduced femur B by 14% and Sr by 5%. There was a subtle effect of diet only on E and none on other mechanical properties. Thus, greater availability of microminerals but not major minerals in the diet is reflected in bone composition even before marked body effects, bone macro-structure or its mechanical properties are affected. PMID:23750262

  7. Osumilite-(Mg): Validation as a mineral species and new data

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Rastsvetaeva, R. K.; Aksenov, S. M.; Belakovskiy, D. I.; Van, K. V.; Schüller, W.; Ternes, B.

    2013-12-01

    Osumilite-(Mg), the Mg-dominant analogue of osumilite, has been approved by the CNMNC IMA as a new mineral species. The holotype sample has been found at Bellerberg, Eifel volcanic area, Germany. Fluorophlogopite, sanidine, cordierite, mullite, sillimanite, topaz, pseudobrookite and hematite are associated minerals. Osumilite-(Mg) occurs as short prismatic or thick tabular hexagonal crystals reaching 0.5 × 1 mm in size in the cavities in basaltic volcanic glasses at their contact with thermally metamorphosed xenoliths of pelitic rocks. The mineral is brittle, with Mohs' hardness 6.5. Cleavage was not observed. Color is blue to brown. D meas = 2.59(1), D calc = 2.595 g/cm3. No bands corresponding to H2O and OH-groups are in the IR spectrum. Osumilite-(Mg) is uniaxial (+), ω = 1.539(2), ɛ = 1.547(2). The chemical composition (electron microprobe, average of 5 point analyses, wt %) is: 0.08 Na2O, 3.41 K2O, 0.04 CaO, 7.98 MgO, 0.28 MnO, 21.57 Al2O3, 3.59 Fe2O3, 62.33 SiO2, total 99.28. The empirical formula is: (K0.72Na0.03Ca0.01)(Mg1.97Mn0.04)[Al4.21Fe{0.45/3+}Si10.32]O30. The simplified formula is: KMg2Al3(Al2Si10)O10. The crystal structure was refined on a single crystal, R = 0.0294. Osumilite-(Mg) is hexagonal, space group P6/ mcc; a = 10.0959(1), c = 14.3282(2)Å, V = 1264.79(6) Å3, Z = 2. The strongest reflections in the X-ray powder diffraction pattern [ d, Å I %) ( hkl)] are: 7.21 (37) (002), 5.064 (85) (110), 4.137 (45) (112), 3.736 (43) (202), 3.234 (100) (211), 2.932 (42) (114), 2.767 (51) (204). A type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4174/1.

  8. Estimating mineral requirements of Nellore beef bulls fed with or without inorganic mineral supplementation and the influence on mineral balance.

    PubMed

    Zanetti, D; Godoi, L A; Estrada, M M; Engle, T E; Silva, B C; Alhadas, H M; Chizzotti, M L; Prados, L F; Rennó, L N; Valadares Filho, S C

    2017-04-01

    The objectives of this study were to quantify the mineral balance of Nellore cattle fed with and without Ca, P, and micromineral (MM) supplementation and to estimate the net and dietary mineral requirement for cattle. Nellore cattle ( = 51; 270.4 ± 36.6 kg initial BW and 8 mo age) were assigned to 1 of 3 groups: reference ( = 5), maintenance ( = 4), and performance ( = 42). The reference group was slaughtered prior to the experiment to estimate initial body composition. The maintenance group was used to collect values of animals at low gain and reduced mineral intake. The performance group was assigned to 1 of 6 treatments: sugarcane as the roughage source with a concentrate supplement composed of soybean meal and soybean hulls with and without Ca, P, and MM supplementation; sugarcane as the roughage source with a concentrate supplement composed of soybean meal and ground corn with and without Ca, P, and MM supplementation; and corn silage as the roughage source with a concentrate supplement composed of soybean meal and ground corn with and without Ca, P, and MM supplementation. Orthogonal contrasts were adopted to compare mineral intake, fecal and urinary excretion, and apparent retention among treatments. Maintenance requirements and true retention coefficients were generated with the aid of linear regression between mineral intake and mineral retention. Mineral composition of the body and gain requirements was assessed using nonlinear regression between body mineral content and mineral intake. Mineral intake and fecal and urinary excretion were measured. Intakes of Ca, P, S, Cu, Zn, Mn, Co, and Fe were reduced in the absence of Ca, P, and MM supplementation ( < 0.05). Fecal excretion of Ca, Cu, Zn, Mn, and Co was also reduced in treatments without supplementation ( < 0.01). Overall, excretion and apparent absorption and retention coefficients were reduced when minerals were not supplied ( < 0.05). The use of the true retention coefficient instead of the true

  9. The status and importance of crude protein and macro minerals in native pastures growing on Vertisols of the central highlands of Ethiopia.

    PubMed

    Gizachew, Lemma; Smit, G N

    2012-01-01

    The effects of pasture management, season and soil nutrient status on crude protein (CP) and macro mineral concentration of native pasture was studied in the Vertisol areas of the central Ethiopian highland. Soil and herbage samples from 18 continuously grazed (CG) and 12 seasonally grazed (SG) pasture sites were analyzed for N, P, Ca, Mg, K and Na. Soil and dry season CG pasture samples were collected in January and February 2001 (dry season: November-February), while wet season CG and SG pasture samples were collected during September 2001 (wet season: April-October). The Potassium concentration (2.55%) of mixed herbage samples from SG pasture exceeded the K values (1.80%) from CG pasture (P < 0.01). Significant (P < 0.01) differences of CP and macro minerals concentrations were noted among forage species. The mean CP and K concentrations of herbage from CG pasture were higher (P < 0.01) during the wet than during the dry season (5.97 and 1.80% vs. 3.18 and 0.79%), while the opposite was true for Ca (0.49% vs. 0.61%) (P < 0.05). Regarding soil macro minerals and the corresponding herbage macro mineral concentrations, significant (P < 0.05) but inconsistent correlations were found for Ca, P, Mg and Na. The results suggest that pasture management, season and to some extend soil nutrient status, can affect herbage CP and macro mineral composition. The levels of CP in CG pasture and that of P and Na in both CG and SG pastures may fall below the requirements of grazing livestock. Resting at critical stages of the growth cycle of the forage species encouraged the recovery of desirable species. For this reason resting of pasture can contribute significantly to the quality of the native pastures of the Vertisols of the central Ethiopian highlands and should be encouraged. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Trace element distribution in mineral separates of the Allende inclusions and their genetic implications

    NASA Technical Reports Server (NTRS)

    Nagasawa, H.; Blanchard, D. P.; Jacobs, J. W.; Brannon, J. C.; Philpotts, J. A.; Onuma, N.

    1977-01-01

    Concentrations of the rare earth elements (REE), Sc, Co, Fe, Zn, Ir, Na, and Cr were determined for mineral separates of the coarseand fine-grained types (group I and II) of the Allende inclusions. These data in combination with other data suggest that the minerals in the coarse-grained inclusions (group I) crystallized in a closed system with respect to refractory elements although a totally molten stage is precluded. The data also indicate that fine-grained (group II) inclusions were formed by condensation from a super-cooled nebular gas; REE-rich clinopyroxene and spinel were formed earlier than REE-poor sodalite and nepheline. In addition, pre-existing Mg isotope anomalies in the coarse-grained inclusions must have been erased during the heating stage.

  11. Bone Mineral Density and Vitamin D Levels in HIV Treatment-Naïve African American Individuals Randomized to Receive HIV Drug Regimens.

    PubMed

    Cook, Paul P; Stang, Alexandra Te; Walker, Lia R; Akula, Shaw M; Cook, Fiona J

    2016-11-01

    Treatment of human immunodeficiency virus (HIV)-infected patients with tenofovir disoproxil fumarate is associated with a decrease in bone mineral density (BMD). Treatment with efavirenz is associated with vitamin D deficiency. We compared the effects of efavirenz, emtricitabine, and tenofovir disoproxil fumarate (EFV/FTC/TDF) with the effects of raltegravir, darunavir, and ritonavir (RAL/DRV/r) on BMD and 25-hydroxyvitamin D (25[OH]D) levels in HIV-infected, antiretroviral treatment-naïve African American subjects. This was a pilot study at a single HIV clinic. Forty HIV treatment-naïve African American subjects were screened, 35 of whom were randomized to receive either EFV/FTC/TDF or RAL/DRV/r. All of the subjects received supplemental vitamin D 3 and calcium. CD4 counts, HIV RNA, parathyroid hormone, osteocalcin, N-telopeptide, and 25(OH)D levels were obtained at baseline and at 8, 24, 36, and 48 weeks. Dual-energy x-ray absorptiometry of the spine and hip was performed at baseline and at week 48. Of the 35 subjects enrolled, 10 patients receiving each regimen completed the study. Median baseline 25(OH)D levels were decreased and similar in both groups. All of the patients had plasma HIV RNA <50 copies per milliliter by week 24. By week 48, there was a sustained increase in 25(OH)D in the RAL/DRV/r group ( P = 0.0004) but not in the EFV/FTC/TDF group ( P = 0.78). There were reductions in BMD of the mean total hip ( P = 0.002) and the mean femoral neck ( P = 0.004) in the EFV/FTC/TDF group but not in the RAL/DRV/r group. Treatment of African American patients with HIV using EFV/FTC/TDF is associated with a reduction in BMD of the hip and sustained reductions of 25(OH)D not seen in the group that received RAL/DRV/r. This phenomenon may have long-term consequences on bone integrity in this population.

  12. Mineralized aplite—pegmatite at Jabal Sa'id, Hijaz region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hackett, Damien

    The Jabal Sa'id aplite—pegmatite, located at 23°49'03″N, 40°56'30″E, is part of the Jabal Hadb ash Sharar granite complex and resulted from emplacement of a residual volatile-rich fraction of alkali granite magma dominantly above a chilled carapace. Mineralization is layered, with four peak grades in layers 20-25 m wide, one of which may represent a mineral resource with greater potential than the aplite—pegmatite as a whole. The grades of all elements, except Zr, increase towards the upper part of the body. Chemical composition is extremely variable. Major-oxide data confirm previously determined geochemical characteristics and genetic relationships that suggested this body is an apogranite. However, the abundant new data also show that differences between the aplite—pegmatite and cognate alkali microgranite are not as great as previously reported, except for Na 2O which is extremely depleted in the apogranite. REE data support suggested genetic relationships and indicate that feldspar fractionation was important during crystallization. They also show that the content of HREE is comparatively constant throughout the aplite—pegmatite, and that variations in total REE content are caused by variations in the content of LREE. Bastnaesite and synchysite-(Y) are the principal rare-earth-element minerals, and are accompanied by monazite and synchesite; pyrochlore and thorite are also important ore minerals. Other elements concentrated in the aplite—pegmatite, such as Ta, Sn and U, occur only in solid solution in these minerals. The grain size of the ore minerals is commonly in the range 0.02-0.2 mm, and the grain size of gangue minerals, quartz, microcline and lesser amounts of aegirine and arfvedsonite, is typically in the range 1.0-4.0 mm. The ore minerals occur typically along gangue mineral boundaries. Zoning within the body permits calculation of high- and low-grade reserves which correspond to the upper and lower part of the apogranite.

  13. The effect of alkaline cations on the Intercalation of Carbon Dioxide in Sepiolite Minerals: a Molecular Dynamics Investigation.

    NASA Astrophysics Data System (ADS)

    Tavanti, Francesco; Muniz-Miranda, Francesco; Pedone, Alfonso

    2018-03-01

    The ability of the sepiolite mineral to intercalate CO2 molecules inside its channels in the presence of different alkaline cations (K+, Na+ and Li+) has been studied by classical Molecular Dynamics simulations. Starting from an alkaline-free sepiolite crystalline model we built three models with stoichiometry Mg320Si440Al40O1200(OH)160X+40•480H2O. On these models, we gradually replaced the water molecules present in the channels with carbon dioxide and determined the energy of this exchange reaction as well as the structural organization and dynamics of carbon dioxide in the channels. The adsorption energy shows that the Li-containing sepiolite mineral retains more carbon dioxide with respect to those with sodium and potassium cations in the channels. Moreover, the ordered patterns of CO2 molecules observed in the alkaline-free sepiolite mineral are in part destabilized by the presence of cations decreasing the adsorption capacity of this clay mineral.

  14. Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions.

    PubMed

    Peng, Cheng; Anabaraonye, Benaiah U; Crawshaw, John P; Maitland, Geoffrey C; Trusler, J P Martin

    2016-10-20

    We report experimental measurements of the dissolution rate of several carbonate minerals in CO 2 -saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO 2 -saturated NaCl brines with molalities of up to 5 mol kg -1 . The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO 2 -saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO 2 -saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO 2 -injection into carbonate-mineral saline aquifers.

  15. U.S. Geological Survey Mineral Resources Program - Science Supporting Mineral Resource Stewardship

    USGS Publications Warehouse

    Kropschot, S.J.

    2007-01-01

    The United States is the world's largest user of mineral resources. We use them to build our homes and cities, fertilize our food crops, and create wealth that allows us to buy goods and services. Individuals rarely use nonfuel mineral resources in their natural state - we buy light bulbs, not the silica, soda ash, lime, coal, salt, tungsten, copper, nickel, molybdenum, iron, manganese, aluminum, and zinc used to convert electricity into light. The USGS Mineral Resources Program (MRP) is the sole Federal source of scientific information and unbiased research on nonfuel mineral potential, production, and consumption, as well as on the environmental effects of minerals. The MRP also provides baseline geochemical, geophysical, and mineral-deposit data used to understand environmental issues related to extraction and use of mineral resources. Understanding how minerals, water, plants, and organisms interact contributes to our understanding of the environment, which is essential for maintaining human and ecosystem health. To support creation of economic and national security policies in a global context, MRP collects and analyzes data on essential mineral commodities from around the world.

  16. Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: development of a mineralomics method.

    PubMed

    Harrington, James M; Young, Daniel J; Essader, Amal S; Sumner, Susan J; Levine, Keith E

    2014-07-01

    Minerals are inorganic compounds that are essential to the support of a variety of biological functions. Understanding the range and variability of the content of these minerals in biological samples can provide insight into the relationships between mineral content and the health of individuals. In particular, abnormal mineral content may serve as an indicator of illness. The development of robust, reliable analytical methods for the determination of the mineral content of biological samples is essential to developing biological models for understanding the relationship between minerals and illnesses. This paper describes a method for the analysis of the mineral content of small volumes of serum and whole blood samples from healthy individuals. Interday and intraday precision for the mineral content of the blood (250 μL) and serum (250 μL) samples was measured for eight essential minerals--sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), iron (Fe), zinc (Zn), copper (Cu), and selenium (Se)--by plasma spectrometric methods and ranged from 0.635 to 10.1% relative standard deviation (RSD) for serum and 0.348-5.98% for whole blood. A comparison of the determined ranges for ten serum samples and six whole blood samples provided good agreement with literature reference ranges. The results demonstrate that the digestion and analysis methods can be used to reliably measure the content of these minerals and potentially of other minerals.

  17. Brimstone chemistry under laser light assists mass spectrometric detection and imaging the distribution of arsenic in minerals.

    PubMed

    Lal, Swapnil; Zheng, Zhaoyu; Pavlov, Julius; Attygalle, Athula B

    2018-05-23

    Singly charged As2n+1 ion clusters (n = 2-11) were generated from elemental arsenic by negative-ion laser-ablation mass spectrometry. The overall abundance of the gaseous As ions generated upon laser irradiation was enhanced nearly a hundred times when As-bearing samples were admixed with sulfur. However, sulfur does not act purely as an inert matrix: irradiating arsenic-sulfur mixtures revealed a novel pathway to generate and detect a series of [AsSn]- clusters (n = 2-6). Intriguingly, the spectra recorded from As2O3, NaAsO2, Na3AsO4, cacodylic acid and 3-amino-4-hydroxyphenylarsonic acid together with sulfur as the matrix were remarkably similar to that acquired from an elemental arsenic and sulfur mixture. This result indicated that arsenic sulfide cluster-ions are generated directly from arsenic compounds by a hitherto unknown pathway. The mechanism of elemental sulfur extracting chemically bound arsenic from compounds and forming [AsSn]- clusters is enigmatic; however, this discovery has a practical value as a general detection method for arsenic compounds. For example, the method was employed for the detection of As in its minerals, and for the imaging of arsenic distribution in minerals such as domeykite. LDI-MS data recorded from a latent image imprinted on a piece of paper from a flat mineral surface, and wetting the paper with a solution of sulfur, enabled the localization of arsenic in the mineral. The distribution of As was visualized as false-color images by extracting from acquired data the relative intensities of m/z 139 (AsS2-) and m/z 171 (AsS3-) ions.

  18. 43 CFR 3000.8 - Management of Federal minerals from reserved mineral estates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Management of Federal minerals from reserved mineral estates. 3000.8 Section 3000.8 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERALS...

  19. 43 CFR 3000.8 - Management of Federal minerals from reserved mineral estates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Management of Federal minerals from reserved mineral estates. 3000.8 Section 3000.8 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERALS...

  20. 43 CFR 3000.8 - Management of Federal minerals from reserved mineral estates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Management of Federal minerals from reserved mineral estates. 3000.8 Section 3000.8 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERALS...

  1. 43 CFR 3000.8 - Management of Federal minerals from reserved mineral estates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Management of Federal minerals from reserved mineral estates. 3000.8 Section 3000.8 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERALS...

  2. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  3. Concentration of Minerals in Nectar Honeys from Direct Sale and Retail in Poland.

    PubMed

    Kędzierska-Matysek, Monika; Florek, Mariusz; Wolanciuk, Anna; Barłowska, Joanna; Litwińczuk, Zygmunt

    2018-04-04

    The aim of the study was to compare the content of selected minerals in different nectar honeys (acacia, buckwheat, raspberry, linden, rapeseed, and multifloral) available on the Polish market. The degree to which the demand for eight minerals (K, Na, Mg, Ca, Zn, Fe, Mn, Cu) by adults is met by a portion of 100 g of honey was estimated as well. The material consisted of 34 artisanal honeys from direct sale and 34 samples purchased from retail stores. The artisanal honeys contained significantly more K, Mg, and Mn, but significantly less Na and Fe than the honeys purchased from the retail stores. The raspberry honey contained significantly the most K and Ca (1104.7 and 68.8 mg kg -1 ), the multifloral honey contained the most Ca and Mg (68.5 and 48.0 mg kg -1 ), and the buckwheat honey contained the most Zn and Mn (3.97 and 4.96 mg kg -1 ). The highest content of Na was shown in buckwheat and linden honeys (79.1 and 80.0 mg kg -1 ). Consumption of 100 g of honey from direct sale satisfied from 2.5 to 4.5% of the recommended intakes for K and from 10.4 to 17.3% for Mn, while the same portion of honey from retail satisfied from 1.6 to 4.8% for Fe, and from 2.3 to 6.1% for Zn and Cu. The buckwheat honey met to the greatest degree the recommended dietary intakes for Mn (16.5-27.6%), followed by raspberry honey (10.0-16.7%) and multifloral honey (6.9-11.6%).

  4. Mechanisms for chemostatic behavior in catchments: implications for CO2 consumption by mineral weathering

    USGS Publications Warehouse

    Clow, David W.; Mast, M. Alisa

    2010-01-01

    Concentrations of weathering products in streams often show relatively little variation compared to changes in discharge, both at event and annual scales. In this study, several hypothesized mechanisms for this “chemostatic behavior” were evaluated, and the potential for those mechanisms to influence relations between climate, weathering fluxes, and CO2 consumption via mineral weathering was assessed. Data from Loch Vale, an alpine catchment in the Colorado Rocky Mountains, indicates that cation exchange and seasonal precipitation and dissolution of amorphous or poorly crystalline aluminosilicates are important processes that help regulate solute concentrations in the stream; however, those processes have no direct effect on CO2 consumption in catchments. Hydrograph separation analyses indicate that old water stored in the subsurface over the winter accounts for about one-quarter of annual streamflow, and almost one-half of annual fluxes of Na and SiO2 in the stream; thus, flushing of old water by new water (snowmelt) is an important component of chemostatic behavior. Hydrologic flushing of subsurface materials further induces chemostatic behavior by reducing mineral saturation indices and increasing reactive mineral surface area, which stimulate mineral weathering rates. CO2 consumption by carbonic acid mediated mineral weathering was quantified using mass-balance calculations; results indicated that silicate mineral weathering was responsible for approximately two-thirds of annual CO2 consumption, and carbonate weathering was responsible for the remaining one-third. CO2 consumption was strongly dependent on annual precipitation and temperature; these relations were captured in a simple statistical model that accounted for 71% of the annual variation in CO2 consumption via mineral weathering in Loch Vale.

  5. The molecular structure of the phosphate mineral kidwellite NaFe93+(PO4)6(OH)11ṡ3H2O - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Theiss, Frederick L.; Scholz, Ricardo; Souza, Larissa

    2014-09-01

    The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11ṡ3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm-1 and 1014 cm-1. These bands are attributed to the PO43- ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm-1 are attributed to the ν3 antisymmetric stretching bands of the PO43- and HOPO32- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm-1are assigned to the PO43- ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm-1 are attributed to the PO43- and HOPO32- ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm-1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.

  6. Composition and source of salinity of ore-bearing fluids in Cu-Au systems of the Carajás Mineral Province, Brazil

    USGS Publications Warehouse

    Xavier, Roberto; Rusk, Brian; Emsbo, Poul; Monteiro, Lena

    2009-01-01

    The composition and Cl/Br – NaCl ratios of highly saline aqueous inclusions from large tonnage (> 100 t) IOCG deposits (Sossego, Alvo 118, and Igarapé Bahia) and a Paleoproterozoic intrusion-related Cu-Au-(Mo-W-Bi-Sn) deposit (Breves; < 50 Mt)) in the Carajás Mineral Province have been analysed by LA-ICP-MS and ion chromatography. In both Cu-Au systems, brine inclusions are Ca-dominated (5 to 10 times more than in porphyry Cu-Au fluids), and contain percent level concentrations of Na and K. IOCG inclusion fluids, however, contain higher Sr, Ba, Pb, and Zn concentrations, but significantly less Bi, than the intrusion-related Breves inclusion fluids. Cu is consistently below detection limits in brine inclusions from the IOCG and intrusion-related systems and Fe was not detected in the latter. Cl/Br and Na/Cl ratios of the IOCG inclusion fluids range from entirely evaporative brines (bittern fluids; e.g. Igarapé Bahia and Alvo 118) to values that indicate mixing with magma-derived brines. Cl/Br and Na/Cl ratios of the Breves inclusion fluids strongly suggest the involvement of magmatic brines, but that possibly also incorporated bittern fluids. Collectively, these data demonstrate that residual evaporative and magmatic brines were important components of the fluid regime involved in the formation of Cu-Au systems in the Carajás Mineral Province.

  7. Mineralogical, stable isotope, and fluid inclusion studies of spatially related porphyry Cu and epithermal Au-Te mineralization, Fakos Peninsula, Limnos Island, Greece

    NASA Astrophysics Data System (ADS)

    Fornadel, Andrew P.; Voudouris, Panagiotis Ch.; Spry, Paul G.; Melfos, Vasilios

    2012-05-01

    The Fakos porphyry Cu and epithermal Au-Te deposit, Limnos Island, Greece, is hosted in a ~20 Ma quartz monzonite and shoshonitic subvolcanic rocks that intruded middle Eocene to lower Miocene sedimentary basement rocks. Metallic mineralization formed in three stages in quartz and quartz-calcite veins. Early porphyry-style (Stage 1) metallic minerals consist of pyrite, chalcopyrite, galena, bornite, sphalerite, molybdenite, and iron oxides, which are surrounded by halos of potassic and propylitic alteration. Stage 2 mineralization is composed mostly of quartz-tourmaline veins associated with sericitic alteration and disseminated pyrite and molybdenite, whereas Stage 3, epithermal-style mineralization is characterized by polymetallic veins containing pyrite, chalcopyrite, sphalerite, galena, enargite, bournonite, tetrahedrite-tennantite, hessite, petzite, altaite, an unknown cervelleite-like Ag-telluride, native Au, and Au-Ag alloy. Stage 3 veins are spatially associated with sericitic and argillic alteration. Fluid inclusions in quartz from Stage 1 (porphyry-style) mineralization contain five types of inclusions. Type I, liquid-vapor inclusions, which homogenize at temperatures ranging from 189.5°C to 403.3°C have salinities of 14.8 to 19.9 wt. % NaCl equiv. Type II, liquid-vapor-NaCl, Type III liquid-vapor-NaCl-XCl2 (where XCl is an unknown chloride phase, likely CaCl2), and Type IV, liquid-vapor-hematite ± NaCl homogenize to the liquid phase by liquid-vapor homogenization or by daughter crystal dissolution at temperatures of 209.3 to 740.5 °C, 267.6 to 780.8 °C, and 357.9 to 684.2 °C, respectively, and, Type V, vapor-rich inclusions. Stage 2 veins are devoid of interpretable fluid inclusions. Quartz from Stage 3 (epithermal-style) veins contains two types of fluid inclusions, Type I, liquid-vapor inclusions that homogenize to the liquid phase (191.6 to 310.0 °C) with salinities of 1.40 to 9.73 wt. % NaCl equiv., and Type II, vapor-rich inclusions. Mixing

  8. Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies.

    PubMed

    Nejati, K; Hosseinian, A; Bekhradnia, A; Vessally, E; Edjlali, L

    2017-06-01

    It has been recently indicated that the Li-ion batteries may be replaced by Na-ion batteries because of their low safety, high cost, and low-temperature performance, and lack of the Li mineral reserves. Here, using density functional theory calculations, we studied the potential application of B 12 N 12 nanoclusters as anode in Na-ion batteries. Our calculations indicate that the adsorption energy of Na + and Na are about -23.4 and -1.4kcal/mol, respectively, and the pristine BN cage to improve suffers from a low cell voltage (∼0.92V) as an anode in Na-ion batteries. We presented a strategy to increase the cell voltage and performance of Na-ion batteries. We showed that encapsulation of different halides (X=F - , Cl - , or Br - ) into BN cage significantly increases the cell voltage. By increasing the atomic number of X, the Gibbs free energy change of cell becomes more negative and the cell voltage is increased up to 3.93V. The results are discussed based on the structural, energetic, frontier molecular orbital, charge transfer and electronic properties and compared with the performance of other nanostructured anodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Heterogeneous nucleation of nitric acid trihydrate on clay minerals: relevance to type ia polar stratospheric clouds.

    PubMed

    Hatch, Courtney D; Gough, Raina V; Toon, Owen B; Tolbert, Margaret A

    2008-01-17

    Although critical to atmospheric modeling of stratospheric ozone depletion, selective heterogeneous nuclei that promote the formation of Type Ia polar stratospheric clouds (PSCs) are largely unknown. While mineral particles are known to be good ice nuclei, it is currently not clear whether they are also good nuclei for PSCs. In the present study, a high-vacuum chamber equipped with transmission Fourier transform infrared spectroscopy and a quadrupole mass spectrometer was used to study heterogeneous nucleation of nitric acid trihydrate (NAT) on two clay minerals-Na-montmorillonite and kaolinite-as analogs of atmospheric terrestrial and extraterrestrial minerals. The minerals are first coated with a 3:1 supercooled H2O/HNO3 solution prior to the observed nucleation of crystalline NAT. At 220 K, NAT formation was observed at low SNAT values of 12 and 7 on kaolinite and montmorillonite clays, respectively. These are the lowest SNAT values reported in the literature on any substrate. However, NAT nucleation exhibited significant temperature dependence. At lower temperatures, representative of typical polar stratospheric conditions, much higher supersaturations were required before nucleation was observed. Our results suggest that NAT nucleation on mineral particles, not previously treated with sulfuric acid, may not be an important nucleation platform for Type Ia PSCs under normal polar stratospheric conditions.

  10. Sodium-potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition.

    PubMed

    Gattward, James N; Almeida, Alex-Alan F; Souza, José O; Gomes, Fábio P; Kronzucker, Herbert J

    2012-11-01

    In ecological setting, sodium (Na(+)) can be beneficial or toxic, depending on plant species and the Na(+) level in the soil. While its effects are more frequently studied at high saline levels, Na(+) has also been shown to be of potential benefit to some species at lower levels of supply, especially in C4 species. Here, clonal plants of the major tropical C3 crop Theobroma cacao (cacao) were grown in soil where potassium (K(+)) was partially replaced (at six levels, up to 50% replacement) by Na(+), at two concentrations (2.5 and 4.0 mmol(c) dm(-3)). At both concentrations, net photosynthesis per unit leaf area (A) increased more than twofold with increasing substitution of K(+) by Na(+). Concomitantly, instantaneous (A/E) and intrinsic (A/g(s)) water-use efficiency (WUE) more than doubled. Stomatal conductance (g(s)) and transpiration rate (E) exhibited a decline at 2.5 mmol dm(-3), but remained unchanged at 4 mmol dm(-3). Leaf nitrogen content was not impacted by Na(+) supplementation, whereas sulfur (S), calcium (Ca(2+)), magnesium (Mg(2+)) and zinc (Zn(2+)) contents were maximized at 2.5 mmol dm(-3) and intermediate (30-40%) replacement levels. Leaf K(+) did not decline significantly. In contrast, leaf Na(+) content increased steadily. The resultant elevated Na(+)/K(+) ratios in tissue correlated with increased, not decreased, plant performance. The results show that Na(+) can partially replace K(+) in the nutrition of clonal cacao, with significant beneficial effects on photosynthesis, WUE and mineral nutrition in this major perennial C3 crop. Copyright © Physiologia Plantarum 2012.

  11. Tracing the pathway of compositional changes in bone mineral with age: Preliminary study of bioapatite aging in hypermineralized dolphin’s bulla

    PubMed Central

    Li, Zhen; Pasteris, Jill D.

    2014-01-01

    Background Studies of mineral compositional effects during bone aging are complicated by the presence of collagen. Methods Hypermineralized bullae of Atlantic bottlenose dolphins of < 3 months, 2.5 years, and 20 years underwent micrometer-scale point analysis by Raman spectroscopy and electron microprobe in addition to bulk analysis for carbon. Results Bulla central areas have a mineral content of ~96 wt.% and 9–10 wt.% carbonate in their bioapatite, which is ~2 wt.% more than edge areas. Ca/P atomic ratios (~1.8) and concentrations of Mg, S, and other minor/trace elements are almost constant in central areas over time. Maturity brings greater over-all homogeneity in mineral content, stoichiometry, and morphology throughout central and edge areas of the bullae. During aging, edge areas become less porous, whereas the concentration of organics in the edge is reduced. Enhancement of coupled substitutions of CO32− for PO43− and Na for Ca during aging increases carbonate content up to ~10 wt.% in the adult bulla. Conclusions 1) Changes in physical properties during aging did not occur simultaneously with changes in chemical properties of the bone mineral. 2) Compositional changes in bone mineral were minor during the neonatal to sub-adult stage, but significant during later maturity. 3) Na and CO3 concentrations covary in a 1:1 molar proportion during aging. 4) The mineral’s crystallinity did not decrease as CO3 concentration increased during aging. General Significance Hypermineralized dolphin’s bulla, due to extreme depletion in collagen, is an ideal material for investigating mineralogical changes in bioapatite during bone aging. PMID:24650888

  12. Underground mineral extraction

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.

  13. Exploiting mineral data: applications to the diversity, distribution, and social networks of copper mineral

    NASA Astrophysics Data System (ADS)

    Morrison, S. M.; Downs, R. T.; Golden, J. J.; Pires, A.; Fox, P. A.; Ma, X.; Zednik, S.; Eleish, A.; Prabhu, A.; Hummer, D. R.; Liu, C.; Meyer, M.; Ralph, J.; Hystad, G.; Hazen, R. M.

    2016-12-01

    We have developed a comprehensive database of copper (Cu) mineral characteristics. These data include crystallographic, paragenetic, chemical, locality, age, structural complexity, and physical property information for the 689 Cu mineral species approved by the International Mineralogical Association (rruff.info/ima). Synthesis of this large, varied dataset allows for in-depth exploration of statistical trends and visualization techniques. With social network analysis (SNA) and cluster analysis of minerals, we create sociograms and chord diagrams. SNA visualizations illustrate the relationships and connectivity between mineral species, which often form cliques associated with rock type and/or geochemistry. Using mineral ecology statistics, we analyze mineral-locality frequency distribution and predict the number of missing mineral species, visualized with accumulation curves. By assembly of 2-dimensional KLEE diagrams of co-existing elements in minerals, we illustrate geochemical trends within a mineral system. To explore mineral age and chemical oxidation state, we create skyline diagrams and compare trends with varying chemistry. These trends illustrate mineral redox changes through geologic time and correlate with significant geologic occurrences, such as the Great Oxidation Event (GOE) or Wilson Cycles.

  14. Oxygen isotope geochemistry of the amphiboles: isotope effects of cation substitutions in minerals

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; Valley, John W.

    1998-06-01

    The occurrence of coexisting amphiboles in rocks and the likelihood of concurrent isotope closure allows equilibrium oxygen isotope fractionations among the amphiboles to be recovered from natural samples. Oxygen isotope analyses of mineral separates using laser fluorination show that coexisting amphiboles increasingly partition 18O in the order: hornblende ≪ gedrite < cummingtonite ≤ anthophyllite. The observed fractionations at ˜575°C are: Δ(Ged-Hbl) = 0.8‰, Δ(Cum-Hbl) = 0.9, Δ(Cum-Ged) = 0.2, Δ(Ath-Ged) = 0.3, and Δ(Ath-Hbl) > 0.9. Previously published data for hornblende, actinolite, glaucophane, and garnet show that Δ(Act-Hbl) ˜ 0.2, Δ(Gln-Grt) ≫ 1, and Δ(Hbl-Grt) ˜ 0. Thus, glaucophane strongly partitions 18O relative to the calcic amphiboles. The fractionation between two amphiboles of arbitrary composition can be predicted from the known fractionations for mica endmembers, pyroxene endmembers, and exchange components such as CaAl(NaSi) -1, NaAl(CaMg) -1, CaMg -1, MgFe -1, FeMn -1, KNa -1, KAl( Si) -1, and Fe 3+Al -1. Applications of the exchange component method reproduce measured amphibole fractionations to within ±0.1 to ±0.2‰, whereas other predictive methods cause misfit for typical metamorphic hornblende of ≥0.5‰ at 575°C. Although the isotope effects of cation exchanges may be small at high-T, they magnify dramatically for minerals formed in surficial, diagenetic, and low-T metamorphic environments. Different composition clays are predicted to have equilibrium δ 18O differences of 2-9‰. If the isotope fractionation can be determined for one mineral endmember, then calibrated exchanges allow accurate prediction of the isotope fractionations for intermediate compositions of most ortho-, ring-, chain-, and sheet-silicates.

  15. Desalination of Ground Water Minerals (Case Study: Kashan Desert in Iran)

    NASA Astrophysics Data System (ADS)

    Mahani, S. E.; Esmaeli Mahani, M.; Siavoshi, F.; Jafari, M.

    2009-12-01

    The present study focuses on testing quality and desalination of minerals from ground water that is used as the only source of water supply particularly for drinking in the Kashan Desert in Iran. About 14.2 cubic meter water/year from 59 wells, with the average depth of 120 meter, are used for drinking and personal usage in the selected study area. To test the quality of ground water, in general, salinity of minerals such as: chloride (Cl), sulfate (SO4), carbonate (CO3), bicarbonate (HCO3), potassium (K), sodium (Na), calcium (Ca), and magnesium (Mg), as well as PH, Total Dissolved Solids (TDS), Electric Conductivity (EC), and Temperature (T) are measured. EC and TDS in the deserts and arid areas are usually very high because of lack of rainfall, higher temperature, and high rate of evaporation. If the TDS is greater than 1000 mg/l, ground water needs to be desalinated. The TDS of ground water samples in Kashan Desert is greater than 2500 mg/l, which is higher than international World Health Organization (WHO) and Environmental Protection Agency (EPA) standard values. Conventional treatment can not be the only solution for making Kashan Desert ground water that much pure that can be used as fresh water for drinking because EC, Mg, Na, Cl, and SO4 are also higher than standard values. Various techniques such as: Ion Exchange (IX), Microfiltration (MF), Ultra Filtration (UF), Nano Filtration (NF), Electro Dialysis (ED), and Reserve Osmosis (RO) are examined to desalinate above mentioned minerals. Based on molecular weight and diameter of chemical particles which should be removed, in addition to experiences of operational groups in Iran, the RO technique has been selected as the best methodology. The results show that the RO technique could improve the quality of Kashan Desert ground water by comparison with the standard fresh water up to 95% to 99%.

  16. Animal...Vegetable...or Mineral?

    ERIC Educational Resources Information Center

    Cameron, Eugene

    1973-01-01

    Outlines the problems facing the United States with mineral reserves being depleted, and the consumption of minerals outstripping production. Expresses concern about the deteriorating mineral position, and the ignorance and confusion of the public with respect to mineral production and supply, energy requirements, and environmental consequences.…

  17. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste.

    PubMed

    Banerjee, Pradipta; Madhu, S; Chandra Babu, N K; Shanthi, C

    2015-04-01

    Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10mM of CaCl2, 5mM of Na2HPO4, 100mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal-protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. What can molecular dynamics simulations reveal about the stability of proteinaceous soil organic matter on mineral surfaces?

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Reardon, P. N.; Chacon, S. S.; Qafoku, N. P.; Washton, N.; Kleber, M.

    2015-12-01

    With the increased attention on climate change and the role of increasing atmospheric CO2 levels in global warming, the need for an accurate depiction of the carbon cycling processes involved in the Earth's three major carbon pools, i.e., atmosphere, terrestrial systems, and oceans has never been greater. Within the terrestrial system, soil organic matter (SOM) represents an important carbon sub-pool. Complexation of SOM with mineral interfaces and particles is believed to protect SOM from possible biotic and abiotic transformation and mineralization to carbon dioxide. However, obtaining a molecular scale picture of the interactions of the various types of SOM with a variety of soil minerals is a challenging endeavor, especially for experimental techniques. Molecular scale simulations techniques can be applied to study the atomistic, molecular, and nanoscale aspects of SOM-mineral associations, and, therefore, and aid in filling current knowledge gaps in the potential fate and stability of SOM in soil systems. Here, we will discuss our recent results from large-scale molecular dynamics simulation of protein, GB1, and its interaction with clay and oxide/hydroxide minerals (i.e., kaolinite, Na+-MMT, Ca2+-MMT, goethite, and birnessite) including a comparison of structural changes of the protein by, protein orientation with respect to, degree of protein binding to, and mobility on the mineral surfaces. Our molecular simulations indicate that these mineral surfaces, with the exception of birnessite, potentially preserve the physical properties of the GB1 protein.

  19. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. I. Effect on TRC volume and Na+ flux.

    PubMed

    Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; DeSimone, John A

    2005-06-01

    The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by the measurement of intracellular Na(+) activity ([Na(+)](i)) in polarized rat fungiform taste receptor cells (TRCs) using fluorescence imaging and by chorda tympani (CT) taste nerve recordings. CT responses were monitored during lingual stimulation with ethanol solutions containing NaCl or KCl. CT responses were recorded in the presence of Bz (a specific blocker of the epithelial Na(+) channel [ENaC]) or the vanilloid receptor-1 (VR-1) antagonists capsazepine or SB-366791, which also block the Bz-insensitive salt taste receptor, a VR-1 variant. CT responses were recorded at 23 degrees C or 42 degrees C (a temperature at which the VR-1 variant salt taste receptor activity is maximally enhanced). In the absence of permeable cations, ethanol induced a transient decrease in TRC volume, and stimulating the tongue with ethanol solutions without added salt elicited only transient phasic CT responses that were insensitive to elevated temperature or SB-366791. Preshrinking TRCs in vivo with hypertonic mannitol (0.5 M) attenuated the magnitude of the phasic CT response, indicating that in the absence of mineral salts, transient phasic CT responses are related to the ethanol-induced osmotic shrinkage of TRCs. In the presence of mineral salts, ethanol increased the Bz-insensitive apical cation flux in TRCs without a change in cell volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a transient phasic component and a sustained tonic component. Ethanol increased the Bz-insensitive NaCl CT response. This effect was further enhanced by elevating the temperature from 23 degrees C to 42 degrees C, and was blocked by SB-366791. We conclude that in the presence of mineral salts, ethanol modulates the Bz-insensitive VR-1 variant salt taste receptor.

  20. Enrichment of Mineral Dust Storm Particles with Sea Salt Elements - Using bulk and Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Mamane, Y.; Perrino, C.; Yossef, O.

    2009-12-01

    Mineral aerosol emitted from African and Asian deserts plays an important role in the atmosphere. During their long-range transport, the physical and chemical properties of mineral dust particles change due to heterogeneous reactions with trace gases, coagulation with other particles, and in-cloud processing. These processes affect the optical and hygroscopic properties of dust particles, and in general influencing the physics and chemistry of the atmosphere. Four African and Arabian dust storm episodes affecting the East Mediterranean Coast in the spring of 2006 have been characterized, to determine if atmospheric natural dust particles are enriched with sea salt and anthropogenic pollution. Particle samplers included PM10 and manual dichotomous sampler that collected fine and coarse particles. Three sets of filters were used: Teflon filters for gravimetric, elemental and ionic analyses; Pre-fired Quartz-fiber filters for elemental and organic carbon; and Nuclepore filters for scanning electron microscopy analysis. Computer-controlled scanning electron microscopy (Philips XL 30 ESEM) was used to analyze single particle, for morphology, size and chemistry of selected filter samples. A detailed chemical and microscopical characterization has been performed for the particles collected during dust event days and during clear days. The Saharan and Arabian air masses increased significantly the daily mass concentrations of the coarse and the fine particle fractions. Carbonates, mostly as soil calcites mixed with dolomites, and silicates are the major components of the coarse fraction, followed by sea salt particles. In addition, the levels of anthropogenic heavy metals and sea salt elements registered during the dust episode were considerably higher than levels recorded during clear days. Sea salt elements contain Na and Cl, and smaller amounts of Mg, K, S and Br. Cl ranges from 300 to 5500 ng/m3 and Na from 100 to almost 2400 ng/m3. The Cl to Na ratio on dusty days in

  1. Experimental investigation of cesium mobility in the course of secondary mineral formations in Hanford sediment columns at 50 degrees C.

    PubMed

    Mashal, Kholoud Y; Cetiner, Ziya S

    2010-10-01

    Formation of secondary minerals and Cs mobility in Hanford sediments were investigated under conditions similar to the Hanford tank leak in a dynamic flow system at 50 degrees C. The objectives were to (1) examine the nature and locations of secondary mineral phases precipitated in the sediments and (2) quantify the amount of Cs retained by the sediment matrix at 50 degrees C. To this end, Hanford sediments were packed into 10-cm long columns and leached with simulated tank waste consisting of 1.4 M NaOH, 0.125 M NaAlO(2), 3.7 M NaNO(3), and 1.3 x 10(-4) M Cs at 50 degrees C. Compositions of outflow solution were monitored with time for up to 25 days, and the columns were then segmented into four 2.5-cm long layers. The colloidal fraction in these segments was characterized in terms of mineralogy, particle morphology, Cs content, and short-range Al and Si structure. It was observed that cancrinite and sodalite precipitated at 50 degrees C. Approximately 53% Cs was retained in the column treated by the simulated tank waste at this temperature. Cesium retention in the column was lowered in the high ionic strength solution due to competition from Na for the exchange sites. This can be explained by alteration of distribution and number of sorption sites which reduces the selectivity of Cs for Na, and through the formation of cancrinite and sodalite. The formation of hydroxide complexes in highly alkaline solutions could also contribute to relatively poor retention of Cs by hindering ion exchange mechanism.

  2. Kulkeite, a new metamorphic phyllosilicate mineral: Ordered 1∶1 chlorite/talc mixed-layer

    NASA Astrophysics Data System (ADS)

    Schreyer, W.; Medenbach, O.; Abraham, K.; Gebert, W.; Müller, W. F.

    1982-09-01

    Kulkeite occurs as platy, colorless, porphyroblastic, single crystals up to 2 mm in size in a low-grade dolomite rock associated with a Triassic meta-evaporite series at Derrag, Tell Atlas, Algeria, It is associated with sodian aluminian talc, unusual chlorite polytypes, and both K and Na phlogopite. Kulkeite is optically biaxial, negative, n x=1.552, n y=1.5605, n z=1.5610, 2Vz=24° (obs.). Based on microprobe analysis the empirical formula is (Na0.38K0.01Ca0.01)(Mg8.02Al0.99)[Al1.43Si6.57O20](OH)10 with some variation in Na, Si, and tetrahedral Al. The crystals are monoclinic with a=5.319(1), b=9.195(2), c=23.897(10) Å, β=97° 1(3)'; Z=2; the calculated density is 2.70 g cm-3. The four strongest lines in the X-ray powder pattern are (d, I, hkl): 7.90, 100, 003; 1.533, 100, 060; 7.42, 80, 002; 3.38, 80, 007; the 001 reflection with 23.7 Å has intensity 10. Transmission electron microscopy confirms the nature of a regular 1∶1 mixed-layer, which consists of 14 Å chlorite (clinochlore) sheets alternating with sheets of one-layer (9.5 Å) talc characterized by the lattice substitution NaAl→Si just as in the talc occurring as a discrete mineral co-existing with kulkeite. Kulkeite is intergrown with lamellae of clinochlore that represent two-layer and five-layer (70 Å) polytypes with optical birefringence exceeding the normal value for clinochlore by a factor of 3. The origin of kulkeite is due to low-grade metamorphism with temperatures probably not exceeding 400° C. As the clinochlore lamellae and sodian aluminian talc are found in mutual contact, kulkeite seems to represent a metastable mineral at least during the latest phase of metamorphism. However, at an earlier stage, prior to clinochlore formation, kulkeite might have been stable, and the incorporation of Na and Al into its talc component could indeed be the decisive factor for the formation of the mixed-layer.

  3. A Study of Melt Inclusions in Tin-Mineralized Granites From Zinnwald, Germany

    NASA Astrophysics Data System (ADS)

    Sookdeo, C. A.; Webster, J. D.; Eschen, M. L.; Tappen, C. M.

    2001-12-01

    We have analyzed silicate melt inclusions from drill core samples from the eastern Erzgebirge region, Germany, to investigate magmatic-hydrothermal and mineralizing processes in compositionally evolved, tin-bearing granitic magmas. Silicate melt inclusions are small blebs of glass that are trapped or locked within phenocrysts and may contain high concentrations of volatiles that usually leave magma via degassing. Quartz phenocrysts were carefully hand picked from crushed samples of albite-, zinnwaldite- +/- lepidolite-bearing granitic dikes from Zinnwald and soaked in cold dilute HF to remove any attached groundmass. The cleaned phenocrysts were loaded into precious metal capsules with several drops of immersion oil to create a reducing environment at high temperature. The quartz-bearing capsules were inserted into quartz glass tubes, loaded into a furnace for heating at temperatures of 1025\\deg and 1050\\deg C (1atm) for periods of 20 to 30 hours, and subsequently the inclusions were quenched to glass. The inclusions were analyzed for major and minor elements (including F, Cl, and P) by electron microprobe and for H2O, trace elements, and ore elements by ion microprobe. The melt inclusion compositions are similar to that of the whole-rock sample from which the quartz separates were extracted. The average melt inclusion and whole-rock compositions are peraluminous, high in silica and rare alkalis, and low in MgO, CaO, FeO, MnO, and P2O5. Unlike the whole-rock sample, the melt inclusions contain from 0.5 to more than 4 wt.% F. The Cl contents of the inclusions are variable and range from hundreds of ppm to several thousand ppm. The variable and strong enrichments in F of the melt inclusions may correlate with (Na2O/Na2O+K2O) in the inclusions which is consistent with crystal fractionation of feldspars which drives the residual melt to increasing Na contents. Overall, the compositions of these melt inclusions are different from melt inclusions extracted from the

  4. Grouping Minerals by Their Formulas

    ERIC Educational Resources Information Center

    Mulvey, Bridget

    2018-01-01

    Minerals are commonly taught in ways that emphasize mineral identification for its own sake or maybe to help identify rocks. But how do minerals fit in with other science content taught? The author uses mineral formulas to help Earth science students wonder about the connection between elements, compounds, mixtures, minerals, and mineral formulas.…

  5. Increasing phosphorus concentration in the extraradical hyphae of Rhizophagus irregularis DAOM 197198 leads to a concomitant increase in metal minerals.

    PubMed

    Zhang, Lin; Jiang, Caiyun; Zhou, Jiachao; Declerck, Stéphane; Tian, Changyan; Feng, Gu

    2016-11-01

    Plants associated with arbuscular mycorrhizal fungi (AMF) acquire phosphorus via roots and extraradical hyphae. How soil P level affects P accumulation within hyphae and how P in hyphae influences the accumulation of metal minerals remains little explored. A bi-compartmented in vitro cultivation system separating a root compartment (RC), containing a Ri T-DNA transformed carrot root associated to the AMF Rhizophagus irregularis DAOM 197198, from a hyphal compartment (HC), containing only the extraradical hyphae, was used. The HC contained a liquid growth medium (i.e., the modified Strullu-Romand medium containing P in the form of KH 2 PO 4 ) without (0 μM) or adjusted to 35, 100, and 700 μM of KH 2 PO 4 . The accumulation of P and metal minerals (Ca, Mg, K, Na, Fe, Cu, Mn) within extraradical hyphae and AMF-colonized roots, and the expression of the phosphate transporter gene GintPT were assessed. The expression of GintPT in the extraradical hyphae did not differ in absence of KH 2 PO 4 or in presence of 35 and 100 μM KH 2 PO 4 in the HC but was markedly reduced in presence of 700 μM KH 2 PO 4 . Hyphal P concentration was significantly lowest in absence of KH 2 PO 4 , intermediate at 35 and 100 μM KH 2 PO 4 and significantly highest in presence of 700 μM KH 2 PO 4 in the HC. The concentrations of K, Mg, and Na were positively associated with the concentration of P in the extraradical hyphae developing in the HC. Similarly, P concentration in extraradical hyphae in the HC was related to P concentration in the growth medium and influenced the concentration of K, Mg, and Na. The accumulation of the metal mineral K, Mg, and Na in the extraradical hyphae developing in the HC was possibly related to their function in neutralizing the negative charges of PolyP accumulated in the hyphae.

  6. Analysis of some elements in primary enamel during postnatal mineralization.

    PubMed

    Sabel, Nina; Klinberg, Gunilla; Nietzsche, Sandor; Robertson, Agneta; Odelius, Hans; Norén, Jörgen G

    2009-01-01

    The primary teeth start to mineralize in utero and continue development and maturation during the first year of life.The aim of this study was to investigate the concentrations of some elements, C, F, Na, Mg, Cl, K and Sr, by secondary ion mass spectrometry (SIMS) in human primary incisors at different stages of mineralization.The teeth derived from an autopsy material from children who had died in sudden infant death.The buccal enamel of specimens from the ages 1, 2, 3, 4, 6 and 19 months, respectively, was analyzed. It was evident that posteruptive effects play an important role in composition of the outermost parts of the enamel. Before the tooth erupts, the concentrations of the elements vary with the maturation grade of the mineralization in the enamel. Sodium was the element with the highest concentration of the measured elements and chlorine was the element of lowest concentration.The 19 month old specimen, considered as the only mature and erupted tooth, showed to differ from the other specimens.The concentration of fluorine, in the 19 month old specimen's outermost surface, is readily seen higher compared with the other specimens at this depth zone. In the 19 month old specimen the concentration of carbon is lower. Potassium, sodium and chlorine have higher concentrations, in general, in the 19 month old specimen compared with the immature specimens. The thickness of the enamel during mineralization was calculated from data from SIMS.The thickness of the buccal enamel of primary incisors seemed to be fully developed between 3-4 months after birth, reaching a thickness of 350-400 microm.

  7. Determination of mineral, trace element, and pesticide levels in honey samples originating from different regions of Malaysia compared to manuka honey.

    PubMed

    Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination.

  8. Effects of Chinese mineral strategies on the U.S. minerals industry

    USGS Publications Warehouse

    McCartan, L.; Menzie, W.D.; Morse, D.E.; Papp, J.F.; Plunkert, P.A.; Tse, P.-K.

    2006-01-01

    For more than two decades now, China has been undergoing rapid economic growth and industrialization. The industrialization and urbanization of the once rural, farming nation is leading to increased consumption of mineral commodities to build infrastructure and to make into consumer goods. This increased consumption has led to higher mineral prices, lower stocks and, in some cases, temporary shortages of minerals. Chinese mineral producers and manufacturers are responding by building capacity, restructuring and modernizing industrial sectors and establishing international network that compete with those of the United States and other nations.

  9. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.

    PubMed

    Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-01-20

    In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Quantitative analysis of major elements in silicate minerals and glasses by micro-PIXE

    USGS Publications Warehouse

    Campbell, J.L.; Czamanske, G.K.; MacDonald, L.; Teesdale, W.J.

    1997-01-01

    The Guelph micro-PIXE facility has been modified to accommodate a second Si(Li) X-ray detector which records the spectrum due to light major elements (11 ??? Z ??? 20) with no deleterious effects from scattered 3 MeV protons. Spectra have been recorded from 30 well-characterized materials, including a broad range of silicate minerals and both natural and synthetic glasses. Sodium is mobile in some of the glasses, but not in the studied mineral lattices. The mean value of the instrumental constant H for each of the elements Mg, Al, and Si in these materials is systematically 6-8% lower than the H-value measured for the pure metals. Normalization factors are derived which permit the matrix corrections requisite for trace-element measurements in silicates to be based upon pure metal standards for Mg, Al and Si, supplemented by well-established, silicate mineral standards for the elements Na, K and Ca. Rigorous comparisons of electron microprobe and micro-PIXE analyses for the entire, 30-sample suite demonstrate the ability of micro-PIXE to produce accurate analysis for the light major elements in silicates. ?? 1997 Elsevier Science B.V.

  11. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID MINERALS (OTHER THAN COAL) EXPLORATION AND...

  12. Characterization of fluid inclusions from mineralized pegmatites of the Damara Belt, Namibia: insight into late-stage fluid evolution and implications for mineralization

    NASA Astrophysics Data System (ADS)

    Ashworth, Luisa; Kinnaird, Judith Ann; Nex, Paul Andrew Martin; Erasmus, Rudolph Marthinus; Przybyłowicz, Wojciech Józef

    2018-05-01

    Mineralized NYF and LCT pegmatites occur throughout the northeast-trending Neoproterozoic Damara Belt, Namibia. Mineralization in the pegmatites varies geographically, from the northeast, where they are enriched in Li-Be, to the southwest, where they also contain notable Sn and U. Similar fluid inclusion populations occur throughout the pegmatites, regardless of their respective metal enrichments, and primary fluid inclusion textures were destroyed by continued fluid activity. Pseudosecondary to secondary inclusions are aqueo-carbonic, carbonic, and aqueous in composition, and have been divided into five types. The earliest populations are saline (>26.3 eq. wt.% NaCl), homogenizing at temperatures in excess of 300 °C. Their carbonic phase is composed of CO2, with minor CH4, and micro-elemental mapping indicates they contain trace metals, including Ca, Fe, Zn, Cu, and K. Type 3 inclusions formed later, homogenize at 325 °C, and are less saline, with a carbonic phase composed of CO2. Type 4 carbonic inclusions are composed of pure CO2, and represent the latest stages of fluid evolution, while Type 5 aqueous inclusions are believed to be unrelated to the crystallization of the pegmatites, and rather the result of regional Cretaceous magmatism, or the ingress of meteoric water. The similarities in fluid inclusion populations observed in the pegmatites suggest that differences in mineralization were driven by magma composition rather than fluid activity alone, however saline fluids facilitated the enrichment and deposition of metals during the late stages of crystallization. Furthermore, the similarities between fluid inclusion populations in different pegmatites suggests they share a similar fluid evolution.

  13. Carbonate, Halide, and Other New Mineral Inclusions in Diamond and Deep-Seated Carbonatitic Magma

    NASA Astrophysics Data System (ADS)

    Kaminsky, F.; Wirth, R.; Matsyuk, S.

    2009-05-01

    A series of uncommon micro- and nano-inclusions was identified in diamonds from the Juina area: carbonates, halides, and others. Carbonates are represented by calcite (with Sr and Ba), K-rich nyerereite (K2O = 10.0-13.78 wt. %), and nahcolite. Halides are NaCl, KCl, CaCl2 and PbCl2. Minerals of the periclase- wüstite series belong to two separate groups: wüstite and Mg-wüstite with Mg# = 1.9-15.3, and Fe-periclase and periclase with Mg# = 84.9-92.1. Wollastonite-II (high, Ca: Si = 0.992) has a triclinic structure. Ca-rich garnet has a noticeable admixture of Zr; it belongs to the andradite - kimzeyite - schorlomite group. Two types of spinel were distinguished among mineral inclusions in diamond: zoned magnesioferrite (with Mg# varying from 13.5 in a core to 90.8 in a rim) and Fe-spinel (magnetite). Olivine (Mg# = 93.6), intergrown with nyerereite, forms elongated, lath-shaped crystal and, probably, is a retrograde transformation of ringwoodite or wadsleyite. Some apatite grains are enriched in La, Ce and Nd. Among other minerals, there are anhydrite, cuspidine, phlogopite, TiO2 with an α-PbO2 structure, native Fe. All inclusions are polymineralic solid inclusions. These minerals form a carbonatitic-type mineral association in diamond which may have been originated in lower mantle and/or transition zone. Wüstite inclusions with Mg# = 1.9-3.4, according to the experimental data, may have been formed in the lowermost mantle. The source for the observed carbonatitic-type mineral association in diamond is deep-seated carbonatitic, most likely natrocarbonatitic magma.

  14. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...

  15. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...

  16. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...

  17. Granitoid-associated gold mineralization in Egypt: a case study from the Atalla mine

    NASA Astrophysics Data System (ADS)

    Zoheir, Basem; Deshesh, Fatma; Broman, Curt; Pitcairn, Iain; El-Metwally, Ahmed; Mashaal, Shabaan

    2018-06-01

    Gold-bearing sulfide-quartz veins cutting mainly through the Atalla monzogranite intrusion in the Eastern Desert of Egypt are controlled by subparallel NE-trending brittle shear zones. These veins are associated with pervasive sericite-altered, silicified, and ferruginated rocks. The hosting shear zones are presumed as high-order structures of the Najd-style faults in the Central Eastern Desert ( 615-585 Ma). Ore minerals include an early pyrite-arsenopyrite (±pyrrhotite) mineralization, partly replaced by a late pyrite-galena-sphalerite-chalcopyrite (±gold/electrum ± tetrahedrite ± hessite) assemblage. Gold occurs as small inclusions in pyrite and arsenopyrite, or more commonly as intergrowths with galena and sphalerite/tetrahedrite in microfractures. Arsenopyrite geothermometry suggests formation of the early Fe-As-sulfide mineralization at 380-340 °C, while conditions of deposition of the late base metal-gold assemblage are assumed to be below 300 °C. Rare hessite, electrum, and Bi-galena are associated with sphalerite and gold in the late assemblage. The early and late sulfide minerals show consistently a narrow range of δ34S ‰ (3.4-6.5) that overlaps with sulfur isotopic values in ophiolitic rocks. The Au-quartz veins are characterized by abundant CO2 and H2O ± CO2 ± NaCl inclusions, where three-dimensional clusters of inclusions show variable aqueous/carbonic proportions and broad range of total (bimodal) homogenization temperatures. Heterogeneous entrapment of immiscible fluids is interpreted to be caused by unmixing of an originally homogenous, low salinity ( 2 eq. mass % NaCl) aqueous-carbonic fluid, during transition from lithostatic to hydrostatic conditions. Gold deposition occurred generally under mesothermal conditions, i.e., 1.3 kbar and 280 °C, and continued during system cooling to < 200 °C and pressure decrease to 0.1 kbar. Based on the vein textures, sulfur isotope values, composition of ore fluids, and conditions of ore formation

  18. Some engineering aspects of homoionized mixed clay minerals.

    PubMed

    Oren, Ali Hakan; Kaya, Abidin

    2003-05-01

    Many studies have been conducted to investigate the physicochemical behavior of pure clay minerals and predict their engineering performance in the field. In this study, the physicochemical properties of an artificial mixture of different clay minerals namely, 40-50% montmorillonite, 20-30% illite and 10-15% kaolin were investigated. The mixture was homoionized with sodium, Na+; calcium, Ca2+; and aluminum, Al3+. The engineering properties studied were consistency limits, sediment volume, compressibility behavior, and hydraulic conductivity. The results revealed that the liquid, plastic and shrinkage limits of soil increased with increasing cation valence. The hydraulic conductivity of the soil also increased with an increase in the valence of the cation at any given void ratio. Aluminum and sodium treated clays had the highest and the lowest modified compression index values, respectively. Furthermore, trivalent cation saturated clayey soil consolidates three times faster than that of monovalent and two times faster than that of divalent. These properties of the soils determined were, in general, similar to those of kaolinite rather than those of montmorillonite. The comparison of the results obtained with the published data in the literature revealed that the physicochemical behavior of the tested clay soil was, in general, similar to that of kaolinite.

  19. Minerals in our environment

    USGS Publications Warehouse

    Weathers, Judy; Galloway, John; Frank, Dave

    2000-01-01

    Minerals are found everywhere in our daily lives. This poster depicts numerous items found throughout a home, and the mineral(s) or mineral resources used in the ingredients of, or construction/manufacturing of those items. Designed for K-8 Teachers this poster can be scaled and is printable at 36" x 60" and legible at 11" x 17" in size.

  20. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Other minerals and deep-lying lead and zinc minerals. 215... LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead and zinc minerals. Except as provided in § 215.6(b), leases on Quapaw Indian lands, for mining...

  1. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Other minerals and deep-lying lead and zinc minerals. 215... LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead and zinc minerals. Except as provided in § 215.6(b), leases on Quapaw Indian lands, for mining...

  2. Defining reactive sites on hydrated mineral surfaces: Rhombohedral carbonate minerals

    NASA Astrophysics Data System (ADS)

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S.; Schott, Jacques

    2009-08-01

    Despite the success of surface complexation models (SCMs) to interpret the adsorptive properties of mineral surfaces, their construct is sometimes incompatible with fundamental chemical and/or physical constraints, and thus, casts doubts on the physical-chemical significance of the derived model parameters. In this paper, we address the definition of primary surface sites (i.e., adsorption units) at hydrated carbonate mineral surfaces and discuss its implications to the formulation and calibration of surface equilibria for these minerals. Given the abundance of experimental and theoretical information on the structural properties of the hydrated (10.4) cleavage calcite surface, this mineral was chosen for a detailed theoretical analysis of critical issues relevant to the definition of primary surface sites. Accordingly, a single, generic charge-neutral surface site ( tbnd CaCO 3·H 2O 0) is defined for this mineral whereupon mass-action expressions describing adsorption equilibria were formulated. The one-site scheme, analogous to previously postulated descriptions of metal oxide surfaces, allows for a simple, yet realistic, molecular representation of surface reactions and provides a generalized reference state suitable for the calculation of sorption equilibria for rhombohedral carbonate minerals via Law of Mass Action (LMA) and Gibbs Energy Minimization (GEM) approaches. The one-site scheme is extended to other rhombohedral carbonate minerals and tested against published experimental data for magnesite and dolomite in aqueous solutions. A simplified SCM based on this scheme can successfully reproduce surface charge, reasonably simulate the electrokinetic behavior of these minerals, and predict surface speciation agreeing with available spectroscopic data. According to this model, a truly amphoteric behavior is displayed by these surfaces across the pH scale but at circum-neutral pH (5.8-8.2) and relatively high ΣCO 2 (⩾1 mM), proton/bicarbonate co

  3. Natural Variants of AtHKT1 Enhance Na+ Accumulation in Two Wild Populations of Arabidopsis

    PubMed Central

    Rus, Ana; Baxter, Ivan; Muthukumar, Balasubramaniam; Gustin, Jeff; Lahner, Brett; Yakubova, Elena; Salt, David E

    2006-01-01

    Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomic strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here, we report on the coupling of high-throughput elemental profiling of shoot tissue from various Arabidopsis accessions with DNA microarray-based bulk segregant analysis and reverse genetics, for the rapid identification of genes from wild populations of Arabidopsis that are involved in regulating how plants acquire and accumulate Na+ from the soil. Elemental profiling of shoot tissue from 12 different Arabidopsis accessions revealed that two coastal populations of Arabidopsis collected from Tossa del Mar, Spain, and Tsu, Japan (Ts-1 and Tsu-1, respectively), accumulate higher shoot levels of Na+ than do Col-0 and other accessions. We identify AtHKT1, known to encode a Na+ transporter, as being the causal locus driving elevated shoot Na+ in both Ts-1 and Tsu-1. Furthermore, we establish that a deletion in a tandem repeat sequence approximately 5 kb upstream of AtHKT1 is responsible for the reduced root expression of AtHKT1 observed in these accessions. Reciprocal grafting experiments establish that this loss of AtHKT1 expression in roots is responsible for elevated shoot Na+. Interestingly, and in contrast to the hkt1–1 null mutant, under NaCl stress conditions, this novel AtHKT1 allele not only does not confer NaCl sensitivity but also cosegregates with elevated NaCl tolerance. We also present all our elemental profiling data in a new open access ionomics database, the Purdue Ionomics Information Management System (PiiMS; http://www.purdue.edu/dp/ionomics). Using DNA microarray-based genotyping has allowed us to rapidly identify AtHKT1 as the casual locus driving the natural variation in shoot Na+ accumulation we

  4. Stabilization of NaCl-containing cuttings wastes in cement concrete by in situ formed mineral phases.

    PubMed

    Filippov, Lev; Thomas, Fabien; Filippova, Inna; Yvon, Jacques; Morillon-Jeanmaire, Anne

    2009-11-15

    Disposal of NaCl-containing cuttings is a major environmental concern due to the high solubility of chlorides. The present work aims at reducing the solubility of chloride by encapsulation in low permeability matrix as well as lowering its solubility by trapping into low-solubility phases. Both the studied materials were cuttings from an oil-based mud in oil drillings containing about 50% of halite, and cuttings in water-based mud from gas drilling containing 90% of halite. A reduction in the amount of dissolved salt from 41 to 19% according to normalized leaching tests was obtained by addition of potassium ortho-phosphate in the mortar formula of oil-based cuttings, while the aluminium dihydrogeno-phosphate is even more efficient for the stabilization of water-based cuttings with a NaCl content of 90%. Addition of ortho-phosphate leads to form a continuous and weakly soluble network in the cement matrix, which reduces the release of salt. The formed mineralogical phases were apatite and hydrocalumite. These phases encapsulate the salt grains within a network, thus lowering its interaction with water or/and trap chloride into low-solubility phases. The tested approaches allow to develop a confinement process of NaCl-containing waste of various compositions that can be applied to wastes, whatever the salt content and the nature of the drilling fluids (water or oil).

  5. Reagan issues mineral policy

    NASA Astrophysics Data System (ADS)

    The National Materials and Minerals Program plan and report that President Reagan sent to Congress on April 5 aims to ‘decrease America's minerals vulnerability’ while reducing future dependence on potentially unstable foreign sources of minerals. These goals would be accomplished by taking inventory of federal lands to determine mineral potential; by meeting the stockpile goals set by the Strategic and Critical Material Stockpiling Act; and by establishing a business and political climate that would encourage private-sector research and development on minerals.Now that the Administration has issued its plan, the Subcommittee on Mines and Mining of the House Committee on Interior and Insular Affairs will consider the National Minerals Security Act (NMSA), which was introduced 1 year ago by subcommittee chairman Jim Santini (D-Nev.) [Eos, May 19, 1981, p. 497]. The bill calls for establishing a three-member White-House-level council to coordinate the development of a national minerals policy; amending tax laws to assist the mining industry to make capital investments to locate and produce strategic materials; and creating a revolving fund for the sale and purchase of strategic minerals. In addition, the NMSA bill would allow the secretary of the interior to make previously withdrawn public lands available for mineral development. The subcommittee will hold a hearing on the Administration's plan on May 11. Interior Secretary James Watt has been invited to testify.

  6. Effect of different cooking methods on minerals, vitamins and nutritional quality indices of kutum roach (Rutilus frisii kutum).

    PubMed

    Hosseini, Hedayat; Mahmoudzadeh, Maryam; Rezaei, Masoud; Mahmoudzadeh, Leila; Khaksar, Ramin; Khosroshahi, Nader Karimian; Babakhani, Aria

    2014-04-01

    In this study, the influence of four cooking methods (baking, boiling, microwaving and frying) was evaluated on the nutritional value of kutum roach. Proximate, fatty acid composition, vitamin and mineral contents and also nutritional quality indices (NQI) of kutum roach were investigated before and after cooking treatment. All treated samples showed increase in protein, ash and lipid contents and decrease in the content of total omega-3 fatty acids (n-3) in comparison to raw fish fillets (control group). Cooking methods had no significant effect on omega-6 fatty acids (n-6) except for frying that increased it. Nonetheless, all of the cooking methods reduced vitamin B1, A and D contents. Boiling significantly decreased mineral contents including Na, K, P and Zn. Considering the overall nutritional quality indices, vitamin and mineral contents, baking is the best cooking method among other applied methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Analysis of Mineral Assemblages Containing Unstable Hydrous Phases

    NASA Astrophysics Data System (ADS)

    Vaniman, D. T.; Wilson, S. A.; Bish, D. L.; Chipera, S.

    2011-12-01

    Minerals in many environments can be treated as durable phases that preserve a record of their formation. However many minerals, especially those with hydrogen-bonded H2O molecules as part of their structure, are ephemeral and are unlikely to survive disturbance let alone removal from their environment of formation. Minerals with exceptionally limited stability such as meridianiite (Mg-sulfate 11 hydrate), ikaite (Ca-carbonate 6 hydrate), and mirabilite (Na-sulfate 10 hydrate) are very susceptible to destabilization during analysis, and even modest changes in temperature or relative humidity can lead to change in hydration state or deliquescence. The result may be not only loss of the salt hydrate but dissolution of other salts present, precipitation of new phases, and ion exchange between the concentrated solution and otherwise unaffected phases. Exchange of H2O molecules can also occur in solid-vapor systems without any liquid involvement; moreover, recent work has shown that cation exchange between smectite and sulfate hydrates can occur without any liquid phase present other than a presumed thin film at the salt-silicate interface. Among hydrous silicates, clay minerals are susceptible to cation exchange and similar alteration can be expected for zeolites, palagonite, and possibly other hydrous silicate alteration products. Environmentally sensitive phases on Mars, such as meridianiite, may occur at higher latitudes or in the subsurface where permafrost may be present. Accurate determination of the presence and paragenesis of such minerals will be important for understanding the near-surface hydrogeology of Mars, and in situ analysis may be the only way to obtain this information. Access to the subsurface may be required, yet the act of exposure by excavation or drilling can itself lead to rapid degradation as the sample is exposed or brought to the surface for analysis. Mars is not the only body with which to be concerned, for similar concerns can be raised

  8. Magnetic susceptibilities of minerals

    USGS Publications Warehouse

    Rosenblum, Sam; Brownfield, I.K.

    2000-01-01

    Magnetic separation of minerals is a topic that is seldom reported in the literature for two reasons. First, separation data generally are byproducts of other projects; and second, this study requires a large amount of patience and is unusually tedious. Indeed, we suspect that most minerals probably are never investigated for this property. These data are timesaving for mineralogists who concentrate mono-mineralic fractions for chemical analysis, age dating, and for other purposes. The data can certainly be used in the ore-beneficiation industries. In some instances, magnetic-susceptibility data may help in mineral identification, where other information is insufficient. In past studies of magnetic separation of minerals, (Gaudin and Spedden, 1943; Tille and Kirkpatrick, 1956; Rosenblum, 1958; Rubinstein and others, 1958; Flinter, 1959; Hess, 1959; Baker, 1962; Meric and Peyre, 1963; Rojas and others, 1965; and Duchesne, 1966), the emphasis has been on the ferromagnetic and paramagnetic ranges of extraction. For readers interested in the history of magnetic separation of minerals, Krumbein and Pettijohn (1938, p. 344-346) indicated nine references back to 1848. The primary purpose of this paper is to report the magnetic-susceptibility data on as many minerals as possible, similar to tables of hardness, specific gravity, refractive indices, and other basic physical properties of minerals. A secondary purpose is to demonstrate that the total and best extraction ranges are influenced by the chemistry of the minerals. The following notes are offered to help avoid problems in separating a desired mineral concentrate from mixtures of mineral grains.

  9. New Minerals and Science.

    ERIC Educational Resources Information Center

    Birch, William D.

    1997-01-01

    Defines geodiversity, compares it to biodiversity, and discusses the mineral classification system. Charts the discovery of new minerals in Australia over time and focuses on uses of these minerals in technological advances. (DDR)

  10. Optical properties of selected components of mineral dust aerosol processed with organic acids and humic material

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer M.; Grassian, V. H.; Young, M. A.; Kleiber, P. D.

    2015-03-01

    Visible light scattering phase function and linear polarization profiles of mineral dust components processed with organic acids and humic material are measured, and results are compared to T-matrix simulations of the scattering properties. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acids. Clear differences in light scattering properties are observed for all three processed samples when compared to the unprocessed dust or organic salt products. Results for quartz processed with humic acid sodium salt (NaHA) indicate the presence of both internally mixed quartz-NaHA particles and externally mixed NaHA aerosol. Simulations of light scattering suggest that the processed quartz particles become more moderate in shape due to the formation of a coating of humic material over the mineral core. Experimental results for calcite reacted with acetic acid are consistent with an external mixture of calcite and the reaction product, calcium acetate. Modeling of the light scattering properties does not require any significant change to the calcite particle shape distribution although morphology changes cannot be ruled out by our data. It is expected that calcite reacted with oxalic acid will produce internally mixed particles of calcite and calcium oxalate due to the low solubility of the product salt. However, simulations of the scattering for the calcite-oxalic acid system result in rather poor fits to the data when compared to the other samples. The poor fit provides a less accurate picture of the impact of processing in the calcite-oxalic acid system.

  11. Porosity developed during mineral replacement reactions: implications for fluid flux in the Earth

    NASA Astrophysics Data System (ADS)

    Putnis, Christine V.; Trindade Pedrosa, Elisabete; Hövelmann, Jörn; Renard, François; Ruiz-Agudo, Encarnacion

    2017-04-01

    Aqueous fluids, that are ubiquitous in the crust of the Earth, will move through possible pathways in rocks. Rocks characteristically have low permeability but fractures can provide fast fluid channels. Mineral grain boundaries also present easy fluid pathways. However, porosity within minerals forms when a mineral is out of equilibrium with an aqueous fluid and reactions take place in an attempt to reach a new equilibrium. Commonly, dissolution at a mineral-fluid interface initiates one or several coupled reactions involving dissolution and precipitation (Putnis C.V. and Ruiz-Agudo E., 2013; Ruiz-Agudo et al., 2014). In pseudomorphic volume-deficit reactions, a new phase forms while porosity is created, and thereby reactive fluid flow through the originally solid mineral is enhanced. These coupled dissolution-replacement reactions therefore will constrain the flux of material carried by the fluid. These reactions are common during such processes as metamorphism, metasomatism, and weathering. When rock-forming minerals such as feldspars, olivine, pyroxenes and carbonates are in contact with aqueous fluids (typically NaCl-rich) porosity is formed during the interfacial replacement reactions. Elements present in the parent mineral are released to the fluid and therefore mobilized for transport elsewhere. Porosity formation has been shown in a number of systems, such as during the albitisation of feldspars (Hövelmann et al., 2009) and the replacement of carbonates by apatite phases (Pedrosa et al., 2016). Some of these examples will be presented as well as examples from atomic force microscopy (AFM) experiments used to image these reactions at a nanoscale, especially at the calcite-fluid interface, when new phases can be directly observed forming. This mechanism has also been shown as a means of carbon and phosphorus sequestration and for the removal of toxic elements from superficial waters, such as Se and As. References Ruiz-Agudo E., Putnis C.V., Putnis A. (2014

  12. Dissolution Rates and Mineral Lifetimes of Phosphate Containing Minerals and Implications for Mars

    NASA Astrophysics Data System (ADS)

    Adcock, C. T.; Hausrath, E.

    2011-12-01

    The objectives of NASA's Mars Exploration Program include exploring the planet's habitability and the possibility of past, present, or future life. This includes investigating "possible supplies of bioessential elements" [1]. Phosphate is one such bioessential element for life as we understand it. Phosphate is also abundant on Mars [2], and the phosphate rich minerals chlorapatite, fluorapatite, and merrillite have been observed in Martian meteorites [3]. Surface rock analyses from the MER Spirit also show the loss of a phosphate rich mineral from the rocks Wishstone and Watchtower at Gusev Crater [4,5], implying mineral dissolution. Dissolution rates of phosphate containing minerals are therefore important for characterizing phosphate mobility and bioavailability on Mars. Previous studies have measured dissolution rates of fluorapatite [6-8]. However, chlorapatite and merrillite (a non-terrestrial mineral similar to whitlockite) are more common phosphate minerals found in Martian meteorites [3], and few dissolution data exist for these minerals. We have begun batch dissolution experiments on chlorapatite, synthesized using methods of [9], and whitlockite, synthesized using a method modified from [10]. Additionally, we are dissolving Durango fluorapatite to compare to dissolution rates in literature, and natural Palermo whitlockite to compare to dissolution rates of our synthesized whitlockite. Batch dissolution experiments were performed after [8], using a 0.01 molar KNO3 solution with 0.1500g-0.3000g mineral powders and starting solution volumes of 180ml in LDPE reaction vessels. HNO3 or KOH were used to adjust initial pH as required. Dissolution rates are calculated from the rate of change of elemental concentration in solution as a function of time, and normalized to the mineral surface area as measured by BET. Resulting rates will be used to calculate mineral lifetimes for the different phosphate minerals under potential Mars-like aqueous conditions, and in

  13. Halophytic plants as a component of a bioregenerative life support system for recycling of NaCl contained in human liquid waste.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    Currently, the closure of matter turnover is one of the urgent problems of bioregenerative life support system (BLSS) designing. The important aspect of the problem is involving of substances contained in liquid and solid exometabolites of humans inhabiting BLSS into intrasystem matter turnover. Recycling of Na+ and Cl- contained in human liquid exometabolites, i.e. urine is acknowledged to be among the main tasks of the matter turnover in BLSS. The ions excreted with urine may be returned to human organism with food. A way to allow this is including edible halophytic plants into the phototrophic compartment of BLSS. Halophytes are defined as plants which can grow on saline soils and produce high biomass under these conditions. Some halophytes can take up high quantities of Na+ and Cl- and accumulate the ions in the shoots or extrude them to leaf surface by means of salt glands. To allow Na+ and Cl- recycling through halophyte utilization, the following principal steps should be accomplished: (i) mineralization of the exometabolites by physicochemical methods; (ii) oxidation of ammonia formed during the exometabolite mineralization to nitrate by nitrifying bacteria, (iii) growing the halophyte on the nutrient solution prepared on the basis of the mineralized exometabolites, (iv) introducing the halophyte green biomass into human food. The present work is devoted to the following problems: (i) selection of a salt-accumulating/extruding halophytic plant suitable for Na+ and Cl- recycling in BLSS and (ii) parameter evaluation of a plant conveyor containing the halophytic plants at various ages. Halophytic plants selected for BLSS should meet the following criteria: (i) ability to grow under 24-hour-illumination, (ii) high productivity, (iii) ability to accumulate Na+ and Cl- in high quantities in shoots or to excrete salts to leaf surface, (iv) edibility, and (v) high nutritive value of the biomass. Relying on these criteria, salt-accumulating halophyte Salicornia

  14. Caries-Preventive Effect of NaF, NaF plus TCP, NaF plus CPP-ACP, and SDF Varnishes on Sound Dentin and Artificial Dentin Caries in vitro.

    PubMed

    Wierichs, Richard J; Stausberg, Sabrina; Lausch, Julian; Meyer-Lueckel, Hendrik; Esteves-Oliveira, Marcella

    2018-01-01

    The aim of this study was to compare the caries-preventive effect of different fluoride varnishes on sound dentin as well as on artificial dentin caries-like lesions. Bovine dentin specimens (n = 220) with one sound surface (ST) and one artificial caries lesion (DT) were prepared and randomly allocated to 11 groups. The interventions before pH cycling were as follows: application of a varnish containing NaF (22,600 ppm F-; Duraphat [NaF0/NaF1]), NaF plus tricalcium phosphate (22,600 ppm F-; Clinpro White Varnish Mint [TCP0/TCP1]), NaF plus casein phosphopeptide-stabilized amorphous calcium phosphate complexes (CPP-ACP; 22,600 ppm F-; MI Varnish [CPP0/CPP1]), or silver diamine fluoride (SDF; 35,400 ppm F-; Cariestop 30% [SDF0/SDF1]) and no intervention (NNB/N0/N1). During pH cycling (14 days, 6 × 120 min demineralization/day) half of the specimens in each group were brushed (10 s; 2 times/day) with either fluoride-free ("0"; e.g., TCP0) or 1,100 ppm F- ("1"; e.g., TCP1) dentifrice slurry. In another subgroup, the specimens were pH cycled but not brushed (NNB). Differences in integrated mineral loss (ΔΔZ), lesion depth (ΔLD), and colorimetric values (ΔΔE) were calculated between the values after initial demineralization and those after pH cycling, using transversal microradiography and photographic images. After pH cycling, no discoloration could be observed. Furthermore, NNB, N0, and N1 showed significantly increased ΔZDT/LDDT and ΔZST/LDST values, indicating further demineralization. In contrast, CPP0, CPP1, SDF0, and SDF1 showed significantly decreased ΔZDT/LDDT values, indicating remineralization (p ≤ 0.004; paired t test). CPP0, CPP1, SDF0, and SDF1 showed significantly higher changes in ΔΔZDT/ΔLDDT and ΔΔZST/ΔLDST than NNB, N0, and N1 (p < 0.001; Bonferroni post hoc test). In conclusion, under the conditions chosen, all fluoride varnishes prevented further demineralization. However, only NaF plus CPP-ACP and SDF could remineralize artificial

  15. Soil-plant-animal continuum in relation to macro and micro mineral status of dairy cattle in subtropical hill agro ecosystem.

    PubMed

    Kumaresan, A; Bujarbaruah, K M; Pathak, K A; Brajendra; Ramesh, T

    2010-04-01

    The purpose of the present study was to study the soil-plant-animal continuum in subtropical hilly areas. Soil (n = 96), fodder (n = 96), and blood serum samples from dairy cattle (n = 120) were collected from eight districts of Mizoram, a hilly state in India. The samples were digested using diacid mixture (HNO(3):HClO(4); 10:4) and analyzed for macro (Ca, P, Mg, Na, and K) and micro (Cu, Co, Mn, Fe, and Zn) mineral concentrations. The macro and micro mineral concentrations varied among the different districts. The correlation values between fodder and cattle were significant for all the minerals studied except for P and K. The correlation value between fodder and cattle was highly significant (P < 0.01) for Ca (0.878), Mg (0.88), Cu (0.885), and Zn (0.928). However, such correlations were not observed between the mineral levels in cattle and mineral levels in soil except for Ca (0.782). Equations developed in the present study for prediction of Ca (R(2) = 0.797), Mg (R(2) = 0.777), Zn (R(2) = 0.937), Fe (R(2) = 0.861), and Cu (R(2) = 0.794) had significant R(2) values. Further, it is inferred that dairy cattle reared under smallholder production system were deficient in most of the minerals and supplementation of required minerals is essential for optimum production.

  16. Bioleaching of serpentine group mineral by fungus Talaromyces flavus: application for mineral carbonation

    NASA Astrophysics Data System (ADS)

    Li, Z.; Lianwen, L.; Zhao, L.; Teng, H.

    2011-12-01

    Many studies of serpentine group mineral dissolution for mineral carbonation have been published in recent years. However, most of them focus mainly on either physical and chemical processes or on bacterial function, rather than fungal involvement in the bioleaching of serpentine group mineral. Due to the excessive costs of the magnesium dissolution process, finding a lower energy consumption method will be meaningful. A fungal strain Talaromyces flavus was isolated from serpentinic rock of Donghai (China). No study of its bioleaching ability is currently available. It is thus of great significance to explore the impact of T. flavus on the dissolution of serpentine group mineral. Serpentine rock-inhabiting fungi belonging to Acremonium, Alternaria, Aspergillus, Botryotinia, Cladosporium, Clavicipitaceae, Cosmospora, Fusarium, Monascus, Paecilomyces, Penicillium, Talaromyces, Trichoderma were isolated. These strains were chosen on the basis of resistance to magnesium and nickel characterized in terms of minimum inhibiting concentration (MIC). Specifically, the strain Talaromyces flavus has a high tolerance to both magnesium (1 mol/L) and nickel (10 mM/L), and we examine its bioleaching ability on serpentine group mineral. Contact and separation experiments (cut-off 8 000-14 000 Da), as well as three control experiments, were set up for 30 days. At least three repeated tests were performed for each individual experiment. The results of our experiments demonstrate that the bioleaching ability of T. flavus towards serpentine group mineral is evident. 39.39 wt% of magnesium was extracted from lizardite during the bioleaching period in the contact experiment, which showed a dissolution rate at about a constant 0.126 mM/d before reaching equilibrium in 13 days. The amount of solubilized Mg from chrysotile and antigorite were respectively 37.79 wt% and 29.78 wt% in the contact experiment. These results make clear the influence of mineral structure on mineral bioleaching

  17. Hydrogeochemical and stable isotopic investigations on CO2-rich mineral waters from Harghita Mts. (Eastern Carpathians, Romania)

    NASA Astrophysics Data System (ADS)

    Kis, Boglárka-Mercedesz; Baciu, Călin; Kármán, Krisztina; Kékedy-Nagy, Ladislau; Francesco, Italiano

    2013-04-01

    There is a worldwide interest on geothermal, mineral and groundwater as a resource for energy, drinking water supply and therapeutic needs. The increasing trend in replacing tap water with commercial bottled mineral water for drinking purposes has become an economic, hydrogeologic and medical concern in the last decades. Several investigations have been carried out worldwide on different topics related to geothermal and mineral waters, dealing with mineral water quality assessment, origin of geothermal and mineral waters, geochemical processes that influence water chemistry and water-rock interaction In Romania, the Călimani-Gurghiu-Harghita Neogene to Quaternary volcanic chain (Eastern Carpathians) is one of the most important areas from the point of view of CO2-rich mineral waters. These mineral water springs occur within other post-volcanic phenomena like dry CO2 emissions, moffettes, bubbling pools, H2S gas emissions etc. Mineral waters from this area are used for bottling, local spas and drinking purposes for local people. The number of springs, around 2000 according to literature data, shows that there is still a significant unexploited potential for good quality drinking water in this area. Within the youngest segment of the volcanic chain, the Harghita Mts., its volcaniclastic aprons and its boundary with the Transylvanian Basin, we have carried out an investigation on 23 CO2-rich mineral water springs from a hydrogeochemical and stable isotopic point of view. The mineral waters are Ca-Mg-HCO3 to Na-Cl type. Sometimes mixing between the two types can be observed. We have detected a great influence of water-rock interaction on the stable isotopic composition of the mineral waters, shown by isotopic shifts to the heavier oxygen isotope, mixing processes between shallow and deeper aquifers and local thermal anomalies. Acknowledgements: The present work was financially supported by the Romanian National Research Council, Project PN-II-ID-PCE-2011-3-0537 and by

  18. Effect of soil metal contamination on glyphosate mineralization: role of zinc in the mineralization rates of two copper-spiked mineral soils.

    PubMed

    Kim, Bojeong; Kim, Young Sik; Kim, Bo Min; Hay, Anthony G; McBride, Murray B

    2011-03-01

    A systematic investigation into lowered degradation rates of glyphosate in metal-contaminated soils was performed by measuring mineralization of [(14)C]glyphosate to (14)CO(2) in two mineral soils that had been spiked with Cu and/or Zn at various loadings. Cumulative (14)CO(2) release was estimated to be approximately 6% or less of the amount of [(14)C]glyphosate originally added in both soils over an 80-d incubation. For all but the highest Cu treatments (400 mg kg(-1)) in the coarse-textured Arkport soil, mineralization began without a lag phase and declined over time. No inhibition of mineralization was observed for Zn up to 400 mg kg(-1) in either soil, suggesting differential sensitivity of glyphosate mineralization to the types of metal and soil. Interestingly, Zn appeared to alleviate high-Cu inhibition of mineralization in the Arkport soil. The protective role of Zn against Cu toxicity was also observed in the pure culture study with Pseudomonas aeruginosa, suggesting that increased mineralization rates in high Cu soil with Zn additions might have been due to alleviation of cellular toxicity by Zn rather than a mineralization specific mechanism. Extensive use of glyphosate combined with its reduced degradation in Cu-contaminated, coarse-textured soils may increase glyphosate persistence in soil and consequently facilitate Cu and glyphosate mobilization in the soil environment. Copyright © 2010 SETAC.

  19. Changes in mineral composition of eggshells from black ducks and mallards fed DDE in the diet

    USGS Publications Warehouse

    Longcore, J.R.; Samson, F.B.; Kreitzer, J.F.; Spann, J.W.

    1971-01-01

    Diets containing 10 and 30 ppm (dry weight) DDE were fed to black ducks, and diets containing 1, 5, and 10 ppm (dry weight) DDE were fed to mallards. Among the results were the following changes in black duck eggshell composition: (a) significant increase in the percentage of Mg, (b) significant decreases in Ba and Sr, (c) increases (which approached significance) in average percentage of eggshell Na and Cu, (d) a decrease in shell Ca which approached significance, (e) patterns of mineral correlations which in some instances were distinct to dosage groups, and (f) inverse correlations in the control group between eggshell thickness Mg and Na. Changes in mallard eggshells were: (a) significant increase in percentage of magnesium at 5 and 10 ppm DDE, (b) significant decrease in Al at 5 and 10 ppm DDE, (c) a significant decrease in Ca from eggshells from the 10 ppm DDE group, and (d) an increase in average percentage of Na in eggshells from DDE dosed ducks which approached significance.

  20. Effect of Alumina Incorporation on the Surface Mineralization and Degradation of a Bioactive Glass (CaO-MgO-SiO2-Na2O-P2O5-CaF2)-Glycerol Paste

    PubMed Central

    Abdukayumov, Khasan; Ruzimuradov, Olim; Hojamberdiev, Mirabbos; Riedel, Ralf

    2017-01-01

    This study investigates the dissolution behavior as well as the surface biomineralization in simulated body fluid (SBF) of a paste composed of glycerol (gly) and a bioactive glass in the system CaO-MgO-SiO2-Na2O-P2O5-CaF2 (BG). The synthesis of the bioactive glass in an alumina crucible has been shown to significantly affect its bioactivity due to the incorporation of aluminum (ca. 1.3–1.4 wt %) into the glass network. Thus, the kinetics of the hydroxyapatite (HA) mineralization on the glass prepared in the alumina crucible was found to be slower than that reported for the same glass composition prepared in a Pt crucible. It is considered that the synthesis conditions lead to the incorporation of small amount of aluminum into the BG network and thus delay the HA mineralization. Interestingly, the BG-gly paste was shown to have significantly higher bioactivity than that of the as-prepared BG. Structural analysis of the paste indicate that glycerol chemically interacts with the glass surface and strongly alter the glass network architecture, thus generating a more depolymerized network, as well as an increased amount of silanol groups at the surface of the glass. In particular, BG-gly paste features early intermediate calcite precipitation during immersion in SBF, followed by hydroxyapatite formation after ca. seven days of SBF exposure; whereas the HA mineralization seems to be suppressed in BG, probably a consequence of the incorporation of aluminum into the glass network. The results obtained within the present study reveal the positive effect of using pastes based on bioactive glasses and organic carriers (here alcohols) which may be of interest not only due to their advantageous visco-elastic properties, but also due to the possibility of enhancing the glass bioactivity upon surface interactions with the organic carrier. PMID:29156541

  1. Strontium ranelate effect on bone mineral density is modified by previous bisphosphonate treatment.

    PubMed

    Brun, Lucas R; Galich, Ana M; Vega, Eduardo; Salerni, Helena; Maffei, Laura; Premrou, Valeria; Costanzo, Pablo R; Sarli, Marcelo A; Rey, Paula; Larroudé, María S; Moggia, María S; Brance, María L; Sánchez, Ariel

    2014-01-01

    The aim of this study was to evaluate the effect of strontium ranelate (SrR) on bone mineral density (BMD) and bone turnover markers after 1 year of treatment. Additionally, the effect of SrR in bisphosphonate-naïve patients (BP-naïve) compared to patients previously treated with bisphosphonates (BP-prior) was analyzed. This retrospective study included 482 postmenopausal women treated with SrR (2 g/day) for 1 year in ten Argentine centers; 41 patients were excluded due to insufficient data, while 441 were included. Participants were divided according to previous bisphosphonate treatment in two groups: BP-naïve (n = 87) and BP-prior (n = 350). Data are expressed as mean ± SEM. After 1 year of treatment with SrR the bone formation markers total alkaline phosphatase and osteocalcin were increased (p < 0.0001), while the bone resorption marker s-CTX was decreased (p = 0.0579). Also increases in BMD at the lumbar spine (LS, 3.73%), femoral neck (FN, 2.00%) and total hip (TH, 1.54%) [p < 0.0001] were observed. These increments were significant (p < 0.0001) both among BP-naïve and BP-prior patients. Interestingly, the change in BMD after 1 year of SrR treatment was higher in BP-naïve patients: LS: BP-naïve = 4.58 ± 0.62%; BP-prior = 3.45 ± 0.28% (p = 0.078). FN: BP-naïve = 2.79 ± 0.56%; BP-prior = 2.13 ± 0.29% (p = 0.161). TH: BP-naïve = 3.01 ± 0.55%; BP-prior = 1.22 ± 0.27% (p = 0.0006). SrR treatment increased BMD and bone formation markers and decreased a bone resorption marker in the whole group, with better response in BP-naïve patients.

  2. Mass changes during hydrothermal alteration/mineralization in the gold-bearing Astaneh granitoid, western Iran

    NASA Astrophysics Data System (ADS)

    Zahra Afshooni, Seyedeh; Esmaeily, Dariush

    2010-05-01

    The Astaneh granitoid massif, located in western Iran, is a part of Sanandaj-Sirjan structural Zone. This body, mainly consist of granodioritic rocks, is widely affected under hydrothermal alteration and four alteration zones including phyllic (sericitic), chloritic, propylitic and argillic zones could be identified in this area. Four main mineralization- related alteration episodes have been studied in terms of mass transfer and element mobility during the hydrothermal evolution of Astaneh deposit. In order to illustrate these changes quantitatively, isocon plots have been applied. Isocon plots illustrate that Al, Ti, Ga and Tm was relatively immobile during alteration and that mass were essentially conserved during alteration. Phyllic alteration was accompanied by the depletion of Na and Fe and the enrichment of Si and Cu. The loss of Na and Fe reflects the sericitization of alkali feldspar and the destruction of ferromagnesian minerals. The addition of Si is consistent with widespread silicification wich is a major feature of phyllic alteration. All of the HFSE (except in Y), were enriched but all REEs were depleted in this zone. The overall obtained results show that major oxides such as SiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, P2O5 and TiO2 and also LOI show dissimilar behaviors in the different zones. All of the LFSE, HFSE and FTSM (except in Cu and Mo) were depleted in argillic alteration but show dissimilar behaviors in the other alteration zones. The results shown strong depletion in REE, in particular LREE, in all of the alteration facies (except in chloritic zone), equivalent fresh rocks. In chloritic zone, compared with HREE, the LREE represent more enrichment.

  3. Mineral Surface Rearrangement at High Temperatures: Implications for Extraterrestrial Mineral Grain Reactivity.

    PubMed

    King, Helen E; Plümper, Oliver; Putnis, Christine V; O'Neill, Hugh St C; Klemme, Stephan; Putnis, Andrew

    2017-04-20

    Mineral surfaces play a critical role in the solar nebula as a catalytic surface for chemical reactions and potentially acted as a source of water during Earth's accretion by the adsorption of water molecules to the surface of interplanetary dust particles. However, nothing is known about how mineral surfaces respond to short-lived thermal fluctuations that are below the melting temperature of the mineral. Here we show that mineral surfaces react and rearrange within minutes to changes in their local environment despite being far below their melting temperature. Polished surfaces of the rock and planetary dust-forming silicate mineral olivine ((Mg,Fe) 2 SiO 4 ) show significant surface reorganization textures upon rapid heating resulting in surface features up to 40 nm in height observed after annealing at 1200 °C. Thus, high-temperature fluctuations should provide new and highly reactive sites for chemical reactions on nebula mineral particles. Our results also may help to explain discrepancies between short and long diffusion profiles in experiments where diffusion length scales are of the order of 100 nm or less.

  4. SEM, EDX, Infrared and Raman spectroscopic characterization of the silicate mineral yuksporite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Theiss, Frederick L.; Romano, Antônio Wilson

    2015-02-01

    The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)ṡH2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm-1 and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm-1. A very sharp band is observed at 3668 cm-1 and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm-1 are assigned to water stretching vibrations.

  5. Phosphoinnelite, Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3, a new mineral species from peralkaline pegmatite of the Kovdor pluton, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Kulikova, I. M.; Belakovsky, D. I.

    2007-12-01

    Phosphoinnelite, an analogue of innelite with P > S, has been found in a peralkaline pegmatite vein crosscutting calcite carbonatite at the phlogopite deposit, Kovdor pluton, Kola Peninsula. Cancrinite (partly replaced with thomsonite-Ca), orthoclase, aegirine-augite, pectolite, magnesioarfvedsonite, golyshevite, and fluorapatite are associated minerals. Phosphoinnelite occurs as lath-shaped crystals up to 0.2 × 1 × 6 mm in size, which are combined typically in bunch-, sheaf-, and rosettelike segregations. The color is yellow-brown, with vitreous luster on crystal faces and greasy luster on broken surfaces. The mineral is transparent. The streak is pale yellowish. Phosphoinnelite is brittle, with perfect cleavage parallel to the {010} and good cleavage parallel to the {100}; the fracture is stepped. The Mohs hardness is 4.5 to 5. Density is 3.82 g/cm3 (meas.) and 3.92 g/cm3 (calc.). Phosphoinnelite is biaxial (+), α = 1.730, β = 1.745, and γ = 1.764, 2V (meas.) is close to 90°. Optical orientation is Z^c ˜ 5°. Chemical composition determined by electron microprobe is as follows (wt %): 6.06 Na2O, 0.04 K2O, 0.15 CaO, 0.99 SrO, 41.60 BaO, 0.64 MgO, 1.07 MnO, 1.55 Fe2O3, 0.27 Al2O3, 17.83 SiO2, 16.88 TiO2, 0.74 Nb2O5, 5.93 P2O5, 5.29 SO3, 0.14 F, -O=F2 = -0.06, total is 99.12. The empirical formula calculated on the basis of (Si,Al)4O14 is (Ba3.59Sr0.13K0.01)Σ3.73(Na2.59Mg0.21Ca0.04)Σ3.04(Ti2.80Fe{0.26/3+}Nb0.07)Σ3.13[(Si3.93Al0.07)Σ4O14(P1.11S0.87)Σ1.98O7.96](O2.975F0.10)Σ3.075. The simplified formula is Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3. The mineral is triclinic, space group P overline 1 or P1. The unit cell dimensions are a = 5.38, b = 7.10, c = 14.76 Å; α = 99.00°, β = 94.94°, γ = 90.14°; and V = 555 Å3, Z = 1. The strongest lines of the X-ray powder pattern [ d, Å in ( I)( hkl)] are: 14.5(100)(001), 3.455(40)(103), 3.382(35)(0overline 2 2), 2.921(35)(005), 2.810(40)(1overline 1 4), 2.683(90)(200, overline 2 01), 2.133(80)(overline 2 overline

  6. Barite-polymetallic mineralization of Zmeinogorsk ore district and some genetic aspects of its formation

    NASA Astrophysics Data System (ADS)

    Bestemianova, K. V.; Grinev, O. M.

    2017-12-01

    Zmeinogorsky ore district is located in the northwest part of Ore Altai megatrough, which has long-lasting history of its development and complicated geological structure. Within the ore district, which is the northwest part of the devonian Zmeinogorsk-Bystrushinsky trough, ore mineralization is associated with the system of northwest border faults and cross branch faults. There were four main stages and five phases of minerogenesis. The first stage is the stage of oregenesis beginning and quartz-chlorite-sericite wall-rock alteration rocks formation. Ore deposition and intense tectonics took place during the second stage. The third stage is the most longstanding and productive ore formation stage. There are five distinct minerogenesis phases within this stage. The fourth stage expressed in erosion development and supergene alteration of already formed ore bodies with oxidation zone formation. Main ore minerals are pyrite, chalcopyrite, sphalerite and galena. Minor minerals are tetrahedrite, bornite, tennantite and chalcocite. Precious metals minerals are acanthite, gold, electrum, gold and silver amalgams. Barren minerals are barite, quartz, calcite, gypsum. According to obtained data average isotopic composition of third stage sulphides is: pyrite -0,2‰, chalcopyrite 0‰, galena +0,5‰, sphalerite -1,2‰ for the first complex; chalcopyrite -1,9‰, galena -3,4‰, sphalerite -2,3‰, tetrahedrite -3,7‰ for the second complex; tennantite -12,8‰, bornite -8,9‰ for the third complex. Sulfur isotopic compoisiton variations indicate source inhomogeneity. Thus, there was dominant source change from mantle one in the beginning to crustal one in the end. Main oregenesis stages took place in the range of temperatures between 170 and 210°С and in the mineral-forming solutions salinity range between 3 and 10 wt % NaCl equiv.

  7. Determination of Mineral, Trace Element, and Pesticide Levels in Honey Samples Originating from Different Regions of Malaysia Compared to Manuka Honey

    PubMed Central

    Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination. PMID:24982869

  8. Radiation damage-controlled localization of alteration haloes in albite: implications for alteration types and patterns vis-à-vis mineralization and element mobilization

    NASA Astrophysics Data System (ADS)

    Pal, D. C.; Chaudhuri, T.

    2016-12-01

    Uraninite, besides occurring in other modes, occurs as inclusions in albite in feldspathic schist in the Bagjata uranium deposits, Singhbhum shear zone, India. The feldspathic schist, considered the product of Na-metasomatism, witnessed multiple hydrothermal events, the signatures of which are preserved in the alteration halo in albite surrounding uraninite. Here we report radiation damage-controlled localization of alteration halo in albite and its various geological implications. Microscopic observation and SRIM/TRIM simulations reveal that the dimension of the alteration halo is dependent collectively on the zone of maximum cumulative α dose that albite was subjected to and by the extent of dissolution of uraninite during alteration. In well-preserved alteration haloes, from uraninite to the unaltered part of albite, the alteration minerals are systematically distributed in different zones; zone-1: K-feldspar; zone-2: chlorite; zone-3: LREE-phase/pyrite/U-Y-silicate. Based on textures of alteration minerals in the alteration microdomain, we propose a generalized Na+➔K+➔H+ alteration sequence, which is in agreement with the regional-scale alteration pattern. Integrating distribution of ore and alteration minerals in the alteration zone and their geochemistry, we further propose multiple events of U, REE, and sulfide mineralization/mobilization in the Bagjata deposit. The alteration process also involved interaction of the hydrothermal fluid with uraninite inclusions resulting in resorption of uraninite, redistribution of elements, including U and Pb, and resetting of isotopic clock. Thus, our study demonstrates that alteration halo is a miniature scale-model of the regional hydrothermal alteration types and patterns vis-à-vis mineralization/mobilization. This study further demonstrates that albite is vulnerable to radiation damage and damage-controlled fluid-assisted alteration, which may redistribute metals, including actinides, from radioactive minerals

  9. Kosnarite, KZr2(PO4)3, a new mineral from Mount Mica and Black Mountain, Oxford County, Maine

    USGS Publications Warehouse

    Brownfield, M.E.; Foord, E.E.; Sutley, S.J.; Botinelly, T.

    1993-01-01

    Kosnarite, ideally KZr2(PO4)3, has been identified as part of a late-stage, secondary phosphate mineral assemblage from the Mount Mica pegmatite at Paris, and from the Black Mountain pegmatite, Rumford, Oxford County, Maine. Kosnarite from Mount Mica occurs as pseudocubic rhombohedral crystals, as much as 0.9 mm in maximum dimension, that display the dominant {102} form. Color ranges from pale blue to blue-green to nearly colorless. The mineral has a white streak, is transparent, has a vitreous luster, and is nonfluorescent in ultraviolet light. It has a hardness of 4.5, is brittle with a conchoidal fracture, and has perfect {102} cleavage. Kosnarite from Black Mountain is almost pure KZr2(PO4)3 with only trace amounts of Hf, Mn, Na, and Rb. The mineral is one of three known alkali zirconium phosphates; the others are gainesite and the Cs analogue of gainesite. -from Author

  10. Thiazide diuretics directly induce osteoblast differentiation and mineralized nodule formation by targeting a NaCl cotransporter in bone

    PubMed Central

    Dvorak, Melita M; De Joussineau, Cyrille; Carter, D Howard; Pisitkun, Trairak; Knepper, Mark A; Gamba, Gerardo; Kemp, Paul J; Riccardi, Daniela

    2008-01-01

    Thiazide diuretics are used, worldwide, as the first-choice drug for patients with uncomplicated hypertension. In addition to their anti-hypertensive actions, they increase bone mineral density and reduce the prevalence of fractures, indicating that thiazides may have a role in the management of postmenopausal osteoporosis. Traditionally, the bone-protective effects of thiazides have been attributed to an increase in renal calcium reabsorption, secondary to the inhibition of the sodium chloride cotransporter, NCC, expressed in the kidney distal tubule. Whether thiazides exert a direct osteoanabolic effect independently of their renal action is controversial. Here we demonstrate that freshly frozen sections of human and rat bone express NCC, principally in bone-forming cells, the osteoblasts. In primary and established culture models of osteoblasts, fetal rat calvarial (FRC) and human MG63 cells, NCC protein is virtually absent in proliferating cells while its expression is dramatically increased during differentiation. Thiazides directly stimulate the production of osteoblast markers, runt-related transcription factor 2 (runx2) and osteopontin, in the absence of a proliferative effect. Using overexpression/knockdown studies in FRC cells, we show that thiazides, but not loop diuretics, increase mineralized nodule formation acting on NCC. Overall, our study demonstrates that thiazides stimulate osteoblast differentiation and bone mineral formation independently of their renal actions. In addition to their use as part of a therapeutic treatment plan for elderly, hypertensive individuals, our discovery opens up the possibility that bone-specific drug targeting by thiazides may be developed for the prevention and treatment of osteoporosis in the patient population as a whole. PMID:17656470

  11. Evaluation of trace mineral source and preharvest deletion of trace minerals from finishing diets on tissue mineral status in pigs

    PubMed Central

    Ma, Y. L.; Webb, S. F.; Rentfrow, G.

    2018-01-01

    Objective An experiment was conducted to evaluate dietary supplemental trace mineral source and deletion on mineral content in tissues. Methods Weanling crossbred pigs (n = 144; 72 barrows and 72 gilts; body weight [BW] = 7.4±1.05 kg) were used. A basal diet was prepared, and trace mineral premix containing either inorganic (ITM) or organic (OTM) trace minerals (Cu, Fe, Mn, and Zn) was added to the basal diet. Pigs were blocked by sex and BW and randomly allotted to 24 pens for a total of 6 pigs per pen, and fed a diet containing either ITM or OTM supplemented at the 1998 NRC requirement estimates for each of 5 BW phases (Phase I to V) from 7 to 120 kg. The trace mineral supplementation was deleted for 6, 4, 2, and 0 wk of Phase V; regarding nutrient adequacy during this phase, the indigenous dietary Fe and Mn was sufficient, Cu was marginal and Zn was deficient. Results At the end of Phase IV, Mn content (mg/kg on the dry matter basis) was greater (p<0.05) in heart (0.77 vs 0.68), kidney (6.32 vs 5.87), liver (9.46 vs 8.30), and longissimus dorsi (LD; 0.30 vs 0.23) of pigs fed OTM. The pigs fed OTM were greater (p<0.05) in LD Cu (2.12 vs 1.89) and Fe (21.75 vs 19.40) and metacarpal bone Zn (141.86 vs 130.05). At the end of Phase V, increased length of deletion period (from 0 to 6 wk) resulted in a decrease (linear, p<0.01) in liver Zn (196.5 to 121.8), metacarpal bone Zn (146.6 to 86.2) and an increase (linear, p<0.01) in heart Mn (0.70 to 1.08), liver Mn (7.74 to 12.96), and kidney Mn (5.58 to 7.56). The only mineral source by deletion period interaction (p<0.05) was observed in LD Zn. Conclusion The results demonstrated differential effects of mineral deletion on tissue mineral content depending on both mineral assessed and source of the mineral. PMID:28728408

  12. Thermodynamic Model of the Na-Al-Si-O-F Melts

    NASA Astrophysics Data System (ADS)

    Dolejs, D.; Baker, D. R.

    2004-05-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids which links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals or fluoride-silicate immiscibility in natural felsic melts. Configurational properties of the liquid are defined by mixing of alkali fluoride, polyhedral aluminofluoride and silicofluoride species and non-bridging terminations of the silicate network. Abundances of individual structural species are described by a homogeneous equilibrium, representing melt depolymerization: F- (free) + O0 (bridging) = F0 (terminal) + O- (non-bridging), which is a replacement of one oxygen bridge, Si-O-Si, by two terminations, Si-F | Na-O-Si. In cryolite-bearing systems, the self-dissociation of octahedral aluminofluoride complexes: Na3[AlF6] = Na[AlF4] + 2 NaF, and the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F, represent two additional interaction mechanisms. Portrayal of these equilibria in ternary Thompson reaction space allows to decrease the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the interaction parameters are incorporated directly in configurational properties, thus the complete melt speciation can be calculated, and the activities of any macroscopic species are readily derived. The model has been applied to subsystems of the Na2O-NaAlO2-SiO2-F2O-1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra in fluoride solvent. Phase-equilibria in cryolite-nepheline and cryolite-albite systems illustrate an overall increase of Na3AlF6 self

  13. The life cycle of a mineral deposit: a teacher's guide for hands-on mineral education activities

    USGS Publications Warehouse

    Frank, Dave; Galloway, John; Assmus, Ken

    2005-01-01

    This teacher's guide defines what a mineral deposit is and how a mineral deposit is identified and measured, how the mineral resources are extracted, and how the mining site is reclaimed; how minerals and mineral resources are processed; and how we use mineral resources in our every day lives. Included are 10 activitybased learning exercises that educate students on basic geologic concepts; the processes of finding, identifying, and extracting the resources from a mineral deposit; and the uses of minerals. The guide is intended for K through 12 Earth science teachers and students and is designed to meet the National Science Content Standards as defined by the National Research Council (1996). To assist in the understanding of some of the geology and mineral terms, see the Glossary (appendix 1) and Minerals and Their Uses (appendix 2). The process of finding or exploring for a mineral deposit, extracting or mining the resource, recovering the resource, also known as beneficiation, and reclaiming the land mined can be described as the “life cycle” of a mineral deposit. The complete process is time consuming and expensive, requiring the use of modern technology and equipment, and may take many years to complete. Sometimes one entity or company completes the entire process from discovery to reclamation, but often it requires multiple groups with specialized experience working together. Mineral deposits are the source of many important commodities, such as copper and gold, used by our society, but it is important to realize that mineral deposits are a nonrenewable resource. Once mined, they are exhausted, and another source must be found. New mineral deposits are being continuously created by the Earth but may take millions of years to form. Mineral deposits differ from renewable resources, such as agricultural and timber products, which may be replenished within a few months to several years.

  14. [Analysis of the mineral elements of Lactuca sativa under the condition of different spectral components].

    PubMed

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Wang, Li-Chun; Li, Liang; Chen, Fei

    2013-08-01

    Mineral elements absorption and content of Lactuca sativa under different spectral component conditions were studied by ICP-AES technology. The results showed that: (1) For Lactuca sativa, the average proportion for Ca : Mg : K : Na : P was 5.5 : 2.5 : 2.3 : 1.5 : 1.0, the average proportion for Fe : Mn : Zn : Cu : B was 25.9 : 5.9 : 2.8 : 1.1 : 1.0; (2) The absorptions for K, P, Ca, Mg and B are the largest under the LED treatment R/B = 1 : 2.75, red light from fluorescent lamps and LED can both promote the absorptions of Fe and Cu; (3)The LED treatments exhibiting relatively higher content of mineral elements are R/B = 1 : 2.75 and R/W = 1 : 1 while higher dry matter accumulations are R/B = 1 : 2.75 and B/W = 1 : 1.

  15. Evidence of Metasomatism in the Lowest Petrographic Types Inferred from A Na(-), K, Rich Rim Around A LEW 86018 (L3.1) Chondrule

    NASA Technical Reports Server (NTRS)

    Mishra, Ritesh Kumar; Marhas, Kuljeet Kaur; Simon, Justin I.; Ross, Daniel Kent

    2015-01-01

    Ordinary chondrites (OCs) represent the most abundant extraterrestrial materials and also record the widest range of alteration of primary, pristine minerals of early Solar system material available for study. Relatively few investigations, however, address: (1) the role of fluid alteration, and (2) the relationship between thermal metamorphism and metasomatism in OCs, issues that have been extensively studied in many other meteorite groups e.g., CV, CO, CR, and enstatite chondrites. Detailed elemental abundances profiles across individual chondrules, and mineralogical studies of Lewis Hills (LEW) 86018 (L3.1), an unequilibrated ordinary chondrite (UOC) of low petrographic type of 3.1 returned from Antarctica, provide evidence of extensive alteration of primary minerals. Some chondrules have Na(-), K(-), rich rims surrounded by nepheline, albite, and sodalite-like Na(-), Cl(-), Al-rich secondary minerals in the near vicinity within the matrices. Although, limited evidences of low temperature (approximately 250 C) fluid-assisted alteration of primary minerals to phyllosilicates, ferroanolivine, magnetite, and scapolite have been reported in the lowest grades (less than 3.2) Semarkona (LL3.00) and Bishunpur (LL3.10), alkali-rich secondary mineralization has previously only been seen in higher grade greater than 3.4 UOCs. This preliminary result suggests highly localized metamorphism in UOCs and widens the range of alteration in UOCs and complicates classification of petrographic type and extent of thermal metamorphism or metasomatism. The work in progress will document the micro-textures, geochemistry (Ba, Ca, REE), and isotopic composition (oxygen, Al(-)- 26 Mg-26) of mineral phases in chondrules and adjoining objects to help us understand the formation scenario and delineate possible modes of metamorphism in UOCs.

  16. Mineral Commodity Summaries 2008

    USGS Publications Warehouse

    ,

    2008-01-01

    Each chapter of the 2008 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2007 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. National reserves and reserve base information for most mineral commodities found in this report, including those for the United States, are derived from a variety of sources. The ideal source of such information would be comprehensive evaluations that apply the same criteria to deposits in different geographic areas and report the results by country. In the absence of such evaluations, national reserves and reserve base estimates compiled by countries for selected mineral commodities are a primary source of national reserves and reserve base information. Lacking national assessment information by governments, sources such as academic articles, company reports, common business practice, presentations by company representatives, and trade journal articles, or a combination of these, serve as the basis for national reserves and reserve base information reported in the mineral commodity sections of this publication. A national estimate may be assembled from the following: historically reported reserves and reserve base information carried for years without alteration because no new information is available; historically reported reserves and reserve base reduced by the amount of historical production; and company reported reserves. International minerals availability studies conducted by the U.S. Bureau of Mines, before 1996, and estimates of identified resources by an international collaborative effort (the International Strategic Minerals

  17. Mineral Composition and Nutritive Value of Isotonic and Energy Drinks.

    PubMed

    Leśniewicz, Anna; Grzesiak, Magdalena; Żyrnicki, Wiesław; Borkowska-Burnecka, Jolanta

    2016-04-01

    Several very popular brands of isotonic and energy drinks consumed for fluid and electrolyte supplementation and stimulation of mental or physical alertness were chosen for investigation. Liquid beverages available in polyethylene bottles and aluminum cans as well as products in the form of tablets and powder in sachets were studied. The total concentrations of 21 elements (Ag, Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, Pb, Sr, Ti, V, and Zn), both essential and toxic, were simultaneously determined in preconcentrated drink samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) equipped with pneumatic and ultrasonic nebulizers. Differences between the mineral compositions of isotonic and energy drinks were evaluated and discussed. The highest content of Na was found in both isotonic and energy drinks, whereas quite high concentrations of Mg were found in isotonic drinks, and the highest amount of calcium was quantified in energy drinks. The concentrations of B, Co, Cu, Ni, and P were higher in isotonic drinks, but energy drinks contained greater quantities of Ag, Cr, Zn, Mn, and Mo and toxic elements, as Cd and Pb. A comparison of element contents with micronutrient intake and tolerable levels was performed to evaluate contribution of the investigated beverages to the daily diet. The consumption of 250 cm(3) of an isotonic drink provides from 0.32% (for Mn) up to 14.8% (for Na) of the recommended daily intake. For the energy drinks, the maximum recommended daily intake fulfillment ranged from 0.02% (for V) to 19.4 or 19.8% (for Mg and Na).

  18. Minerals yearbook: Mineral industries of Europe and central Eurasia. Volume 3. 1992 international review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Volume III, Minerals Yearbook -- International Review contains the latest available mineral data on more than 175 foreign countries and discusses the importance of minerals to the economies of these nations. Since the 1989 International Review, the volume has been presented as six reports. The report presents the Mineral Industries of Europe and Central Eurasia. The report incorporates location maps, industry structure tables, and an outlook section previously incorporated in the authors' Minerals Perspectives Series quinquennial regional books, which are being discontinued. This section of the Minerals Yearbook reviews the minerals industries of 45 countries: the 12 nations of themore » European Community (EC); 6 of the 7 nations of the European Free Trade Association (EFTA); Malta; the 11 Eastern European economies in transition (Albania, Bosnia and Hercegovina, Bulgaria, Croatia, Czechoslovakia, Hungary, Macedonia, Poland, Romania, Serbia and Montenegro, and Slovenia); and the countries of Central Eurasia (Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgystan, Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan).« less

  19. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  20. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  1. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  2. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  3. Mineral composition of commonly consumed ethnic foods in Europe

    PubMed Central

    Khokhar, Santosh; Garduño-Diaz, Sara D.; Marletta, Luisa; Shahar, Danit R.; Ireland, Jane D.; Jansen-van der Vliet, Martine; de Henauw, Stefaan

    2012-01-01

    Background Ethnic foods are an integral part of food consumption in Europe contributing towards the overall nutrient intake of the population. Food composition data on these foods are crucial for assessing nutrient intake, providing dietary advice and preventing diseases. Objective To analyse selected minerals in authentic and modified ethnic foods commonly consumed in seven EU member states and Israel. Design A list of ethnic foods commonly consumed in selected European countries was generated, primary samples collected and composite sample prepared for each food, which were analysed for dietary minerals at accredited laboratories. Methods for sampling, analysis, data scrutiny and documentation were based on harmonised procedures. Results New data on 128 ethnic foods were generated for inclusion in the national databases of seven EU countries and Israel within the European Food Information Resource (EuroFIR), an EU Network of Excellence. The Na, K, Ca, P, Mg, Mn, Cl, Fe, Cu, Zn, Se and I contents of 39 foods is presented for the first time in this study. Conclusion The data will serve as an important tool in future national and international food consumption surveys, to target provision of dietary advice, facilitate implementation of policies and inform policymakers, health workers, food industry and researchers. PMID:22768018

  4. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding

    DOE PAGES

    Newcomb, C. J.; Qafoku, N. P.; Grate, J. W.; ...

    2017-08-30

    Long residence times of soil organic matter have been attributed to reactive mineral surface sites that sorb organic species and cause inaccessibility due to isolation and chemical stabilization at the organic-mineral interface. Instrumentation for probing this interface is limited. As a result, much of the micron- and molecular-scale knowledge about organic-mineral interactions remains largely qualitative. We report the use of force spectroscopy to directly measure the binding between organic ligands with known chemical functionalities to soil minerals in aqueous environments. By systematically studying the role of organic functional group chemistry with model minerals, we demonstrate that the chemistry of bothmore » the organic ligand and mineral contribute to values of binding free energy and that changes in pH and ionic strength produce significant differences in binding energies. These direct measurements of molecular binding provide mechanistic insights into organo-mineral interactions, which could potentially inform land-carbon models that explicitly include mineral-bound C pools.« less

  5. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newcomb, C. J.; Qafoku, N. P.; Grate, J. W.

    Long residence times of soil organic matter have been attributed to reactive mineral surface sites that sorb organic species and cause inaccessibility due to isolation and chemical stabilization at the organic-mineral interface. Instrumentation for probing this interface is limited. As a result, much of the micron- and molecular-scale knowledge about organic-mineral interactions remains largely qualitative. We report the use of force spectroscopy to directly measure the binding between organic ligands with known chemical functionalities to soil minerals in aqueous environments. By systematically studying the role of organic functional group chemistry with model minerals, we demonstrate that the chemistry of bothmore » the organic ligand and mineral contribute to values of binding free energy and that changes in pH and ionic strength produce significant differences in binding energies. These direct measurements of molecular binding provide mechanistic insights into organo-mineral interactions, which could potentially inform land-carbon models that explicitly include mineral-bound C pools.« less

  6. Bartering for Minerals.

    ERIC Educational Resources Information Center

    May, Kathie

    2002-01-01

    Presents an activity in which students are assigned occupations that rely on specific minerals. To obtain the needed minerals, students learn how to trade services and commodities. Includes details on preparation, modeling behaviors, and printed materials. (DDR)

  7. Compositional changes of minerals associated with dynamic recrystallizatin

    NASA Astrophysics Data System (ADS)

    Yund, Richard A.; Tullis, Jan

    1991-09-01

    The rate of compositional and isotopic exchange between minerals may be enhanced significantly if the rock is deformed simultaneously. The enhanced exchange rate may result from a reduction in grain size (shorter distance for volume diffusion), dissolution and growth of grains by diffusion creep (pressure solution), or the movement of high-angle grain boundaries through strained grains during recrystallization in the dislocation creep regime. The migration of high-angle grain boundaries provides high diffusivity paths for the rapid exchange of components during recrystallization. The operation of the latter process has been demonstrated by deforming aggregates consisting of two plagioclases (An1 and An79) at 900°C, 1 GPa confining pressure, and a strain rate of ˜2x10-6s-1. The polygonal, recrystallized grains were analyzed using an analytical transmission electron microscope and have a variable but often intermediate composition. At the conditions of these experiments, the volume interdiffusion rate of NaSi/CaAl is too slow to produce any observable chemical change, and microstructural-chemical relations indicate that the contribution from diffusion creep was insignificant except for initially fine-grained (2 10 μm) aggregates. These results indicate that strain-induced recrystallization can be an effective mechanism for enhancing the kinetics of metamorphic reactions and for resetting the isotope systematics of minerals such as feldspars, pyroxenes, and amphiboles.

  8. New insights into the toxicity of mineral fibres: A combined in situ synchrotron μ-XRD and HR-TEM study of chrysotile, crocidolite, and erionite fibres found in the tissues of Sprague-Dawley rats.

    PubMed

    Gualtieri, Alessandro F; Bursi Gandolfi, Nicola; Pollastri, Simone; Burghammer, Manfred; Tibaldi, Eva; Belpoggi, Fiorella; Pollok, Kilian; Langenhorst, Falko; Vigliaturo, Ruggero; Dražić, Goran

    2017-05-15

    Along the line of the recent research topic aimed at understanding the in vivo activity of mineral fibres and their mechanisms of toxicity, this work describes the morpho-chemical characteristics of the mineral fibres found in the tissues of Sprague-Dawley rats subjected to intraperitoneal/intrapleural injection of UICC chrysotile, UICC crocidolite and erionite-Na from Nevada (USA). The fibres are studied with in situ synchrotron powder diffraction and high resolution transmission electron microscopy to improve our understanding of the mechanisms of toxicity of these mineral fibres. In contact with the tissues of the rats, chrysotile fibres are prone to dissolve, with leaching of Mg and production of a silica rich relict. On the other hand, crocidolite and erionite-Na fibres are stable even for very long contact times within the tissues of the rats, showing just a thin dissolution amorphous halo. These findings support the model of a lower biopersistence of chrysotile with respect to crocidolite and erionite-Na but the formation of a silica-rich fibrous residue after the pseudo-amorphization of chrysotile may justify a higher cytotoxic potential and intense inflammatory activity of chrysotile in the short term in contact with the lung tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Short and long term modulation of tissue minerals concentrations following oral administration of black cumin (Nigella sativa L.) seed oil to laboratory rats.

    PubMed

    Basheer, Irum; Qureshi, Irfan Zia

    2018-01-15

    Nigella sativa, or commonly called black cumin is a small herb of family Ranunculaceae is a well-known medicinal plant but its effects on tissue mineral concentrations of animal bodies is unknown. To study the effect of oral administration of fixed oil of black cumin seeds on tissues mineral content using laboratory rats as experimental model. Experimental animals were exposed to two oral doses of seed oil (60 and 120 ml kg -1 body weight). Short- and long term experiments lasted 24 h and 60 days respectively, with three replicates each. Oil extracted from black cumin seeds was subjected to GC-MS to identify chemical components. Following the wet digestion in nitric acid, samples of whole blood and organs of rats were subjected to atomic absorption spectrophotometry for determination of elements concentrations. Data were compared statistically at p < .05. Compared to control, Cr, Mn, Ni, Cu, Zn showed decrease, whereas Co, Na, Mg and K demonstrated increase, but Ca showed both increase and decrease in most of the tissues upon short term exposure to low and high doses of black cumin oil. During long term exposure, Cr, Fe, Mn, Cu exhibited decrease; Co, Na, Mg and Ca concentrations demonstrated an upregulation, whereas Ni and Zn showed increase and decrease in most of the tissues. Comparison of short term with long term experiments at low dose revealed increases in Fe, Zn, Cu, Mg, K and Ca, a decrease in Cr, Mn, Ni and Cu in most tissues, but both increase and decrease in Na. At high dose, an increase occurred in Fe, Ni, Zn, K, Ca, Mg, a decrease in Cr, while both increase and decrease in Cu, Co and Na concentrations. Our study demonstrates that oral administration of black cumin seeds oil to laboratory rats significantly alters tissue trace elements and electrolytes concentrations. The study appears beneficial but indicates modulatory role of black cumin oil as regards mineral metabolism with far reaching implications in health and disease. Copyright © 2017

  10. Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis.

    PubMed

    Jafri, Azliana Jusnida Ahmad; Arfuzir, Natasha Najwa Nor; Lambuk, Lidawani; Iezhitsa, Igor; Agarwal, Renu; Agarwal, Puneet; Razali, Norhafiza; Krasilnikova, Anna; Kharitonova, Maria; Demidov, Vasily; Serebryansky, Evgeny; Skalny, Anatoly; Spasov, Alexander; Yusof, Ahmad Pauzi Md; Ismail, Nafeeza Mohd

    2017-01-01

    Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL -1 ). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL -1 ) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0

  11. A importância da poeira e ondas de Alfvén na estabilidade de nuvens moleculares anãs

    NASA Astrophysics Data System (ADS)

    Falceta-Gonçalves, D.; de Juli, M. C.; Jatenco-Pereira, V.

    2003-08-01

    Nuvens moleculares anãs se apresentam dinamicamente estáveis, embora possuam massas muito maiores que a massa de Jeans. Por este motivo, a estabilidade destes objetos não pode ser explicada considerando-se apenas a pressão térmica. Campos magnéticos, aproximadamente uniformes e de ~mG, exercem um termo extra de pressão que sustenta a nuvem, mas somente na direção perpendicular às linhas de campo. Para a direção paralela, ondas de Alfvén geradas por turbulências no meio, por exemplo, têm sido utilizadas. Estas, sendo supostamente fracamente amortecidas, poderiam sustentar a nuvem nesta direção. Entretanto, estes meios contêm grandes quantidades de poeira carregada eletricamente. Estes grãos de poeira possuem frequências cíclotron, que podem entrar em ressonância com as ondas. Neste trabalho calculamos os efeitos que o amortecimento cíclotron da poeira teriam na propagação da onda, e consequentemente na estabilidade da nuvem. Considerando um fluxo de ondas, com um dado espectro de frequências, e uma população de grãos de poeira, com distribuição de tamanho observada, foi possível mostrar que o amortecimento é eficiente em uma larga banda de frequências. Neste caso as ondas seriam rapidamente amortecidas gerando pequenas condensações de alta densidade, e não poderiam ser utilizadas para explicar a estabilidade de uma nuvem inteira. Desta forma, rotação e turbulência seriam candidatos alternativos para garantir a estabilidade destes objetos.

  12. Global impact of mineral dust on cloud droplet number concentration

    NASA Astrophysics Data System (ADS)

    Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Bacer, Sara; Pozzer, Andrea; Nenes, Athanasios; Lelieveld, Jos

    2017-05-01

    The importance of wind-blown mineral dust for cloud droplet formation is studied by considering (i) the adsorption of water on the surface of insoluble particles, (ii) particle coating by soluble material (atmospheric aging) which augments cloud condensation nuclei (CCN) activity, and (iii) the effect of dust on inorganic aerosol concentrations through thermodynamic interactions with mineral cations. The ECHAM5/MESSy Atmospheric Chemistry (EMAC) model is used to simulate the composition of global atmospheric aerosol, while the ISORROPIA-II thermodynamic equilibrium model treats the interactions of K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosol with gas-phase inorganic constituents. Dust is considered a mixture of inert material with reactive minerals and its emissions are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. The impact of dust on droplet formation is treated through the unified dust activation parameterization that considers the inherent hydrophilicity from adsorption and acquired hygroscopicity from soluble salts during aging. Our simulations suggest that the presence of dust increases cloud droplet number concentration (CDNC) over major deserts (e.g., up to 20 % over the Sahara and the Taklimakan desert) and decreases CDNC over polluted areas (e.g., up to 10 % over southern Europe and 20 % over northeastern Asia). This leads to a global net decrease in CDNC by 11 %. The adsorption activation of insoluble aerosols and the mineral dust chemistry are shown to be equally important for the cloud droplet formation over the main deserts; for example, these effects increase CDNC by 20 % over the Sahara. Remote from deserts the application of adsorption theory is critically important since the increased water uptake by the large aged dust particles (i.e., due to the added hydrophilicity by the soluble coating) reduce the maximum supersaturation and thus cloud droplet

  13. Inclusions of crichtonite-group minerals in Cr-pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: Crystal chemistry, parageneses and relationships to mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Rezvukhin, Dmitriy I.; Malkovets, Vladimir G.; Sharygin, Igor S.; Tretiakova, Irina G.; Griffin, William L.; O'Reilly, Suzanne Y.

    2018-05-01

    Cr-pyrope xenocrysts and associated inclusions of crichtonite-group minerals from the Internatsionalnaya kimberlite pipe were studied to provide new insights into processes in the lithospheric mantle beneath the Mirny kimberlite field, Siberian craton. Pyropes are predominantly of lherzolitic paragenesis (Cr2O3 2-6 wt%) and have trace-element spectra typical for garnets from fertile mantle (gradual increase in chondrite-normalized values from LREE to MREE-HREE). Crichtonite-group minerals commonly occur as monomineralic elongated inclusions, mostly in association with rutile, Mg-ilmenite and Cr-spinel within individual grains of pyrope. Sample INT-266 hosts intergrowth of crichtonite-group mineral and Cl-apatite, while sample INT-324 contains polymineralic apatite- and dolomite-bearing assemblages. Crichtonite-group minerals are Al-rich (1.1-4.5 wt% Al2O3), moderately Zr-enriched (1.3-4.3 wt% ZrO2), and are Ca-, Sr-, and occasionally Ba-dominant in terms of A-site occupancy; they also contain significant amounts of Na and LREE. T-estimates and chemical composition of Cr-pyropes imply that samples represent relatively low-T peridotite assemblages with ambient T ranging from 720 to 820°С. Projected onto the 35 mW/m2 cratonic paleogeotherm for the Mirny kimberlite field (Griffin et al., 1999b. Tectonophysics 310, 1-35), temperature estimates yield a P range of 34-42 kbar ( 110-130 km), which corresponds to a mantle domain in the uppermost part of the diamond stability field. The presence of crichtonite-group minerals in Cr-pyropes has petrological and geochemical implications as evidence for metasomatic enrichment of some incompatible elements in the lithospheric mantle beneath the Mirny kimberlite field. The genesis of Cr-pyropes with inclusions of crichtonite-group minerals is attributed to the percolation of Ca-Sr-Na-LREE-Zr-bearing carbonate-silicate metasomatic agents through Mg- and Cr-rich depleted peridotite protoliths. The findings of several potentially

  14. Measuring the Hardness of Minerals

    ERIC Educational Resources Information Center

    Bushby, Jessica

    2005-01-01

    The author discusses Moh's hardness scale, a comparative scale for minerals, whereby the softest mineral (talc) is placed at 1 and the hardest mineral (diamond) is placed at 10, with all other minerals ordered in between, according to their hardness. Development history of the scale is outlined, as well as a description of how the scale is used…

  15. Mineral Fiber Toxicology

    EPA Science Inventory

    The chemical and physical properties of different forms of mineral fibers impact biopersistence and pathology in the lung. Fiber chemistry, length, aspect ratio, surface area and dose are critical factors determining mineral fiber-associated health effects including cancer and as...

  16. [Application of multivariate analysis to the serum mineral and trace element content on differentiation of healthy subjects].

    PubMed

    Rodríguez Rodríguez, E; Henríquez Sánchez, P; López Blanco, F; Díaz Romero, C; Serra Majem, L

    2004-01-01

    Serum concentrations of Na, K, Ca, Mg, Fe, Cu, Zn, Se, Mn and P were determined in apparently health individuals representing of the population of the Canary Islands. Multivariate analysis was applied on the data matrix in order to differentiate the individuals according several criteria such as gender, age, island and province of residence, smoking and drinking habits and physical exercise. 395 serum samples (187 men and 208 women) were analyzed mean age of 38.4 +/- 20.0 years. Individuals data about age, gender, weight, height, alcohol consumption, smoking habits and physical exercise were recorded using standardized questionnaires. The determination of minerals was carried out by flame emission spectrometry (Na and K) and atomic absorption spectrometry with flame air/acetylene (Ca, Mg, Fe, Cu, Zn), hybride generation (Se) and graphite furnace (Mn). The P was determined by a colorimetric method. The sex and age of individuals influenced on the serum concentrations of some minerals, Cu and Fe, and P and Se, respectively. The island of residence influenced the mean concentrations of the most the minerals analysed. The smoking and drinking habits do not seem to influence the mean contents of the minerals in an important manner. Physical exercise had significant influence on the P, Cu and Mn concentrations in serum. The water for consumption influenced on the serum concentrations of the electrolytes and Ca and Mg, but it did not affect the concentrations of the trace elements. Applying discriminant analysis the individuals lower 18 years were reasonably well differentiated (89% of the individuals correctly classified) from the rest of individuals. A tendency for differentiation of individuals according to the island of residence was also observed. A low differentiation of the individuals according to the sex, province or island or residence and habits or life style was observed after application of multivariate analysis techniques. However, the adults were reasonably

  17. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    PubMed

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  18. Geochemistry of mineral waters and associated gases of the Sakhalin Island (Far East of Russia)

    NASA Astrophysics Data System (ADS)

    Chelnokov, George A.; Bragin, Ivan V.; Kharitonova, Natalia A.

    2018-04-01

    Isotopic and chemical data on the mineral water, mud volcanoes fluid and associated gases from the biggest Russian island Sakhalin, together with previous stable isotope data (d18O, dD, 13C), allow elucidation of their origin and general evolution. The water fluid circulation is mainly related to marine environment inducing three distinct types: Na-HCO3-Cl alkali carbonate groundwaters, Na-Cl-HCO3 highly evolved saline and Na-Cl mature groundwaters, indicating different evolution. Chemical evolution of groundwater on Sakhalin Island demonstrated cation exchange and salinization as dominant evolutionary pathways. Isotopic composition of groundwaters varies from meteoric to metamorphic waters. These metamorphic waters consist of water hydration from the clay and seawater are traced in fluids of Yuzhno-Sakhalin mud volcano despite modification by mixing with meteoric waters and water-rock interaction processes. Fault systems that define the areas of highly mineralized water circulation appear to play a major role in the CO2 migration to the surface and CH4 generation. The δ13C(CO2) values have pointed that gas phase in high-pCO2 waters mostly consists of mantle-derived CO2. The carbon isotope signature of methane δ13C(CH4) and δD(CH4) indicates its distinct origin which is specified by tectonics. Methane manifestation in the south of the Sakhalin Island is mainly related to thermogenic reservoirs as they are more often dislocate by tectonics, and crossed by active and permeable faults. The sources of biogenous methane in the north of Sakhalin Island is related to younger and shallower reservoirs, and less affected by tectonic processes. The determinations of 222Rn have allowed observing that maximal radon flux is associated with high pCO2 waters.

  19. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    PubMed

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic

  20. Mineral resources of Novokuznetsk administrative district of Kemerovo region (metallic and non-metallic minerals)

    NASA Astrophysics Data System (ADS)

    Gutak, Ja M.

    2017-09-01

    The article summarizes data on metallic and non-metallic minerals of Novokuznetsk district of Kemerovo region. Consistently reviewed are iron deposits (Tersinskaya group of deposits), gold deposits (placer accumulations and vein gold deposits), mineral water deposits (Tersinskoe deposit), deposit of refractory clay (Barkinskoe) and wide spread mineral deposits such as brick clay, keramzite materials, sand and gravel, building stones, ornamental stones, facing stones, peat, materials for lime production. It is indicated that resource base of metallic and nonmetallic minerals is inferior to that of mineral coal. At the same time it can be of considerable interest to small and medium-size businesses as objects with quick return of investment (facing and ornamental stones). For a number of wide spread mineral resources (brick clay, keramzite materials, sand and gravel) it is an important component of local industry.

  1. Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand

    NASA Astrophysics Data System (ADS)

    Suwanich, Parkorn

    Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.

  2. Rheological performance of bacterial cellulose based nonmineralized and mineralized hydrogel scaffolds

    NASA Astrophysics Data System (ADS)

    Basu, Probal; Saha, Nabanita; Bandyopadhyay, Smarak; Saha, Petr

    2017-05-01

    Bacterial cellulose (BC) based hydrogels (BC-PVP and BC-CMC) are modified with β-tri-calcium phosphate (β-TCP) and hydroxyapatite (HA) to improve the structural and functional properties of the existing hydrogel scaffolds. The modified hydrogels are then biomineralized with CaCO3 following liquid diffusion technique, where salt solutions of Na2CO3 (5.25 g/100 mL) and CaCl2 (7.35 g/100 mL) were involved. The BC-PVP and BC-CMC are being compared with the non-mineralized (BC-PVP-β-TCP/HA and BC-CMC-β-TCP/HA) and biomineralized (BC-PVP-β-TCP/HA-CaCO3 and BC-CMC-β-TCP/HA-CaCO3) hydrogels on the basis of their structural and rheological properties. The Fourier Transform Infrared (FTIR) spectral analysis demonstrated the presence of BC, CMC, PVP, β-TCP, HA in the non-mineralized and BC, CMC, PVP, β-TCP, HA and CaCO3 in the biomineralized samples. Interestingly, the morphological property of non-mineralized and biomineralized, hydrogels are different than that of BC-PVP and BC-CMC based novel biomaterials. The Scanning Electron Microscopic (SEM) images of the before mentioned samples reveal the denser structures than BC-PVP and BC-CMC, which exhibits the changes in their pore sizes. Concerning rheological analysis point of view, all the non-mineralized and biomineralized hydrogel scaffolds have shown significant elastic property. Additionally, the complex viscosity (η*) values have also found in decreasing order with the increase of angular frequency (ω) 0.1 rad.sec-1 to 100 rad.sec-1. All these BC based hydrogel scaffolds are elastic in nature, can be recommended for their application as an implant for bone tissue engineering.

  3. Mineral facilities of Europe

    USGS Publications Warehouse

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  4. The Miner's Canary

    ERIC Educational Resources Information Center

    Guinier, Lani

    2005-01-01

    Miners used canaries as early warning signals: when a canary gasped for breath, the miners knew there was a problem with the atmosphere in the mine. The experience of people of color in higher education can be used similarly as a diagnostic tool.

  5. Thermal equation of state of NaMg0.5Si2.5O6 and new data on the compressibility of clinopyroxenes

    NASA Astrophysics Data System (ADS)

    Dymshits, A. M.; Sharygin, I. S.; Podborodnikov, I. V.; Litasov, K. D.; Shatskiy, A. F.; Otani, E.; Pushcharovskii, D. Yu.

    2015-03-01

    The results of studies of the P-V-T equations of state (EOS) of Na-pyroxene using the multi-anvil technique and synchrotron radiation at pressures up to 15.3 GPa and temperatures up to 1673 K are presented. By fitting the Birch-Murnaghan EOS, the following parameters were determined: V 0 = 407.2 (5) Å3, the space group P2/ n, K T0 = 103 (2) GPa, K T0 = 6.2 (7), ∂ K T /∂ T = -0.018 (7), α = 3.38(13) + 0.65(62) T. Thus, despite the small volume of the cell, Na-pyroxene has a sufficiently high bulk modulus. This can be caused by the appearance of antipathetic bonds in Na-polyhedron, Si-tetrahedra rotation, and the ordering of Mg and Si cations in the M1 position. Thus, it is substantiated that the phase transformations in the minerals accompanied by the presence of Si in octahedral coordination are characterized by a significant change in the physical characteristics, such as density (ρ) and bulk modulus ( K T ). Such transformations occurring in the minerals and deep Earth can lead to significant jumps in the seismic wave velocities. Therefore, the presence of phases with silicon in sixfold coordination, such as Na-Ca majoritic garnet is of fundamental importance for understanding the Earth's upper mantle.

  6. Novel band gap-tunable K-Na co-doped graphitic carbon nitride prepared by molten salt method

    NASA Astrophysics Data System (ADS)

    Zhao, Jiannan; Ma, Lin; Wang, Haoying; Zhao, Yanfeng; Zhang, Jian; Hu, Shaozheng

    2015-03-01

    Novel band gap-tunable K-Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N2 adsorption, Scanning electron microscope (SEM), UV-vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from -1.09 and +1.55 eV to -0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K-Na co-doping.

  7. 43 CFR 3815.1 - Mineral locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Mineral locations. 3815.1 Section 3815.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Stock Driveway Withdrawals § 3815.1 Mineral locations. Under authority of the provisions of the...

  8. 43 CFR 3815.1 - Mineral locations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Mineral locations. 3815.1 Section 3815.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Stock Driveway Withdrawals § 3815.1 Mineral locations. Under authority of the provisions of the...

  9. 43 CFR 3815.1 - Mineral locations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Mineral locations. 3815.1 Section 3815.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Stock Driveway Withdrawals § 3815.1 Mineral locations. Under authority of the provisions of the...

  10. 43 CFR 3815.1 - Mineral locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mineral locations. 3815.1 Section 3815.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Stock Driveway Withdrawals § 3815.1 Mineral locations. Under authority of the provisions of the...

  11. Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom-Hashtjin metallogenic belt, NW Iran

    USGS Publications Warehouse

    Kouhestani, Hossein; Mokhtari, Mir Ali Asghar; Chang, Zhaoshan; Johnson, Craig A.

    2018-01-01

    The Aliabad-Khanchy epithermal base metal deposit is located in the Tarom-Hashtjin metallogenic belt (THMB) of northwest Iran. The mineralization occurs as Cu-bearing brecciated quartz veins hosted by Eocene volcanic and volcaniclastic rocks of the Karaj Formation. Ore formation can be divided into five stages, with most ore minerals, such as pyrite and chalcopyrite being formed in the early stages. The main wall-rock alteration is silicification, and chlorite, argillic and propylitic alteration. Microthermometric measurements of fluid inclusion assemblages show that the ore-forming fluids have eutectic temperatures between −30 and −52 °C, trapping temperatures of 150–290 °C, and salinities of 6.6–12.4 wt% NaCl equiv. These data demonstrate that the ore-forming fluids were medium- to high-temperature, medium- to low-salinity, and low-density H2O–NaCl–CaCl2 fluids. Calculated δ18O values indicate that ore-forming hydrothermal fluids had δ18Owater ranging from +3.6‰ to +0.8‰, confirming that the ore–fluid system evolved from dominantly magmatic to dominantly meteoric. The calculated 34SH2S values range from −8.1‰ to −5.0‰, consistent with derivation of the sulfur from either magma or possibly from local volcanic wall-rock. Combined, the fluid inclusion and stable isotope data indicate that the Aliabad-Khanchy deposit formed from magmatic-hydrothermal fluids. After rising to a depth of between 790 and 500 m, the fluid boiled and subsequent hydraulic fracturing may have led to inflow and/or mixing of early magmatic fluids with circulating groundwater causing deposition of base metals due to dilution and/or cooling. The Aliabad-Khanchy deposit is interpreted as an intermediate-sulfidation style of epithermal mineralization. Our data suggest that the mineralization at Aliabad-Khanchy and other epithermal deposits of the THMB formed by hydrothermal activity related to shallow late Eocene magmatism. The altered Eocene volcanic and

  12. Electron microprobe mineral analysis guide

    NASA Technical Reports Server (NTRS)

    Brown, R. W.

    1980-01-01

    Electron microprobe mineral analysis guide is a compilation of X-ray tables and spectra recorded from various mineral matrices. Spectra were obtained using electron microprobe, equipped with LiF geared, curved crystal X-ray spectrometers, utilizing typical analytical operating conditions: 15 Kv acceleration potential, 0.02 microampere sample current as measured on a clinopyroxene standard (CP19). Tables and spectra are presented for the majority of elements, fluorine through uranium, occurring in mineral samples from lunar, meteoritic and terrestrial sources. Tables for each element contain relevant analytical information, i.e., analyzing crystal, X-ray peak, background and relative intensity information, X-ray interferences and a section containing notes on the measurement. Originally intended to cover silicates and oxide minerals the tables and spectra have been expanded to cover other mineral phases. Electron microprobe mineral analysis guide is intended as a spectral base to which additional spectra can be added as the analyst encounters new mineral matrices.

  13. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  14. 30 CFR 57.5070 - Miner training.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Miner training. 57.5070 Section 57.5070 Mineral... Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5070 Miner training. (a) Mine operators must provide annual training to all miners at a mine covered by this part who can...

  15. 43 CFR 3816.1 - Mineral locations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Mineral locations. 3816.1 Section 3816.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Reclamation Withdrawals § 3816.1 Mineral locations. The Act of April 23, 1932 (47 Stat. 136; 43...

  16. 43 CFR 3816.1 - Mineral locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Mineral locations. 3816.1 Section 3816.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Reclamation Withdrawals § 3816.1 Mineral locations. The Act of April 23, 1932 (47 Stat. 136; 43...

  17. 43 CFR 3816.1 - Mineral locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mineral locations. 3816.1 Section 3816.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Reclamation Withdrawals § 3816.1 Mineral locations. The Act of April 23, 1932 (47 Stat. 136; 43...

  18. 43 CFR 3816.1 - Mineral locations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Mineral locations. 3816.1 Section 3816.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Reclamation Withdrawals § 3816.1 Mineral locations. The Act of April 23, 1932 (47 Stat. 136; 43...

  19. Alteration geochemistry of the volcanic-hosted Dedeninyurdu, Yergen and Fındıklıyar Fe-Cu mineralization at Gökçedoǧan, Çorum-Kargi region, Turkey

    NASA Astrophysics Data System (ADS)

    Gumus, Lokman; Öztürk, Sercan; Yalçın, Cihan; Abdelnasser, Amr; Hanilçi, Nurullah; Kumral, Mustafa

    2016-04-01

    This study is to determine the mass/volume gain and loss of the major and trace elements during the alteration processes on Dedeninyurdu, Yergen and Fındıklıyar Fe-Cu mineralizations of the area. Fe-Cu mineralization occurred in the spilitic volcanic a rock of Saraycık Formation is associated with the different types of alteration zones which are pyritization, silicification and sericitization. The study area comprises Bekirli Formation, Saraycık Formation, Beşpınar Formation, and Ilgaz Formation. Saraycık formation consists of spilitic volcanic rocks with pelagic limestone, siltstone and chert. The ore mineralogical data show that the pyrite, chalcopyrite, covellite, hematite, malachite and goethite formed during three phases of mineralization. As well as the geologic and petrographic studies reveal three alteration zones with definite mineral assemblages; phyllic alteration (quartz + sericite + pyrite) that represents the main alteration and mineralized zone; propylitic alteration; and carbonatized sericitic alteration zone. The boundaries between these zones are gradual. Mass balance calculations suggested that the phyllic alteration zone represented by gain in Si, Fe, K, S, and LOI and loss in Mg, Ca, and Na refers to silicification, sericitization and pyritization as well as replacement of Fe-Mg silicate and plagioclase. While, in the propylitic alteration zone, enrichment of Si, Fe, Mg, LOI and S occurred with depletions of Ca, Na, and K reflecting chloritization alteration type. On the other hand, carbonatized sericitic alteration zone shows local gain in Si, CaO and K reflects the occurrence of calc-silicate alteration. All alteration zones contain a large proportion of sulfide minerals (gain in S) with increase in loss on ignition (LOI). Keywords: Alteration geochemistry; Mass balance calculation, Fe-Cu mineralization; phyllic alteration, propylitic alteration.

  20. Mineral commodity summaries 2013

    USGS Publications Warehouse

    ,

    2013-01-01

    Each chapter of the 2013 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2012 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2013 are welcomed.

  1. Mineral commodity summaries 2014

    USGS Publications Warehouse

    ,

    2014-01-01

    Each chapter of the 2014 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2013 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2014 are welcomed.

  2. Performance analysis of mineral mapping method to delineate mineralization zones under tropical region

    NASA Astrophysics Data System (ADS)

    Wakila, M. H.; Saepuloh, A.; Heriawan, M. N.; Susanto, A.

    2016-09-01

    Geothermal explorations and productions are currently being intensively conducted at certain areas in Indonesia such as Wayang Windu Geothermal Field (WWGF) in West Java, Indonesia. The WWGF is located at wide area covering about 40 km2. An accurate method to map the distribution of heterogeneity minerals is necessary for wide areas such as WWGF. Mineral mapping is an important method in geothermal explorations to determine the distribution of minerals which indicate the surface manifestations of geothermal system. This study is aimed to determine the most precise and accurate methods for minerals mapping at geothermal field. Field measurements were performed to assess the accuracy of three proposed methods: 1) Minimum Noise Fraction (MNF), utilizing the linear transformation method to eliminate the correlation among the spectra bands and to reduce the noise in the data, 2) Pixel Purity Index (PPI), a designed method to find the most extreme spectrum pixels and their characteristics due to end-members mixing, 3) Spectral Angle Mapper (SAM), an image classification technique by measuring the spectral similarity between an unknown object with spectral reference in n- dimension. The output of those methods were mineral distribution occurrence. The performance of each mapping method was analyzed based on the ground truth data. Among the three proposed method, the SAM classification method is the most appropriate and accurate for mineral mapping related to spatial distribution of alteration minerals.

  3. Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment.

    PubMed

    Islam, A B M R; Maity, Jyoti Prakash; Bundschuh, Jochen; Chen, Chien-Yen; Bhowmik, Bejon Kumar; Tazaki, Kazue

    2013-11-15

    Arsenic (As) is widely distributed in the nature as ores or minerals. It has been attracted much attention for the global public health issue, especially for groundwater As contamination. The aim of this study was to elucidate the characteristics of microbes in groundwater where As-minerals were dissolved. An ex situ experiment was conducted with 7 standard As-minerals in bacteria-free groundwater and stored in experimental vessels for 1 year without supplementary nutrients. The pH (6.7-8.4) and EhS.H.E. (24-548 mV) changed between initial (0 day) and final stages (365 days) of experiment. The dissolution of As was detected higher from arsenolite (4240 ± 8.69 mg/L) and native arsenic (4538 ± 9.02 mg/L), whereas moderately dissolved from orpiment (653 ± 3.56 mg/L) and realgar (319 ± 2.56 mg/L) in compare to arsenopyrite (85 ± 1.25mg/L) and tennantite (3 ± 0.06 mg/L). Optical microscopic, scanning electron microscopic observations and flurometric enumeration revealed the abundance of As-resistant bacillus, coccus and filamentous types of microorganisms on the surface of most of As-mineral. 4'-6-Diamidino-2-phenylindole (DAPI)-stained epifluorescence micrograph confirmed the presence of DNA and carboxyfluorescein diacetate (CFDA) staining method revealed the enzymatically active bacteria on the surface of As-minerals such as in realgar (As4S4). Therefore, the microbes enable to survive and mobilize the As in groundwater by dissolution/bioweathering of As-minerals. Copyright © 2012. Published by Elsevier B.V.

  4. Interplay between black carbon and minerals contributes to long term carbon stabilization and mineral transformation

    NASA Astrophysics Data System (ADS)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Chiang, C. C.; Liu, C. C.; Lehmann, J.

    2017-12-01

    Black carbon receives increasing global wide research attention due to its role in carbon sequestration, soil fertility enhancement and remediation application. Generally considered chemically stable in bulk, the reactive surface of BC can interplays with minerals and form strong chemical bondage, which renders physical protection of BC and contributes to its long term stabilization. Using historical BC-rich Amazonian Dark Earth (ADE), we probe the in-situ organo-mineral association and transformation of BC and minerals over a millennium scale using various synchrotron-based spectroscopic (XANES, FTIR) and microscopic (TXM) methods. Higher content of SRO minerals was found in BC-rich ADE compare to adjacent tropical soils. The iron signature found in BC-rich ADE was mainly ferrihydrite/lepidocrocite, a more reactive form of Fe compared to goethite, which was dominant in adjacent soil. Abundant nano minerals particles were observed in-situ associated with BC surface, in clusters and layers. The organo-mineral interaction lowers BC bioavailability and enhances its long-term stabilization in environment, while at the same time, transforms associated minerals into more reactive forms under rapid redox/weathering environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding. The scale up application of BC/biochar into agricultural systems and natural environments have long lasting impact on the in-situ transformation of associated minerals.

  5. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake

    PubMed Central

    Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva

    2010-01-01

    In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934

  6. Functional anatomy controls ion distribution in banana leaves: significance of Na+ seclusion at the leaf margins.

    PubMed

    Shapira, Or; Khadka, Sudha; Israeli, Yair; Shani, Uri; Schwartz, Amnon

    2009-05-01

    Typical salt stress symptoms appear in banana (Musa sp., cv. 'Grand Nain' AAA) only along the leaf margins. Mineral analysis of the dry matter of plants treated with increasing concentrations of KCl or NaCl revealed significant accumulation of Na+, but not of K+ or Cl(-), in the affected leaf margins. The differential distribution of the three ions suggests that water and ion movement out of the xylem is mostly symplastic and, in contrast to K+ and Cl(-), there exists considerable resistance to the flow of Na+ from the xylem to the adjacent mesophyll and epidermis. The parallel veins of the lamina are enclosed by several layers of bundle sheath parenchyma; in contrast, the large vascular bundle that encircles the entire lamina, and into which the parallel veins merge, lacks a complete bundle sheath. Xylem sap containing a high concentration of Na+ is 'pulled' by water tension from the marginal vein back into the adjacent mesophyll without having to cross a layer of parenchyma tissue. When the marginal vein was dissected from the lamina, the pattern of Na+ distribution in the margins changed markedly. The distinct anatomy of the marginal vein plays a major role in the accumulation of Na+ in the margins, with the latter serving as a 'dumping site' for toxic molecules.

  7. 43 CFR 3861.3 - Mineral surveyors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mineral surveyors. 3861.3 Section 3861.3..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.3 Mineral surveyors. ...

  8. 43 CFR 3861.3 - Mineral surveyors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Mineral surveyors. 3861.3 Section 3861.3..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.3 Mineral surveyors. ...

  9. 43 CFR 3861.3 - Mineral surveyors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Mineral surveyors. 3861.3 Section 3861.3..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.3 Mineral surveyors. ...

  10. 43 CFR 3861.3 - Mineral surveyors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Mineral surveyors. 3861.3 Section 3861.3..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.3 Mineral surveyors. ...

  11. Phosphate toxicity and vascular mineralization.

    PubMed

    Razzaque, Mohammed S

    2013-01-01

    Vascular calcification or mineralization is a major complication seen in patients with advanced stages of chronic kidney disease (CKD), and it is associated with markedly increased morbidity and mortality. Most of the CKD-related vascular mineralization is attributable to abnormal mineral ion metabolism. Elevated serum calcium and phosphate levels, along with increased calcium-phosphorus byproduct, and the use of active vitamin D metabolites are thought to be the predisposing factors for developing vascular mineralization in patients with CKD. Recent experimental studies have shown that vascular mineralization can be suppressed by reducing serum phosphate levels, even in the presence of extremely high serum calcium and 1,25-dihydroxyvitamin D levels, indicating that reducing 'phosphate toxicity' should be the important therapeutic priority in CKD patients for minimizing the risk of developing vascular mineralization and the disease progression. Copyright © 2013 S. Karger AG, Basel.

  12. Spectroscopic characterization of manganese minerals.

    PubMed

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A Novel Denitrifying Extreme Halophile That Grows in a Simple Mineral Salts Medium

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Oremland, R. S.; Gherna, R.; Cote, R.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    An extremely halophilic bacterium (strain CH-1) was isolated from a saltern adjacent to San Francisco Bay. It grew in a mineral salts medium with ammonium and glucose as sole sources of nitrogen and carbon as well as energy, respectively Cells lysed at less than 10% NaCl and growth was most rapid in medium containing 20% NaCl. Cells were pieomorphic ranging from disc to ovoid-shaved and used a variety of carbohydrates as sole carbon sources. the utilization of certain carbon sources was controlled by temperature with some used at 37 degrees but not 45 C. CH-1 grew between 30 degrees and 50 C with the optimum at 45 C in the presence of 20% NaCl. CH-1 contained 2,3-di-O-isoprenyl glcerol diethers and was sensitive to aphidicofin. The major polar lipid was glucosyl-mannosyl-alucosyl diether, which is diagnostic of the Haloarcula. Thus CH-1 is an extreme halophile and a member of this genus. Among the novel characteristics of this organism was its ability to grow anaerobically in synthetic medium when nitrate was present which was only reduced to nitrous oxide. This organism should prove useful for studying denitrification and carbohydrate metabolism in the extreme halophiles; and to be a valuable resource for generic studies.

  14. The formation of ore mineral deposits on the Moon: A feasibility study

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Lu, Fengxiang

    1992-01-01

    Most of the ore deposits on Earth are the direct result of formation by hydrothermal solutions. Analogous mineral concentrations do not occur on the Moon, however, because of the absence of water. Stratified ore deposits form in layered instrusives on Earth due to fractional crystallization of magma and crystal settling of high-density minerals, particularly chromium in the mineral chromite. We have evaluated the possibility of such mineral deposition on the Moon, based upon considerations of 'particle settling velocities' in lunar vs. terrestrial magmas. A first approximation of Stoke's Law would seem to indicate that the lower lunar gravity (1/6 terrestrial) would result in slower crystal settling on the Moon. However, the viscosity of the silicate melt is the most important factor affecting the settling velocity. The viscosities of typical lunar basaltic melts are 10-100 times less than their terrestrial analogs. These lower viscosities result from two factors: (1) lunar basaltic melts are typically higher in FeO and lower in Al2O3, Na2O, and K2O than terrestrial melts; and (2) lunar igneous melts and phase equilibria tend to be 100-150 C higher than terrestrial, largely because of the general paucity of water and other volatile phases on the Moon. Therefore, particle settling velocities on the Moon are 5-10 times greater than those on Earth. It is highly probable that stratiform ore deposits similar to those on Earth exist on the Moon. The most likely ore minerals involved are chromite, ilmenite, and native FeNi metal. In addition, the greater settling velocities of periodotite in lunar magmas indicate that the buoyancy effects of the melt are less than on Earth. Consequently, the possibility is considerably less than on Earth of deep-seated volcanism transporting upper mantle/lower crustal xenoliths to the surface of the Moon, such as occurs in kimberlites on Earth.

  15. Green Clay Minerals

    NASA Astrophysics Data System (ADS)

    Velde, B.

    2003-12-01

    Color is a problem for scientific study. One aspect is the vocabulary one used to describe color. Mint green, bottle green, and Kelly green are nice names but not of great utility in that people's physical perception of color is not always the same. In some industries, such as colored fabric manufacture, current use is to send a set of standard colors which are matched by the producer. This is similar to the use of the Munsell color charts in geology. None of these processes makes use of physical optical spectral studies. The reason is that they are difficult to obtain and interpret. For a geologist, color is very important but we rarely have the possibility to standardize the method of our color perception. One reason is that color is both a reflective and transmission phenomenon. The thickness of the sample is critical to any transmission characteristics. Hence, a field color determination is different from one made by using a petrographic microscope. Green glauconite in a hand specimen is not the same color in 30 μm thick thin section seen with a microscope using transmitted light.A second problem is that color in a spectral identification is the result of several absorption emissions,with overlapping signal, forming a complicated spectrum. Interpretation depends very greatly on the spectrum of the light source and the conditions of transmission-reflection of the sample. As a result, for this text, we will not attempt to analyze the physical aspect of green in green clays. In the discussion which follows, reference is made concerning color, to thin section microscopic perception.Very briefly, green clay minerals are green, because they contain iron. This is perhaps not a great revelation to mineralogists, but it is the key to understanding the origin and stability of green clay minerals. In fact, iron can color minerals either red or green or in various shades of orange and brown. The color most likely depends upon the relative abundance of the iron ion valence

  16. Structure-mechanics relationships in mineralized tendons.

    PubMed

    Spiesz, Ewa M; Zysset, Philippe K

    2015-12-01

    In this paper, we review the hierarchical structure and the resulting elastic properties of mineralized tendons as obtained by various multiscale experimental and computational methods spanning from nano- to macroscale. The mechanical properties of mineralized collagen fibres are important to understand the mechanics of hard tissues constituted by complex arrangements of these fibres, like in human lamellar bone. The uniaxial mineralized collagen fibre array naturally occurring in avian tendons is a well studied model tissue for investigating various stages of tissue mineralization and the corresponding elastic properties. Some avian tendons mineralize with maturation, which results in a graded structure containing two zones of distinct morphology, circumferential and interstitial. These zones exhibit different amounts of mineral, collagen, pores and a different mineral distribution between collagen fibrillar and extrafibrillar space that lead to distinct elastic properties. Mineralized tendon cells have two phenotypes: elongated tenocytes placed between fibres in the circumferential zone and cuboidal cells with lower aspect ratios in the interstitial zone. Interestingly some regions of avian tendons seem to be predestined to mineralization, which is exhibited as specific collagen cross-linking patterns as well as distribution of minor tendon constituents (like proteoglycans) and loss of collagen crimp. Results of investigations in naturally mineralizing avian tendons may be useful in understanding the pathological mineralization occurring in some human tendons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Geology, Geochemistry, Geophysics, Mineral Occurrences and Mineral Resource Assessment for the Commonwealth of Puerto Rico

    USGS Publications Warehouse

    Bawiec, Walter J.

    1998-01-01

    The Commonwealth of Puerto Rico has been investigated over a very long period of time by earth scientists from many disciplines and with diverse objectives in the studies. This publication attempts to apply much of the geologic, geochemical, geophysical, and mineral occurrence information to a single objective focused on producing a mineral resource assessment for the Commonwealth of Puerto Rico. However, the value of this publication lies not within the results of the mineral resource assessment nor within the interactive PDF files which can be viewed on the screen, but within the geologic, geochemical, geophysical, and mineral occurrence digital map coverages and databases which can be used for their own unique applications. The mineral resource assessment of Puerto Rico represents compilation of several decades of mineral investigations and studies. These investigations have been the joint efforts of the U.S. Geological Survey, the Puerto Rico Department of Natural Resources, and the University of Puerto Rico. This report contains not only the mineral-resource assessment, but also much of the scientific evidence upon which the assessment was based.

  18. 43 CFR 3830.10 - Locatable minerals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Locatable minerals. 3830.10 Section 3830..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING, RECORDING, AND MAINTAINING MINING CLAIMS OR SITES; GENERAL PROVISIONS Mining Law Minerals § 3830.10 Locatable minerals. ...

  19. 43 CFR 3830.10 - Locatable minerals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Locatable minerals. 3830.10 Section 3830..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING, RECORDING, AND MAINTAINING MINING CLAIMS OR SITES; GENERAL PROVISIONS Mining Law Minerals § 3830.10 Locatable minerals. ...

  20. 43 CFR 3830.10 - Locatable minerals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Locatable minerals. 3830.10 Section 3830..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING, RECORDING, AND MAINTAINING MINING CLAIMS OR SITES; GENERAL PROVISIONS Mining Law Minerals § 3830.10 Locatable minerals. ...

  1. 43 CFR 3830.10 - Locatable minerals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Locatable minerals. 3830.10 Section 3830..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING, RECORDING, AND MAINTAINING MINING CLAIMS OR SITES; GENERAL PROVISIONS Mining Law Minerals § 3830.10 Locatable minerals. ...

  2. Colorimetric determination of selenium in mineral premixes .

    PubMed

    Hurlbut, J A; Burkepile, R G; Geisler, C A; Kijak, P J; Rummel, N G

    1997-01-01

    A method is described for determination of sodium selenite or sodium selenate in mineral-based premixes. It is based on the formation of intense-yellow piazselenol by Se(IV) and 3,3'-diaminobenzidine. Mineral premixes typically contain calcium carbonate as a base material and magnesium carbonate, silicon dioxide, and iron(III) oxide as minor components or additives. In this method, the premix is digested briefly in nitric acid, diluted with water, and filtered to remove any Iron(III) oxide. Ethylenediaminetetraacetic acid and HCl are added to the filtrate, which is heated to near boiling for 1 h to convert any selenate to selenite. After heating, the solution is buffered between pH 2 and 3 with NaOH and formic acid and treated with NH2OH and EDTA; any Se present forms a complex with 3,3'-diaminobenzidine at 60 degrees C. The solution is made basic with NH4OH, and the piazselenol is extracted into toluene. The absorbance of the complex in dried toluene is measured at 420 nm. The method was validated independently by 2 laboratories. Samples analyzed included calcium carbonate fortified with 100, 200, and 300 micrograms Se in the form of sodium selenite or sodium selenate, a calcium carbonate premix containing sodium selenite, a calcium carbonate premix containing sodium selenate, and a commercial premix; 5 replicates of each sample type were analyzed by each laboratory. Average recoveries ranged from 89 to 109% with coefficients of variation from 1.2 to 13.6%.

  3. The role of minerals in the thermal alteration of organic matter. III - Generation of bitumen in laboratory experiments

    NASA Technical Reports Server (NTRS)

    Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, I. R.

    1987-01-01

    A series of pyrolysis experiments, utilizing two different immature kerogens (from the Monterey and Green River Formations) mixed with common sedimentary minerals (calcite, illite, or Na-montmorillonite), was conducted to study the impact of the mineral matrix on the bitumen that was generated. Calcite has no significant influence on the thermal evolution of bitumen and also shows virtually no adsorption capacity for any of the pyrolysate. In contrast, montmorillonite (M) and illite, to a lesser extent, alter bitumen during dry pyrolysis. M and illite also display strong adsorption capacities for the polar constituents of bitumen. By this process, hydrocarbons are substantially concentrated within the pyrolysate that is not strongly adsorbed on the clay matrices. The effects of the clay minerals are significantly reduced during hydrous pyrolysis. The strong adsorption capacities of M and illite, as well as their thermocatalytic properties, may in part explain why light oils and gases are generated from certain argillaceous source-rock assemblages, whereas heavy immature oils are often derived from carbonate source rocks.

  4. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  5. Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress.

    PubMed

    Amooaghaie, Rayhaneh; Zangene-Madar, Faezeh; Enteshari, Shekoofeh

    2017-05-01

    H 2 S and NO are two important gasotransmitters that modulate stress responses in plants. There are the contradictory data on crosstalk between NO and H 2 S in the studies. Hence, in the present study, the role of interplay between NO and H 2 S was assessed on the Pb tolerance of Sesamum indicum using pharmacological and biochemical approaches. Results revealed that Pb stress reduced the plant growth and the content of photosynthetic pigments and Fv/Fm ratio, increased the lipid peroxidation and the H 2 O 2 content, elevated the endogenous contents of nitric oxide (NO), H 2 S and enhanced the activities of antioxidant enzymes (except APX). Additionally, concentrations of most mineral ions (K, P, Mg, Fe, Mn and Zn) in both shoots and roots decreased. Pb accumulation in roots was more than it in shoots. Both sodium hydrosulfide (NaHS as a donor of H 2 S) and sodium nitroprusside (SNP as an NO donor) improved the plant growth, the chlorophyll and carotenoid contents and PSII efficiency, reduced oxidative damage, increased the activities of antioxidant enzymes and reduced the proline content in Pb-stressed plants. Furthermore, both NaHS and SNP significantly restricted the uptake and translocation of Pb, thereby minimizing antagonistic effects of Pb on essential mineral contents in sesame plants. NaHS increased the NO generation and many NaHS-induced responses were completely reversed by cPTIO, as the specific NO scavenger. Applying SNP also enhanced H 2 S release levels in roots of Pb-stressed plants and only some NO-driven effects were partially weakened by hypotuarine (HT), as the scavenger of H 2 S.These findings proposed for the first time that two-sided interplay between H 2 S and NO might confer an increased tolerance to Pb stress via activating the antioxidant systems, reducing the uptake and translocation of Pb, and harmonizing the balance of mineral nutrient. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Glycine Polymerization on Oxide Minerals.

    PubMed

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  7. Mineral induction by immobilized phosphoproteins

    NASA Technical Reports Server (NTRS)

    Saito, T.; Arsenault, A. L.; Yamauchi, M.; Kuboki, Y.; Crenshaw, M. A.

    1997-01-01

    Dentin phosphoproteins are thought to have a primary role in the deposition of mineral on the collagen of dentin. In this study we determined the type of binding between collagen and phosphoproteins necessary for mineral formation onto collagen fibrils and whether the phosphate esters are required. Bovine dentin phosphophoryn or phosvitin from egg yolk were immobilized on reconstituted skin type I collagen fibrils by adsorption or by covalent cross-linking. In some samples the ester phosphate was removed from the covalently cross-linked phosphoproteins by treatment with acid phosphatase. All samples were incubated at 37 degrees C in metastable solutions that do not spontaneously precipitate. Reconstituted collagen fibrils alone did not induce mineral formation. The phosphoproteins adsorbed to the collagen fibrils desorbed when the mineralization medium was added, and mineral was not induced. The mineral induced by the cross-linked phosphoproteins was apatite, and the crystals were confined to the surface of the collagen fibrils. With decreasing medium saturation the time required for mineral induction increased. The interfacial tensions calculated for apatite formation by either phosphoprotein cross-linked to collagen were about the same as that for phosphatidic acid liposomes and hydroxyapatite. This similarity in values indicates that the nucleation potential of these highly phosphorylated surfaces is about the same. It is concluded that phosphoproteins must be irreversibly bound to collagen fibrils for the mineralization of the collagen network in solutions that do not spontaneously precipitate. The phosphate esters of phosphoproteins are required for mineral induction, and the carboxylate groups are not sufficient.

  8. Study of the structural, vibrational and thermodynamic properties of natroxalate mineral using density functional theory

    NASA Astrophysics Data System (ADS)

    Colmenero, Francisco; Timón, Vicente

    2018-07-01

    Natroxalate mineral, Na2C2O4, is a fundamental oxalate mineral widespread in nature, present in humans, animals and plants, as well as in naturally occurring minerals. The characterization of oxalate minerals is extraordinarily important since these organic minerals are indicators of environmental events and of the presence of biological activity, because they are commonly of biological origin. These minerals are currently under study to investigate the possible biological activity on Mars. The identification of these compounds is usually performed by X-ray diffraction and Raman spectroscopy. Theoretical calculations are of great value for the study and interpretation of the results of these experimental techniques. In this work, natroxalate mineral structure and Raman spectrum was studied by first principle calculations based on the density functional theory. The computed structure of natroxalate reproduces the one determined experimentally by X-ray diffraction (monoclinic symmetry, space group P21/c; lattice parameters a = 3.449 Å, b = 5.243 Å; c = 10.375 Å). Lattice parameters, bond lengths, bond angles and X-ray powder pattern were found to be in very good agreement with their experimental counterparts. Raman spectrum was then computed by means of density functional perturbation theory and compared with the experimental spectrum. Since the results were also found in agreement with the experimental data, a normal mode analysis of the theoretical spectra was carried out and used in order to assign the main bands of the Raman spectrum. The band found at about 567 cm-1, described as a single peak in previous experimental works, is shown clearly to have two contributing bands. Finally, two bands of the observed spectrum, located at the wavenumbers 1750 and 1358 cm-1, were not found in the theoretical spectrum. This is because these bands correspond to an overtone, 2ν1 (ν1 = 875 cm-1), and a combination band, ν1 + ν2 (ν1,ν2 = 875, 481 cm-1), respectively

  9. Phospholipases of Mineralization Competent Cells and Matrix Vesicles: Roles in Physiological and Pathological Mineralizations

    PubMed Central

    Mebarek, Saida; Abousalham, Abdelkarim; Magne, David; Do, Le Duy; Bandorowicz-Pikula, Joanna; Pikula, Slawomir; Buchet, René

    2013-01-01

    The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in

  10. 43 CFR 3602.33 - How will BLM dispose of mineral materials for use in developing Federal mineral leases?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How will BLM dispose of mineral materials for use in developing Federal mineral leases? 3602.33 Section 3602.33 Public Lands: Interior... MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Noncompetitive Sales § 3602...

  11. 43 CFR 3602.33 - How will BLM dispose of mineral materials for use in developing Federal mineral leases?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How will BLM dispose of mineral materials for use in developing Federal mineral leases? 3602.33 Section 3602.33 Public Lands: Interior... MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Noncompetitive Sales § 3602...

  12. 43 CFR 3602.33 - How will BLM dispose of mineral materials for use in developing Federal mineral leases?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How will BLM dispose of mineral materials for use in developing Federal mineral leases? 3602.33 Section 3602.33 Public Lands: Interior... MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Noncompetitive Sales § 3602...

  13. 43 CFR 3602.33 - How will BLM dispose of mineral materials for use in developing Federal mineral leases?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How will BLM dispose of mineral materials for use in developing Federal mineral leases? 3602.33 Section 3602.33 Public Lands: Interior... MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Noncompetitive Sales § 3602...

  14. Partitioning of Cu between mafic minerals, Fe-Ti oxides and intermediate to felsic melts

    NASA Astrophysics Data System (ADS)

    Liu, Xingcheng; Xiong, Xiaolin; Audétat, Andreas; Li, Yuan

    2015-02-01

    This study used improved capsule technique i.e., Pt95Cu05 or Au95Cu05 alloy capsules as Cu sources to determine Cu partitioning between mafic minerals, Fe-Ti oxides and intermediate to felsic melts at 0.5-2.5 GPa, 950-1100 °C and various oxygen fugacities (fO2). In combination with the data from the mafic composition systems, the results demonstrate that Cu is generally highly incompatible in mafic minerals and moderately incompatible to compatible in Fe-Ti oxides. The general order of mineral/melt Cu partition coefficients (DCu) is garnet (0.01-0.06) ⩽ olivine (0.04-0.20) ≈ opx (0.04-0.24) ≈ amphibole (0.04-0.20) ⩽ cpx (0.04-0.45) ⩽ magnetite, titanomagnetite and Cr-spinel (0.18-1.83). The variations in DCu depend mainly on temperature, fO2 or mineral composition. In general, DCu for olivine (and perhaps opx) increases with decreasing temperature and increasing fO2. DCu increases for cpx with Na+ (pfu) in cpx, for magnetite and Cr-spinel with Fe3+ (pfu) in these phases and for titanomagnetite with Ti4+ (pfu) in this phase. The large number of DCu data (99 pairs) serves as a foundation for quantitatively understanding the behavior of Cu during magmatic processes. The generation of intermediate to felsic magmas via fractional crystallization or partial melting of mafic rocks (magmas) at deep levels of crust involves removal of or leaving assemblages of mafic minerals + Fe-Ti oxides ± sulfides. With our DCu data on mafic minerals and Fe-Ti oxides, DCubulk values around 0.2 were obtained for the sulfide-free assemblages. Cu will thus be concentrated efficiently in the derived melts during these two processes if sulfides are absent or negligible, explaining that high fO2 and sulfide-destabilization are favorable to formation of the porphyry Cu system.

  15. Remote sensing of geologic mineral occurrences for the Colorado mineral belt using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Carpenter, R. H. (Principal Investigator); Trexler, D. W.

    1976-01-01

    The author has identified the following significant results. LANDSAT imagery was examined as a practical and productive tool for mineral exploration along the Colorado Mineral Belt. An attempt was made to identify all large, active and/or abandoned mining districts on the imagery which initially were discovered by surface manifestations. A number of strong photolinements, circular features, and color anomalies were identified. Some of these form a part of the structural and igneous volcanic framework in which mineral deposits occur. No specific mineral deposits such as veins or porphyries were identified. Promising linear and concentric features were field checked at several locations. Some proved to be fault zones and calderas; others were strictly topographic features related to stream or glacial entrenchment. The Silverton Caldera region and the Idaho Springs-Central City district were chosen and studied as case histories to evaluate the application of LANDSAT imagery to mineral exploration. Evidence of specific mineralization related to ore deposits in these two areas were observed only on low level photography.

  16. CellMiner Companion: an interactive web application to explore CellMiner NCI-60 data.

    PubMed

    Wang, Sufang; Gribskov, Michael; Hazbun, Tony R; Pascuzzi, Pete E

    2016-08-01

    The NCI-60 human tumor cell line panel is an invaluable resource for cancer researchers, providing drug sensitivity, molecular and phenotypic data for a range of cancer types. CellMiner is a web resource that provides tools for the acquisition and analysis of quality-controlled NCI-60 data. CellMiner supports queries of up to 150 drugs or genes, but the output is an Excel file for each drug or gene. This output format makes it difficult for researchers to explore the data from large queries. CellMiner Companion is a web application that facilitates the exploration and visualization of output from CellMiner, further increasing the accessibility of NCI-60 data. The web application is freely accessible at https://pul-bioinformatics.shinyapps.io/CellMinerCompanion The R source code can be downloaded at https://github.com/pepascuzzi/CellMinerCompanion.git ppascuzz@purdue.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Mineral composition of lamb carcasses from the United States and New Zealand.

    PubMed

    Lin, K C; Cross, H R; Johnson, H K; Breidenstein, B C; Randecker, V; Field, R A

    1988-01-01

    The mineral composition-iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), fluoride (F), and phosphorus (P) (New Zealand lamb only)-of lean tissue from lamb retail cuts was studied. Twenty-four US lamb carcasses of different ages (5 to 11 months), geographical regions (Texas, Colorado and Montana) and USDA quality grades (Prime and Choice) and 27 New Zealand lamb carcasses from three weight groups (11 to 12·5 kg, 13 to 14·5 kg, and 16·5 to 18 kg), age rangining from 7 to 8 months, were selected for use in this study. Mineral concentrations were influenced more by retail cut and age than by quality grade or weigth group. Foreshank and shoulder cuts from both the US and New Zealand group consistently had the highest (P < 0·05) Zn content among the cuts. The K content of the muscle in US lambs increased as age increased, while the level of Ca and Zn in New Zealand lambs decreased as carcass weight increased. Except for Ca, the mineral concentrations of the lean tissue from US lambs were higher than the New Zealand lambs, although the differences were not always significant. US lambs had approximately 20%, 30% and 37% more Fe, Zn and Mg, respectively, but 27% less Ca than lean tissue from the New Zealand lambs. Copyright © 1989. Published by Elsevier Ltd.

  18. Differentiation of Chinese rice wines from different wineries based on mineral elemental fingerprinting.

    PubMed

    Shen, Fei; Wu, Jian; Ying, Yibin; Li, Bobin; Jiang, Tao

    2013-12-15

    Discrimination of Chinese rice wines from three well-known wineries ("Guyuelongshan", "Kuaijishan", and "Pagoda") in China has been carried out according to mineral element contents in this study. Nineteen macro and trace mineral elements (Na, Mg, Al, K, Ca, Mn, Fe, Cu, Zn, V, Cr, Co, Ni, As, Se, Mo, Cd, Ba and Pb) were determined by inductively coupled plasma mass spectrometry (ICP-MS) in 117 samples. Then the experimental data were subjected to analysis of variance (ANOVA) and principal component analysis (PCA) to reveal significant differences and potential patterns between samples. Stepwise linear discriminant analysis (LDA) and partial least square discriminant analysis (PLS-DA) were applied to develop classification models and achieved correct classified rates of 100% and 97.4% for the prediction sample set, respectively. The discrimination could be attributed to different raw materials (mainly water) and elaboration processes employed. The results indicate that the element compositions combined with multivariate analysis can be used as fingerprinting techniques to protect prestigious wineries and enable the authenticity of Chinese rice wine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Simultaneous analysis of 18 mineral elements in Cyclocarya paliurus polysaccharide by ICP-AES.

    PubMed

    Xie, Jian-Hua; Shen, Ming-Yue; Nie, Shao-Ping; Liu, Xin; Yin, Jun-Yi; Huang, Dan-Fei; Zhang, Hui; Xie, Ming-Yong

    2013-04-15

    The contents of 18 kinds of mineral elements in Cyclocarya paliurus polysaccharide samples were determined by ICP-AES. The limits of detection (LOD) of the method for 18 elements were in the range of 0.01-3.80 mg/kg. The average recoveries obtained by the standard addition method were found between 94.34% and 105.69% (RSD, 1.01-4.23%). The results showed that C. paliurus polysaccharides were abundant in major and trace elements which are healthy for human body. The contents of Ca, Al, Mg, K, Fe, Mn and P were very high, ranging from 274.5±10.3 to 5980.0±102.7 mg/kg, while the contents of Zn, Na, Se, Cr, Pb, Cu and As ranged from 0.9±0.1 to 37.1±4.2 mg/kg. Finally, the levels of Ni, Cd, V and Co were not detected in the samples. ICP-AES is a simple, precise and efficient method for the determination of many mineral elements in polysaccharide samples simultaneously. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Electrochemical mineralization and detoxification of naphthenic acids on boron-doped diamond anodes.

    PubMed

    Diban, Nazely; Urtiaga, Ane

    2018-01-05

    Electrochemical oxidation (ELOX) with boron-doped diamond (BDD) anodes was successfully applied to degrade a model aqueous solution of a mixture of commercial naphthenic acids (NAs). The model mixture was prepared resembling the NA and salt composition of oil sands process-affected water (OSPW) as described in the literature. The initial concentration of NAs between 70 and 120 mg/L did not influence the electrooxidation kinetics. However, increasing the applied current density from 20 to 100 A/m 2 and the initial chloride concentration from 15 to 70 and 150 mg/L accelerated the rate of NA degradation. At higher chloride concentration, the formation of indirect oxidative species could contribute to the faster oxidation of NAs. Complete chemical oxygen demand removal at an initial NA concentration of 120 mg/L, 70 mg/L of chloride and applied 50 A/m 2 of current density was achieved, and 85% mineralization, defined as the decrease of the total organic carbon (TOC) content, was attained. Moreover, after 6 h of treatment and independently on the experimental conditions, the formation of more toxic species, i.e. perchlorate and organochlorinated compounds, was not detected. Finally, the use of ELOX with BDD anodes produced a 7 to 11-fold reduction of toxicity (IC 50 towards Vibrio fischeri) after 2 h of treatment.

  1. Investigating water adsorption onto natural mineral dust particles: Linking DRIFTS experiments and BET theory

    NASA Astrophysics Data System (ADS)

    Joshi, Nitesh; Romanias, Manolis N.; Riffault, Veronique; Thevenet, Frederic

    2017-08-01

    The adsorption of water molecules on natural mineral dusts was investigated employing in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The natural dust samples originated from North and West Africa, Saudi Arabia and Gobi desert regions. Furthermore, the hygroscopicity of commercially available Arizona Test Dusts (ATDs) and Icelandic volcanic ash were examined. N2 sorption measurements, X-ray fluorescence and diffraction (XRF and XRD), as well as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analyses were performed to determine the physicochemical properties of the particles. The water adsorption experiments were conducted in an optical cell, at room temperature under the relative humidity (RH) range of 1.9-95%. Results were simulated using a modified three-parameter Brunauer-Emmett-Teller (BET) equation. Water monolayer (ML) was formed in the RH range of 15-25%, while additional water layers were formed at higher RH. Besides, the standard adsorption enthalpies of water onto natural mineral dust samples were determined. A thorough comparison of two commercially available ATD samples indicated that size distribution and/or porosity should play a key role in particle hygroscopicity. Regarding the natural mineral particles, Ca/Si ratios, and to a lesser extent Al/Si, Na/Si, Mg/Si ratios, were found to impact the minimum RH level required for water monolayer formation. These results suggest that the hygroscopic properties of investigated African dusts are quite similar over the whole investigated RH range. Furthermore, one of the major conclusions is that under most atmospheric relative humidity conditions, natural mineral samples are always covered with at least one layer of adsorbed water.

  2. The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Bullen, T.D.; Fitzpatrick, J.

    2012-01-01

    Biotic/abiotic interactions between soil mineral nutrients and annual grassland vegetation are characterized for five soils in a marine terrace chronosequence near Santa Cruz, California. A Mediterranean climate, with wet winters and dry summers, controls the annual cycle of plant growth and litter decomposition, resulting in net above-ground productivities of 280-600gm -2yr -1. The biotic/abiotic (A/B) interface separates seasonally reversible nutrient gradients, reflecting biological cycling in the shallower soils, from downward chemical weathering gradients in the deeper soils. The A/B interface is pedologically defined by argillic clay horizons centered at soil depths of about one meter which intensify with soil age. Below these horizons, elevated solute Na/Ca, Mg/Ca and Sr/Ca ratios reflect plagioclase and smectite weathering along pore water flow paths. Above the A/B interface, lower cation ratios denote temporal variability due to seasonal plant nutrient uptake and litter leaching. Potassium and Ca exhibit no seasonal variability beneath the A/B interface, indicating closed nutrient cycling within the root zone, whereas Mg variability below the A/B interface denotes downward leakage resulting from higher inputs of marine aerosols and lower plant nutrient requirements.The fraction of a mineral nutrient annually cycled through the plants, compared to that lost from pore water discharge, is defined their respective fluxes F j,plants=q j,plants/(q j,plants+q j,discharge) with average values for K and Ca (F K,plants=0.99; F Ca,plants=0.93) much higher than for Mg and Na (F Mg,plants 0.64; F Na,plants=0.28). The discrimination against Rb and Sr by plants is described by fractionation factors (K Sr/Ca=0.86; K Rb/K=0.83) which are used in Rayleigh fractionation-mixing calculations to fit seasonal patterns in solute K and Ca cycling. K Rb/K and K24Mg/22Mg values (derived from isotope data in the literature) fall within fractionation envelopes bounded by inputs from

  3. Mineralization of Carbon Dioxide: Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, V; Soong, Y; Carney, C

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrialmore » process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2« less

  4. Effect of potato on acid-base and mineral homeostasis in rats fed a high-sodium chloride diet.

    PubMed

    Narcy, Agnès; Robert, Laetitia; Mazur, Andrzej; Demigné, Christian; Rémésy, Christian

    2006-05-01

    Excessive dietary NaCl in association with a paucity of plant foods, major sources of K alkaline salts, is a common feature in Western eating habits which may lead to acid-base disorders and to Ca and Mg wasting. In this context, to evaluate the effects of potato, rich in potassium citrate, on acid-base homeostasis and mineral retention, Wistar rats were fed wheat starch (WS) or cooked potato (CP) diets with a low (0.5 %) or a high (2 %) NaCl content during 3 weeks. The replacement of WS by CP in the diets resulted in a significant urinary alkalinisation (pH from 5.5 to 7.3) parallel to a rise in citrate and K excretion. Urinary Ca and Mg elimination represented respectively 17 and 62 % of the daily absorbed mineral in rats fed the high-salt WS diet compared with 5 and 28 % in rats fed the high-salt CP diet. The total SCFA concentration in the caecum was 3-fold higher in rats fed the CP diets compared with rats fed the WS diets, and it led to a significant rise in Ca and Mg intestinal absorption (Ca from 39 to 56 %; Mg from 37 to 60 %). The present model of low-grade metabolic acidosis indicates that CP may be effective in alkalinising urine, enhancing citrate excretion and ameliorating Ca and Mg balance.

  5. Isolation and the interaction between a mineral-weathering Rhizobium tropici Q34 and silicate minerals.

    PubMed

    Wang, Rong Rong; Wang, Qi; He, Lin Yan; Qiu, Gang; Sheng, Xia Fang

    2015-05-01

    The purposes of this study were to isolate and evaluate the interaction between mineral-weathering bacteria and silicate minerals (feldspar and biotite). A mineral-weathering bacterium was isolated from weathered rocks and identified as Rhizobium tropici Q34 based on 16S rRNA gene sequence analysis. Si and K concentrations were increased by 1.3- to 4.0-fold and 1.1- to 1.7-fold in the live bacterium-inoculated cultures compared with the controls respectively. Significant increases in the productions of tartaric and succinic acids and extracellular polysaccharides by strain Q34 were observed in cultures with minerals. Furthermore, significantly more tartaric acid and polysaccharide productions by strain Q34 were obtained in the presence of feldspar, while better growth and more citric acid production of strain Q34 were observed in the presence of biotite. Mineral dissolution experiments showed that the organic acids and polysaccharides produced by strain Q34 were also capable of promoting the release of Si and K from the minerals. The results showed that the growth and metabolite production of strain Q34 were enhanced in the presence of the minerals and different mineral exerted distinct impacts on the growth and metabolite production. The bio-weathering process is probably a synergistic action of organic acids and extracellular polysaccharides produced by the bacterium.

  6. Interaction of Corundum, Wollastonite and Quartz With H2O-NaCl Solutions at 800 C and 10 Kbar

    NASA Astrophysics Data System (ADS)

    Newton, R. C.; Manning, C. E.

    2005-12-01

    Aqueous fluids are potentially important transport agents in subduction zones and other high-P metamorphic environments. Recent studies indicate that at high P and T, the solubilities of major rock-forming elements are strongly enhanced by the formation of metal-chloride complexes, metal-hydroxide complexes and polynuclear metal-hydroxide clusters. However, the relative abundances of these species and the energetics of their interactions in high-pressure environments remains largely unknown. We measured the solubilities of corundum (Al2O3) and wollastonite (CaSiO3) at 800 °C and 10 kbar in H2O-NaCl solutions to halite saturation (XNaCl = 0.6) . Both minerals show marked enhancement of solubility with increasing salinity. Al2O3 mol fraction rises rapidly to XNaCl = 0.1, and then declines slowly towards halite saturation. Quenched experimental fluids have neutral pH. Modeling based on ideal solution of ions and molecules leads to a simple dissolution reaction and corresponding molality (m=mol/kg H2O) expression: Al2O3(cor) + Na+ + 3H2O = NaAl(OH)4 + Al(OH)2+ and mAl2O3 = [0.0232(aNaCl)1/4(aH2O)3/2+0.00123][1+2XNaCl/(1-XNaCl)] where H2O and NaCl activities are given by aH2O = (2-XNaCl)/(2+XNaCl) and aNaCl = 4(XNaCl)2/(1 + XNaCl)2. Wollastonite solubility in NaCl solutions is accurately described by: mCaSiO3 = 0.6734XNaCl + 0.1183(XNaCl)1/2 + 0.0204. There is a roughly 50-fold enhancement of dissolved wollastonite at halite saturation. Quenched experimental fluids are strongly basic (pH=11). A consistent dissolution reaction must therefore be similar to: CaSiO3(wo) + Na+ + Cl- = CaCl+ + OH- + HNaSiO3 Quartz solubility declines monotonically from mSiO2 = 1.248 in pure H2O to 0.20 at halite saturation. Quenched fluids are neutral, indicating that quartz does not react with solvent NaCl. The only salinity control on solubility is decrease of H2O activity. The simple dissolution behaviors to be deduced from measurements on these minerals suggest that fluid

  7. Effect of feeding sweet-potato condensed distillers solubles on intake and urinary excretion of minerals in Japanese Black steers.

    PubMed

    Kamiya, Yuko; Kamiya, Misturu; Hattori, Ikuo; Hayashi, Yoshiro; Funaba, Masayuki; Matsui, Tohru

    2017-01-01

    Four Japanese Black steers (16 months of age) were assigned to a 4 × 4 Latin square design to investigate the effect of graded levels of sweet-potato condensed distillers solubles (SCDS) in their diets on intake and urinary excretion of minerals. The four diets consisted of 0%, 10%, 20% and 30% (dry matter (DM) basis) SCDS, with SCDS replacing commercial concentrate (CC). Intake of K, Cl, S, P and Mg increased linearly with increasing SCDS content. Urinary pH increased linearly with increasing dietary SCDS content. SCDS feeding increased urinary K concentrations (linear and quadratic effects). Urinary concentrations of Cl increased linearly with increasing SCDS content. In contrast, urinary concentrations of Mg decreased with increasing SCDS content. Feeding of SCDS did not apparently affect urinary NH 3 ,P, Na or Ca concentrations. These results suggest that high SCDS feeding is not a risk for crystallization of minerals leading to the formation of magnesium-phosphate type calculi: although SCDS contains large amounts of P and Mg, high SCDS feeding decreased the Mg concentration and did not affect the P concentration in urine. Additionally, high SCDS feeding had no apparent effects on plasma concentrations of Na, K, Cl, Ca or inorganic P. © 2016 Japanese Society of Animal Science.

  8. Eudialyte-group minerals in rocks of Lovozero layered complex at Mt. Karnasurt and Mt. Kedykvyrpakhk

    NASA Astrophysics Data System (ADS)

    Ivanyuk, G. Yu.; Pakhomovsky, Ya. A.; Yakovenchuk, V. N.

    2015-12-01

    Eudialyte-bearing interbeds within layers I-4 (Mt. Karnasurt) and II-4 (Mt. Kedykvyrpakhk) in the layered complex of the Lovozero Pluton are localized symmetrically relative to the loparite-bearing ijolite-malignite layer; the content of eudialyte decreases from underlying nepheline syenite to overlying foidolite. Eudialyte-group minerals fill the interstices between nepheline, sodalite, and microcline-perthite crystals in all rock types and are partially replaced with georgechaoite and minerals of the lovozerite group as a result of hydrothermal alteration. Variations in the chemical composition of the eudialyte-group minerals are mainly controlled by block substitution NaFeZrCl ↔ LnMn(Nb,Ti)S producing eudialyte proper, manganoeudialyte (sharply predominant), kentbrooksite, alluaivite, and a phase intermediate between manganoeudialyte and alluaivite. As the total Ln2O3 content increases, the relative amounts of Ce and La oxides increases linearly in the proportion Ce2O3: La2O3 = 2.5: 1. In the phases containing lower than 3 wt % La2O3, Nd becomes the next REE after Ce. It is very likely that (mangano)eudialyte was mostly formed after parakeldyshite and other anhydrous zirconium-silicate under effect of residual fluids enriched in Ca and Mn, which took part in fenitization of basalt, tuff, and tuffite of the Lovozero Formation.

  9. Minerals Yearbook, volume II, Area Reports—Domestic

    USGS Publications Warehouse

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  10. Minerals Yearbook, volume III, Area Reports—International

    USGS Publications Warehouse

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  11. Acid-base behavior of the gaspeite (NiCO3(s)) surface in NaCl solutions.

    PubMed

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S; Schott, Jacques

    2010-08-03

    Gaspeite is a low reactivity, rhombohedral carbonate mineral and a suitable surrogate to investigate the surface properties of other more ubiquitous carbonate minerals, such as calcite, in aqueous solutions. In this study, the acid-base properties of the gaspeite surface were investigated over a pH range of 5 to 10 in NaCl solutions (0.001, 0.01, and 0.1 M) at near ambient conditions (25 +/- 3 degrees C and 1 atm) by means of conventional acidimetric and alkalimetric titration techniques and microelectrophoresis. Over the entire experimental pH range, surface protonation and electrokinetic mobility are strongly affected by the background electrolyte, leading to a significant decrease of the pH of zero net proton charge (PZNPC) and the pH of isoelectric point (pH(iep)) at increasing NaCl concentrations. This challenges the conventional idea that carbonate mineral surfaces are chemically inert to background electrolyte ions. Multiple sets of surface complexation reactions (i.e., ionization and ion adsorption) were formulated within the framework of three electrostatic models (CCM, BSM, and TLM) and their ability to simulate proton adsorption and electrokinetic data was evaluated. A one-site, 3-pK, constant capacitance surface complexation model (SCM) reproduces the proton adsorption data at all ionic strengths and qualitatively predicts the electrokinetic behavior of gaspeite suspensions. Nevertheless, the strong ionic strength dependence exhibited by the optimized SCM parameters reveals that the influence of the background electrolyte on the surface reactivity of gaspeite is not fully accounted for by conventional electrostatic and surface complexation models and suggests that future refinements to the underlying theories are warranted.

  12. 43 CFR 3814.2 - Mineral reservation in patent; conditions to be noted on mineral applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Mineral reservation in patent; conditions to be noted on mineral applications. 3814.2 Section 3814.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS...

  13. 43 CFR 3814.2 - Mineral reservation in patent; conditions to be noted on mineral applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Mineral reservation in patent; conditions to be noted on mineral applications. 3814.2 Section 3814.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS...

  14. 43 CFR 3814.2 - Mineral reservation in patent; conditions to be noted on mineral applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mineral reservation in patent; conditions to be noted on mineral applications. 3814.2 Section 3814.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS...

  15. 43 CFR 3814.2 - Mineral reservation in patent; conditions to be noted on mineral applications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Mineral reservation in patent; conditions to be noted on mineral applications. 3814.2 Section 3814.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS...

  16. Decorin modulates matrix mineralization in vitro

    NASA Technical Reports Server (NTRS)

    Mochida, Yoshiyuki; Duarte, Wagner R.; Tanzawa, Hideki; Paschalis, Eleftherios P.; Yamauchi, Mitsuo

    2003-01-01

    Decorin (DCN), a member of small leucine-rich proteoglycans, is known to modulate collagen fibrillogenesis. In order to investigate the potential roles of DCN in collagen matrix mineralization, several stable osteoblastic cell clones expressing higher (sense-DCN, S-DCN) and lower (antisense-DCN, As-DCN) levels of DCN were generated and the mineralized nodules formed by these clones were characterized. In comparison with control cells, the onset of mineralization by S-DCN clones was significantly delayed; whereas it was markedly accelerated and the number of mineralized nodules was significantly increased in As-DCN clones. The timing of mineralization was inversely correlated with the level of DCN synthesis. In these clones, the patterns of cell proliferation and differentiation appeared unaffected. These results suggest that DCN may act as an inhibitor of collagen matrix mineralization, thus modulating the timing of matrix mineralization.

  17. Mineral formation and organo-mineral controls on the bioavailability of carbon at the terrestrial-aquatic interface

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Smith, A. P.; Renslow, R.

    2016-12-01

    Recent evidence highlights the importance of organo-mineral interactions in regulating the source or sink capacity of soil. High surface area soils, such as allophane-rich or clay-rich soils, retain organic matter (OM) via sorption to mineral surfaces which can also contribute physical isolation in interlayer spaces. Despite the direct correlation between mineral surfaces and OM accumulation, the pedogenic processes controlling the abundance of reactive surface areas and their distribution in the mineral matrix remains unclear. As global soil temperatures rise, the dissolution of primary minerals and formation of new secondary minerals may be thermodynamically favored as part of soil weathering process. Newly formed minerals can supply surfaces for organo-metallic bonding and may, therefore, stabilize OM by surface bonding and physical exclusion. This is especially relevant in environments that intersect terrestrial and aquatic systems, such as the capillary fringe zone in riparian ecosystems. To test the mechanisms of mineral surface area protection of OM, we facilitated secondary precipitation of alumino-silicates in the presence of OM held at two different temperatures in natural Nisqually River sediments (Mt Rainier, WA). This was a three month reaction intended to simulate early pedogenesis. To tease out the influence of mineral surface area increase during pedogenesis, we incubated the sediments at two different soil moisture contents to induce biodegradation. We measured OM desorption, biodegradation, and the molecular composition of mineral-associated OM both prior to and following the temperature manipulation. To simulate the saturation of capillary fringe sediment and associated transport and reaction of OM, column experiments were conducted using the reacted sediments. More co-precipitation was observed in the 20°C solution compared to the 4°C reacted solution suggesting that warming trends alter mineral development and may remove more OM from solution

  18. 43 CFR 8.5 - Mineral rights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Mineral rights. 8.5 Section 8.5 Public... INTERIOR AND OF THE ARMY RELATIVE TO RESERVOIR PROJECT LANDS § 8.5 Mineral rights. Mineral, oil and gas..., but mineral rights not acquired will be subordinated to the Government's right to regulate their...

  19. 43 CFR 8.5 - Mineral rights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Mineral rights. 8.5 Section 8.5 Public... INTERIOR AND OF THE ARMY RELATIVE TO RESERVOIR PROJECT LANDS § 8.5 Mineral rights. Mineral, oil and gas..., but mineral rights not acquired will be subordinated to the Government's right to regulate their...

  20. 43 CFR 8.5 - Mineral rights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Mineral rights. 8.5 Section 8.5 Public... INTERIOR AND OF THE ARMY RELATIVE TO RESERVOIR PROJECT LANDS § 8.5 Mineral rights. Mineral, oil and gas..., but mineral rights not acquired will be subordinated to the Government's right to regulate their...

  1. 43 CFR 8.5 - Mineral rights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Mineral rights. 8.5 Section 8.5 Public... INTERIOR AND OF THE ARMY RELATIVE TO RESERVOIR PROJECT LANDS § 8.5 Mineral rights. Mineral, oil and gas..., but mineral rights not acquired will be subordinated to the Government's right to regulate their...

  2. Preliminary Mineral Resource Assessment of Selected Mineral Deposit Types in Afghanistan

    USGS Publications Warehouse

    Ludington, Steve; Orris, Greta J.; Bolm, Karen S.; Peters, Stephen G.; ,

    2007-01-01

    INTRODUCTION Wise decision-making and management of natural resources depend upon credible and reliable scientific information about the occurrence, distribution, quantity and quality of a country's resource base. Economic development decisions by governments require such information to be part of a Mineral Resource Assessment. Such Mineral Assessments are also useful to private citizens and international investors, consultants, and companies prior to entry and investment in a country. Assessments can also be used to help evaluate the economic risks and impact on the natural environment associated with development of resources. In February 2002, at the request of the Department of State and the then U.S. Ambassador to Afghanistan (Robert P. Finn), the U.S. Geological Survey (USGS) prepared a detailed proposal addressing natural resources issues critical to the reconstruction of Afghanistan. The proposal was refined and updated in December 2003 and was presented as a 5-year work plan to USAID-Kabul in February 2004. USAID-Kabul currently funds this plan and this report presents a part of the preliminary results obligated for fiscal year 2006. A final Preliminary Assessment of the Non Fuel Mineral Resource of Afghanistan will be completed and delivered at the end of fiscal year 2007. Afghanistan has abundant metallic and non-metallic resources, but the potential resources have never been systematically assessed using modern methods. Much of the existing mineral information for Afghanistan was gathered during the 1950s and continued in the late 1980s until the departure of the geologic advisors from the Soviet Union. During this period, there were many mineral-related activities centered on systematic geologic mapping of the country, collection of geochemical and rock samples, implementation of airborne geophysical surveys, and exploration focused on the discovery of large mineral deposits. Many reports, maps, charts, and tables were produced at that time. Some of

  3. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  4. Electrochemical mineralization of cephalexin using a conductive diamond anode: A mechanistic and toxicity investigation.

    PubMed

    Coledam, Douglas A C; Pupo, Marília M S; Silva, Bianca F; Silva, Adilson J; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Aquino, José M

    2017-02-01

    The contamination of surface and ground water by antibiotics is of significant importance due to their potential chronic toxic effects to the aquatic and human lives. Thus, in this work, the electrochemical oxidation of cephalexin (CEX) was carried out in a one compartment filter-press flow cell using a boron-doped diamond (BDD) electrode as anode. During the electrolysis, the investigated variables were: supporting electrolyte (Na 2 SO 4 , NaCl, NaNO 3 , and Na 2 CO 3 ) at constant ionic strength (0.1 M), pH (3, 7, 10, and without control), and current density (5, 10 and 20 mA cm -2 ). The oxidation and mineralization of CEX were assessed by high performance liquid chromatography, coupled to mass spectrometry and total organic carbon. The oxidation process of CEX was dependent on the type of electrolyte and on pH of the solution due to the distinct oxidant species electrogenerated; however, the conversion of CEX and its hydroxylated intermediates to CO 2 depends only on their diffusion to the surface of the BDD. In the final stages of electrolysis, an accumulation of recalcitrant oxamic and oxalic carboxylic acids, was detected. Finally, the growth inhibition assay with Escherichia coli cells showed that the toxicity of CEX solution decreased along the electrochemical treatment due to the rupture of the β-lactam ring of the antibiotic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Thermodynamic modeling of melts in the system Na 2O-NaAlO 2-SiO 2-F 2O -1

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Baker, Don R.

    2005-12-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms and thermodynamic description in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids that links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals, fluoride-silicate immiscibility in natural felsic melts, and metallurgical processes. Configurational properties of fluorosilicate melts are described by mixing on three site levels (sublattices): (1) alkali fluoride, polyhedral aluminofluoride and silicofluoride species and nonbridging terminations of the aluminosilicate network, (2) alkali-aluminate and silicate tetrahedra within the network and (3) bridging oxygen, nonbridging oxygen and terminal fluorine atoms on tetrahedral apices of the network. Abundances of individual chemical species are described by a homogeneous equilibrium representing melt depolymerization: F - (free) + O 0 (bridging) = F 0 (terminal) + O - (nonbridging) which corresponds to a replacement of an oxygen bridging two tetrahedra by a pair of terminations, one with F and the other with an O and a charge-balancing Na. In cryolite-bearing systems two additional interaction mechanisms occur: (1) the self-dissociation of octahedral aluminofluoride complexes: [AlF 6] = [AlF 4] + 2 [F], and (2) the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F. Portrayal of these equilibria in ternary Thompson reaction space allows for the decrease in the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the nonideal thermodynamic properties are represented by reaction energies of homogeneous equilibria, thus defining directly individual chemical species concentrations and configurational

  6. Mineral solubilities in the Na-K-Mg-Ca-Cl-SO 4-H 2O system: a re-evaluation of the sulfate chemistry in the Spencer-Møller-Weare model

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.; Farren, Ronald E.

    1999-05-01

    The Spencer-Møller-Weare (SMW) (1990) model is parameterized for the Na-K-Mg-Ca-Cl-SO 4-H 2O system over the temperature range from -60° to 25°C. This model is one of the few complex chemical equilibrium models for aqueous solutions parameterized for subzero temperatures. The primary focus of the SMW model parameterization and validation deals with chloride systems. There are problems with the sulfate parameterization of the SMW model, most notably with sodium sulfate and magnesium sulfate. The primary objective of this article is to re-estimate the Pitzer-equation parameters governing interactions among sodium, potassium, magnesium, and calcium with sulfate in the SMW model. A mathematical algorithm is developed to estimate 22 temperature-dependent Pitzer-equation parameters. The sodium sulfate reparameterization reduces the overall standard error (SE) from 0.393 with the SMW Pitzer-equation parameters to 0.155. Similarly, the magnesium sulfate reparameterization reduces the SE from 0.335 to 0.124. In addition to the sulfate reparameterization, five additional sulfate minerals are included in the model, which allows a more complete treatment of sulfate chemistry in the Na-K-Mg-Ca-Cl-SO 4-H 2O system. Application of the model to seawater evaporation predicts gypsum precipitation at a seawater concentration factor (SCF) of 3.37 and halite precipitation at an SCF of 10.56, which are in good agreement with previous experimental and theoretical estimates. Application of the model to seawater freezing helps explain the two pathways for seawater freezing. Along the thermodynamically stable "Gitterman pathway," calcium precipitates as gypsum and the seawater eutectic is -36.2°C. Along the metastable "Ringer-Nelson-Thompson pathway," calcium precipitates as antarcticite and the seawater eutectic is -53.8°C.

  7. Boundaries of intergrowths between mineral individuals: A zone of secondary mineral formation in aggregates

    NASA Astrophysics Data System (ADS)

    Brodskaya, R. L.; Bil'Skaya, I. V.; Lyakhnitskaya, V. D.; Markovsky, B. A.; Sidorov, E. G.

    2007-12-01

    Intergrowth boundaries between mineral individuals in dunite of the Gal’moenan massif in Koryakia was studied in terms of crystal morphology, crystal optics, and ontogenesis. The results obtained allowed us to trace the staged formation of olivine and chromite and four generations of these minerals. Micro-and nanotopography of boundary surfaces between intergrown mineral individuals of different generations was examined with optic, electron, and atomic force microscopes. The boundaries between mineral individuals of different generations are distinguished by their microsculpture for both olivine and chromite grains. Both minerals demonstrate a compositional trend toward refinement from older to younger generations. The decrease in the iron mole fraction in olivine and chromite is accompanied by the crystallization of magnetite along weakened zones in olivine of the first generation and as outer rims around the chromite grains of the second generation observable under optic and electronic microscopes. The subsequent refinement of chromite results in the release of PGE from its lattice, as established by atomic power microscopy. The newly formed PGM are localized at the boundaries between mineral individuals and, thus, mark a special stage in the ontogenetic evolution of mineral aggregates. Further recrystallization is expressed in the spatial redistribution of grain boundaries and the formation of monomineralic intergrowth boundaries, i.e., the glomerogranular structure of rock and substructures of PGM, chromite, and olivine grains as intermediate types of organization of the granular assemblies in the form of reticulate, chain, and cellular structures and substructures of aggregates.

  8. Predictive ability of mid-infrared spectroscopy for major mineral composition and coagulation traits of bovine milk by using the uninformative variable selection algorithm.

    PubMed

    Visentin, G; Penasa, M; Gottardo, P; Cassandro, M; De Marchi, M

    2016-10-01

    Milk minerals and coagulation properties are important for both consumers and processors, and they can aid in increasing milk added value. However, large-scale monitoring of these traits is hampered by expensive and time-consuming reference analyses. The objective of the present study was to develop prediction models for major mineral contents (Ca, K, Mg, Na, and P) and milk coagulation properties (MCP: rennet coagulation time, curd-firming time, and curd firmness) using mid-infrared spectroscopy. Individual milk samples (n=923) of Holstein-Friesian, Brown Swiss, Alpine Grey, and Simmental cows were collected from single-breed herds between January and December 2014. Reference analysis for the determination of both mineral contents and MCP was undertaken with standardized methods. For each milk sample, the mid-infrared spectrum in the range from 900 to 5,000cm(-1) was stored. Prediction models were calibrated using partial least squares regression coupled with a wavenumber selection technique called uninformative variable elimination, to improve model accuracy, and validated both internally and externally. The average reduction of wavenumbers used in partial least squares regression was 80%, which was accompanied by an average increment of 20% of the explained variance in external validation. The proportion of explained variance in external validation was about 70% for P, K, Ca, and Mg, and it was lower (40%) for Na. Milk coagulation properties prediction models explained between 54% (rennet coagulation time) and 56% (curd-firming time) of the total variance in external validation. The ratio of standard deviation of each trait to the respective root mean square error of prediction, which is an indicator of the predictive ability of an equation, suggested that the developed models might be effective for screening and collection of milk minerals and coagulation properties at the population level. Although prediction equations were not accurate enough to be proposed

  9. Mineral resource of the month: Vermiculite

    USGS Publications Warehouse

    Tanner, Arnold O.

    2014-01-01

    Vermiculite comprises a group of hydrated, laminar magnesium-aluminum-iron silicate minerals resembling mica. They are secondary minerals, typically altered biotite, iron-rich phlogopite or other micas or clay-like minerals that are themselves sometimes alteration products of amphibole, chlorite, olivine and pyroxene. Vermiculite deposits are associated with volcanic ultramafic rocks rich in magnesium silicate minerals, and flakes of the mineral range in color from black to shades of brown and yellow. The crystal structure of vermiculite contains water molecules, a property that is critical to its processing for common uses.

  10. Mineral-resource data bases

    USGS Publications Warehouse

    ,

    1997-01-01

    Data bases are essential for modern scientific research. The new and exciting work being done in the Mineral Resource Program in the U.S. Geological Survey (USGS) usually begins with the question, "Where are the known deposits?" A mineral-resource data base containing this type of information and more can be useful not just to USGS scientists, but to anyone who needs such data. Users of the data bases from outside the USGS include mining and exploration companies, environmental groups, academia, other Federal Agencies, and the general public. At present, the USGS has two large mineral-resource data bases, MRDS (Mineral Resource Data System) and MAS (Minerals Availability System). MRDS was built and is mamtained by the USGS, and MAS was built and maintained by the Bureau of Mines. In 1996, after the Bureau was abolished, MAS was transferred to the USGS. The two data bases were compiled for different purposes and contain very different mformation. For instance, MAS contains information on costs, details of mining methods, and feasibility studies. MRDS has mineralogical and geologic data that are not contained in MAS. Because they are both mineral-resource data bases, however, they contain some information in common, such as location, name(s) of sites, and commodities present. Both data bases are international in scope, and both are quite large. MRDS contains over 110,000 records, while MAS has over 220,000. One reason that MAS has more records is that it contains information on smelters, mill sites, and fossil fuel sites, as well as mineral- resource sites. The USGS is working to combine the information in both data bases. This is a large undertaking that will require some years to complete. In the interim, information from both data bases will still be available

  11. Open air mineral treatment operations and ambient air quality: assessment and source apportionment.

    PubMed

    Escudero, M; Alastuey, A; Moreno, T; Querol, X; Pérez, P

    2012-11-01

    We present a methodology for evaluating and quantifying the impact of inhalable mineral dust resuspension close to a potentially important industrial point source, in this case an open air plant producing sand, flux and kaolin in the Capuchinos district of Alcañiz (Teruel, NE Spain). PM(10) levels at Capuchinos were initially high (42 μg m(-3) as the annual average with 91 exceedances of the EU daily limit value during 2007) but subsequently decreased (26 μg m(-3) with 16 exceedances in 2010) due to a reduced demand for minerals from the ceramic industry and construction sector during the first stages of the economic crisis. Back trajectory and local wind pattern analyses revealed only limited contribution from exotic PM sources such as African dust intrusions whereas there was clearly a strong link with the mineral stockpiles of the local industry. This link was reinforced by chemical and mineral speciation and source apportionment analysis which showed a dominance of mineral matter (sum of CO(3)(2-), SiO(2), Al(2)O(3), Ca, Fe, K, Mg, P, and Ti: mostly aluminosilicates) which in 2007 contributed 76% of the PM(10) mass (44 μg m(-3) on average). The contribution from Secondary Inorganic Aerosols (SIA, sum of SO(4)(2-), NO(3)(-) and NH(4)(+)) reached 8.4 μg m(-3), accounting for 14% of the PM(10) mass, similar to the amount of calcareous road dust estimated to be present (8 μg m(-3); 13%). Organic matter and elemental carbon contributed 5.3 μg m(-3) (9%) whereas marine aerosol (Na + Cl) levels were minor with an average concentration of 0.4 μg m(-3) (1% of the PM(10) mass). Finally, chemical and mineralogical analysis of stockpile samples and comparison with filter samples confirmed the local industry to be the major source of ambient PM(10) in the area.

  12. Bone mineral measurement from Apollo experiment M-078. [derangement of bone mineral metabolism in spacecrews

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.; Rambaut, P. C.; Smith, M. C., Jr.

    1974-01-01

    Loss of mineral from bone during periods of immobilization, recumbency, or weightlessness is examined. This report describes the instrumentation, technique, and bone mineral changes observed preflight and postflight for the Apollo 14, 15, and 16 missions. The bone mineral changes documented during the Apollo Program are reviewed, and their relevance to future missions is discussed.

  13. Monitoring genotoxic exposure in uranium miners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sram, R.J.; Binkova, B.; Dobias, L.

    1993-03-01

    Recent data from deep uranium mines in Czechoslovakia indicated that in addition to radon daughter products, miners are also exposed to chemical mutagens. Mycotoxins were identified as a possible source of mutagenicity present in the mines. Various methods of biomonitoring were used to examine three groups of miners from different uranium mines. Cytogenetic analysis of peripheral lymphocytes, unscheduled DNA synthesis (UDS) in lymphocytes, and lipid peroxidation (LPO) in both plasma and lymphocytes were studied on 66 exposed miners and 56 controls. Throat swabs were taken from 116 miners and 78 controls. Significantly increased numbers of aberrant cells were found inmore » all groups of miners, as well as decreased UDS values in lymphocytes and increased LPO plasma levels in comparison to controls. Molds were detected in throat swabs from 27% of miners, and 58% of these molds were embryotoxic. Only 5% of the control samples contained molds and none of them was embryotoxic. The following mycotoxins were isolated from miners' throat swab samples: rugulosin, sterigmatocystin, mycophenolic acid, brevianamid A, citreoviridin, citrinin, penicilic acid, and secalonic acid. These data suggest that mycotoxins are a genotoxic factor affecting uranium miners.« less

  14. Monitoring genotoxic exposure in uranium miners.

    PubMed Central

    Srám, R J; Binková, B; Dobiás, L; Rössner, P; Topinka, J; Veselá, D; Veselý, D; Stejskalová, J; Bavorová, H; Rericha, V

    1993-01-01

    Recent data from deep uranium mines in Czechoslovakia indicated that in addition to radon daughter products, miners are also exposed to chemical mutagens. Mycotoxins were identified as a possible source of mutagenicity present in the mines. Various methods of biomonitoring were used to examine three groups of miners from different uranium mines. Cytogenetic analysis of peripheral lymphocytes, unscheduled DNA synthesis (UDS) in lymphocytes, and lipid peroxidation (LPO) in both plasma and lymphocytes were studied on 66 exposed miners and 56 controls. Throat swabs were taken from 116 miners and 78 controls. Significantly increased numbers of aberrant cells were found in all groups of miners, as well as decreased UDS values in lymphocytes and increased LPO plasma levels in comparison to controls. Molds were detected in throat swabs from 27% of miners, and 58% of these molds were embryotoxic. Only 5% of the control samples contained molds and none of them was embryotoxic. The following mycotoxins were isolated from miners' throat swab samples: rugulosin, sterigmatocystin, mycophenolic acid, brevianamid A, citreoviridin, citrinin, penicilic acid, and secalonic acid. These data suggest that mycotoxins are a genotoxic factor affecting uranium miners. PMID:8319649

  15. Mineral commodity summaries 2017

    USGS Publications Warehouse

    Ober, Joyce A.

    2017-01-31

    This report is the earliest Government publication to furnish estimates covering 2016 nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for more than 90 individual minerals and materials.

  16. Geology and mineralization of the Jabal Umm Al Suqian albitized apogranite, southern Najd region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Bokhari, M. Madani; Jackson, Norman J.; Al Oweidi, Khalid

    A porphyritic muscovite—albite—microcline microgranite crops out at Jabal Umm Al Suqian, 80 km NE of Bishah. It intrudes alkali-feldspar granite, quartz diorite and a conglomerate composed of dioritic clasts, and is enveloped by a shell of hydrothermally altered, albitized, greisenized and microclinized country rocks. The principal chemical features of the microgranite are: 5-7% Na 2O, Na 2O/K 2O = 1.7, Rb 978 ppm, Sn 94 ppm, and low Ba, Ce, Sr and Zr. Albitized microgranite is highly enriched in F, Nb and Y, and the greisenized assemblages are enriched in F, Li, Rb, Sn and Zn. Mineralization consists of small veins and lenses of fluorite and disseminated minerals such as ixiolite, monazite, bastnaesite, betafite and fluorite, but is not economically significant. The microgranite is probably an apogranite cupola in the roof of an alkali-feldspar granite. Crystallization at about 1 kb total volatile pressure was controlled by (1) variable (0-3 wt. %) F contents which significantly reduced the freezing temperature of the melt and resulted in an albite-rich residue; and (2) progressive decrease in K, which also produced a sodic residuum. K- and F-rich hydrothermal fluids produced the envelope of phyllic alteration. Repetitive increase and decrease in volatile pressure produced rhythmic banding of quartz and alkali feldspar in the upper part of the cupola.

  17. Major issues in miner health.

    PubMed Central

    Joyce, S

    1998-01-01

    As recently as the last few decades, thousands of miners died in explosions, roof collapses, fires, and floods each year, and lung disease caused by inhaling mineral dusts was ubiquitous. Miners worked virtually unprotected, and were often treated as expendable bodies fulfilling critical roles in this important industry, which in the United States comprises about 5% of the gross domestic product. PMID:9799195

  18. Minerals, Tobacco and Smoking-Related Disease

    NASA Astrophysics Data System (ADS)

    Stephens, W. E.

    2003-12-01

    As much as 8% (by dry weight) of commercial tobacco is mineral, and the view that minerals are inert, playing no more than a passive role in smoking-related disease, is challenged. An inventory of minerals in tobacco is presented and an interpretation of their sources given. Using elemental abundances the relative contributions of natural and anthropogenic sources to the commercial product is quantitatively modelled relative to average crustal abundances. A framework is presented for investigating the potential ways in which minerals with, or acquire, toxic properties behave in the smoking environment. In order to represent a potential hazard any mineral (or mineral reaction product) with suspected toxic properties must partition into smoke and be respirable. For inhalation a significant proportion of the particles must be smaller than 10 microns. Three categories of potential hazard are recognised: 1. Minerals with intrinsic toxic properties. Quartz can amount to 1% or more in some cigarettes and is defined as a human carcinogen by the IARC. It is not likely to represent a hazard as its grain size is probably too coarse to be respirable. However talc, also a Type 1 carcinogen when it is contaminated with asbestos, is a common constituent of cigarette paper and may be of respirable size. Some other minerals also fall into this category. 2. Minerals that generate toxic products on combustion. Examples are the biominerals calcium oxalate monohydrate (whewellite) and dihydrate (weddellite), which amount to about 5 wt% of popular UK brands. These minerals decompose at tobacco combustion temperatures yielding large quantities of carbon monoxide. A substantial fraction of the CO budget of UK cigarettes may derive from this source. 3. Minerals that acquire toxic properties on combustion. Little is known about free radical generation on mineral surfaces during tobacco combustion, but the devolatilisation of calcic phases (carbonates and oxalates) creates oxide particles

  19. Effect of different cooking methods on proximate and mineral composition of striped snakehead fish (Channa striatus, Bloch).

    PubMed

    Marimuthu, K; Thilaga, M; Kathiresan, S; Xavier, R; Mas, R H M H

    2012-06-01

    The effects of different cooking methods (boiling, baking, frying and grilling) on proximate and mineral composition of snakehead fish were investigated. The mean content of moisture, protein, fat and ash of raw fish was found to be 77.2 ± 2.39, 13.9 ± 2.89, 5.9 ± 0.45 and 0.77 ± 0.12% respectively. The changes in the amount of protein and fat were found to be significantly higher in frying and grilling fish. The ash content increased significantly whereas that of the minerals (Na, K, Ca, Mg, Fe, Zn and Mn) was not affected in all cooking methods. Increased in Cu contents and decreased in P contents were observed in all cooking methods except grilling. In the present study, the grilling method of cooking is found to be the best for healthy eating.

  20. A study of iron mineral transformation to reduce red mud tailings.

    PubMed

    Li, L Y

    2001-01-01

    This study examines the effects of iron mineral transformation in an aluminum extraction process on the settling behavior, and the physical and chemical properties of the resulting red mud slurry that must be disposed of. By producing a red mud with a higher solid content, the total volume of mud slurry will also be reduced for a given alumina production rate and more caustic soda will be recovered. The settling behavior and the mineralogical, physical, and physico-chemical properties of one bauxite and three red muds processed under varying conditions were analyzed based on examination of the iron mineral transformations. The properties of red muds derived from the same bauxite can differ markedly due to variations in operating conditions of the Bayer process, such as temperature and the addition of a reducing agent. The settling of red mud can be improved by converting goethite into hematite and/or magnetite to produce a mud of larger particle size, smaller specific surface area, and larger specific gravity, characteristics which reduce the total volume of mud slurry to be disposed of and which allow for less potential contamination from caustic soda. This study also found that the by-product--Bayer sodalite--has the high exchange capacity for Na+ that might contribute to the long-term environmental problems.

  1. 43 CFR Appendix B to Part 2 - Mineral Leasing Act and Mineral Leasing Act for Acquired Lands-Special Rules

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Mineral Leasing Act and Mineral Leasing... 2—Mineral Leasing Act and Mineral Leasing Act for Acquired Lands—Special Rules (a) Definitions. As... conduct coal exploration operations on land subject to the Mineral Leasing Act, under 30 U.S.C. 201(b), or...

  2. 43 CFR Appendix B to Part 2 - Mineral Leasing Act and Mineral Leasing Act for Acquired Lands-Special Rules

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Mineral Leasing Act and Mineral Leasing... 2—Mineral Leasing Act and Mineral Leasing Act for Acquired Lands—Special Rules (a) Definitions. As... conduct coal exploration operations on land subject to the Mineral Leasing Act, under 30 U.S.C. 201(b), or...

  3. 43 CFR Appendix F to Part 2 - Mineral Leasing Act and Mineral Leasing Act for Acquired Lands-Special Rules

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Mineral Leasing Act and Mineral Leasing... 2—Mineral Leasing Act and Mineral Leasing Act for Acquired Lands—Special Rules (a) Definitions. As... conduct coal exploration operations on land subject to the Mineral Leasing Act, under 30 U.S.C. 201(b), or...

  4. 43 CFR Appendix F to Part 2 - Mineral Leasing Act and Mineral Leasing Act for Acquired Lands-Special Rules

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Mineral Leasing Act and Mineral Leasing... 2—Mineral Leasing Act and Mineral Leasing Act for Acquired Lands—Special Rules (a) Definitions. As... conduct coal exploration operations on land subject to the Mineral Leasing Act, under 30 U.S.C. 201(b), or...

  5. ICP-AES Determination of Mineral Content in Boletus tomentipes Collected from Different Sites of China.

    PubMed

    Wang, Xue-mei; Zhang, Ji; Li, Tao; Li, Jie-qing; Wang, Yuan-zhong; Liu, Hong-gao

    2015-05-01

    P, Na, Ca, Cu, Fe, Mg, Zn, As, Cd, Co, Cr and Ni, contents have been examined in caps and stipes of Boletus tomentipes collected from different sites of Yunnan province, southwest China. The elements were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with microwave digestion. P, Ca, Mg, Fe, Zn and Cu were the most abundant amongst elements determined in Boletus tomentipes. The caps were richer in P, Mg, Zn and Cd, and the stipes in Ca, Co and Ni. Cluster analysis showed a difference between Puer (BT7 and BT8) and other places. The PCA explained about 77% of the total variance, and the minerals differentiating these places were P (PC1) together with Ca, Cu, Fe, Mg, As and Ni, Na (PC2) together with Cd, and Zn (PC3). The results of this study imply that element concentrations of a mushroom are mutative when collected from the different bedrock soil geochemistry.

  6. Solute mixing regulates heterogeneity of mineral precipitation in porous media: Effect of Solute Mixing on Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cil, Mehmet B.; Xie, Minwei; Packman, Aaron I.

    Synchrotron X-ray microtomography was used to track the spatiotemporal evolution of mineral precipitation and the consequent alteration of the pore structure. Column experiments were conducted by injecting CaCl2 and NaHCO3 solutions into granular porous media either as a premixed supersaturated solution (external mixing) or as separate solutions that mixed within the specimen (internal mixing). The two mixing modes produced distinct mineral growth patterns. While internal mixing promoted transverse heterogeneity with precipitation at the mixing zone, external mixing favored relatively homogeneous precipitation along the flow direction. The impact of precipitation on pore water flow and permeability was assessed via 3-D flowmore » simulations, which indicated anisotropic permeability evolution for both mixing modes. Under both mixing modes, precipitation decreased the median pore size and increased the skewness of the pore size distribution. Such similar pore-scale evolution patterns suggest that the clogging of individual pores depends primarily on local supersaturation state and pore geometry.« less

  7. Sodium and potassium excretion are related to bone mineral density in women with coeliac disease.

    PubMed

    Turner, Kirsty M; Clifton, Peter M; Keogh, Jennifer B

    2015-04-01

    Women with coeliac disease may have a lower bone mineral density due to the malabsorption of calcium before diagnosis. A high sodium excretion is associated with increased calcium and bone loss. Our aim was to describe the bone mineral density (BMD) and sodium excretion in women with coeliac disease. In a cross-sectional study BMD of the lumbar spine and hip was assessed by dual energy X-ray absorptiometry. Sodium, potassium and calcium excretion were measured from a 24 h urine collection. In 33 women (51 ± 16 yr) BMD was 1.14 ± 0.19 g/cm(2) and 0.94 ± 0.14 g/cm(2) at the lumbar spine and hip respectively. Age matched Z-scores were -0.1 ± 1.2 and -0.3 ± 1.1 at lumbar spine and hip respectively. Sodium excretion was 107 ± 51 mmol/d; 14 (42%) had a sodium excretion >100 mmol Na/d (145 ± 45 mmol/d). Potassium and calcium excretion were 87 ± 25 mmol/d and 4.1 ± 2.0 mmol/d respectively. In women with Na excretion >100 mmol Na/d, Ca excretion was significantly greater than those with <100 mmol/d (4.9 ± 2.0 vs 3.4 ± 1.8, p < 0.05). Sodium excretion and BMI were positively correlated (r = 0.61, p < 0.001) as were sodium and calcium excretion (r = 0.43, p < 0.05). Sodium excretion was inversely related to femoral neck BMD (t = -2.4 p = 0.023) after adjustment for weight, age, years since diagnosis and potassium excretion. Weight, but no other variable, was a predictor of BMD at the lumbar spine (t = 2.58 p = 0.018). Sodium excretion was inversely related and potassium excretion positively related to femoral neck density which was similar to age matched women without coeliac disease. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  8. 43 CFR Appendix F to Part 2 - Mineral Leasing Act and Mineral Leasing Act for Acquired Lands-Special Rules

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Mineral Leasing Act and Mineral Leasing Act...—Mineral Leasing Act and Mineral Leasing Act for Acquired Lands—Special Rules (a) Definitions. As used in... conduct coal exploration operations on land subject to the Mineral Leasing Act, under 30 U.S.C. 201(b), or...

  9. Mineral Time Capsules on Mars?

    NASA Technical Reports Server (NTRS)

    Schirber, Michael

    2006-01-01

    Like dinosaur-age insects trapped in amber, biomolecules sequestered in million-year-old sulfate minerals could provide a glimpse into the past, say researchers who've recently analyzed such minerals from N orth America. The same minerals have recently been discovered on Mars , so they may be a good place to look for traces of past life on the red planet, the researchers say.

  10. Global nonfuel mineral exploration trends 2001-2015

    USGS Publications Warehouse

    Karl, Nick; Wilburn, David R.

    2017-01-01

    The mission of the U.S. Geological Survey (USGS) National Minerals Information Center (NMIC) is to collect, analyze and disseminate information on the domestic and international supply of and demand for minerals and mineral materials essential to the U.S. economy and national security. Understanding mineral exploration activities and trends assists government policy makers, minerals industry decision makers and research entities in identifying where future sources of mineral supply are likely to be discovered, the amount and type of these resources and factors that may affect exploration and development.

  11. Adsorption of dextrin on hydrophobic minerals.

    PubMed

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2009-09-01

    The adsorption of dextrin on talc, molybdenite, and graphite (three naturally hydrophobic minerals) has been compared. Adsorption isotherms and in situ tapping mode atomic force microscope (TMAFM) imaging have enabled polymer adsorbed amount and morphology of the adsorbed layer (area coverage and polymer domain size) to be determined and also the amount of hydration water in the structure of the adsorbed layer. The effect of the polymer on the mineral contact angles, measured by the captive bubble method on cleaved mineral surfaces, indicates clear correlations between the hydrophobicity reduction of the minerals, the adsorbed amount, and the surface coverage of the adsorbed polymer. Predictions of the flotation recovery of the treated mineral phases have been confirmed by performing batch flotation experiments. The influence of the polymer surface coverage on flotation recovery has highlighted the importance of this key parameter in the predictions of depressant efficiency. The roles of the initial hydrophobicity and the surface structure of the mineral basal plane in determining adsorption parameters and flotation response of the polymer-treated minerals are also discussed.

  12. Enamel mineral loss.

    PubMed

    West, Nicola X; Joiner, Andrew

    2014-06-01

    To summarise the chemical, biological and host factors that impact enamel mineral loss, to highlight approaches to contemporary management of clinical conditions involving mineral loss and summarise emerging trends and challenges in this area. "Medline" and "Scopus" databases were searched electronically with the principal key words tooth, enamel, *mineral*, caries and erosion. Language was restricted to English and original studies and reviews were included. Conference papers and abstracts were excluded. Enamel mineral loss leads to the degradation of the surface and subsurface structures of teeth. This can impact their shape, function, sensitivity and aesthetic qualities. Dental caries is a multifactorial disease caused by the simultaneous interplay of dietary sugars, dental plaque, the host and time. There is a steady decline in dental caries in developed countries and the clinical management of caries is moving towards a less invasive intervention, with risk assessment, prevention, control, restoration and recall. Tooth wear can be caused by erosion, abrasion and attrition. Dental erosion can be the result of acid from intrinsic sources, such as gastric acids, or extrinsic sources, in particular from the diet and consumption of acidic foods and drinks. Its prevalence is increasing and it increases with age. Clinical management requires diagnosis and risk assessment to understand the underlying aetiology, so that optimal preventative measures can be implemented. Overall, prevention of enamel mineral loss from caries and tooth wear should form the basis of lifelong dental management. Evidence based oral hygiene and dietary advice is imperative, alongside preventive therapy, to have a healthy lifestyle, whilst retaining hard tooth tissue. © 2014 Elsevier Ltd. All rights reserved.

  13. Economic drivers of mineral supply

    USGS Publications Warehouse

    Wagner, Lorie A.; Sullivan, Daniel E.; Sznopek, John L.

    2003-01-01

    The debate over the adequacy of future supplies of mineral resources continues in light of the growing use of mineral-based materials in the United States. According to the U.S. Geological Survey, the quantity of new materials utilized each year has dramatically increased from 161 million tons2 in 1900 to 3.2 billion tons in 2000. Of all the materials used during the 20th century in the United States, more than half were used in the last 25 years. With the Earth?s endowment of natural resources remaining constant, and increased demand for resources, economic theory states that as depletion approaches, prices rise. This study shows that many economic drivers (conditions that create an economic incentive for producers to act in a particular way) such as the impact of globalization, technological improvements, productivity increases, and efficient materials usage are at work simultaneously to impact minerals markets and supply. As a result of these economic drivers, the historical price trend of mineral prices3 in constant dollars has declined as demand has risen. When price is measured by the cost in human effort, the price trend also has been almost steadily downward. Although the United States economy continues its increasing mineral consumption trend, the supply of minerals has been able to keep pace. This study shows that in general supply has grown faster than demand, causing a declining trend in mineral prices.

  14. Growth of binary organic NLO crystals: m.NA-p.NA and m.NA-CNA system

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.

    1993-01-01

    Experiments were carried out to grow 3.Nitroaniline (m.NA) crystals doped with 4.Nitroaniline (p.NA) and 2.chloro 4.Nitroaniline (CNA). The measured undercooling for m.NA, p.NA, and CNA were 0.21 tm K, 0.23 tm K, and 0.35 tm K respectively, where tm represents the melting temperature of the pure component. Because of the crystals' large heat of fusion and large undercooling, it was not possible to grow good quality crystals with low thermal gradients. In the conventional two-zone Bridgman furnace we had to raise the temperature of the hot zone above the decomposition temperature of CNA, p.NA, and m.NA to achieve the desired thermal gradient. To avoid decomposition, we used an unconventional Bridgman furnace. Two immiscible liquids, silicone oil and ethylene glycol, were used to build a special two-zone Bridgman furnace. A temperature gradient of 18 K/cm was achieved without exceeding the decomposition temperature of the crystal. The binary crystals, m.NA-p.NA and m.NA-CNA, were grown in centimeter size in this furnace. X-ray and optical characterization showed good optical quality.

  15. Digging into Minnesota Minerals.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Natural Resources, St. Paul.

    This publication presents students with facts about geology and several learning activities. Topics covered include rocks and minerals, volcanoes and earthquakes, fossils, exploration geology, mining in Minnesota, environmental issues related to mining, mineral uses, mining history, and the geology of Minnesota's state parks. A geologic timetable…

  16. Mineral Losses During Extreme Environmental Conditions

    USDA-ARS?s Scientific Manuscript database

    Advisory groups that make recommendations for mineral intakes continue to identify accurate determinations of sweat mineral losses during physical activity as a critical void in their deliberations. Although estimates of sweat mineral concentrations are available, they are highly variable. Practica...

  17. Strategic Minerals: U.S. Alternatives

    DTIC Science & Technology

    1990-02-01

    Titanium -Bearing Slag, and Vanadium 267 U2. Mobilization Plans: Excerpt of a 1987 Letter, Deputy Sec- retary of Defense William H. Taft IV to Speaker of...Program Minerals Availability Appraisals for Asbestos, Co- balt, Fluorspar, Mercury, Molybdenum, Lead, Zinc, Titanium , and Tungsten Mineral Industry...intermediate products necessary for the production of aluminum and titanium . In trade Australia’s mineral exports account for over one-third of its

  18. Microelectrophoresis of selected mineral particles

    NASA Technical Reports Server (NTRS)

    Herren, B. J.; Tipps, R. W.; Alexander, K. D.

    1982-01-01

    Particle mobilities of ilmenite, labradorite plagioclase, enstatite pyroxene, and olivine were measured with a Rank microelectrophoresis system to evaluate indicated mineral separability. Sodium bicarbonate buffer suspension media with and without additives (0.0001 M DTAB and 5 percent v/v ethylene glycol) were used to determine differential adsorption by mineral particles and modification of relative mobilities. Good separability between some minerals was indicated; additives did not enhance separability.

  19. Thermal decomposition of sodium amide, NaNH2, and sodium amide hydroxide composites, NaNH2-NaOH.

    PubMed

    Jepsen, Lars H; Wang, Peikun; Wu, Guotao; Xiong, Zhitao; Besenbacher, Flemming; Chen, Ping; Jensen, Torben R

    2016-09-14

    Sodium amide, NaNH 2 , has recently been shown to be a useful catalyst to decompose NH 3 into H 2 and N 2 , however, sodium hydroxide is omnipresent and commercially available NaNH 2 usually contains impurities of NaOH (<2%). The thermal decomposition of NaNH 2 and NaNH 2 -NaOH composites is systematically investigated and discussed. NaNH 2 is partially dissolved in NaOH at T > 100 °C, forming a non-stoichiometric solid solution of Na(OH) 1-x (NH 2 ) x (0 < x < ∼0.30), which crystallizes in an orthorhombic unit cell with the space group P2 1 2 1 2 1 determined by synchrotron powder X-ray diffraction. The composite xNaNH 2 -(1 - x)NaOH (∼0.70 < x < 0.72) shows a lowered melting point, ∼160 °C, compared to 200 and 318 °C for neat NaNH 2 and NaOH, respectively. We report that 0.36 mol of NH 3 per mol of NaNH 2 is released below 400 °C during heating in an argon atmosphere, initiated at its melting point, T = 200 °C, possibly due to the formation of the mixed sodium amide imide solid solution. Furthermore, NaOH reacts with NaNH 2 at elevated temperatures and provides the release of additional NH 3 .

  20. Dry Climate as Major Factor Controlling Formation of Hydrated Sulfate Minerals in Valles Marineris on Mars

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, A.

    2016-12-01

    In this study, a model for the formation of hydrated sulfate salts (Mg-Ca-Na sulfates) in the Rio Puerco watershed of New Mexico, a terrestrial analog site from the semi-arid Southwest U.S., was used to assess the origin and climate condition that may have controlled deposition of hydrated sulfates in Valles Marineris on Mars. In this analog site, the surface accumulation of sulfate minerals along canyon walls, slopes and valley surfaces closely resemble occurrences of hydrated sulfates in Valles Marineris on Mars. Significant surface accumulations of Mg-Ca-Na sulfates are a result of prevailing semiarid conditions and a short-lived hydrological cycle that mobilizes sulfur present in the bedrock as sulfides, sulfate minerals, and atmospheric deposition. Repeating cycles of salt dissolution and re-precipitation appear to be the underpinning processes that serve to transport sulfate from bedrock to sulfate salts (e.g., efflorescences) and into surface water. This process occurs in the shallow surface environment and is not accompanied by deep groundwater flow because of prevailing dry conditions and low annual precipitation. Generally, close resemblance of surface occurrence and mineralogical composition of sulfate salts between the studied terrestrial analog and Valles Marineris suggest that a similar sulfate cycle, involving limited water activity during formation of hydrated sulfates, was once present in Valles Marineris. Measured as efflorescence, the distributed surface mass of hydrated sulfates in Valles Marineris is relatively small (4 to 42%) when compared to terrestrial settings with higher surface accumulation of sulfate minerals such as the White Sands gypsum dune field. Under semi-arid conditions similar to the studied analog in the Rio Pueurco watershed, it would take only 100 to 1,000 years to activate an equivalent flux of aqueous sulfate in Valles Marineris, when comparing terrestrial annual sulfate fluxes from the Rio Puerco watershed with the amount

  1. Phosphorus K-edge XANES spectroscopy of mineral standards

    PubMed Central

    Ingall, Ellery D.; Brandes, Jay A.; Diaz, Julia M.; de Jonge, Martin D.; Paterson, David; McNulty, Ian; Elliott, W. Crawford; Northrup, Paul

    2011-01-01

    Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens. PMID:21335905

  2. REE Mineralization in Kiruna-type Magnetite-Apatite Ore Deposits: Magmatism and Metasomatism

    NASA Astrophysics Data System (ADS)

    Harlov, D. E.

    2015-12-01

    Magnetite-apatite ore bodies of the Kiruna type occur worldwide and are generally associated with volcanic rocks or volcanism. They also show strong evidence of extensive metasomatism over a wide P-T range. Notable examples include the Kiirunavaara ore body, northern Sweden (Harlov et al., 2002, Chem. Geol., 191, 47-72); the Grängesberg ore body, central Sweden (Jonsson et al., 2010, NGF abstracts, vol 1, 88-89); the Mineville ore body, Adirondacks, New York, USA (McKeown and Klemc, 1956, U.S. Geol Sur Bull (1956), pp. 9-23); the Pea Ridge ore body, SE Missouri, USA (Kerr, 1998, MS Thesis, Univ. Windsor, Windsor, Ontario, Canada 113 pp); the Jurassic Marcona ore body in south-central Peru (Chen et al., 2010, Econ Geol, 105, 1441-1456); and a collection of ore bodies from the Bafq Region, central Iran (Daliran et al., 2010, Geol. Assoc. Canada, Short Course Notes, v. 20, p.147-159). In these ore bodies, low Th and U monazite, xenotime, allanite, REE carbonates, and/or REE fluorides are commonly associated with the apatite as inclusions, rim grains, or as independent grains in the surrounding mineral matrix. High contrast BSE imaging, coupled with EMPA and LA-ICPMS, indicates that the apatite has experienced fluid-induced alteration in the form of (Y+REE) + Na + Si + Cl depletion implying that it served as the source for the (Y+REE) (e.g. Kiirunavaara, northern Sweden; Harlov et al., 2002). Formation of monazite and xenotime associated with fluorapatite, as inclusions or rim grains, has experimentally been demonstrated to originate from the fluorapatite as the result of fluid-aided, coupled dissolution-reprecipitation processes (Harlov et al., 2005, Contrib. Mineral. Petrol. 150, 268-286). This is explains the low Th and U content of the monazite and xenotime. Fluid sources could range from 700-900 °C, residual, acidic (HCl, H2HSO4) grain boundary fluids, remaining after the last stages of ore body crystallization, to later stage, cooler (< 600 °C) (H2O-CO2-(Na

  3. Condition of Si crystal formation by vaporizing Na from NaSi

    NASA Astrophysics Data System (ADS)

    Morito, Haruhiko; Karahashi, Taiki; Yamane, Hisanori

    2012-09-01

    NaSi was heated at various Na vapor pressures (pNa 0.1-1.2 atm) and temperatures (973-1173 K) to investigate the condition of Si crystal formation from NaSi by Na evaporation. Silicon single crystals 1-3 mm in diameter were grown by evaporation of Na from Na-Si melt at 1173 K and pNa=0.74 atm.

  4. Sorption of Metal Ions on Clay Minerals.

    PubMed

    Schlegel; Charlet; Manceau

    1999-12-15

    The mechanism of Co uptake from aqueous solution onto hectorite (a magnesian smectite) and its impact on the stability of this clay mineral were investigated as a function of Co concentration (TotCo = 20 to 200 µM, 0.3 M NaNO(3)) and ionic strength (0.3 and 0.01 M NaNO(3), TotCo = 100 µM) by combining kinetics measurements and Co K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The morphology of the sorbent phase was characterized by atomic force microscopy (AFM) and consists of lath-type particles bounded by large basal planes and layer edges. At low ionic strength (0.01 M NaNO(3)), important Co uptake occurred within the first 5 min of reaction, consistent with Co adsorption on exchange sites of hectorite basal planes. Thereafter, the sorption rate dramatically decreased. In contrast, at high ionic strength (0.3 M NaNO(3)), Co uptake rate was much slower within the first 5 min and afterward higher than at 0.01 M NaNO(3), consistent with Co adsorption on specific surface sites located on the edges of hectorite. Time-dependent isotherms for Co uptake at high ionic strength indicated the existence of several sorption mechanisms having distinct equilibration times. The dissolution of hectorite was monitored before and after Co addition. A congruent dissolution regime was observed prior to Co addition. Just after Co addition, an excess release of Mg relatively to congruent dissolution rates occurred at both high and low ionic strengths. At high ionic strength, this excess release nearly equaled the amount of sorbed Co. The dissolution rate of hectorite then decreased at longer Co sorption times. EXAFS spectra of hectorite reacted with Co at high and low ionic strengths and for reaction times longer than 6 h, exhibited similar features, suggesting that the local structural environments of Co atoms are similar. Spectral simulations revealed the occurrence of approximately 2 Mg and approximately 2 Si neighboring cations at interatomic distances

  5. Persulfate activation by subsurface minerals.

    PubMed

    Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J

    2010-06-25

    Persulfate dynamics in the presence of subsurface minerals was investigated as a basis for understanding persulfate activation for in situ chemical oxidation (ISCO). The mineral-mediated decomposition of persulfate and generation of oxidants and reductants was investigated with four iron and manganese oxides and two clay minerals at both low pH (<7) and high pH (>12). The manganese oxide birnessite was the most effective initiator of persulfate for degrading the oxidant probe nitrobenzene, indicating that oxidants are generated at both low and high pH regimes. The iron oxide goethite was the most effective mineral for degrading the reductant probe hexachloroethane. A natural soil and two soil fractions were used to confirm persulfate activation by synthetic minerals. The soil and soil fractions did not effectively promote the generation of oxidants or reductants. However, soil organic matter was found to promote reductant generation at high pH. The results of this research demonstrate that synthetic iron and manganese oxides can activate persulfate to generate reductants and oxidants; however, iron and manganese oxides in the natural soil studied do not show the same reactivity, most likely due to the lower masses of the metal oxides in the soil relative to the masses studied in isolated mineral systems. 2010. Published by Elsevier B.V.

  6. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  7. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE PAGES

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; ...

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  8. 36 CFR 254.34 - Mineral survey fractions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Mineral survey fractions. 254... LANDOWNERSHIP ADJUSTMENTS Conveyance of Small Tracts § 254.34 Mineral survey fractions. (a) Mineral survey...) Forest Service officials shall consider the following criteria in determining whether to convey mineral...

  9. Natural mineral waters: chemical characteristics and health effects

    PubMed Central

    Quattrini, Sara; Pampaloni, Barbara; Brandi, Maria Luisa

    2016-01-01

    Summary Water contributes significantly to health and a daily intake of 1.5 to 2 liters of water should be guaranteed, because a good hydration is essential to maintain the body water equilibrium, although needs may vary among people. However, worldwide population is far from the Recommended Allowance for water intake. Among the waters for human uses, there are ‘waters (treated or not), intended for drinking, used for the food and beverages preparation or for other domestic purposes’ and natural mineral waters, that are ‘originated from an aquifer or underground reservoir, spring from one or more natural or bore sources and have specific hygienic features and, eventually, healthy properties’. According to the European Legislation (2009/54/EC Directive), physical and chemical characterization is used to make a classification of the different mineral waters, basing on the analysis of main parameters. Mineral composition enables to classify natural mineral waters as bicarbonate mineral waters, sulphate mineral waters, chloride mineral waters, calcic mineral waters, magnesiac mineral waters, fluorurate mineral waters, ferrous mineral waters and sodium-rich mineral waters. Although the concerns about bottled mineral waters (due to plasticizers and endocrine disruptors), many are the health effects of natural mineral waters and several studies explored their properties and their role in different physiological and pathological conditions. PMID:28228777

  10. Effect of organic and conventional rearing system on the mineral content of pork.

    PubMed

    Zhao, Yan; Wang, Donghua; Yang, Shuming

    2016-08-01

    Dietary composition and rearing regime largely determine the trace elemental composition of pigs, and consequently their concentration in animal products. The present study evaluates thirteen macro- and trace element concentrations in pork from organic and conventional farms. Conventional pigs were given a commercial feed with added minerals; organic pigs were given a feed based on organic feedstuffs. The content of macro-elements (Na, K, Mg and Ca) and some trace elements (Ni, Fe, Zn and Sr) in organic and conventional meat samples showed no significant differences (P>0.05). Several trace element concentrations in organic pork were significantly higher (P<0.05) compared to conventional pork: Cr (808 and 500μg/kg in organic and conventional pork, respectively), Mn (695 and 473μg/kg) and Cu (1.80 and 1.49mg/kg). The results showed considerable differences in mineral content between samples from pigs reared in organic and conventional systems. Our results also indicate that authentication of organic pork can be realized by applying multivariate chemometric methods such as discriminant analysis to this multi-element data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influence of mineral matter on pyrolysis of palm oil wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haiping; Chen, Hanping; Zheng, Chuguang

    2006-09-15

    The influence of mineral matter on pyrolysis of biomass (including pure biomass components, synthesized biomass, and natural biomass) was investigated using a thermogravimetric analyzer (TGA). First, the mineral matter, KCl, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, CaMg(CO{sub 3}){sub 2}, Fe{sub 2}O{sub 3}, and Al{sub 2}O{sub 3}, was mixed respectively with the three main biomass components (hemicellulose, cellulose, and lignin) at a weight ratio (C/W) of 0.1 and its pyrolysis characteristics were investigated. Most of these mineral additives, except for K{sub 2}CO{sub 3}, demonstrated negligible influence. Adding K{sub 2}CO{sub 3} inhibited the pyrolysis of hemicellulose by lowering its mass loss ratemore » by 0.3 wt%/{sup o}C, while it enhanced the pyrolysis of cellulose by shifting the pyrolysis to a lower temperature. With increased K{sub 2}CO{sub 3} added, the weight loss of cellulose in the lower temperature zone (200-315 {sup o}C) increased greatly, and the activation energies of hemicellulose and cellulose pyrolysis decreased notably from 204 to 42 kJ/mol. Second, studies on the synthetic biomass of hemicellulose, cellulose, lignin, and K{sub 2}CO{sub 3} (as a representative of minerals) indicated that peaks of cellulose and hemicellulose pyrolysis became overlapped with addition of K{sub 2}CO{sub 3} (at C/W=0.05-0.1), due to the catalytic effect of K{sub 2}CO{sub 3} lowering cellulose pyrolysis to a lower temperature. Finally, a local representative biomass--palm oil waste (in the forms of original material and material pretreated through water washing or K{sub 2}CO{sub 3} addition)--was studied. Water washing shifted pyrolysis of palm oil waste to a higher temperature by 20 {sup o}C, while K{sub 2}CO{sub 3} addition lowered the peak temperature of pyrolysis by {approx}50{sup o}C. It was therefore concluded that the obvious catalytic effect of adding K{sub 2}CO{sub 3} might be attributed to certain fundamental changes in terms of chemical structure of

  12. Re- and Demineralization Characteristics of Enamel Depending on Baseline Mineral Loss and Lesion Depth in situ.

    PubMed

    Wierichs, Richard J; Lausch, Julian; Meyer-Lueckel, Hendrik; Esteves-Oliveira, Marcella

    2016-01-01

    The aim of this double-blinded, randomized, cross-over in situ study was to evaluate the re- and demineralization characteristics of sound enamel as well as lowly and highly demineralized caries-like enamel lesions after the application of different fluoride compounds. In each of three experimental legs of 4 weeks, 21 participants wore intraoral mandibular appliances containing 4 bovine enamel specimens (2 lowly and 2 highly demineralized). Each specimen included one sound enamel and either one lowly demineralized (7 days, pH 4.95) or one highly demineralized (21 days, pH 4.95) lesion, and was positioned 1 mm below the acrylic under a plastic mesh. The three randomly allocated treatments (application only) included the following dentifrices: (1) 1,100 ppm F as NaF, (2) 1,100 ppm F as SnF2 and (3) 0 ppm F (fluoride-free) as negative control. Differences in integrated mineral loss (x0394;x0394;Z) and lesion depth (x0394;LD) were calculated between values before and after the in situ period using transversal microradiography. Of the 21 participants, 6 did not complete the study and 2 were excluded due to protocol violation. Irrespectively of the treatment, higher baseline mineral loss and lesion depth led to a less pronounced change in mineral loss and lesion depth. Except for x0394;x0394;Z of the dentifrice with 0 ppm F, sound surfaces showed significantly higher x0394;x0394;Z and x0394;LD values compared with lowly and highly demineralized lesions (p < 0.05, t test). Re- and demineralization characteristics of enamel depended directly on baseline mineral loss and lesion depth. Treatment groups should therefore be well balanced with respect to baseline mineral loss and lesion depth. © 2016 S. Karger AG, Basel.

  13. Multifaceted role of clay minerals in pharmaceuticals

    PubMed Central

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelling capacity, reactivity to acids and inconsiderable toxicity. Of course, these are highly cost effectual. This special report on clay minerals provides a bird's eye view of the chemical composition and structure of these minerals and their influence on the release properties of active medicinal agents. Endeavor has been made to rope in myriad applications depicting the wide acceptability of these clay minerals. PMID:28031881

  14. Microorganisms meet solid minerals: interactions and biotechnological applications.

    PubMed

    Ng, Daphne H P; Kumar, Amit; Cao, Bin

    2016-08-01

    In natural and engineered environments, microorganisms often co-exist and interact with various minerals or mineral-containing solids. Microorganism-mineral interactions contribute significantly to environmental processes, including biogeochemical cycles in natural ecosystems and biodeterioration of materials in engineered environments. In this mini-review, we provide a summary of several key mechanisms involved in microorganism-mineral interactions, including the following: (i) solid minerals serve as substrata for biofilm development; (ii) solid minerals serve as an electron source or sink for microbial respiration; (iii) solid minerals provide microorganisms with macro or micronutrients for cell growth; and (iv) (semi)conductive solid minerals serve as extracellular electron conduits facilitating cell-to-cell interactions. We also highlight recent developments in harnessing microbe-mineral interactions for biotechnological applications.

  15. 36 CFR 254.34 - Mineral survey fractions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Mineral survey fractions. 254... LANDOWNERSHIP ADJUSTMENTS Conveyance of Small Tracts § 254.34 Mineral survey fractions. (a) Mineral survey... survey fractions under this subpart: (1) The mineral survey fractions are interspersed among and are more...

  16. 36 CFR 254.34 - Mineral survey fractions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Mineral survey fractions. 254... LANDOWNERSHIP ADJUSTMENTS Conveyance of Small Tracts § 254.34 Mineral survey fractions. (a) Mineral survey... survey fractions under this subpart: (1) The mineral survey fractions are interspersed among and are more...

  17. 36 CFR 254.34 - Mineral survey fractions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Mineral survey fractions. 254... LANDOWNERSHIP ADJUSTMENTS Conveyance of Small Tracts § 254.34 Mineral survey fractions. (a) Mineral survey... survey fractions under this subpart: (1) The mineral survey fractions are interspersed among and are more...

  18. 36 CFR 254.34 - Mineral survey fractions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Mineral survey fractions. 254... LANDOWNERSHIP ADJUSTMENTS Conveyance of Small Tracts § 254.34 Mineral survey fractions. (a) Mineral survey... survey fractions under this subpart: (1) The mineral survey fractions are interspersed among and are more...

  19. 36 CFR 292.68 - Mineral material operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Mineral material operations... NATIONAL RECREATION AREAS Smith River National Recreation Area Mineral Materials § 292.68 Mineral material... officer may approve contracts and permits for the sale or other disposal of mineral materials, including...

  20. 36 CFR 292.68 - Mineral material operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Mineral material operations... NATIONAL RECREATION AREAS Smith River National Recreation Area Mineral Materials § 292.68 Mineral material... officer may approve contracts and permits for the sale or other disposal of mineral materials, including...