Sample records for na microscope objective

  1. Integration of a high-NA light microscope in a scanning electron microscope.

    PubMed

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  2. How Confocal Is Confocal Raman Microspectroscopy on the Skin? Impact of Microscope Configuration and Sample Preparation on Penetration Depth Profiles.

    PubMed

    Lunter, Dominique Jasmin

    2016-01-01

    The aim of the study was to elucidate the effect of sample preparation and microscope configuration on the results of confocal Raman microspectroscopic evaluation of the penetration of a pharmaceutical active into the skin (depth profiling). Pig ear skin and a hydrophilic formulation containing procaine HCl were used as a model system. The formulation was either left on the skin during the measurement, or was wiped off or washed off prior to the analysis. The microscope configuration was varied with respect to objectives and pinholes used. Sample preparation and microscope configuration had a tremendous effect on the results of depth profiling. Regarding sample preparation, the best results could be observed when the formulation was washed off the skin prior to the analysis. Concerning microscope configuration, the use of a 40 × 0.6 numerical aperture (NA) objective in combination with a 25-µm pinhole or a 100 × 1.25 NA objective in combination with a 50-µm pinhole was found to be advantageous. Complete removal of the sample from the skin before the analysis was found to be crucial. A thorough analysis of the suitability of the chosen microscope configuration should be performed before acquiring concentration depth profiles. © 2016 S. Karger AG, Basel.

  3. Application of a reflective microscope objective for multiphoton microscopy.

    PubMed

    Kabir, Mohammad M; Choubal, Aakash M; Toussaint, Kimani C

    2018-04-20

    Reflective objectives (ROs) mitigate chromatic aberration across a broad wavelength range. Yet, a systematic performance characterisation of ROs has not been done. In this paper, we compare the performance of a 0.5 numerical-aperture (NA) reflective objective (RO) with a 0.55 NA standard glass objective (SO), using two-photon fluorescence (TPF) and second-harmonic generation (SHG). For experiments spanning ∼1 octave in the visible and NIR wavelengths, the SO leads to defocusing errors of 25-40% for TPF images of subdiffraction fluorescent beads and 10-12% for SHG images of collagen fibres. The corresponding error for the RO is ∼4% for both imaging modalities. This work emphasises the potential utility of ROs for multimodal multiphoton microscopy applications. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  4. Optomechanical design and tolerance of a microscope objective at 121.6 nm

    NASA Astrophysics Data System (ADS)

    Keyes, Derek S.; Jota, Thiago S.; Gao, Weichuan; Luepke, Dakota; Densmore, Victor; Kim, Young-Sik; Kim, Gun-Hee; Milster, Thomas D.

    2015-08-01

    By utilizing the Hydrogen-Lyman-α (HLA) source at 121.6 nm, we hope to achieve an intrinsic resolution of 247 nm at 0.3 numerical aperture (NA) and 92 nm at 0.8 NA. The motivation for 121.6 nm microscopy is the existence of a transparent window in the air absorption spectrum at that wavelength, which allows for the sample to be in air while the microscope is in an enclosed nitrogen environment. The microscope objective consists of two reflective optics and a LiF window, and it has been designed to demonstrate diffraction limited performance over a 160μm full field at 121.6 nm. The optomechanical design consists of mechanical subcells for each optical component, precision spacers and a barrel bore, which allow for submicron control of tolerance parameters.

  5. X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1991-01-01

    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.

  6. Depth of focus extended microscope configuration for imaging of incorporated groups of molecules, DNA constructs and clusters inside bacterial cells

    NASA Astrophysics Data System (ADS)

    Fessl, Tomas; Ben-Yaish, Shai; Vacha, Frantisek; Adamec, Frantisek; Zalevsky, Zeev

    2009-07-01

    Imaging of small objects such as single molecules, DNA clusters and single bacterial cells is problematic not only due to the lateral resolution that is obtainable in currently existing microscopy but also, and as much fundamentally limiting, due to the lack of sufficient axial depth of focus to have the full object focused simultaneously. Extension in depth of focus is helpful also for single molecule steady state FRET measurements. In this technique it is crucial to obtain data from many well focused molecules, which are often located in different axial depths. In this paper we present the implementation of an all-optical and a real time technique of extension in the depth of focus that may be incorporated in any high NA microscope system and to be used for the above mentioned applications. We demonstrate experimentally how after the integration of special optical element in high NA 100× objective lens of a single molecule imaging microscope system, the depth of focus is significantly improved while maintaining the same lateral resolution in imaging applications of incorporated groups of molecules, DNA constructs and clusters inside bacterial cells.

  7. Tuning donut profile for spatial resolution in stimulated emission depletion microscopy.

    PubMed

    Neupane, Bhanu; Chen, Fang; Sun, Wei; Chiu, Daniel T; Wang, Gufeng

    2013-04-01

    In stimulated emission depletion (STED)-based or up-conversion depletion-based super-resolution optical microscopy, the donut-shaped depletion beam profile is of critical importance to its resolution. In this study, we investigate the transformation of the donut-shaped depletion beam focused by a high numerical aperture (NA) microscope objective, and model STED point spread function (PSF) as a function of donut beam profile. We show experimentally that the intensity profile of the dark kernel of the donut can be approximated as a parabolic function, whose slope is determined by the donut beam size before the objective back aperture, or the effective NA. Based on this, we derive the mathematical expression for continuous wave (CW) STED PSF as a function of focal plane donut and excitation beam profiles, as well as dye properties. We find that the effective NA and the residual intensity at the center are critical factors for STED imaging quality and the resolution. The effective NA is critical for STED resolution in that it not only determines the donut shape but also the area the depletion laser power is dispersed. An improperly expanded depletion beam will have negligible improvement in resolution. The polarization of the depletion beam also plays an important role as it affects the residual intensity in the center of the donut. Finally, we construct a CW STED microscope operating at 488 nm excitation and 592 nm depletion with a resolution of 70 nm. Our study provides detailed insight to the property of donut beam, and parameters that are important for the optimal performance of STED microscopes. This paper will provide a useful guide for the construction and future development of STED microscopes.

  8. Reflecting microscope system with a 0.99 numerical aperture designed for three-dimensional fluorescence imaging of individual molecules at cryogenic temperatures

    PubMed Central

    Inagawa, H.; Toratani, Y.; Motohashi, K.; Nakamura, I.; Matsushita, M.; Fujiyoshi, S.

    2015-01-01

    We have developed a cryogenic fluorescence microscope system, the core of which is a reflecting objective that consists of spherical and aspherical mirrors. The use of an aspherical mirror allows the reflecting objective to have a numerical aperture (NA) of up to 0.99, which is close to the maximum possible NA of 1.03 in superfluid helium. The performance of the system at a temperature of 1.7 K was tested by recording a three-dimensional fluorescence image of individual quantum dots using excitation wavelengths (λex) of 532 nm and 635 nm. At 1.7 K, the microscope worked with achromatic and nearly diffraction-limited performance. The 1/e2 radius (Γ) of the point spread function of the reflecting objective in the lateral (xy) direction was 0.212 ± 0.008 μm at λex = 532 nm and was less than 1.2 times the simulated value for a perfectly polished objective. The radius Γ in the axial (z) direction was 0.91 ± 0.04 μm at λex = 532 nm and was less than 1.4 times the simulated value of Γ. The chromatic aberrations between the two wavelengths were one order of magnitude smaller than Γ in each direction. PMID:26239746

  9. Modular Scanning Confocal Microscope with Digital Image Processing.

    PubMed

    Ye, Xianjun; McCluskey, Matthew D

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.

  10. Maximizing fluorescence collection efficiency in multiphoton microscopy

    PubMed Central

    Zinter, Joseph P.; Levene, Michael J.

    2011-01-01

    Understanding fluorescence propagation through a multiphoton microscope is of critical importance in designing high performance systems capable of deep tissue imaging. Optical models of a scattering tissue sample and the Olympus 20X 0.95NA microscope objective were used to simulate fluorescence propagation as a function of imaging depth for physiologically relevant scattering parameters. The spatio-angular distribution of fluorescence at the objective back aperture derived from these simulations was used to design a simple, maximally efficient post-objective fluorescence collection system. Monte Carlo simulations corroborated by data from experimental tissue phantoms demonstrate collection efficiency improvements of 50% – 90% over conventional, non-optimized fluorescence collection geometries at large imaging depths. Imaging performance was verified by imaging layer V neurons in mouse cortex to a depth of 850 μm. PMID:21934897

  11. MEMS-based handheld confocal microscope for in-vivo skin imaging

    PubMed Central

    Arrasmith, Christopher L.; Dickensheets, David L.; Mahadevan-Jansen, Anita

    2010-01-01

    This paper describes a handheld laser scanning confocal microscope for skin microscopy. Beam scanning is accomplished with an electromagnetic MEMS bi-axial micromirror developed for pico projector applications, providing 800x600 (SVGA) resolution at 56 frames per second. The design uses commercial objective lenses with an optional hemisphere front lens, operating with a range of numerical aperture from NA=0.35 to NA=1.1 and corresponding diagonal field of view ranging from 653 μm to 216 μm. Using NA=1.1 and a laser wavelength of 830 nm we measured the axial response to be 1.14 μm full width at half maximum, with a corresponding 10%-90% lateral edge response of 0.39 μm. Image examples showing both epidermal and dermal features including capillary blood flow are provided. These images represent the highest resolution and frame rate yet achieved for tissue imaging with a MEMS bi-axial scan mirror. PMID:20389391

  12. Modular Scanning Confocal Microscope with Digital Image Processing

    PubMed Central

    McCluskey, Matthew D.

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength. PMID:27829052

  13. Design, assembly, and metrology of an oil-immersion microscope objective with long working distance

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Lin, Wen-Lung; Kuo, Hui-Jean; Ho, Cheng-Fang; Hsu, Wei-Yao

    2016-10-01

    The design, tolerance sensitivity reduction, assembly, and optical bench test for an oil-immersion microscope objective with long working distance employed in a lattice light-sheet microscope is presented in this paper. In this application, the orthogonal excitation and detection objectives are dipped in an oil medium. The excitation objective focuses the incident laser beam to generate fluorescence on specimen for collecting by detection objective. The excitation objective is custom-designed to meet the requirement specification such as oil-immersion, the long working distance, and numerical aperture (NA) of 0.5, etc. To produce an acceptable point spread function (PSF) for effective excitation, the performance of the objective needs to be close to diffraction limit. Because the tolerance of the modulation transfer function (MTF) is more and more sensitive at higher spatial frequency, it is extremely critical to keep the performance after manufacture. Consequently, an insensitive optical design is very important for relaxing tolerance. We compare the design with and without tolerance sensitivity reduction, and the as-built MTF shows the result. Furthermore, the method for sensitivity reduction is presented. The opto-mechanical design and assembly method are also discussed. Eventually, the objective with five spherical lenses was fabricated. In optical bench test, the depth of the oil is sensitive to MTF, and it leads to the complicated adjustment. For solving this issue, we made an index-matching lens to replace oil for measurement easily. Finally, the measured MTF of the excitation objective can accomplish the requirement specification and successfully employed in a lattice light-sheet microscope.

  14. Electrically tunable lens speeds up 3D orbital tracking

    PubMed Central

    Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico

    2015-01-01

    3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037

  15. Wide-Spectrum Microscope with a Long Working Distance Aspherical Objective Based on Obscuration Constraint

    PubMed Central

    Wang, Weibo; Wang, Chao; Liu, Jian; Tan, Jiubin

    2016-01-01

    We present an approach for an initial configuration design based on obscuration constraint and on-axis Taylor series expansion to realize the design of long working distance microscope (numerical aperture (NA) = 0.13 and working distance (WD) = 525 mm) with a low obscuration aspherical Schwarzschild objective in wide-spectrum imaging (λ = 400–900 nm). Experiments of the testing on the resolution target and inspection on United States Air Force (USAF) resolution chart and a line charge-coupled device (CCD) (pixel size of 14 μm × 56 μm) with different wavelength light sources (λ = 480 nm, 550 nm, 660 nm, 850 nm) were implemented to verify the validity of the proposed method. PMID:27834874

  16. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective

    NASA Astrophysics Data System (ADS)

    Heine, Jörn; Wurm, Christian A.; Keller-Findeisen, Jan; Schönle, Andreas; Harke, Benjamin; Reuss, Matthias; Winter, Franziska R.; Donnert, Gerald

    2018-05-01

    Modern fluorescence superresolution microscopes are capable of imaging living cells on the nanometer scale. One of those techniques is stimulated emission depletion (STED) which increases the microscope's resolution many times in the lateral and the axial directions. To achieve these high resolutions not only close to the coverslip but also at greater depths, the choice of objective becomes crucial. Oil immersion objectives have frequently been used for STED imaging since their high numerical aperture (NA) leads to high spatial resolutions. But during live-cell imaging, especially at great penetration depths, these objectives have a distinct disadvantage. The refractive index mismatch between the immersion oil and the usually aqueous embedding media of living specimens results in unwanted spherical aberrations. These aberrations distort the point spread functions (PSFs). Notably, during z- and 3D-STED imaging, the resolution increase along the optical axis is majorly hampered if at all possible. To overcome this limitation, we here use a water immersion objective in combination with a spatial light modulator for z-STED measurements of living samples at great depths. This compact design allows for switching between objectives without having to adapt the STED beam path and enables on the fly alterations of the STED PSF to correct for aberrations. Furthermore, we derive the influence of the NA on the axial STED resolution theoretically and experimentally. We show under live-cell imaging conditions that a water immersion objective leads to far superior results than an oil immersion objective at penetration depths of 5-180 μm.

  17. A study on high NA and evanescent imaging with polarized illumination

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Hune

    Simulation techniques are developed for high NA polarized microscopy with Babinet's principle, partial coherence and vector diffraction for non-periodic geometries. A mathematical model for the Babinet approach is developed and interpreted. Simulation results of the Babinet's principle approach are compared with those of Rigorous Coupled Wave Theory (RCWT) for periodic structures to investigate the accuracy of this approach and its limitations. A microscope system using a special solid immersion lens (SIL) is introduced to image Blu-Ray (BD) optical disc samples without removing the protective cover layer. Aberration caused by the cover layer is minimized with a truncated SIL. Sub-surface imaging simulation is achieved by RCWT, partial coherence, vector diffraction and Babinet's Principle. Simulated results are compared with experimental images and atomic force microscopy (AFM) measurement. A technique for obtaining native and induced using a significant amount of evanescent energy is described for a solid immersion lens (SIL) microscope. Characteristics of native and induced polarization images for different object structures and materials are studied in detail. Experiments are conducted with a NA = 1.48 at lambda = 550nm microscope. Near-field images are simulated and analyzed with an RCWT approach. Contrast curve versus object spatial frequency calculations are compared with experimental measurements. Dependencies of contrast versus source polarization angles and air gap for native and induced polarization image profiles are evaluated. By using the relationship between induced polarization and topographical structure, an induced polarization image of an alternating phase shift mask (PSM) is converted into a topographical image, which shows very good agreement with AFM measurement. Images of other material structures include a dielectric grating, chrome-on-glass grating, silicon CPU structure, BD-R and BD-ROM.

  18. Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes.

    PubMed

    Zeng, Xianghui; Duewer, Fred; Feser, Michael; Huang, Carson; Lyon, Alan; Tkachuk, Andrei; Yun, Wenbing

    2008-05-01

    Single-bounce ellipsoidal and paraboloidal glass capillary focusing optics have been fabricated for use as condenser lenses for both synchrotron and tabletop x-ray microscopes in the x-ray energy range of 2.5-18 keV. The condenser numerical apertures (NAs) of these devices are designed to match the NA of x-ray zone plate objectives, which gives them a great advantage over zone plate condensers in laboratory microscopes. The fabricated condensers have slope errors as low as 20 murad rms. These capillaries provide a uniform hollow-cone illumination with almost full focusing efficiency, which is much higher than what is available with zone plate condensers. Sub-50 nm resolution at 8 keV x-ray energy was achieved by utilizing this high-efficiency condenser in a laboratory microscope based on a rotating anode generator.

  19. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    PubMed Central

    Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2010-01-01

    We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464

  20. An orientation-independent DIC microscope allows high resolution imaging of epithelial cell migration and wound healing in a cnidarian model.

    PubMed

    Malamy, J E; Shribak, M

    2018-06-01

    Epithelial cell dynamics can be difficult to study in intact animals or tissues. Here we use the medusa form of the hydrozoan Clytia hemisphaerica, which is covered with a monolayer of epithelial cells, to test the efficacy of an orientation-independent differential interference contrast microscope for in vivo imaging of wound healing. Orientation-independent differential interference contrast provides an unprecedented resolution phase image of epithelial cells closing a wound in a live, nontransgenic animal model. In particular, the orientation-independent differential interference contrast microscope equipped with a 40x/0.75NA objective lens and using the illumination light with wavelength 546 nm demonstrated a resolution of 460 nm. The repair of individual cells, the adhesion of cells to close a gap, and the concomitant contraction of these cells during closure is clearly visualized. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  1. Subwavelength resolution Fourier ptychography with hemispherical digital condensers

    NASA Astrophysics Data System (ADS)

    Pan, An; Zhang, Yan; Li, Maosen; Zhou, Meiling; Lei, Ming; Yao, Baoli

    2018-02-01

    Fourier ptychography (FP) is a promising computational imaging technique that overcomes the physical space-bandwidth product (SBP) limit of a conventional microscope by applying angular diversity illuminations. However, to date, the effective imaging numerical aperture (NA) achievable with a commercial LED board is still limited to the range of 0.3-0.7 with a 4×/0.1NA objective due to the constraint of planar geometry with weak illumination brightness and attenuated signal-to-noise ratio (SNR). Thus the highest achievable half-pitch resolution is usually constrained between 500-1000 nm, which cannot fulfill some needs of high-resolution biomedical imaging applications. Although it is possible to improve the resolution by using a higher magnification objective with larger NA instead of enlarging the illumination NA, the SBP is suppressed to some extent, making the FP technique less appealing, since the reduction of field-of-view (FOV) is much larger than the improvement of resolution in this FP platform. Herein, in this paper, we initially present a subwavelength resolution Fourier ptychography (SRFP) platform with a hemispherical digital condenser to provide high-angle programmable plane-wave illuminations of 0.95NA, attaining a 4×/0.1NA objective with the final effective imaging performance of 1.05NA at a half-pitch resolution of 244 nm with a wavelength of 465 nm across a wide FOV of 14.60 mm2 , corresponding to an SBP of 245 megapixels. Our work provides an essential step of FP towards high-NA imaging applications without scarfing the FOV, making it more practical and appealing.

  2. Three-dimensional polarization algebra for all polarization sensitive optical systems.

    PubMed

    Li, Yahong; Fu, Yuegang; Liu, Zhiying; Zhou, Jianhong; Bryanston-Cross, P J; Li, Yan; He, Wenjun

    2018-05-28

    Using three-dimensional (3D) coherency vector (9 × 1), we develop a new 3D polarization algebra to calculate the polarization properties of all polarization sensitive optical systems, especially when the incident optical field is partially polarized or un-polarized. The polarization properties of a high numerical aperture (NA) microscope objective (NA = 1.25 immersed in oil) are analyzed based on the proposed 3D polarization algebra. Correspondingly, the polarization simulation of this high NA optical system is performed by the commercial software VirtualLAB Fusion. By comparing the theoretical calculations with polarization simulations, a perfect matching relation is obtained, which demonstrates that this 3D polarization algebra is valid to quantify the 3D polarization properties for all polarization sensitive optical systems.

  3. Construction of a Quantum Matter Synthesizer

    NASA Astrophysics Data System (ADS)

    Trisnadi, Jonathan; McDonald, Mickey; Chin, Cheng

    2017-04-01

    We report progress on the construction of a new platform to manipulate ultracold atoms. The ``Quantum Matter Synthesizer (QMS)'' will have the capability of deterministically preparing large 2D arrays of atoms with single site addressability. Cesium atoms are first transferred into a science cell (specially textured to reduce reflectance to 0.1% across a wide range of wavelengths and incident angles) via a moving 1D lattice, where they are loaded into a magic-wavelength, far-detuned 2D optical lattice. Two NA=0.8 microscope objectives surround the science cell from above and below. The lower objective will be used to project an array of optical tweezers created via a digital micromirror device (DMD) onto the atom-trapping plane, which will be used to rearrange atoms into a desired configuration after first taking a site-resolved fluorescence image of the initial atomic distribution with the upper objective. We provide updates on our magnetic-optical trap and Raman-sideband cooling performance, characterization of the resolution of our microscope objectives, and stability tests for the objective mounting structure.

  4. Antimicrobial effect of three disinfecting agents on Resilon cones and their effect on surface topography: An in vitro study.

    PubMed

    Chandrappa, Mahesh Martur; Meharwade, Prasanna Mahadevasa; Srinivasan, Raghu; Bhandary, Shreetha; Nasreen, Farhat

    2016-01-01

    The objective of this study was to evaluate the effectiveness of 5.25% sodium hypochlorite (NaOCl), 2% chlorhexidine (CHX), and 2% peracetic acid (PAA) in disinfecting Resilon cones and to evaluate topographical changes microscopically under scanning electron microscope (SEM) after rapid chemical disinfection. Resilon cones were disinfected in an ultraviolet (UV) light chamber for 20 min and contaminated by immersing in a microbial suspension of Enterococcus faecalis for 30 min. The contaminated cones were then immersed in the 5.25% NaOCl, 2% CHX, and 2% PAA for 1 min, 5 min, and 10 min, separately. The cones were then incubated at 37°C in thioglycollate broth for 7 days and examined for turbidity. The samples showing turbidity were subcultured on blood agar and incubated at 37°C for 48 h. Gram staining was done to confirm that the cultured bacteria were E. faecalis. Surface changes of disinfected Resilon cones were evaluated under SEM. The data were analyzed statistically using Kruskal-Wallis, analysis of variance (ANOVA), and Mann-Whitney U-test. In eliminating E. faecalis, 5.25% NaOCl was most effective followed by 2% PAA and 2% CHX. Topographic examination of tested Resilon cones revealed some surface deposits after disinfection with 5.25% NaOCl and 2% CHX, whereas 2% PAA caused surface erosion. In disinfecting Resilon cones, 5.25% NaOCl is most effective followed by 2% PAA and 2% CHX.

  5. Visualizing substructure of Ca2+ waves by total internal reflection fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bai, Yongqiang; Tang, Aihui; Wang, Shiqiang; Zhu, Xing

    2005-02-01

    Total internal reflection fluorescence microscope is a new optical microscopic system based on near-field optical theory. Its character of illumination by evanescent wave, together with the great signal-to-noise ratio and temporal resolution achieved by high quality CCD, allows us to analyze the spatiotemporal details of local Ca2+ dynamics within the nanoscale microdomain surrounding different Ca2+ channels. We have recently constructed a versatile objective TIRFM equipped with a high numerical aperture (NA=1.45) objective. Using fluo-4 as the Ca2+ indicator, we visualized the near-membrane profiles of Ca2+ waves and elementary Ca2+ sparks generated by Ca2+ release channels in rat ventricular myocytes. Different from those detected using conventional and confocal microscopy, Ca2+ waves observed with TIRFM exhibited fine inhomogenous substructures composed of fluctuating Ca2+ sparks. The anfractuous routes of spark recruitment suggested that the propagation of Ca2+ waves is much more complicated than previously imagined. We believe that TIRFM will provide a unique tool for dissecting the microscopic mechanisms of intracellular Ca2+ signaling.

  6. High-contrast 3D image acquisition using HiLo microscopy with an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Philipp, Katrin; Smolarski, André; Fischer, Andreas; Koukourakis, Nektarios; Stürmer, Moritz; Wallrabe, Ulricke; Czarske, Jürgen

    2016-04-01

    We present a HiLo microscope with an electrically tunable lens for high-contrast three-dimensional image acquisition. HiLo microscopy combines wide field and speckled illumination images to create optically sectioned images. Additionally, the depth-of-field is not fixed, but can be adjusted between wide field and confocal-like axial resolution. We incorporate an electrically tunable lens in the HiLo microscope for axial scanning, to obtain three-dimensional data without the need of moving neither the sample nor the objective. The used adaptive lens consists of a transparent polydimethylsiloxane (PDMS) membrane into which an annular piezo bending actuator is embedded. A transparent fluid is filled between the membrane and the glass substrate. When actuated, the piezo generates a pressure in the lens which deflects the membrane and thus changes the refractive power. This technique enables a large tuning range of the refractive power between 1/f = (-24 . . . 25) 1/m. As the NA of the adaptive lens is only about 0.05, a fixed high-NA lens is included in the setup to provide high resolution. In this contribution, the scan properties and capabilities of the tunable lens in the HiLo microscope are analyzed. Eventually, exemplary measurements are presented and discussed.

  7. FPscope: a field-portable high-resolution microscope using a cellphone lens.

    PubMed

    Dong, Siyuan; Guo, Kaikai; Nanda, Pariksheet; Shiradkar, Radhika; Zheng, Guoan

    2014-10-01

    The large consumer market has made cellphone lens modules available at low-cost and in high-quality. In a conventional cellphone camera, the lens module is used to demagnify the scene onto the image plane of the camera, where image sensor is located. In this work, we report a 3D-printed high-resolution Fourier ptychographic microscope, termed FPscope, which uses a cellphone lens in a reverse manner. In our platform, we replace the image sensor with sample specimens, and use the cellphone lens to project the magnified image to the detector. To supersede the diffraction limit of the lens module, we use an LED array to illuminate the sample from different incident angles and synthesize the acquired images using the Fourier ptychographic algorithm. As a demonstration, we use the reported platform to acquire high-resolution images of resolution target and biological specimens, with a maximum synthetic numerical aperture (NA) of 0.5. We also show that, the depth-of-focus of the reported platform is about 0.1 mm, orders of magnitude longer than that of a conventional microscope objective with a similar NA. The reported platform may enable healthcare accesses in low-resource settings. It can also be used to demonstrate the concept of computational optics for educational purposes.

  8. SIL-STED microscopy technique enhancing super-resolution of fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Park, No-Cheol; Lim, Geon; Lee, Won-sup; Moon, Hyungbae; Choi, Guk-Jong; Park, Young-Pil

    2017-08-01

    We have characterized a new type STED microscope which combines a high numerical aperture (NA) optical head with a solid immersion lens (SIL), and we call it as SIL-STED microscope. The advantage of a SIL-STED microscope is that its high NA of the SIL makes it superior to a general STED microscope in lateral resolution, thus overcoming the optical diffraction limit at the macromolecular level and enabling advanced super-resolution imaging of cell surface or cell membrane structure and function Do. This study presents the first implementation of higher NA illumination in a STED microscope limiting the fluorescence lateral resolution to about 40 nm. The refractive index of the SIL which is made of material KTaO3 is about 2.23 and 2.20 at a wavelength of 633 nm and 780 nm which are used for excitation and depletion in STED imaging, respectively. Based on the vector diffraction theory, the electric field focused by the SILSTED microscope is numerically calculated so that the numerical results of the point dispersion function of the microscope and the expected resolution could be analyzed. For further investigation, fluorescence imaging of nano size fluorescent beads is fulfilled to show improved performance of the technique.

  9. An orientation-independent DIC microscope allows high resolution imaging of epithelial cell migration and wound healing in a Cnidarian model

    PubMed Central

    Malamy, Jocelyn; Shribak, Michael

    2017-01-01

    Epithelial cell dynamics can be difficult to study in intact animals or tissues. Here we use the medusa form of the hydrozoan Clytia hemisphaerica, which is covered with a monolayer of epithelial cells, to test the efficacy of an orientation-independent differential interference contrast (OI-DIC) microscope for in vivo imaging of wound healing. OI-DIC provides an unprecedented resolution phase image of epithelial cells closing a wound in a live, non-transgenic animal model. In particular, the OI-DIC microscope equipped with a 40×/0.75NA objective lens and using the illumination light with wavelength 546 nm demonstrated a resolution of 460 nm. The repair of individual cells, the adhesion of cells to close a gap, and the concomitant contraction of these cells during closure is clearly visualized. PMID:29345317

  10. Antimicrobial effect of three disinfecting agents on Resilon cones and their effect on surface topography: An in vitro study

    PubMed Central

    Chandrappa, Mahesh Martur; Meharwade, Prasanna Mahadevasa; Srinivasan, Raghu; Bhandary, Shreetha; Nasreen, Farhat

    2016-01-01

    Aim: The objective of this study was to evaluate the effectiveness of 5.25% sodium hypochlorite (NaOCl), 2% chlorhexidine (CHX), and 2% peracetic acid (PAA) in disinfecting Resilon cones and to evaluate topographical changes microscopically under scanning electron microscope (SEM) after rapid chemical disinfection. Materials and Methods: Resilon cones were disinfected in an ultraviolet (UV) light chamber for 20 min and contaminated by immersing in a microbial suspension of Enterococcus faecalis for 30 min. The contaminated cones were then immersed in the 5.25% NaOCl, 2% CHX, and 2% PAA for 1 min, 5 min, and 10 min, separately. The cones were then incubated at 37°C in thioglycollate broth for 7 days and examined for turbidity. The samples showing turbidity were subcultured on blood agar and incubated at 37°C for 48 h. Gram staining was done to confirm that the cultured bacteria were E. faecalis. Surface changes of disinfected Resilon cones were evaluated under SEM. Statistical Analysis Used: The data were analyzed statistically using Kruskal-Wallis, analysis of variance (ANOVA), and Mann–Whitney U-test. Result: In eliminating E. faecalis, 5.25% NaOCl was most effective followed by 2% PAA and 2% CHX. Topographic examination of tested Resilon cones revealed some surface deposits after disinfection with 5.25% NaOCl and 2% CHX, whereas 2% PAA caused surface erosion. Conclusion: In disinfecting Resilon cones, 5.25% NaOCl is most effective followed by 2% PAA and 2% CHX. PMID:27099418

  11. Purple sea urchin Strongylocentrotus purpuratus gamete manipulation using optical trapping and microfluidics

    NASA Astrophysics Data System (ADS)

    Chandsawangbhuwana, Charlie; Shi, Linda Z.; Zhu, Qingyuan; Berns, Michael W.

    2013-04-01

    A system has been developed that allows for optical and fluidic manipulation of gametes. The optical manipulation is performed by using a single-point gradient trap with a 40× oil immersion PH3 1.3 NA objective on a Zeiss inverted microscope. The fluidic manipulation is performed by using a custom microfluidic chamber designed to fit into the short working distance between the condenser and objective. The system is validated using purple sea urchin Strongylocentrotus purpuratus gametes and has the potential to be used for mammalian in vitro fertilization and animal husbandry.

  12. Three-dimensional imaging of micro-specimen by optical scanning holography

    NASA Astrophysics Data System (ADS)

    Liu, Jung-Ping; Tsou, Cheng-Hao

    2017-04-01

    Optical scanning holography (OSH) is a scanning-type digital holographic technique. In OSH, a heterodyne interference pattern is generated to raster scan the object. OSH can be operated in the incoherent mode and thus is able to record a fluorescence hologram. In addition, resolution of the OSH is proportional to the density of the interference pattern. Here we use a high-NA microscope objective to generate a dynamic Fresnel zone plate to record a hologram of micro-specimen. The achieved transverse resolution and longitudinal resolution are 0.78μm and 3.1μm, respectively.

  13. A simple and low-cost structured illumination microscopy using a pico-projector

    NASA Astrophysics Data System (ADS)

    Özgürün, Baturay

    2018-02-01

    Here, development of a low-cost structured illumination microscopy (SIM) based on a pico-projector is presented. The pico-projector consists of independent red, green and blue LEDs that remove need for an external illumination source. Moreover, display element of the pico-projector serves as a pattern generating spatial light modulator. A simple lens group is employed to couple light from the projector to an epi-illumination port of a commercial microscope system. 2D sub SIM images are acquired and synthesized to surpass the diffraction limit using 40x (0.75 NA) objective. Resolution of the reconstructed SIM images is verified with a dye-and-object object and a fixed cell sample.

  14. Coherence and diffraction limited resolution in microscopic OCT by a unified approach for the correction of dispersion and aberrations

    NASA Astrophysics Data System (ADS)

    Schulz-Hildebrandt, H.; Münter, Michael; Ahrens, M.; Spahr, H.; Hillmann, D.; König, P.; Hüttmann, G.

    2018-03-01

    Optical coherence tomography (OCT) images scattering tissues with 5 to 15 μm resolution. This is usually not sufficient for a distinction of cellular and subcellular structures. Increasing axial and lateral resolution and compensation of artifacts caused by dispersion and aberrations is required to achieve cellular and subcellular resolution. This includes defocus which limit the usable depth of field at high lateral resolution. OCT gives access the phase of the scattered light and hence correction of dispersion and aberrations is possible by numerical algorithms. Here we present a unified dispersion/aberration correction which is based on a polynomial parameterization of the phase error and an optimization of the image quality using Shannon's entropy. For validation, a supercontinuum light sources and a costume-made spectrometer with 400 nm bandwidth were combined with a high NA microscope objective in a setup for tissue and small animal imaging. Using this setup and computation corrections, volumetric imaging at 1.5 μm resolution is possible. Cellular and near cellular resolution is demonstrated in porcine cornea and the drosophila larva, when computational correction of dispersion and aberrations is used. Due to the excellent correction of the used microscope objective, defocus was the main contribution to the aberrations. In addition, higher aberrations caused by the sample itself were successfully corrected. Dispersion and aberrations are closely related artifacts in microscopic OCT imaging. Hence they can be corrected in the same way by optimization of the image quality. This way microscopic resolution is easily achieved in OCT imaging of static biological tissues.

  15. Designed Er(3+)-singly doped NaYF4 with double excitation bands for simultaneous deep macroscopic and microscopic upconverting bioimaging.

    PubMed

    Wen, Xuanyuan; Wang, Baoju; Wu, Ruitao; Li, Nana; He, Sailing; Zhan, Qiuqiang

    2016-06-01

    Simultaneous deep macroscopic imaging and microscopic imaging is in urgent demand, but is challenging to achieve experimentally due to the lack of proper fluorescent probes. Herein, we have designed and successfully synthesized simplex Er(3+)-doped upconversion nanoparticles (UCNPs) with double excitation bands for simultaneous deep macroscopic and microscopic imaging. The material structure and the excitation wavelength of Er(3+)-singly doped UCNPs were further optimized to enhance the upconversion emission efficiency. After optimization, we found that NaYF4:30%Er(3+)@NaYF4:2%Er(3+) could simultaneously achieve efficient two-photon excitation (2PE) macroscopic tissue imaging and three-photon excitation (3PE) deep microscopic when excited by 808 nm continuous wave (CW) and 1480 nm CW lasers, respectively. In vitro cell imaging and in vivo imaging have also been implemented to demonstrate the feasibility and potential of the proposed simplex Er(3+)-doped UCNPs as bioprobe.

  16. Computational modeling of optical projection tomographic microscopy using the finite difference time domain method.

    PubMed

    Coe, Ryan L; Seibel, Eric J

    2012-12-01

    We present a method for modeling image formation in optical projection tomographic microscopy (OPTM) using high numerical aperture (NA) condensers and objectives. Similar to techniques used in computed tomography, OPTM produces three-dimensional, reconstructed images of single cells from two-dimensional projections. The model is capable of simulating axial scanning of a microscope objective to produce projections, which are reconstructed using filtered backprojection. Simulation of optical scattering in transmission optical microscopy is designed to analyze all aspects of OPTM image formation, such as degree of specimen staining, refractive-index matching, and objective scanning. In this preliminary work, a set of simulations is performed to examine the effect of changing the condenser NA, objective scan range, and complex refractive index on the final reconstruction of a microshell with an outer radius of 1.5 μm and an inner radius of 0.9 μm. The model lays the groundwork for optimizing OPTM imaging parameters and triaging efforts to further improve the overall system design. As the model is expanded in the future, it will be used to simulate a more realistic cell, which could lead to even greater impact.

  17. A Scanning Electron Microscope Evaluation of Smear Layer Removal and Antimicrobial Action of Mixture of Tetracycline, Acid and Detergent, Sodium Hypochlorite, Ethylenediaminetetraacetic Acid, and Chlorhexidine Gluconate: An In vitro Study.

    PubMed

    Charlie, K M; Kuttappa, M A; George, Liza; Manoj, K V; Joseph, Bobby; John, Nishin K

    2018-01-01

    The main objective is to evaluate the efficiency in removal of smear layer of mixture of tetracycline, acid and detergent (MTAD), sodium hypochlorite (NaOCl), ethylenediaminetetraacetic acid (EDTA) and chlorhexidine gluconate by scanning electron microscope (SEM) evaluation and also to evaluate the antimicrobial action of the same irrigants against standard culture strains of Enterococcus faecalis . This study included 60 extracted permanent teeth with single root canal. The sample was categorized into five groups with 12 teeth in each group. Root canals were enlarged till size 40 with K-files. One group was kept as control and irrigated only with saline. Other four groups used 5% NaOCl as irrigant during instrumentation and MTAD, 5% NaOCl, 17% EDTA, and 2% chlorhexidine gluconate as final rinse. Teeth were split and examined under SEM. To test the antibacterial action, the zone of inhibition method using agar plates was used. Obtained data were statistically analyzed by SPSS version 17 (SPSS Inc., Chicago, IL, USA). MTAD and 17% EDTA removed smear layer from all regions of the root canals. About 5% NaOCl and 2% chlorhexidine gluconate were ineffective in removing the smear layer. The mean zone of inhibition formed by the irrigants was in the following order; MTAD (40.5 mm), 2% chlorhexidine gluconate (29.375 mm), 17% EDTA (24.125 mm), 5% NaOCl (22.125 mm), and saline (zero). MTAD showed high smear layer removal efficacy, but no significant difference was found to that of 17% EDTA. As the dimensions of the zones of inhibition showed, MTAD has got highest antibacterial action against E. faecalis , followed by 2% chlorhexidine gluconate, 17% EDTA, and 5% NaOCl. However, the exact correlation of in vitro study results to clinical conditions is impossible due to the variables involved.

  18. The optics of microscope image formation.

    PubMed

    Wolf, David E

    2013-01-01

    Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.

  19. Sub-micrometer resolution proximity X-ray microscope with digital image registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chkhalo, N. I.; Salashchenko, N. N.; Sherbakov, A. V., E-mail: SherbakovAV@ipm.sci-nnov.ru

    A compact laboratory proximity soft X-ray microscope providing submicrometer spatial resolution and digital image registration is described. The microscope consists of a laser-plasma soft X-ray radiation source, a Schwarzschild objective to illuminate the test sample, and a two-coordinate detector for image registration. Radiation, which passes through the sample under study, generates an absorption image on the front surface of the detector. Optical ceramic YAG:Ce was used to convert the X-rays into visible light. An image was transferred from the scintillator to a charge-coupled device camera with a Mitutoyo Plan Apo series lens. The detector’s design allows the use of lensesmore » with numerical apertures of NA = 0.14, 0.28, and 0.55 without changing the dimensions and arrangement of the elements of the device. This design allows one to change the magnification, spatial resolution, and field of view of the X-ray microscope. A spatial resolution better than 0.7 μm and an energy conversion efficiency of the X-ray radiation with a wavelength of 13.5 nm into visible light collected by the detector of 7.2% were achieved with the largest aperture lens.« less

  20. Sub-diffraction Limit Localization of Proteins in Volumetric Space Using Bayesian Restoration of Fluorescence Images from Ultrathin Specimens

    PubMed Central

    Wang, Gordon; Smith, Stephen J.

    2012-01-01

    Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nλ/NA2 (n = refractive index of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is ∼220 nm and ∼600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT), with its native 50–100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes. PMID:22956902

  1. Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens.

    PubMed

    Wang, Gordon; Smith, Stephen J

    2012-01-01

    Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nλ/NA(2) (n = refractive index of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is -220 nm and -600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT), with its native 50-100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes.

  2. Design of high-performance adaptive objective lens with large optical depth scanning range for ultrabroad near infrared microscopic imaging

    PubMed Central

    Lan, Gongpu; Mauger, Thomas F.; Li, Guoqiang

    2015-01-01

    We report on the theory and design of adaptive objective lens for ultra broadband near infrared light imaging with large dynamic optical depth scanning range by using an embedded tunable lens, which can find wide applications in deep tissue biomedical imaging systems, such as confocal microscope, optical coherence tomography (OCT), two-photon microscopy, etc., both in vivo and ex vivo. This design is based on, but not limited to, a home-made prototype of liquid-filled membrane lens with a clear aperture of 8mm and the thickness of 2.55mm ~3.18mm. It is beneficial to have an adaptive objective lens which allows an extended depth scanning range larger than the focal length zoom range, since this will keep the magnification of the whole system, numerical aperture (NA), field of view (FOV), and resolution more consistent. To achieve this goal, a systematic theory is presented, for the first time to our acknowledgment, by inserting the varifocal lens in between a front and a back solid lens group. The designed objective has a compact size (10mm-diameter and 15mm-length), ultrabroad working bandwidth (760nm - 920nm), a large depth scanning range (7.36mm in air) — 1.533 times of focal length zoom range (4.8mm in air), and a FOV around 1mm × 1mm. Diffraction-limited performance can be achieved within this ultrabroad bandwidth through all the scanning depth (the resolution is 2.22 μm - 2.81 μm, calculated at the wavelength of 800nm with the NA of 0.214 - 0.171). The chromatic focal shift value is within the depth of focus (field). The chromatic difference in distortion is nearly zero and the maximum distortion is less than 0.05%. PMID:26417508

  3. Two-Photon Excitation in Biological Material for Conventional and Long Working-Distance Objectives.

    NASA Astrophysics Data System (ADS)

    Keeler, W. J.; McGhee, P.

    2000-03-01

    The application of laser two-photon excitation or nonlinear second-harmonic generation to imaging, spectroscopy, and light activated medical therapies, is an expanding field of research. When small feature sizes such as cells and their components are to be studied, high numerical aperture (NA) lenses are required to obtain the necessary lateral and axial resolutions. If one wishes to increase the depth of sample penetration, factors such as scattering and absorption quickly degrade the quality of the focused beam. The problem is further exacerbated by the short working distance of conventional high NA microscope objectives if they are used for light delivery and pickup. These lenses and their accompanying eyepieces, are designed to produce an exit pupil that can be accomodated by the human eye. Such a design will underfil detectors such as large CCD arrays. To simultaneously increase the working distance at the sample and the system exit pupil, larger scale objectives can be used. We will report the results of two-photon excitation and fluorescence investigations of several feature sizes as a function of penetration depth in homogeneous media and tissue samples, for conventional and long working distance objectives. The possible implications of these results to imaging and therapeutic dose delivery will also be presented.

  4. Scanning electron microscopic observations of fibrous structure of cemento-dentinal junction in healthy teeth.

    PubMed

    Pratebha, B; Jaikumar, N D; Sudhakar, R

    2014-01-01

    The cemento-dentinal junction (CDJ) is a structural and biologic link between cementum and dentin present in the roots of teeth. Conflicting reports about the origin, structure and composition of this layer are present in literature. The width of this junctional tissue is reported to be about 2-4 μm with adhesion of cementum and dentin by proteoglycans and by collagen fiber intermingling. The objective of this study is to observe and report the fibrous architecture of the CDJ of healthy tooth roots. A total of 15 healthy teeth samples were collected, sectioned into halves, demineralized in 5% ethylenediaminetetraacetic acid, processed using NaOH maceration technique and observed under a scanning electron microscope. The CDJ appeared to be a fibril poor groove with a width of 2-4 µm. Few areas of collagen fiber intermingling could be appreciated. A detailed observation of these tissues has been presented.

  5. Cellular localization of Na(+), K(+)-ATPase in the mammalian vestibular system

    NASA Technical Reports Server (NTRS)

    Kerr, T. P.

    1984-01-01

    Two different, but complementary, procedures for cellular localization of Na+, K+-ATPase in the guinea pig vestibular system were employed. One of these techniques, devised by Stirling, depends upon the well documented ability of the specific inhibitor ouabain to bind selectively to Na+,K+-ATPase, blocking catalytic activity. Microdisected vestibular tissues are incubated with tritium-labelled (3H-) ouabain, and regions with a high concentration of Na+,K+-ATPase are subsequently identified by light microscope autoradiography. A second method, originated by Ernst, detects inorganic phosphate released from an artificial substrate (nitrophenyl phosphate) by catalytic activity of the enzyme. In the presence of strontium ion, phosphate is precipitated near regions of high activity, then converted to a product which may finally be visualized in the electron microscope. This cytochemical enzymatic reaction is inhibited by ouabain.

  6. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology.

    PubMed

    Zhang, Tao; Ding, Lili; Ren, Hongqiang; Xiong, Xiang

    2009-12-01

    Ammonium nitrogen removal from wastewater has been of considerable concern for several decades. In the present research, we examined chemical precipitation recycle technology (CPRT) for ammonium nitrogen removal from coking wastewater. The pyrolysate resulting from magnesium ammonium phosphate (MAP) pyrogenation in sodium hydroxide (NaOH) solution was recycled for ammonium nitrogen removal from coking wastewater. The objective of this study was to investigate the conditions for MAP pyrogenation and to characterize of MAP pyrolysate for its feasibility in recycling. Furthermore, MAP pyrolysate was characterized by scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) as well as X-ray diffraction (XRD). The MAP pyrolysate could be produced at the optimal condition of a hydroxyl (OH(-)) to ammonium molar ratio of 2:1, a heating temperature of 110 degrees C, and a heating time of 3h. Surface characterization analysis indicated that the main component of the pyrolysate was amorphous magnesium sodium phosphate (MgNaPO(4)). The pyrolysate could be recycled as a magnesium and phosphate source at an optimum pH of 9.5. When the recycle times were increased, the ammonium nitrogen removal ratio gradually decreased if the pyrolysate was used without supplementation. When the recycle times were increased, the ammonium nitrogen removal efficiency was not decreased if the added pyrolysate was supplemented with MgCl(2).6H(2)O plus Na(2)HPO(4).12H(2)O during treatment. A high ammonium nitrogen removal ratio was obtained by using pre-formed MAP as seeding material.

  7. Microscope basics.

    PubMed

    Sluder, Greenfield; Nordberg, Joshua J

    2013-01-01

    This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter. Copyright © 2003 Elsevier Inc. All rights reserved.

  8. Emulation of anamorphic imaging on the SHARP extreme ultraviolet mask microscope

    DOE PAGES

    Benk, Markus P.; Wojdyla, Antoine; Chao, Weilun; ...

    2016-07-12

    The SHARP high-numerical aperture actinic reticle review project is a synchrotron-based, extreme ultraviolet (EUV) microscope dedicated to photomask research. SHARP emulates the illumination and imaging conditions of current EUV lithography scanners and those several generations into the future. An anamorphic imaging optic with increased mask-side numerical aperture (NA) in the horizontal and increased demagnification in the vertical direction has been proposed in this paper to overcome limitations of current multilayer coatings and extend EUV lithography beyond 0.33 NA. Zoneplate lenses with an anamorphic 4×/8× NA of 0.55 are fabricated and installed in the SHARP microscope to emulate anamorphic imaging. SHARP’smore » Fourier synthesis illuminator with a range of angles exceeding the collected solid angle of the newly designed elliptical zoneplates can produce arbitrary angular source spectra matched to anamorphic imaging. A target with anamorphic dense features down to 50-nm critical dimension is fabricated using 40 nm of nickel as the absorber. In a demonstration experiment, anamorphic imaging at 0.55 4×/8× NA and 6 deg central ray angle (CRA) is compared with conventional imaging at 0.5 4× NA and 8 deg CRA. A significant contrast loss in horizontal features is observed in the conventional images. Finally, the anamorphic images show the same image quality in the horizontal and vertical directions.« less

  9. Emulation of anamorphic imaging on the SHARP extreme ultraviolet mask microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benk, Markus P.; Wojdyla, Antoine; Chao, Weilun

    The SHARP high-numerical aperture actinic reticle review project is a synchrotron-based, extreme ultraviolet (EUV) microscope dedicated to photomask research. SHARP emulates the illumination and imaging conditions of current EUV lithography scanners and those several generations into the future. An anamorphic imaging optic with increased mask-side numerical aperture (NA) in the horizontal and increased demagnification in the vertical direction has been proposed in this paper to overcome limitations of current multilayer coatings and extend EUV lithography beyond 0.33 NA. Zoneplate lenses with an anamorphic 4×/8× NA of 0.55 are fabricated and installed in the SHARP microscope to emulate anamorphic imaging. SHARP’smore » Fourier synthesis illuminator with a range of angles exceeding the collected solid angle of the newly designed elliptical zoneplates can produce arbitrary angular source spectra matched to anamorphic imaging. A target with anamorphic dense features down to 50-nm critical dimension is fabricated using 40 nm of nickel as the absorber. In a demonstration experiment, anamorphic imaging at 0.55 4×/8× NA and 6 deg central ray angle (CRA) is compared with conventional imaging at 0.5 4× NA and 8 deg CRA. A significant contrast loss in horizontal features is observed in the conventional images. Finally, the anamorphic images show the same image quality in the horizontal and vertical directions.« less

  10. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficientmore » is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.« less

  11. Time-Resolved, High-Resolution, X-Ray Microscopy of In-Vitro Biological and Life Science Specimens with the Aid of Laser Plasmas

    DTIC Science & Technology

    1994-06-30

    transmissive Fresnel lens. We have made considerable effort in the last few years to explore the potential of x-ray multilayer-coated Schwarzschild x-ray...ray mirror fabrication and efficient x-ray mirror design. A 120mm diameter, NA = 0.35, 15X Schwarzschild microscope coated with Ni/C multilayer mios for...et al 2 developed a smaller, 33mm diameter, NA - 0.28, 15X Schwarzschild microscope coated with a W/C multilayer mirror for 4.4nm, in the socalled

  12. Use of Sodium Fluorescein in Meningioma Surgery Performed Under the YELLOW-560 nm Surgical Microscope Filter: Feasibility and Preliminary Results.

    PubMed

    Akçakaya, Mehmet Osman; Göker, Burcu; Kasımcan, Mustafa Ömür; Hamamcıoğlu, Mustafa Kemal; Kırış, Talat

    2017-11-01

    To evaluate the feasibility of sodium fluorescein (Na-Fl)-guided surgery involving the use of the PENTERO 900 surgical microscope equipped with the YELLOW-560 nm filter and low-dose Na-FL (200 mg/2-4 mg/kg) in meningioma surgery. The study included 30 patients with newly diagnosed or recurrent meningiomas who underwent Na-Fl-guided surgery between April 2015 and December 2016. Clinical features, surgical observations, extent of resection, and tumor histopathology were retrospectively analyzed. The Na-Fl enhancement pattern was assessed as "no enhancement," "diffuse homogenous enhancement," or "low heterogeneous enhancement." There were 30 meningiomas among the 30 patients. In 25 patients, Na-Fl was used for tumor demarcation, whereas in 5 patients, it was used for videoangiography. In this series, 88% of tumors showed diffuse homogeneous Na-Fl enhancement during the operation. The resection rate of the meningiomas was 87%. In 5 patients, in whom Na-Fl was used for videoangiography, the approach was useful to evaluate Na-Fl-stained vessels for patency and to understand their relationship with the tumor. No adverse events were encountered with regard to Na-Fl use. Na-Fl guidance with the use of the YELLOW-560 filter is safe and effective during meningioma surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  14. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope.

    PubMed

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard

    2014-02-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  15. Negatively-chirped laser enables nonlinear excitation and nanoprocessing with sub-20-fs pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, A.; Müller, J.; Bückle, R.; Tempea, G.; Isemann, A.; Stingl, A.; König, K.

    2008-02-01

    It has long been considered that the advantages emerging from employing chirp pre-compensation in nonlinear microscopy were overweighed by the complexity of prism- or grating-based compressors. These concerns were refuted with the advent of dispersive-mirrors-based compressors that are compact, user-friendly and sufficiently accurate to support sub-20-fs pulse delivery. Recent advances in the design of dispersive multilayer mirrors resulted in improved bandwidth (covering now as much as half of the gain bandwidth of Ti:Sapphire) and increased dispersion per bounce (one reflection off a state-of-the-art dispersive mirror pre-compensates the dispersion corresponding to >10mm of glass). The compressor built with these mirrors is sufficiently compact to be integrated in the housing of a sub-12-fs Ti:Sapphire oscillator. A complete scanning nonlinear microscope (FemtOgene, JenLab GmbH) equipped with highly-dispersive, large-NA objectives (Zeiss EC Plan-Neofluoar 40x/1.3, Plan-Neofluar 63x/1,25 Oil) was directly seeded with this negatively chirped laser. The pulse duration was measured at the focus of the objectives by inserting a scanning autocorrelator in the beam path between the laser and the microscope and recording the second order interferometric autocorrelation traces with the detector integrated in the microscope. Pulse durations <20fs were measured with both objectives. The system has been applied for two-photon imaging, transfection and optical manipulation of stem cells. Here we report on the successful transfection of human stem cells by transient optoporation of the cell membrane with a low mean power of < 7 mW and a short μs beam dwell time. Optically transfected cells were able to reproduce. The daughter cell expressed also green fluorescent proteins (GFP) indicating the successful modification of the cellular DNA.

  16. Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers.

    PubMed

    Kimber, James A; Kazarian, Sergei G

    2017-10-01

    Spectroscopic imaging of biomaterials and biological systems has received increased interest within the last decade because of its potential to aid in the detection of disease using biomaterials/biopsy samples and to probe the states of live cells in a label-free manner. The factors behind this increased attention include the availability of improved infrared microscopes and systems that do not require the use of a synchrotron as a light source, as well as the decreasing costs of these systems. This article highlights the current technical challenges and future directions of mid-infrared spectroscopic imaging within this field. Specifically, these are improvements in spatial resolution and spectral quality through the use of novel added lenses and computational algorithms, as well as quantum cascade laser imaging systems, which offer advantages over traditional Fourier transform infrared systems with respect to the speed of acquisition and field of view. Overcoming these challenges will push forward spectroscopic imaging as a viable tool for disease diagnostics and medical research. Graphical abstract Absorbance images of a biopsy obtained using an FTIR imaging microscope with and without an added lens, and also using a QCL microscope with high-NA objective.

  17. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld.

    PubMed

    Shen, Changbin; Zhang, Jiayan; Ge, Jiping

    2011-06-01

    By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  18. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens

    PubMed Central

    Grewe, Benjamin F.; Voigt, Fabian F.; van ’t Hoff, Marcel; Helmchen, Fritjof

    2011-01-01

    Functional two-photon Ca2+-imaging is a versatile tool to study the dynamics of neuronal populations in brain slices and living animals. However, population imaging is typically restricted to a single two-dimensional image plane. By introducing an electrically tunable lens into the excitation path of a two-photon microscope we were able to realize fast axial focus shifts within 15 ms. The maximum axial scan range was 0.7 mm employing a 40x NA0.8 water immersion objective, plenty for typically required ranges of 0.2–0.3 mm. By combining the axial scanning method with 2D acousto-optic frame scanning and random-access scanning, we measured neuronal population activity of about 40 neurons across two imaging planes separated by 40 μm and achieved scan rates up to 20–30 Hz. The method presented is easily applicable and allows upgrading of existing two-photon microscopes for fast 3D scanning. PMID:21750778

  19. Low cost, high performance, self-aligning miniature optical systems

    PubMed Central

    Kester, Robert T.; Christenson, Todd; Kortum, Rebecca Richards; Tkaczyk, Tomasz S.

    2009-01-01

    The most expensive aspects in producing high quality miniature optical systems are the component costs and long assembly process. A new approach for fabricating these systems that reduces both aspects through the implementation of self-aligning LIGA (German acronym for lithographie, galvanoformung, abformung, or x-ray lithography, electroplating, and molding) optomechanics with high volume plastic injection molded and off-the-shelf glass optics is presented. This zero alignment strategy has been incorporated into a miniature high numerical aperture (NA = 1.0W) microscope objective for a fiber confocal reflectance microscope. Tight alignment tolerances of less than 10 μm are maintained for all components that reside inside of a small 9 gauge diameter hypodermic tubing. A prototype system has been tested using the slanted edge modulation transfer function technique and demonstrated to have a Strehl ratio of 0.71. This universal technology is now being developed for smaller, needle-sized imaging systems and other portable point-of-care diagnostic instruments. PMID:19543344

  20. Evaluation of a miniature microscope objective designed for fluorescence array microscopy detection of Mycobacterium tuberculosis.

    PubMed

    McCall, Brian; Olsen, Randall J; Nelles, Nicole J; Williams, Dawn L; Jackson, Kevin; Richards-Kortum, Rebecca; Graviss, Edward A; Tkaczyk, Tomasz S

    2014-03-01

    A prototype miniature objective that was designed for a point-of-care diagnostic array microscope for detection of Mycobacterium tuberculosis and previously fabricated and presented in a proof of concept is evaluated for its effectiveness in detecting acid-fast bacteria. To evaluate the ability of the microscope to resolve submicron features and details in the image of acid-fast microorganisms stained with a fluorescent dye, and to evaluate the accuracy of clinical diagnoses made with digital images acquired with the objective. The lens prescription data for the microscope design are presented. A test platform is built by combining parts of a standard microscope, a prototype objective, and a digital single-lens reflex camera. Counts of acid-fast bacteria made with the prototype objective are compared to counts obtained with a standard microscope over matched fields of view. Two sets of 20 smears, positive and negative, are diagnosed by 2 pathologists as sputum smear positive or sputum smear negative, using both a standard clinical microscope and the prototype objective under evaluation. The results are compared to a reference diagnosis of the same sample. More bacteria are counted in matched fields of view in digital images taken with the prototype objective than with the standard clinical microscope. All diagnostic results are found to be highly concordant. An array microscope built with this miniature lens design will be able to detect M tuberculosis with high sensitivity and specificity.

  1. A Comparison of Coronal Tooth Discoloration Elicited by Various Endodontic Reparative Materials

    DTIC Science & Technology

    2015-06-17

    operating microscope at 12.8x magnification to be completely intact and free of restorations, cracks , and/or defects. Each tooth was stored separately in...microscope. The buccal enamel -dentin thickness was standardized to 3mm using spring calipers. Teeth were irrigated with 6% NaOCl and dried. All

  2. Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, Cheng; Hoover, Richard B.

    1994-01-01

    This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.

  3. Miniature self-contained vacuum compatible electronic imaging microscope

    DOEpatents

    Naulleau, Patrick P.; Batson, Phillip J.; Denham, Paul E.; Jones, Michael S.

    2001-01-01

    A vacuum compatible CCD-based microscopic camera with an integrated illuminator. The camera can provide video or still feed from the microscope contained within a vacuum chamber. Activation of an optional integral illuminator can provide light to illuminate the microscope subject. The microscope camera comprises a housing with a objective port, modified objective, beam-splitter, CCD camera, and LED illuminator.

  4. Back-focal-plane position detection with extended linear range for photonic force microscopy.

    PubMed

    Martínez, Ignacio A; Petrov, Dmitri

    2012-09-01

    In photonic force microscopes, the position detection with high temporal and spatial resolution is usually implemented by a quadrant position detector placed in the back focal plane of a condenser. An objective with high numerical aperture (NA) for the optical trap has also been used to focus a detection beam. In that case the displacement of the probe at a fixed position of the detector produces a unique and linear response only in a restricted region of the probe displacement, usually several hundred nanometers. There are specific experiments where the absolute position of the probe is a relevant measure together with the probe position relative the optical trap focus. In our scheme we introduce the detection beam into the condenser with low NA through a pinhole with tunable size. This combination permits us to create a wide detection spot and to achieve the linear range of several micrometers by the probe position detection without reducing the trapping force.

  5. All-optical optoacoustic microscopy system based on probe beam deflection technique

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  6. Q: How do Microscopes Work?

    ERIC Educational Resources Information Center

    Zimov, Sarah

    2004-01-01

    Microscopes allow scientists to examine everyday objects in extraordinary ways. They provide high-resolution images that show objects in fine detail. This brief article describes the many types of microscopes and how they are used in different scientific venues.

  7. Zoom microscope objective using electrowetting lenses.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-02-08

    We report a zoom microscope objective which can achieve continuous zoom change and correct the aberrations dynamically. The objective consists of three electrowetting liquid lenses and two glass lenses. The magnification is changed by applying voltages on the three electrowetting lenses. Besides, the three electrowetting liquid lenses can play a role to correct the aberrations. A digital microscope based on the proposed objective is demonstrated. We analyzed the properties of the proposed objective. In contrast to the conventional objectives, the proposed objective can be tuned from ~7.8 × to ~13.2 × continuously. For our objective, the working distance is fixed, which means no movement parts are needed to refocus or change its magnification. Moreover, the zoom objective can be dynamically optimized for a wide range of wavelength. Using such an objective, the fabrication tolerance of the optical system is larger than that of a conventional system, which can decrease the fabrication cost. The proposed zoom microscope objective cannot only take place of the conventional objective, but also has potential application in the 3D microscopy.

  8. Fusion of lens-free microscopy and mobile-phone microscopy images for high-color-accuracy and high-resolution pathology imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2017-03-01

    Digital pathology and telepathology require imaging tools with high-throughput, high-resolution and accurate color reproduction. Lens-free on-chip microscopy based on digital in-line holography is a promising technique towards these needs, as it offers a wide field of view (FOV >20 mm2) and high resolution with a compact, low-cost and portable setup. Color imaging has been previously demonstrated by combining reconstructed images at three discrete wavelengths in the red, green and blue parts of the visible spectrum, i.e., the RGB combination method. However, this RGB combination method is subject to color distortions. To improve the color performance of lens-free microscopy for pathology imaging, here we present a wavelet-based color fusion imaging framework, termed "digital color fusion microscopy" (DCFM), which digitally fuses together a grayscale lens-free microscope image taken at a single wavelength and a low-resolution and low-magnification color-calibrated image taken by a lens-based microscope, which can simply be a mobile phone based cost-effective microscope. We show that the imaging results of an H&E stained breast cancer tissue slide with the DCFM technique come very close to a color-calibrated microscope using a 40x objective lens with 0.75 NA. Quantitative comparison showed 2-fold reduction in the mean color distance using the DCFM method compared to the RGB combination method, while also preserving the high-resolution features of the lens-free microscope. Due to the cost-effective and field-portable nature of both lens-free and mobile-phone microscopy techniques, their combination through the DCFM framework could be useful for digital pathology and telepathology applications, in low-resource and point-of-care settings.

  9. Dermoscopy-guided reflectance confocal microscopy of skin using high-NA objective lens with integrated wide-field color camera

    NASA Astrophysics Data System (ADS)

    Dickensheets, David L.; Kreitinger, Seth; Peterson, Gary; Heger, Michael; Rajadhyaksha, Milind

    2016-02-01

    Reflectance Confocal Microscopy, or RCM, is being increasingly used to guide diagnosis of skin lesions. The combination of widefield dermoscopy (WFD) with RCM is highly sensitive (~90%) and specific (~ 90%) for noninvasively detecting melanocytic and non-melanocytic skin lesions. The combined WFD and RCM approach is being implemented on patients to triage lesions into benign (with no biopsy) versus suspicious (followed by biopsy and pathology). Currently, however, WFD and RCM imaging are performed with separate instruments, while using an adhesive ring attached to the skin to sequentially image the same region and co-register the images. The latest small handheld RCM instruments offer no provision yet for a co-registered wide-field image. This paper describes an innovative solution that integrates an ultra-miniature dermoscopy camera into the RCM objective lens, providing simultaneous wide-field color images of the skin surface and RCM images of the subsurface cellular structure. The objective lens (0.9 NA) includes a hyperhemisphere lens and an ultra-miniature CMOS color camera, commanding a 4 mm wide dermoscopy view of the skin surface. The camera obscures the central portion of the aperture of the objective lens, but the resulting annular aperture provides excellent RCM optical sectioning and resolution. Preliminary testing on healthy volunteers showed the feasibility of combined WFD and RCM imaging to concurrently show the skin surface in wide-field and the underlying microscopic cellular-level detail. The paper describes this unique integrated dermoscopic WFD/RCM lens, and shows representative images. The potential for dermoscopy-guided RCM for skin cancer diagnosis is discussed.

  10. Dermoscopy-guided reflectance confocal microscopy of skin using high-NA objective lens with integrated wide-field color camera.

    PubMed

    Dickensheets, David L; Kreitinger, Seth; Peterson, Gary; Heger, Michael; Rajadhyaksha, Milind

    2016-02-01

    Reflectance Confocal Microscopy, or RCM, is being increasingly used to guide diagnosis of skin lesions. The combination of widefield dermoscopy (WFD) with RCM is highly sensitive (~90%) and specific (~ 90%) for noninvasively detecting melanocytic and non-melanocytic skin lesions. The combined WFD and RCM approach is being implemented on patients to triage lesions into benign (with no biopsy) versus suspicious (followed by biopsy and pathology). Currently, however, WFD and RCM imaging are performed with separate instruments, while using an adhesive ring attached to the skin to sequentially image the same region and co-register the images. The latest small handheld RCM instruments offer no provision yet for a co-registered wide-field image. This paper describes an innovative solution that integrates an ultra-miniature dermoscopy camera into the RCM objective lens, providing simultaneous wide-field color images of the skin surface and RCM images of the subsurface cellular structure. The objective lens (0.9 NA) includes a hyperhemisphere lens and an ultra-miniature CMOS color camera, commanding a 4 mm wide dermoscopy view of the skin surface. The camera obscures the central portion of the aperture of the objective lens, but the resulting annular aperture provides excellent RCM optical sectioning and resolution. Preliminary testing on healthy volunteers showed the feasibility of combined WFD and RCM imaging to concurrently show the skin surface in wide-field and the underlying microscopic cellular-level detail. The paper describes this unique integrated dermoscopic WFD/RCM lens, and shows representative images. The potential for dermoscopy-guided RCM for skin cancer diagnosis is discussed.

  11. Mapping optical path length and image enhancement using quantitative orientation-independent differential interference contrast microscopy

    PubMed Central

    Shribak, Michael; Larkin, Kieran G.; Biggs, David

    2017-01-01

    Abstract. We describe the principles of using orientation-independent differential interference contrast (OI-DIC) microscopy for mapping optical path length (OPL). Computation of the scalar two-dimensional OPL map is based on an experimentally received map of the OPL gradient vector field. Two methods of contrast enhancement for the OPL image, which reveal hardly visible structures and organelles, are presented. The results obtained can be used for reconstruction of a volume image. We have confirmed that a standard research grade light microscope equipped with the OI-DIC and 100×/1.3 NA objective lens, which was not specially selected for minimum wavefront and polarization aberrations, provides OPL noise level of ∼0.5  nm and lateral resolution if ∼300  nm at a wavelength of 546 nm. The new technology is the next step in the development of the DIC microscopy. It can replace standard DIC prisms on existing commercial microscope systems without modification. This will allow biological researchers that already have microscopy setups to expand the performance of their systems. PMID:28060991

  12. Combined use of optical and electron microscopic techniques for the measurement of hygroscopic property, chemical composition, and morphology of individual aerosol particles.

    PubMed

    Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un

    2010-10-01

    In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.

  13. Effect of diode laser and ultrasonics with and without ethylenediaminetetraacetic acid on smear layer removal from the root canals: A scanning electron microscope study.

    PubMed

    Amin, Khalid; Masoodi, Ajaz; Nabi, Shahnaz; Ahmad, Parvaiz; Farooq, Riyaz; Purra, Aamir Rashid; Ahangar, Fayaz Ahmad

    2016-01-01

    To evaluate the effect of diode laser and ultrasonics with and without ethylenediaminetetraacetic acid (EDTA) on the smear layer removal from root canals. A total of 120 mandibular premolars were decoronated to working the length of 12 mm and prepared with protaper rotary files up to size F3. Group A canals irrigated with 1 ml of 3% sodium hypochlorite (NaOCl) followed by 3 ml of 3% NaOCl. Group B canals irrigated with 1 ml of 17% EDTA followed by 3 ml of 3% NaOCl. Group C canals lased with a diode laser. Group D canals were initially irrigated with 0.8 ml of 17% EDTA the remaining 0.2 ml was used to fill the root canals, and diode laser application was done. Group E canals were irrigated with 1 ml distilled water with passive ultrasonic activation, followed by 3 ml of 3% NaOCl. Group F canals were irrigated with 1 ml EDTA with passive ultrasonic activation, followed by 3 ml of 3% NaOCl. Scanning electron microscope examination of canals was done for remaining smear layer at coronal middle and apical third levels. Ultrasonics with EDTA had the least smear layer scores. Diode laser alone performed significantly better than ultrasonics.

  14. Assessment of a liquid lens enabled in vivo optical coherence microscope.

    PubMed

    Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P

    2010-06-01

    The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.

  15. Epi-Fluorescence Microscopy

    PubMed Central

    Webb, Donna J.; Brown, Claire M.

    2012-01-01

    Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996

  16. Differences in Brain Morphological Findings between Narcolepsy with and without Cataplexy

    PubMed Central

    Nakamura, Masaki; Nishida, Shingo; Hayashida, Kenichi; Ueki, Yoichiro; Dauvilliers, Yves; Inoue, Yuichi

    2013-01-01

    Objective Maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) obtained by diffusion tensor imaging (DTI) can detect microscopic axonal changes by estimating the diffusivity of water molecules using magnetic resonance imaging (MRI). We applied an MRI voxel-based statistical approach to FA and ADC maps to evaluate microstructural abnormalities in the brain in narcolepsy and to investigate differences between patients having narcolepsy with and without cataplexy. Methods Twelve patients with drug-naive narcolepsy with cataplexy (NA/CA), 12 with drug-naive narcolepsy without cataplexy (NA w/o CA) and 12 age-matched healthy normal controls (NC) were enrolled. FA and ADC maps for these 3 groups were statistically compared by using voxel-based one-way ANOVA. In addition, we investigated the correlation between FA and ADC values and clinical variables in the patient groups. Results Compared to the NC group, the NA/CA group showed higher ADC values in the left inferior frontal gyrus and left amygdala, and a lower ADC value in the left postcentral gyrus. The ADC value in the right inferior frontal gyrus and FA value in the right precuneus were higher for NA/CA group than for the NA w/o CA group. However, no significant differences were observed in FA and ADC values between the NA w/o CA and NC groups in any of the areas investigated. In addition, no correlation was found between the clinical variables and ADC and FA values of any brain areas in these patient groups. Conclusions Several microstructural changes were noted in the inferior frontal gyrus and amygdala in the NA/CA but not in the NA w/o CA group. These findings suggest that these 2 narcolepsy conditions have different pathological mechanisms: narcolepsy without cataplexy form appears to be a potentially broader condition without any significant brain imaging differences from normal controls. PMID:24312261

  17. Optimal lens design and use in laser-scanning microscopy

    PubMed Central

    Negrean, Adrian; Mansvelder, Huibert D.

    2014-01-01

    In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm. PMID:24877017

  18. Optical track width measurements below 100 nm using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; See, C. W.; Somekh, M. G.; Yacoot, A.; Choi, E.

    2005-12-01

    This paper discusses the feasibility of using artificial neural networks (ANNs), together with a high precision scanning optical profiler, to measure very fine track widths that are considerably below the conventional diffraction limit of a conventional optical microscope. The ANN is trained using optical profiles obtained from tracks of known widths, the network is then assessed by applying it to test profiles. The optical profiler is an ultra-stable common path scanning interferometer, which provides extremely precise surface measurements. Preliminary results, obtained with a 0.3 NA objective lens and a laser wavelength of 633 nm, show that the system is capable of measuring a 50 nm track width, with a standard deviation less than 4 nm.

  19. Time-gated FLIM microscope for corneal metabolic imaging

    NASA Astrophysics Data System (ADS)

    Silva, Susana F.; Batista, Ana; Domingues, José Paulo; Quadrado, Maria João.; Morgado, António Miguel

    2016-03-01

    Detecting corneal cells metabolic alterations may prove a valuable tool in the early diagnosis of corneal diseases. Nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent metabolic co-factors that allow the assessment of metabolic changes through non-invasive optical methods. These co-factors exhibit double-exponential fluorescence decays, with well-separated short and lifetime components, which are related to their protein-bound and free-states. Corneal metabolism can be assessed by measuring the relative contributions of these two components. For that purpose, we have developed a wide-field time-gated fluorescence lifetime microscope based on structured illumination and one-photon excitation to record FAD lifetime images from corneas. NADH imaging was not considered as its UV excitation peak is regarded as not safe for in vivo measurements. The microscope relies on a pulsed blue diode laser (λ=443 nm) as excitation source, an ultra-high speed gated image intensifier coupled to a CCD camera to acquire fluorescence signals and a Digital Micromirror Device (DMD) to implement the Structured Illumination technique. The system has a lateral resolution better than 2.4 μm, a field of view of 160 per 120 μm and an optical sectioning of 6.91 +/- 0.45 μm when used with a 40x, 0.75 NA, Water Immersion Objective. With this setup we were able to measure FAD contributions from ex-vivo chicken corneas collected from a local slaughterhouse..

  20. Surface imaging microscope

    NASA Astrophysics Data System (ADS)

    Rogala, Eric W.; Bankman, Isaac N.

    2008-04-01

    The three-dimensional shapes of microscopic objects are becoming increasingly important for battlespace CBRNE sensing. Potential applications of microscopic 3D shape observations include characterization of biological weapon particles and manufacturing of micromechanical components. Aerosol signatures of stand-off lidar systems, using elastic backscatter or polarization, are dictated by the aerosol particle shapes and sizes that must be well characterized in the lab. A low-cost, fast instrument for 3D surface shape microscopy will be a valuable point sensor for biological particle sensing applications. Both the cost and imaging durations of traditional techniques such as confocal microscopes, atomic force microscopes, and electron scanning microscopes are too high. We investigated the feasibility of a low-cost, fast interferometric technique for imaging the 3D surface shape of microscopic objects at frame rates limited only by the camera in the system. The system operates at two laser wavelengths producing two fringe images collected simultaneously by a digital camera, and a specialized algorithm we developed reconstructs the surface map of the microscopic object. The current implementation assembled to test the concept and develop the new 3D reconstruction algorithm has 0.25 micron resolution in the x and y directions, and about 0.1 micron accuracy in the z direction, as tested on a microscopic glass test object manufactured with etching techniques. We describe the interferometric instrument, present the reconstruction algorithm, and discuss further development.

  1. Sodium hydrogen carbonate as an alternative blowing agent in the preparation of palm-based polyurethane foam

    NASA Astrophysics Data System (ADS)

    Shakir, Amira Shakim Abdul; Badri, Khairiah Haji; Hua, Chia Chin

    2016-11-01

    An environmental-friendly blowing agent has been used to fabricate flexible polyurethane (PU) foam. Polyurethane foam was prepared from palm kernel oil-based monoester polyol (PKO-p) via prepolymerization method. Acetone has been used as solvent in this study. The developed polyurethane foam was characterized using tensile, differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TGA), optical microscope and drop shape analyzer. The mechanical properties of the PU-reference (PU-R) and PU-NaHCO3 foam was analyzed by tensile using ASTM D 3574-01. From the results, the elongation of PU- NaHCO3 shows reduction to 26.3 % compared to PU-R. The DSC showed two glass transition temperatures in all samples that belonged to the PU-R and PU-NaHCO3. TGA revealed that the incorporation of sodium hydrogen carbonate into the PU system did not show significant difference as compared to the control PU. The morphology of both PU was investigated using optical microscope. Contact angle has been measured to determine the hydrophobicity of the PU. The PU- NaHCO3 exhibited an increase in contact angle (93.1°).

  2. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    NASA Astrophysics Data System (ADS)

    Sharifi Golru, S.; Attar, M. M.; Ramezanzadeh, B.

    2015-08-01

    The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly.

  3. Measurement of the Resolution of the Optical Microscope.

    ERIC Educational Resources Information Center

    Bowlt, C.

    1983-01-01

    Outlines procedures demonstrating that the aperture of a microscope objective limits resolving power and then, by using ancillary measurements made with a calibrated graticule in the microscope eyepiece, that the experimentally determined value for the maximum resolving power of a given objective is close to the value predicted by theory. (JN)

  4. A light field microscope imaging spectrometer based on the microlens array

    NASA Astrophysics Data System (ADS)

    Yao, Yu-jia; Xu, Feng; Xia, Yin-xiang

    2017-10-01

    A new light field spectrometry microscope imaging system, which was composed by microscope objective, microlens array and spectrometry system was designed in this paper. 5-D information (4-D light field and 1-D spectrometer) of the sample could be captured by the snapshot system in only one exposure, avoiding the motion blur and aberration caused by the scanning imaging process of the traditional imaging spectrometry. Microscope objective had been used as the former group while microlens array used as the posterior group. The optical design of the system was simulated by Zemax, the parameter matching condition between microscope objective and microlens array was discussed significantly during the simulation process. The result simulated in the image plane was analyzed and discussed.

  5. Pt nanoparticle on La0.02Na0.98TaO3 catalyst for hydrogen evolution from glycerol aqueous solution

    NASA Astrophysics Data System (ADS)

    Husin, Husni; Adisalamun, Sy, Yuliana; Asnawi, Teku Muhammad; Hasfita, Fikri

    2017-01-01

    Pt nanoparticles on La-doped sodium tantalum oxide (La0.02Na0.98TaO3), which acts as an active co-catalyst for H2 evolution under UV light irradiation was successfully synthesized by photo-deposition method. The La0.02Na0.98TaO3 photocatalyst was obtained by the reaction of La(NO3)2.3H2O, TaCl5, and NaOH at ambient temperature. The catalyst produced was characterized by a scanning electron microscope (SEM) and a high-resolution transmission electron microscope (HRTEM). SEM images of the La0.02Na0.98TaO3 sample showing that its particles size is ranging between 50-150 nm. The Pt particles are detected from HRTEM images is around 2-4 nm. The Pt/La0.02Na0.98TaO3 samples prepared were applied for photocatalytic H2 production at 30°C. The photocatalyst performance was evaluated for hydrogen production from water combining with glycerol as an electron donor (sacrificial reagent). The reactions were carried out in a closed reactor with a gas circulation system, illuminated with mercury (Hg) lamp. The experimental results show that the presence of glycerol in the systems can not only improve the efficiency of photocatalytic hydrogen generation but can also be decomposed to hydrogen efficiently. The photocatalytic activity of La0.02Na0.98TaO3 is significantly enhanced when Pt was loaded onto its crystalline surface.

  6. Refractive multiple optical tweezers for parallel biochemical analysis in micro-fluidics

    NASA Astrophysics Data System (ADS)

    Merenda, Fabrice; Rohner, Johann; Pascoal, Pedro; Fournier, Jean-Marc; Vogel, Horst; Salathé, René-Paul

    2007-02-01

    We present a multiple laser tweezers system based on refractive optics. The system produces an array of 100 optical traps thanks to a refractive microlens array, whose focal plane is imaged into the focal plane of a high-NA microscope objective. This refractive multi-tweezers system is combined to micro-fluidics, aiming at performing simultaneous biochemical reactions on ensembles of free floating objects. Micro-fluidics allows both transporting the particles to the trapping area, and conveying biochemical reagents to the trapped particles. Parallel trapping in micro-fluidics is achieved with polystyrene beads as well as with native vesicles produced from mammalian cells. The traps can hold objects against fluid flows exceeding 100 micrometers per second. Parallel fluorescence excitation and detection on the ensemble of trapped particles is also demonstrated. Additionally, the system is capable of selectively and individually releasing particles from the tweezers array using a complementary steerable laser beam. Strategies for high-yield particle capture and individual particle release in a micro-fluidic environment are discussed. A comparison with diffractive optical tweezers enhances the pros and cons of refractive systems.

  7. Gabor domain optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Murali, Supraja

    Time domain Optical Coherence Tomography (TD-OCT), first reported in 1991, makes use of the low temporal coherence properties of a NIR broadband laser to create depth sectioning of up to 2mm under the surface using optical interferometry and point to point scanning. Prior and ongoing work in OCT in the research community has concentrated on improving axial resolution through the development of broadband sources and speed of image acquisition through new techniques such as Spectral domain OCT (SD-OCT). In SD-OCT, an entire depth scan is acquired at once with a low numerical aperture (NA) objective lens focused at a fixed point within the sample. In this imaging geometry, a longer depth of focus is achieved at the expense of lateral resolution, which is typically limited to 10 to 20 mum. Optical Coherence Microscopy (OCM), introduced in 1994, combined the advantages of high axial resolution obtained in OCT with high lateral resolution obtained by increasing the NA of the microscope placed in the sample arm. However, OCM presented trade-offs caused by the inverse quadratic relationship between the NA and the DOF of the optics used. For applications requiring high lateral resolution, such as cancer diagnostics, several solutions have been proposed including the periodic manual re-focusing of the objective lens in the time domain as well as the spectral domain C-mode configuration in order to overcome the loss in lateral resolution outside the DOF. In this research, we report for the first time, high speed, sub-cellular imaging (lateral resolution of 2 mum) in OCM using a Gabor domain image processing algorithm with a custom designed and fabricated dynamic focus microscope interfaced to a Ti:Sa femtosecond laser centered at 800 nm within an SD-OCM configuration. It is envisioned that this technology will provide a non-invasive replacement for the current practice of multiple biopsies for skin cancer diagnosis. The research reported here presents three important advances to this technology all of which have been demonstrated in full functional hardware conceived and built during the course of this research. First, it has been demonstrated that the coherence gate created by the femtosecond laser can be coupled into a scanning optical microscope using optical design methods to include liquid lens technology that enables scanning below the surface of skin with no moving parts and at high resolution throughout a 2x2x2 mm imaging cube. Second, the integration the variable-focus liquid lens technology within a fixed-optics microscope custom optical design helped increase the working NA by an order of magnitude over the limitation imposed by the liquid lens alone. Thus, this design has enabled homogenous axial and lateral resolution at the micron-level (i.e., 2 mum) while imaging in the spectral domain, and still maintaining in vivo speeds. The latest images in biological specimens clearly demonstrate sub-cellular resolution in all dimensions throughout the imaging volume. Third, this new modality for data collection has been integrated with an automated Gabor domain image registration and fusion algorithm to provide full resolution images across the data cube in real-time. We refer to this overall OCM method as Gabor domain OCM (GD-OCM). These advantages place GD-OCM in a unique position with respect to the diagnosis of cancer, because when fully developed, it promises to enable fast and accurate screening for early symptoms that could lead to prevention. The next step for this technology is to apply it directly, in a clinical environment. This step is underway and is expected to be reported by the next generation of researchers within this group.

  8. Investigation into the role of NaCl deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1981-01-01

    Morphological aspects of the conversion to Na2SO4 of NaCl deposits over the temperature range 500-700 C, in air with added SO2 and H2O. Progress of the reaction was observed by withdrawing samples at various times and examining them under the scanning electron microscope using EDAX to assess the extent of chloride to sulfate conversion. These initial results show that the conversion to Na2SO4 proceeds directly on the sodium chloride surface as well as on the surrounding substrate due to evaporation of NaCl from the solid particle. The mechanism of this reaction could involve reaction in the vapor to produce Na2SO4 which then deposits, alternatively Na2SO4 could form directly on the substrate surface due to direct reaction there between the vapors NaCl, SO2 and O2.

  9. Dynamic quantitative phase images of pond life, insect wings, and in vitro cell cultures

    NASA Astrophysics Data System (ADS)

    Creath, Katherine

    2010-08-01

    This paper presents images and data of live biological samples taken with a novel Linnik interference microscope. The specially designed optical system enables instantaneous and 3D video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with current magnifications of 10X (NA 0.3) and 20X (NA 0.5) and wavelengths of 660 nm and 785 nm over fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phasemeasurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different mud puddle organisms such as paramecium, flagellates and rotifers will be presented, as will measurements of flying ant wings and cultures of human breast cancer cells. These data highlight examples of monitoring different biological processes and motions. The live presentation features 4D phase movies of these examples.

  10. Soft X-ray microscope with nanometer spatial resolution and its applications

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Torrisi, A.; Bartnik, A.; Wegrzynski, L.; Fok, T.; Patron, Z.; Fiedorowicz, H.

    2016-12-01

    A compact size microscope based on nitrogen double stream gas puff target soft X-ray source, which emits radiation in water-window spectral range at the wavelength of λ = 2.88 nm is presented. The microscope employs ellipsoidal grazing incidence condenser mirror for sample illumination and silicon nitride Fresnel zone plate objective for object magnification and imaging. The microscope is capable of capturing water-window images of objects with 60 nm spatial resolution and exposure time as low as a few seconds. Details about the microscopy system as well as some examples of different applications from various fields of science, are presented and discussed.

  11. Design and analysis of aspherical multilayer imaging X-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Jiang, WU; Hoover, Richard B.

    1991-01-01

    Spherical Schwarzschild microscopes for soft X-ray applications in microscopy and projection lithography employ two concentric spherical mirrors that are configured such that the third-order spherical aberration and coma are zero. Based on incoherent, sine-wave MTF calculations, the object-plane resolution of a magnification-factor-20 microscope is presently analyzed as a function of object height and numerical aperture of the primary for several spherical Schwarzschild, conic, and aspherical two-mirror microscope configurations.

  12. A stand-alone compact EUV microscope based on gas-puff target source.

    PubMed

    Torrisi, Alfio; Wachulak, Przemyslaw; Węgrzyński, Łukasz; Fok, Tomasz; Bartnik, Andrzej; Parkman, Tomáš; Vondrová, Šárka; Turňová, Jana; Jankiewicz, Bartłomiej J; Bartosewicz, Bartosz; Fiedorowicz, Henryk

    2017-02-01

    We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  13. Synthesis of graphene nanoflakes by grinding natural graphite together with NaCl in a planetary ball mill

    NASA Astrophysics Data System (ADS)

    Alinejad, Babak; Mahmoodi, Korosh

    Natural graphite is a soft material that conventional milling methods fail to grind into nanoparticles. We found that adding NaCl into graphite during milling allows obtaining graphene nanoflakes of about 50×200nm2 as evidenced by Transmission Electron Microscope (TEM). NaCl particles are substantially brittle and harder than graphite, serving as milling agents by both helping to chop graphite into smaller pieces and preventing graphite particles from agglomeration. After milling, NaCl can be easily washed away by water. Probable mechanism for exfoliation of graphene during the modified ball milling may be explained by NaCl and graphene slipping or sliding against and over each other, exfoliating the graphene particles into thin layers.

  14. Acoustic imaging microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-10-17

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  15. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    PubMed

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine

    Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than themore » conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.« less

  17. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat.

    PubMed

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  18. What is the diffraction limit? From Airy to Abbe using direct numerical integration

    NASA Astrophysics Data System (ADS)

    Calm, Y. M.; Merlo, J. M.; Burns, M. J.; Kempa, K.; Naughton, M. J.

    The resolution of a conventional optical microscope is sometimes taken from Airy's point spread function (PSF), 0 . 61 λ / NA , and sometimes from Abbe, λ / 2 NA , where NA is the numerical aperture, however modern fluorescence and near-field optical microscopies achieve spatial resolution far better than either of these limits. There is a new category of 2D metamaterials called planar optical elements (POEs), which have a microscopic thickness (< λ), macroscopic transverse dimensions (> 100 λ), and are composed of an array of nanostructured light scatterers. POEs are found in a range of micro- and nano-photonic technologies, and will influence the future optical nanoscopy. With this pretext, we shed some light on the 'diffraction limit' by numerically evaluating Kirchhoff's scalar formulae (in their exact form) and identifying the features of highly non-paraxial, 3D PSFs. We show that the Airy and Abbe criteria are connected, and we comment on the design rules for a particular type of POE: the flat lens. This work is supported by the W. M. Keck Foundation.

  19. Shape-Control of a 0D/1D NaFe0.9Mn0.1PO4 Nano-Complex by Electrospinning

    NASA Astrophysics Data System (ADS)

    Shin, Mi-Ra; Son, Jong-Tae

    2018-03-01

    NaFePO4 with a maricite structure was one of the most promising candidates for sodium ion batteries (SIBs) due to its advantages of environmental friendly and having low cost. However, it has low electrochemical conductivity and energy density, which impose limitations on its application as commercial cathode materials. In this study, other transition-metal ions such as Mn2+ were substituted into the iron (Fe2+) site in NaFePO4 to increase the surface area and the number of nanofibers in the prepared one-dimensional (1D) nano-sized material with 0D/1D dimensions to enhance the energy density. Also, the 0D/1D NaFe0.9Mn0.1PO4 cathode material has increased electrochemical conductivity because the fiber size was reduced to the nano-scale level by using the electrospinning method in order to decrease the diffusion path of Na-ions. The morphology of the 0D/1D nanofiber was evaluated by Field-emission scanning electron microscope and atomic force microscope analyses. The NaFe0.9Mn0.1PO4 nanofibers had a diameter of approximately 180 nm, while the spherical particle had a diameter 1 μm. The 0D/1D nano-sized cathode material show a discharge capacity of 27 mAhg -1 at a 0.05 C rate within the 2.0 4.5 V voltage range and a low R ct of 110 Ω.

  20. Effect of Na presence during CuInSe{sub 2} growth on stacking fault annihilation and electronic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stange, H., E-mail: helena.stange@helmholtz-berlin.de; Brunken, S.; Hempel, H.

    While presence of Na is essential for the performance of high-efficiency Cu(In,Ga)Se{sub 2} thin film solar cells, the reasons why addition of Na by post-deposition treatment is superior to pre-deposition Na supply—particularly at low growth temperatures—are not yet fully understood. Here, we show by X-ray diffraction and electron microscopy that Na impedes annihilation of stacking faults during the Cu-poor/Cu-rich transition of low temperature 3-stage co-evaporation and prevents Cu homogeneity on a microscopic level. Lower charge carrier mobilities are found by optical pump terahertz probe spectroscopy for samples with remaining high stacking fault density, indicating a detrimental effect on electronic propertiesmore » if Na is present during growth.« less

  1. A simple water-immersion condenser for imaging living brain slices on an inverted microscope.

    PubMed

    Prusky, G T

    1997-09-05

    Due to some physical limitations of conventional condensers, inverted compound microscopes are not optimally suited for imaging living brain slices with transmitted light. Herein is described a simple device that converts an inverted microscope into an effective tool for this application by utilizing an objective as a condenser. The device is mounted on a microscope in place of the condenser, is threaded to accept a water immersion objective, and has a slot for a differential interference contrast (DIC) slider. When combined with infrared video techniques, this device allows an inverted microscope to effectively image living cells within thick brain slices in an open perfusion chamber.

  2. A comparative scanning electron microscopic investigation of the smear layer after the use of sodium hypochlorite gel and solution forms as root canal irrigants.

    PubMed

    Zand, Vahid; Lotfi, Mehrdad; Rahimi, Saeed; Mokhtari, Hadi; Kazemi, Ali; Sakhamanesh, Vahideh

    2010-07-01

    The effect of sodium hypochlorite (NaOCl) gel along with EDTA on the removal of the smear layer has not been studied; therefore, the aim of the present study was to compare the efficacy of gel and solution forms of NaOCl in removal of the smear layer from root canal walls. A total of 40 single-rooted teeth with minimum curvature (<5 degrees) were selected and divided into two experimental groups, each containing 15 teeth and one positive control group containing 10 teeth. The canals of all the teeth were prepared with rotary RaCe instruments up to #35. In the NaOCl solution group, the root canals were flushed with 2.5% NaOCl solution during instrumentation and in NaOCl gel group, the instruments were coated with gel form of NaOCl and used inside the root canals; then saline was used for root canal irrigation. Finally, 1 mL of 17% EDTA was used to rinse inside the root canals and remained in the root canals for 2 minutes in the both experimental groups; in the saline group, only saline was used for irrigation. The amount of the smear layer was quantified according to the Torabinejad method using a scanning electron microscope. Data were analyzed by the Kruskal-Wallis and Mann-Whitney tests. All the statistical analyses were set with a significance level of alpha = 0.05. There were no significant differences between NaOCl gel and solution forms in the coronal, middle, and apical thirds of root canals. There were significant differences between NaOCl solution and saline groups in the three parts of root canal walls and between NaOCl gel and saline in the coronal, middle, and apical thirds. The use of NaOCl gel can be as effective as NaOCl solution along with EDTA in smear layer removal in the three parts of root canal walls. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Optical and Luminescence Properties of β-NaFeO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Sarbjit; Tangra, Ankush Kumar; Lotey, Gurmeet Singh

    2018-05-01

    β-NaFeO2 nanoparticles have been synthesized by sol-gel method and their morphological, structural and optical properties investigated. Transmission electron microscope study reveals that the size of the synthesis nanoparticles is 37 nm and they are possessing spherical symmetry. X-ray diffraction pattern shows the orthorhombic crystal structure of nanoparticles with space group Pn21 a. UV-visible spectra of β-NaFeO2 divulges that these nanoparticles have direct band gap 2.35 eV. The observed Fourier transform infrared spectroscopy spectra confirms the presence of Fe-Na bonding at 1074 cm-1. The photoluminescence study of these nanoparticles shows that these nanoparticles possesses various transition in the visible spectrum.

  4. Scanning Electron Microscopic Evaluation of Several Resharpening Techniques.

    DTIC Science & Technology

    1982-08-19

    AD-AI20 320 ARMY INST OF DENTAL RESEARCH WASHINGTON OC F/6 6/5 SCANNING ELECTRON MICROSCOPIC EVALUATION OF SEVERAL RESHARPENIN-ETC(U) UNLASSIFIE D...NIT NUMBERS US Army Institute of Dental Research Walter Reed Army Medical Center N/A Washington, DC 20012 it. CONTROLLING OFFICE NAME AND ADORESS I...several resharpening techniques by Donald J. DeNucci, DDS, MS and Carson L. Mader, DMD, MSD United States Army Institute of Dental Research Walter Reed

  5. Infrared microscope inspection apparatus

    DOEpatents

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  6. Infrared microscope inspection apparatus

    DOEpatents

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  7. Ultra high frequency imaging acoustic microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-05-23

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  8. Antibacterial effect of taurolidine (2%) on established dental plaque biofilm.

    PubMed

    Arweiler, Nicole Birgit; Auschill, Thorsten Mathias; Sculean, Anton

    2012-04-01

    Preliminary data have suggested that taurolidine may bear promising disinfectant properties for the therapy of bacterial infections. However, at present, the potential antibacterial effect of taurolidine on the supragingival plaque biofilm is unknown. To evaluate the antibacterial effect of taurolidine on the supragingival plaque biofilm using the vital fluorescence technique and to compare it with the effect of NaCl and chlorhexidine (CHX), 18 subjects had to refrain from all mechanical and chemical hygiene measures for 24 h. A voluminous supragingival plaque sample was taken from the buccal surfaces of the lower molars and wiped on an objective slide. The sample was then divided into three equal parts and mounted with one of the three test or control preparations (a) NaCl, (b) taurolidine 2% and (c) CHX 0.2%. After a reaction time of 2 min, the test solutions were sucked of. Subsequently, the plaque biofilm was stained with fluorescence dye and vitality of the plaque flora was evaluated under the fluorescence microscope (VF%). Plaque samples treated with NaCl showed a mean VF of 82.42 ± 6.04%. Taurolidine affected mean VF with 47.57 ± 16.60% significantly (p < 0.001, paired t test). The positive control CHX showed the lowest mean VF values (34.41 ± 14.79%; p < 0.001 compared to NaCl, p = 0.017 compared to taurolidine). Taurolidine possesses a significant antibacterial effect on the supragingival plaque biofilm which was, however, not as pronounced as that of CHX.

  9. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating

    NASA Astrophysics Data System (ADS)

    Heintzmann, Rainer; Cremer, Christoph G.

    1999-01-01

    High spatial frequencies in the illuminating light of microscopes lead to a shift of the object spatial frequencies detectable through the objective lens. If a suitable procedure is found for evaluation of the measured data, a microscopic image with a higher resolution than under flat illumination can be obtained. A simple method for generation of a laterally modulated illumination pattern is discussed here. A specially constructed diffraction grating was inserted in the illumination beam path at the conjugate object plane (position of the adjustable aperture) and projected through the objective into the object. Microscopic beads were imaged with this method and evaluated with an algorithm based on the structure of the Fourier space. The results indicate an improvement of resolution.

  10. Soft x-ray imaging with incoherent sources

    NASA Astrophysics Data System (ADS)

    Wachulak, P.; Torrisi, A.; Ayele, M.; Bartnik, A.; Czwartos, J.; Wegrzyński, Ł.; Fok, T.; Parkman, T.; Vondrová, Š.; Turnová, J.; Odstrcil, M.; Fiedorowicz, H.

    2017-05-01

    In this work we present experimental, compact desk-top SXR microscope, the EUV microscope which is at this stage a technology demonstrator, and finally, the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths, respectively, are capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range, to produce an imprint of the internal structure of the sample in a thin layer of SXR light sensitive photoresist. Applications of such desk-top EUV and SXR microscopes for studies of variety of different samples - test objects for resolution assessment and other objects such as carbon membranes, DNA plasmid samples, organic and inorganic thin layers, diatoms, algae and carcinoma cells, are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  11. Effect of Solids-To-Liquids, Na2SiO3-To-NaOH and Curing Temperature on the Palm Oil Boiler Ash (Si + Ca) Geopolymerisation System

    PubMed Central

    Yahya, Zarina; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Abd Razak, Rafiza; Sandu, Andrei Victor

    2015-01-01

    This paper investigates the effect of the solids-to-liquids (S/L) and Na2SiO3/NaOH ratios on the production of palm oil boiler ash (POBA) based geopolymer. Sodium silicate and sodium hydroxide (NaOH) solution were used as alkaline activator with a NaOH concentration of 14 M. The geopolymer samples were prepared with different S/L ratios (0.5, 1.0, 1.25, 1.5, and 1.75) and Na2SiO3/NaOH ratios (0.5, 1.0, 1.5, 2.0, 2.5, and 3.0). The main evaluation techniques in this study were compressive strength, X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscope (SEM). The results showed that the maximum compressive strength (11.9 MPa) was obtained at a S/L ratio and Na2SiO3/NaOH ratio of 1.5 and 2.5 at seven days of testing.

  12. A study on (K, Na) NbO3 based multilayer piezoelectric ceramics micro speaker

    NASA Astrophysics Data System (ADS)

    Gao, Renlong; Chu, Xiangcheng; Huan, Yu; Sun, Yiming; Liu, Jiayi; Wang, Xiaohui; Li, Longtu

    2014-10-01

    A flat panel micro speaker was fabricated from (K, Na) NbO3 (KNN)-based multilayer piezoelectric ceramics by a tape casting and cofiring process using Ag-Pd alloys as an inner electrode. The interface between ceramic and electrode was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The acoustic response was characterized by a standard audio test system. We found that the micro speaker with dimensions of 23 × 27 × 0.6 mm3, using three layers of 30 μm thickness KNN-based ceramic, has a high average sound pressure level (SPL) of 87 dB, between 100 Hz-20 kHz under five voltage. This result was even better than that of lead zirconate titanate (PZT)-based ceramics under the same conditions. The experimental results show that the KNN-based multilayer ceramics could be used as lead free piezoelectric micro speakers.

  13. Effects of source shape on the numerical aperture factor with a geometrical-optics model.

    PubMed

    Wan, Der-Shen; Schmit, Joanna; Novak, Erik

    2004-04-01

    We study the effects of an extended light source on the calibration of an interference microscope, also referred to as an optical profiler. Theoretical and experimental numerical aperture (NA) factors for circular and linear light sources along with collimated laser illumination demonstrate that the shape of the light source or effective aperture cone is critical for a correct NA factor calculation. In practice, more-accurate results for the NA factor are obtained when a linear approximation to the filament light source shape is used in a geometric model. We show that previously measured and derived NA factors show some discrepancies because a circular rather than linear approximation to the filament source was used in the modeling.

  14. Scanning Electron Microscopic Evaluation of Root Canal Irrigation with Saline, Sodium Hypochlorite, and Citric Acid,

    DTIC Science & Technology

    1983-12-01

    with six different irrigation regimens. Sodium hypochlorite (NaOCl) was significantly more effective than citric acid in "* removing superficial...EVALUATION OF ROOT CANAL IRRIGATION WITH SALINE, SODIUM HYPOCHLORITE , AND CITRIC ACID 4 *J. Craig Baumgartner, D.D.S., M.S. • **Carolyn M. Brown, D.D.S., M.S...preparation with six different irrigation regimens. Sodium hypochlorite (NaOCl) was significantly more effective than citric acid in removing superficial

  15. Phase measurements of EUV mask defects

    DOE PAGES

    Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine; ...

    2015-02-22

    Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than themore » conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.« less

  16. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)

    PubMed Central

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023

  17. A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy.

    PubMed

    Kirkby, Paul A; Srinivas Nadella, K M Naga; Silver, R Angus

    2010-06-21

    We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 mum; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space.

  18. Correcting spherical aberrations induced by an unknown medium through determination of its refractive index and thickness.

    PubMed

    Iwaniuk, Daniel; Rastogi, Pramod; Hack, Erwin

    2011-09-26

    In imaging and focusing applications, spherical aberration induces axial broadening of the point spread function (PSF). A transparent medium between lens and object of interest induces spherical aberration. We propose a method that first obtains both the physical thickness and the refractive index of the aberration inducing medium in situ by measuring the induced focal shifts for paraxial and large angle rays. Then, the fourth order angle dependence of the optical path difference inside the medium is used to correct the spherical aberration using a phase-only spatial light modulator. The obtained measurement accuracy of 3% is sufficient for a complete compensation as demonstrated in a model microscope with NA 0.3 with glass plate induced axial broadening of the PSF by a factor of 5. © 2011 Optical Society of America

  19. 3D interferometric microscope: color visualization of engineered surfaces for industrial applications

    NASA Astrophysics Data System (ADS)

    Schmit, Joanna; Novak, Matt; Bui, Son

    2015-09-01

    3D microscopes based on white light interference (WLI) provide precise measurement for the topography of engineering surfaces. However, the display of an object in its true colors as observed under white illumination is often desired; this traditionally has presented a challenge for WLI-based microscopes. Such 3D color display is appealing to the eye and great for presentations, and also provides fast evaluation of certain characteristics like defects, delamination, or deposition of different materials. Determination of color as observed by interferometric objectives is not straightforward; we will present how color imaging capabilities similar to an ordinary microscope can be obtained in interference microscopes based on WLI and we will give measurement and imaging examples of a few industrial samples.

  20. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible {sup 3}He/10 T cryostat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allwörden, H. von; Ruschmeier, K.; Köhler, A.

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped {sup 3}He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambersmore » are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).« less

  1. Spatial charge inhomogeneity and defect states in topological Dirac semimetal thin films of Na3Bi

    PubMed Central

    Edmonds, Mark T.; Collins, James L.; Hellerstedt, Jack; Yudhistira, Indra; Gomes, Lídia C.; Rodrigues, João N. B.; Adam, Shaffique; Fuhrer, Michael S.

    2017-01-01

    Topological Dirac semimetals (TDSs) are three-dimensional analogs of graphene, with carriers behaving like massless Dirac fermions in three dimensions. In graphene, substrate disorder drives fluctuations in Fermi energy, necessitating construction of heterostructures of graphene and hexagonal boron nitride (h-BN) to minimize the fluctuations. Three-dimensional TDSs obviate the substrate and should show reduced EF fluctuations due to better metallic screening and higher dielectric constants. We map the potential fluctuations in TDS Na3Bi using a scanning tunneling microscope. The rms potential fluctuations are significantly smaller than the thermal energy room temperature (ΔEF,rms = 4 to 6 meV = 40 to 70 K) and comparable to the highest-quality graphene on h-BN. Surface Na vacancies produce a novel resonance close to the Dirac point with surprisingly large spatial extent and provide a unique way to tune the surface density of states in a TDS thin-film material. Sparse defect clusters show bound states whose occupation may be changed by applying a bias to the scanning tunneling microscope tip, offering an opportunity to study a quantum dot connected to a TDS reservoir. PMID:29291249

  2. Method for stitching microbial images using a neural network

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Voronin, V. V.; Marchuk, V. I.; Tolstova, I. V.

    2017-05-01

    Currently an analog microscope has a wide distribution in the following fields: medicine, animal husbandry, monitoring technological objects, oceanography, agriculture and others. Automatic method is preferred because it will greatly reduce the work involved. Stepper motors are used to move the microscope slide and allow to adjust the focus in semi-automatic or automatic mode view with transfer images of microbiological objects from the eyepiece of the microscope to the computer screen. Scene analysis allows to locate regions with pronounced abnormalities for focusing specialist attention. This paper considers the method for stitching microbial images, obtained of semi-automatic microscope. The method allows to keep the boundaries of objects located in the area of capturing optical systems. Objects searching are based on the analysis of the data located in the area of the camera view. We propose to use a neural network for the boundaries searching. The stitching image boundary is held of the analysis borders of the objects. To auto focus, we use the criterion of the minimum thickness of the line boundaries of object. Analysis produced the object located in the focal axis of the camera. We use method of recovery of objects borders and projective transform for the boundary of objects which are based on shifted relative to the focal axis. Several examples considered in this paper show the effectiveness of the proposed approach on several test images.

  3. Mechanical behavior of nanocrystalline NaCl islands on Cu(111).

    PubMed

    Bombis, Ch; Ample, F; Mielke, J; Mannsberger, M; Villagómez, C J; Roth, Ch; Joachim, C; Grill, L

    2010-05-07

    The mechanical response of ultrathin NaCl crystallites of nanometer dimensions upon manipulation with the tip of a scanning tunneling microscope (STM) is investigated, expanding STM manipulation to various nanostructuring modes of inorganic materials as cutting, moving, and cracking. In the light of theoretical calculations, our results reveal that atomic-scale NaCl islands can behave elastically and follow a classical Hooke's law. When the elastic limit of the nanocrystallites is reached, the STM tip induces atomic dislocations and consequently the regime of plastic deformation is entered. Our methodology is paving the way to understand the mechanical behavior and properties of other nanoscale materials.

  4. Three-dimensional confocal microscopy of the living cornea and ocular lens

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1991-07-01

    The three-dimensional reconstruction of the optic zone of the cornea and the ocular crystalline lens has been accomplished using confocal microscopy and volume rendering computer techniques. A laser scanning confocal microscope was used in the reflected light mode to obtain the two-dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with a 488 nm wavelength. The microscope objective was a Leitz X25, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133 three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their 'beaded' cell borders, basal lamina, nerve plexus, nerve fibers, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in- situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers. The three-dimensional data sets of the cornea and the ocular lens were reconstructed in the computer using volume rendering techniques. Stereo pairs were also created of the two- dimensional ocular images for visualization. The stack of two-dimensional images was reconstructed into a three-dimensional object using volume rendering techniques. This demonstration of the three-dimensional visualization of the intact, enucleated eye provides an important step toward quantitative three-dimensional morphometry of the eye. The important aspects of three-dimensional reconstruction are discussed.

  5. Safety of laser use under the dental microscope.

    PubMed

    Saegusa, Hidetoshi; Watanabe, Satoshi; Anjo, Tomoo; Ebihara, Arata; Suda, Hideaki

    2010-04-01

    The aim of this study was to investigate the safety of laser use under the dental microscope. Nd:YAG, Er:YAG and diode lasers were used. The end of the tips was positioned at a distance of 5 cm from the objective lens of a dental microscope. Each eye protector was made into a flat disc, which was fixed on the lens of the microscope. The filters were placed in front of the objective lens or behind the eye lens. Transmitted energy through the microscope with or without the filters was measured. No transmitted laser energy was detected when using matched eye protectors. Mismatched eye protectors were not effective for shutting out laser energy, especially for Nd:YAG and diode lasers. None or very little laser energy was detected through the microscope even without any laser filter. Matched filters shut out all laser energy irrespective of their positions.

  6. [The 80-th anniversary of the use of an operating microscope in otorhinolaryngology. Part II. Technical principle and operation of surgical microscope].

    PubMed

    Mroczkowski, Edward; Wielgosz, Romuald

    2004-01-01

    The first step to microsurgery is getting to know about technical principle and operation of the surgical microscopes. Special attention is paid to those modules and items of microscopes, which surgeon use most frequently, such as objectives, binocular tubes, eyepieces.

  7. A simple optical tweezers for trapping polystyrene particles

    NASA Astrophysics Data System (ADS)

    Shiddiq, Minarni; Nasir, Zulfa; Yogasari, Dwiyana

    2013-09-01

    Optical tweezers is an optical trap. For decades, it has become an optical tool that can trap and manipulate any particle from the very small size like DNA to the big one like bacteria. The trapping force comes from the radiation pressure of laser light which is focused to a group of particles. Optical tweezers has been used in many research areas such as atomic physics, medical physics, biophysics, and chemistry. Here, a simple optical tweezers has been constructed using a modified Leybold laboratory optical microscope. The ocular lens of the microscope has been removed for laser light and digital camera accesses. A laser light from a Coherent diode laser with wavelength λ = 830 nm and power 50 mW is sent through an immersion oil objective lens with magnification 100 × and NA 1.25 to a cell made from microscope slides containing polystyrene particles. Polystyrene particles with size 3 μm and 10 μm are used. A CMOS Thorlabs camera type DCC1545M with USB Interface and Thorlabs camera lens 35 mm are connected to a desktop and used to monitor the trapping and measure the stiffness of the trap. The camera is accompanied by camera software which makes able for the user to capture and save images. The images are analyzed using ImageJ and Scion macro. The polystyrene particles have been trapped successfully. The stiffness of the trap depends on the size of the particles and the power of the laser. The stiffness increases linearly with power and decreases as the particle size larger.

  8. Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues.

    PubMed

    Sung, Kung-Bin; Liang, Chen; Descour, Michael; Collier, Tom; Follen, Michele; Richards-Kortum, Rebecca

    2002-10-01

    We have built a fiber-optic confocal reflectance microscope capable of imaging human tissues in near real time. Miniaturization of the objective lens and the mechanical components for positioning and axially scanning the objective enables the device to be used in inner organs of the human body. The lateral resolution is 2 micrometers and axial resolution is 10 micrometers. Confocal images of fixed tissue biopsies and the human lip in vivo have been obtained at 15 frames/s without any fluorescent stains. Both cell morphology and tissue architecture can be appreciated from images obtained with this microscope.

  9. Preparation of sodium fluoride-loaded gelatin microspheres, characterization and cariostatic studies.

    PubMed

    Wu, H; Zhang, Z X; Zhao, H P; Wu, D C; Wu, B L; Cong, R

    2004-12-01

    Sodium fluoride-loaded gelatin microspheres (NaF-GMS) were prepared using double-phase emulsified condensation polymerization. The average diameter of microspheres was (11.33+/-5.56) microm. The drug content and encapsulation efficiency were 8.80% and 76.73%, respectively. The fluoride releasing profiles of NaF-GMS in physiological saline and artificial saliva (pH 4.5, pH 6.8) showed that NaF-GMS had a sustained-release property and fluoride release rate was increased in pH 4.5 artificial saliva. Experiments conducted in rabbits' oral cavity using NaF-GMS and NaF solution as control revealed NaF-GMS could maintain oral fluoride retention longer than NaF solution. Cariostatic abilities of NaF-GMS including demineralization prohibition in vitro, fluoride deposition in artificial dental plaque and the ability of targeting to cariogenic bacteria were investigated in artificial dental plaque. The results indicated NaF-GMS with lower fluoride concentrations could achieve equivalent cariostatic effect to the concentrated NaF solution, at the same time, could prolong fluoride retention in dental plaque. Microscopic observation showed that NaF-GMS carrying fusion protein of glucan-binding domain could adhere more bacteria than NaF-GMS and this might indicate the possibility of targeting to cariogenic bacteria when NaF-GMS were properly modified.

  10. Efficacy of CPP-ACP and CPP-ACPF on enamel remineralization - an in vitro study using scanning electron microscope and DIAGNOdent.

    PubMed

    Jayarajan, Jayanth; Janardhanam, P; Jayakumar, P

    2011-01-01

    Remineralization as a treatment procedure has received a lot of attention both from clinicians as well researchers. The objective of this in vitro study was to find out the efficacy of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and casein phosphopeptide-amorphous calcium phosphate fluoride (CPP-ACPF) in remineralizing enamel surface on which artificial caries lesion had been created. The changes were analyzed using DIAGNOdent (KaVo) and scanning electron microscope (SEM). Ninety maxillary premolars were selected and divided into three groups of 30 teeth each: A (artificial saliva), B (CPP-ACP), and C (CPP-ACPF). All the samples were assessed using DIAGNOdent at the baseline and after demineralization and remineralization. Three samples were randomly selected from each group after remineralization for surface evaluation using SEM. Statistical analysis showed that group B {CPP-ACP (4.1 ± 1.8)} and group C {CPP-ACPF (4.8 ± 1.2)} had a significantly higher amount of remineralization than group A (1.7 ± 0.7). All the three groups showed a statistically significant amount of remineralization. However, because of the added benefit of fluoride (NaF 0.2%), CPP-ACPF (Tooth Mousse-Plus) showed marginally more amount of remineralization than CPP-ACP (Tooth Mousse).

  11. Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning.

    PubMed

    Ozbay, Baris N; Futia, Gregory L; Ma, Ming; Bright, Victor M; Gopinath, Juliet T; Hughes, Ethan G; Restrepo, Diego; Gibson, Emily A

    2018-05-25

    We present a miniature head mounted two-photon fiber-coupled microscope (2P-FCM) for neuronal imaging with active axial focusing enabled using a miniature electrowetting lens. We show three-dimensional two-photon imaging of neuronal structure and record neuronal activity from GCaMP6s fluorescence from multiple focal planes in a freely-moving mouse. Two-color simultaneous imaging of GFP and tdTomato fluorescence is also demonstrated. Additionally, dynamic control of the axial scanning of the electrowetting lens allows tilting of the focal plane enabling neurons in multiple depths to be imaged in a single plane. Two-photon imaging allows increased penetration depth in tissue yielding a working distance of 450 μm with an additional 180 μm of active axial focusing. The objective NA is 0.45 with a lateral resolution of 1.8 μm, an axial resolution of 10 μm, and a field-of-view of 240 μm diameter. The 2P-FCM has a weight of only ~2.5 g and is capable of repeatable and stable head-attachment. The 2P-FCM with dynamic axial scanning provides a new capability to record from functionally distinct neuronal layers, opening new opportunities in neuroscience research.

  12. Cell degradation of a Na–NiCl 2 (ZEBRA) battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.

    2013-09-23

    In this work, the parameters influencing the degradation of a Na-NiCl 2 (ZEBRA) battery were investigated. Planar Na-NiCl 2 cells using β”-alumina solid electrolyte (BASE) were tested with different C-rates, Ni/NaCl ratios, and capacity windows, in order to identify the key parameters for the degradation of Na-NiCl 2 battery. The morphology of NaCl and Ni particles were extensively investigated after 60 cycles under various test conditions using a scanning electron microscope. A strong correlation between the particle size (NaCl and Ni) and battery degradation was observed in this work. Even though the growth of both Ni and NaCl can influencemore » the cell degradation, our results indicate that the growth of NaCl is a dominant factor in cell degradation. The use of excess Ni seems to play a role in tolerating the negative effects of particle growth on degradation since the available active surface area of Ni particles can be still sufficient even after particle growth. For NaCl, a large cycling window was the most significant factor, of which effects were amplified with decrease in Ni/NaCl ratio.« less

  13. Molecular dynamics study of linear and comb-like polyelectrolytes in aqueous solution: effect of Ca2+ ions

    NASA Astrophysics Data System (ADS)

    Tong, Kefeng; Song, Xingfu; Sun, Shuying; Xu, Yanxia; Yu, Jianguo

    2014-08-01

    All-atom molecular dynamics simulations were employed to provide microscopic mechanism for the salt tolerance of polyelectrolytes dispersants. The conformational variation of polyelectrolytes and interactions between COO- groups and counterions/water molecules were also studied via radius of gyration and pair correlations functions. Sodium polyacrylate (NaPA) and sodium salts of poly(acrylic acid)-poly(ethylene oxide) (NaPA-PEO) were selected as the representative linear and comb-like polyelectrolyte, respectively. The results show that Ca2+ ions interact with COO- groups much stronger than Na+ ions and can bring ion-bridging interaction between intermolecular COO- groups in the NaPA systems. While in the NaPA-PEO systems, the introduced PEO side chains can prevent backbone chains from ion-bridging interactions and weaken the conformational changes. The present results can help in selecting and designing new-type efficient polyelectrolyte dispersants with good salt tolerance.

  14. The Effect of Four Commonly used Root Canal Irrigants on the Removal of Smear Layer: An In-vitro Scanning Electron Microscope Study.

    PubMed

    Kumar, Pawan; Prasad, Narayana; Darawade, Ashish; Bhagat, Shresht Kumar; Narayana, Narayana; Darawade, Pradyma

    2015-09-01

    The objective of this study was to compare the efficiency of four commonly used chemicals in their ability to remove smear layer after instrumentation using scanning electron microscope (SEM). Seventy-five extracted single canaled teeth of roots ranging 10-12 mm in length were used for the study. Teeth were divided into 4 study groups and 1 control group of 15 teeth each. Standard access to the pulp chambers were performed with diamond burs. The lengths of the teeth were determined by the introduction of a size 15 K-file into the root canal until the tip reached the apical foramen. The working length for preparation of the canal is set 0.5 mm shorter than the measurement. Irrigation was performed using 2 ml of irrigant for every instrument change and finally rinsed using 5 ml of the respective solutions. The roots were then split with a chisel and hammer. One-half of each tooth was selected and prepared for SEM examination. After assembly on coded stubs, the specimens were placed in a vacuum chamber and sputter-coated with a 300 Å gold layer. The specimens were then analyzed using a Philips SEM XL 30. The dentinal wall of the cervical, middle and apical thirds was observed at magnifications of up to ×1000 for the presence/absence of smear layer and visualization of the entrance to dentinal tubules. Photomicrographs (×1000) of these areas on each of the coronal, middle and apical thirds were made Data were analyzed using Kruskal-Wallis test and Mann-Whitney U test. SEM study done on these prepared teeth with the popularly used four chemicals, namely, 3% NaOCl (Group A), 3% NaOCl followed by 17% ethylene diamine-tetra-acetic acid (Group B), 0.2% chlorhexidine (Group C) and 3% NaOCl followed by MTAD (Group D), with distilled water (Group E) which is used as control, revealed that NaOCl showed statistically significant, better cleansing effect than distilled water. Chlorhexidine and NaOCl showed equal kind of efficacy but were statistically significant, with lower efficacy than MTAD. It may be concluded that MTAD appears to be the most effective solution compared to the rest. The study demonstrated that MTAD as a final rinse after the entire instrumentation with 3% NaOCl as irrigant provided the best cleansing in all parts of the root canal system. The smear layer has been shown to hinder the penetration of intracanal disinfectants and sealers into dentinal tubules and has the potential of compromising the seal of the root filling. Degradation of the smear layer after treatment may contribute to leakage and reinfection of the root canal space. Removal of the smear layer reduced the penetration of bacteria through the root canal system after root filling.

  15. Study of a quasi-microscope design for planetary landers

    NASA Technical Reports Server (NTRS)

    Giat, O.; Brown, E. B.

    1973-01-01

    The Viking Lander fascimile camera, in its present form, provides for a minimum object distance of 1.9 meters, at which distance its resolution of 0.0007 radian provides an object resolution of 1.33 millimeters. It was deemed desirable, especially for follow-on Viking missions, to provide means for examing Martian terrain at resolutions considerably higher than that now provided. This led to the concept of quasi-microscope, an attachment to be used in conjunction with the fascimile camera to convert it to a low power microscope. The results are reported of an investigation to consider alternate optical configurations for the quasi-microscope and to develop optical designs for the selected system or systems. Initial requirements included consideration of object resolutions in the range of 2 to 50 micrometers, an available field of view of the order of 500 pixels, and no significant modifications to the fascimile camera.

  16. Effect of different irrigation on smear layer removal after post space preparation.

    PubMed

    Gu, Xin-Hua; Mao, Cai-Yun; Kern, Matthias

    2009-04-01

    The purpose of this study was to evaluate the effect of different irrigating solutions on smear layer removal and dentinal tubule opening on root canal surfaces after post space preparation and to study whether additional ultrasonic irrigation has any effect on smear layer removal. Forty-eight anterior teeth were treated endodontically. After post space preparation, they were assigned to six groups: group 1, EDTA; group 2, EDTA with ultrasonic activation; group 3, sodium hypochlorite (NaOCl); group 4, NaOCl with ultrasonic activation; group 5, sodium chloride (NaCl); and group 6, NaCl with ultrasonic activation. Specimens were examined under a field-emission scanning electron microscope and scored for debris removal and dentinal tubule opening at the coronal, middle, and apical thirds of the root canal. The results showed that EDTA performed significantly better than NaCl and NaOCl in smear layer removal and dentinal tubule opening. Additional ultrasonic irrigation did not improve smear layer removal significantly.

  17. Wide field of view common-path lateral-shearing digital holographic interference microscope

    NASA Astrophysics Data System (ADS)

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.

  18. Wide field of view common-path lateral-shearing digital holographic interference microscope.

    PubMed

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Handy Microscopic Close-Range Videogrammetry

    NASA Astrophysics Data System (ADS)

    Esmaeili, F.; Ebadi, H.

    2017-09-01

    The modeling of small-scale objects is used in different applications such as medicine, industry, and cultural heritage. The capability of modeling small-scale objects using imaging with the help of hand USB digital microscopes and use of videogrammetry techniques has been implemented and evaluated in this paper. Use of this equipment and convergent imaging of the environment for modeling, provides an appropriate set of images for generation of three-dimensional models. The results of the measurements made with the help of a microscope micrometer calibration ruler have demonstrated that self-calibration of a hand camera-microscope set can help obtain a three-dimensional detail extraction precision of about 0.1 millimeters on small-scale environments.

  20. Quantum and Classical Molecular Dynamics of Ionic Liquid Electrolytes for Na/Li-based Batteries: Molecular Origins of the Conductivity Behavior.

    PubMed

    Vicent-Luna, Jose Manuel; Ortiz-Roldan, Jose Manuel; Hamad, Said; Tena-Zaera, Ramon; Calero, Sofia; Anta, Juan Antonio

    2016-08-18

    Compositional effects on the charge-transport properties of electrolytes for batteries based on room-temperature ionic liquids (RTILs) are well-known. However, further understanding is required about the molecular origins of these effects, in particular regarding the replacement of Li by Na. In this work, we investigate the use of RTILs in batteries, by means of both classical molecular dynamics (MD), which provides information about structure and molecular transport, and ab initio molecular dynamics (AIMD), which provides information about structure. The focus has been placed on the effect of adding either Na(+) or Li(+) to 1-methyl-1-butyl-pyrrolidinium [C4 PYR](+) bis(trifluoromethanesulfonyl)imide [Tf2 N](-) . Radial distribution functions show excellent agreement between MD and AIMD, which ensures the validity of the force fields used in the MD. This is corroborated by the MD results for the density, the diffusion coefficients, and the total conductivity of the electrolytes, which reproduce remarkably well the experimental observations for all studied Na/Li concentrations. By extracting partial conductivities, it is demonstrated that the main contribution to the conductivity is that of [C4 PYR](+) and [Tf2 N](-) . However, addition of Na(+) /Li(+) , although not significant on its own, produces a dramatic decrease in the partial conductivities of the RTIL ions. The origin of this indirect effect can be traced to the modification of the microscopic structure of the liquid as observed from the radial distribution functions, owing to the formation of [Na(Tf2 N)n ]((n-1)-) and [Li(Tf2 N)n ]((n-1)-) clusters at high concentrations. This formation hinders the motion of the large ions, hence reducing the total conductivity. We demonstrate that this clustering effect is common to both Li and Na, showing that both ions behave in a similar manner at a microscopic level in spite of their distinct ionic radii. This is an interesting finding for extending Li-ion and Li-air technologies to their potentially cheaper Na-based counterparts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hot-corrosion of AISI 1020 steel in a molten NaCl/Na2SO4 eutectic at 700°C

    NASA Astrophysics Data System (ADS)

    Badaruddin, Mohammad; Risano, Ahmad Yudi Eka; Wardono, Herry; Asmi, Dwi

    2017-01-01

    Hot-corrosion behavior and morphological development of AISI 1020 steel with 2 mg cm-2 mixtures of various NaCl/Na2SO4 ratios at 700°C were investigated by means of weight gain measurements, Optical Microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The weight gain kinetics of the steel with mixtures of salt deposits display a rapid growth rates, compared with the weight gain kinetics of AISI 1020 steel without salt deposit in dry air oxidation, and follow a steady-state parabolic law for 49 h. Chloridation and sulfidation produced by a molten NaCl/Na2SO4 on the steel induced hot-corrosion mechanism attack, and are responsible for the formation of thicker scale. The most severe corrosion takes place with the 70 wt.% NaCl mixtures in Na2SO4. The typical Fe2O3 whisker growth in outer part scale was attributed to the FeCl3 volatilization. The formation of FeS in the innermost scale is more pronounced as the content of Na2SO4 in the mixture is increased.

  2. Complexation of nicotinic acid with first generation poly(amidoamine) dendrimers: A microscopic view from density functional theory

    NASA Astrophysics Data System (ADS)

    Badalkhani-Khamseh, Farideh; Bahrami, Aidin; Ebrahim-Habibi, Azadeh; Hadipour, Nasser L.

    2017-09-01

    This study explains some electronic and structural parameters of niacin (NA) encapsulation into PAMAM-G1 dendrimer using DFT calculations. Optimized structural geometries, interaction energies, NMR, NBO, and AIM analyses, in accordance with experiment, revealed that the stability of G1@NA complex can be attributed to the five intermolecular hydrogen bonds formed between the functional groups of G1 and NA. Because of nearing to the experimental results, all the calculations repeated again using a self-consistent reaction field (SCRF) and the polarizable continuum model (PCM) to address the implicit solvent effects and the obtained results were in line with the calculations in gas phase.

  3. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy

    PubMed Central

    Kirkby, Paul A.; Naga Srinivas, N.K.M.; Silver, R. Angus

    2010-01-01

    We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 μm; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space PMID:20588506

  4. Chip-on-the-tip ultra-compact flexible endoscopic epifluorescence video-microscope for in-vivo imaging in medical and biomedical fields

    NASA Astrophysics Data System (ADS)

    Matz, Gregor; Messerschmidt, Bernhard; Göbel, Werner; Filser, Severin; Betz, Christian; Kunze, Marcel; Flaemig, Sven; Ehrhardt, André; Irion, Klaus-Martin; Herms, Jochen; Gross, Herbert

    2017-02-01

    We demonstrate a flexible stand-alone, minimally invasive video-endomicroscope with an outer diameter of 1.6 mm and a length of the rigid tip of 6.7 mm that enables surgeons and biologists to image hardly accessible regions in-vivo in epifluorescence mode. The 60 mg light device improves state-of-the-art objectives by a double deflection approach using a side-fire fiber in combination with spherical microlenses, GRIN-lenses with a specific adapted gradient index profile and an extremely miniaturized chip-on-the-tip camera to achieve an excellent imaging quality. A high NA of 0.7 enables the observation of subcellular features within the entire field of view with a diameter of 183 μm, assure a bright and high-contrast image and promise a good overview during the intervention. Ex-vivo measurements of biological samples confirmed the functionality of the probe.

  5. Towards a Quantum Interface between Diamond Spin Qubits and Phonons in an Optical Trap

    NASA Astrophysics Data System (ADS)

    Ji, Peng; Momeen, M. Ummal; Hsu, Jen-Feng; D'Urso, Brian; Dutt, Gurudev

    2014-05-01

    We introduce a method to optically levitate a pre-selected nanodiamond crystal in air or vacuum. The nanodiamond containing nitrogen-vacancy (NV) centers is suspended on a monolayer of graphene transferred onto a patterned substrate. Laser light is focused onto the sample, using a home-built confocal microscope with a high numerical aperture (NA = 0.9) objective, simultaneously burning the graphene and creating a 3D optical trap that captures the falling nano-diamond at the beam waist. The trapped diamond is an ultra-high-Q mechanical oscillator, allowing us to engineer strong linear and quadratic coupling between the spin of the NV center and the phonon mode. The system could result in an ideal quantum interface between a spin qubit and vibrational phonon mode, potentially enabling applications in quantum information processing and sensing the development of quantum information storage and processing.

  6. A "two-objective, one-area" procedure in absorption microphotometry and its application using an inverted microscope.

    PubMed

    Chaubal, K A

    1988-08-01

    A 'two-objective, one-area' method and related equations are suggested to measure absorbance of microscopic stained objects. In such work, the measuring field invariably includes an image of the object and some clear area surrounding the image. The total intensity in the two areas is measured photometrically, using two different objectives, and substituted in the equation for absorbance. The equation is independent of the term representing intensity from the clear area and hence the error in the measurement of absorbance is reduced. The limitations of the 'two-objective, one-area' method are discussed and its pragmatic operation described with an experimental setup involving an inverted microscope. The method permits measurement of intensity in a part of a stained cell while the rest of the cell remains in the field of view. The method is applied to measure absorbance in Giemsa stained ascites cells and Feulgen stained liver and Human Amnion cells.

  7. Real-time spectral imaging in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Liu, Wenhai; Psaltis, Demetri; Barbastathis, George

    2002-05-01

    We report what is to our knowledge the first volume-holographic optical imaging instrument with the capability to return three-dimensional spatial as well as spectral information about semitranslucent microscopic objects in a single measurement. The four-dimensional volume-holographic microscope is characterized theoretically and experimentally by use of fluorescent microspheres as objects.

  8. Zero-gravity growth of NaF-NaCl eutectics in the NASA Skylab program

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Allen, F. G.; Yu, J. G.

    1976-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, were produced in space and on earth. The production of continuous fibers in a eutectic mixture is attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It is shown that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis. A new concept is advanced to explain the phenomenon of transmittance versus far infrared wavelength of the directionally solidified NaCl-NaF eutectic in terms of the two-dimensional Bragg Scattering and the polarization effect of Rayleigh scattering. This concept can be applied to other eutectic systems as long as the index of refraction of the matrix over a range of wavelengths is known. Experimental data are in agreement with the theoretical prediction.

  9. Image analysis for the automated estimation of clonal growth and its application to the growth of smooth muscle cells.

    PubMed

    Gavino, V C; Milo, G E; Cornwell, D G

    1982-03-01

    Image analysis was used for the automated measurement of colony frequency (f) and colony diameter (d) in cultures of smooth muscle cells, Initial studies with the inverted microscope showed that number of cells (N) in a colony varied directly with d: log N = 1.98 log d - 3.469 Image analysis generated the complement of a cumulative distribution for f as a function of d. The number of cells in each segment of the distribution function was calculated by multiplying f and the average N for the segment. These data were displayed as a cumulative distribution function. The total number of colonies (fT) and the total number of cells (NT) were used to calculate the average colony size (NA). Population doublings (PD) were then expressed as log2 NA. Image analysis confirmed previous studies in which colonies were sized and counted with an inverted microscope. Thus, image analysis is a rapid and automated technique for the measurement of clonal growth.

  10. Effect of endodontic irrigation with 1% sodium hypochlorite and 17% EDTA on primary teeth: a scanning electron microscope analysis.

    PubMed

    Ximenes, Marcos; Triches, Thaisa C; Beltrame, Ana Paula C A; Hilgert, Leandro A; Cardoso, Mariane

    2013-01-01

    This study evaluated the efficacy of 2 final irrigation solutions for removal of the smear layer (SL) from root canals of primary teeth, using scanning electron microscope (SEM) analysis. Thirty primary molars were selected and a single operator instrumented the canals. The initial irrigation was done with a 1% sodium hypochlorite (NaOCl) solution. After the preparation, the roots were randomly divided into 3 groups for final irrigation: Group 1, 1% NaOCl (n = 10); Group 2, 17% EDTA + 1% NaOCl (n = 10); and Group 3, 17% EDTA + saline solution (n = 10). The roots were prepared for SEM analysis (magnification 1000X). The photomicrographs were independently analyzed by 2 investigators with SEM experience, attributing scores to each root third in terms of SL removal. Kruskal-Wallis and Mann-Whitney tests revealed that there was no statistical difference between the groups (P = 0.489). However, a statistical difference was found (P < 0.05) in a comparison of root thirds, with the apical third having the worst results. Comparing the thirds within the same group, all canals showed statistical differences between the cervical and apical thirds (P < 0.05). The authors determined that no substance or association of substances were able to completely remove SL.

  11. Miniature objective lens with variable focus for confocal endomicroscopy

    PubMed Central

    Kim, Minkyu; Kang, DongKyun; Wu, Tao; Tabatabaei, Nima; Carruth, Robert W.; Martinez, Ramses V; Whitesides, George M.; Nakajima, Yoshikazu; Tearney, Guillermo J.

    2014-01-01

    Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that can rapidly image large areas of luminal organs at microscopic resolution. One of the main challenges for large-area SECM imaging in vivo is maintaining the same imaging depth within the tissue when patient motion and tissue surface irregularity are present. In this paper, we report the development of a miniature vari-focal objective lens that can be used in an SECM endoscopic probe to conduct adaptive focusing and to maintain the same imaging depth during in vivo imaging. The vari-focal objective lens is composed of an aspheric singlet with an NA of 0.5, a miniature water chamber, and a thin elastic membrane. The water volume within the chamber was changed to control curvature of the elastic membrane, which subsequently altered the position of the SECM focus. The vari-focal objective lens has a diameter of 5 mm and thickness of 4 mm. A vari-focal range of 240 μm was achieved while maintaining lateral resolution better than 2.6 μm and axial resolution better than 26 μm. Volumetric SECM images of swine esophageal tissues were obtained over the vari-focal range of 260 μm. SECM images clearly visualized cellular features of the swine esophagus at all focal depths, including basal cell nuclei, papillae, and lamina propria. PMID:25574443

  12. Signaling role of phospholipid hydroperoxide glutathione peroxidase (PHGPX) accompanying sensing of NaCl stress in etiolated sunflower seedling cotyledons.

    PubMed

    Jain, Prachi; Bhatla, Satish C

    2014-01-01

    Sunflower seedlings subjected to 120 mM NaCl stress exhibit high total peroxidase activity, differential expression of its isoforms and accumulation of lipid hydroperoxides. This coincides with high specific activity of phospholipid hydroperoxide glutathione peroxidase (PHGPX) in the 10,000g supernatant from the homogenates of 2-6 d old seedling cotyledons. An upregulation of PHGPX activity by NaCl is evident from Western blot analysis. Confocal laser scanning microscopic (CLSM) analysis of sections of cotyledons incubated with anti-GPX4 (PHGPX) antibody highlights an enhanced cytosolic accumulation of PHGPX, particularly around the secretory canals. Present work, thus, highlights sensing of NaCl stress in sunflower seedlings in relation with lipid hydroperoxide accumulation and its scavenging through an upregulation of PHGPX activity in the cotyledons.

  13. Sodium Channel Expression and Localization at Demyelinated Sites in Painful Human Dental Pulp

    PubMed Central

    Henry, Michael A.; Luo, Songjiang; Foley, Benjamin D.; Rzasa, Rachael S.; Johnson, Lonnie R.; Levinson, S. Rock

    2009-01-01

    The expression of sodium channels (NaCh(s)) change after inflammatory and nerve lesions and this change has been implicated in the generation of pain states. Here we examine NaCh expression within nerve fibers from normal and painful extracted human teeth with special emphasis on their localization within large accumulations, like those seen at nodes of Ranvier. Pulpal tissue sections from normal wisdom teeth and from teeth with large carious lesions associated with severe and spontaneous pain were double-stained with pan-specific NaCh antibody and caspr (paranodal protein used to visualize nodes of Ranvier) antibody, while additional sections were triple-stained with NaCh, caspr and myelin basic protein (MBP) antibodies. Z-series of images were obtained with the confocal microscope and evaluated with NIH ImageJ software to quantify the density and size of NaCh accumulations, and to characterize NaCh localization at caspr-identified typical and atypical nodal sites. Although the results showed variability in the overall density and size of NaCh accumulations in painful samples, a common finding included the remodeling of NaChs at atypical nodal sites. This remodeling of NaChs included prominent NaCh expression within nerve regions that showed a selective loss of MBP staining in a pattern consistent with a demyelinating process. PMID:19559391

  14. First-principles study on structure stabilities of α-S and Na-S battery systems

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    To understand microscopic mechanisms of charge and discharge reactions in Na-S batteries, there has been increasing needs to study fundamental atomic and electronic structures of elemental S as well as that of Na-S phases. The most stable form of S is known to be an orthorhombic α-S crystal at ambient temperature and pressure, and α-S consists of puckered S8 rings which crystallize in space group Fddd . In this study, the crystal structure of α-S is examined by using first-principles calculations with and without the van der Waals interaction corrections of Grimme's method, and results clearly show that the van der Waals interactions between the S8 rings have crucial roles on cohesion of α-S. We also study structure stabilities of Na2S, NaS, NaS2, and Na2S5 phases with reported crystal structures. Using calculated total energies of the crystal structure models, we estimate discharge voltages assuming discharge reactions from 2Na+ xS -->Na2Sx, and discharge reactions in Na/S battery systems are discussed by comparing with experimental results. This work was partially supported by Elements Strategy Initiative for Catalysts and Batteries (ESICB) of Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  15. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  16. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  17. Atomic-scale imaging of the dissolution of NaCl islands by water at low temperature

    NASA Astrophysics Data System (ADS)

    Peng, Jinbo; Guo, Jing; Ma, Runze; Meng, Xiangzhi; Jiang, Ying

    2017-03-01

    The dissolution of sodium chloride (NaCl) in water is a frequently encountered process in our daily lives. While the NaCl dissolution process in liquid water has been extensively studied, whether and how the dissolution occurs below the freezing point is still not clear. Using a low-temperature scanning tunneling microscope (STM), here we were able to directly visualize the dissolution of Au-supported NaCl (0 0 1) bilayer islands by water at atomic level. We found that the single water molecule on the STM tip can assist the extraction of single Na+ from the NaCl surface even at 5 K, while leaving the Cl- intact. When covered with a full water monolayer, the NaCl islands started to dissolve from the step edges and also showed evidence of dissolution inside the terraces as the temperature was raised up to 145 K. At 155 K, the water molecules completely desorbed from the surface, which was accompanied with the decomposition and restructuring of the bilayer NaCl islands. Those results suggest that the dissolution of NaCl may occur well below the freezing point at the ice/NaCl interfaces and is mainly driven by the interaction between the water molecules and the Na+, which is in clear contrast with the NaCl dissolution in liquid water.

  18. Electron microscope aperture system

    NASA Technical Reports Server (NTRS)

    Heinemann, K. (Inventor)

    1976-01-01

    An electron microscope including an electron source, a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen, and an objective lens having an annular objective aperture, for focusing electrons passing through the specimen onto an image plane are described. The invention also entails a method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques.

  19. The Latest in Handheld Microscopes

    ERIC Educational Resources Information Center

    Wighting, Mervyn J.; Lucking, Robert A.; Christmann, Edwin P.

    2004-01-01

    Around 1590, Zacharias Jansenn of Holland invented the microscope. Jansenn, an eyeglass maker by trade, experimented with lenses and discovered that things appeared closer with combinations of lenses. Over the past 400 years, several refinements to microscopes have occurred, making it possible to magnify objects between 200 and 1,500 times their…

  20. Adaptive optics plug-and-play setup for high-resolution microscopes with multi-actuator adaptive lens

    NASA Astrophysics Data System (ADS)

    Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.

    2018-02-01

    Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.

  1. Analysis of biological time-lapse microscopic experiment from the point of view of the information theory.

    PubMed

    Štys, Dalibor; Urban, Jan; Vaněk, Jan; Císař, Petr

    2011-06-01

    We report objective analysis of information in the microscopic image of the cell monolayer. The process of transfer of information about the cell by the microscope is analyzed in terms of the classical Shannon information transfer scheme. The information source is the biological object, the information transfer channel is the whole microscope including the camera chip. The destination is the model of biological system. The information contribution is analyzed as information carried by a point to overall information in the image. Subsequently we obtain information reflection of the biological object. This is transformed in the biological model which, in information terminology, is the destination. This, we propose, should be constructed as state transitions in individual cells modulated by information bonds between the cells. We show examples of detected cell states in multidimensional state space. This space is reflected as colour channel intensity phenomenological state space. We have also observed information bonds and show examples of them.

  2. Analysis of biological time-lapse microscopic experiment from the point of view of the information theory.

    PubMed

    Stys, Dalibor; Urban, Jan; Vanek, Jan; Císar, Petr

    2010-07-01

    We report objective analysis of information in the microscopic image of the cell monolayer. The process of transfer of information about the cell by the microscope is analyzed in terms of the classical Shannon information transfer scheme. The information source is the biological object, the information transfer channel is the whole microscope including the camera chip. The destination is the model of biological system. The information contribution is analyzed as information carried by a point to overall information in the image. Subsequently we obtain information reflection of the biological object. This is transformed in the biological model which, in information terminology, is the destination. This, we propose, should be constructed as state transitions in individual cells modulated by information bonds between the cells. We show examples of detected cell states in multidimensional state space reflected in space an colour channel intensity phenomenological state space. We have also observed information bonds and show examples of them. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Fluorescently labeled therapeutic antibodies for detection of microscopic melanoma

    PubMed Central

    Day, Kristine E.; Beck, Lauren N.; Deep, Nicholas L.; Kovar, Joy; Zinn, Kurt R; Rosenthal, Eben L.

    2013-01-01

    Objective Detection of microscopic disease during surgical resection of melanoma remains a significant challenge. To assess real-time optical imaging for visualization of microscopic cancer, we evaluated three FDA-approved therapeutic monoclonal antibodies. Study Design Prospective, basic science Methods Melanoma cell lines (A375 and SKMEL5) were xenografted into the ears of immunodeficient mice. Bevacizumab, panitumumab, tocilizumab, or a non-specific IgG were covalently linked to a near-infrared (NIR) fluorescent probe (IRDye800CW) and systemically injected. Primary tumors were imaged and then resected under fluorescent guidance using the SPY, an NIR imaging system used in plastic and reconstructive surgeries to evaluate perfusion. Mice were also imaged with the Pearl Impulse small animal imager, an NIR imaging system designed for use with IRDye800CW. Post-resection, small tissue fragments were fluorescently imaged and presence of tumor subsequently confirmed by correlation with histology. Results All fluorescently-labeled therapeutic monoclonal antibodies could adequately delineate tumor from normal tissue based on tumor-to-background ratios (TBR) compared to IgG-IRDye800CW. On serial imaging, panitumumab achieved the highest TBRs with both SPY and Pearl (3.8 and 6.6). When used to guide resections, the antibody-dye conjugates generated TBRs in the range of 1.3-2.2 (average=1.6) using the SPY and 1.9-6.3 (average=2.7) using the Pearl. There was no significant difference amongst the antibodies with either imaging modality or cell line (one-way ANOVA). Conclusion Our data suggests that FDA approved antibodies may be suitable targeting agents for the intraoperative fluorescent detection of melanoma. Level of Evidence N/A PMID:23616260

  4. Cornea and ocular lens visualized with three-dimensional confocal microscopy

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1992-08-01

    This paper demonstrates the advantages of three-dimensional reconstruction of the cornea and the ocular crystalline lens by confocal microscopy and volume rendering computer techniques. The advantages of noninvasive observation of ocular structures in living, unstained, unfixed tissue include the following: the tissue is in a natural living state without the artifacts of fixation, mechanical sectioning, and staining; the three-dimensional structure can be observed from any view point and quantitatively analyzed; the dynamics of morphological changes can be studied; and the use of confocal microscopic observation results in a reduction of the number of animals required for ocular morphometric studies. The main advantage is that the dynamic morphology of ocular structures can be investigated in living ocular tissue. A laser scanning confocal microscope was used in the reflected light mode to obtain the two- dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with 488 nm wavelength. The microscope objective was a Leitz 25X, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133, three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The under sampling resulted in a three-dimensional visualization rendering in which the corneal thickness (z-axis) is compressed. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their `beaded' cell borders, basal lamina, nerve plexus, nerve fibers, free nerve endings in the basal epithelial cells, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in-situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers.

  5. Training Medical Novices in Spinal Microsurgery: Does the Modality Matter? A Pilot Study Comparing Traditional Microscopic Surgery and a Novel Robotic Optoelectronic Visualization Tool

    PubMed Central

    Tubbs, R. Shane; Page, Jeni; Chapman, Alexandra; Burgess, Brittni; Laws, Tyler; Warren, Haylie; Oskouian, Rod J

    2016-01-01

    The operative microscope has been a staple instrument in the neurosurgical operating room over the last 50 years. With advances in optoelectronics, options such as robotically controlled high magnification have become available. Such robotically controlled optoelectronic systems may offer new opportunities in surgical technique and teaching. However, traditionally trained surgeons may find it hard to accept newer technologies due to an inherent bias emerging from their previous background. We, therefore, studied how a medically naïve population in a pilot study would meet set microsurgical goals in a cadaver experiment using either a conventional operative microscope or BrightMatter™ Servo system, ​a robotically controlled optoelectronic system (Synaptive Medical, Toronto, Ontario, Canada). We found that the relative ease in teaching medical novices with a robotically controlled optoelectronic system was more valuable when compared to using a modern-day surgical microscope. PMID:26973804

  6. Optical design and system characterization of an imaging microscope at 121.6 nm

    NASA Astrophysics Data System (ADS)

    Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.

    2018-03-01

    We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.

  7. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer

    PubMed Central

    Abdul Razak, Rafiza; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  8. Lens Systems Incorporating A Zero Power Corrector Part 3 New Four-Element Microscope Objectives With Flat Field Or High Power

    NASA Astrophysics Data System (ADS)

    Klee, H. W.; McDowell, M. W.

    1986-02-01

    The use of the zero power corrector concept has been extended to the design of microscope objectives. Several four and five-element designs are described which include a flat field 10x design of 0.25 numerical aperture and a 40x design of 0.65 numerical aperture.

  9. The Corrosion Behavior of Pure Iron under Solid Na2SO4 Deposit in Wet Oxygen Flow at 500 °C

    PubMed Central

    Tang, Yanbing; Liu, Li; Fan, Lei; Li, Ying; Wang, Fuhui

    2014-01-01

    The corrosion behavior of pure Fe under a Na2SO4 deposit in an atmosphere of O2 + H2O was investigated at 500 °C by thermo gravimetric, and electrochemical measurements, viz. potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and surface characterization methods viz. X-ray diffraction (XRD), and scanning electron microscope (SEM)/energy dispersive spectroscopy(EDS). The results showed that a synergistic effect occurred between Na2SO4 and O2 + H2O, which significantly accelerated the corrosion rate of the pure Fe. Briefly, NaFeO2 was formed in addition to the customary Fe oxides; at the same time, H2SO4 gas was produced by introduction of water vapor. Subsequently, an electrochemical corrosion reaction occurred due to the existence of Na2SO4, NaFeO2, and H2O. When this coupled to the chemical corrosion reaction, the progress of the chemical corrosion reaction was promoted and eventually resulted in the acceleration of the corrosion of the pure Fe. PMID:28788182

  10. Method of forming aperture plate for electron microscope

    NASA Technical Reports Server (NTRS)

    Heinemann, K. (Inventor)

    1974-01-01

    An electron microscope is described with an electron source a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen. It also has objective lens with an annular objective aperture, for focusing electrons passing through the specimen onto an image plane. A method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques is included.

  11. Novel band gap-tunable K-Na co-doped graphitic carbon nitride prepared by molten salt method

    NASA Astrophysics Data System (ADS)

    Zhao, Jiannan; Ma, Lin; Wang, Haoying; Zhao, Yanfeng; Zhang, Jian; Hu, Shaozheng

    2015-03-01

    Novel band gap-tunable K-Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N2 adsorption, Scanning electron microscope (SEM), UV-vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from -1.09 and +1.55 eV to -0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K-Na co-doping.

  12. Recycling of pneumatic scrap tyre into nano-crumb rubber by pulsed laser ablation in different pH media

    NASA Astrophysics Data System (ADS)

    Ezaan Khamsan, Nur; Bidin, Noriah; Islam, Shumaila; Daud, Suzairi; Krishnan, Ganesan; Bakar, Mohamad Aizat A.; Naqiuddin Razali, Muhamad; Khamis, Jamil

    2018-05-01

    Nano crumb rubber from scrap tyre is synthesized via 1064 nm pulsed Nd:YAG laser ablation in three different pH media i.e. DI-water (pH∼6.45), D-limonene (pH∼3.47) and NaOH solution (pH∼13.41). Field Emission Scanning Electron Microscope (FESEM) results show spherical morphology of crumb rubber with high degree of aggregation in DI-water and in D-limonene. However, dispersion of crumb rubbers is observed in NaOH solution. The smallest particles size is obtained in NaOH solution within the range of 10.9 nm – 74.3 nm. Energy-dispersive X-ray spectroscopy (EDX) and FTIR analysis confirmed the elements distribution and chemical bonding of rubber with DI-water, D-limonene and NaOH solution. The experimental findings shows that pulsed Nd:YAG laser ablation has potential for fabricating nano-crumb rubber in liquid media.

  13. Synthesis and characterization of porous CaCO3 micro/nano-particles

    NASA Astrophysics Data System (ADS)

    Achour, A.; Arman, A.; Islam, M.; Zavarian, A. A.; Basim Al-Zubaidi, A.; Szade, J.

    2017-06-01

    Porous CaCO3 particles, both micro and nano sized, were synthesized in a mixture of Ca(OH)2, hyaluronic acid (HA), glycine, NaOH and NaCl solution with supercritical carbon dioxide. The particles were characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscope, Raman spectroscope (RS), X-ray photoelectron spectroscope (XPS) and scanning electron microscope techniques. All these techniques showed that the particles crystallize into only one CaCO3 structure, namely the vaterite phase. In addition, FTIR, RS and XPS indicated the presence of residual reactive species i.e. glycine, NaCl, and HA. The XRD results confirmed the presence of NaCl and γ-glycine, which is a crystalline material. Moreover, the HA seems to be mostly embedded in the bulk of the micro-particles. Such materials are promising for biomedical applications such as drug delivery.

  14. A light sheet confocal microscope for image cytometry with a variable linear slit detector

    NASA Astrophysics Data System (ADS)

    Hutcheson, Joshua A.; Khan, Foysal Z.; Powless, Amy J.; Benson, Devin; Hunter, Courtney; Fritsch, Ingrid; Muldoon, Timothy J.

    2016-03-01

    We present a light sheet confocal microscope (LSCM) capable of high-resolution imaging of cell suspensions in a microfluidic environment. In lieu of conventional pressure-driven flow or mechanical translation of the samples, we have employed a novel method of fluid transport, redox-magnetohydrodynamics (redox-MHD). This method achieves fluid motion by inducing a small current into the suspension in the presence of a magnetic field via electrodes patterned onto a silicon chip. This on-chip transportation requires no moving parts, and is coupled to the remainder of the imaging system. The microscopy system comprises a 450 nm diode 20 mW laser coupled to a single mode fiber and a cylindrical lens that converges the light sheet into the back aperture of a 10x, 0.3 NA objective lens in an epi-illumination configuration. The emission pathway contains a 150 mm tube lens that focuses the light onto the linear sensor at the conjugate image plane. The linear sensor (ELiiXA+ 8k/4k) has three lateral binning modes which enables variable detection aperture widths between 5, 10, or 20 μm, which can be used to vary axial resolution. We have demonstrated redox-MHD-enabled light sheet microscopy in suspension of fluorescent polystyrene beads. This approach has potential as a high-throughput image cytometer with myriad cellular diagnostic applications.

  15. Measurement of the index of refraction of μm crystals by a confocal laser microscope--potential application for the refractive index mapping of μm scale.

    PubMed

    Kimura, Keisaku; Sato, Seiichi

    2014-05-01

    A conventional laser microscope can be used to derive the index of refractivity by the ratio of geometrical height of the transparent platelet to the apparent height of the normal incident light for very small crystals in the wide size range. We demonstrate that the simple method is effective for the samples from 100 μm to 16 μm in size using alkali halide crystals as a model system. The method is also applied for the surface fractured micro-crystals and an inclined crystal with microscopic size regime. Furthermore, we present two-dimensional refractive index mapping as well as two-dimensional height profile for the mixture of three alkali halides, KCl, KI, and NaCl, all are μm in size.

  16. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  17. Efficacy of new irrigating solution on smear layer removal in apical third of root canal: A scanning electron microscope study.

    PubMed

    Patil, Priyanka Himmatrao; Gulve, Meenal Nitin; Kolhe, Swapnil Janardan; Samuel, Roshan Mathew; Aher, Gayatri Balasaheb

    2018-01-01

    The aim of this in vitro study is to evaluate and compare the smear layer removal efficacy of etidronic acid-based irrigating solution with others in the apical third of the root canal. Forty human single-rooted mandibular premolar teeth were taken and decoronated to standardize the canal length. After biomechanical preparation, teeth were randomly divided into four groups ( n = 10) and the final irrigation was carried out with tested irrigants. Group I: normal saline (negative control); Group II: 5.25% sodium hypochlorite (NaOCl) with surfactant and 17% ethylenediaminetetraacetic acid (EDTA) with surfactant; Group III: freshly mixed BioPure MTAD; and Group IV: freshly mixed Chloroquick solution. The teeth were split into two halves and observed under a scanning electron microscope to analyze the amount of smear layer present. Data were analyzed using the Kruskal-Wallis test and Mann-Whitney test. Group II (5.25% NaOCl with surfactant followed by 17% EDTA with surfactant) showed least smear layer scores (1.1 ± 0.3162). This was followed by Group III (MTAD) (2.2 ± 0.4216) and then Group IV (Chloroquick) (2.4 ± 0.5164). Sequential use of 5.25% NaOCl with surfactant and 17% EDTA with surfactant was found to be the most efficient than MTAD and Chloroquick in the removal of smear layer in the apical third of root canal.

  18. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    PubMed

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization.

  19. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy

    PubMed Central

    Greenbaum, Alon; Luo, Wei; Su, Ting-Wei; Göröcs, Zoltán; Xue, Liang; Isikman, Serhan O; Coskun, Ahmet F; Mudanyali, Onur; Ozcan, Aydogan

    2012-01-01

    We discuss unique features of lens-free computational imaging tools and report some of their emerging results for wide-field on-chip microscopy, such as the achievement of a numerical aperture (NA) of ~0.8–0.9 across a field of view (FOV) of more than 20 mm2 or an NA of ~0.1 across a FOV of ~18 cm2, which corresponds to an image with more than 1.5 gigapixels. We also discuss the current challenges that these computational on-chip microscopes face, shedding light on their future directions and applications. PMID:22936170

  20. Microscopic study of crystal growth in cryopreservation agent solutions and water.

    PubMed

    Tao, Le-Ren; Hua, Tse-Chao

    2002-10-01

    Ice formation inside or outside cells during cryopreservation is evidently the main factor of cryoinjury to cells. In the study described here a high voltage DC electric field and a cryomicroscopic stage were used to test DMSO and NaCl solutions under electric field strengths ranging from 83 kV/m to 320 kV/m. Dendritic ice crystals became asymmetric when the electric field was activated. This change in the ice crystal shape was more pronounced in the ionic NaCl solution. In addition, ice growth of distilled water without an electric field was tested under different cooling rates.

  1. Hyperlens-array-implemented optical microscopy

    NASA Astrophysics Data System (ADS)

    Iwanaga, Masanobu

    2014-08-01

    Limit of resolution of conventional optical microscopes has never reached below 100 nm under visible light illumination. We show that numerically designed high-transmittance hyperlens array (HLA) is implemented in an optical microscope and works in practice for achieving one-shot-recording optical images of in-situ placed objects with sub 50 nm resolution in lateral direction. Direct resolution test employing well-defined nanopatterns proves that the HLA-implemented imaging is super-resolution optical microscopy, which works even under nW/mm2 visible illumination for objects. The HLA implementation makes the resolution of conventional microscopes one-scale higher, leading to the 1/10 illumination wavelength range, that is, mesoscopic range.

  2. In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens.

    PubMed

    Carlson, Kristen; Chidley, Matthew; Sung, Kung-Bin; Descour, Michael; Gillenwater, Ann; Follen, Michele; Richards-Kortum, Rebecca

    2005-04-01

    For in vivo optical diagnostic technologies to be distributed to the developed and developing worlds, optical imaging systems must be constructed of inexpensive components. We present a fiber-optic confocal reflectance microscope with a cost-effective injection-molded plastic miniature objective lens for in vivo imaging of human tissues in near real time. The measured lateral resolution is less than 2.2 microm, and the measured axial resolution is 10 microm. Confocal images of ex vivo cervical tissue biopsies and in vivo human lip taken at 15 frames/s demonstrate the microscope's capability of imaging cell morphology and tissue architecture.

  3. Efficacy of sodium hypochlorite, ethylenediaminetetraacetic acid, citric acid and phosphoric acid in calcium hydroxide removal from the root canal: a microscopic cleanliness evaluation.

    PubMed

    da Silva, Juliana Melo; Silveira, Amanda; Santos, Elizandra; Prado, Laiìs; Pessoa, Oscar F

    2011-12-01

    Rooted molars were subjected to standardized canal instrumentation to a master apical file (MAF). The samples were dressed with Ca(OH)(2), and after 7 days, teeth were reopened and Ca(OH)(2) medication was removed by 1 of 4 different experimental procedures: 2.5% sodium hypochlorite (NaOCl) (n = 10); 17% EDTA-T (n = 10); 10% citric acid (n = 10); or 37% phosphoric acid (n = 10). This was followed by reinstrumentation with MAF plus 15 mL saline solution. The roots were prepared for scanning electron microscopic analysis of the cervical, middle, and apical thirds. Statistical analysis was performed with the Kruskal-Wallis test. EDTA-T and phosphoric acid gave the best results in the apical third, with significant statistical differences compared with other groups. NaOCl gave the worst results. Irrigation with 17% EDTA-T and 37% phosphoric acid is more effective than sodium hypochlorite and citric acid in the removal of calcium hydroxide from the apical third. Copyright © 2011 Mosby, Inc. All rights reserved.

  4. Solid state optical microscope

    DOEpatents

    Young, I.T.

    1983-08-09

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

  5. Solid-state optical microscope

    DOEpatents

    Young, I.T.

    1981-01-07

    A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  6. Solid state optical microscope

    DOEpatents

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  7. Micro axial tomography: A miniaturized, versatile stage device to overcome resolution anisotropy in fluorescence light microscopy

    NASA Astrophysics Data System (ADS)

    Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael

    2011-09-01

    With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.

  8. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles.

    PubMed

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-28

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO 4 ). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  9. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-01

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO4). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  10. Optical micromanipulation methods for controlled rotation, transportation, and microinjection of biological objects.

    PubMed

    Mohanty, S K; Gupta, P K

    2007-01-01

    The use of laser microtools for rotation and controlled transport of microscopic biological objects and for microinjection of exogenous material in cells is discussed. We first provide a brief overview of the laser tweezers-based methods for rotation or orientation of microscopic objects. Particular emphasis is placed on the methods that are more suitable for the manipulation of biological objects, and the use of these for two-dimensional (2D) and 3D rotations/orientations of intracellular objects is discussed. We also discuss how a change in the shape of a red blood cell (RBC) suspended in hypertonic buffer leads to its rotation when it is optically tweezed. The potential use of this approach for the diagnosis of malaria is also illustrated. The use of a line tweezers having an asymmetric intensity distribution about the center of its major axis for simultaneous transport of microscopic objects, and the successful use of this approach for induction, enhancement, and guidance of neuronal growth cones is presented next. Finally, we describe laser microbeam-assisted microinjection of impermeable drugs into cells and also briefly discuss possible adverse effects of the laser trap or microbeams on cells.

  11. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment

    PubMed Central

    Nimchuk, Zachary L.; Perdue, Tony D.

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory. PMID:28579995

  12. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment.

    PubMed

    Nimchuk, Zachary L; Perdue, Tony D

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory.

  13. TH-CD-201-07: Experimentally Investigating Proton Energy Deposition On the Microscopic Scale Using Fluorescence Nuclear Track Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, T; University College London, London; McFadden, C

    Purpose: In order to further understand the interplay between proton physics and radiobiology it is necessary to consider proton energy deposition on the microscopic scale. In this work we used Fluorescent Nuclear Track Detectors (FNTDs) to experimentally investigate proton energy deposition, track-by-track. Methods: We irradiated 8×4×0.5mm{sup 3} FNTD chips (Landauer Inc) at seven water depths along a pristine proton Bragg peak with range=12cm. After irradiation, the FNTDs were scanned using a confocal microscope (FV1200, Olympus) with a high-power red laser and an oil-immersion objective lens (UPLSAPO60XO, NA=1.35). 10 slice image stacks were acquired with a slice-thickness of 2µm at multiplemore » positions across each FNTD. Image-based analyses of track radius and track “mass” (integrated signal intensity) were performed using trackpy. For comparison, Monte Carlo simulated data were obtained using TOPAS and TOPAS-nBio. Results: Excellent correlation was observed between median track mass and TOPAS dose-averaged linear energy transfer. The resolution of the imaging system was determined insufficient to detect a relationship between track radius and exposure depth. Histograms of track mass (i) displayed strong repeatability across positions within an FNTD and (ii) varied in peak position and shape as a function of depth. TOPAS-nBio simulations implemented on the nanometer scale using physics lists from GEANT4-DNA yielded energy deposition distributions for individual protons and electrons scored within a virtual FNTD. Good agreement was found between these simulated datasets and the FNTD track mass distributions. Conclusion: Robust experimental measurements of the integral energy deposited by individual proton tracks can be performed using FNTDs. Monte Carlo simulations offer an exceedingly powerful approach to the quantification of proton energy deposition on the microscopic scale, but whilst they have been well validated at the macroscopic level, their microscopic validation is far from complete. Our results demonstrate that FNTD-based study can play an important role in addressing this deficit. Tracy Underwood gratefully acknowledges the support of the European Commission under an FP7 Marie Curie International Outgoing Fellowship for Career Development (#630064).« less

  14. Synthetic light-needle photoacoustic microscopy for extended depth of field (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Jiamiao; Gong, Lei; Xu, Xiao; Hai, Pengfei; Suzuki, Yuta; Wang, Lihong V.

    2017-03-01

    Photoacoustic microscopy (PAM) has been extensively applied in biomedical study because of its ability to visualize tissue morphology and physiology in vivo in three dimensions (3D). However, conventional PAM suffers from a rapidly decreasing resolution away from the focal plane because of the limited depth of focus of an objective lens, which deteriorates the volumetric imaging quality inevitably. Here, we propose a novel method to synthesize an ultra-long light needle to extend a microscope's depth of focus beyond its physical limitations with wavefront engineering method. Furthermore, it enables an improved lateral resolution that exceeds the diffraction limit of the objective lens. The virtual light needle can be flexibly synthesized anywhere throughout the imaging volume without mechanical scanning. Benefiting from these advantages, we developed a synthetic light needle photoacoustic microscopy (SLN-PAM) to achieve an extended depth of field (DOF), sub-diffraction and motionless volumetric imaging. The DOF of our SLN-PAM system is up to 1800 µm, more than 30-fold improvement over that gained by conventional PAM. Our system also achieves the lateral resolution of 1.8 µm (characterized at 532 nm and 0.1 NA objective), about 50% higher than the Rayleigh diffraction limit. Its superior imaging performance was demonstrated by 3D imaging of both non-biological and biological samples. This extended DOF, sub-diffraction and motionless 3D PAM will open up new opportunities for potential biomedical applications.

  15. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials (abstract)

    NASA Astrophysics Data System (ADS)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-04-01

    Titanic materials were synthesized by hydrothermal method of TiO2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130° C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77° K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  16. Elemental and topographical imaging of microscopic variations in deposition on NSTX-U and DIII-D samples

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Kaita, R.; Koel, B. E.; Chrobak, C. P.; Wampler, W. R.

    2017-10-01

    Tokamak plasma facing components (PFCs) have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration. Previous RBS measurements showed indirect evidence for this but the spatial (0.5mm) resolution was insufficient for direct imaging. We will present elemental images at sub-micron resolution of deposition on NSTX-U and DiMES samples that show strong microscopic variations and correlate this with 3D topographical maps of surface irregularities. The elemental imaging is performed with a Scanning Auger Microprobe (SAM) that measures element-specific Auger electrons excited by an SEM electron beam. 3D topographical maps of the samples are performed with a Leica DCM 3D confocal light microscope and compared to the elemental deposition pattern. The initial results appear consistent with erosion at the downstream edges of the surface pores exposed to the incident ion flux, whereas the deeper regions are shadowed and serve as deposition traps. Support was provided through DOE Contract Numbers DE-AC02-09CH11466, DE-FC02-04ER54698 and DE-NA0003525.

  17. Thermal conductivity and dielectric functions of alkali chloride XCl (X = Li, Na, K and Rb): a first-principles study

    NASA Astrophysics Data System (ADS)

    Xu, M.; Yang, J. Y.; Liu, L. H.

    2016-07-01

    The macroscopic physical properties of solids are fundamentally determined by the interactions among microscopic electrons, phonons and photons. In this work, the thermal conductivity and infrared-visible-ultraviolet dielectric functions of alkali chlorides and their temperature dependence are fully investigated at the atomic level, seeking to unveil the microscopic quantum interactions beneath the macroscopic properties. The microscopic phonon-phonon interaction dominates the thermal conductivity which can be investigated by the anharmonic lattice dynamics in combination with Peierls-Boltzmann transport equation. The photon-phonon and electron-photon interaction intrinsically induce the infrared and visible-ultraviolet dielectric functions, respectively, and such microscopic processes can be simulated by first-principles molecular dynamics without empirical parameters. The temperature influence on dielectric functions can be effectively included by choosing the thermally equilibrated configurations as the basic input to calculate the total dipole moment and electronic band structure. The overall agreement between first-principles simulations and literature experiments enables us to interpret the macroscopic thermal conductivity and dielectric functions of solids in a comprehensive way.

  18. Microscopic information processing and communication in crowd dynamics

    NASA Astrophysics Data System (ADS)

    Henein, Colin Marc; White, Tony

    2010-11-01

    Due, perhaps, to the historical division of crowd dynamics research into psychological and engineering approaches, microscopic crowd models have tended toward modelling simple interchangeable particles with an emphasis on the simulation of physical factors. Despite the fact that people have complex (non-panic) behaviours in crowd disasters, important human factors in crowd dynamics such as information discovery and processing, changing goals and communication have not yet been well integrated at the microscopic level. We use our Microscopic Human Factors methodology to fuse a microscopic simulation of these human factors with a popular microscopic crowd model. By tightly integrating human factors with the existing model we can study the effects on the physical domain (movement, force and crowd safety) when human behaviour (information processing and communication) is introduced. In a large-room egress scenario with ample exits, information discovery and processing yields a crowd of non-interchangeable individuals who, despite close proximity, have different goals due to their different beliefs. This crowd heterogeneity leads to complex inter-particle interactions such as jamming transitions in open space; at high crowd energies, we found a freezing by heating effect (reminiscent of the disaster at Central Lenin Stadium in 1982) in which a barrier formation of naïve individuals trying to reach blocked exits prevented knowledgeable ones from exiting. Communication, when introduced, reduced this barrier formation, increasing both exit rates and crowd safety.

  19. Energy dispersive X-ray analyses of organelles of NaCI-treated maize root cells

    NASA Astrophysics Data System (ADS)

    Stelzer, Ralf

    1984-04-01

    NaCl sensitive plants of Zea mays cv. ADOUR were grown in nutrient solutions with or without NaCl. Frozen, hydrated root-tip tissues were investigated by means of an ETEC scanning electron microscope fitted with a KEVEX energy dispersive X-ray analyser. Morphological details of the gently etched but non-coated surface of the cross fractured specimen were easy to identify and to analyse using an electron beam with a low intensity at 10 kV. X-ray data obtained from cell compartments and organelles as nuclei, nucleoli and mitochondria within individual cells establish typical X-ray spectra. Comparisons of these spectra support the hypothesis that Na + ions are predominantly localized in vacuoles and also to a lesser extent in the cytoplasm, e.g. in small vesicles, but not in other cell organelles. Furthermore the analysed cell compartments show differences in the distribution of Mg, P, S, Cl, K and Ca effected by the addition of NaCl to the growth medium. The X-ray data are discussed in relation to the physiological meaning of a NaCl induced redistribution of elements within individual maize root cells.

  20. B-cell activating factor detected on both naïve and memory B cells in bullous pemphigoid.

    PubMed

    Qian, Hua; Kusuhara, Masahiro; Li, Xiaoguang; Tsuruta, Daisuke; Tsuchisaka, Atsunari; Ishii, Norito; Koga, Hiroshi; Hayakawa, Taihei; Ohara, Koji; Karashima, Tadashi; Ohyama, Bungo; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-08-01

    B-cell activating factor (BAFF), an important immune regulatory cytokine, is involved in development of autoimmune diseases. Although BAFF is expressed in various cells, including dendritic cells (DCs) and monocytes, BAFF expression on B cells has not been well documented. In the present study, BAFF molecules on DCs and naïve and memory B cells in autoimmune bullous diseases, including pemphigus vulgaris, pemphigus foliaceus and bullous pemphigoid (BP), were analysed by flow cytometry. Compared with healthy controls (HC), BAFF expression on naïve and memory B cells increased significantly in BP. No difference in BAFF receptor expression in naïve and memory B cells was shown among all study groups. Furthermore, BAFF expression in both naïve and memory B cells of BP, but not HC, was detected by confocal microscopic analysis. These results implied that BAFF expressed by B cells may play a pathogenic role in autoimmune bullous diseases, particularly BP. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Image formation of thick three-dimensional objects in differential-interference-contrast microscopy.

    PubMed

    Trattner, Sigal; Kashdan, Eugene; Feigin, Micha; Sochen, Nir

    2014-05-01

    The differential-interference-contrast (DIC) microscope is of widespread use in life sciences as it enables noninvasive visualization of transparent objects. The goal of this work is to model the image formation process of thick three-dimensional objects in DIC microscopy. The model is based on the principles of electromagnetic wave propagation and scattering. It simulates light propagation through the components of the DIC microscope to the image plane using a combined geometrical and physical optics approach and replicates the DIC image of the illuminated object. The model is evaluated by comparing simulated images of three-dimensional spherical objects with the recorded images of polystyrene microspheres. Our computer simulations confirm that the model captures the major DIC image characteristics of the simulated object, and it is sensitive to the defocusing effects.

  2. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  3. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-10-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  4. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-11-22

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  5. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2017-04-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  6. In vitro and in vivo studies of an aqueous extract of Matricaria recutita (German chamomile) on the radiolabeling of blood constituents, on the morphology of red blood cells and on the biodistribution of the radiopharmaceutical sodium pertechnetate

    PubMed Central

    Garcia-Pinto, Angélica B.; Santos-Filho, Sebastião D.; Carvalho, Jorge J.; Pereira, Mário J. S.; Fonseca, Adenilson S.; Bernardo-Filho, Mário

    2013-01-01

    Background: Natural products might alter the labeling of blood constituents with technetium-99m (99mTc) and these results may be correlated with modifications of the shape of the red blood cells (RBC). The biodistribution of radiopharmaceuticals can be also altered. Objective: This investigation aimed to determine biological effects of an aqueous extract of chamomile (CE). Materials and Methods: To study the effect of the CE on the labeling of blood constituents with 99mTc, in vitro and in vivo assays were performed. The effect of the CE on the morphology of RBC was observed under light microscope. The images were acquired, processed, and the perimeter/area ratio of the RBC determined. To analyze the effect of the CE on biodistribution of the sodium pertechnetate (Na99mTcO4) in Wistar rats, these animals were treated or not with a CE. Na99mTcO4 was injected, the rats were sacrificed, the organs were removed, weighted and percentage of radioactivity/gram calculated. Result: In the in vitro experiment, the radioactivity on blood cells compartment and on insoluble fractions of plasma was diminished. The shape and the perimeter/area ratio of the RBC were altered in in vitro assays. An increase of the percentage of radioactivity of Na99mTcO4 was observed in stomach after in vivo treatment. Conclusion: These results could be due to substances of the CE or by the products of the metabolism of this extract in the animal organism. These findings are examples of drug interaction with a radiopharmaceutical, which could lead to misdiagnosis in clinical practice with unexpected consequences. PMID:24143045

  7. Analysis of spectral light guidance in specialty fibers

    NASA Astrophysics Data System (ADS)

    Zimmer, Arne W.; Raithel, Philipp; Belz, Mathias; Klein, Karl-Friedrich

    2016-04-01

    A novel experimental set-up for measuring the spectral dependency of light-guidance of specialty non-active multimodefibers will be introduced. Light coupling into the test fiber is realized and controlled with a micro-structured single mode (SM) fiber and an image-system based on a microscope objective The far- and near-field profiles of the SM-fiber will be shown. The inverse far field method is modified and improved by using three wavelengths simultaneously under the same input conditions; the coupling conditions into the test-fiber and the far- and near-field at fiber output are observed with cameras. The numerical aperture (NA) and mode-conversion or focal-ratio-degradation (FRD) are measured in respect to wavelength at three wavelengths in the VIS region. For the analysis, the patterns are captured at varying exposure times to increase the dynamic range and finally analyzed using image processing methods. Characteristic parameters, such as skew mode propagation and ray-conversion, of circular and non-circular MM-fibers will be discussed, taking the surface roughness into account.

  8. Enhanced Photon Extraction from a Nanowire Quantum Dot Using a Bottom-Up Photonic Shell

    NASA Astrophysics Data System (ADS)

    Jeannin, Mathieu; Cremel, Thibault; Häyrynen, Teppo; Gregersen, Niels; Bellet-Amalric, Edith; Nogues, Gilles; Kheng, Kuntheak

    2017-11-01

    Semiconductor nanowires offer the possibility to grow high-quality quantum-dot heterostructures, and, in particular, CdSe quantum dots inserted in ZnSe nanowires have demonstrated the ability to emit single photons up to room temperature. In this paper, we demonstrate a bottom-up approach to fabricate a photonic fiberlike structure around such nanowire quantum dots by depositing an oxide shell using atomic-layer deposition. Simulations suggest that the intensity collected in our NA =0.6 microscope objective can be increased by a factor 7 with respect to the bare nanowire case. Combining microphotoluminescence, decay time measurements, and numerical simulations, we obtain a fourfold increase in the collected photoluminescence from the quantum dot. We show that this improvement is due to an increase of the quantum-dot emission rate and a redirection of the emitted light. Our ex situ fabrication technique allows a precise and reproducible fabrication on a large scale. Its improved extraction efficiency is compared to state-of-the-art top-down devices.

  9. Artificial submicron or nanometer speckle fabricating technique and electron microscope speckle photography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zhanwei; Xie Huimin; Fang Daining

    2007-03-15

    In this article, a novel artificial submicro- or nanometer speckle fabricating technique is proposed by taking advantage of submicro or nanometer particles. In the technique, submicron or nanometer particles were adhered to an object surface by using ultrasonic dispersing technique. The particles on the object surface can be regarded as submicro or nanometer speckle by using a scanning electronic microscope at a special magnification. In addition, an electron microscope speckle photography (EMSP) method is developed to measure in-plane submicron or nanometer deformation of the object coated with the artificial submicro or nanometer speckles. The principle of artificial submicro or nanometermore » speckle fabricating technique and the EMSP method are discussed in detail in this article. Some typical applications of this method are offered. The experimental results verified that the artificial submicro or nanometer speckle fabricating technique and EMSP method is feasible.« less

  10. Lagrangian 3D tracking of fluorescent microscopic objects in motion

    NASA Astrophysics Data System (ADS)

    Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  11. Lagrangian 3D tracking of fluorescent microscopic objects in motion.

    PubMed

    Darnige, T; Figueroa-Morales, N; Bohec, P; Lindner, A; Clément, E

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  12. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  13. Spore associated bacteria regulates maize root K+/Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis.

    PubMed

    Selvakumar, Gopal; Shagol, Charlotte C; Kim, Kiyoon; Han, Seunggab; Sa, Tongmin

    2018-06-05

    The interaction between arbuscular mycorrhizal fungi (AMF) and AMF spore associated bacteria (SAB) were previously found to improve mycorrhizal symbiotic efficiency under saline stress, however, the information about the molecular basis of this interaction remain unknown. Therefore, the present study aimed to investigate the response of maize plants to co-inoculation of AMF and SAB under salinity stress. The co-inoculation of AMF and SAB significantly improved plant dry weight, nutrient content of shoot and root tissues under 25 or 50 mM NaCl. Importantly, co-inoculation significantly reduced the accumulation of proline in shoots and Na + in roots. Co-inoculated maize plants also exhibited high K + /Na + ratios in roots at 25 mM NaCl concentration. Mycorrhizal colonization significantly positively altered the expression of ZmAKT2, ZmSOS1, and ZmSKOR genes, to maintain K + and Na + ion homeostasis. Confocal laser scanning microscope (CLSM) view showed that SAB were able to move and localize into inter- and intracellular spaces of maize roots and were closely associated with the spore outer hyaline layer. These new findings indicate that co-inoculation of AMF and SAB effectively alleviates the detrimental effects of salinity through regulation of SOS pathway gene expression and K + /Na + homeostasis to improve maize plant growth.

  14. Effects of Na2SO4 on iron and nickel reduction in a high-iron and low-nickel laterite ore

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-ping; Sun, Ti-chang; Chen, Chao; Kou, Jue

    2018-04-01

    This study investigates the reactions of Na2SO4 and its effects on iron and nickel reduction in the roasting of a high-iron and low-nickel laterite ore through gas composition, X-ray diffraction, and scanning electron microscope analyses. Results showed that a reduction reaction of Na2SO4 to SO2 was performed with roasting up to 600°C. However, no clear influence on iron and nickel reductions appeared, because only a small amount of Na2SO4 reacted to produce SO2. Na2SO4 reacted completely at 1000°C, mainly producing troilite and nepheline, which remarkably improves selective reduction of nickel. Furthermore, the production of low-melting-point minerals, including troilite and nepheline, accelerated nickel reduction and delayed iron reduction, which is attributed to the concurrent production of magnesium magnetite, whose structure is more stable than the structure of magnetite. Reduction reactions of Na2SO4 resulted in weakening of the reduction atmosphere, and the main product of Na2SO4 changed and delayed the reduction of iron. Eventually, iron metallization was effectively controlled during laterite ore reduction roasting, leading to iron mainly being found in wustite and high iron-containing olivine.

  15. JPRS Report, Science & Technology USSR: Physics & Mathematics.

    DTIC Science & Technology

    1991-01-17

    Irregularities on Readings of Local Work Function by Scanning Tunneling Microscope [A.O. Golubok, N.A. Tarasov, et al; PISMA V ZHURNAL TEKHNICHESKOY...constant. The substances tested (anthracene, phenanthrene, naphthacene, triphenylene, p- terphenyl, pentacene , benzo(def)phenanthrene, benzo(ghl...in nucleus-nucleus collisions are analyzed, considering that local thermodynamic equilibrium establishes itself after two or three collisions to be

  16. Enhancing Learning Objectives by Use of Simple Virtual Microscopic Slides in Cellular Physiology and Histology: Impact and Attitudes

    ERIC Educational Resources Information Center

    Anyanwu, Godson Emeka; Agu, Augustine Uchechukwu; Anyaehie, Ugochukwu Bond

    2012-01-01

    The impact and perception of students on the use of a simple, low technology-driven version of a virtual microscope in teaching and assessments in cellular physiology and histology were studied. Its impact on the time and resources of the faculty were also assessed. Simple virtual slides and conventional microscopes were used to conduct the same…

  17. Perforation and Bacterial Contamination of Microscope Covers in Lumbar Spinal Decompressive Surgery

    PubMed Central

    Osterhoff, Georg; Spirig, José; Klasen, Jürgen; Kuster, Stefan P.; Zinkernagel, Annelies S.; Sax, Hugo; Min, Kan

    2014-01-01

    Objective To determine the integrity of microscope covers and bacterial contamination at the end of lumbar spinal decompressive surgery. Materials and Methods A prospective study of 25 consecutive lumbar spinal decompressions with the use of a surgical microscope was performed. For detection of perforations, the microscope covers were filled with water at the end of surgery and the presence of water leakage in 3 zones (objective, ocular and control panel) was examined. For detection of bacterial contamination, swabs were taken from the covers at the same locations before and after surgery. Results Among the 25 covers, 1 (4%) perforation was observed and no association between perforation and bacterial contamination was seen; 3 (4%) of 75 smears from the 25 covers showed post-operative bacterial contamination, i.e. 2 in the ocular zone and 1 in the optical zone, without a cover perforation. Conclusions The incidence of microscope cover perforation was very low and was not shown to be associated with bacterial contamination. External sources of bacterial contamination seem to outweigh the problem of contamination due to failure of cover integrity. PMID:24903448

  18. ZnTe Alloying Effect on Enhanced Thermoelectric Properties of p-Type PbTe.

    PubMed

    Ahn, Kyunghan; Shin, Hocheol; Im, Jino; Park, Sang Hyun; Chung, In

    2017-02-01

    We investigate the effect of ZnTe incorporation on PbTe to enhance thermoelectric performance. We report structural, microscopic, and spectroscopic characterizations, ab initio theoretical calculations, and thermoelectric transport properties of Pb 0.985 Na 0.015 Te-x% ZnTe (x = 0, 1, 2, 4). We find that the solid solubility limit of ZnTe in PbTe is less than 1 mol %. The introduction of 2% ZnTe in p-type Pb 0.985 Na 0.015 Te reduces the lattice thermal conductivity through the ZnTe precipitates at the microscale. Consequently, a maximum thermoelectric figure of merit (ZT) of 1.73 at 700 K is achieved for the spark plasma-sintered Pb 0.985 Na 0.015 Te-2% ZnTe, which arises from a decreased lattice thermal conductivity of ∼0.69 W m -1 K -1 at ∼700 K in comparison with Pb 0.985 Na 0.015 Te.

  19. Diffusion mechanism in the sodium-ion battery material sodium cobaltate.

    PubMed

    Willis, T J; Porter, D G; Voneshen, D J; Uthayakumar, S; Demmel, F; Gutmann, M J; Roger, M; Refson, K; Goff, J P

    2018-02-16

    High performance batteries based on the movement of Li ions in Li x CoO 2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO 2 . Here we have determined the diffusion mechanism for Na 0.8 CoO 2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.

  20. Structural and optical properties of Na-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Akcan, D.; Gungor, A.; Arda, L.

    2018-06-01

    Zn1-xNaxO (x = 0.0-0.05) solutions have been synthesized by the sol-gel technique using Zinc acetate dihydrate and Sodium acetate which were dissolved into solvent and chelating agent. Na-doped ZnO nanoparticles were obtained from solutions to find phase and crystal structure. Na-doped ZnO films have been deposited onto glass substrate by using sol-gel dip coating system. The effects of dopant concentration on the structure, morphology, and optical properties of Na-doped ZnO thin films deposited on glass substrate are investigated. Characterization of Zn1-xNaxO nanoparticles and thin films are examined using differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Scanning electron microscope (SEM) and X-Ray diffractometer (XRD). Optical properties of Zn1-xNaxO thin films were obtained by using PG Instruments UV-Vis-NIR spectrophotometer in 190-1100 nm range. The structure, morphology, and optical properties of thin films are presented.

  1. In-situ measurement of objective lens data of a high-resolution electron microscope.

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1971-01-01

    Bragg-reflex images of small individual crystallites in the size range of 20-100 A diameter with known crystallographic orientation were used in a transmission electron microscope to determine in-situ: (a) the relationship between objective lens current (or accelerating voltage) changes in discrete steps and corresponding defocus, (b) the spherical aberration coefficient, and (c) the axial chromatic aberration coefficient of the objective lens. The accuracy of the described method is better than 5%. The same specimen can advantageously be used to properly aline the illuminating beam with respect to the optical axis.

  2. Microscopic structure and properties of discrete water layer in Na-exchanged montmorillonite.

    PubMed

    Emmerich, Katja; Koeniger, Franz; Kaden, Heike; Thissen, Peter

    2015-06-15

    In this work, we focus on the atomic structure of the water interlayer of Na-exchanged montmorillonite. For two different surface charge densities, namely -0.086 and -0.172 C/m(2), the adsorption process in the presence of water is described by first principles calculations. We describe the interactions and forces for every water molecule entering the interlayer during the swelling process. In particular, the dielectric permittivity of the water interlayer is calculated. Finally, we confirm our results performing ab initio thermodynamics calculations leading to a wide range of realistic experimental scenarios. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Probing the atomic structure of metallic nanoclusters with the tip of a scanning tunneling microscope.

    PubMed

    Schouteden, Koen; Lauwaet, Koen; Janssens, Ewald; Barcaro, Giovanni; Fortunelli, Alessandro; Van Haesendonck, Chris; Lievens, Peter

    2014-02-21

    Preformed Co clusters with an average diameter of 2.5 nm are produced in the gas phase and are deposited under controlled ultra-high vacuum conditions onto a thin insulating NaCl film on Au(111). Relying on a combined experimental and theoretical investigation, we demonstrate visualization of the three-dimensional atomic structure of the Co clusters by high-resolution scanning tunneling microscopy (STM) using a Cl functionalized STM tip that can be obtained on the NaCl surface. More generally, use of a functionalized STM tip may allow for systematic atomic structure determination with STM of nanoparticles that are deposited on metal surfaces.

  4. The long road to the use of microscope in clinical medicine in vivo: from early pioneering proposals to the modern perspectives of optical biopsy.

    PubMed

    Ponti, Giovanni; Muscatello, Umberto; Sgantzos, Markos

    2015-01-01

    For a long period the scientists did not recognized the potentialities of the compound microscope in medicine. Only few scientists recognized the potentialities of the microscope for the medicine; among them G. Campani who proposed the utilization of his microscope to investigate the skin lesions directly on the patient. The proposal was illustrated in a letter Acta Eruditorum of 1686. The recent development of optical techniques, capable of providing in-focus images of an object from different planes with high spatial resolution, significantly increased the diagnostic potential of the microscope directly on the patient.

  5. A new Brewster angle microscope

    NASA Astrophysics Data System (ADS)

    Lheveder, C.; Hénon, S.; Mercier, R.; Tissot, G.; Fournet, P.; Meunier, J.

    1998-03-01

    We present a new Brewster angle microscope for the study of very thin layers as thin as monolayers, using a custom-made objective. This objective avoids the drawbacks of the models existing at the present time. Its optical axis is perpendicular to the studied layer and consequently gives an image in focus in all the plane contrary to the existing models which give images in focus along a narrow strip. The objective allows one to obtain images with a good resolution (less than 1 μm) without scanning the surface, at the video frequency, allowing for dynamic studies. A large frontal distance associated with a very large aperture is obtained by using a large lens at the entrance of the objective.

  6. Physical Compatibility of Sodium Glycerophosphate and Calcium Gluconate in Pediatric Parenteral Nutrition Solutions.

    PubMed

    MacKay, Mark; Anderson, Collin

    2015-08-01

    The solubility of inorganic calcium and phosphate in parenteral solutions can be complicated in pediatrics due to the dosing of calcium and phosphorus at the saturation point. The purpose of this study was to test the solubility of sodium glycerophosphate (NaGP) with calcium gluconate in pediatric parenteral nutrition (PN) solutions. Five PN solutions were compounded by adding calcium gluconate at 10, 20, 30, 40, and 50 mEq/L and corresponding concentrations of NaGP at 10, 20, 30, 40, and 50 mmol/L. Each of the 5 solutions was compounded using 1.5% and 4% amino acids, cysteines, and lipids. Compatibility was evaluated by visual inspection (precipitation, haze, and color change). Solutions were evaluated microscopically for any microcrystals and measured by a turbidimeter for changes in turbidity. Solutions were further analyzed using United States Pharmacopeia 788 standards. Six hundred seventy-one PN solutions were compounded at various concentrations and evaluated for visual stability. Compatibility testing showed no changes in the PN solution in any of the concentrations tested. Microscopically, no microcrystals were detected. The turbidimeter measurements had changes of ≤ 0.14 nephelometric turbidity units for all test solutions. There were no visual changes in any of the 671 PN solutions. It is recommended that NaGP replace sodium phosphate in PN solutions. This would eliminate the concern of calcium and phosphorus precipitation and the need of any saturation curves. © 2014 American Society for Parenteral and Enteral Nutrition.

  7. Virtual microscopy in a veterinary curriculum.

    PubMed

    Sims, Michael H; Mendis-Handagama, Chamindrani; Moore, Robert N

    2007-01-01

    Teaching faculty in the University of Tennessee College of Veterinary Medicine assist students in their professional education by providing a new way of viewing microscopic slides digitally. Faculty who teach classes in which glass slides are used participate in a program called Virtual Microscopy. Glass slides are digitized using a state-of-the-art integrated system, and a personal computer functions as the "microscope." Additionally, distribution of the interactive images is enhanced because they are available to students online. The digital slide offers equivalent quality and resolution to the original glass slide viewed on a microscope and has several additional advantages over microscopes. Students can choose to examine the entire slide at any of several objectives; they are able to access the slides (called WebSlides) from the college's server, using either Internet Explorer or a special browser developed by Bacus Laboratories, Inc.,(a) called the WebSlide browser, which lets the student simultaneously view a low-objective image and one or two high-objective images of the same slide. The student can "move the slide" by clicking and dragging the image to a new location. Easy archiving, annotation of images, and Web conferencing are additional features of the system.

  8. Telecentric 3D profilometry based on phase-shifting fringe projection.

    PubMed

    Li, Dong; Liu, Chunyang; Tian, Jindong

    2014-12-29

    Three dimensional shape measurement in the microscopic range becomes increasingly important with the development of micro manufacturing technology. Microscopic fringe projection techniques offer a fast, robust, and full-field measurement for field sizes from approximately 1 mm2 to several cm2. However, the depth of field is very small due to the imaging of non-telecentric microscope, which is often not sufficient to measure the complete depth of a 3D-object. And the calibration of phase-to-depth conversion is complicated which need a precision translation stage and a reference plane. In this paper, we propose a novel telecentric phase-shifting projected fringe profilometry for small and thick objects. Telecentric imaging extends the depth of field approximately to millimeter order, which is much larger than that of microscopy. To avoid the complicated phase-to-depth conversion in microscopic fringe projection, we develop a new system calibration method of camera and projector based on telecentric imaging model. Based on these, a 3D reconstruction of telecentric imaging is presented with stereovision aided by fringe phase maps. Experiments demonstrated the feasibility and high measurement accuracy of the proposed system for thick object.

  9. Design of an imaging microscope for soft X-ray applications

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1988-01-01

    An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.

  10. High resolution FTIR imaging provides automated discrimination and detection of single malaria parasite infected erythrocytes on glass.

    PubMed

    Perez-Guaita, David; Andrew, Dean; Heraud, Philip; Beeson, James; Anderson, David; Richards, Jack; Wood, Bayden R

    2016-06-23

    New highly sensitive tools for malaria diagnostics are urgently needed to enable the detection of infection in asymptomatic carriers and patients with low parasitemia. In pursuit of a highly sensitive diagnostic tool that can identify parasite infections at the single cell level, we have been exploring Fourier transform infrared (FTIR) microscopy using a Focal Plane Array (FPA) imaging detector. Here we report for the first time the application of a new optic configuration developed by Agilent that incorporates 25× condenser and objective Cassegrain optics with a high numerical aperture (NA = 0.81) along with additional high magnification optics within the microscope to provide 0.66 micron pixel resolution (total IR system magnification of 61×) to diagnose malaria parasites at the single cell level on a conventional glass microscope slide. The high quality images clearly resolve the parasite's digestive vacuole demonstrating sub-cellular resolution using this approach. Moreover, we have developed an algorithm that first detects the cells in the infrared image, and secondly extracts the average spectrum. The average spectrum is then run through a model based on Partial Least Squares-Discriminant Analysis (PLS-DA), which diagnoses unequivocally the infected from normal cells. The high quality images, and the fact this measurement can be achieved without a synchrotron source on a conventional glass slide, shows promise as a potential gold standard for malaria detection at the single cell level.

  11. Fire Protection Informational Exchange

    DTIC Science & Technology

    2016-07-01

    0.95 L/min concurrent spray & 274x521 mm pool (66°C) i. Persistent fuels; turbine fuel in spray/pool; lubricant, hydraulic fluid in spray ii...conjugate image plane La Vision sCMOS + Kl long- distance microscope with CF4 objective wire .. " " " " ... in-line hologram image plane La...distance microscope with CF4 objective wire I phase disrurbanc.e (f= 2000 nun) .. " " " " ... in-line hologram image plane La Vision sCNlOS

  12. The objective lens of the electron microscope with correction of spherical and axial chromatic aberrations.

    PubMed

    Bimurzaev, S B; Aldiyarov, N U; Yakushev, E M

    2017-10-01

    The paper describes the principle of operation of a relatively simple aberration corrector for the transmission electron microscope objective lens. The electron-optical system of the aberration corrector consists of the two main elements: an electrostatic mirror with rotational symmetry and a magnetic deflector formed by the round-shaped magnetic poles. The corrector operation is demonstrated by calculations on the example of correction of basic aberrations of the well-known objective lens with a bell-shaped distribution of the axial magnetic field. Two of the simplest versions of the corrector are considered: a corrector with a two-electrode electrostatic mirror and a corrector with a three-electrode electrostatic mirror. It is shown that using the two-electrode mirror one can eliminate either spherical or chromatic aberration of the objective lens, without changing the value of its linear magnification. Using a three-electrode mirror, it is possible to eliminate spherical and chromatic aberrations of the objective lens simultaneously, which is especially important in designing electron microscopes with extremely high resolution. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy.

    PubMed

    Chidley, Matthew D; Carlson, Kristen D; Richards-Kortum, Rebecca R; Descour, Michael R

    2006-04-10

    The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.

  14. Common path in-line holography using enhanced joint object reference digital interferometers

    PubMed Central

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2014-01-01

    Joint object reference digital interferometer (JORDI) is a recently developed system capable of recording holograms of various types [Opt. Lett. 38(22), 4719 (2013)24322115]. Presented here is a new enhanced system design that is based on the previous JORDI. While the previous JORDI has been based purely on diffractive optical elements, displayed on spatial light modulators, the present design incorporates an additional refractive objective lens, thus enabling hologram recording with improved resolution and increased system applicability. Experimental results demonstrate successful hologram recording for various types of objects, including transmissive, reflective, three-dimensional, phase and highly scattering objects. The resolution limit of the system is analyzed and experimentally validated. Finally, the suitability of JORDI for microscopic applications is verified as a microscope objective based configuration of the system is demonstrated. PMID:24663838

  15. Demonstration of magnetic domain boundary movement using an easily assembled videocam-microscope system

    NASA Technical Reports Server (NTRS)

    Patterson, John W.

    1992-01-01

    The objectives are to build and demonstrate a low cost and highly flexible TV microscope facility and then use it to view the motion of magnetic domain boundaries as the local magnetic field is varied. The expense of an optical microscope and the videocam adapters sold for them is largely avoided by using the facility described below. The equipment, supplies, and procedure are presented.

  16. Broadband Impedance Microscopy for Research on Complex Quantum Materials

    DTIC Science & Technology

    2016-02-08

    function in various materials. Figure 2. Sensitivity limit of the broadband impedance microscope (BIM). Figure 3. Preliminary BIM data on YMnO3...2 Statement of the Problem The objective of this DURIP award is to construct a broadband impedance microscope (BIM) for frequency-dependent...platforms and specialized cantilever probes [1] in the PI’s lab, the BIM can now simultaneously obtain microscopic (10 – 100 nm) and quasi- spectroscopic

  17. Advanced MOKE magnetometry in wide-field Kerr-microscopy

    NASA Astrophysics Data System (ADS)

    Soldatov, I. V.; Schäfer, R.

    2017-10-01

    The measurement of MOKE (Magneto-Optical Kerr Effect) magnetization loops in a wide-field Kerr microscope offers the advantage that the relevant domain images along the loop can be readily recorded. As the microscope's objective lens is exposed to the magnetic field, the loops are usually strongly distorted by non-linear Faraday rotations of the polarized light that occur in the objective lens and that are superimposed to the MOKE signal. In this paper, an experimental method, based on a motorized analyzer, is introduced which allows to compensate the Faraday contributions, thus leading to pure MOKE loops. A wide field Kerr microscope, equipped with this technology, works well as a laser-based MOKE magnetometer, additionally offering domain images and thus providing the basis for loop interpretation.

  18. Sodium diacetate and sodium lactate affect microbiology and sensory and objective characteristics of a restructured turkey breast product formulated with a fibrin cold-set binding system.

    PubMed

    Mohammed Shafit, H; Williams, S K

    2010-03-01

    Research was conducted to manufacture and evaluate a restructured turkey breast product using the Fibrimex cold-set binding system, sodium diacetate (NaD), and sodium lactate (NaL) and to ascertain effects of the treatments on proximate composition, pH, psychrotrophic organisms, water activity, onset of rancidity (TBA), thaw loss, cooking yields, and objective color, and sensory characteristics. Whole turkey breasts were cut into 5-cm-thick strips; treated with either water only (control), 1.5% NaL, 2.0% NaL, 0.1% NaD, 1.5% NaL + 0.1% NaD, or 2.0% NaL + 0.1% NaD; blended with Fibrimex ingredients; stuffed into casings; and stored at -30 degrees C for 0, 1, 2, and 3 mo. After each storage period, frozen chubs were tempered at 4 degrees C, sliced into 1-cm-thick steaks, packaged in retail trays, stored at 0 degrees C to simulate retail storage, and analyzed after 0, 2, 4, 6, 8, and 10 d. Sodium diacetate used alone or in combination with NaL reduced (P < 0.05) growth of psychrotrophic organisms and had no adverse effects on water activity, pH, cooking yield, fat, moisture, protein, objective color, onset of rancidity, and sensory characteristics (juiciness, turkey flavor intensity, and tenderness). Panelists reported slight off-flavor in all steaks treated with NaL. Treating steaks with NaL alone or in combination with NaD resulted in increased (P < 0.05) ash content. Sodium lactate also functioned to minimize thaw loss in the frozen restructured turkey product.

  19. Quantitative Predictions of Binding Free Energy Changes in Drug-Resistant Influenza Neuraminidase

    DTIC Science & Technology

    2012-08-30

    drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with Hamiltonian Replica Exchange and...conformations that are virtually identical to WT [10]. Molecular simulations that rigorously model the microscopic structure and thermodynamics PLOS...influenza neuraminidase (NA) that confer drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with

  20. The effect of intermediate-scale motions on line formation. [sawtooth and sine motions in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Shine, R. A.

    1975-01-01

    The problem of LTE and non-LTE line formation in the presence of nonthermal velocity fields with geometric scales between the microscopic and macroscopic limits is investigated in the cases of periodic sinusoidal and sawtooth waves. For a fixed source function (the LTE case), it is shown that time-averaged line profiles progress smoothly from the microscopic to the macroscopic limits as the geometric scale of the motions increases, that the sinusoidal motions produce symmetric time-averaged profiles, and that the sawtooth motions cause a redshift. In several idealized non-LTE cases, it is found that intermediate-scale velocity fields can significantly increase the surface source functions and line-core intensities. Calculations are made for a two-level atom in an isothermal atmosphere for a range of velocity scales and non-LTE coupling parameters and also for a two-level atom and a four-level representation of Na I line formation in the Harvard-Smithsonian Reference Atmosphere (1971) solar model. It is found that intermediate-scale velocity fields in the solar atmosphere could explain the central intensities of the Na I D lines and other strong absorption lines without invoking previously suggested high electron densities.

  1. Structural and optical characterization of Er-alkali-metals codoped MgO nanoparticles synthesized by solution combustion route

    NASA Astrophysics Data System (ADS)

    Sivasankari, J.; Selvakumar Sellaiyan, S.; Sankar, S.; Devi, L. Vimala; Sivaji, K.

    2017-01-01

    Pure MgO, rare-earth (Er) doped MgO (MgO:Er), and alkali metal ions (Li, Na and K) co-doped MgO:Er [i.e. MgO: Er+X (X=Li, Na, and K)] nanopowders were synthesized by solution combustion method and characterized. The XRD analysis reveals the cubic structure and the substitution of dopants and co-dopants in MgO. Annealing at 800 °C, increases the sizes of nano-crystallites of all samples appreciably, indicating the grain growth and the improvement in crystallinity of all the samples. Increase in lattice parameter, d spacing and band gap were observed after annealing. Structural and morphological analysis using scanning electron microscope (SEM) and transmission electron microscope (TEM) studies has shown that the samples contain structures like agglomerated clusters. FT-IR spectra confirm the stretching mode of hydroxyl groups, carbonate and presence of MgO bonding. The characteristic wavelength ranging from 2600 cm-1 to 3000 cm-1 were assigned to transition of 4S3/2→4I13/2 and 4I11/2→4I15/2 of Er3+.

  2. Facile One-Pot Synthesis of Flower Like Cobalt Oxide Nanostructures on Nickel Plate and Its Supercapacitance Properties.

    PubMed

    Kandasamy, N; Venugopal, T; Kannan, K

    2018-06-01

    A flower like cobalt oxide nanostructured thin film (Co2O3) on Nickel (Ni) plate as have been successfully developed via alcoholic Seed Layer assisted chemical bath Deposition (SLD) process. Through the controlled alkaline electrolytes, the flower and paddles like Co2O3 nanoarchitectures were formed. The prepared thin film was characterized by X-ray diffraction (XRD), scanning electron microscope with energy dispersive X-ray (SEM and EDX), Atomic Force Microscope (AFM), Raman spectroscopy techniques. Electron micrograph reveals the flower and paddles like nanostructured Co2O3 thin film deposited on Ni plates. The electrochemical characteristics were investigated using cyclic voltammetry (CV), charge-discharge and AC impedance spectroscopy in different aqueous electrolytes such as NaOH, KOH, and LiOH. The maximum specific capacitance of 856 Fg-1 was attained with 2 M KOH electrolyte with 2 mVs-1 of the Co2O3 thin film coated Ni plate at 80 °C using SLD method. The capacitance values obtained with various electrolytes are in the order of KOH > NaOH > LiOH. The results indicate that the present method is economical and the material is ecofriendly with enhanced capacitance property.

  3. Measurements of stretch lengths of gold mono-atomic wires covered with 1,6-hexanedithiol in 0.1 M NaClO4 with an electrochemical scanning tunneling microscope.

    PubMed

    Sun, Jian; Akiba, Uichi; Fujihira, Masamichi

    2008-09-01

    Stretch lengths of pure gold mono-atomic wires have been studied recently with an electrochemical scanning tunneling microscope (STM). Here, we will report a study of stretch lengths of gold mono-atomic wires with and without 1,6-hexanedithiol (HDT) using the STM break-junction method. First, the stretch length was measured as a function of electrode potentials of a bare Au(111) substrate and a gold STM tip in a 0.1 M NaClO4 aqueous solution. Second, a self-assembled monolayer (SAM) was fabricated on an Au(111) substrate by dipping the substrate into a 1 mM HDT ethanol solution. At last, we measured the stretch length of gold mono-atomic wires on a substrate covered with the SAM in place of the bare Au(111) substrate. We compared the electrode potential dependence of the stretch lengths of gold mono-atomic wires covered with and without HDT. We will discuss the effect of the electrode potential on the stretch lengths by taking account of electrocapillarity of gold mono-atomic wires.

  4. Ghost microscope imaging system from the perspective of coherent-mode representation

    NASA Astrophysics Data System (ADS)

    Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan

    2018-03-01

    The coherent-mode representation theory of partially coherent fields is firstly used to analyze a two-arm ghost microscope imaging system. It is shown that imaging quality of the generated images depend crucially on the distribution of the decomposition coefficients of the object imaged when the light source is fixed. This theory is also suitable for demonstrating the effects from the distance the object is moved away from the original plane on imaging quality. Our results are verified theoretically and experimentally.

  5. Digital imaging and image analysis applied to numerical applications in forensic hair examination.

    PubMed

    Brooks, Elizabeth; Comber, Bruce; McNaught, Ian; Robertson, James

    2011-03-01

    A method that provides objective data to complement the hair analysts' microscopic observations, which is non-destructive, would be of obvious benefit in the forensic examination of hairs. This paper reports on the use of objective colour measurement and image analysis techniques of auto-montaged images. Brown Caucasian telogen scalp hairs were chosen as a stern test of the utility of these approaches. The results show the value of using auto-montaged images and the potential for the use of objective numerical measures of colour and pigmentation to complement microscopic observations. 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Improved Scanners for Microscopic Hyperspectral Imaging

    NASA Technical Reports Server (NTRS)

    Mao, Chengye

    2009-01-01

    Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version, the window would be a slit, the CCD would contain a one-dimensional array of pixels, and the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion. The image built up by scanning in this case would be an ordinary (non-spectral) image. In another version, the optics of which are depicted in the lower part of the figure, the spatial window would be a slit, the CCD would contain a two-dimensional array of pixels, the slit image would be refocused onto the CCD by a relay-lens pair consisting of a collimating and a focusing lens, and a prism-gratingprism optical spectrometer would be placed between the collimating and focusing lenses. Consequently, the image on the CCD would be spatially resolved along the slit axis and spectrally resolved along the axis perpendicular to the slit. As in the first-mentioned version, the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion.

  7. Development of a Tele-Micro-Robot for Telemanipulation of a Microscopic Environment

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael

    1998-01-01

    The objective of the proposed work was to design and develop the mechanical equivalent of a stereomicroscope in order to eliminate the mismatch that currently exists between one's ability to observe a microscopic environment and one's ability to manipulate it.

  8. Photoluminescence properties of NaPbB{sub 5}O{sub 9}:Dy{sup 3+} new material for white light applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajesh, D., E-mail: ratnakaramsvu@gmail.com; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com

    2014-04-24

    Keeping in view of the recent increased interest towards phosphor materials and its applications, an attempt has been made in the present paper to analyze the new NaPbB{sub 5}O{sub 9}:Dy{sub 3+} phosphor with different Dy{sub 3+} concentrations. Special attention is paid to investigate their crystal structure, morphology and luminescence properties. X-ray diffraction (XRD) results confirm the formation of NaPbB{sub 5}O{sub 9}:Dy{sub 3+} phosphor powder. The scanning electron microscope (SEM) images show that the grains are in micrometer range. Photoluminescence spectra are recorded with different excitation wavelengths for the investigated phosphor and analyzed the variation of intensity of emission bands withmore » Dy{sub 3+} ion concentration. Color co-ordinates are calculated and are used to characterize the color of the phosphor.« less

  9. Evaluation of correlation between dissolution rates of loxoprofen tablets and their surface morphology observed by scanning electron microscope and atomic force microscope.

    PubMed

    Yoshikawa, Shinichi; Murata, Ryo; Shida, Shigenari; Uwai, Koji; Suzuki, Tsuneyoshi; Katsumata, Shunji; Takeshita, Mitsuhiro

    2010-01-01

    We observed the surface morphological structures of 60 mg tablets of Loxonin, Loxot, and Lobu using scanning electron microscope (SEM) and atomic force microscope (AFM) to evaluate the dissolution rates. We found a significant difference among the initial dissolution rates of the three kinds of loxoprofen sodium tablets. Petal forms of different sizes were commonly observed on the surface of the Loxonin and Loxot tablets in which loxoprofen sodium was confirmed by measuring the energy-dispersible X-ray (EDX) spectrum of NaKalpha using SEM. However, a petal form was not observed on the surface of the Lobu tablet, indicating differences among the drug production processes. Surface area and particle size of the principal ingredient in tablets are important factors for dissolution rate. The mean size of the smallest fine particles constituting each tablet was also determined with AFM. There was a correlation between the initial dissolution rate and the mean size of the smallest particles in each tablet. Visualizing tablet surface morphology using SEM and AFM provides information on the drug production processes and initial dissolution rate, and is associated with the time course of pharmacological activities after tablet administration.

  10. The microscopes of Antoni van Leeuwenhoek.

    PubMed

    van Zuylen, J

    1981-03-01

    The seventeenth-century Dutch microscopist, Antoni van Leeuwenhoek, was the first man to make a protracted study of microscopical objects, and, unlike his contemporary Robert Hooke, he viewed by transmitted light. Leeuwenhoek made over 500 of his own, curious, simple microscopes, but now only nine are known to exist. The exact nature of the lenses Leeuwenhoek made, has for long been a puzzle. The existing microscopes have now been examined in detail, and their optical characteristics measured and tabulated. It is proposed that the lens of highest magnification, x 266, was made using a special blown bubble technique.

  11. Lensfree microscopy on a cellphone

    PubMed Central

    Tseng, Derek; Mudanyali, Onur; Oztoprak, Cetin; Isikman, Serhan O.; Sencan, Ikbal; Yaglidere, Oguzhan; Ozcan, Aydogan

    2010-01-01

    We demonstrate lensfree digital microscopy on a cellphone. This compact and light-weight holographic microscope installed on a cellphone does not utilize any lenses, lasers or other bulky optical components and it may offer a cost-effective tool for telemedicine applications to address various global health challenges. Weighing ~38 grams (<1.4 ounces), this lensfree imaging platform can be mechanically attached to the camera unit of a cellphone where the samples are loaded from the side, and are vertically illuminated by a simple light-emitting diode (LED). This incoherent LED light is then scattered from each micro-object to coherently interfere with the background light, creating the lensfree hologram of each object on the detector array of the cellphone. These holographic signatures captured by the cellphone permit reconstruction of microscopic images of the objects through rapid digital processing. We report the performance of this lensfree cellphone microscope by imaging various sized micro-particles, as well as red blood cells, white blood cells, platelets and a waterborne parasite (Giardia lamblia). PMID:20445943

  12. A case of rhinolithiasis in botswana: a mineralogical, microscopic and chemical study.

    PubMed

    Vink, Bernard W; van Hasselt, Piet; Wormald, Richard

    2002-12-01

    A case of rhinolithiasis in Southeast Botswana was treated and after removal in hospital, the rhinolith was subjected to macroscopic and microscopic examination, X-ray diffraction analysis, electron microscope analysis and partial botanical analysis. The rhinolith consists of a strongly elliptical core of calcium stearate (C36H70CaO4.H2O), surrounded by approximately 30 elongated concentric growth rings, consisting of sodium-containing whitlockite (Ca18Mg2(Na,H)(PO4)14). The different layers have various degrees of porosity and red staining, probably due to traces of amorphous iron oxide. The origin of the rhinolith started with a piece of plant material, lodged in the nose, which was replaced by calcium stearate, leaving some remnants of resistant epidermal plant tissue. During subsequent years, thin layers of whitlockite were deposited periodically around the core with the reddish brown bands representing deposition during the dry season when atmospheric dust rich in amorphous iron oxide is at its highest in Botswana.

  13. In Situ Imaging the Oxygen Reduction Reactions of Solid State Na-O2 Batteries with CuO Nanowires as the Air Cathode.

    PubMed

    Liu, Qiunan; Yang, Tingting; Du, Congcong; Tang, Yongfu; Sun, Yong; Jia, Peng; Chen, Jingzhao; Ye, Hongjun; Shen, Tongde; Peng, Qiuming; Zhang, Liqiang; Huang, Jianyu

    2018-06-13

    We report real time imaging of the oxygen reduction reactions (ORRs) in all solid state sodium oxygen batteries (SOBs) with CuO nanowires (NWs) as the air cathode in an aberration-corrected environmental transmission electron microscope under an oxygen environment. The ORR occurred in a distinct two-step reaction, namely, a first conversion reaction followed by a second multiple ORR. In the former, CuO was first converted to Cu 2 O and then to Cu; in the latter, NaO 2 formed first, followed by its disproportionation to Na 2 O 2 and O 2 . Concurrent with the two distinct electrochemical reactions, the CuO NWs experienced multiple consecutive large volume expansions. It is evident that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter one-electron-transfer ORR, leading to the formation of NaO 2 . Remarkably, no carbonate formation was detected in the oxygen cathode after cycling due to the absence of carbon source in the whole battery setup. These results provide fundamental understanding into the oxygen chemistry in the carbonless air cathode in all solid state Na-O 2 batteries.

  14. Fast processing of microscopic images using object-based extended depth of field.

    PubMed

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Pannarut, Montri; Shaw, Philip J; Tongsima, Sissades

    2016-12-22

    Microscopic analysis requires that foreground objects of interest, e.g. cells, are in focus. In a typical microscopic specimen, the foreground objects may lie on different depths of field necessitating capture of multiple images taken at different focal planes. The extended depth of field (EDoF) technique is a computational method for merging images from different depths of field into a composite image with all foreground objects in focus. Composite images generated by EDoF can be applied in automated image processing and pattern recognition systems. However, current algorithms for EDoF are computationally intensive and impractical, especially for applications such as medical diagnosis where rapid sample turnaround is important. Since foreground objects typically constitute a minor part of an image, the EDoF technique could be made to work much faster if only foreground regions are processed to make the composite image. We propose a novel algorithm called object-based extended depths of field (OEDoF) to address this issue. The OEDoF algorithm consists of four major modules: 1) color conversion, 2) object region identification, 3) good contrast pixel identification and 4) detail merging. First, the algorithm employs color conversion to enhance contrast followed by identification of foreground pixels. A composite image is constructed using only these foreground pixels, which dramatically reduces the computational time. We used 250 images obtained from 45 specimens of confirmed malaria infections to test our proposed algorithm. The resulting composite images with all in-focus objects were produced using the proposed OEDoF algorithm. We measured the performance of OEDoF in terms of image clarity (quality) and processing time. The features of interest selected by the OEDoF algorithm are comparable in quality with equivalent regions in images processed by the state-of-the-art complex wavelet EDoF algorithm; however, OEDoF required four times less processing time. This work presents a modification of the extended depth of field approach for efficiently enhancing microscopic images. This selective object processing scheme used in OEDoF can significantly reduce the overall processing time while maintaining the clarity of important image features. The empirical results from parasite-infected red cell images revealed that our proposed method efficiently and effectively produced in-focus composite images. With the speed improvement of OEDoF, this proposed algorithm is suitable for processing large numbers of microscope images, e.g., as required for medical diagnosis.

  15. Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images.

    PubMed

    Ruusuvuori, Pekka; Aijö, Tarmo; Chowdhury, Sharif; Garmendia-Torres, Cecilia; Selinummi, Jyrki; Birbaumer, Mirko; Dudley, Aimée M; Pelkmans, Lucas; Yli-Harja, Olli

    2010-05-13

    Several algorithms have been proposed for detecting fluorescently labeled subcellular objects in microscope images. Many of these algorithms have been designed for specific tasks and validated with limited image data. But despite the potential of using extensive comparisons between algorithms to provide useful information to guide method selection and thus more accurate results, relatively few studies have been performed. To better understand algorithm performance under different conditions, we have carried out a comparative study including eleven spot detection or segmentation algorithms from various application fields. We used microscope images from well plate experiments with a human osteosarcoma cell line and frames from image stacks of yeast cells in different focal planes. These experimentally derived images permit a comparison of method performance in realistic situations where the number of objects varies within image set. We also used simulated microscope images in order to compare the methods and validate them against a ground truth reference result. Our study finds major differences in the performance of different algorithms, in terms of both object counts and segmentation accuracies. These results suggest that the selection of detection algorithms for image based screens should be done carefully and take into account different conditions, such as the possibility of acquiring empty images or images with very few spots. Our inclusion of methods that have not been used before in this context broadens the set of available detection methods and compares them against the current state-of-the-art methods for subcellular particle detection.

  16. A marked animal-vegetal polarity in the localization of Na(+),K(+) -ATPase activity and its down-regulation following progesterone-induced maturation.

    PubMed

    Mohanty, Basant Kumar; Gupta, Brij L

    2012-02-01

    The stage-VI Xenopus oocyte has a very distinct animal-vegetal polarity with structural and functional asymmetry. In this study, we show the expression and distribution pattern of Na(+),K(+) -ATPase in stage-VI oocytes, and its changes following progesterone-induced maturation. Using enzyme-specific electron microscopy phosphatase histochemistry, [(3) H]-ouabain autoradiography, and immunofluorescence cytochemistry at light microscopic level, we find that Na(+),K(+) -ATPase activity is mainly confined to the animal hemisphere. Electron microscopy histochemical results also suggest that polarized distribution of Na(+),K(+) -ATPase activity persists following progesterone-induced maturation, and it becomes gradually more polarized towards the animal pole. The time course following progesterone-induced maturation suggests that there is an initial up-regulation and then gradual down-regulation of Na(+),K(+) -ATPase activity leading to germinal vesicle breakdown (GVBD). By GVBD, the Na(+),K(+) -ATPase activity is completely down-regulated due to endocytotic removal of pump molecules from the plasma membrane into the sub-cortical region of the oocyte. This study provides the first direct evidence for a marked asymmetric localization of Na(+),K(+) -ATPase activity in any vertebrate oocyte. Here, we propose that such asymmetry in Na(+),K(+) -ATPase activity in stage-VI oocytes, and their down-regulation following progesterone-induced maturation, is likely to have a role in the active state of the germinal vesicle in stage-VI oocytes and chromosomal condensation after GVBD. Copyright © 2011 Wiley Periodicals, Inc.

  17. Optical analysis of a compound quasi-microscope for planetary landers

    NASA Technical Reports Server (NTRS)

    Wall, S. D.; Burcher, E. E.; Huck, F. O.

    1974-01-01

    A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.

  18. Improved resolution in practical light microscopy by means of a glass-fiber 2 π-tilting device

    NASA Astrophysics Data System (ADS)

    Bradl, Joachim; Rinke, Bernd; Schneider, Bernhard; Hausmann, Michael; Cremer, Christoph G.

    1996-01-01

    The spatial resolution of a conventional light microscope or a confocal laser scanning microscope can be determined by calculating the point spread function for the objective used. Normally, ideal conditions are assumed for these calculations. Such conditions, however, are often not fulfilled in biological applications especially in those cases where biochemical requirements (e.g. buffer conditions) influence the specimen preparation on the microscope slide (i.e. 'practical' light microscopy). It has been shown that the problem of a reduced z- resolution in 3D-microscopy (optical sectioning) can be overcome by a capillary in a 2(pi) - tilting device that allows object rotation into an optimal perspective. The application of the glass capillary instead of a standard slide has an additional influence on the imaging properties of the microscope. Therefore, another 2(pi) -tilting device was developed, using a glass fiber for object fixation and rotation. Such a fiber could be covered by standard cover glasses. To estimate the resolution of this setup, point spread functions were measured under different conditions using fluorescent microspheres of subwavelength dimensions. Results obtained from standard slide setups were compared to the glass fiber setup. These results showed that in practice rotation leads to an overall 3D-resolution improvement.

  19. The Impact of the Condenser on Cytogenetic Image Quality in Digital Microscope System

    PubMed Central

    Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong

    2013-01-01

    Background: Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. OBJECTIVE: This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Methods: Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. Results: The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%–70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Conclusions: Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice. PMID:23676284

  20. Three-dimensional rendering of segmented object using matlab - biomed 2010.

    PubMed

    Anderson, Jeffrey R; Barrett, Steven F

    2010-01-01

    The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.

  1. Surface plasmon-assisted microscope.

    PubMed

    Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal; Joshi, Chaitanya R; Borgmann, Kathleen; Ghorpade, Anuja; Gryczynski, Ignacy

    2018-06-01

    Total internal reflection microscopy (TIRF) has been a powerful tool in biological research. The most valuable feature of the method has been the ability to image 100- to 200-nm-thick layer of cell features adjacent to a coverslip, such as membrane lipids, membrane receptors, and structures proximal-to-basal membranes. Here, we demonstrate an alternative method of imaging thin-layer proximal-to-basal membranes by placing a sample on a high refractive index coverslip covered by a thin layer of gold. The sample is illuminated using the Kretschmann method (i.e., from the top to an aqueous medium). Fluorophores that are close to the metal surface induce surface plasmons in the metal film. Fluorescence from fluorophores near the metal surface couple with surface plasmons allowing them to penetrate the metal surface and emerge at a surface plasmon coupled emission angle. The thickness of the detection layer is further reduced in comparison with TIRF by metal quenching of fluorophores at a close proximity (below 10 nm) to a surface. Fluorescence is collected by a high NA objective and imaged by EMCCD or converted to a signal by avalanche photodiode fed by a single-mode optical fiber inserted in the conjugate image plane of the objective. The system avoids complications of through-the-objective TIRF associated with shared excitation and emission light path, has thin collection thickness, produces excellent background rejection, and is an effective method to study molecular motion. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gofron, K. J., E-mail: kgofron@bnl.gov; Cai, Y. Q.; Coburn, D. S.

    A novel on-axis X-ray microscope with 3 µm resolution, 3x magnification, and a working distance of 600 mm for in-situ sample alignment and X-ray beam visualization for the Inelastic X-ray Scattering (IXS) beamline at NSLS-II is presented. The microscope uses reflective optics, which minimizes dispersion, and allows imaging from Ultraviolet (UV) to Infrared (IR) with specifically chosen objective components (coatings, etc.). Additionally, a portable high resolution X-ray microscope for KB mirror alignment and X-ray beam characterization was developed.

  3. Toward optimal spatial and spectral quality in widefield infrared spectromicroscopy of IR labelled single cells.

    PubMed

    Mattson, Eric C; Unger, Miriam; Clède, Sylvain; Lambert, François; Policar, Clotilde; Imtiaz, Asher; D'Souza, Roshan; Hirschmugl, Carol J

    2013-10-07

    Advancements in widefield infrared spectromicroscopy have recently been demonstrated following the commissioning of IRENI (InfraRed ENvironmental Imaging), a Fourier Transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center. The present study demonstrates the effects of magnification, spatial oversampling, spectral pre-processing and deconvolution, focusing on the intracellular detection and distribution of an exogenous metal tris-carbonyl derivative 1 in a single MDA-MB-231 breast cancer cell. We demonstrate here that spatial oversampling for synchrotron-based infrared imaging is critical to obtain accurate diffraction-limited images at all wavelengths simultaneously. Resolution criteria and results from raw and deconvoluted images for two Schwarzschild objectives (36×, NA 0.5 and 74×, NA 0.65) are compared to each other and to prior reports for raster-scanned, confocal microscopes. The resolution of the imaging data can be improved by deconvolving the instrumental broadening that is determined with the measured PSFs, which is implemented with GPU programming architecture for fast hyperspectral processing. High definition, rapidly acquired, FTIR chemical images of respective spectral signatures of the cell 1 and shows that 1 is localized next to the phosphate- and Amide-rich regions, in agreement with previous infrared and luminescence studies. The infrared image contrast, localization and definition are improved after applying proven spectral pre-processing (principal component analysis based noise reduction and RMie scattering correction algorithms) to individual pixel spectra in the hyperspectral cube.

  4. A pragmatic guide to multiphoton microscope design

    PubMed Central

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  5. A stereo-compound hybrid microscope for combined intracellular and optical recording of invertebrate neural network activity.

    PubMed

    Frost, William N; Wang, Jean; Brandon, Christopher J

    2007-05-15

    Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations.

  6. SORPTION OF LEAD ON A HIGH AFFINITY OXIDE: MACROSCOPIC AND MICROSCOPIC STUDIES

    EPA Science Inventory

    Sorption of lead (Pb) was investigated on an innovative metal oxide compound using macroscopic and microscopic techniques. The objective of this study was to elucidate the sorption mechanism of Pb on the high-affinity engineered oxide with time at pH 6 employing batch methods an...

  7. SORPTION OF LEAD ON A HIGH AFFINITY OXIDE: MACROSCOPIC AND MICROSCOPIC STUDIES (ABSTRACT)

    EPA Science Inventory

    Sorption of lead (Pb) was investigated on an innovative metal oxide compound using macroscopic and microscopic techniques. The objective of this study was to elucidate the sorption mechanism of Pb on the high-affinity engineered oxide with time at pH 6 employing batch methods an...

  8. Integration of Histology Lectures and Practical Teaching in China

    ERIC Educational Resources Information Center

    Lu, Xiaoye; Cheng, Xin; Li, Ke; Lee, Kenneth Ka Ho; Yang, Xuesong

    2016-01-01

    Objectives: Human histology is a discipline concerning the study of microscopic structures of human tissues and organs--with the aid of light or electron microscopes. Traditional teaching of histology is composed of two separated components, theory and practice. The main disadvantage with traditional histology teaching is the detachment of theory…

  9. Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking

    PubMed Central

    Hamahashi, Shugo; Onami, Shuichi; Kitano, Hiroaki

    2005-01-01

    Background The ability to detect nuclei in embryos is essential for studying the development of multicellular organisms. A system of automated nuclear detection has already been tested on a set of four-dimensional (4D) Nomarski differential interference contrast (DIC) microscope images of Caenorhabditis elegans embryos. However, the system needed laborious hand-tuning of its parameters every time a new image set was used. It could not detect nuclei in the process of cell division, and could detect nuclei only from the two- to eight-cell stages. Results We developed a system that automates the detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. Local image entropy is used to produce regions of the images that have the image texture of the nucleus. From these regions, those that actually detect nuclei are manually selected at the first and last time points of the image set, and an object-tracking algorithm then selects regions that detect nuclei in between the first and last time points. The use of local image entropy makes the system applicable to multiple image sets without the need to change its parameter values. The use of an object-tracking algorithm enables the system to detect nuclei in the process of cell division. The system detected nuclei with high sensitivity and specificity from the one- to 24-cell stages. Conclusion A combination of local image entropy and an object-tracking algorithm enabled highly objective and productive detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. The system will facilitate genomic and computational analyses of C. elegans embryos. PMID:15910690

  10. Sodium Aluminate Concentration Effects on Microstructure and Corrosion Behavior of the Plasma Electrolytic Oxidation Coatings on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Molaei, Maryam; Fattah-Alhosseini, Arash; Gashti, Seyed Omid

    2018-01-01

    Sodium aluminate (NaAlO2) concentration was varied in order to understand the influence of the chemical composition of electrolyte on the spark characteristics, microstructure, and corrosion behavior of plasma electrolytic oxidation (PEO) coatings. For this purpose, PEO coatings were formed on the pure titanium substrate surface using solutions of four diverse sodium aluminate concentrations (6, 8, 10, and 12 g/L). The PEO process was carried out at constant time and voltage (180 seconds and 420 V). Studying the microstructures of samples by scanning electron microscope (SEM) and their corrosion behavior in 3.5 wt pct NaCl solutions indicated that the increase in NaAlO2 concentration (up to 10 g/L) led to an increase in uniformity and compactness, thus decreasing the size of micro-pores and increment of corrosion resistance. However, at a certain level of NaAlO2 concentration (12 g/L), large and severe sparks were created on the surface of the sample during the process, worsening the corrosion resistance and microstructure of coating.

  11. Destabilization of Surfactant-Dispersed Carbon Nanotubes by Anions

    NASA Astrophysics Data System (ADS)

    Hirano, Atsushi; Gao, Weilu; He, Xiaowei; Kono, Junichiro

    2017-01-01

    The colloidal stability of surfactant-dispersed single-wall carbon nanotubes (SWCNTs) is determined by microscopic physicochemical processes, such as association, partitioning, and adsorption propensities. These processes can be controlled by the addition of solutes. While the effects of cations on the colloidal stability of SWCNTs are relatively well understood, little is known about the effects of anions. In this study, we examined the effects of anions on the stability of SWCNTs dispersed by sodium dodecyl sulfate (SDS) using sodium salts, such as NaCl and NaSCN. We observed that the intensity of the radial breathing mode Raman peaks rapidly decreased as the salts were added, even at concentrations less than 25 mM, indicating the association of SWCNTs. The effect was stronger with NaSCN than NaCl. We propose that the association of SWCNTs was caused by thermodynamic destabilization of SDS assemblies on SWCNT surfaces by these salts, which was confirmed through SWCNT separation experiments using aqueous two-phase extraction and gel chromatography. These results demonstrate that neutral salts can be used to control the colloidal stability of surfactant-dispersed SWCNTs.

  12. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging

    PubMed Central

    Cui, Xiquan; Lee, Lap Man; Heng, Xin; Zhong, Weiwei; Sternberg, Paul W.; Psaltis, Demetri; Yang, Changhuei

    2008-01-01

    Low-cost and high-resolution on-chip microscopes are vital for reducing cost and improving efficiency for modern biomedicine and bioscience. Despite the needs, the conventional microscope design has proven difficult to miniaturize. Here, we report the implementation and application of two high-resolution (≈0.9 μm for the first and ≈0.8 μm for the second), lensless, and fully on-chip microscopes based on the optofluidic microscopy (OFM) method. These systems abandon the conventional microscope design, which requires expensive lenses and large space to magnify images, and instead utilizes microfluidic flow to deliver specimens across array(s) of micrometer-size apertures defined on a metal-coated CMOS sensor to generate direct projection images. The first system utilizes a gravity-driven microfluidic flow for sample scanning and is suited for imaging elongate objects, such as Caenorhabditis elegans; and the second system employs an electrokinetic drive for flow control and is suited for imaging cells and other spherical/ellipsoidal objects. As a demonstration of the OFM for bioscience research, we show that the prototypes can be used to perform automated phenotype characterization of different Caenorhabditis elegans mutant strains, and to image spores and single cellular entities. The optofluidic microscope design, readily fabricable with existing semiconductor and microfluidic technologies, offers low-cost and highly compact imaging solutions. More functionalities, such as on-chip phase and fluorescence imaging, can also be readily adapted into OFM systems. We anticipate that the OFM can significantly address a range of biomedical and bioscience needs, and engender new microscope applications. PMID:18663227

  13. Long working distance interference microscope

    DOEpatents

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.

    2004-04-13

    Disclosed is a long working distance interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. The long working distance of 10-30 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-D height profiles of MEMS test structures to be acquired across an entire wafer. A well-matched pair of reference/sample objectives is not required, significantly reducing the cost of this microscope, as compared to a Linnik microinterferometer.

  14. Micro-Mirrors for Nanoscale Three-Dimensional Microscopy

    PubMed Central

    Seale, Kevin; Janetopoulos, Chris; Wikswo, John

    2013-01-01

    A research-grade optical microscope is capable of resolving fine structures in two-dimensional images. However, three-dimensional resolution, or the ability of the microscope to distinguish between objects lying above or below the focal plane from in-focus objects, is not nearly as good as in-plane resolution. In this issue of ACS Nano, McMahon et al. report the use of mirrored pyramidal wells with a conventional microscope for rapid, 3D localization and tracking of nanoparticles. Mirrors have been used in microscopy before, but recent work with MPWs is unique because it enables the rapid determination of the x-, y-, and z-position of freely diffusing nanoparticles and cellular nanostructures with unprecedented speed and spatial accuracy. As inexpensive tools for 3D visualization, mirrored pyramidal wells may prove to be invaluable aids in nanotechnology and engineering of nanomaterials. PMID:19309167

  15. Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements.

    PubMed

    Colomb, Tristan; Dürr, Florian; Cuche, Etienne; Marquet, Pierre; Limberger, Hans G; Salathé, René-Paul; Depeursinge, Christian

    2005-07-20

    We present a digital holographic microscope that permits one to image polarization state. This technique results from the coupling of digital holographic microscopy and polarization digital holography. The interference between two orthogonally polarized reference waves and the wave transmitted by a microscopic sample, magnified by a microscope objective, is recorded on a CCD camera. The off-axis geometry permits one to reconstruct separately from this single hologram two wavefronts that are used to image the object-wave Jones vector. We applied this technique to image the birefringence of a bent fiber. To evaluate the precision of the phase-difference measurement, the birefringence induced by internal stress in an optical fiber is measured and compared to the birefringence profile captured by a standard method, which had been developed to obtain high-resolution birefringence profiles of optical fibers.

  16. Study of corrosion in archaeological gilded irons by Raman imaging and a coupled scanning electron microscope-Raman system.

    PubMed

    Veneranda, Marco; Costantini, Ilaria; de Vallejuelo, Silvia Fdez-Ortiz; Garcia, Laura; García, Iñaki; Castro, Kepa; Azkarate, Agustín; Madariaga, Juan Manuel

    2016-12-13

    In this work, analytical and chemical imaging tools have been applied to the study of a gilded spur found in the medieval necropolis of Erenozar (Bizkaia, Spain). As a first step, a lot of portable equipment has been used to study the object in a non-invasive way. The hand-held energy-dispersive X-ray fluorescence equipment allowed us to characterize the artefact as a rare example of an iron matrix item decorated by means of a fire gilding technique. On the other hand, the use of a portable Raman system helped us to detect the main degradation compounds affecting the spur. Afterwards, further information was acquired in the laboratory by analysing detached fragments. The molecular images obtained using confocal Raman microscopy permitted us to characterize the stratigraphic succession of iron corrosions. Furthermore, the combined use of this technique with a scanning electron microscope (SEM) was achieved owing to the use of a structural and chemical analyser interface. In this way, the molecular characterization, enhanced by the magnification feature of the SEM, allowed us to identify several micrometric degradation compounds. Finally, the effectiveness of one of the most used desalination baths (NaOH) was evaluated by comparing its effects with those provided by a reference bath (MilliQ). The comparison proved that basic treatment avoided any side effects on the spur decorated by fire gilding, compensating for the lack of bibliographic documentation in this field.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  17. Study of corrosion in archaeological gilded irons by Raman imaging and a coupled scanning electron microscope-Raman system

    NASA Astrophysics Data System (ADS)

    Veneranda, Marco; Costantini, Ilaria; de Vallejuelo, Silvia Fdez-Ortiz; Garcia, Laura; García, Iñaki; Castro, Kepa; Azkarate, Agustín; Madariaga, Juan Manuel

    2016-12-01

    In this work, analytical and chemical imaging tools have been applied to the study of a gilded spur found in the medieval necropolis of Erenozar (Bizkaia, Spain). As a first step, a lot of portable equipment has been used to study the object in a non-invasive way. The hand-held energy-dispersive X-ray fluorescence equipment allowed us to characterize the artefact as a rare example of an iron matrix item decorated by means of a fire gilding technique. On the other hand, the use of a portable Raman system helped us to detect the main degradation compounds affecting the spur. Afterwards, further information was acquired in the laboratory by analysing detached fragments. The molecular images obtained using confocal Raman microscopy permitted us to characterize the stratigraphic succession of iron corrosions. Furthermore, the combined use of this technique with a scanning electron microscope (SEM) was achieved owing to the use of a structural and chemical analyser interface. In this way, the molecular characterization, enhanced by the magnification feature of the SEM, allowed us to identify several micrometric degradation compounds. Finally, the effectiveness of one of the most used desalination baths (NaOH) was evaluated by comparing its effects with those provided by a reference bath (MilliQ). The comparison proved that basic treatment avoided any side effects on the spur decorated by fire gilding, compensating for the lack of bibliographic documentation in this field. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  18. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  19. In situ dissolution analysis of pharmaceutical dosage forms using coherent anti-Stokes Raman scattering (CARS) microscopy

    NASA Astrophysics Data System (ADS)

    Fussell, A. L.; Garbacik, E. T.; Löbmann, K.; Offerhaus, H. L.; Kleinebudde, P.; Strachan, C. J.

    2014-02-01

    A custom-built intrinsic flow-through dissolution setup was developed and incorporated into a home-built CARS microscope consisting of a synchronously pumped optical parametric oscillator (OPO) and an inverted microscope with a 20X/0.5NA objective. CARS dissolution images (512×512 pixels) were collected every 1.12s for the duration of the dissolution experiment. Hyperspectral CARS images were obtained pre- and postdissolution by rapidly imaging while sweeping the wavelength of the OPO in discrete steps so that each frame in the data stack corresponds to a vibrational frequency. An image-processing routine projects this hyperspectral data into a single image wherein each compound appears with a unique color. Dissolution was conducted using theophylline and cimetidine-naproxen co-amorphous mixture. After 15 minutes of theophylline dissolution, hyperspectral imaging showed a conversion of theophylline anhydrate to the monohydrate, confirmed by a peak shift in the CARS spectra. CARS dissolution images showed that monohydrate crystal growth began immediately and reached a maximum with complete surface coverage at about 300s. This result correlated with the UV dissolution data where surface crystal growth on theophylline compacts resulted in a rapidly reducing dissolution rate during the first 300s. Co-amorphous cimetidinenaproxen didn't appear to crystallize during dissolution. We observed solid-state conversions on the compact's surface in situ during dissolution. Hyperspectral CARS imaging allowed visual discrimination between the solid-state forms on the compact's surface. In the case of theophylline we were able to correlate the solid-state change with a change in dissolution rate.

  20. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics

    PubMed Central

    Osorio, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel

    2012-01-01

    Objective: To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Study design: Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al2O3-particles); and Group 3: Silica-coating (50 µm silica-modified Al2O3-particles). Composite samples were randomly bonded to the pre-treated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm2 sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p < 0.05). Results: After 24 h, CEC luted to pre-treated zirconia achieved the highest MTBS. Using RXU, alumina and zirconia registered comparable MTBS. CAL failed prematurely, except when luted to sandblasted zirconia. After NaOClaq storage, CEC significantly lowered MTBS when luted to zirconia or alumina. RXU decreased MTBS only when bonded to silica-coated alumina. CAL recorded 100 % of pre-testing failures. Micromorphological alterations were evident after NaOClaq immersion. Conclusions: Resin-ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or sandblasted alumina showed the most stable interfaces. CAL experimented spontaneous debonding in all tested groups. Key words:CAD/CAM ceramic, alumina, zirconia, resin cement, surface pre-treatment, sandblasting, silica-coating, chemical aging, bond degradation, microtensile bond strength. PMID:22322517

  1. A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing

    2017-06-01

    In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.

  2. Small Things Draw Big Interest

    ERIC Educational Resources Information Center

    Green, Susan; Smith III, Julian

    2005-01-01

    Although the microscope is a basic tool in both physical and biological sciences, it is notably absent from most elementary school science programs. One reason teachers find it challenging to introduce microscopy at the elementary level is because children can have a hard time connecting the image of an object seen through a microscope with what…

  3. Small Wonders Close Encounters

    ERIC Educational Resources Information Center

    Kniseley, MacGregor; Capraro, Karen

    2013-01-01

    This article introduces students to the world of digital microscopy. Looking at small objects through a digital microscope is like traveling through a foreign country for the first time. The experience is new, engaging, and exciting. A handheld digital microscope is an essential tool in a 21st century teacher's toolkit and the perfect tool to…

  4. Evaluation of two novel methods for assessing intracellular oxygen

    NASA Astrophysics Data System (ADS)

    Williams, Catrin F.; Kombrabail, M.; Vijayalakshmi, K.; White, Nick; Krishnamoorthy, G.; Lloyd, David

    2012-08-01

    The ability to resolve the spatio-temporal complexity of intracellular O2 distribution is the ‘Holy Grail’ of cellular physiology. In an effort to obtain a non-invasive approach of mapping intracellular O2 tensions, two methods of phosphorescent lifetime imaging microscopy were examined in the current study. These were picosecond time-resolved epiphosphorescence microscopy (single 0.5 µm focused spot) and two-photon confocal laser scanning microscopy with pinhole shifting. Both methods utilized nanoparticle-embedded Ru complex (45 nm diameter) as the phosphorescent probe, excited using pulsed outputs of Ti-sapphire Tsunami lasers (710-1050 nm). The former method used a 1 ps pulse width excitation beam with vertical polarization via a dichroic mirror (610 nm, XF43) and a 20× objective (NA 0.55, Nikon). Transmitted luminescence (1-2 × 104 counts s-1) was collected and time-correlated single photon counted decay times measured. Alternatively, an unmodified Zeiss LSM510 Confocal NLO microscope with 40× objective (NA 1.3) used successively shifted pinhole positions to collect image data from the lagging trail of the raster scan. Images obtained from two-photon excitation of a yeast (Schizosaccharomyces pombe) and a flagellate fish parasite (Spironucleus vortens), electroporated with Ru complex, indicated the intracellular location and magnitude of O2 gradients, thus confirming the feasibility of optical mapping under different external O2 concentrations. Both methods gave similar lifetimes for Ru complex phosphorescence under aerobic and anaerobic gas phases. Estimation of O2 tensions within individual fibroblasts (human dermal fibroblast (HDF)) and mammary adenocarcinoma (MCF-7) cells was possible using epiphosphorescence microscopy. MCF-7 cells showed lower intracellular O2 concentrations than HDF cells, possibly due to higher metabolic rates in the former. Future work should involve construction of higher resolution 3D maps of Ru coordinate complex lifetime distribution in cultured cell lines.

  5. A submersible digital in-line holographic microscope

    NASA Astrophysics Data System (ADS)

    Jericho, Manfred; Jericho, Stefan; Kreuzer, Hans Juergen; Garcia, Jeorge; Klages, Peter

    Few instruments exist that can image microscopic marine organisms in their natural environment so that their locomotion mechanisms, feeding habits and interactions with surfaces, such as bio-fouling, can be investigated in situ. In conventional optical microscopy under conditions of high magnification, only objects confined to the narrow focal plane can be imaged and processes that involve translation of the object perpendicular to this plane are not accessible. To overcome this severe limitation of optical microscopy, we developed digital in-line holographic microscopy (DIHM) as a high-resolution tool for the tracking of organisms in three dimensions. We describe here the design and performance of a very simple submersible digital in-line holographic microscope (SDIHM) that can image organisms and their motion with micron resolution and that can be deployed from small vessels. Holograms and reconstructed images of several microscopic marine organisms were successfully obtained down to a depth of 20 m. The maximum depth was limited by the length of data transmission cables available at the time and operating depth in excess of 100 m are easily possible for the instrument.

  6. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot.

    PubMed

    Shen, Yajing; Wan, Wenfeng; Zhang, Lijun; Yong, Li; Lu, Haojian; Ding, Weili

    2015-12-15

    Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.

  7. A stereo-compound hybrid microscope for combined intracellular and optical recording of invertebrate neural network activity

    PubMed Central

    Frost, William N.; Wang, Jean; Brandon, Christopher J.

    2007-01-01

    Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations. PMID:17306887

  8. Cuticular surface damage of Ascaridia galli adult worms treated with Veitchia merrillii betel nuts extract in vitro.

    PubMed

    Balqis, Ummu; Hambal, Muhammad; Rinidar; Athaillah, Farida; Ismail; Azhar; Vanda, Henni; Darmawi

    2017-07-01

    The objective of this research was to in vitro evaluate the cuticular surface damage of Ascaridia galli adult worms treated with ethanolic extract of betel nuts Veitchia merrillii . Phytochemical screening was done using FeCl 3 , Wagner and Dragendorff reagents, NaOH, MgHCl, and Liebermann-Burchard reaction test. Amount of 16 worms were segregated into four groups with three replicates. Four worms of each group submerged into phosphate buffered saline, 25 mg/ml, and 75 mg/ml crude ethanolic extract of V. merrillii , and 15 mg/ml albendazole. The effect of these extract was observed 40 h after incubation as soon as worms death. The worms were sectioned transversally and were explored for any cuticular histopathological changes in their body surface under microscope. We found that the ethanolic extract of V. merrillii betel nuts contains tannins, alkaloids, flavonoids, triterpenoids, and saponins. The ethanolic extract of betel nuts V. merrillii induces surface alterations caused cuticular damage of A. galli adult worms. We concluded that ethanolic extract of betel nuts V. merrillii possess anthelmintic activity caused cuticular damage of A. galli adult worms.

  9. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-01

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  10. Effect of Etching Methods in Metallographic Studies of Duplex Stainless Steel 2205

    NASA Astrophysics Data System (ADS)

    Kisasoz, A.; Karaaslan, A.; Bayrak, Y.

    2017-03-01

    Three different etching methods are used to uncover the ferrite-austenite structure and precipitates of secondary phases in stainless steel 22.5% Cr - 5.4% Ni - 3% Mo - 1.3% Mn. The structure is studied under a light microscope. The chemical etching is conducted in a glycerol solution of HNO3, HCl and HF; the electrochemical etching is conducted in solutions of KOH and NaOH.

  11. Effect of concentration of hyaluronic acid and NaCl on corrosion behavior of 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Bansod, Ankur V.; Khobragade, Nilay N.; Giradkar, Karansagar V.; Patil, Awanikumar P.

    2017-11-01

    Due to low cost and easily available material, 316L stainless steel (SS) is used for biomedical implants. The electrochemical corrosion behavior of 316L (SS) was studied as a function of the concentration of simulated biological fluid (hyaluronic acid), the influence of Cl- and the combined effect of NaCl and hyaluronic acid (HA). For the electrochemical tests, potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were undertaken. With the increase in HA concentration, corrosion rate increases. Whereas, with the addition of NaCl to HA the solution, the corrosion resistance of the sample was enhanced. Also, in pure NaCl solution, the corrosion current density (i corr) increased as compared to bare HA and HA  +  NaCl. This is due to the adhesion property of the HA on the sample surface. EIS result agrees with the findings of potentiodynamic polarization tests. X-ray photoelectron spectroscopy (XPS) was executed to analyze the passive film formed in the solution of HA and NaCl on 316L SS. XPS spectra confirms the formation of the passive film containing chromium oxide and hydroxides. Also, the formation of MoO2 helps in improving better corrosion resistance. The peak of nitrogen was observed in the sample immersed in HA solution. Scanning electron microscope (SEM) was carried out to analyze the surface morphology.

  12. Surface debris of canal walls after post space preparation in endodontically treated teeth: a scanning electron microscopic study.

    PubMed

    Serafino, Cinzia; Gallina, Giuseppe; Cumbo, Enzo; Ferrari, Marco

    2004-03-01

    To evaluate surface cleanliness of root canal walls along post space after endodontic treatment using 2 different irrigant regimens, obturation techniques, and post space preparation for adhesive bonding. Forty teeth, divided into 4 groups, were instrumented, using Ni-Ti rotary files, irrigated with NaOCl or NaOCl+EDTA and obturated with cold lateral condensation (CLC) or warm vertical condensation (WVC) of gutta-percha. After post space preparation, etching, and washing procedure, canal walls were observed using a scanning electron microscope (SEM). Amount of debris, smear layer, sealer/gutta-percha remnants, and visibility of open tubules were rated. Higher amounts of rough debris, large sealer/gutta-percha remnants, thick smear layer, and no visibility of tubule orifices were recorded in all the groups at apical level of post space. At middle and coronal levels areas of clean dentin, alternating with areas covered by thin smear layer, smaller debris, gutta-percha remnants, and orifices of tubules partially or totally occluded by plugs were frequently observed. After endodontic treatment, obturation, and post space preparation SEM analysis of canal walls along post space shows large areas (covered by smear layer, debris, and sealer/gutta-percha remnants) not available for adhesive bonding and resin cementation of fiber posts.

  13. Inactivation mechanism of Vibrio parahaemolyticus via supercritical carbon dioxide treatment.

    PubMed

    Xu, Feiyue; Feng, Xiaomei; Sui, Xiao; Lin, Hong; Han, Yuqian

    2017-10-01

    The effects of supercritical carbon dioxide (SC-CO 2 ) treatments on Vibrio parahaemolyticus cells were determined using viable plate count method at different treatment times (10 and 40min), pressures (10-25MPa), and temperature (40°C). Using the changes in the physical (absorbance, transmission electron microscope and contents of fatty acids) and chemical indexes (pH value, activity of Na + K + -ATPase, SDS-PAGE) were for further understand the mechanisms of bacterial inactivation under SC-CO 2 . The result showed that 25MPa treatment for 40min in 40°C could significantly (P<0.05) enhance inactivation of V. parahaemolyticus. The pH value and activity of Na + K + -ATPase of SC-CO 2 treated groups significantly (P<0.05) decreased compared with blank group. Damage to the cell membrane and cytoplasmic components can be observed on transmission electron microscope images. Results of SDS-PAGE and UV-absorbing substances also showed that the leakage of proteins and cytoplasmic materials increased with the SC-CO 2 treatment time and pressure. Therefore, our results indicate that SC-CO 2 can be applied to inactivate V. parahaemolyticus by causing a low pH, as well as severe damage to key substances and structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Dutta, Shibsankar; De, Sukanta

    2016-05-01

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (- COOH group) and α-Vanadyl phosphates (VOPO42H2O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na2SO4 aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.

  15. Sodium chloride stress induced morphological and ultrastructural changes in Aspergillus repens.

    PubMed

    Kelavkar, U; Rao, K S; Ghhatpar, H S

    1993-06-01

    Halotolerant fungus, A. repens, showed a considerable difference in its growth rate, morphology, ultrastructural and molecular composition under NaCl stress as compared to control i.e. non-stressed condition. Light microscopic observations revealed significant differences in their mycelial thickness, their branching and septa. Transmission electron microscopic observations of both the conditions depicted significant differences in the qualitative and quantitative changes in mitochondria. Frequent pinocytotic vesiculation (vacuoles) of plasma membrane was observed in fungus under stress but no such vesiculation in control. The multivesiculate structures observed under stress with their origin from the cell membranes and subsequent release into vacuoles have not been reported in fungi under normal physiological conditions. The observations on pinocytosis are discussed in relation to ion compartmentation and salt tolerance in A. repens.

  16. Synthesis of sodium caseinate-calcium carbonate microspheres and their mineralization to bone-like apatite

    NASA Astrophysics Data System (ADS)

    Xu, Zhewu; Liang, Guobin; Jin, Lin; Wang, Zhenling; Xing, Chao; Jiange, Qing; Zhang, Zhiguang

    2014-06-01

    Phosphoproteins can induce and stabilize calcium carbonate (CaCO3) vaterite, which has desirable features for high reactivity. The purpose of this study was to synthesize bioactive CaCO3 microspheres for bone regeneration. Sodium caseinate (NaCas)-containing CaCO3 microspheres, with the crystal phase of vaterite, were synthesized by fast precipitation in an aqueous solution of CaCl2, Na2CO3, and 2 mg/mL of NaCas. The uniform microspheres exhibited rougher surfaces and lower negative charges than CaCO3 particles without NaCas addition. Fourier-transform infrared spectroscopy (FT-IR) of the microspheres showed characteristic peaks or bands corresponding to phosphate and hydroxyl groups. Thermogravimetric analysis (TGA) curves exhibited approximately 5% weight loss below 600 °C due to the decomposition of NaCas. Scanning electron microscope (SEM) images showed lath-like hydroxyapatite (HAp) on the surface after soaking in simulated body fluid (SBF) at 37 °C for 5 and 10 days. Energy dispersive X-ray spectrometry (EDS) revealed that the agglomerates were composed of Ca, C, O, P, Na, and Mg elements, and the Ca/P ratios ranged from 1.53 to 1.56. X-ray diffraction (XRD) patterns exhibited peaks characteristic of hydroxyapatite. The results of this study demonstrated that the addition of NaCas induced the formation of vaterite microspheres which possesses an enhanced apatite formation after soaking in SBF at 37 °C for 5 and 10 days. These NaCas-CaCO3 microspheres may be a potential biomaterial for bone regeneration.

  17. Superhydrophobic to hydrophilic transition of multi-walled carbon nanotubes induced by Na+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Das, Pritam; Dhal, Satyanarayan; Ghosh, Susanta; Chatterjee, Sriparna; Rout, Chandra S.; Ramgir, Niranjan; Chatterjee, Shyamal

    2017-12-01

    Multi-walled carbon nanotubes (MWCNT) having diameter in the range of 5-30 nm were coated on silicon wafer using spray coating technique. The coated film was irradiated with 5 keV Na+ at a fluence of 1 × 1016 ions·cm-2. A large-scale welding is observed in the post-irradiated nanotube assembly under scanning electron microscope. We have studied dynamic wetting properties of the nanotubes. While the pristine MWCNT shows superhydrophobic nature, the irradiated MWCNT turns into hydrophilic. Our simulation based on iradina and experimental evidences show defect formation in MWCNT due to ion irradiation. We have invoked mechanism based on defect mediated adsorption of water, which plays major role for transition from superhydrophobic to hydrophilic.

  18. Passive Films, Surface Structure and Stress Corrosion and Crevice Corrosion Susceptibility. Part I. A Qualitative Ellipsometric-Electrochemical Approach for the Study of Film Growth under Organic Coatings. Part II. Hydrogen Interactions with Stressed Titanium-Palladium Alloys and Stressed Vanadium Explored with Field Ion Microscopy.

    DTIC Science & Technology

    1980-08-01

    vs. time for Fe with collodion in 0.05 N NaCl. 8. A, 6 p, pH and 0Fe vs. time for Fe with collodion and CrO 4 " 2 islands in 0.05 N NaCl. REFERENCES...hydrogen embrittlement with the field ion microscope, and to compare the results with those previously obtained with pure titanium [ 4 ]. 2.2. Specimen...percent pure, and was used in the previous field ion microscopy study of titanium [ 4 ], where it was found that strain annealing titanium wire markedly

  19. Biokinetic model-based multi-objective optimization of Dunaliella tertiolecta cultivation using elitist non-dominated sorting genetic algorithm with inheritance.

    PubMed

    Sinha, Snehal K; Kumar, Mithilesh; Guria, Chandan; Kumar, Anup; Banerjee, Chiranjib

    2017-10-01

    Algal model based multi-objective optimization using elitist non-dominated sorting genetic algorithm with inheritance was carried out for batch cultivation of Dunaliella tertiolecta using NPK-fertilizer. Optimization problems involving two- and three-objective functions were solved simultaneously. The objective functions are: maximization of algae-biomass and lipid productivity with minimization of cultivation time and cost. Time variant light intensity and temperature including NPK-fertilizer, NaCl and NaHCO 3 loadings are the important decision variables. Algal model involving Monod/Andrews adsorption kinetics and Droop model with internal nutrient cell quota was used for optimization studies. Sets of non-dominated (equally good) Pareto optimal solutions were obtained for the problems studied. It was observed that time variant optimal light intensity and temperature trajectories, including optimum NPK fertilizer, NaCl and NaHCO 3 concentration has significant influence to improve biomass and lipid productivity under minimum cultivation time and cost. Proposed optimization studies may be helpful to implement the control strategy in scale-up operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Temperature-dependent IR spectroscopic and structural study of 18-crown-6 chelating ligand in the complexation with sodium surfactant salts and potassium picrate.

    PubMed

    Mihelj, Tea; Tomašić, Vlasta; Biliškov, Nikola; Liu, Feng

    2014-04-24

    18-crown-6 ether (18C6) complexes with the following anionic surfactants: sodium n-dodecylsulfate (18C6-NaDS), sodium 4-(1-pentylheptyl)benzenesulfonate (18C6-NaDBS); and potassium picrate (18C6-KP) were synthesized and studied in terms of their thermal and structural properties. Physico-chemical properties of new solid 1:1 coordination complexes were characterized by infrared (IR) spectroscopy, thermogravimetry and differential thermal analysis, differential scanning calorimetry, X-ray diffraction and microscopic observations. The strength of coordination between Na(+) and oxygen atoms of 18C6 ligand does not depend on anionic part of the surfactant, as established by thermodynamical parameters obtained by temperature-dependent IR spectroscopy. Each of these complexes exhibit different kinds of endothermic transitions in heating scan. Diffraction maxima obtained by SAXS and WAXS, refer the behavior of the compounds 18C6-NaDS and 18C6-NaDBS as smectic liquid crystalline. Distortion of 18C6-NaDS and 18C6-KP complexes occurs in two steps. Temperature of the decomplexation of solid crystal complex 18C6-KP is considerably higher than of mesophase complexes, 18C6-NaDS, and 18C6-NaDBS. The structural and liquid crystalline properties of novel 18-crown-ether complexes are function of anionic molecule geometry, type of chosen cation (Na(+), K(+)), as well as architecture of self-organized aggregates. A good combination of crown ether unit and amphiphile may provide a possibility for preparing new functionalized materials, opening the research field of ion complexation and of host-guest type behavior. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Improving the electrochemical performances of Li-rich Li1.20Ni0.13Co0.13Mn0.54O2 through a cooperative doping of Na+ and PO43- with Na3PO4

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Ning, De; Zheng, Lirong; Zhang, Qinghua; Gu, Lin; Gao, Rui; Zhang, Jicheng; Franz, Alexandra; Schumacher, Gerhard; Liu, Xiangfeng

    2018-01-01

    Li-rich layered oxide cathodes suffer from poor rate capability, voltage decay and inferior cycling stability. Herein, we propose a novel synergistic strategy to improve the electrochemical performances of Li-rich Li1.20Ni0.13Co0.13Mn0.54O2 by the co-doping of Na+ and PO43-. The co-doping of Na+ for Li and PO43- for Mn is simultaneously achieved using Na3PO4 as a dopant. The co-doping of Na+ and PO43- not only enhances the high-rate performance (106.4 mAhg-1@10C) and capacity retention (93.8%@1C@100 cycles) but also mitigates the voltage decay owing to the synergistic effect of Na+ and PO43- co-doping. The synergistic mechanism is unraveled based on neutron diffraction, aberration-corrected scanning transmission electron microscope, X-ray photoelectron spectroscopy, ex-situ X-ray absorption spectra, ex-situ X-ray diffraction, electrochemical impedance spectroscopy and electrochemical measurements. The co-doping of Na+ and PO43- enlarges the interlayer spacing and suppresses Li/Ni mixing which increases Li+ diffusivity and enhances the rate capability. Meanwhile, the co-doping of Na+ and PO43- shrinks the thickness of the slabs, weakens the TM-O covalency and alleviates the volume change in the charge/discharge process which improves the layered structure stability and the cycling performances. This study presents some new insights into designing high performance cathode materials through a cooperative modulation of different crystal sites doping.

  2. Structural characterization of layered Na0.5Co0.5Mn0.5O2 material as a promising cathode for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Manikandan, Palanisamy; Heo, Seongwoo; Kim, Hyun Woo; Jeong, Hu Young; Lee, Eungje; Kim, Youngsik

    2017-09-01

    Layered Na0.5Co0.5Mn0.5O2 material is synthesized through a facile mixed hydroxy-carbonate route using (Co0.5Mn0.5)2(OH)2CO3 precursor and well characterized as a hexagonal layered structure under P63/mmc space group. The lattice parameters and unit cell volume (a = 2.8363 Å, c = 11.3152 Å and V = 78.83 Å3) are calculated by Rietveld refinement analysis. A flaky-bundle morphology is obtained to the layered Na0.5Co0.5Mn0.5O2 material with the hexagonal flake size ∼30 nm. Advanced transmission electron microscopic images are revealed the local structure of the layered Na0.5Co0.5Mn0.5O2 material with contrasting bright dots and faint dark dots corresponding to the Co/Mn and Na atoms. Two oxidation and reduction peaks are occurred in a cyclic voltammetric analysis corresponding to Co3+/Co4+ and Mn3+/Mn4+ redox processes. These reversible processes are attributed to the intercalation/de-intercalation of Na+ ions into the host structure of layered Na0.5Co0.5Mn0.5O2 material. Accordingly, the sodium cell is delivered the initial charge-discharge capacity 53/144 mAh g-1 at 0.5 C, which cycling studies are extended to rate capability test at 1 C, 3 C and 5C. Eventually, the Na-ion full-cell is yielded cathode charge-discharge capacity 55/52 mAh g-1 at 0.212 mA and exhibited as a high voltage cathode for Na-ion batteries.

  3. Occupational concerns associated with regular use of microscope.

    PubMed

    Jain, Garima; Shetty, Pushparaja

    2014-08-01

    Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. a questionnaire based survey done on 50 professionals and technicians who used microscope regularly in pathology, microbiology, hematology and cytology laboratories. Sixty two percent of subjects declared that they were suffering from musculoskeletal problems, most common locations being neck and back. Maximum prevalence of musculoskeletal problems was noted in those using microscope for 11-15 years and for more than 30 h/week. Sixty two percent of subjects were aware of workplace ergonomics. Fifty six percent of microscope users took regular short breaks for stretching exercises and 58% took visual breaks every 15-30 min in between microscope use sessions. As many as 94% subjects reported some form of visual problem. Fourty four percent of microscope users felt stressed with long working hours on microscope. The most common occupational concerns of microscope users were musculoskeletal problems of neck and back regions, eye fatigue, aggravation of ametropia, headache, stress due to long working hours and anxiety during or after microscope use. There is an immediate need for increasing awareness about the various occupational hazards and their irreversible effects to prevent them.

  4. Portable and cost-effective pixel super-resolution on-chip microscope for telemedicine applications.

    PubMed

    Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan

    2011-01-01

    We report a field-portable lensless on-chip microscope with a lateral resolution of <1 μm and a large field-of-view of ~24 mm(2). This microscope is based on digital in-line holography and a pixel super-resolution algorithm to process multiple lensfree holograms and obtain a single high-resolution hologram. In its compact and cost-effective design, we utilize 23 light emitting diodes butt-coupled to 23 multi-mode optical fibers, and a simple optical filter, with no moving parts. Weighing only ~95 grams, we demonstrate the performance of this field-portable microscope by imaging various objects including human malaria parasites in thin blood smears.

  5. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.

    1991-01-01

    An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

  6. Observation of Phase Objects by Using an X-ray Microscope with a Foucault Knife-Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, N.; Sasaya, T.; Imai, Y.

    2011-09-09

    An x-ray microscope with a zone plate was assembled at the synchrotron radiation source of BL3C, Photon Factory. A Foucault knife-edge was set at the back focal plate of the objective zone plate and phase retrieval was tested by scanning the knife-edge. A preliminary result shows that scanning the knife-edge during exposure was effective for phase retrieval. Phase-contrast tomography was investigated using differential projection images calculated from two Schlieren images with the oppositely oriented knife-edges. Fairly good reconstruction images of polystyrene beads and spores could be obtained.

  7. Foucault imaging by using non-dedicated transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-27

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  8. Array microscopy technology and its application to digital detection of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    McCall, Brian P.

    Tuberculosis causes more deaths worldwide than any other curable infectious disease. This is the case despite tuberculosis appearing to be on the verge of eradication midway through the last century. Efforts at reversing the spread of tuberculosis have intensified since the early 1990s. Since then, microscopy has been the primary frontline diagnostic. In this dissertation, advances in clinical microscopy towards array microscopy for digital detection of Mycobacterium tuberculosis are presented. Digital array microscopy separates the tasks of microscope operation and pathogen detection and will reduce the specialization needed in order to operate the microscope. Distributing the work and reducing specialization will allow this technology to be deployed at the point of care, taking the front-line diagnostic for tuberculosis from the microscopy center to the community health center. By improving access to microscopy centers, hundreds of thousands of lives can be saved. For this dissertation, a lens was designed that can be manufactured as 4x6 array of microscopes. This lens design is diffraction limited, having less than 0.071 waves of aberration (root mean square) over the entire field of view. A total area imaged onto a full-frame digital image sensor is expected to be 3.94 mm2, which according to tuberculosis microscopy guidelines is more than sufficient for a sensitive diagnosis. The design is tolerant to single point diamond turning manufacturing errors, as found by tolerance analysis and by fabricating a prototype. Diamond micro-milling, a fabrication technique for lens array molds, was applied to plastic plano-concave and plano-convex lens arrays, and found to produce high quality optical surfaces. The micro-milling technique did not prove robust enough to produce bi-convex and meniscus lens arrays in a variety of lens shapes, however, and it required lengthy fabrication times. In order to rapidly prototype new lenses, a new diamond machining technique was developed called 4-axis single point diamond machining. This technique is 2-10x faster than micro-milling, depending on how advanced the micro-milling equipment is. With array microscope fabrication still in development, a single prototype of the lens designed for an array microscope was fabricated using single point diamond turning. The prototype microscope objective was validated in a pre-clinical trial. The prototype was compared with a standard clinical microscope objective in diagnostic tests. High concordance, a Fleiss's kappa of 0.88, was found between diagnoses made using the prototype and standard microscope objectives and a reference test. With the lens designed and validated and an advanced fabrication process developed, array microscopy technology is advanced to the point where it is feasible to rapidly prototype an array microscope for detection of tuberculosis and translate array microscope from an innovative concept to a device that can save lives.

  9. Quantitative locomotion study of freely swimming micro-organisms using laser diffraction.

    PubMed

    Magnes, Jenny; Susman, Kathleen; Eells, Rebecca

    2012-10-25

    Soil and aquatic microscopic organisms live and behave in a complex three-dimensional environment. Most studies of microscopic organism behavior, in contrast, have been conducted using microscope-based approaches, which limit the movement and behavior to a narrow, nearly two-dimensional focal field.(1) We present a novel analytical approach that provides real-time analysis of freely swimming C. elegans in a cuvette without dependence on microscope-based equipment. This approach consists of tracking the temporal periodicity of diffraction patterns generated by directing laser light through the cuvette. We measure oscillation frequencies for freely swimming nematodes. Analysis of the far-field diffraction patterns reveals clues about the waveforms of the nematodes. Diffraction is the process of light bending around an object. In this case light is diffracted by the organisms. The light waves interfere and can form a diffraction pattern. A far-field, or Fraunhofer, diffraction pattern is formed if the screen-to-object distance is much larger than the diffracting object. In this case, the diffraction pattern can be calculated (modeled) using a Fourier transform.(2) C. elegans are free-living soil-dwelling nematodes that navigate in three dimensions. They move both on a solid matrix like soil or agar in a sinusoidal locomotory pattern called crawling and in liquid in a different pattern called swimming.(3) The roles played by sensory information provided by mechanosensory, chemosensory, and thermosensory cells that govern plastic changes in locomotory patterns and switches in patterns are only beginning to be elucidated.(4) We describe an optical approach to measuring nematode locomotion in three dimensions that does not require a microscope and will enable us to begin to explore the complexities of nematode locomotion under different conditions.

  10. Automatic analysis and quantification of fluorescently labeled synapses in microscope images

    NASA Astrophysics Data System (ADS)

    Yona, Shai; Katsman, Alex; Orenbuch, Ayelet; Gitler, Daniel; Yitzhaky, Yitzhak

    2011-09-01

    The purpose of this work is to classify and quantify synapses and their properties in the cultures of a mouse's hippocampus, from images acquired by a fluorescent microscope. Quantification features include the number of synapses, their intensity and their size characteristics. The images obtained by the microscope contain hundreds to several thousands of synapses with various elliptic-like shape features and intensities. These images also include other features such as glia cells and other biological objects beyond the focus plane; those features reduce the visibility of the synapses and interrupt the segmentation process. The proposed method comprises several steps, including background subtraction, identification of suspected centers of synapses as local maxima of small neighborhoods, evaluation of the tendency of objects to be synapses according to intensity properties at their larger neighborhoods, classification of detected synapses into categories as bulks or single synapses and finally, delimiting the borders of each synapse.

  11. Development of large field-of-view two photon microscopy for imaging mouse cortex (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bumstead, Jonathan; Côté, Daniel C.; Culver, Joseph P.

    2017-02-01

    Spontaneous neuronal activity has been measured at cellular resolution in mice, zebrafish, and C. elegans using optical sectioning microscopy techniques, such as light sheet microscopy (LSM) and two photon microscopy (TPM). Recent improvements in these modalities and genetically encoded calcium indicators (GECI's) have enabled whole brain imaging of calcium dynamics in zebrafish and C. elegans. However, these whole brain microscopy studies have not been extended to mice due to the limited field of view (FOV) of TPM and the cumbersome geometry of LSM. Conventional TPM is restricted to diffraction limited imaging over this small FOV (around 500 x 500 microns) due to the use of high magnification objectives (e.g. 1.0 NA; 20X) and the aberrations introduced by relay optics used in scanning the beam across the sample. To overcome these limitations, we have redesigned the entire optical path of the two photon microscope (scanning optics and objective lens) to support a field of view of Ø7 mm with relatively high spatial resolution (<10 microns). Using optical engineering software Zemax, we designed our system with commercially available optics that minimize astigmatism, field curvature, chromatic focal shift, and vignetting. Performance of the system was also tested experimentally with fluorescent beads in agarose, fixed samples, and in vivo structural imaging. Our large-FOV TPM provides a modality capable of studying distributed brain networks in mice at cellular resolution.

  12. Comparison of divided and full pupil configurations for line-scanning confocal microscopy in human skin and oral mucosa

    NASA Astrophysics Data System (ADS)

    Larson, Bjorg; Abeytunge, Sanjeewa; Glazowski, Chris; Rajadhyaksha, Milind

    2012-02-01

    Confocal point-scanning microscopy has been showing promise in the detection, diagnosing and mapping of skin lesions in clinical settings. The noninvasive technique allows provides optical sectioning and cellular resolution for in vivo diagnosis of melanoma and basal cell carcinoma and pre-operative and intra-operative mapping of margins. The imaging has also enabled more accurate "guided" biopsies while minimizing the otherwise large number of "blind" biopsies. Despite these translational advances, however, point-scanning technology remains relatively complex and expensive. Line-scanning technology may offer an alternative approach to accelerate translation to the clinic. Line-scanning, using fewer optical components, inexpensive linear-array detectors and custom electronics, may enable smaller, simpler and lower-cost confocal microscopes. A line is formed using a cylindrical lens and scanned through the back focal plane of the objective with a galvanometric scanner. A linear CCD is used for detection. Two pupil configurations were compared for performance in imaging human tissue. In the full-pupil configuration, illumination and detection is made through the full objective pupil. In the divided pupil approach, half the pupil is illuminated and the other half is used for detection. The divided pupil configuration loses spatial and axial resolution due to a diminished NA, but the sectioning capability and rejection of background is improved. Imaging in skin and oral mucosa illustrate the performance of the two configurations.

  13. Film thickness measurement based on nonlinear phase analysis using a Linnik microscopic white-light spectral interferometer.

    PubMed

    Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang

    2018-04-20

    Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.

  14. Images of intravitreal objects projected onto posterior surface of model eye.

    PubMed

    Kawamura, Ryosuke; Shinoda, Kei; Inoue, Makoto; Noda, Toru; Ohnuma, Kazuhiko; Hirakata, Akito

    2013-11-01

    To try to recreate the images reported by patients during vitreous surgery in a model eye. A fluid-filled model eye with a posterior frosted translucent surface which corresponded to the retina was used. Three holes were made in the model eye through which an endoillumination pipe and intraocular forceps could be inserted. A thin plastic sheet simulating an epiretinal membrane and an intraocular lens (IOL) simulating a dislocated IOL were placed on the retina. The images falling on the posterior surface were photographed from the rear. The images seen through the surgical microscope were also recorded. The images from the rear were mirror images of those seen through the surgical microscope. Intraocular instruments were seen as black shafts from the rear. When the plastic sheet was picked up, the tip of the forceps was seen more sharply on the posterior surface. The images of the dislocated IOL from the posterior were similar to that seen through the surgical microscope, including the yellow optics and blue haptics. Intravitreal objects can form images on the surface of a model eye. Objects located closer to the surface are seen more sharply, and the colour of the objects can be identified. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. The Evaluation of a New Approach to Teaching Microscopic Anatomy. Final Report.

    ERIC Educational Resources Information Center

    Scranton, James R.

    This project was a partial evaluation of the new approach to teaching medical microscopic anatomy developed at the University of Iowa. The format of the course included specific objectives given to the students in advance, with the main sources of information coming from independent readings and laboratory exercises, demonstration of mastery of…

  16. A new route for the synthesis of submicron-sized LaB{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lihong, Bao; Wurentuya,; Wei, Wei

    Submicron crystalline LaB{sub 6} has been successfully synthesized by a solid-state reaction of La{sub 2}O{sub 3} with NaBH{sub 4} at 1200 °C. The effects of reaction temperature on the crystal structure, grain size and morphology were investigated by X-ray diffraction, scanning electron microscope and transmission electron microscope. It is found that when the reaction temperature is in the range of 1000–1100 °C, there are ultrafine nanoparticles and nanocrystals that coexist. When the reaction temperature elevated to 1200 °C, the grain morphology transformed from ultrafine nanoparticle to submicron crystals completely. High resolution transmission electron microscope images fully confirm the formation ofmore » LaB{sub 6} cubic structure. - Highlights: • Single-phased LaB{sub 6} have been synthesized by a solid-state reaction in a continuous evacuating process. • The reaction temperature has a important effect on the phase composition. • The grain size increase from nano-size to submicron with increasing reaction temperature.« less

  17. Evaluation of the effects of two novel irrigants on intraradicular dentine erosion, debris and smear layer removal

    PubMed Central

    Görduysus, Melahat; Bayramgil, Nursel Pekel; Görduysus, Mehmet Ömer

    2015-01-01

    Objectives To evaluate the effects of copolymer of acrylic acid and maleic acid (Poly[AA-co-MA]) and calcium hypochlorite (Ca(OCl)2) on root canal dentin using scanning electron microscope (SEM). Materials and Methods Twenty-four single-rooted teeth were instrumented and the apical and coronal thirds of each root were removed, leaving the 5 mm middle thirds, which were then separated into two pieces longitudinally. The specimens were randomly divided into six groups and subjected to each irrigant for 5 min as follows: G1, Ca(OCl)2; G2, Poly(AA-co-MA); G3, Ca(OCl)2 + Poly(AA-co-MA); G4, sodium hypochlorite (NaOCl); G5, ethylenediaminetetraacetic acid (EDTA); G6, NaOCl+EDTA. The specimens were prepared for SEM evaluation. Smear layer, debris and erosion scores were recorded by two blinded examiners. One image from G3 was analyzed with energy dispersive spectroscopy (EDS) on suspicion of precipitate formation. Data were analyzed using the Kruskal-Wallis and Dunn tests. Results G1 and G4 showed the presence of debris and smear layer and they were statistically different from G2, G3, G5 and G6 where debris and smear layer were totally removed (p < 0.05). In G1 and G4, erosion evaluation could not be done because of debris and smear layer. G2, G3 and G5 showed no erosion, and there was no significant difference between them. G6 showed severe erosion and was statistically different from G2, G3 and G5 (p < 0.05). EDS microanalysis showed the presence of Na, P, and Ca elements on the surface. Conclusions Poly(AA-co-MA) is effective in removing the smear layer and debris without causing erosion either alone or with Ca(OCl)2. PMID:26295025

  18. Influence of mechanical noise inside a scanning electron microscope.

    PubMed

    de Faria, Marcelo Gaudenzi; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe

    2015-04-01

    The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.

  19. Achieving superresolution with illumination-enhanced sparsity.

    PubMed

    Yu, Jiun-Yann; Becker, Stephen R; Folberth, James; Wallin, Bruce F; Chen, Simeng; Cogswell, Carol J

    2018-04-16

    Recent advances in superresolution fluorescence microscopy have been limited by a belief that surpassing two-fold resolution enhancement of the Rayleigh resolution limit requires stimulated emission or the fluorophore to undergo state transitions. Here we demonstrate a new superresolution method that requires only image acquisitions with a focused illumination spot and computational post-processing. The proposed method utilizes the focused illumination spot to effectively reduce the object size and enhance the object sparsity and consequently increases the resolution and accuracy through nonlinear image post-processing. This method clearly resolves 70nm resolution test objects emitting ~530nm light with a 1.4 numerical aperture (NA) objective, and, when imaging through a 0.5NA objective, exhibits high spatial frequencies comparable to a 1.4NA widefield image, both demonstrating a resolution enhancement above two-fold of the Rayleigh resolution limit. More importantly, we examine how the resolution increases with photon numbers, and show that the more-than-two-fold enhancement is achievable with realistic photon budgets.

  20. Scanning optical microscope with long working distance objective

    DOEpatents

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  1. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging

    PubMed Central

    Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert

    2016-01-01

    A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples. PMID:27699118

  2. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging.

    PubMed

    Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert

    2016-09-01

    A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples.

  3. Combined reflection and transmission microscope for telemedicine applications in field settings.

    PubMed

    Biener, Gabriel; Greenbaum, Alon; Isikman, Serhan O; Lee, Kelvin; Tseng, Derek; Ozcan, Aydogan

    2011-08-21

    We demonstrate a field-portable upright and inverted microscope that can image specimens in both reflection and transmission modes. This compact and cost-effective dual-mode microscope weighs only ∼135 grams (<4.8 ounces) and utilizes a simple light emitting diode (LED) to illuminate the sample of interest using a beam-splitter cube that is positioned above the object plane. This LED illumination is then partially reflected from the sample to be collected by two lenses, creating a reflection image of the specimen onto an opto-electronic sensor-array that is positioned above the beam-splitter cube. In addition to this, the illumination beam is also partially transmitted through the same specimen, which then casts lensfree in-line holograms of the same objects onto a second opto-electronic sensor-array that is positioned underneath the beam-splitter cube. By rapid digital reconstruction of the acquired lensfree holograms, transmission images (both phase and amplitude) of the same specimen are also created. We tested the performance of this field-portable microscope by imaging various micro-particles, blood smears as well as a histopathology slide corresponding to skin tissue. Being compact, light-weight and cost-effective, this combined reflection and transmission microscope might especially be useful for telemedicine applications in resource limited settings. This journal is © The Royal Society of Chemistry 2011

  4. Phytotoxicity, Translocation, and Biotransformation of NaYF₄ Upconversion Nanoparticles in a Soybean Plant.

    PubMed

    Yin, Wenyan; Zhou, Liangjun; Ma, Yuhui; Tian, Gan; Zhao, Jiating; Yan, Liang; Zheng, Xiaopeng; Zhang, Peng; Yu, Jie; Gu, Zhanjun; Zhao, Yuliang

    2015-09-01

    The increasing uses of rare-earth-doped upconversion nanoparticles (UCNPs) have obviously caused many concerns about their potential toxicology on live organisms. In addition, the UCNPs can be released into the environment, then transported into edible crop plants, and finally entered into food chain. Here, the soybean is chosen as a model plant to study the subchronic phytotoxicity, translocation, and biotransformation of NaYF4 UCNPs. The incubation with UCNPs at a relative low concentration of 10 μg mL(-1) leads to growth promotion for the roots and stems, while concentration exceeding 50 μg mL(-1) brings concentration-dependent inhibition. Upconversion luminescence imaging and scanning electron microscope characterization show that the UCNPs can be absorbed by roots and parts of the adsorbed UCNPs are then transported through vessels to stems and leaves. The near-edge X-ray absorption fine structure spectra reveal that the adsorbed NaYF4 nanoparticles are relatively stable during a 10 d incubation. Energy-dispersive X-ray spectrum further indicates that a small amount of NaYF4 is dissolved/digested and can transform into Y-phosphate clusters in roots. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution

    DOE PAGES

    Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; ...

    2016-05-21

    Monosulfoaluminate (Ca 4Al 2(SO 4)(OH) 12∙6H 2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO 4 2- and OH -) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formedmore » ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.« less

  6. Multilayer Black Phosphorus Exfoliated with the Aid of Sodium Hydroxide: An Improvement in Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Liu, Wanying; Zhu, Yabo; Chen, Zhiyan; Lei, Jia; Feng, Peizhong

    2018-05-01

    We generated multilayer black phosphorus (MBP) as a precipitate in centrifugation under 3000 rpm for 25 min, preceded by liquid exfoliation, in which saturated sodium hydroxide (NaOH(s)) was added as an exfoliation auxiliary. The MBP exfoliated with NaOH(s) was characterized by scanning electron microscope, energy dispersive x-ray detector, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Its electrochemical performance was investigated by cyclic voltammetry, charge/discharge and electrochemical impedance spectroscopy. It was found that the appropriate amount of NaOH(s) can make MBP present a ladder-shaped structure or plackets on the layer edge, which may provide more active sites and channels for charge storage to improve its electrochemical performance. The specific capacitance of MBP samples exfoliated with appropriate amounts of NaOH(s) can quickly enter a relatively stable range of 110-90 F/g after the 75th cycle, and finally stabilize at about 90 F/g after thousands of cycles under the current density of 2 A/g, which demonstrates their good stability in the range of long charge/discharge cycles. MBP exhibits double-layer capacitance properties.

  7. Nanoimaging using soft X-ray and EUV laser-plasma sources

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Torrisi, Alfio; Ayele, Mesfin; Bartnik, Andrzej; Czwartos, Joanna; Węgrzyński, Łukasz; Fok, Tomasz; Fiedorowicz, Henryk

    2018-01-01

    In this work we present three experimental, compact desk-top imaging systems: SXR and EUV full field microscopes and the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources based on a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths are capable of imaging nanostructures with a sub-50 nm spatial resolution and short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range and produces an imprint of the internal structure of the imaged sample in a thin layer of SXR sensitive photoresist. Applications of such desk-top EUV and SXR microscopes, mostly for biological samples (CT26 fibroblast cells and Keratinocytes) are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  8. [Microscopic investigation of vessel wall after endovascular catheter atherectomy].

    PubMed

    Tsygankov, V N; Khovalkin, R G; Chekmareva, I A; Kalinin, D V; Filippova, E M

    2014-01-01

    Endovascular target catheter atherectomy (ETCA) - method of artery patency allowing to obtain occlusion substrate. Given the high destructive effect of atherectome's elements on tissue the objective was determination possibility of histological and electron microscopic investigation of this substrate after atherectomy. The research included 8 patients who underwent ETCA of legs arteries. It was observed substrate removal from broken stent in 1 case. 2 of 8 patients had diabetes. Obtained substrate was available for histological and electron microscopic investigation. Atherosclerosis was confirmed in all cases. It was not observed substrate significant morphological changes in patients with presence or absence of diabetes. Microscopic investigation of substrate from broken stent shows pronounced development of granulation tissue that was regarded as special form of reparative regeneration. Finding internal elastic membrane during microscopic investigation in some cases proves radical intervention. The authors consider that microscopic investigation of substrate after ETCA may be used for diagnosis verification, thorough analysis of morphological changes in lesion area and radicalism of atherectomy.

  9. Grayscale inhomogeneity correction method for multiple mosaicked electron microscope images

    NASA Astrophysics Data System (ADS)

    Zhou, Fangxu; Chen, Xi; Sun, Rong; Han, Hua

    2018-04-01

    Electron microscope image stitching is highly desired to acquire microscopic resolution images of large target scenes in neuroscience. However, the result of multiple Mosaicked electron microscope images may exist severe gray scale inhomogeneity due to the instability of the electron microscope system and registration errors, which degrade the visual effect of the mosaicked EM images and aggravate the difficulty of follow-up treatment, such as automatic object recognition. Consequently, the grayscale correction method for multiple mosaicked electron microscope images is indispensable in these areas. Different from most previous grayscale correction methods, this paper designs a grayscale correction process for multiple EM images which tackles the difficulty of the multiple images monochrome correction and achieves the consistency of grayscale in the overlap regions. We adjust overall grayscale of the mosaicked images with the location and grayscale information of manual selected seed images, and then fuse local overlap regions between adjacent images using Poisson image editing. Experimental result demonstrates the effectiveness of our proposed method.

  10. Large scale superres 3D imaging: light-sheet single-molecule localization microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang

    2017-02-01

    Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.

  11. Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing.

    PubMed

    Bednarkiewicz, A; Wawrzynczyk, D; Gagor, A; Kepinski, L; Kurnatowska, M; Krajczyk, L; Nyk, M; Samoc, M; Strek, W

    2012-04-13

    Most of the synthesis routes of lanthanide-doped phosphors involve thermal processing which results in nanocrystallite growth, stabilization of the crystal structure and augmentation of luminescence intensity. It is of great interest to be able to transform the sample in a spatially localized manner, which may lead to many applications like 2D and 3D data storage, anti-counterfeiting protection, novel design bio-sensors and, potentially, to fabrication of metamaterials, 3D photonic crystals or plasmonic devices. Here we demonstrate irreversible spatially confined infrared-laser-induced annealing (LIA) achieved in a thin layer of dried colloidal solution of ultra-small ∼8 nm NaYF₄ nanocrystals (NCs) co-doped with 2% Er³⁺ and 20% Yb³⁺ ions under a localized tightly focused beam from a continuous wave 976 nm medium power laser diode excitation. The LIA results from self-heating due to non-radiative relaxation accompanying the NIR laser energy upconversion in lanthanide ions. We notice that localized LIA appears at optical power densities as low as 15.5 kW cm⁻² (∼354 ± 29 mW) threshold in spots of 54 ± 3 µm diameter obtained with a 10 × microscope objective. In the course of detailed studies, a complete recrystallization to different phases and giant 2-3 order enhancement in luminescence yield is found. Our results are highly encouraging and let us conclude that the upconverting ultra-small lanthanide-doped nanophosphors are particularly promising for direct laser writing applications.

  12. Giant enhancement of upconversion in ultra-small Er3+/Yb3+:NaYF4 nanoparticles via laser annealing

    NASA Astrophysics Data System (ADS)

    Bednarkiewicz, A.; Wawrzynczyk, D.; Gagor, A.; Kepinski, L.; Kurnatowska, M.; Krajczyk, L.; Nyk, M.; Samoc, M.; Strek, W.

    2012-04-01

    Most of the synthesis routes of lanthanide-doped phosphors involve thermal processing which results in nanocrystallite growth, stabilization of the crystal structure and augmentation of luminescence intensity. It is of great interest to be able to transform the sample in a spatially localized manner, which may lead to many applications like 2D and 3D data storage, anti-counterfeiting protection, novel design bio-sensors and, potentially, to fabrication of metamaterials, 3D photonic crystals or plasmonic devices. Here we demonstrate irreversible spatially confined infrared-laser-induced annealing (LIA) achieved in a thin layer of dried colloidal solution of ultra-small ˜8 nm NaYF4 nanocrystals (NCs) co-doped with 2% Er3+ and 20% Yb3+ ions under a localized tightly focused beam from a continuous wave 976 nm medium power laser diode excitation. The LIA results from self-heating due to non-radiative relaxation accompanying the NIR laser energy upconversion in lanthanide ions. We notice that localized LIA appears at optical power densities as low as 15.5 kW cm-2 (˜354 ± 29 mW) threshold in spots of 54 ± 3 µm diameter obtained with a 10 × microscope objective. In the course of detailed studies, a complete recrystallization to different phases and giant 2-3 order enhancement in luminescence yield is found. Our results are highly encouraging and let us conclude that the upconverting ultra-small lanthanide-doped nanophosphors are particularly promising for direct laser writing applications.

  13. Voltage-sensitive dye recording from networks of cultured neurons

    NASA Astrophysics Data System (ADS)

    Chien, Chi-Bin

    This thesis describes the development and testing of a sensitive apparatus for recording electrical activity from microcultures of rat superior cervical ganglion (SCG) neurons by using voltage-sensitive fluorescent dyes.The apparatus comprises a feedback-regulated mercury arc light source, an inverted epifluorescence microscope, a novel fiber-optic camera with discrete photodiode detectors, and low-noise preamplifiers. Using an NA 0.75 objective and illuminating at 10 W/cm2 with the 546 nm mercury line, a typical SCG neuron stained with the styryl dye RH423 gives a detected photocurrent of 1 nA; the light source and optical detectors are quiet enough that the shot noise in this photocurrent--about.03% rms--dominates. The design, theory, and performance of this dye-recording apparatus are discussed in detail.Styryl dyes such as RH423 typically give signals of 1%/100 mV on these cells; the signals are linear in membrane potential, but do not appear to arise from a purely electrochromic mechanism. Given this voltage sensitivity and the noise level of the apparatus, it should be possible to detect both action potentials and subthreshold synaptic potentials from SCG cell bodies. In practice, dye recording can easily detect action potentials from every neuron in an SCG microculture, but small synaptic potentials are obscured by dye signals from the dense network of axons.In another microculture system that does not have such long and complex axons, this dye-recording apparatus should be able to detect synaptic potentials, making it possible to noninvasively map the synaptic connections in a microculture, and thus to study long-term synaptic plasticity.

  14. Intensity-based segmentation and visualization of cells in 3D microscopic images using the GPU

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Lee, Jeong-Eom; Jeon, Woong-ki; Choi, Heung-Kook; Kim, Myoung-Hee

    2013-02-01

    3D microscopy images contain abundant astronomical data, rendering 3D microscopy image processing time-consuming and laborious on a central processing unit (CPU). To solve these problems, many people crop a region of interest (ROI) of the input image to a small size. Although this reduces cost and time, there are drawbacks at the image processing level, e.g., the selected ROI strongly depends on the user and there is a loss in original image information. To mitigate these problems, we developed a 3D microscopy image processing tool on a graphics processing unit (GPU). Our tool provides efficient and various automatic thresholding methods to achieve intensity-based segmentation of 3D microscopy images. Users can select the algorithm to be applied. Further, the image processing tool provides visualization of segmented volume data and can set the scale, transportation, etc. using a keyboard and mouse. However, the 3D objects visualized fast still need to be analyzed to obtain information for biologists. To analyze 3D microscopic images, we need quantitative data of the images. Therefore, we label the segmented 3D objects within all 3D microscopic images and obtain quantitative information on each labeled object. This information can use the classification feature. A user can select the object to be analyzed. Our tool allows the selected object to be displayed on a new window, and hence, more details of the object can be observed. Finally, we validate the effectiveness of our tool by comparing the CPU and GPU processing times by matching the specification and configuration.

  15. Micro-Macro Duality and Space-Time Emergence

    NASA Astrophysics Data System (ADS)

    Ojima, Izumi

    2011-03-01

    The microscopic origin of space-time geometry is explained on the basis of an emergence process associated with the condensation of infinite number of microscopic quanta responsible for symmetry breakdown, which implements the basic essence of "Quantum-Classical Correspondence" and of the forcing method in physical and mathematical contexts, respectively. From this viewpoint, the space-time dependence of physical quantities arises from the "logical extension" [8] to change "constant objects" into "variable objects" by tagging the order parameters associated with the condensation onto "constant objects"; the logical direction here from a value y to a domain variable x (to materialize the basic mechanism behind the Gel'fand isomorphism) is just opposite to that common in the usual definition of a function ƒ : x⟼ƒ(x) from its domain variable x to a value y = ƒ(x).

  16. Shear bond strength of one-step self-etch adhesives to dentin: Evaluation of NaOCl pretreatment.

    PubMed

    Colombo, Marco; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio; Scribante, Andrea

    2018-02-01

    The aim of this study was to evaluate the influence of dentin pretreatment with NaOCl on shear bond strength of four one-step self-etch adhesives with different pH values. Bovine permanent incisors were used. Four one-step self-etch adhesives were tested: Adper™ Easy Bond, Futurabond NR, G-aenial Bond, Clearfil S3 Bond. One two-step self-etch adhesive (Clearfil SE Bond) was used as control. Group 1- no pretreatment; group 2- pretratment with 5,25 % NaOCl; group 3- pretreatment with 37 % H3PO4 etching and 5,25 % NaOCl. A hybrid composite resin was inserted into the dentin surface. The specimens were tested in a universal testing machine. The examiners evaluated the fractured surfaces in optical microscope to determine failure modes, quantified with adhesive remnant index (ARI). Dentin pretreatment variably influenced bond strength values of the different adhesive systems. When no dentin pretreatment was applied, no significant differences were found ( P >.05) among four adhesives tested. No significant differences were recorded when comparing NaOCl pretreatment with H3PO4 + NaOCl pretreatment for all adhesive tested ( P >.05) except Clearfil S3 Bond that showed higher shear bond strength values when H3PO4 was applied. Frequencies of ARI scores were calculated. The influence of dentin pretreatment with NaOCl depends on the composition of each adhesive system used. There was no difference in bond strength values among self-etch adhesives with different pH values. Key words: Dentin, pretreatment, self-etch adhesives.

  17. The effect of cleaning procedures on fracture properties and corrosion of NiTi files.

    PubMed

    O'Hoy, P Y Z; Messer, H H; Palamara, J E A

    2003-11-01

    To evaluate the effect of repeated cleaning procedures on fracture properties and corrosion of nickel-titanium (NiTi) files. New NiTi instruments were subjected to 2, 5 and 10 cleaning cycles with the use of either diluted bleach (1% NaOCl) or Milton's solution (1% NaOCl plus 19% NaCl) as disinfectant. Each cleaning cycle consisted of scrubbing, rinsing and immersing in NaOCl for 10 min followed by 5 min of ultrasonication. Files were then tested for torsional failure and flexural fatigue, and observed for evidence of corrosion using scanning electron microscope (SEM). Four brands of NiTi files were immersed in either Milton's solution or diluted bleach overnight and evaluated for corrosion. Up to 10 cleaning cycles did not significantly reduce the torque at fracture or number of revolutions to flexural fatigue (P > 0.05, two-way anova), although decreasing values were noted with increasing number of cleaning cycles using Milton's solution. No corrosion was detected on the surface of these files. Files immersed in 1% NaOCl overnight displayed a variety of corrosion patterns. The extent of corrosion was variable amongst different brands of files and amongst files in each brand. Overall, Milton's solution was much more corrosive than diluted bleach. Corrosion of file handles was often extreme. Files can be cleaned up to 10 times without affecting fracture susceptibility or corrosion, but should not be immersed in NaOCl overnight. Milton's solution is much more corrosive than bleach with the same NaOCl concentration.

  18. Virtual tape measure for the operating microscope: system specifications and performance evaluation.

    PubMed

    Kim, M Y; Drake, J M; Milgram, P

    2000-01-01

    The Virtual Tape Measure for the Operating Microscope (VTMOM) was created to assist surgeons in making accurate 3D measurements of anatomical structures seen in the surgical field under the operating microscope. The VTMOM employs augmented reality techniques by combining stereoscopic video images with stereoscopic computer graphics, and functions by relying on an operator's ability to align a 3D graphic pointer, which serves as the end-point of the virtual tape measure, with designated locations on the anatomical structure being measured. The VTMOM was evaluated for its baseline and application performances as well as its application efficacy. Baseline performance was determined by measuring the mean error (bias) and standard deviation of error (imprecision) in measurements of non-anatomical objects. Application performance was determined by comparing the error in measuring the dimensions of aneurysm models with and without the VTMOM. Application efficacy was determined by comparing the error in selecting the appropriate aneurysm clip size with and without the VTMOM. Baseline performance indicated a bias of 0.3 mm and an imprecision of 0.6 mm. Application bias was 3.8 mm and imprecision was 2.8 mm for aneurysm diameter. The VTMOM did not improve aneurysm clip size selection accuracy. The VTMOM is a potentially accurate tool for use under the operating microscope. However, its performance when measuring anatomical objects is highly dependent on complex visual features of the object surfaces. Copyright 2000 Wiley-Liss, Inc.

  19. Defocus and magnification dependent variation of TEM image astigmatism.

    PubMed

    Yan, Rui; Li, Kunpeng; Jiang, Wen

    2018-01-10

    Daily alignment of the microscope is a prerequisite to reaching optimal lens conditions for high resolution imaging in cryo-EM. In this study, we have investigated how image astigmatism varies with the imaging conditions (e.g. defocus, magnification). We have found that the large change of defocus/magnification between visual correction of astigmatism and subsequent data collection tasks, or during data collection, will inevitably result in undesirable astigmatism in the final images. The dependence of astigmatism on the imaging conditions varies significantly from time to time, so that it cannot be reliably compensated by pre-calibration of the microscope. Based on these findings, we recommend that the same magnification and the median defocus of the intended defocus range for final data collection are used in the objective lens astigmatism correction task during microscope alignment and in the focus mode of the iterative low-dose imaging. It is also desirable to develop a fast, accurate method that can perform dynamic correction of the astigmatism for different intended defocuses during automated imaging. Our findings also suggest that the slope of astigmatism changes caused by varying defocuses can be used as a convenient measurement of objective lens rotation symmetry and potentially an acceptance test of new electron microscopes.

  20. Long-working-distance fluorescence microscope with high-numerical-aperture objectives for variable-magnification imaging in live mice from macro- to subcellular

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroaki; Momiyama, Masashi; Tomita, Katsuro; Tsuchiya, Hiroyuki; Hoffman, Robert M.

    2010-11-01

    We demonstrate the development of a long-working-distance fluorescence microscope with high-numerical-aperture objectives for variable-magnification imaging in live mice from macro- to subcellular. To observe cytoplasmic and nuclear dynamics of cancer cells in the living mouse, 143B human osteosarcoma cells are labeled with green fluorescent protein in the nucleus and red fluorescent protein in the cytoplasm. These dual-color cells are injected by a vascular route in an abdominal skin flap in nude mice. The mice are then imaged with the Olympus MVX10 macroview fluorescence microscope. With the MVX10, the nuclear and cytoplasmic behavior of cancer cells trafficking in blood vessels of live mice is observed. We also image lung metastases in live mice from the macro- to the subcellular level by opening the chest wall and imaging the exposed lung in live mice. Injected splenocytes, expressing cyan fluorescent protein, could also be imaged on the lung of live mice. We demonstrate that the MVX10 microscope offers the possibility of full-range in vivo fluorescence imaging from macro- to subcellular and should enable widespread use of powerful imaging technologies enabled by genetic reporters and other fluorophores.

  1. The impact of the condenser on cytogenetic image quality in digital microscope system.

    PubMed

    Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong

    2013-01-01

    Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%-70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice.

  2. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Shibsankar; De, Sukanta, E-mail: sukanta.physics@presiuniv.ac.in

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (– COOH group) and α-Vanadyl phosphates (VOPO{sub 4}2H{sub 2}O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na{sub 2}SO{sub 4} aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236more » F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.« less

  3. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-05-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  4. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-04-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  5. Improvements in low-cost label-free QPI microscope for live cell imaging

    NASA Astrophysics Data System (ADS)

    Seniya, C.; Towers, C. E.; Towers, D. P.

    2017-07-01

    This paper reports an improvement in the development of a low-cost QPI microscope offering new capabilities in term of phase measurement accuracy for label-free live samples in the longer term (i.e., hours to days). The spatially separated scattered and non-scattered image light fields are reshaped in the Fourier plane and modulated to form an interference image at a CCD camera. The apertures that enable these two beams to be generated have been optimised by means of laser-cut apertures placed on the mirrors of a Michelson interferometer and has improved the phase measuring and reconstruction capability of the QPI microscope. The microscope was tested with transparent onion cells as an object of interest.

  6. Comprehensive study of unexpected microscope condensers formed in sample arrangements commonly used in optical microscopy.

    PubMed

    Desai, Darshan B; Aldawsari, Mabkhoot Mudith S; Alharbi, Bandar Mohammed H; Sen, Sanchari; Grave de Peralta, Luis

    2015-09-01

    We show that various setups for optical microscopy which are commonly used in biomedical laboratories behave like efficient microscope condensers that are responsible for observed subwavelength resolution. We present a series of experiments and simulations that reveal how inclined illumination from such unexpected condensers occurs when the sample is perpendicularly illuminated by a microscope's built-in white-light source. In addition, we demonstrate an inexpensive add-on optical module that serves as an efficient and lightweight microscope condenser. Using such add-on optical module in combination with a low-numerical-aperture objective lens and Fourier plane imaging microscopy technique, we demonstrate detection of photonic crystals with a period nearly eight times smaller than the Rayleigh resolution limit.

  7. Long working distance objective lenses for single atom trapping and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritchard, J. D., E-mail: jonathan.pritchard@strath.ac.uk; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG; Isaacs, J. A.

    We present a pair of optimized objective lenses with long working distances of 117 mm and 65 mm, respectively, that offer diffraction limited performance for both Cs and Rb wavelengths when imaging through standard vacuum windows. The designs utilise standard catalog lens elements to provide a simple and cost-effective solution. Objective 1 provides NA = 0.175 offering 3 μm resolution whilst objective 2 is optimized for high collection efficiency with NA = 0.29 and 1.8 μm resolution. This flexible design can be further extended for use at shorter wavelengths by simply re-optimising the lens separations.

  8. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    PubMed Central

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  9. Tuning wettability of hydrogen titanate nanowire mesh by Na+ irradiation

    NASA Astrophysics Data System (ADS)

    Das, Pritam; Chatterjee, Shyamal

    2018-04-01

    Hydrogen titanate (HT) nanowires have been widely studied for remarkable properties and various potential applications. However, a handful studies are available related to ion beam induced structural changes and influence on wetting behavior of the HT nanowire surface. In this work, we exposed HT nanowires to 5 keV Na+ at an ion fluence of 1×1016 ions.cm-2. Scanning electron microscope shows that at this ion fluence nanowires are bent arbitrarily and they are welded to each other forming an interlinked network structure. Computer simulation shows that ion beam induces defect formation in the nanowires, which plays major role in such structural modifications. An interesting alteration of surface wetting property is observed due to ion irradiation. The hydrophilic pristine surface turns into hydrophobic after ion irradiation.

  10. Chemoenzymatic Site-Specific Labeling of Influenza Glycoproteins as a Tool to Observe Virus Budding in Real Time

    PubMed Central

    Ploegh, Hidde L.

    2012-01-01

    The influenza virus uses the hemagglutinin (HA) and neuraminidase (NA) glycoproteins to interact with and infect host cells. While biochemical and microscopic methods allow examination of the early steps in flu infection, the genesis of progeny virions has been more difficult to follow, mainly because of difficulties inherent in fluorescent labeling of flu proteins in a manner compatible with live cell imaging. We here apply sortagging as a chemoenzymatic approach to label genetically modified but infectious flu and track the flu glycoproteins during the course of infection. This method cleanly distinguishes influenza glycoproteins from host glycoproteins and so can be used to assess the behavior of HA or NA biochemically and to observe the flu glycoproteins directly by live cell imaging. PMID:22457626

  11. The effect of inhibitor sodium nitrate on pitting corrosion of dissimilar material weldment joint of stainless steel AISI 304 and mild steel SS 400

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilca, B. R., E-mail: bangkithilca@yahoo.com; Triyono, E-mail: triyonomesin@uns.ac.id

    This study experimentally evaluated the effect of Sodium Nitrate inhibitor (NaNO{sub 3}) of 0.1%, 0.3%, and 0.5% on NaCl 3.5% toward pitting corrosion of dissimilar metal welding joint between stainless steel AISI 304 and mild steel SS 400. Electrochemical corrosion was tested using potentiodynamic polarization. Further the Scanning Electron Microscope (SEM) conducted to analyze the specimen. Chemical composition analysis used Energy Dispersive X-ray Spectrometry (EDS). The highest efficiency of sodium nitrate for ER 308 attained 63.8% and 64.89%for ER 309L. The specimen surface which observed through SEM showed decrease of pitting corrosion respectively with the addition of sodium nitrate contentmore » as inhibitor.« less

  12. Design and simulation of high resolution optical imaging system based on near-field using solid immersion lens with NA = 2.2

    NASA Astrophysics Data System (ADS)

    Abbasian, Karim; Sadeghi, Rasool; Sadeghi, Parvin

    2014-03-01

    In this work, by changing annular aperture zones transmittance, we could get a spot size smaller than any reported one by utilizing annular aperture. Where, by dividing the annular aperture to more than three zones and utilizing of Sony corporation Produced SIL that has NA higher than 2, we could improve imaging resolution for radial polarization (RP); also we could decrease the FWHM from around ? to near ?. Here, the FWHM variation, according to the refractive index changing, has decreased to zero for RP. After that, circular polarization (CP) has been introduced to get a spot size less than ?. This image resolution improving can be applied to enhance optical data storage, microscopes and lithographic and other high accurate optical systems.

  13. Protective Behavior of Poly(m-aminophenol) and Polypyrrole Coatings on Mild Steel

    NASA Astrophysics Data System (ADS)

    Yahaya, Sabrina M.; Harun, M. K.; Rosmamuhamadani, R.; Bonnia, N. N.; Ratim, S.

    2018-01-01

    Electrodeposition of polypyrrole (PPy) and poly (m-aminophenol) (PMAP) films on mild steel (MS) substrate was achieved in 0.3M oxalic acid solution and 0.3M NaOH, water:ethanol (70:30) solvent respectively using cyclic voltammetry technique. The morphology of the films constructed was determined by scanning electron microscope (SEM) while energy dispersive X-Ray analyzer (EDX) was used to establish the presence of organic PMAP and PPy film coating and its compositions. The corrosion performance of MS coated with both polymer films were investigated after 0.5 hours immersed in 0.5M NaCl aqueous solution by using polarization curves. It was found that PPy coating provides anodic protection while PMAP coating provides cathodic protection towards corrosion protection of mild steel substrate.

  14. Optical Tweezer Assembly and Calibration

    NASA Technical Reports Server (NTRS)

    Collins, Timothy M.

    2004-01-01

    An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and calibration of an optical tweezer setup in the Instrumentation and Controls Division (5520). I am utilizing a custom LabVIEW Virtual Instrument program for data collection and microscope stage control. Helping me in my assignment are the following people: Mentor Susan Wrbanek (5520), Dr. Baha Jassemnejad (UCO) and Technicians Ken Weiland (7650) and James Williams (7650). Without their help, my task would not be possible.

  15. Experimental Germ Tube Induction in Candida albicans: An Evaluation of the Effect of Sodium Bicarbonate on Morphogenesis and Comparison with Pooled Human Serum.

    PubMed

    Matare, Tapiwa; Nziramasanga, Pasipanodya; Gwanzura, Lovemore; Robertson, Valerie

    2017-01-01

    The potential of NaHCO 3 versus human serum to induce germ tube formation in Candida albicans was investigated. A total of 100 isolates were obtained from oral swabs of patients presenting with thrush. Approval for the study was granted by the Joint Research Ethics Committee (JREC/23/08). Confirmed C. albicans isolates by routine methods were tested for germ tube induction using 5 different concentrations of Tris-maleate buffered NaHCO 3 and Tris-maleate buffer control. Standard control strains included were C. albicans (ATCC 10231) and C. krusei (ATCC 6258). Microculture was done in 20  μ L inoculums on microscope slides for 3 hours at 37°C. The rate of germ tube formation at 10-minute intervals was determined on 100 isolates using the optimum 20 mM Tris-maleate buffered NaHCO 3 concentration. Parallel germ tube formation using human serum was done in test tubes. The optimum concentration of NaHCO 3 in Tris-maleate buffer for germ tube induction was 20 mM for 67% of isolates. Only 21% of isolates formed germ tubes in Tris-maleate buffer control. There was no significant difference in induction between human serum and Tris-maleate buffered NaHCO 3 . Tris-maleate buffered NaHCO 3 induced germ tube formation in C. albicans isolates at rates similar to human serum.

  16. Effects of electron doping on the stability of the metal hydride NaH

    NASA Astrophysics Data System (ADS)

    Olea-Amezcua, M. A.; Rivas-Silva, J. F.; de la Peña-Seaman, O.; Heid, R.; Bohnen, K. P.

    2017-04-01

    Alkali and alkali-earth metal hydrides have high volumetric and gravimetric hydrogen densities, but due to their high thermodynamic stability, they possess high dehydrogenation temperatures which may be reduced by transforming these compounds into less stable states/configurations. We present a systematic computational study of the electron doping effects on the stability of the alkali metal hydride NaH substituted with Mg, using the self-consistent version of the virtual crystal approximation to model the alloy Na1-x Mg x H. The phonon dispersions were studied paying special attention to the crystal stability and the correlations with the electronic structure taking into account the zero point energy contribution. We found that substitution of Na by Mg in the hydride invokes a reduction of the frequencies, leading to dynamical instabilities for Mg content of 25%. The microscopic origin of these instabilities could be related to the formation of ellipsoidal Fermi surfaces centered at the L point due to the metallization of the hydride by the Mg substitution. Applying the quasiharmonic approximation, thermodynamic properties like heat capacities, vibrational entropies and vibrational free energies as a function of temperature at zero pressure are obtained. These properties determine an upper temperature for the thermodynamic stability of the hydride, which decreases from 600 K for NaH to 300 K at 20% Mg concentration. This significant reduction of the stability range indicates that dehydrogenation could be favoured by electron doping of NaH.

  17. Probing microstructure and phase evolution of α-MoO 3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy

    DOE PAGES

    Xia, Weiwei; Xu, Feng; Zhu, Chongyang; ...

    2016-07-15

    The fundamental electrochemical reaction mechanisms and the phase transformation pathways of layer-structured α-MoO 3 nanobelt during the sodiation/desodiation process to date remain largely unknown. In this study, to observe the real-time sodiation/desodiaton behaviors of α-MoO 3 during electrochemical cycling, we construct a MoO 3 anode sodium-ion battery inside a transmission electron microscope (TEM). Utilizing in situ TEM and electron diffraction pattern (EDP) observation, α-MoO 3 nanobelts are found to undergo a unique multi-step phase transformation. Upon the first sodiation, α-MoO 3 nanobelts initially form amorphous Na xMoO3 phase and are subsequently sodiated into intermediate phase of crystalline NaMoO 2, finallymore » resulting in the crystallized Mo nanograins embedded within the Na 2O matrix. During the first desodiation process, Mo nanograins are firstly re-oxidized into intermediate phase NaMoO 2 that is further transformed into amorphous Na 2MoO 3, resulting in an irreversible phase transformation. Upon subsequent sodiation/desodiation cycles, however, a stable and reversible phase transformation between crystalline Mo and amorphous Na2MoO 3 phases has been revealed. In conclusion, our work provides an in-deepth understanding of the phase transformation pathways of α-MoO 3 nanobelts upon electrochemical sodiation/desodiation processes, with the hope of assistance in designing sodium-ion batteries with enhanced performance.« less

  18. Pathologists dislike sound? Evaluation of a computerised training microscope.

    PubMed Central

    Gray, E; Duvall, E; Sprey, J; Bird, C C

    1998-01-01

    AIM: To evaluate the use of multimedia enhancements, using a computerised microscope, in the training of microscope skills. METHODS: The HOME microscope provides facilities to highlight features of interest in conjunction with either text display or aural presentation. A pilot study was carried out with 10 individuals, eight of whom were at different stages of pathology training. A tutorial was implemented employing sound or text, and each individual tested each version. Both the subjective impressions of users and objective measurement of their patterns of use were recorded. RESULTS: Although both versions improved learning, users took longer to work through the aural than the text version; 90% of users preferred the text only version, including all eight individuals involved in pathology training. CONCLUSIONS: Pathologists appear to prefer visual rather than aural input when using teaching systems such as the HOME microscope and sound does not give added value to the training experience. Images PMID:9659250

  19. Influence of mechanical noise inside a scanning electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudenzi de Faria, Marcelo; Haddab, Yassine, E-mail: yassine.haddab@femto-st.fr; Le Gorrec, Yann

    The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to themore » identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.« less

  20. Aqueous carrier waveguide in a flow cytometer

    DOEpatents

    Mariella, Jr., Raymond P.; van den Engh, Gerrit; Northrup, M. Allen

    1995-01-01

    The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified.

  1. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  2. High temperature superconductor dc SQUID micro-susceptometer for room temperature objects

    NASA Astrophysics Data System (ADS)

    Faley, M. I.; Pratt, K.; Reineman, R.; Schurig, D.; Gott, S.; Atwood, C. G.; Sarwinski, R. E.; Paulson, D. N.; Starr, T. N.; Fagaly, R. L.

    2004-05-01

    We have developed a scanning magnetic microscope (SMM) with 25 µm resolution in spatial position for the magnetic features of room temperature objects. The microscope consists of a high-temperature superconductor (HTS) dc SQUID sensor, suspended in vacuum with a self-adjusting standoff, close spaced liquid nitrogen Dewar, X-Y scanning stage and a computer control system. The HTS SQUIDs were optimized for better spatial and field resolutions for operation at liquid nitrogen temperature. Measured inside a magnetic shield, the 10 pT Hz-1/2 typical noise of the SQUIDs is white down to frequencies of about 10 Hz, increasing up to about 20 pT Hz-1/2 at 1 Hz. The microscope is mounted on actively damped platforms, which negate vibrations from the environment as well as damping internal stepper motor noises. A high-resolution video telescope and a 1 µm precision z-axis positioning system allow a close positioning of the sample under the sensor. The ability of the sensors to operate in unshielded environmental conditions with magnetic fields up to about 15 G allowed us to perform 2D mapping of the local ac and dc susceptibility of the objects.

  3. Comparative analysis of imaging configurations and objectives for Fourier microscopy.

    PubMed

    Kurvits, Jonathan A; Jiang, Mingming; Zia, Rashid

    2015-11-01

    Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes that have been optimized for conventional real-space imaging. Here we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we identify an optimal objective class and imaging configuration for Fourier microscopy. In addition, the Zemax files for the objectives and setups used in this analysis have been made publicly available as a resource for future studies.

  4. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers.

    PubMed

    Prinyakupt, Jaroonrut; Pluempitiwiriyawej, Charnchai

    2015-06-30

    Blood smear microscopic images are routinely investigated by haematologists to diagnose most blood diseases. However, the task is quite tedious and time consuming. An automatic detection and classification of white blood cells within such images can accelerate the process tremendously. In this paper we propose a system to locate white blood cells within microscopic blood smear images, segment them into nucleus and cytoplasm regions, extract suitable features and finally, classify them into five types: basophil, eosinophil, neutrophil, lymphocyte and monocyte. Two sets of blood smear images were used in this study's experiments. Dataset 1, collected from Rangsit University, were normal peripheral blood slides under light microscope with 100× magnification; 555 images with 601 white blood cells were captured by a Nikon DS-Fi2 high-definition color camera and saved in JPG format of size 960 × 1,280 pixels at 15 pixels per 1 μm resolution. In dataset 2, 477 cropped white blood cell images were downloaded from CellaVision.com. They are in JPG format of size 360 × 363 pixels. The resolution is estimated to be 10 pixels per 1 μm. The proposed system comprises a pre-processing step, nucleus segmentation, cell segmentation, feature extraction, feature selection and classification. The main concept of the segmentation algorithm employed uses white blood cell's morphological properties and the calibrated size of a real cell relative to image resolution. The segmentation process combined thresholding, morphological operation and ellipse curve fitting. Consequently, several features were extracted from the segmented nucleus and cytoplasm regions. Prominent features were then chosen by a greedy search algorithm called sequential forward selection. Finally, with a set of selected prominent features, both linear and naïve Bayes classifiers were applied for performance comparison. This system was tested on normal peripheral blood smear slide images from two datasets. Two sets of comparison were performed: segmentation and classification. The automatically segmented results were compared to the ones obtained manually by a haematologist. It was found that the proposed method is consistent and coherent in both datasets, with dice similarity of 98.9 and 91.6% for average segmented nucleus and cell regions, respectively. Furthermore, the overall correction rate in the classification phase is about 98 and 94% for linear and naïve Bayes models, respectively. The proposed system, based on normal white blood cell morphology and its characteristics, was applied to two different datasets. The results of the calibrated segmentation process on both datasets are fast, robust, efficient and coherent. Meanwhile, the classification of normal white blood cells into five types shows high sensitivity in both linear and naïve Bayes models, with slightly better results in the linear classifier.

  5. Physicochemical characterization of raw materials and co-products from the titanium dioxide industry.

    PubMed

    Gázquez, M J; Bolívar, J P; García-Tenorio, R; Vaca, F

    2009-07-30

    The present study was conducted to characterize several raw materials and co-products from the titanium dioxide industry in relation to their elemental composition (major, minor and trace elements), granulometry, mineralogy, microscopic morphology and physical composition. The main objective was to gain basic information for the future potential application of these co-products in fields such as agriculture, construction, civil engineering, etc. Microscopic studies were performed by applying scanning electron microscopy with X-ray microanalysis (SEM-XRMA) while the mineralogical compositions were analysed by means of the X-ray diffraction (XRD) technique. The concentrations of major elements such as Na, Al, Si, Ca, Ti, Fe, S and K were determined by X-ray fluorescence (XRF), while heavy metals and other trace elements were determined by ICP-MS. The physicochemical characterization of the raw materials used in the titanium dioxide industry, in addition to the characterization of the co-products generated, has enabled the evaluation of the degree of fractionation of different elements and compounds between the different co-products, as well as the control of the possible variations in the physicochemical composition of the raw materials throughout the time and the study of the influence of these variations in the characteristics of the obtained co-products. As a main conclusion of our study, it is possible to indicate that the levels of the pollutant elements associated to the co-products analysed were, in general, within safe limits and, therefore, they could potentially be used in composites as fertilizers or for building materials in road construction, etc. Nevertheless, for the specific application of each of these co-products in agriculture, construction and civil engineering, additional studies need to be performed to evaluate their appropriateness for the proposed application, together with specific studies on their health and environmental impact.

  6. Wavefront coding for fast, high-resolution light-sheet microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Olarte, Omar E.; Licea-Rodriguez, Jacob; Loza-Alvarez, Pablo

    2017-02-01

    Some biological experiments demand the observation of dynamics processes in 3D with high spatiotemporal resolution. The use of wavefront coding to extend the depth-of-field (DOF) of the collection arm of a light-sheet microscope is an interesting alternative for fast 3D imaging. Under this scheme, the 3D features of the sample are captured at high volumetric rates while the light sheet is swept rapidly within the extended DOF. The DOF is extended by coding the pupil function of the imaging lens by using a custom-designed phase mask. A posterior restoration step is required to decode the information of the captured images based on the applied phase mask [1]. This hybrid optical-digital approach is known as wavefront coding (WFC). Previously, we have demonstrated this method for performing fast 3D imaging of biological samples at medium resolution [2]. In this work, we present the extension of this approach for high-resolution microscopes. Under these conditions, the effective DOF of a standard high NA objective is of a few micrometers. Here we demonstrate that by the use of WFC, we can extend the DOF more than one order of magnitude keeping the high-resolution imaging. This is demonstrated for two designed phase masks using Zebrafish and C. elegans samples. [1] Olarte, O.E., Andilla, J., Artigas, D., and Loza-Alvarez, P., "Decoupled Illumination-Detection Microscopy. Selected Optics in Year 2105," in Optics and Photonics news 26, p. 41 (2015). [2] Olarte, O.E., Andilla, J., Artigas, D., and Loza-Alvarez, P., "Decoupled illumination detection in light sheet microscopy for fast volumetric imaging," Optica 2(8), 702 (2015).

  7. Acquisition of a Scanning Tunneling Microscope to Enhance Research and Education in Stress-Controlled Catalysis

    DTIC Science & Technology

    2015-01-14

    Feb-2014 ABSTRACT Number of Papers published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report...educational impact of the STM/AFM. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or published that acknowledge...ARO support from the start of the project to the date of this printing. List the papers , including journal references, in the following categories

  8. Phase behavior, morphology, and polymorphism of surfactant systems

    NASA Astrophysics Data System (ADS)

    Liang, Jingmei

    Surfactants are amphiphilic molecules. They spontaneously form various microstructures in water to accommodate the hydrophilic-hydrophobic interactions. Soaps are the oldest kind of man-made surfactants that are commonly used as washing and cleaning agents. In spite of the long history of soap research, many aspects of soaps in nonaqueous solvents remain unclear. Unlike the aqueous soap systems, which have been studied extensively, investigations of nonaqueous, polar soap systems are rather limited. Motivated by the applications of nonaqueous, polar solvents in soap products, we investigated sodium stearate (NaSt)/water/propylene glycol (PG) systems. The effects of gradual substitution of PG for H 2O on the phase behavior, morphology and crystalline structure of NaSt systems were studied by a combination of characterization techniques. The techniques include direct visual observation, differential scanning calorimetry, wide-angle and small angle x-ray scattering, light and cryo-electron microscopy, and solid-state nuclear magnetic resonance. Anhydrous NaSt forms layered crystalline structures at 25°C. With increasing temperature, a distorted hexagonal phase and a hexagonal liquid crystalline phase form. Compared with aqueous soap systems, the regions of liquid crystalline phases in the phase diagrams are reduced as PG replaces or gradually substitutes for H2O. Fibrous and plate-like NaSt crystallites were investigated in the NaSt/PG/H 2O system containing 1-5 wt% NaSt. Despite of the morphological difference, NaSt fibers and platelets share the same layered crystalline structure at the molecular level. NaSt fibers consist of stacked thin ribbons of NaSt bilayers. NaSt platelets exhibit large basal planes {001} surrounded by other faster-growing lateral planes. Two lamellar crystalline structures, alpha-NaSt and beta-NaSt, which formed in the NaSt/PG/H2O system with 10 wt% NaSt, were characterized on the atomic, molecular and microscopic levels. In a PG concentration range of 60-95 wt% in mixtures of H2O and PG, beta-NaSt transforms to alpha-NaSt upon aging. Compared with beta-NaSt, the hydrocarbon chains in alpha-NaSt consist of a higher percentage of trans conformation, which is characteristically more orderly packed and more rigid. alpha-NaSt exhibits a larger bilayer thickness, and dissolves at a lower temperature in the PG/H 2O mixture. The fibrous crystallites of alpha-NaSt are more bundled and oriented compared to those of beta-NaSt.

  9. Fiber optic biofluorometer for physiological research on muscle slices

    NASA Astrophysics Data System (ADS)

    Belz, Mathias; Dendorfer, Andreas; Werner, Jan; Lambertz, Daniel; Klein, Karl-Friedrich

    2016-03-01

    A focus of research in cell physiology is the detection of Ca2+, NADH, FAD, ATPase activity or membrane potential, only to name a few, in muscle tissues. In this work, we report on a biofluorometer using ultraviolet light emitting diodes (UV-LEDs), optical fibers and two photomultipliers (PMTs) using synchronized fluorescence detection with integrated background correction to detect free calcium, Ca2+, in cardiac muscle tissue placed in a horizontal tissue bath and a microscope setup. Fiber optic probes with imaging optics have been designed to transport excitation light from the biofluorometer's light output to a horizontal tissue bath and to collect emission light from a tissue sample of interest to two PMTs allowing either single excitation / single emission or ratiometric, dual excitation / single emission or single excitation / dual emission fluorescence detection of indicator dyes or natural fluorophores. The efficient transport of light from the excitation LEDs to the tissue sample, bleaching effects of the excitation light in both, polymer and fused silica-based fibers will be discussed. Furthermore, a new approach to maximize light collection of the emission light using high NA fibers and high NA coupling optics will be shown. Finally, first results on Ca2+ measurements in cardiac muscle slices in a traditional microscope setup and a horizontal tissue bath using fiber optic probes will be introduced and discussed.

  10. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-06-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.

  11. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    PubMed Central

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-01-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459

  12. Automated in-chamber specimen coating for serial block-face electron microscopy.

    PubMed

    Titze, B; Denk, W

    2013-05-01

    When imaging insulating specimens in a scanning electron microscope, negative charge accumulates locally ('sample charging'). The resulting electric fields distort signal amplitude, focus and image geometry, which can be avoided by coating the specimen with a conductive film prior to introducing it into the microscope chamber. This, however, is incompatible with serial block-face electron microscopy (SBEM), where imaging and surface removal cycles (by diamond knife or focused ion beam) alternate, with the sample remaining in place. Here we show that coating the sample after each cutting cycle with a 1-2 nm metallic film, using an electron beam evaporator that is integrated into the microscope chamber, eliminates charging effects for both backscattered (BSE) and secondary electron (SE) imaging. The reduction in signal-to-noise ratio (SNR) caused by the film is smaller than that caused by the widely used low-vacuum method. Sample surfaces as large as 12 mm across were coated and imaged without charging effects at beam currents as high as 25 nA. The coatings also enabled the use of beam deceleration for non-conducting samples, leading to substantial SNR gains for BSE contrast. We modified and automated the evaporator to enable the acquisition of SBEM stacks, and demonstrated the acquisition of stacks of over 1000 successive cut/coat/image cycles and of stacks using beam deceleration or SE contrast. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  13. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction.

    PubMed

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-06-10

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed "digital color fusion microscopy" (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.

  14. Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen

    PubMed Central

    Corbett, Alexander D.; Burton, Rebecca A. B.; Bub, Gil; Salter, Patrick S.; Tuohy, Simon; Booth, Martin J.; Wilson, Tony

    2014-01-01

    Remote focussing microscopy allows sharp, in-focus images to be acquired at high speed from outside of the focal plane of an objective lens without any agitation of the specimen. However, without careful optical alignment, the advantages of remote focussing microscopy could be compromised by the introduction of depth-dependent scaling artifacts. To achieve an ideal alignment in a point-scanning remote focussing microscope, the lateral (XY) scan mirror pair must be imaged onto the back focal plane of both the reference and imaging objectives, in a telecentric arrangement. However, for many commercial objective lenses, it can be difficult to accurately locate the position of the back focal plane. This paper investigates the impact of this limitation on the fidelity of three-dimensional data sets of living cardiac tissue, specifically the introduction of distortions. These distortions limit the accuracy of sarcomere measurements taken directly from raw volumetric data. The origin of the distortion is first identified through simulation of a remote focussing microscope. Using a novel three-dimensional calibration specimen it was then possible to quantify experimentally the size of the distortion as a function of objective misalignment. Finally, by first approximating and then compensating the distortion in imaging data from whole heart rodent studies, the variance of sarcomere length (SL) measurements was reduced by almost 50%. PMID:25339910

  15. Effects of pore forming agents on chitosan-graft-poly(N-vinylpyrrolidone) hydrogel properties for use as a matrix for floating drug delivery

    NASA Astrophysics Data System (ADS)

    Budianto, E.; Al-Shidqi, M. F.; Cahyana, A. H.

    2017-07-01

    Eradicating H. pylori-based infection by using conventional oral dosage form of amoxicillin trihydrate finds difficulties to overcome rapid gastric retention time. Encapsulating amoxicillin trihydrate in floating drug delivery system may solve the problem. In this research, the floating drug delivery system of amoxicillin trihydrate encapsulated in floating chitosan-graft-poly(N-vinyl pyrrolidone) hydrogels containing CaCO3 and NaHCO3 as pore forming agents has been successfully prepared. Pore forming agents used was varied with the ratio of 10 to 25% pore forming agents to total mass of the used materials. The hydrogel were characterizedusing FTIR spectrophotometer and stereo microscope. As pore forming agents compositions increased, the porosity (%) and floating properties increased but followed by decrease in drug entrapment efficiency. Most of the floating hydrogels possessed floating ability longer than 180 min and the highest porosity was found in hydrogel containing 25% NaHCO3. Hydrogel containing CaCO3 showed sustained drug release profile than hydrogel containing NaHCO3. However, the optimum formulation was achieved at composition of 10% NaHCO3 with 57% of drug entrapped within the hydrogel and 43% drug released. The results of these studies show that NaHCO3 is an effective pore forming agents for chitosan-graft-poly(N-vinyl pyrrolidone) hydrogel preparation as compare to CaCO3.

  16. Core/Shell Microstructure Induced Synergistic Effect for Efficient Water-Droplet Formation and Cloud-Seeding Application.

    PubMed

    Tai, Yanlong; Liang, Haoran; Zaki, Abdelali; El Hadri, Nabil; Abshaev, Ali M; Huchunaev, Buzgigit M; Griffiths, Steve; Jouiad, Mustapha; Zou, Linda

    2017-12-26

    Cloud-seeding materials as a promising water-augmentation technology have drawn more attention recently. We designed and synthesized a type of core/shell NaCl/TiO 2 (CSNT) particle with controlled particle size, which successfully adsorbed more water vapor (∼295 times at low relative humidity, 20% RH) than that of pure NaCl, deliquesced at a lower environmental RH of 62-66% than the hygroscopic point (h g.p ., 75% RH) of NaCl, and formed larger water droplets ∼6-10 times its original measured size area, whereas the pure NaCl still remained as a crystal at the same conditions. The enhanced performance was attributed to the synergistic effect of the hydrophilic TiO 2 shell and hygroscopic NaCl core microstructure, which attracted a large amount of water vapor and turned it into a liquid faster. Moreover, the critical particle size of the CSNT particles (0.4-10 μm) as cloud-seeding materials was predicted via the classical Kelvin equation based on their surface hydrophilicity. Finally, the benefits of CSNT particles for cloud-seeding applications were determined visually through in situ observation under an environmental scanning electron microscope on the microscale and cloud chamber experiments on the macroscale, respectively. These excellent and consistent performances positively confirmed that CSNT particles could be promising cloud-seeding materials.

  17. Topography measurements of high NA aspherical microlenses by digital holographic microscopy with spherical illumination

    NASA Astrophysics Data System (ADS)

    Józwik, Michal; Mikuła, Marta; Kozacki, Tomasz; Kostencka, Julianna; Gorecki, Christophe

    2017-06-01

    In this contribution, we propose a method of digital holographic microscopy (DHM) that enables measurement of high numerical aperture spherical and aspherical microstructures of both concave and convex shapes. The proposed method utilizes reflection of the spherical illumination beam from the object surface and the interference with a spherical reference beam of the similar curvature. In this case, the NA of DHM is fully utilized for illumination and imaging of the reflected object beam. Thus, the system allows capturing the phase coming from larger areas of the quasi-spherical object and, therefore, offers possibility of high accuracy characterization of its surface even in the areas of high inclination. The proposed measurement procedure allows determining all parameters required for the accurate shape recovery: the location of the object focus point and the positions of the illumination and reference point sources. The utility of the method is demonstrated with characterization of surface of high NA focusing objects. The accuracy is firstly verified by characterization of a known reference sphere with low error of sphericity. Then, the method is applied for shape measurement of spherical and aspheric microlenses. The results provide a full-field reconstruction of high NA topography with resolution in the nanometer range. The surface sphericity is evaluated by the deviation from the best fitted sphere or asphere, and the important parameters of the measured microlens: e.g.: radius of curvature and conic constant.

  18. The CSSL (combined sporadic structures and layers) payload: In situ observations of mesospheric sodium and related parameters

    NASA Technical Reports Server (NTRS)

    Machuga, David W.; Kane, Timothy J.; Wheeler, Timothy F.; Croskey, Charles L.; Mathews, John D.; Mitchell, John D.

    1997-01-01

    The objectives, design and results of the sensor systems for the combined sporadic structures and layers (CSSL) payload are analyzed. The CSSL main objectives were to: validate current models of mesospheric sodium chemistry; explore the relationship between turbulence and Na fluctuations; and to explore the relationship between high latitude electric fields and the formation of Na anomalies.

  19. Optimization of a Widefield Structured Illumination Microscope for Non-Destructive Assessment and Quantification of Nuclear Features in Tumor Margins of a Primary Mouse Model of Sarcoma

    PubMed Central

    Fu, Henry L.; Mueller, Jenna L.; Javid, Melodi P.; Mito, Jeffrey K.; Kirsch, David G.; Ramanujam, Nimmi; Brown, J. Quincy

    2013-01-01

    Cancer is associated with specific cellular morphological changes, such as increased nuclear size and crowding from rapidly proliferating cells. In situ tissue imaging using fluorescent stains may be useful for intraoperative detection of residual cancer in surgical tumor margins. We developed a widefield fluorescence structured illumination microscope (SIM) system with a single-shot FOV of 2.1×1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 µm). The objectives of this work were to measure the relationship between illumination pattern frequency and optical sectioning strength and signal-to-noise ratio in turbid (i.e. thick) samples for selection of the optimum frequency, and to determine feasibility for detecting residual cancer on tumor resection margins, using a genetically engineered primary mouse model of sarcoma. The SIM system was tested in tissue mimicking solid phantoms with various scattering levels to determine impact of both turbidity and illumination frequency on two SIM metrics, optical section thickness and modulation depth. To demonstrate preclinical feasibility, ex vivo 50 µm frozen sections and fresh intact thick tissue samples excised from a primary mouse model of sarcoma were stained with acridine orange, which stains cell nuclei, skeletal muscle, and collagenous stroma. The cell nuclei were segmented using a high-pass filter algorithm, which allowed quantification of nuclear density. The results showed that the optimal illumination frequency was 31.7 µm−1 used in conjunction with a 4×0.1 NA objective ( = 0.165). This yielded an optical section thickness of 128 µm and an 8.9×contrast enhancement over uniform illumination. We successfully demonstrated the ability to resolve cell nuclei in situ achieved via SIM, which allowed segmentation of nuclei from heterogeneous tissues in the presence of considerable background fluorescence. Specifically, we demonstrate that optical sectioning of fresh intact thick tissues performed equivalently in regards to nuclear density quantification, to physical frozen sectioning and standard microscopy. PMID:23894357

  20. Negative affect, stress, and smoking in college students: unique associations independent of alcohol and marijuana use.

    PubMed

    Magid, Viktoriya; Colder, Craig R; Stroud, Laura R; Nichter, Mimi; Nichter, Mark

    2009-11-01

    Stress and negative affect (NA) figure prominently in theoretical models of smoking initiation, maintenance and relapse, yet few studies have examined these associations among college students. Further complicating examination of these associations, smoking often occurs in the context of other substance use (e.g., alcohol, marijuana) in college populations. Thus, it remains unclear whether stress and NA are associated with cigarette use among college students, and if so, whether these associations are evident after controlling for effects of other substance use. The goals of this study were: a) to examine whether several aspects of stress (objective events, subjective experiences) and NA (sad mood, general emotional distress) were associated with cigarette smoking among college students and b) whether associations remained after accounting for alcohol and marijuana use. A large sample of college freshmen (N=633) followed longitudinally over 35 weeks via internet assessments. Results of hierarchical linear modeling demonstrated that measures of subjective stress and NA were positively related to cigarette use, whereas measures of objective stressful events were negatively related to cigarette use. When alcohol and marijuana use were added to the models, associations between smoking and stress/NA were diminished. Associations between NA and smoking remained significant; however, associations between subjective stress/stressful events and smoking were no longer significant. This is the first study to comprehensively examine links between subjective and objective measures of stress and smoking behavior among college students while also considering the influence of other substance use. Negative affect was the most robust correlate of smoking among college students. Subjective and objective stress do not appear to be strongly associated with college smoking above and beyond alcohol and marijuana use. Stress may not be an important etiological factor for relatively low levels of cigarette use among college students. Given that relations between NA/stress and cigarette smoking were diminished when concurrent alcohol and marijuana use was considered, it is imperative for future studies of college students to consider other substance use.

  1. Modeling of the Orbital Debris Population of RORSAT Sodium-Potassium Droplets

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Krisko, P. H.; Matney, Mark; Stansbery, E. G.

    2010-01-01

    A large population resident in the orbital debris environment is composed of eutectic sodium-potassium (NaK) droplets, released during the reactor core ejection of 16 nuclear-powered Radar Ocean Reconnaissance Satellites (RORSATs) launched in the 1980s by the former Soviet Union. These electrically conducting RORSAT debris objects are spherical in shape, generating highly polarized radar returns. Their diameters are mostly in the centimeter and millimeter size regimes. Since the Space Surveillance Network catalog is limited to objects greater than 5 cm in low Earth orbit, our current knowledge about this special class of orbital debris relies largely on the analysis of Haystack radar data. This paper elaborates the simulation of the RORSAT debris populations in the new NASA Orbital Debris Engineering Model ORDEM2010, which replaces ORDEM2000. The estimation of the NaK populations uses the NASA NaK-module as a benchmark. It follows the general statistical approach to developing all other ORDEM2010-required LEO populations (for various types of debris and across a wide range of object sizes). This paper describes, in detail, each major step in the NaK-population derivation, including a specific discussion on the conversion between Haystack-measured radar-cross-sections and object-size distribution for the NaK droplets. Modeling results show that the RORSAT debris population is stable for the time period under study and that Haystack data sets are fairly consistent over the observations of multiple years.

  2. Adaptive Morphological Feature-Based Object Classifier for a Color Imaging System

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2009-01-01

    Utilizing a Compact Color Microscope Imaging System (CCMIS), a unique algorithm has been developed that combines human intelligence along with machine vision techniques to produce an autonomous microscope tool for biomedical, industrial, and space applications. This technique is based on an adaptive, morphological, feature-based mapping function comprising 24 mutually inclusive feature metrics that are used to determine the metrics for complex cell/objects derived from color image analysis. Some of the features include: Area (total numbers of non-background pixels inside and including the perimeter), Bounding Box (smallest rectangle that bounds and object), centerX (x-coordinate of intensity-weighted, center-of-mass of an entire object or multi-object blob), centerY (y-coordinate of intensity-weighted, center-of-mass, of an entire object or multi-object blob), Circumference (a measure of circumference that takes into account whether neighboring pixels are diagonal, which is a longer distance than horizontally or vertically joined pixels), . Elongation (measure of particle elongation given as a number between 0 and 1. If equal to 1, the particle bounding box is square. As the elongation decreases from 1, the particle becomes more elongated), . Ext_vector (extremal vector), . Major Axis (the length of a major axis of a smallest ellipse encompassing an object), . Minor Axis (the length of a minor axis of a smallest ellipse encompassing an object), . Partial (indicates if the particle extends beyond the field of view), . Perimeter Points (points that make up a particle perimeter), . Roundness [(4(pi) x area)/perimeter(squared)) the result is a measure of object roundness, or compactness, given as a value between 0 and 1. The greater the ratio, the rounder the object.], . Thin in center (determines if an object becomes thin in the center, (figure-eight-shaped), . Theta (orientation of the major axis), . Smoothness and color metrics for each component (red, green, blue) the minimum, maximum, average, and standard deviation within the particle are tracked. These metrics can be used for autonomous analysis of color images from a microscope, video camera, or digital, still image. It can also automatically identify tumor morphology of stained images and has been used to detect stained cell phenomena (see figure).

  3. Radiative heat transfer in low-dimensional systems -- microscopic mode

    NASA Astrophysics Data System (ADS)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  4. Learning a cost function for microscope image segmentation.

    PubMed

    Nilufar, Sharmin; Perkins, Theodore J

    2014-01-01

    Quantitative analysis of microscopy images is increasingly important in clinical researchers' efforts to unravel the cellular and molecular determinants of disease, and for pathological analysis of tissue samples. Yet, manual segmentation and measurement of cells or other features in images remains the norm in many fields. We report on a new system that aims for robust and accurate semi-automated analysis of microscope images. A user interactively outlines one or more examples of a target object in a training image. We then learn a cost function for detecting more objects of the same type, either in the same or different images. The cost function is incorporated into an active contour model, which can efficiently determine optimal boundaries by dynamic programming. We validate our approach and compare it to some standard alternatives on three different types of microscopic images: light microscopy of blood cells, light microscopy of muscle tissue sections, and electron microscopy cross-sections of axons and their myelin sheaths.

  5. Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina

    PubMed Central

    Hausselt, Susanne E.; Breuninger, Tobias; Castell, Xavier; Denk, Winfried; Margolis, David J.; Detwiler, Peter B.

    2009-01-01

    Dendritic signals play an essential role in processing visual information in the retina. To study them in neurites too small for electrical recording, we developed an instrument that combines a multi-photon (MP) microscope with a through-the-objective high-resolution visual stimulator. An upright microscope was designed that uses the objective lens for both MP imaging and delivery of visual stimuli to functionally intact retinal explants or eyecup preparations. The stimulator consists of a miniature liquid-crystal-on-silicon display coupled into the optical path of an infrared-excitation laser-scanning microscope. A pair of custom-made dichroic filters allows light from the excitation laser and three spectral bands (‘colors’) from the stimulator to reach the retina, leaving two intermediate bands for fluorescence imaging. Special optics allow displacement of the stimulator focus relative to the imaging focus. Spatially resolved changes in calcium-indicator fluorescence in response to visual stimuli were recorded in dendrites of different types of mammalian retinal neurons. PMID:19023590

  6. Water window imaging x ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.

  7. Volumetric bioimaging based on light field microscopy with temporal focusing illumination

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chun; Sie, Yong Da; Lai, Feng-Jie; Chen, Shean-Jen

    2018-02-01

    Light field technique at a single shot can get the whole volume image of observed sample. Therefore, the original frame rate of the optical system can be taken as the volumetric image rate. For dynamically imaging whole micron-scale biosample, a light field microscope with temporal focusing illumination has been developed. In the light field microscope, the f-number of the microlens array (MLA) is adopted to match that of the objective; hence, the subimages via adjacent lenslets do not overlay each other. A three-dimensional (3D) deconvolution algorithm is utilized to deblur the out-of-focusing part. Conventional light field microscopy (LFM) illuminates whole volume sample even noninteresting parts; nevertheless, whole volume excitation causes even more damage on bio-sample and also increase the background noise from the out of range. Therefore, temporal focusing is integrated into the light field microscope for selecting the illumination volume. Herein, a slit on the back focal plane of the objective is utilized to control the axial excitation confinement for selecting the illumination volume. As a result, the developed light field microscope with the temporal focusing multiphoton illumination (TFMPI) can reconstruct 3D images within the selected volume, and the lateral resolution approaches to the theoretical value. Furthermore, the 3D Brownian motion of two-micron fluorescent beads is observed as the criterion of dynamic sample. With superior signal-to-noise ratio and less damage to tissue, the microscope is potential to provide volumetric imaging for vivo sample.

  8. Capital Middle Schools Science Department, Preliminary List of Behavioral/Performance Objectives.

    ERIC Educational Resources Information Center

    Del Mod System, Dover, DE.

    This monograph provides basic behavioral objectives designed for a middle school science curriculum. Emphasis is placed on the study of the living environment for students in grade five. This includes the study of plants, animals, the human body, and the use of the microscope, classification and the scientific method. Objectives for grade six are…

  9. Multiplane optical microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tongcang; Ota, Sadao; Kim, Jeongmin

    This disclosure provides systems, methods, and apparatus related to optical microscopy. In one aspect, an apparatus includes a sample holder, a first objective lens, a plurality of optical components, a second objective lens, and a mirror. The apparatus may directly image a cross-section of a sample oblique to or parallel to the optical axis of the first objective lens, without scanning.

  10. Direct microscopic image and measurement of the atomization process of a port fuel injector

    NASA Astrophysics Data System (ADS)

    Esmail, Mohamed; Kawahara, Nobuyuki; Tomita, Eiji; Sumida, Mamoru

    2010-07-01

    The main objective of this study is to observe and investigate the phenomena of atomization, i.e. the fuel break-up process very close to the nozzle exit of a practical port fuel injector (PFI). In order to achieve this objective, direct microscopic images of the atomization process were obtained using an ultra-high-speed video camera that could record 102 frames at rates of up to 1 Mfps, coupled with a long-distance microscope and Barlow lens. The experiments were carried out using a PFI in a closed chamber at atmospheric pressure. Time-series images of the spray behaviour were obtained with a high temporal resolution using backlighting. The direct microscopic images of a liquid column break-up were compared with experimental results from laser-induced exciplex fluorescence (LIEF), and the wavelength obtained from the experimental results compared with that predicated from the Kelvin-Helmholtz break-up model. The droplet size diameters from a ligament break-up were compared with results predicated from Weber's analysis. Furthermore, experimental results of the mean droplet diameter from a direct microscopic image were compared with the results obtained from phase Doppler anemometry (PDA) experimental results. Three conclusions were obtained from this study. The atomization processes and detailed characterizations of the break-up of a liquid column were identified; the direct microscopic image results were in good agreement with the results obtained from LIEF, experimental results of the wavelength were in good agreement with those from the Kelvin-Helmholtz break-up model. The break-up process of liquid ligaments into droplets was investigated, and Weber's analysis of the predicated droplet diameter from ligament break-up was found to be applicable only at larger wavelengths. Finally, the direct microscopic image method and PDA method give qualitatively similar trends for droplet size distribution and quantitatively similar values of Sauter mean diameter.

  11. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy

    PubMed Central

    Brooker, Gary; Siegel, Nisan; Wang, Victor; Rosen, Joseph

    2011-01-01

    Fresnel Incoherent Correlation Holography (FINCH) enables holograms and 3D images to be created from incoherent light with just a camera and spatial light modulator (SLM). We previously described its application to microscopic incoherent fluorescence wherein one complex hologram contains all the 3D information in the microscope field, obviating the need for scanning or serial sectioning. We now report experiments which have led to the optimal optical, electro-optic, and computational conditions necessary to produce holograms which yield high quality 3D images from fluorescent microscopic specimens. An important improvement from our previous FINCH configurations capitalizes on the polarization sensitivity of the SLM so that the same SLM pixels which create the spherical wave simulating the microscope tube lens, also pass the plane waves from the infinity corrected microscope objective, so that interference between the two wave types at the camera creates a hologram. This advance dramatically improves the resolution of the FINCH system. Results from imaging a fluorescent USAF pattern and a pollen grain slide reveal resolution which approaches the Rayleigh limit by this simple method for 3D fluorescent microscopic imaging. PMID:21445140

  12. Eight-channel Kirkpatrick-Baez microscope for multiframe x-ray imaging diagnostics in laser plasma experiments.

    PubMed

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Mu, Baozhong; Wang, Zhanshan; Fang, Zhiheng; Wang, Wei; Fu, Sizu

    2016-10-01

    Because grazing-incidence Kirkpatrick-Baez (KB) microscopes have better resolution and collection efficiency than pinhole cameras, they have been widely used for x-ray imaging diagnostics of laser inertial confinement fusion. The assembly and adjustment of a multichannel KB microscope must meet stringent requirements for image resolution and reproducible alignment. In the present study, an eight-channel KB microscope was developed for diagnostics by imaging self-emission x-rays with a framing camera at the Shenguang-II Update (SGII-Update) laser facility. A consistent object field of view is ensured in the eight channels using an assembly method based on conical reference cones, which also allow the intervals between the eight images to be tuned to couple with the microstrips of the x-ray framing camera. The eight-channel KB microscope was adjusted via real-time x-ray imaging experiments in the laboratory. This paper describes the details of the eight-channel KB microscope, its optical and multilayer design, the assembly and alignment methods, and results of imaging in the laboratory and at the SGII-Update.

  13. Confocal microscopic observation of structural changes in glass-ionomer cements and tooth interfaces.

    PubMed

    Watson, T F; Pagliari, D; Sidhu, S K; Naasan, M A

    1998-03-01

    This study aimed to develop techniques to allow dynamic imaging of a cavity before, during and after placement of glass-ionomer restorative materials. Cavities were cut in recently extracted third molars and the teeth longitudinally sectioned. Each hemisected tooth surface was placed in green modelling compound at 90 to the optical axis of the microscope. The cavity surface was imaged using a video rate confocal microscope in conjunction with an internally focusable microscope objective. The sample on the stage was pushed up to the objective lens which 'clamped' the cover glass onto it. Water, glycerine or oil was placed below the coverglass, with oil above. Internal tooth structures were imaged by changing the internal focus of the objective. The restorative material was then placed into the cavity. Video images were stored either onto video tape or digitally, using a frame grabber, computer and mass memory storage. Software controls produced time-lapse recordings of the interface over time. Preliminary experiments have examined the placement and early maturation of conventional glass-ionomer cements and a syringeable resin-modified glass-ionomer cement. Initial contact of the cement matrix and glass particles was visible as the plastic material rolled past the enamel and dentine, before making a bond. Evidence for water movement from the dentine into the cement has also been seen. After curing, the early dimensional changes in the cements due to water flux were apparent using the time-lapse facility. This new technique enables examination of developing tooth/restoration interfaces and the tracking of movement in materials.

  14. Fano Description of Single-Hydrocarbon Fluorescence Excited by a Scanning Tunneling Microscope.

    PubMed

    Kröger, Jörg; Doppagne, Benjamin; Scheurer, Fabrice; Schull, Guillaume

    2018-06-13

    The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasmon cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that unravel vibrational progression. In addition, light spectra unveil a signature of the molecule even when the tunneling current is injected well separated from the molecular emitter. This signature exhibits a distance-dependent Fano profile that reflects the subtle interplay between inelastic tunneling electrons, the molecular exciton and localized plasmons in at-distance as well as on-molecule fluorescence. The presented findings open the path to luminescence of a different class of molecules than investigated before and contribute to the understanding of single-molecule luminescence at surfaces in a unified picture.

  15. In situ investigation of bismuth nanoparticles formation by transmission electron microscope.

    PubMed

    Liu, Liming; Wang, Honghang; Yi, Zichuan; Deng, Quanrong; Lin, Zhidong; Zhang, Xiaowen

    2018-02-01

    Bismuth (Bi) nanoparticles are prepared by using NaBi(MoO 4 ) 2 nanosheets in the beam of electrons emitted by transmission electron microscope. The formation and growth of Bi nanoparticles are investigated in situ. The sizes of Bi nanoparticles are confined within the range of 6-10nm by controlling irradiation time. It is also observed that once the diameter of nanoparticles is larger than 10nm, the Bi particles are stable as a result of the immobility of large nanoparticles. In addition, some nanoparticles on the edges form nanorods, which are explained as the result of a coalescence process, if the irradiation period is longer than 10min. The in situ research on Bi nanoparticles facilitates in-depth investigations of the physicochemical behavior and provides more potential applications in various fields such as sensors, catalysts and optical devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. In-situ Crystallization of Highly Volatile Commercial Mold Flux Using an Isolated Observation System in the Confocal Laser Scanning Microscope

    NASA Astrophysics Data System (ADS)

    Park, Jun-Yong; Ryu, Jae Wook; Sohn, Il

    2014-08-01

    The in situ crystallization behavior of highly volatile commercial mold fluxes for medium carbon steels was investigated using the confocal laser scanning microscope (CLSM) equipped with an optimized isolated observation system. The highly volatile compounds of the mold flux were suppressed during heating allowing direct observation in the CLSM. Cooling rates of 25, 50, 100, 400, and 800 K/min were incorporated and continuous cooling transformation (CCT) diagrams of 4 different commercial mold fluxes for medium carbon steels were developed. Identification of the crystalline phase was conducted with XRD and SEM-EDS analysis. A cuspidine crystalline was observed in all samples at various cooling rates. With higher basicity, CaF2, and NaF, the crystallization of the fluxes was enhanced according to the CCT diagram. As the slag structure becomes depolymerized, the diffusion rate of the cathodic ions seems to increase.

  17. Electrical conduction of organic ultrathin films evaluated by an independently driven double-tip scanning tunneling microscope.

    PubMed

    Takami, K; Tsuruta, S; Miyake, Y; Akai-Kasaya, M; Saito, A; Aono, M; Kuwahara, Y

    2011-11-02

    The electrical transport properties of organic thin films within the micrometer scale have been evaluated by a laboratory-built independently driven double-tip scanning tunneling microscope, operating under ambient conditions. The two tips were used as point contact electrodes, and current in the range from 0.1 pA to 100 nA flowing between the two tips through the material can be detected. We demonstrated two-dimensional contour mapping of the electrical resistance on a poly(3-octylthiophene) thin films as shown below. The obtained contour map clearly provided an image of two-dimensional electrical conductance between two point electrodes on the poly(3-octylthiophene) thin film. The conductivity of the thin film was estimated to be (1-8) × 10(-6) S cm(-1). Future prospects and the desired development of multiprobe STMs are also discussed.

  18. Micromorphology of sialoliths in submandibular salivary gland: a scanning electron microscope and X-ray diffraction analysis.

    PubMed

    Kasaboğlu, Oğuzcan; Er, Nuray; Tümer, Celal; Akkocaoğlu, Murat

    2004-10-01

    Sialoliths are common in the submandibular gland and its duct system. The exact cause of formation of a sialolith is still a matter of debate. The aim of this study was to analyze 6 sialoliths ultrastructurally to determine their development mechanism in the submandibular salivary glands. Six sialoliths retrieved from the hilus and duct of the submandibular salivary glands of 6 patients with sialadenitis were analyzed ultrastructurally by scanning electron microscope and x-ray diffractometer. Scanning electron microscope revealed mainly irregular, partly rudely hexagonal, needle-like and plate-shaped crystals. The cross-section from the surface to the inner part of the sialoliths showed no organic material. X-ray diffraction showed that the sialoliths were composed of hydroxyapatite crystals. Energy dispersive x-ray microanalysis showed that all of the samples contained high levels of Ca and P, and small amounts of Mg, Na, Cl, Si, Fe, and K. The main structures of the submandibular sialoliths were found to be hydroxyapatite crystals. No organic cores were observed in the central parts of the sialoliths. In accordance with these preliminary results, sialoliths in the submandibular salivary glands may arise secondary to sialadenitis, but not via a luminal organic nidus.

  19. Flexible non-diffractive vortex microscope for three-dimensional depth-enhanced super-localization of dielectric, metal and fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Bouchal, Petr; Bouchal, Zdeněk

    2017-10-01

    In the past decade, probe-based super-resolution using temporally resolved localization of emitters became a groundbreaking imaging strategy in fluorescence microscopy. Here we demonstrate a non-diffractive vortex microscope (NVM), enabling three-dimensional super-resolution fluorescence imaging and localization and tracking of metal and dielectric nanoparticles. The NVM benefits from vortex non-diffractive beams (NBs) creating a double-helix point spread function that rotates under defocusing while maintaining its size and shape unchanged. Using intrinsic properties of the NBs, the dark-field localization of weakly scattering objects is achieved in a large axial range exceeding the depth of field of the microscope objective up to 23 times. The NVM was developed using an upright microscope Nikon Eclipse E600 operating with a spiral lithographic mask optimized using Fisher information and built into an add-on imaging module or microscope objective. In evaluation of the axial localization accuracy the root mean square error below 18 nm and 280 nm was verified over depth ranges of 3.5 μm and 13.6 μm, respectively. Subwavelength gold and polystyrene beads were localized with isotropic precision below 10 nm in the axial range of 3.5 μm and the axial precision reduced to 30 nm in the extended range of 13.6 μm. In the fluorescence imaging, the localization with isotropic precision below 15 nm was demonstrated in the range of 2.5 μm, whereas in the range of 8.3 μm, the precision of 15 nm laterally and 30-50 nm axially was achieved. The tracking of nanoparticles undergoing Brownian motion was demonstrated in the volume of 14 × 10 × 16 μm3. Applicability of the NVM was tested by fluorescence imaging of LW13K2 cells and localization of cellular proteins.

  20. Effect of low levels of aflatoxin B₁ on performance, biochemical parameters, and aflatoxin B₁ in broiler liver tissues in the presence of monensin and sodium bentonite.

    PubMed

    Magnoli, A P; Monge, M P; Miazzo, R D; Cavaglieri, L R; Magnoli, C E; Merkis, C I; Cristofolini, A L; Dalcero, A M; Chiacchiera, S M

    2011-01-01

    Aflatoxins (AF) are a major problem in broiler production and are significant economic and public health burdens worldwide. A commercial sodium bentonite (Na-B) adsorbent was used to prevent the effect of AF [50 µg of aflatoxin B₁ (AFB₁)/kg of feed] in broiler productivity, biochemical parameters, macroscopic and microscopic liver changes, and AFB₁ liver residues. The influence of Na-B (0.3%) and monensin (MON, 100 mg/kg), alone or in combination, was investigated in depth. The dietary treatments were as follows: treatment (T) 1: basal diet (B); T2: B + MON; T3: B + Na-B; T4: B + Na-B + MON; T5: B + AFB₁; T6: B + AFB₁ + Na-B + MON; T7: B + AFB₁ + MON; T8: B + AFB₁ + Na-B. Birds were fed dietary treatments for 28 d (d 18 to 46). No significant differences (P < 0.05) were observed among treatments with respect to broiler performance, biochemical parameters, or relative liver weights. With the exception of T8, all livers showed histopathological alterations, with accumulation of fat vacuoles. The normal appearance of livers from T8 showed the protective effect of Na-B against aflatoxicosis. The residual AFB₁ levels in livers from T5 to T8 ranged from 0.2 to 1.0 ng/g and were higher in livers from T6 (P < 0.05). Results of this study indicate a competition between AFB₁ and MON for adsorption sites on Na-B when feed contains low levels of the toxin, indicating a nonselective adsorption capacity of this particular Na-B. In addition, significant levels of AFB₁ in livers indicate that this determination is an important technique not only for diagnosis of aflatoxicosis in broilers, but also for quality control of avian products.

  1. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.

    PubMed

    Tseng, Ru-Ling

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  2. Aqueous carrier waveguide in a flow cytometer

    DOEpatents

    Mariella, R.P. Jr.; Engh, G. van den; Northrup, M.A.

    1995-12-12

    The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified. 6 figs.

  3. Medical microscopic image matching based on relativity

    NASA Astrophysics Data System (ADS)

    Xie, Fengying; Zhu, Liangen; Jiang, Zhiguo

    2003-12-01

    In this paper, an effective medical micro-optical image matching algorithm based on relativity is described. The algorithm includes the following steps: Firstly, selecting a sub-area that has obvious character in one of the two images as standard image; Secondly, finding the right matching position in the other image; Thirdly, applying coordinate transformation to merge the two images together. As a kind of application of image matching in medical micro-optical image, this method overcomes the shortcoming of microscope whose visual field is little and makes it possible to watch a big object or many objects in one view. Simultaneously it implements adaptive selection of standard image, and has a satisfied matching speed and result.

  4. A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors

    NASA Astrophysics Data System (ADS)

    Deligkaris, Christos

    2018-04-01

    The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena. Textbooks may adequately discuss polarization, but there is little material in active learning labs and tutorials on this topic. Since polarization of materials is a microscopic phenomenon, instructors often use diagrams and figures on the classroom board to explain the process in a lecture setting. In this paper I will describe a classroom activity where the students play the role of electrons as an alternative option.

  5. Cheese mites and other delicacies: the introduction of test objects into microscopy.

    PubMed

    Schickore, Jutta

    2003-01-01

    In the 1820s, certain minute objects began to be used regularly as tests for microscopes. Scales of insects, animal hairs and tiny leaves served as convenient means to assess their optical performance. It was a peculiar conjunction of optics, astronomy and natural history that formed the intellectual background for the emergence of the tests; and their establishment was greatly facilitated by the culture of conversation and competition in which microscopical practice was embedded. The introduction of the tests soon gave rise to a peculiar and highly productive interaction: the application of test objects incited instrument makers to aspire after technical improvements. These pursuits led, in turn, to a differentiation and refinement of the tests themselves, which then again suggested specific kinds of improvements. Historians have paid only scant attention to these issues. But the early history of test objects deserves thorough investigation. In fact, it provides a key to the understanding of the intellectual and social contexts and the dynamics of microscopy in early 19th-century Britain.

  6. Effect of cellulose nanocrystals on crystallization kinetics of polycaprolactone

    NASA Astrophysics Data System (ADS)

    Migler, Kalman; Roy, Debjani; Kotula, Anthony; Natarajan, Bharath; Gilman, Jeffrey; Fox, Douglas

    The development of biocompatible polymer composites that enhance mechanical properties while maintaining thermoplastic processability is a longstanding goal in sustainable materials. Here we compatibilize a crystallizable polymer and a nano-fiber via surface modification and study the properties and crystallization kinetics of the resulting composite. First we demonstrate that polycaprolactone (PCL) and cellulose nanocrystals (CNCs) can be well-compatibilized by replacing the Na+ of sulfated cellulose nanocrystals (Na-CNCs) with tertiary butyl ammonium cations and then melt mixing via twin-screw extrusion. Transmission electron microscope and high temperature melt rheology show that the modified CNCs were dispersed in the polymer matrix. We find the crystallization kinetics are substantially affected by the CNC as indicated by the simultaneous measures of modulus and conformational states; higher loadings of CNCs accelerated the kinetics. We further correlate the crystallization kinetics, mechanical properties and stability.

  7. Optical Interferometric Micrometrology

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.; Lauer, James R.

    1989-01-01

    Resolutions in angstrom and subangstrom range sought for atomic-scale surface probes. Experimental optical micrometrological system built to demonstrate calibration of piezoelectric transducer to displacement sensitivity of few angstroms. Objective to develop relatively simple system producing and measuring translation, across surface of specimen, of stylus in atomic-force or scanning tunneling microscope. Laser interferometer used to calibrate piezoelectric transducer used in atomic-force microscope. Electronic portion of calibration system made of commercially available components.

  8. Dental microwear textures: reconstructing diets of fossil mammals

    NASA Astrophysics Data System (ADS)

    DeSantis, Larisa R. G.

    2016-06-01

    Dietary information of fossil mammals can be revealed via the analysis of tooth morphology, tooth wear, tooth geochemistry, and the microscopic wear patterns on tooth surfaces resulting from food processing. Although dental microwear has long been used by anthropologists and paleontologists to clarify diets in a diversity of mammals, until recently these methods focused on the counting of wear features (e.g., pits and scratches) from two-dimensional surfaces (typically via scanning electron microscopes or low-magnification light microscopes). The analysis of dental microwear textures can instead reveal dietary information in a broad range of herbivorous, omnivorous, and carnivorous mammals by characterizing microscopic tooth surfaces in three-dimensions, without the counting of individual surface features. To date, dental microwear textures in ungulates, xenarthrans, marsupials, carnivorans, and primates (including humans and their ancestors) are correlated with known dietary behavior in extant taxa and reconstruct ancient diets in a diversity of prehistoric mammals. For example, tough versus hard object feeding can be characterized across disparate phylogenetic groups and can distinguish grazers, folivorous, and flesh consumers (tougher food consumers) from woody browsers, frugivores, and bone consumers (harder object feeders). This paper reviews how dental microwear textures can be useful to reconstructing diets in a broad array of living and extinct mammals, with commentary on areas of future research.

  9. Dual-modal three-dimensional imaging of single cells with isometric high resolution using an optical projection tomography microscope

    NASA Astrophysics Data System (ADS)

    Miao, Qin; Rahn, J. Richard; Tourovskaia, Anna; Meyer, Michael G.; Neumann, Thomas; Nelson, Alan C.; Seibel, Eric J.

    2009-11-01

    The practice of clinical cytology relies on bright-field microscopy using absorption dyes like hematoxylin and eosin in the transmission mode, while the practice of research microscopy relies on fluorescence microscopy in the epi-illumination mode. The optical projection tomography microscope is an optical microscope that can generate 3-D images of single cells with isometric high resolution both in absorption and fluorescence mode. Although the depth of field of the microscope objective is in the submicron range, it can be extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. Cells suspended in optical gel flow through a custom-designed microcapillary. Multiple pseudoprojection images are taken by rotating the microcapillary. After these pseudoprojection images are further aligned, computed tomography methods are applied to create 3-D reconstruction. 3-D reconstructed images of single cells are shown in both absorption and fluorescence mode. Fluorescence spatial resolution is measured at 0.35 μm in both axial and lateral dimensions. Since fluorescence and absorption images are taken in two different rotations, mechanical error may cause misalignment of 3-D images. This mechanical error is estimated to be within the resolution of the system.

  10. Detection of blob objects in microscopic zebrafish images based on gradient vector diffusion.

    PubMed

    Li, Gang; Liu, Tianming; Nie, Jingxin; Guo, Lei; Malicki, Jarema; Mara, Andrew; Holley, Scott A; Xia, Weiming; Wong, Stephen T C

    2007-10-01

    The zebrafish has become an important vertebrate animal model for the study of developmental biology, functional genomics, and disease mechanisms. It is also being used for drug discovery. Computerized detection of blob objects has been one of the important tasks in quantitative phenotyping of zebrafish. We present a new automated method that is able to detect blob objects, such as nuclei or cells in microscopic zebrafish images. This method is composed of three key steps. The first step is to produce a diffused gradient vector field by a physical elastic deformable model. In the second step, the flux image is computed on the diffused gradient vector field. The third step performs thresholding and nonmaximum suppression based on the flux image. We report the validation and experimental results of this method using zebrafish image datasets from three independent research labs. Both sensitivity and specificity of this method are over 90%. This method is able to differentiate closely juxtaposed or connected blob objects, with high sensitivity and specificity in different situations. It is characterized by a good, consistent performance in blob object detection.

  11. Response of the Higher Basidiomycetic Ganoderma resinaceum to Sodium Chloride Stress

    PubMed Central

    Mohamed, Eman H. F. A.; Abd Elzaher, E. H. F.

    2007-01-01

    Ganoderma resinaceum tolerated sodium chloride salt stress within a range of 0 mM till 300 mM. It responded to salt stress with fluctuation in proline formation at different NaCl concentrations. However,the mycelial dry weight,total protein contents and exopolysaccharides did not changed considerably. Increasing sodium chloride concentration led to morphological alteration in fungal mycelia with disappearance of fungal cell wall,plasmolysis,and vacuolation as indicated with electron microscopic examination of the fungal growth. PMID:24015082

  12. K-space polarimetry of bullseye plasmon antennas

    PubMed Central

    Osorio, Clara I.; Mohtashami, Abbas; Koenderink, A. Femius

    2015-01-01

    Surface plasmon resonators can drastically redistribute incident light over different output wave vectors and polarizations. This can lead for instance to sub-diffraction sized nanoapertures in metal films that beam and to nanoparticle antennas that enable efficient conversion of photons between spatial modes, or helicity channels. We present a polarimetric Fourier microscope as a new experimental tool to completely characterize the angle-dependent polarization-resolved scattering of single nanostructures. Polarimetry allows determining the full Stokes parameters from just six Fourier images. The degree of polarization and the polarization ellipse are measured for each scattering direction collected by a high NA objective. We showcase the method on plasmonic bullseye antennas in a metal film, which are known to beam light efficiently. We find rich results for the polarization state of the beamed light, including complete conversion of input polarization from linear to circular and from one helicity to another. In addition to uncovering new physics for plasmonic groove antennas, the described technique projects to have a large impact in nanophotonics, in particular towards the investigation of a broad range of phenomena ranging from photon spin Hall effects, polarization to orbital angular momentum transfer and design of plasmon antennas. PMID:25927570

  13. K-space polarimetry of bullseye plasmon antennas.

    PubMed

    Osorio, Clara I; Mohtashami, Abbas; Koenderink, A Femius

    2015-04-30

    Surface plasmon resonators can drastically redistribute incident light over different output wave vectors and polarizations. This can lead for instance to sub-diffraction sized nanoapertures in metal films that beam and to nanoparticle antennas that enable efficient conversion of photons between spatial modes, or helicity channels. We present a polarimetric Fourier microscope as a new experimental tool to completely characterize the angle-dependent polarization-resolved scattering of single nanostructures. Polarimetry allows determining the full Stokes parameters from just six Fourier images. The degree of polarization and the polarization ellipse are measured for each scattering direction collected by a high NA objective. We showcase the method on plasmonic bullseye antennas in a metal film, which are known to beam light efficiently. We find rich results for the polarization state of the beamed light, including complete conversion of input polarization from linear to circular and from one helicity to another. In addition to uncovering new physics for plasmonic groove antennas, the described technique projects to have a large impact in nanophotonics, in particular towards the investigation of a broad range of phenomena ranging from photon spin Hall effects, polarization to orbital angular momentum transfer and design of plasmon antennas.

  14. Experiment and analysis of shock waves radiated from pulse laser focusing in a gelatin gel

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuyuki; Ando, Keita

    2017-11-01

    A fundamental understanding of shock and bubble dynamics in human tissues is essential to laser application for medical purposes. Here, we experimentally study the dynamics of shock waves in viscoelastic media. A nanosecond laser pulse of wavelength at 532 nm and of energy up to 2.66 +/- 0.09 mJ was focused through a microscope objective lens (10 x, NA = 0.30) into a gel of gelatin concentration at 3 and 10 wt%; a shock wave and a bubble can be generated, respectively, by rapid expansion of the laser-induced plasma and local heat deposition after the plasma recombines. The shock propagation and the bubble growth were recorded by a ultra-high-speed camera at 100 Mfps. The shock evolution was determined by image analysis of the recording and the shock pressure in the near field was computed according to the Rankine-Hugoniot relation. The far-field pressure was measured by a hydrophone. In the poster, we will present the decay rate of the shock pressure in the near and far fields and examine viscous effects on the shock dynamics. The Research Grant of Keio Leading-edge Laboratory of Science & Technology.

  15. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solehudin, Agus, E-mail: asolehudin@upi.edu; Nurdin, Isdiriayani

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAHmore » concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.« less

  16. Near Wall measurement in Turbulent Flow over Rough Wall using microscopic HPIV

    NASA Astrophysics Data System (ADS)

    Talapatra, Siddharth; Hong, Jiarong; Katz, Joseph

    2009-11-01

    Using holographic PIV, 3D velocity measurements are being performed in a turbulent rough wall channel flow. Our objective is to examine the contribution of coherent structures to the flow dynamics, momentum and energy fluxes in the roughness sublayer. The 0.45mm high, pyramid-shaped roughness is uniformly distributed on the top and bottom surfaces of a 5X20cm rectangular channel flow, where the Reτ is 3400. To facilitate recording of holograms through a rough plate, the working fluid is a concentrated solution of NaI in water, whose optical refractive index is matched with that of the acrylic rough plates. The test section is illuminated by a collimated laser beam from the top, and the sample volume extends from the bottom wall up to 7 roughness heights. After passing through the sample volume, the in-line hologram is magnified and recorded on a 4864X3248 pixels camera at a resolution of 0.74μm/pixel. The flow is locally seeded with 2μm particles. Reconstruction, spatial filtering and particle tracking provide the 3D velocity field. This approach has been successfully implemented recently, as preliminary data demonstrate.

  17. Cuticular surface damage of Ascaridia galli adult worms treated with Veitchia merrillii betel nuts extract in vitro

    PubMed Central

    Balqis, Ummu; Hambal, Muhammad; Rinidar; Athaillah, Farida; Ismail; Azhar; Vanda, Henni; Darmawi

    2017-01-01

    Aim: The objective of this research was to in vitro evaluate the cuticular surface damage of Ascaridia galli adult worms treated with ethanolic extract of betel nuts Veitchia merrillii. Materials and Methods: Phytochemical screening was done using FeCl3, Wagner and Dragendorff reagents, NaOH, MgHCl, and Liebermann–Burchard reaction test. Amount of 16 worms were segregated into four groups with three replicates. Four worms of each group submerged into phosphate buffered saline, 25 mg/ml, and 75 mg/ml crude ethanolic extract of V. merrillii, and 15 mg/ml albendazole. The effect of these extract was observed 40 h after incubation as soon as worms death. The worms were sectioned transversally and were explored for any cuticular histopathological changes in their body surface under microscope. Results: We found that the ethanolic extract of V. merrillii betel nuts contains tannins, alkaloids, flavonoids, triterpenoids, and saponins. The ethanolic extract of betel nuts V. merrillii induces surface alterations caused cuticular damage of A. galli adult worms. Conclusion: We concluded that ethanolic extract of betel nuts V. merrillii possess anthelmintic activity caused cuticular damage of A. galli adult worms. PMID:28831213

  18. Single fibre strength of cellulosic fibre extracted from "Belatlan roots" plant

    NASA Astrophysics Data System (ADS)

    M. Hanis. A., H.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Fahmi, I.

    2017-12-01

    The tensile strength of a fibre extracted from "Belatlan Root" plant was investigated as potential reinforcement material in polymeric composites. Following retting process, the fibres were manually extracted from "Belatlan" root's plant. The fibres were treated with 5 % 10 %, 15 %, and 20 % sodium hydroxide (NaOH) wt. % concentration for 24 h. The single fibre tests were then performed in accordance with ASTM D3822-07 standard. The surfaces of the fibres prior and after the treatment were observed with a metallurgical Microscope MT8100 and the physical properties were recorded. Physically, in the post treatment, the fibre showed a decrease in diameter with increase in NaOH concentration The results from the mechanical testing indicates that samples subjected to 5 % NaOH treatment yielded the highest tensile strength and elastic modulus at 89.05 MPa ± 2.75 and 3.81 GPa ± 0.09 respectively compared to untreated fibres. This represents an increase of almost 72 % in tensile strength and 42 % for elastic modulus. The findings support the preliminary information for incorporating the "Belatlan Root" as possible reinforcing materials in composite structures.

  19. Investigation of Mixed-Type Craters and the Role of Bifluoride Additives to Produce Zirconia-Toughened Alumina-Based PEO Coating

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Zeeshan; Shin, Seong Hun; Ahmad, Tanveer; Koo, Bon Heun

    2018-05-01

    Al2O3-ZrO2 composite ceramic coatings were prepared on Al6061 aluminum alloy by plasma electrolytic oxidation in Na3PO4-K2ZrF6-Na2SiF6-based alkaline electrolyte. Optimum processing time for the coating formation was found to be 50 min. Cross section and surface morphology of the coatings were analyzed using scanning electron microscope. From the phase and elemental composition analysis, the presence of m-ZrO2 and t-ZrO2 phases was confirmed. It was further observed that the peak intensities of t-ZrO2 and α-Al2O3 phases increased with processing time, which was attributed to the enhanced crystallinity caused by the efficient sintering conditions. Corrosion properties were investigated by potentiodynamic polarization test in 3.5 wt.% NaCl solution. The results showed high improvement in corrosion rate with minimum recorded value 0.25 mmy (mm/year) and corrosion current 0.15 × 10-6 A/cm2.

  20. Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.

    2017-11-01

    A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.

  1. Resolution of 90 nm (lambda/5) in an optical transmission microscope with an annular condenser.

    PubMed

    Vainrub, Arnold; Pustovyy, Oleg; Vodyanoy, Vitaly

    2006-10-01

    Resolution of 90 nm was achieved with a research microscope simply by replacing the standard bright-field condenser with a homebuilt illumination system with a cardioid annular condenser. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects were clearly visible on a calibrated microscope test slide. The resolution increase results from a known narrower diffraction pattern in coherent illumination for the annular aperture compared with the circular aperture. This explanation is supported by an excellent accord of calculated and measured diffraction patterns for a 50 nm radius disk.

  2. Nanoscale modulations in (KLa)(CaW)O-6 and (NaLa)(CaW)O-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licurse, Mark; Borisevich, Albina Y; Davies, Peter

    2012-01-01

    Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) show an incommensurate nanocheckerboard modulation with {approx}9.4 x 9.4 a{sub p} periodicity (a{sub p} {approx} 4 {angstrom} for the cubic perovskite aristotype). For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed with a {approx}16(1 1 0)a{sub p} repeat; the <1 1 0> orientation of the nanostripes is different from the <1 0 0> stripes observed in other mixed A-site systems. Studies using high temperature x-ray diffraction suggest the formation of the complexmore » modulations is associated with small deviations from the ideal 1:1:1:1 stoichiometry of the (A{sup +}La{sup 3+})(CaW)O{sub 6} phases. Z-contrast images acquired on an aberration-corrected microscope provide evidence for deviations from stoichiometry with a {approx}1:15 periodic arrangement of La{sub 4/3}(CaW)O{sub 6}:(NaLa)(CaW)O{sub 6} nano-phases.« less

  3. Concentration and time-dependent effect of initial sodium hypochlorite on the ability of QMix and ethylenediaminetetraacetic acid to remove smear layer.

    PubMed

    Aksel, Hacer; Serper, Ahmet

    2017-01-01

    The aim of this study was to compare the ability of 17% ethylenediaminetetraacetic acid (EDTA) and QMix with different concentrations and time exposures of initial sodium hypochlorite (NaOCl) to remove the smear layer from the root canals. Eighty maxillary central incisors were used. After instrumentation, the teeth were divided into eight experimental groups according to the initial and final rinse. About 2.5% and 5% NaOCl were used during instrumentation and for 1 or 3 min was used as postinstrumentation initial irrigants, and 17% EDTA and QMix used as final irrigants. The apical and middle parts of the specimens were observed by scanning electron microscope. Data were analyzed using the Kruskal-Wallis, Mann-Whitney, and Friedman's test. Regardless of the type of final irrigant, QMix allowed more smear layer removal than EDTA after using 5% initial NaOCl for 3 min. In the apical part of the root canal walls, the smear layer was not completely removed. QMix and EDTA were similarly effective in smear layer removal at the middle parts of the root canal regardless of the concentration and time exposure of initial NaOCl, while none of the irrigation protocols was able to remove smear layer at the apical parts.

  4. Water structure and its influence on the flotation of carbonate and bicarbonate salts.

    PubMed

    Ozdemir, O; Celik, M S; Nickolov, Z S; Miller, J D

    2007-10-15

    Interfacial water structure is a most important parameter that influences the collector adsorption by salt minerals such as borax, potash and trona. According to previous studies, salts can be classified as water structure makers and water structure breakers. Water structure making and breaking properties of salt minerals in their saturated brine solutions are essential to explain their flotation behavior. In this work, water structure making-breaking studies in solutions of carbonate and bicarbonate salts (Na(2)CO(3), K(2)CO(3), NaHCO(3) and NH(4)HCO(3)) in 4 wt% D(2)O in H(2)O mixtures have been performed by FTIR analysis of the OD stretching band. This method reveals a microscopic picture of the water structure making/breaking character of the salts in terms of the hydrogen bonding between the water molecules in solution. The results from the vibrational spectroscopic studies demonstrate that carbonate salts (Na(2)CO(3) and K(2)CO(3)) act as strong structure makers, whereas bicarbonate salts (NaHCO(3) and NH(4)HCO(3)) act as weak structure makers. In addition, the changes in the OD band parameters of carbonate and bicarbonate salt solutions are in agreement with the viscosity characteristics of their solutions.

  5. The coastal environment affects lead and sodium uptake by the moss Hypnum cupressiforme used as an air pollution biomonitor.

    PubMed

    Renaudin, Marie; Leblond, Sébastien; Meyer, Caroline; Rose, Christophe; Lequy, Emeline

    2018-02-01

    Several studies suggest that potential competition exists between marine cations and heavy metals for binding sites on the cell wall of mosses. This competition would impact the heavy metal concentration measured in mosses by biomonitoring programs, which may underestimate air pollution by heavy metals in a coastal environment. In the present study, we aim to identify possible mechanisms affecting lead uptake by mosses in a coastal environment, specifically, the competition between lead (Pb 2+ ) and sodium (Na + ) for binding sites in Hypnum cupressiforme (Hc). We also compared the response of continental and coastal Hc populations to Pb 2+ exposure by immersing the moss samples in artificial solutions that comprised six experimental treatments and subsequently locating and quantifying Pb 2+ and Na + using the sequential elution technique and X-ray microanalyses with a scanning electron microscope. We demonstrated that high concentrations of Pb 2+ prevented Na + from binding to the cell wall. We also examined the effect of the salt acclimation of Hc on Pb 2+ and Na + accumulation. Coastal Hc populations accumulated more Na and less Pb than continental Hc populations in all treatments. Moreover, our results showed treatment effects on the intra/extracellular distribution of Na + , as well as site. This feedback on the influence of salt stress tolerance on Pb 2+ uptake by mosses requires further study and can be investigated for other heavy metals, leading to a better use of mosses as biomonitoring tools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Friction and wear of iron and nickel in sodium hydroxide solutions

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. P.; Miyoshi, K.; Buckley, D. H.

    1983-01-01

    A loaded spherical aluminum oxider rider was made to slide, while in various solutions, on a flat iron or nickel surface reciprocate a distance of 1 cm. Time of experiments was 1 hr during which the rider passed over the center section of the track 540 times. Coeficients of friction were measured throughout the experiments. Wear was measured by scanning the track with a profilometer. Analysis of some of the wear tracks included use of the SEM (scanning electron microscope) and XPS (X-ray photoelectron spectroscopy). Investigated were the effect of various concentrations of NaOH and of water. On iron, increasing NaOH concentration above 0.01 N caused the friction and wear to decrease. This decrease is accompanied by a decrease in surface concentration of ferric oxide (Fe2O3) while more complex iron-oxygen compounds, not clearly identified, also form. At low concentrations of NaOH, such as 0.01 N, where the friction is high, the wear track is badly torn up and the surface is broken. At high concentration, such as 10 N, where the friction is low, the wear track is smooth. The general conclusion is that NaOH forms a protective, low friction film on iron which is destroyed by wear at low concentrations but remains intact at high conentrations of NaOH. Nickel behaves differently than iron in that only a little NaOH gives a low coefficient of friction and a surface which, although roughened in the wear track, remains intact. Previously announced in STAR as N83-10171

  7. [Application of microscopic spectroscopy in quality control of Niuhuang Qingxin pills].

    PubMed

    Nie, Li-Xing; Zhang, Ye; Zhang, Nan-Ping; Hu, Xiao-Ru; Kang, Shuai; Hou, Jian-Zhong; Dai, Zhong; Ma, Shuang-Cheng

    2016-10-01

    Application of microscopic spectroscopy in quality control of Niuhuang Qingxin pills was discussed. First, microscopic characteristics specified by the statutory standard of Niuhuang Qingxin pills were summarized. Then new identification method was established for Dioscoreae Rhizoma, Saigae Tataricae Cornu, Cinnamomi Cortex and Saposhnikoviae Radix. Finally, microscopic spectroscopy was used for test of Dioscoreae Rhizoma's adulterant Dioscoreae Fordii Rhizoma.It was the first time for this technology being applied in adulteration test of Chinese patent medicine.The results showed that Saigae Tataricae Cornu was not detected in 2 batches of Niuhuang Qingxin pills from 1 manufacturer while Dioscoreae Fordii Rhizoma was detected in 3 batches of samples from 2 manufacturers. The proposed methods were accurate, simple, rapid, objective and economic, which offered a more comprehensive approach for quality control of Niuhuang Qingxin pills. It was indicated that conventional technology such as microscopic spectroscopy could play an important role in identification of traditional Chinese medicine whose index ingredient was deficient or tiny. Copyright© by the Chinese Pharmaceutical Association.

  8. Experiments on terahertz 3D scanning microscopic imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Qi

    2016-10-01

    Compared with the visible light and infrared, terahertz (THz) radiation can penetrate nonpolar and nonmetallic materials. There are many studies on the THz coaxial transmission confocal microscopy currently. But few researches on the THz dual-axis reflective confocal microscopy were reported. In this paper, we utilized a dual-axis reflective confocal scanning microscope working at 2.52 THz. In contrast with the THz coaxial transmission confocal microscope, the microscope adopted in this paper can attain higher axial resolution at the expense of reduced lateral resolution, revealing more satisfying 3D imaging capability. Objects such as Chinese characters "Zhong-Hua" written in paper with a pencil and a combined sheet metal which has three layers were scanned. The experimental results indicate that the system can extract two Chinese characters "Zhong," "Hua" or three layers of the combined sheet metal. It can be predicted that the microscope can be applied to biology, medicine and other fields in the future due to its favorable 3D imaging capability.

  9. Measurement of glomerulus diameter and Bowman's space width of renal albino rats.

    PubMed

    Kotyk, Taras; Dey, Nilanjan; Ashour, Amira S; Balas-Timar, Dana; Chakraborty, Sayan; Ashour, Ahmed S; Tavares, João Manuel R S

    2016-04-01

    Glomerulus diameter and Bowman's space width in renal microscopic images indicate various diseases. Therefore, the detection of the renal corpuscle and related objects is a key step in histopathological evaluation of renal microscopic images. However, the task of automatic glomeruli detection is challenging due to their wide intensity variation, besides the inconsistency in terms of shape and size of the glomeruli in the renal corpuscle. Here, a novel solution is proposed which includes the Particles Analyzer technique based on median filter for morphological image processing to detect the renal corpuscle objects. Afterwards, the glomerulus diameter and Bowman's space width are measured. The solution was tested with a dataset of 21 rats' renal corpuscle images acquired using light microscope. The experimental results proved that the proposed solution can detect the renal corpuscle and its objects efficiently. As well as, the proposed solution has the ability to manage any input images assuring its robustness to the deformations of the glomeruli even with the glomerular hypertrophy cases. Also, the results reported significant difference between the control and affected (due to ingested additional daily dose (14.6mg) of fructose) groups in terms of glomerulus diameter (97.40±19.02μm and 177.03±54.48μm, respectively). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Interference Confocal Microscope Integrated with Spatial Phase Shifter.

    PubMed

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-08-24

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.

  11. Magnified hard x-ray microtomography: toward tomography with submicron resolution

    NASA Astrophysics Data System (ADS)

    Schroer, Christian G.; Benner, Boris; Guenzler, Til F.; Kuhlmann, Marion; Lengeler, Bruno; Rau, Christoph; Weitkamp, Timm; Snigirev, Anatoly A.; Snigireva, Irina

    2002-01-01

    Parabolic compound refractive lenses (PCRLs) are high quality imaging optics for hard x-rays that can be used as an objective lens in a new type of hard x-ray full field microscope. Using an aluminium PCRL, this new type of microscope has been shown to have a resolution of 350 nm. Further improvement of the resolution down to 50 nm can be expected using beryllium as a lens material. The large depth of field (several mm) of the microscope results in sharp projection images for samples that fit into the field of view of about 300 micrometers. This allows to combine magnified imaging with tomographic techniques. First results of magnified microtomography are shown. Contrast formation in the microscope and the consequences for tomographic reconstruction are discussed. An outlook on further developments is given.

  12. Calibrating excitation light fluxes for quantitative light microscopy in cell biology

    PubMed Central

    Grünwald, David; Shenoy, Shailesh M; Burke, Sean; Singer, Robert H

    2011-01-01

    Power output of light bulbs changes over time and the total energy delivered will depend on the optical beam path of the microscope, filter sets and objectives used, thus making comparison between experiments performed on different microscopes complicated. Using a thermocoupled power meter, it is possible to measure the exact amount of light applied to a specimen in fluorescence microscopy, regardless of the light source, as the light power measured can be translated into a power density at the sample. This widely used and simple tool forms the basis of a new degree of calibration precision and comparability of results among experiments and setups. Here we describe an easy-to-follow protocol that allows researchers to precisely estimate excitation intensities in the object plane, using commercially available opto-mechanical components. The total duration of this protocol for one objective and six filter cubes is 75 min including start-up time for the lamp. PMID:18974739

  13. Microscopic fluorescence spectral analysis of basal cell carcinomas

    NASA Astrophysics Data System (ADS)

    He, Qingli; Lui, Harvey; Zloty, David; Cowan, Bryce; Warshawski, Larry; McLean, David I.; Zeng, Haishan

    2007-05-01

    Background and Objectives. Laser-induced autofluorescence (LIAF) is a promising tool for cancer diagnosis. This method is based on the differences in autofluorescence spectra between normal and cancerous tissues, but the underlined mechanisms are not well understood. The objective of this research is to study the microscopic origins and intrinsic fluorescence properties of basal cell carcinoma (BCC) for better understanding of the mechanism of in vivo fluorescence detection and margin delineation of BCCs on skin patients. A home-made micro- spectrophotometer (MSP) system was used to image the fluorophore distribution and to measure the fluorescence spectra of various microscopic structures and regions on frozen tissue sections. Materials and Methods. BCC tissue samples were obtained from 14 patients undergoing surgical resections. After surgical removal, each tissue sample was immediately embedded in OCT medium and snap-frozen in liquid nitrogen. The frozen tissue block was then cut into 16-μm thickness sections using a cryostat microtome and placed on microscopic glass slides. The sections for fluorescence study were kept unstained and unfixed, and then analyzed by the MSP system. The adjacent tissue sections were H&E stained for histopathological examination and also served to help identify various microstructures on the adjacent unstained sections. The MSP system has all the functions of a conventional microscope, plus the ability of performing spectral analysis on selected micro-areas of a microscopic sample. For tissue fluorescence analysis, 442nm He-Cd laser light is used to illuminate and excite the unstained tissue sections. A 473-nm long pass filter was inserted behind the microscope objective to block the transmitted laser light while passing longer wavelength fluorescence signal. The fluorescence image of the sample can be viewed through the eyepieces and also recorded by a CCD camera. An optical fiber is mounted onto the image plane of the photograph port of the microscope to collect light from a specific micro area of the sample. The collected light is transmitted via the fiber to a disperserve type CCD spectrometer for spectral analysis. Results. The measurement results showed significant spectral differences between normal and cancerous tissues. For normal tissue regions, the spectral results agreed with our previous findings on autofluorescence of normal skin sections. For the cancerous regions, the epidermis showed very weak fluorescence signal, while the stratum corneum exhibited fluorescence emissions peaking at about 510 nm. In the dermis, the basal cell island and a band of surrounding areas showed very weak fluorescence signal, while distal dermis above and below the basal cell island showed greater fluorescence signal but with different spectral shapes. The very weak autofluorescence from the basal cell island and its surrounding area may be attributed to their degenerative properties that limited the production of collagens. Conclusions. The obtained microscopic results very well explain the in vivo fluorescence properties of BCC lesions in that they have decreased fluorescence intensity compared to the surrounding normal skin. The intrinsic spectra of various microstructures and the microscopic fluorescence images (corresponding fluorophore distribution in tissue) obtained in this study will be used for further theoretical modeling of in vivo fluorescence spectroscopy and imaging of skin cancers.

  14. In vivo cellular imaging with microscopes enabled by MEMS scanners

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  15. Efficacy of Er,Cr:YSGG Laser in Removing Smear Layer and Debris with Two Different Output Powers

    PubMed Central

    Bolhari, Behnam; Ehsani, Sara; Etemadi, Ardavan; Shafaq, Mohammad

    2014-01-01

    Abstract Objective: The purpose of this study was to evaluate the effectiveness of the erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser in removing debris and the smear layer using two different output powers on the apical, middle, and coronal segments of root canal walls. Background data: Previous literature has failed to evaluate the exclusive effect of Er,Cr:YSGG laser on the quality of smear layer and debris removal in all three segments of the root canal space. Methods: Sixty extracted teeth were included in the study. After instrumentation, samples were divided into three experimental groups and one positive control group with no further treatment. In group 1, a final irrigation was performed using ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite (NaOCl), sequentially. In group 2, the samples were treated with a 2.78 μm Er,Cr:YSGG laser with an output power of 1.5 W. The same laser was used in group 3, but with an output power of 2.5 W. Scanning electron microscope (SEM) images from the coronal, middle, and apical thirds of the roots were prepared and evaluated for both smear layer and debris removal by three blinded observers. Results: The results showed no differences between groups 1 and 2 regarding the quality of smear layer removal in all areas. However, the 2.5 W laser failed to remove the smear layer effectively. Regarding debris removal, the EDTA and NaOCl irrigation showed significantly better outcomes (adjusted p<0.05) in all areas. Conclusions: This study raises questions about the overall cleaning abilities of Er,Cr:YSGG lasers. PMID:25198390

  16. CUSUM analysis of learning curves for the head-mounted microscope in phonomicrosurgery.

    PubMed

    Chen, Ting; Vamos, Andrew C; Dailey, Seth H; Jiang, Jack J

    2016-10-01

    To observe the learning curve of the head-mounted microscope in a phonomicrosurgery simulator using cumulative summation (CUSUM) analysis, which incorporates a magnetic phonomicrosurgery instrument tracking system (MPTS). Retrospective case series. Eight subjects (6 medical students and 2 surgeons inexperienced in phonomicrosurgery) operated on phonomicrosurgical simulation cutting tasks while using the head-mounted microscope for 400 minutes total. Two 20-minute sessions occurred each day for 10 total days, with operation quality (Qs ) and completion time (T) being recorded after each session. Cumulative summation analysis of Qs and T was performed by using subjects' performance data from trials completed using a traditional standing microscope as success criteria. The motion parameters from the head-mounted microscope were significantly better than the standing microscope (P < 0.01), but T was longer than that from the standing microscope (P < 0.01). No subject successfully adapted to the head-mounted microscope, as assessed by CUSUM analysis. Cumulative summation analysis can objectively monitor the learning process associated with a phonomicrosurgical simulator system, ultimately providing a tool to assess learning status. Also, motion parameters determined by our MPTS showed that, although the head-mounted microscope provides better motion control, worse Qs and longer T resulted. This decrease in Qs is likely a result of the relatively unstable visual environment that it provides. Overall, the inexperienced surgeons participating in this study failed to adapt to the head-mounted microscope in our simulated phonomicrosurgery environment. 4 Laryngoscope, 126:2295-2300, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  17. An open source, wireless capable miniature microscope system

    NASA Astrophysics Data System (ADS)

    Liberti, William A., III; Perkins, L. Nathan; Leman, Daniel P.; Gardner, Timothy J.

    2017-08-01

    Objective. Fluorescence imaging through head-mounted microscopes in freely behaving animals is becoming a standard method to study neural circuit function. Flexible, open-source designs are needed to spur evolution of the method. Approach. We describe a miniature microscope for single-photon fluorescence imaging in freely behaving animals. The device is made from 3D printed parts and off-the-shelf components. These microscopes weigh less than 1.8 g, can be configured to image a variety of fluorophores, and can be used wirelessly or in conjunction with active commutators. Microscope control software, based in Swift for macOS, provides low-latency image processing capabilities for closed-loop, or BMI, experiments. Main results. Miniature microscopes were deployed in the songbird premotor region HVC (used as a proper name), in singing zebra finches. Individual neurons yield temporally precise patterns of calcium activity that are consistent over repeated renditions of song. Several cells were tracked over timescales of weeks and months, providing an opportunity to study learning related changes in HVC. Significance. 3D printed miniature microscopes, composed completely of consumer grade components, are a cost-effective, modular option for head-mounting imaging. These easily constructed and customizable tools provide access to cell-type specific neural ensembles over timescales of weeks.

  18. Speckle-free and halo-free low coherent Mach-Zehnder quantitative-phase-imaging module as a replacement of objective lens in conventional inverted microscopes

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Yamada, Hidenao; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio

    2018-02-01

    We developed a compact Mach-Zehnder interferometer module to be used as a replacement of the objective lens in a conventional inverted microscope (Nikon, TS100-F) in order to make them quantitative phase microscopes. The module has a 90-degree-flipped U-shape; the dimensions of the module are 160 mm by 120 mm by 40 mm and the weight is 380 grams. The Mach-Zehnder interferometer equipped with the separate reference and sample arms was implemented in this U-shaped housing and the path-length difference between the two arms was manually adjustable. The sample under test was put on the stage of the microscope and a sample light went through it. Both arms had identical achromatic lenses for image formation and the lateral positions of them were also manually adjustable. Therefore, temporally and spatially low coherent illumination was applicable because the users were able to balance precisely the path length of the two arms and to overlap the two wavefronts. In the experiment, spectrally filtered LED light for illumination (wavelength = 633 nm and bandwidth = 3 nm) was input to the interferometer module via a 50 micrometer core optical fiber. We have successfully captured full-field interference images by a camera put on the trinocular tube of the microscope and constructed quantitative phase images of the cultured cells by means of the quarter-wavelength phase shifting algorithm. The resultant quantitative phase images were speckle-free and halo-free due to spectrally and spatially low coherent illumination.

  19. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications.

    PubMed

    Mudanyali, Onur; Tseng, Derek; Oh, Chulwoo; Isikman, Serhan O; Sencan, Ikbal; Bishara, Waheb; Oztoprak, Cetin; Seo, Sungkyu; Khademhosseini, Bahar; Ozcan, Aydogan

    2010-06-07

    Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing approximately 46 grams with dimensions smaller than 4.2 cm x 4.2 cm x 5.8 cm that achieves sub-cellular resolution over a large field of view of approximately 24 mm(2). This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.

  20. Resolution and throughput optimized intraoperative spectrally encoded coherence tomography and reflectometry (iSECTR) for multimodal imaging during ophthalmic microsurgery

    NASA Astrophysics Data System (ADS)

    Malone, Joseph D.; El-Haddad, Mohamed T.; Leeburg, Kelsey C.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Limited visualization of semi-transparent structures in the eye remains a critical barrier to improving clinical outcomes and developing novel surgical techniques. While increases in imaging speed has enabled intraoperative optical coherence tomography (iOCT) imaging of surgical dynamics, several critical barriers to clinical adoption remain. Specifically, these include (1) static field-of-views (FOVs) requiring manual instrument-tracking; (2) high frame-rates require sparse sampling, which limits FOV; and (3) small iOCT FOV also limits the ability to co-register data with surgical microscopy. We previously addressed these limitations in image-guided ophthalmic microsurgery by developing microscope-integrated multimodal intraoperative swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography. Complementary en face images enabled orientation and coregistration with the widefield surgical microscope view while OCT imaging enabled depth-resolved visualization of surgical instrument positions relative to anatomic structures-of-interest. In addition, we demonstrated novel integrated segmentation overlays for augmented-reality surgical guidance. Unfortunately, our previous system lacked the resolution and optical throughput for in vivo retinal imaging and necessitated removal of cornea and lens. These limitations were predominately a result of optical aberrations from imaging through a shared surgical microscope objective lens, which was modeled as a paraxial surface. Here, we present an optimized intraoperative spectrally encoded coherence tomography and reflectometry (iSECTR) system. We use a novel lens characterization method to develop an accurate model of surgical microscope objective performance and balance out inherent aberrations using iSECTR relay optics. Using this system, we demonstrate in vivo multimodal ophthalmic imaging through a surgical microscope

  1. Optical contact micrometer

    DOEpatents

    Jacobson, Steven D.

    2014-08-19

    Certain examples provide optical contact micrometers and methods of use. An example optical contact micrometer includes a pair of opposable lenses to receive an object and immobilize the object in a position. The example optical contact micrometer includes a pair of opposable mirrors positioned with respect to the pair of lenses to facilitate viewing of the object through the lenses. The example optical contact micrometer includes a microscope to facilitate viewing of the object through the lenses via the mirrors; and an interferometer to obtain one or more measurements of the object.

  2. Electroless plating Cu-Co-P polyalloy on UV/ozonolysis irradiated polyethylene terephthalate film and its corrosion resistance

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Bi, Siyi; Zhao, Hang; Xu, Yumeng; Mu, Yuhang; Lu, Yinxiang

    2017-05-01

    High corrosion resistant Cu-Co-P coatings were firstly prepared on polyethylene terephthalate (PET) substrate by electroless plating in combination with UV/ozonolysis irradiation under optimized cobalt sulfate heptahydrate concentration, pH value, plating temperature and time. The copper polyalloy/PET composite can be obtained in three steps, namely: (i) the generation of oxygen-containing functionalities (carboxylic groups) onto PET surface through UV irradiation combined with ozone, (ii) Cu seeding catalysts were obtained after being immersed into cupric citrate and NaBH4 solutions subsequently, and (iii) Cu-Co-P polyalloy metallization using electroless plating bath. Attenuated total reflection fourier transformation infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), water contact angle measurement and energy dispersive X-ray analysis (EDAX) were utilized to track the surface changes during the whole process. The electroless plating conditions were optimized by an orthogonal experiment (L9(3)4) for Cu-Co-P coating as follows: CoSO4·7H2O addition of 0.08 M, pH value, plating temperature and time were set on 10.0, 35 °C and 25 min, respectively. Under the optimal conditions, copper polyalloy possessed high adhesive strength and the lowest surface resistance (8.06 Ω/sq), while maintaining reliability even after over 1000 times of bending and mechanical stress. The results of scanning electron microscope (SEM) and atomic force microscope (AFM) measurements showed that Cu-Co-P layer formed on PET surface was imparted with fine uniformity and high compactness. Electrochemical test revealed the optimized Cu-Co-P coatings exhibited high corrosion resistance in NaCl, NaOH and HCl solutions, respectively. The excellent electromagnetic interference shielding effectiveness (EMI SE >99.999% at frequency ranging from 30 MHz to 1000 MHz) of copper polyalloy/PET composites was confirmed by the spectrum analyzer. Therefore, this copper polyalloy will have potential applications in microelectronics packaging and coatings for anti-corrosion and electromagnetic interference shielding.

  3. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Jiangdong

    The effects of laser shock processing on microstructure, the residual stress, and hot corrosion behavior of the Ni-based superalloy GH202 were investigated. The microstructures of GH202 before and after laser shock processing (LSP) were characterized by electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). A large number of crystal defects (twins, dislocation arrays, and high dense tangles) were generated on the surface of GH202 treated with LSP. The cross-sectional compressive residual stress and micro-hardness of specimens treated by LSP were improved significantly. The corrosion kinetics of GH202 with or without LSP treatment at 800 °C and 900 °C weremore » investigated. Analysis by X-ray diffraction (XRD) revealed that the corrosion products mainly consist of Cr{sub 2}O{sub 3}, TiO{sub 2}, Al{sub 2}O{sub 3}, NiO, CrS, Ni{sub 3}S{sub 2}, and Na{sub 2}CrO{sub 4}. The surface and cross-section morphologies were observed by scanning electron microscope (SEM) combined with energy dispersive spectroscopy (EDS). The results confirmed that the crystal defects induced by LSP promotes the creation of diffusion paths for elements (Cr, Al, and Ti), allowing the formation of tiny homogeneous oxidation films in a very short time. Additionally, the spallation of oxidation film on the treated specimens was alleviated significantly. Overall, the hot corrosion resistance of Ni-based GH202 induced by LSP was improved in Na{sub 2}SO{sub 4} and NaCl molten salt from 800 °C to 900 °C. - Highlights: • Microstructure changes of GH202 before and after LSP were observed by EBSD and TEM. • The hardness and residual compressive stress after LSP were significantly increased. • The increased diffusion paths for elements helped to form oxidation films quickly. • Hot corrosion resistance of GH202 after LSP was significantly improved.« less

  4. Proper alignment of the microscope.

    PubMed

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Composition dependence of electric-field-induced structure of Bi{sub 1/2}(Na{sub 1−x}K{sub x}){sub 1/2}TiO{sub 3} lead-free piezoelectric ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khansur, Neamul H.; Department of Materials Science, University of Erlangen-Nürnberg, Erlangen 91058; Benton, Rachel

    2016-06-21

    Microscopic origins of the electric-field-induced strain for three compositions of Bi{sub 1/2}(Na{sub 1−x}K{sub x}){sub 1/2}TiO{sub 3} (x = 0.14, 0.18, and 0.22) (BNKT100x) ceramics have been compared using in situ high-energy (87.12 keV) X-ray diffraction. In the as-processed state, average crystallographic structure of BNKT14 and BNKT18 were found to be of rhombohedral symmetry, while BNKT22 was tetragonal. Diffraction data collected under electric field showed that both the BNKT14 and BNKT18 exhibit induced lattice strain and non-180° ferroelectric domain switching without any apparent phase transformation. The BNKT22 composition, in addition to the lattice strain and domain switching, showed an electric-field-induced transformation from a tetragonalmore » to mixed tetragonal-rhombohedral state. Despite the difference in the origin of microscopic strain responses in these compositions, the measured macroscopic poling strains of 0.46% (BNKT14), 0.43% (BNKT18), and 0.44% (BNKT22) are similar. In addition, the application of a second poling field of opposite polarity to the first increased the magnitude of non-180° ferroelectric domain texture. This was suggested to be related to the existence of an asymmetric internal bias field.« less

  6. Exfoliative cytology of buccal squames: A quantitative cytomorphometric analysis of patients with diabetes

    PubMed Central

    Sankhla, Bharat; Sharma, Abhishek; Shetty, Raju Singam; Bolla, Sheetal Chowdary; Gantha, Naga Sribala; Reddy, Prasun

    2014-01-01

    Background: Diabetes is a third leading cause of mortality and morbidity in the world. Diabetes is one of the most common endocrine metabolic disorders and its prevalence has been increasing worldwide. Oral exfoliative cytology may be a more appropriate adjunctive diagnostic tool in conditions like diabetes mellitus, where the invasive techniques lose viability. Aims: The purpose of this study is to analyze the cytomorphometric changes in the exfoliated cells of the oral mucosa, as an adjunct to the diagnosis of diabetes. Materials and Methods: Smears were taken from the buccal mucosa of 30 diabetes patients (study group) and 30 healthy individuals (control group). All the smears were stained with rapid Papanicolaou stain (PAP). In the PAP smears, the nuclear area (NA), cytoplasmic area (CA), and cytoplasmic-to-nuclear ratio (CNR) were evaluated for 50 cells in each smear, using the Image Analysis Software (Magnus Pro™) and research microscope (Lawrence and Mayo™). Results: The results showed that the mean NA was significantly higher (P < 0.001) in the study group, whereas, the mean CA did not exhibit a statistically significant difference (P > 0.001). The mean CNR was significantly lower in the study group (P < 0.001). Interpretation and Conclusion: The results associated with the clinical observations suggest that diabetes can produce morphological and functional alterations in the oral epithelial cells, detectable by microscopic and cytomorphometric analysis using exfoliative cytology, which can be used in the diagnosis of the disease. PMID:25374837

  7. High-speed image processing system and its micro-optics application

    NASA Astrophysics Data System (ADS)

    Ohba, Kohtaro; Ortega, Jesus C. P.; Tanikawa, Tamio; Tanie, Kazuo; Tajima, Kenji; Nagai, Hiroshi; Tsuji, Masataka; Yamada, Shigeru

    2003-07-01

    In this paper, a new application system with high speed photography, i.e. an observational system for the tele-micro-operation, has been proposed with a dynamic focusing system and a high-speed image processing system using the "Depth From Focus (DFF)" criteria. In micro operation, such as for the microsurgery, DNA operation and etc., the small depth of a focus on the microscope makes bad observation. For example, if the focus is on the object, the actuator cannot be seen with the microscope. On the other hand, if the focus is on the actuator, the object cannot be observed. In this sense, the "all-in-focus image," which holds the in-focused texture all over the image, is useful to observe the microenvironments on the microscope. It is also important to obtain the "depth map" which could show the 3D micro virtual environments in real-time to actuate the micro objects, intuitively. To realize the real-time micro operation with DFF criteria, which has to integrate several images to obtain "all-in-focus image" and "depth map," at least, the 240 frames par second based image capture and processing system should be required. At first, this paper briefly reviews the criteria of "depth from focus" to achieve the all-in-focus image and the 3D microenvironments' reconstruction, simultaneously. After discussing the problem in our past system, a new frame-rate system is constructed with the high-speed video camera and FPGA hardware with 240 frames par second. To apply this system in the real microscope, a new criterion "ghost filtering" technique to reconstruct the all-in-focus image is proposed. Finally, the micro observation shows the validity of this system.

  8. F-16 Task Analysis Criterion-Referenced Objective and Objectives Hierarchy Report. Volume 4

    DTIC Science & Technology

    1981-03-01

    Initiation cues: Engine flameout Systems presenting cues: Aircraft fuel, engine STANDARD: Authority: TACR 60-2 Performance precision: TD in first 1/3 of...task: None Initiation cues: On short final Systems preventing cues: N/A STANDARD: Authority: 60-2 Performance precision: +/- .5 AOA; TD zone 150-1000...precision: +/- .05 AOA; TD Zone 150-1000 Computational accuracy: N/A ... . . ... . ... e e m I TASK NO.: 1.9.4 BEHAVIOR: Perform short field landing

  9. Hydrogen sulfide triggers late-phase preconditioning in postischemic small intestine by an NO- and p38 MAPK-dependent mechanism

    PubMed Central

    Yusof, Mozow; Kamada, Kazuhiro; Kalogeris, Theodore; Gaskin, F. Spencer; Korthuis, Ronald J.

    2009-01-01

    Hydrogen sulfide (H2S) is one of three endogenous gases, along with carbon monoxide (CO) and nitric oxide (NO), that exert a variety of important vascular actions in vivo. Although it has been demonstrated that CO or NO can trigger the development of a preconditioned phenotype in postischemic tissues, it is unclear whether H2S may also induce protection in organs subsequently exposed to ischemia-reperfusion (I/R). In light of these observations, we postulated that preconditioning with the exogenous H2S donor sodium hydrosulfide (NaHS-PC) would inhibit leukocyte rolling (LR) and adhesion (LA) induced by I/R. We used intravital microscopic techniques to demonstrate that NaHS-PC 24 h, but not 1 h, before I/R causes postcapillary venules to shift to an anti-inflammatory phenotype in wild-type (WT) mice such that these vessels fail to support LR and LA during reperfusion. The protective effect of NaHS-PC on LR was largely abolished by coincident pharmacological inhibition of NO synthase (NOS) in WT animals and was absent in endothelial NOS-deficient (eNOS−/−) mice. A similar pattern of response was noted in WT mice treated concomitantly with NaHS plus p38 mitogen-activated protein kinase (MAPK) inhibitors (SB 203580 or SK-86002). Whereas the reduction in LA induced by antecedent NaHS was attenuated by pharmacological inhibition of NOS or p38 MAPK in WT mice, the antiadhesive effect of NaHS was still evident in eNOS−/− mice. Thus NaHS-PC prevents LR and LA by triggering the activation of an eNOS- and p38 MAPK-dependent mechanism. However, the role of eNOS in the antiadhesive effect of NaHS-PC was less prominent than its effect to reduce LR. PMID:19168723

  10. Field-Portable Pixel Super-Resolution Colour Microscope

    PubMed Central

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate ‘rainbow’ like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742

  11. Field-portable pixel super-resolution colour microscope.

    PubMed

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.

  12. Development of a miniature scanning electron microscope for in-flight analysis of comet dust

    NASA Technical Reports Server (NTRS)

    Conley, J. M.; Bradley, J. G.; Giffin, C. E.; Albee, A. L.; Tomassian, A. D.

    1983-01-01

    A description is presented of an instrument which was developed with the original goal of being flown on the International Comet Mission, scheduled for a 1985 launch. The Scanning Electron Microscope and Particle Analyzer (SEMPA) electron miniprobe is a miniaturized electrostatically focused electron microscope and energy dispersive X-ray analyzer for in-flight analysis of comet dust particles. It was designed to be flown on board a comet rendezvous spacecraft. Other potential applications are related to asteroid rendezvous and planetary lander missions. According to the development objectives, SEMPA miniprobe is to have the capability for imaging and elemental analysis of particles in the size range of 0.25 microns and larger.

  13. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

    PubMed

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun

    2013-11-05

    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  14. Features of microscopic pedestrian movement in a panic situation based on cellular automata model

    NASA Astrophysics Data System (ADS)

    Ibrahim, Najihah; Hassan, Fadratul Hafinaz

    2017-10-01

    Pedestrian movement is the one of the subset for the crowd management under simulation objective. During panic situation, pedestrian usually will create a microscopic movement that lead towards the self-organization. During self-organizing, the behavioral and physical factors had caused the mass effect on the pedestrian movement. The basic CA model will create a movement path for each pedestrian over a time step. However, due to the factors immerge, the CA model needs some enhancement that will establish a real simulation state. Hence, this concept paper will discuss on the enhanced features of CA model for microscopic pedestrian movement during panic situation for a better pedestrian simulation.

  15. Visualizing 3-D microscopic specimens

    NASA Astrophysics Data System (ADS)

    Forsgren, Per-Ola; Majlof, Lars L.

    1992-06-01

    The confocal microscope can be used in a vast number of fields and applications to gather more information than is possible with a regular light microscope, in particular about depth. Compared to other three-dimensional imaging devices such as CAT, NMR, and PET, the variations of the objects studied are larger and not known from macroscopic dissections. It is therefore important to have several complementary ways of displaying the gathered information. We present a system where the user can choose display techniques such as extended focus, depth coding, solid surface modeling, maximum intensity and other techniques, some of which may be combined. A graphical user interface provides easy and direct control of all input parameters. Motion and stereo are available options. Many three- dimensional imaging devices give recordings where one dimension has different resolution and sampling than the other two which requires interpolation to obtain correct geometry. We have evaluated algorithms with interpolation in object space and in projection space. There are many ways to simplify the geometrical transformations to gain performance. We present results of some ways to simplify the calculations.

  16. Magnetoacoustic microscopic imaging of conductive objects and nanoparticles distribution

    NASA Astrophysics Data System (ADS)

    Liu, Siyu; Zhang, Ruochong; Luo, Yunqi; Zheng, Yuanjin

    2017-09-01

    Magnetoacoustic tomography has been demonstrated as a powerful and low-cost multi-wave imaging modality. However, due to limited spatial resolution and detection efficiency of magnetoacoustic signal, full potential of the magnetoacoustic imaging remains to be tapped. Here we report a high-resolution magnetoacoustic microscopy method, where magnetic stimulation is provided by a compact solenoid resonance coil connected with a matching network, and acoustic reception is realized by using a high-frequency focused ultrasound transducer. Scanning the magnetoacoustic microscopy system perpendicularly to the acoustic axis of the focused transducer would generate a two-dimensional microscopic image with acoustically determined lateral resolution. It is analyzed theoretically and demonstrated experimentally that magnetoacoustic generation in this microscopic system depends on the conductivity profile of conductive objects and localized distribution of superparamagnetic iron magnetic nanoparticles, based on two different but related implementations. The lateral resolution is characterized. Directional nature of magnetoacoustic vibration and imaging sensitivity for mapping magnetic nanoparticles are also discussed. The proposed microscopy system offers a high-resolution method that could potentially map intrinsic conductivity distribution in biological tissue and extraneous magnetic nanoparticles.

  17. Protein-Water and Protein-Buffer Interactions in the Aqueous Solution of an Intrinsically Unstructured Plant Dehydrin: NMR Intensity and DSC Aspects

    PubMed Central

    Tompa, P.; Bánki, P.; Bokor, M.; Kamasa, P.; Kovács, D.; Lasanda, G.; Tompa, K.

    2006-01-01

    Proton NMR intensity and differential scanning calorimetry measurements were carried out on an intrinsically unstructured late embryogenesis abundant protein, ERD10, the globular BSA, and various buffer solutions to characterize water and ion binding of proteins by this novel combination of experimental approaches. By quantifying the number of hydration water molecules, the results demonstrate the interaction between the protein and NaCl and between buffer and NaCl on a microscopic level. The findings overall provide direct evidence that the intrinsically unstructured ERD10 not only has a high hydration capacity but can also bind a large amount of charged solute ions. In accord, the dehydration stress function of this protein probably results from its simultaneous action of retaining water in the drying cells and preventing an adverse increase in ionic strength, thus countering deleterious effects such as protein denaturation. PMID:16798808

  18. Peak effect versus skating in high-temperature nanofriction

    NASA Astrophysics Data System (ADS)

    Zykova-Timan, T.; Ceresoli, D.; Tosatti, E.

    2007-03-01

    The physics of sliding nanofriction at high temperature near the substrate melting point, TM, is so far unexplored. We conducted simulations of hard tips sliding on a prototype non-melting surface, NaCl(100), revealing two distinct and opposite phenomena for ploughing and for grazing friction in this regime. We found a frictional drop close to TM for deep ploughing and wear, but on the contrary a frictional rise for grazing, wearless sliding. For both phenomena, we obtain a fresh microscopic understanding, relating the former to `skating' through a local liquid cloud, and the latter to linear response properties of the free substrate surface. We argue that both phenomena occur more generally on surfaces other than NaCl and should be pursued experimentally. Most metals, in particular those possessing one or more close-packed non-melting surfaces, such as Pb, Al or Au(111), are likely to behave similarly.

  19. Petrography and Origin of the Unique Achondrite GRA 06128 and 06129: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Morris, R. V.; Kring, D. A.; Mittlefehldt, D. W.; Jones, J. H.

    2008-01-01

    GRA 06128 & 06129 are paired achondrites [1], with unique mineral proportions (75% oligoclase), mineral compositions, and oxygen isotope ratios. They appear to represent alkalic igneous rock from a hitherto unsampled differentiated parent body, modified significantly by thermal and shock metamorphism. Samples and Methods: Bulk samples were examined at JSC during splitting for consortium analyses. Microscope and BSE images here are on thick section GRA06128,40. Chemical analyses of minerals were acquired at Johnson Space Center with the Cameca SX100, operated at 15 kV. Feldspar was analyzed with a defocused 5 micron beam @ 5 nA; other minerals were analyzed with a focused beam @ 20 nA. Moessbauer spectra were obtained at ARES, JSC [2]. Intrinsic radioactivity was measured in the low-level counting facility at ARES JSC [3]. An estimated abundance of Al-26 of approx. 70 dpm/kg is within the range determined for eucrites.

  20. Parametric study on the compressive strength geopolymer paving block

    NASA Astrophysics Data System (ADS)

    Aman; Awaluddin, A.; Ahmad, A.; Olivia, M.

    2018-04-01

    This paper reported about the investigated of sodium hidroxida concentration, effect of ratio liquid to solid (L/S), temperature and time on the compressive strength of geopolymer paving block using fly ash and fine aggregate as base material and combination of sodium hidroxida and sodium silicate as alkaline activator and the ratio of Na2SiO3/NaOH was 2 and fly ash to aggregate of 1: 3. The experiments were conducted with variation of the sodium hidroxida concentration of (10-16 M) liquid to solid (L/S) 0.1- 0.7 ratio, curing temperature 30-100 °C and curing time (7-28 day). The main evaluation techniques in this experimental were Compressive strength, X-ray diffraction (XRD),and Scaning Electron Microscope (SEM). The result showed that the compressive strength of Geopolymer Paving block has increased with an increasing of concentration, liquid to solid ratio, curing temperature and curing time.

  1. A multi-frequency EPR and ENDOR study of Rh and Ir complexes in alkali and silver halides

    NASA Astrophysics Data System (ADS)

    Callens, F.; Vrielinck, H.; Matthys, P.

    2003-01-01

    Aliovalent Rh and Ir cations have been frequently used to influence the photographic properties of silver halide emulsions. The doping introduces several types of related defects with distinct trapping and recombination properties. EPR and ENDOR are, in principle, ideally suited for the determination of the microscopic structure of the individual centres but it will be demonstrated that well-chosen, sometimes sophisticated multi-frequency experiments are necessary in order to (partially) reach this goal. Model studies on single crystals of AgCl and NaCl also appeared indispensable for the unravelling of the spectra. In the review of Rh-centres in NaCl and AgCl special attention is paid to methods that allow to detect cation vacancies near Rh2+ complexes. An alternative explanation for the high temperature behaviour of the [RhCl6](4-) complexes in AgCl is presented.

  2. Preparation and Characterization of Activated Carbon from Palm Kernel Shell

    NASA Astrophysics Data System (ADS)

    Andas, J.; Rahman, M. L. A.; Yahya, M. S. M.

    2017-08-01

    In this study, a high quality of activated carbon (AC) was successfully synthesized from palm kernel shell (PKS) via single step KOH activation. Several optimal conditions such as impregnation ratio and activation temperature were investigated. The prepared activated carbon under the optimum condition of impregnation ratio (1:1.5 raw/KOH) and activation temperature (800 °C) was characterized using Na2S2O3 volumetric method, CHNS/O analysis and Scanning Electron Microscope (SEM). Na2S2O3 volumetric showed an iodine number of 994.83 mgg-1 with yield % of 8.931 %. CHNS/O analysis verified an increase in C content for KOH-AC (61.10 %) in comparison to the raw PKS (47.28 %). Well-formation of porous structure was evidenced through SEM for KOH-AC. From this study, it showed a successful conversion of agricultural waste into value added porous material under benign condition.

  3. The Syntax of Word Order Derivation and Agreement in Najrani Arabic: A Minimalist Analysis

    ERIC Educational Resources Information Center

    Fakih, Abdul-Hafeed Ali; Al-Sharif, Hadeel Ali

    2017-01-01

    The paper aims to explore word order derivation and agreement in Najran Arabic (henceforth, NA) and examines the interaction between the NA data and Chomsky's (2001, 2005) Agree theory which we adopt in this study. The objective is to investigate how word order occurs in NA and provide a satisfactorily unified account of the derivation of SVO and…

  4. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  5. A two-dimensional Dirac fermion microscope

    NASA Astrophysics Data System (ADS)

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  6. Microscopic evaluation and physiochemical analysis of Dillenia indica leaf

    PubMed Central

    Kumar, S; Kumar, V; Prakash, Om

    2011-01-01

    Objective To study detail microscopic evaluation and physiochemical analysis of Dillenia indica (D. indica) leaf. Methods Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically. Preliminary phytochemical investigation of plant material was done. Other WHO recommended parameters for standardizations were also performed. Results The detail microscopy revealed the presence of anomocytic stomata, unicellular trichome, xylem fibres, calcium oxalate crystals, vascular bundles, etc. Leaf constants such as stomatal number, stomatal index, vein-islet number and veinlet termination numbers were also measured. Physiochemical parameters such as ash values, loss on drying, extractive values, percentage of foreign matters, swelling index, etc. were also determined. Preliminary phytochemical screening showed the presence of steroids, terpenoids, glycosides, fatty acids, flavonoids, phenolic compounds and carbohydrates. Conclusions The microscopic and physiochemical analysis of the D. indica leaf is useful in standardization for quality, purity and sample identification. PMID:23569789

  7. A two-dimensional Dirac fermion microscope

    PubMed Central

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-01-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots. PMID:28598421

  8. Application of differential interference contrast with inverted microscopes to the in vitro perfused nephron.

    PubMed

    Horster, M; Gundlach, H

    1979-12-01

    The study of in vitro perfused individual nephron segments requires a microscope which provides: (1) easy access to the specimen for measurement of cellular solute flux and voltage; (2) an image with high resolution and contrast; (3) optical sectioning of the object at different levels; and (4) rapid recording of the morphological phenomena. This paper describes an example of commercially available apparatus meeting the above requirements, and illustrates its efficiency. The microscope is of the inverted type (Zeiss IM 35) equipped with differential-interference-contrast (DIC) with a long working distance, and an automatically controlled camera system. The microscopic image exhibits cellular and intercellular details in the unstained transporting mammalian nephron segments despite their tubular structure and great thickness and makes obvious function-structure correlations (e.g. cell volume changes); luminal and contraluminal cell borders are well resolved for controlled microelectrode impalement.

  9. Novel instrumentation for multifield time-lapse cinemicrography.

    PubMed

    Kallman, R F; Blevins, N; Coyne, M A; Prionas, S D

    1990-04-01

    The most significant feature of the system that is described is its ability to image essentially simultaneously the growth of up to 99 single cells into macroscopic colonies, each in its own microscope field. Operationally, fields are first defined and programmed by a trained observer. All subsequent steps are automatic and under computer control. Salient features of the hardware are stepper motor-controlled movement of the stage and fine adjustment of an inverted microscope, a high-quality 16-mm cine camera with light meter and controls, and a miniature incubator in which cells may be grown under defined conditions directly on the microscope stage. This system, termed MUTLAS, necessitates reordering of the primary images by rephotographing them on fresh film. Software developed for the analysis of cell and colony growth requires frame-by-frame examination of the secondary film and the use of a mouse-driven cursor to trace microscopically visible (4X objective magnification) events.

  10. [Improvement of the microcinematography technic for the study of cell cycles].

    PubMed

    Gueulette, J; Beauduin, M; Grégoire, V; Van Dorpe, J C; Wambersie, A

    1984-10-01

    An improvement of time-lapse microcinematography technique is described. It consists in directly printing the time on the microscopical frame, at the moment of the shooting. The time (digital watch), as well as other relevant parameters (temperature etc.) are displayed on a "parameter board", the image of which is encrusted into the microscopical frame by means of an auxiliary two-component lens system. These lenses (current type of microscopical and photographical objectives) are centered on an axis perpendicular to the microscope-camera axis and provide a reduced image of the "parameter board", which is projected on the film edge after deflection by a 45 degree mirror. The latter (aluminized perspex sheet) is located above the photographical eyepiece; it is pierced at the place of the eyepoint in order to give way to the light rays coming out of the cellular culture.

  11. OUTFLOWS IN SODIUM EXCESS OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jongwon; Yi, Sukyoung K.; Jeong, Hyunjin, E-mail: yi@yonsei.ac.kr

    2015-08-10

    Van Dokkum and Conroy revisited the unexpectedly strong Na i lines at 8200 Å found in some giant elliptical galaxies and interpreted them as evidence for an unusually bottom-heavy initial mass function. Jeong et al. later found a large population of galaxies showing equally extraordinary Na D doublet absorption lines at 5900 Å (Na D excess objects: NEOs) and showed that their origins can be different for different types of galaxies. While a Na D excess seems to be related to the interstellar medium (ISM) in late-type galaxies, smooth-looking early-type NEOs show little or no dust extinction and hence nomore » compelling signs of ISM contributions. To further test this finding, we measured the Doppler components in the Na D lines. We hypothesized that the ISM would have a better (albeit not definite) chance of showing a blueshift Doppler departure from the bulk of the stellar population due to outflow caused by either star formation or AGN activities. Many of the late-type NEOs clearly show blueshift in their Na D lines, which is consistent with the former interpretation that the Na D excess found in them is related to gas outflow caused by star formation. On the contrary, smooth-looking early-type NEOs do not show any notable Doppler components, which is also consistent with the interpretation of Jeong et al. that the Na D excess in early-type NEOs is likely not related to ISM activities but is purely stellar in origin.« less

  12. Surface plasmon resonance microscopy: achieving a quantitative optical response

    PubMed Central

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-01-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542

  13. Distinctly Different Glass Transition Behaviors of Trehalose Mixed with Na2HPO 4 or NaH 2PO 4: Evidence for its Molecular Origin.

    PubMed

    Weng, Lindong; Elliott, Gloria D

    2015-07-01

    The present study is aimed at understanding how the interactions between sugar molecules and phosphate ions affect the glass transition temperature of their mixtures, and the implications for pharmaceutical formulations. The glass transition temperature (Tg) and the α-relaxation temperature (Tα) of dehydrated trehalose/sodium phosphate mixtures (monobasic or dibasic) were determined by differential scanning calorimetry and dynamic mechanical analysis, respectively. Molecular dynamics simulations were also conducted to investigate the microscopic interactions between sugar molecules and phosphate ions. The hydrogen-bonding characteristics and the self-aggregation features of these mixtures were quantified and compared. Thermal analysis measurements demonstrated that the addition of NaH2PO4 decreased both the glass transition temperature and the α-relaxation temperature of the dehydrated trehalose/NaH2PO4 mixture compared to trehalose alone while both Tg and Tα were increased by adding Na2HPO4 to pure trehalose. The hydrogen-bonding interactions between trehalose and HPO4(2-) were found to be stronger than both the trehalose-trehalose hydrogen bonds and those formed between trehalose and H2PO4(-). The HPO4(2-) ions also aggregated into smaller clusters than H2PO4(-) ions. The trehalose/Na2HPO4 mixture yielded a higher T g than pure trehalose because marginally self-aggregated HPO4(2-) ions established a strengthened hydrogen-bonding network with trehalose molecules. In contrast H2PO4(-) ions served only as plasticizers, resulting in a lower Tg of the mixtures than trehalose alone, creating large-sized ionic pockets, weakening interactions, and disrupting the original hydrogen-bonding network amongst trehalose molecules.

  14. Distinctly Different Glass Transition Behaviors of Trehalose Mixed with Na2HPO4 or NaH2PO4: Evidence for its Molecular Origin

    PubMed Central

    Weng, Lindong; Elliott, Gloria D.

    2015-01-01

    Purpose The present study is aimed at understanding how the interactions between sugar molecules and phosphate ions affect the glass transition temperature of their mixtures, and the implications for pharmaceutical formulations. Methods The glass transition temperature (Tg) and the α-relaxation temperature (Tα) of dehydrated trehalose/sodium phosphate mixtures (monobasic or dibasic) were determined by differential scanning calorimetry and dynamic mechanical analysis, respectively. Molecular dynamics simulations were also conducted to investigate the microscopic interactions between sugar molecules and phosphate ions. The hydrogen-bonding characteristics and the self-aggregation features of these mixtures were quantified and compared. Results Thermal analysis measurements demonstrated that the addition of NaH2PO4 decreased both the glass transition temperature and the α-relaxation temperature of the dehydrated trehalose/NaH2PO4 mixture compared to trehalose alone while both Tg and Tα were increased by adding Na2HPO4 to pure trehalose. The hydrogen-bonding interactions between trehalose and HPO42− were found to be stronger than both the trehalose-trehalose hydrogen bonds and those formed between trehalose and H2PO4−. The HPO42− ions also aggregated into smaller clusters than H2PO4− ions. Conclusions The trehalose/Na2HPO4 mixture yielded a higher Tg than pure trehalose because marginally self-aggregated HPO42− ions established a strengthened hydrogen-bonding network with trehalose molecules. In contrast H2PO4− ions served only as plasticizers, resulting in a lower Tg of the mixtures than trehalose alone, creating large-sized ionic pockets, weakening interactions, and disrupting the original hydrogen-bonding network amongst trehalose molecules. PMID:25537342

  15. Intracellular ion concentrations and cell volume during cholinergic stimulation of eccrine secretory coil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takemura, T.; Sato, F.; Saga, K.

    Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl (( Na)i, (K)i, and (Cl)i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; anmore » initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both (K+)i and (Cl)i of clear cells decreased by about 45%, whereas (Na)i increased in such a way to maintain the sum of (Na) i + (K)i constant. There was a small (12-15 mM) increase in (Na)i and a decrease in (K)i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in (Cl)i in the face of constant (Na)i + (K)i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.« less

  16. Sodium chloride-catalyzed oxidation of multiwalled carbon nanotubes for environmental benefit.

    PubMed

    Endo, Morinobu; Takeuchi, Kenji; Tajiri, Takeyuki; Park, Ki Chul; Wang, Feng; Kim, Yoong-Ahm; Hayashi, Takuya; Terrones, Mauricio; Dresselhaus, Mildred S

    2006-06-22

    A sodium chloride (NaCl) catalyst (0.1 w/w %) lowers the oxidation temperature of graphitized multiwalled carbon nanotubes: MWCNT-20 (diameter: 20-70 nm) and MWCNT-80 (diameter: 80-150 nm). The analysis of the reaction kinetics indicates that the oxidation of MWCNT-20 and MWCNT-80 mixed with no NaCl exhibits single reaction processes with activation energies of E(a) = 159 and 152 kJ mol(-1), respectively. The oxidation reaction in the presence of NaCl is shown to consist of two different reaction processes, that is, a first reaction and a second reaction process. The first reaction process is dominant at a low temperature of around 600 degrees C, while the second reaction process becomes more dominant than the first one in a higher temperature region. The activation energies of the first reaction processes (MWCNT-20: E(a1) = 35.7 kJ mol(-1); MWCNT-80: E(a1) = 43.5 kJ mol(-1)) are much smaller than those of the second reaction processes (MWCNT-20: E(a2) = 170 kJ mol(-1); MWCNT-80: E(a2) = 171 kJ mol(-1)). The comparison of the kinetic parameters and the results of the spectroscopic and microscopic analyses imply that the lowering of the oxidation temperature in the presence of NaCl results from the introduction of disorder into the graphitized MWCNTs (during the first reaction process), thus increasing the facility of the oxidation reaction of the disorder-induced nanotubes (in the second reaction process). It is found that the larger nanopits and cracks on the outer graphitic layers are caused by the catalytic effect of NaCl. Therefore, the NaCl-mixed samples showed more rapid and stronger oxidation compared with that of the nonmixed samples at the same residual quantity.

  17. A novel cyclic squamosamide analogue compound FLZ improves memory impairment in artificial senescence mice induced by chronic injection of D-galactose and NaNO2.

    PubMed

    Fang, Fang; Liu, Gengtao

    2007-12-01

    The aim of the present study was to access the protective effect of a novel synthesized squamosamide cyclic analogue, compound FLZ, on memory impairment in artificially senescent mice induced by chronic injection of D-galactose and sodium nitrite (NaNO(2)). Artificially senescent mouse model was induced by consecutive injection of D-galactose (120 mg/kg) and NaNO(2) (90 mg/kg) once daily for 60 days. Compound FLZ (75 and 150 mg/kg) was orally administered once daily for 30 days after D-galactose and NaNO(2) injection for 30 days. The water maze test was used to evaluate the learning and memory function of mice. The content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in serum were determined using different biochemical kits. The alterations in hippocampus morphology were assessed by light and electronic microscope. Immunoreactive cells of Bcl-2 in the hippocampus were counted by immunohistochemical staining, and Bcl-2 protein expression was analysed by Western blot method. The results indicate that injection of D-galactose and NaNO(2) induces memory impairment and neuronal damage in hippocampus of mice. In addition, serum SOD and GSH-Px activities decreased, while MDA level increased. Bcl-2-positive neurons and Bcl-2 protein expression in the hippocampus decreased remarkably. Oral administration of FLZ for 30 days significantly improved the cognitive deficits and the biochemical markers mentioned above, and also reduced the pathological alterations in mouse hippocampus. The results suggest that FLZ ameliorates memory deficits and pathological injury in artificially senescent mice induced by chronic injection of D-galactose and NaNO(2), indicating that FLZ is worth further studies for fighting antisenescence and dementia.

  18. Use of an operating microscope during spine surgery is associated with minor increases in operating room times and no increased risk of infection

    PubMed Central

    Basques, Bryce A.; Golinvaux, Nicholas S.; Bohl, Daniel D.; Yacob, Alem; Toy, Jason O.; Varthi, Arya G.; Grauer, Jonathan N.

    2014-01-01

    Study Design Retrospective database review. Objective To evaluate whether microscope use during spine procedures is associated with increased operating room times or increased risk of infection. Summary of Background Data Operating microscopes are commonly used in spine procedures. It is debated whether the use of an operating microscope increases operating room time or confers increased risk of infection. Methods The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database, which includes data from over 370 participating hospitals, was used to identify patients undergoing elective spinal procedures with and without an operating microscope for the years 2011 and 2012. Bivariate and multivariate linear regressions were used to test the association between microscope use and operating room times. Bivariate and multivariate logistic regressions were similarly conducted to test the association between microscope use and infection occurrence within 30 days of surgery. Results A total of 23,670 elective spine procedures were identified, of which 2,226 (9.4%) used an operating microscope. The average patient age was 55.1 ± 14.4 years. The average operative time (incision to closure) was 125.7 ± 82.0 minutes. Microscope use was associated with minor increases in preoperative room time (+2.9 minutes, p=0.013), operative time (+13.2 minutes, p<0.001), and total room time (+18.6 minutes, p<0.001) on multivariate analysis. A total of 328 (1.4%) patients had an infection within 30 days of surgery. Multivariate analysis revealed no significant difference between the microscope and non-microscope groups for occurrence of any infection, superficial surgical site infection (SSI), deep SSI, organ space infection, or sepsis/septic shock, regardless of surgery type. Conclusions We did not find operating room times or infection risk to be significant deterrents for use of an operating microscope during spine surgery. PMID:25188600

  19. A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors

    ERIC Educational Resources Information Center

    Deligkaris, Christos

    2018-01-01

    The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena.…

  20. Correction of image drift and distortion in a scanning electron microscopy.

    PubMed

    Jin, P; Li, X

    2015-12-01

    Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  1. High resolution microscopy of the lipid layer of the tear film.

    PubMed

    King-Smith, P Ewen; Nichols, Jason J; Braun, Richard J; Nichols, Kelly K

    2011-10-01

    Tear film evaporation is controlled by the lipid layer and is an important factor in dry eye conditions. Because the barrier to evaporation depends on the structure of the lipid layer, a high resolution microscope has been constructed to study the lipid layer in dry and in normal eyes. The microscope incorporates the following features. First, a long working distance microscope objective is used with a high numerical aperture and resolution. Second, because such a high resolution objective has limited depth of focus, 2000 images are recorded with a video camera over a 20-sec period, with the expectation that some images will be in focus. Third, illumination is from a stroboscopic light source having a brief flash duration, to avoid blurring from movement of the lipid layer. Fourth, the image is in focus when the edge of the image is sharp - this feature is used to select images in good focus. Fifth, an aid is included to help align the cornea at normal incidence to the axis of the objective so that the whole lipid image can be in focus. High resolution microscopy has the potential to elucidate several characteristics of the normal and abnormal lipid layer, including different objects and backgrounds, changes in the blink cycle, stability and fluidity, dewetting, gel-like properties and possible relation to lipid domains. It is expected that high resolution microscopy of the lipid layer will provide information about the mechanisms of dry eye disorders. Illustrative results are presented, derived from over 10,000 images from 375 subjects.

  2. Microscopic Sources of Paramagnetic Noise on α-Al2O3 Substrates for Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Dubois, Jonathan; Lee, Donghwa; Lordi, Vince

    2014-03-01

    Superconducting qubits (SQs) represent a promising route to achieving a scalable quantum computer. However, the coupling between electro-dynamic qubits and (as yet largely unidentified) ambient parasitic noise sources has so far limited the functionality of current SQs by limiting coherence times of the quantum states below a practical threshold for measurement and manipulation. Further improvement can be enabled by a detailed understanding of the various noise sources afflicting SQs. In this work, first principles density functional theory (DFT) calculations are employed to identify the microscopic origins of magnetic noise sources in SQs on an α-Al2O3 substrate. The results indicate that it is unlikely that the existence of intrinsic point defects and defect complexes in the substrate are responsible for low frequency noise in these systems. Rather, a comprehensive analysis of extrinsic defects shows that surface aluminum ions interacting with ambient molecules will form a bath of magnetic moments that can couple to the SQ paramagnetically. The microscopic origin of this magnetic noise source is discussed and strategies for ameliorating the effects of these magnetic defects are proposed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Quantitative high dynamic range beam profiling for fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly withinmore » the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.« less

  4. Controlling the reproducibility of Coulomb blockade phenomena for gold nanoparticles on an organic monolayer/silicon system.

    PubMed

    Caillard, L; Sattayaporn, S; Lamic-Humblot, A-F; Casale, S; Campbell, P; Chabal, Y J; Pluchery, O

    2015-02-13

    Two types of highly ordered organic layers were prepared on silicon modified with an amine termination for binding gold nanoparticles (AuNPs). These two grafted organic monolayers (GOMs), consisting of alkyl chains with seven or 11 carbon atoms, were grafted on oxide-free Si(111) surfaces as tunnel barriers between the silicon electrode and the AuNPs. Three kinds of colloidal AuNPs were prepared by reducing HAuCl4 with three different reactants: citrate (Turkevich synthesis, diameter ∼16 nm), ascorbic acid (diameter ∼9 nm), or NaBH4 (Natan synthesis, diameter ∼7 nm). Scanning tunnel spectroscopy (STS) was performed in a UHV STM at 40 K, and Coulomb blockade behaviour was observed. The reproducibility of the Coulomb behavior was analysed as a function of several chemical and physical parameters: size, crystallinity of the AuNPs, influence of surrounding surfactant molecules, and quality of the GOM/Si interface (degree of oxidation after the full processing). Samples were characterized with scanning tunneling microscope, STS, atomic force microscope, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy (XPS), and high resolution transmission electronic microscope. We show that the reproducibility in observing Coulomb behavior can be as high as ∼80% with the Natan synthesis of AuNPs and GOMs with short alkyl chains.

  5. Identification of malaria infected red blood samples by digital holographic quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Patel, Nimit R.; Chhaniwal, Vani K.; Javidi, Bahram; Anand, Arun

    2015-07-01

    Development of devices for automatic identification of diseases is desired especially in developing countries. In the case of malaria, even today the gold standard is the inspection of chemically treated blood smears through a microscope. This requires a trained technician/microscopist to identify the cells in the field of view, with which the labeling chemicals gets attached. Bright field microscopes provide only low contrast 2D images of red blood cells and cell thickness distribution cannot be obtained. Quantitative phase contrast microscopes can provide both intensity and phase profiles of the cells under study. The phase information can be used to determine thickness profile of the cell. Since cell morphology is available, many parameters pertaining to the 3D shape of the cell can be computed. These parameters in turn could be used to decide about the state of health of the cell leading to disease diagnosis. Here the investigations done on digital holographic microscope, which provides quantitative phase images, for comparison of parameters obtained from the 3D shape profile of objects leading to identification of diseased samples is described.

  6. Perforation and bacterial contamination of microscope covers in lumbar spinal decompressive surgery.

    PubMed

    Osterhoff, Georg; Spirig, José; Klasen, Jürgen; Kuster, Stefan P; Zinkernagel, Annelies S; Sax, Hugo; Min, Kan

    2014-01-01

    To determine the integrity of microscope covers and bacterial contamination at the end of lumbar spinal decompressive surgery. A prospective study of 25 consecutive lumbar spinal decompressions with the use of a surgical microscope was performed. For detection of perforations, the microscope covers were filled with water at the end of surgery and the presence of water leakage in 3 zones (objective, ocular and control panel) was examined. For detection of bacterial contamination, swabs were taken from the covers at the same locations before and after surgery. Among the 25 covers, 1 (4%) perforation was observed and no association between perforation and bacterial contamination was seen; 3 (4%) of 75 smears from the 25 covers showed post-operative bacterial contamination, i.e. 2 in the ocular zone and 1 in the optical zone, without a cover perforation. The incidence of microscope cover perforation was very low and was not shown to be associated with bacterial contamination. External sources of bacterial contamination seem to outweigh the problem of contamination due to failure of cover integrity. © 2014 S. Karger AG, Basel.

  7. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation.

    PubMed

    Werley, Christopher A; Chien, Miao-Ping; Cohen, Adam E

    2017-12-01

    The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.

  8. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation

    PubMed Central

    Werley, Christopher A.; Chien, Miao-Ping; Cohen, Adam E.

    2017-01-01

    The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our ‘Firefly’ microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology (‘Optopatch’) in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes. PMID:29296505

  9. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array.

    PubMed

    Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan

    2011-04-07

    We report a portable lensless on-chip microscope that can achieve <1 µm resolution over a wide field-of-view of ∼ 24 mm(2) without the use of any mechanical scanning. This compact on-chip microscope weighs ∼ 95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites.

  10. Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope.

    PubMed

    Gineste, J-M; Macko, P; Patterson, E A; Whelan, M P

    2011-08-01

    The forward scattering of light in a conventional inverted optical microscope by nanoparticles ranging in diameter from 10 to 50nm has been used to automatically and quantitatively identify and track their location in three-dimensions with a temporal resolution of 200ms. The standard deviation of the location of nominally stationary 50-nm-diameter nanoparticles was found to be about 50nm along the light path and about 5nm in the plane perpendicular to the light path. The method is based on oscillating the microscope objective along the light path using a piezo actuator and acquiring images with the condenser aperture closed to a minimum to enhance the effects of diffraction. Data processing in the time and spatial domains allowed the location of particles to be obtained automatically so that the technique has potential applications both in the processing of nanoparticles and in their use in a variety of fields including nanobiotechnology, pharmaceuticals and food processing where a simple optical microscope maybe preferred for a variety of reasons. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  11. Compact 3D printed module for fluorescence and label-free imaging using evanescent excitation

    NASA Astrophysics Data System (ADS)

    Pandey, Vikas; Gupta, Shalini; Elangovan, Ravikrishnan

    2018-01-01

    Total internal reflection fluorescence (TIRF) microscopy is widely used for selective excitation and high-resolution imaging of fluorophores, and more recently label-free nanosized objects, with high vertical confinement near a liquid-solid interface. Traditionally, high numerical aperture objectives (>1.4) are used to simultaneously generate evanescent waves and collect fluorescence emission signals which limits their use to small area imaging (<0.1 mm2). Objective-based TIRFs are also expensive as they require dichroic mirrors and efficient notch filters to prevent specular reflection within the objective lenses. We have developed a compact 3D module called cTIRF that can generate evanescent waves in microscope glass slides via a planar waveguide illumination. The module can be attached as a fixture to any existing optical microscope, converting it into a TIRF and enabling high signal-to-noise ratio (SNR) fluorescence imaging using any magnification objective. As the incidence optics is perpendicular to the detector, label-free evanescent scattering-based imaging of submicron objects can also be performed without using emission filters. SNR is significantly enhanced in this case as compared to cTIRF alone, as seen through our model experiments performed on latex beads and mammalian cells. Extreme flexibility and the low cost of our approach makes it scalable for limited resource settings.

  12. Molecular Mechanisms Involved in Tissue Swelling due to Injury and due to Exposure to Low Temperature and Massive Water and Electrolyte Loss in Diarrheal Disorders.

    DTIC Science & Technology

    1982-10-01

    to dinosaurs , they immediately were faced with - the most fundamental question, "What is a living cell?" One may well say that k the degree of our...primarily a tiny * droplet of water containing proteins and K+ saltskept apart from the body of N 0similar aqueous solution of Na salts by a microscopic...experimental evidence, besides those already mentioned, included the successful demonstration that proteins with its polypeptLde iJl existing in an extended

  13. Solvothermal synthesis of Au@Fe3O4 nanoparticles for antibacterial applications

    NASA Astrophysics Data System (ADS)

    Kelgenbaeva, Zhazgul; Abdullaeva, Zhypargul; Murzubraimov, Bektemir

    2018-04-01

    We present Au@Fe3O4 nanoparticles obtained from Fe nanoparticles and HAuCl4 using a simple solvothermal method. Trisodium citrate (C6H5Na3O7*2H2O) served as a reducing agent for Au. X-ray diffraction analysis, electronic microscopes and energy-dispersive X-ray spectroscopy revealed cubic structure, elemental composition (Au, Fe and O) and spherical shape of nanoparticles. Antibacterial activity of the sample was tested against E. coli bacteria and obtained results were discussed.

  14. [Effect of chloride ion on corrosion of two commonly used dental alloys].

    PubMed

    Chen, Lei; Zhang, Weidan; Zhang, Yuanyuan

    2014-11-01

    To investigate the eff ect of chloride concentration on the corrosion of Co-Cr alloy and pure Ti in a simulated oral environment. The electrochemical corrosion tests of pure Ti and Co-Cr alloy were carried out in neutral artificial saliva solutions with different NaCl concentrations (0.9%, 2.0%, and 3.0%). Th e morphologies of corroded surface for pure Ti and Co-Cr alloy were observed by scanning electron microscope (SEM). Th e changes in the self-corrosion potentials (Ecorr) for pure Ti and Co-Cr alloy in three kinds of artificial saliva solutions was not obvious. However, the self-corrosion current densities (Icorr) of pure Ti were much lower than those of Co-Cr. The Icorr of Co-Cr alloy increased in a concentration-dependent manner of NaCl, whereas the breakdown potential (Eb) of Co-Cr alloy decreased in a concentration-dependent manner. Th e potential ranged for the breakdown of oxide film (Ev) was shortened in a concentration-dependent manner of NaCl. There was no obvious difference in the Icorr of pure Ti with different concentrations of NaCl. The breakdown potential was not seen according to the polarization curves. In a certain range, the increase of the concentration of Cl- leads to accelerate the corrosion behavior of Co-Cr alloy, but it does not affect pure Ti.

  15. Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration.

    PubMed

    Soon, Chu Yong; Tee, Yee Bond; Tan, Choon Hui; Rosnita, Abdul Talib; Khalina, Abdan

    2018-03-01

    Large amount of sodium hydroxide (NaOH) is consumed to remove the protein content in chitin biomass during deproteinization. However, excessive NaOH concentration used might lead to the reduction of cost effectiveness during chitin extraction. Hence, the present study aimed to extract and evaluate the physicochemical properties of chitin and chitosan isolated from superworm (Zophobas morio) larvae using 0.5M-2.0M of NaOH. The extracted chitin and chitosan were subjected to Fourier Transform Infrared Spectroscopy (FT-IR), elemental analysis, Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). The 0.5M NaOH treatment resulted in the highest yield of chitin (5.43%), but produced the lowest yield (65.84%) of chitosan. The extracted chitin samples had relatively high degree of acetylation (DA) (82.39%-101.39%). Both chitin and chitosan showed smooth surface with tiny pores. The extracted chitin samples were confirmed as α-chitin based on the FT-IR and TGA. The chitin samples were amorphous with low degree of crystallinity. From TGA, the Chitosan 3 extracted was partially deacetylated. Both DPPH radical scavenging and ferric-chelating assay showed positive correlation with DD of chitosan isolates. However, the chitosan isolates were not fully dissolved, resulting in lower radical scavenging and ferric-chelating ability compared to commercial chitosan. Copyright © 2017. Published by Elsevier B.V.

  16. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Shi, Wenxin; Zhang, Lanhe; Zhang, Ruijun

    2017-09-01

    A novel polyester thin film composite nanofiltration (NF) membrane was prepared by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC) on polyethersulfone (PES) supporting membrane. The performance of the polyester composite NF membrane was optimized by regulating the preparation parameters, including reaction time, pH of the aqueous phase solution, pentaerythritol concentration and TMC concentration. A series of characterization, including permeation experiments, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential analyzer and chlorine resistance experiments, were employed to study the properties of the optimized membrane. The results showed that the optimized polyester composite NF membrane exhibited very high rejection of Na2SO4 (98.1%), but the water flux is relatively low (6.1 L/m2 h, 0.5 MPa, 25 °C). The order of salt rejections is Na2SO4 > MgSO4 > MgCl2 > NaCl, which indicated the membrane was negatively charged, just consistent with the membrane zeta potential results. After treating by NaClO solutions with different concentrations (100 ppm, 500 ppm, 1000 ppm, 2000 ppm, 3000 ppm) for 48 h, the results demonstrated that the polyester NF membrane had good chlorine resistance. Additionally, the polyester TFC NF membrane exhibits good long-term stability.

  17. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Long-term stability of acyclovir in 0.9% NaCl infusion polyolefin bags at 5±3°C after freeze-thaw treatment: a generic product versus the brand name.

    PubMed

    Dewulf, J; Galanti, L; Godet, M; Gillet, P; Jamart, J; Hecq, J-D

    2015-03-01

    The aim of the study was to investigate the long-term stability of acyclovir 5 mg/mL (a generic product versus the brand name) in NaCl 0.9% after storage at 5±3°C and to evaluate the influence of initial freezing and microwave thawing on this stability. Five bags of Acyclovir® Hospira 5 mg/mL (A) and five bags of Zovirax® GSK 5 mg/mL (B) were prepared under aseptic conditions and stored 3 months at -20°C, then thawed and stored 30 days at 4°C. Five bags of Acyclovir® 5 mg/mL (C) and five bags of Zovirax® 5 mg/mL (D) were also prepared under aseptic conditions and stored 30 days at 5±3°C. Optic density measurement at different wavelengths, pH measurement and optic microscope observations were performed periodically during the storage. A forced degradation test with HCl 12 M and NaOH 5 M before and after heating at 100°C was also performed. The concentrations were measured by HPLC-PDA. The only one forced degradation test that yielded chromatograms with degradation products peak was the test with the acid solution heated at 100°C without interference with the native product. No significant change in pH values or optic densities were seen during the study for both products. No crystals were seen with the optic microscope during the study. Acyclovir® and Zovirax® solutions were stable for at least 21 days according to the FDA recommendations. Moreover, there was no statistical difference between regression lines of those two products and two storage conditions. Under the conditions of this study, Acyclovir® 5 mg/mL in 100 mL of NaCl 0.9% infusion remains stable at least for 21 days at 5±3°C with or without freezing at -20°C during the three previous months. There is no statistical difference between the brand name and a generic product. Acyclovir may be prepared in advanced by a centralized intravenous additive service, frozen in polyolefin bags and microwave thawed before storage under refrigeration until 21 days. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Comparative Evaluation of Smear Layer and Debris on the Canal Walls prepared with a Combination of Hand and Rotary ProTaper Technique using Scanning Electron Microscope.

    PubMed

    Kiran, S; Prakash, Sandeep; Siddharth, Pujari R; Saha, Supradip; Geojan, Naiza E; Ramachandran, Mookambika

    2016-07-01

    The effect of smear layer and debris on the success rate of endodontic treatment has not yet been definitely determined. So the present study was aimed to evaluate the amount of smear layer and debris on the canal walls prepared with a combination of hand and rotary ProTaper technique using NaOCl and ethylenediaminetetraacetic acid (EDTA) alternately as root canal irrigants using scanning electron microscope (SEM). Eighty intact freshly extracted human permanent mandibular premolar teeth were collected and randomly divided equally into four groups. In group I canals were prepared with hand K-Flexofiles; group II with rotary ProTaper instruments; group III with rotary ProTaper instruments and final instrumentation was done with hand K-Flexofile; group IV with rotary ProTaper instruments and final instrumentation was done with RC-Prep and irrigated with 1 mL of normal saline. In all groups canals were irrigated using NaOCl and EDTA alternately. After instrumentation, the teeth were prepared for SEM examination using five-score indices for debris and smear layer at coronal, middle, and apical third levels. Statistical analysis was performed using chi-square test (p < 0.05) and Kruskal-Wallis test (p < 0.05). Statistically significant difference was observed between the groups in cleaning the apical third. Groups I and III showed better canal cleanliness compared to group II. The use of EDTA and NaOCl in group III was more effective in removing debris and smear layer compared to EDTA and normal saline in group IV. Regardless of the instrumentation technique employed and the irrigant used, the cleaning ability decreased in the apical third, resulting in higher debris and smear layer scores compared to coronal and middle third levels. None of the instrumentation techniques in the present study could completely eliminate the smear layer and debris from the canal walls. Instrumentation of the canals with hand files after automated rotary preparation could result in cleaner canal walls. Alternate irrigation with NaOCl and EDTA is effective in the removal of debris and smear layer in the coronal and middle level, but the effectiveness in the apical third is less.

  20. A brain slice bath for physiology and compound microscopy, with dual-sided perifusion.

    PubMed

    Heyward, P M

    2010-12-01

    Contemporary in vitro brain slice studies can employ compound microscopes to identify individual neurons or their processes for physiological recording or imaging. This requires that the bath used to maintain the tissue fits within the working distances of a water-dipping objective and microscope condenser. A common means of achieving this is to maintain thin tissue slices on the glass floor of a recording bath, exposing only one surface of the tissue to oxygenated bathing medium. Emerging evidence suggests that physiology can be compromised by this approach. Flowing medium past both sides of submerged brain slices is optimal, but recording baths utilizing this principle are not readily available for use on compound microscopes. This paper describes a tissue bath designed specifically for microscopy and physiological recording, in which temperature-controlled medium flows past both sides of the slices. A particular feature of this design is the use of concentric mesh rings to support and transport the live tissue without mechanical disturbance. The design is also easily adapted for use with thin acute slices, cultured slices, and acutely dispersed or cultured cells maintained either on cover slips or placed directly on the floor of the bath. The low profile of the bath provides a low angle of approach for electrodes, and allows use of standard condensers, nosepieces and water-dipping objective lenses. If visualization of individual neurons is not required, the bath can be mounted on a simple stand and used with a dissecting microscope. Heating is integral to the bath, and any temperature controller capable of driving a resistive load can be used. The bath is robust, readily constructed and requires minimal maintenance. Full construction and operation details are given. © 2010 The Author Journal of Microscopy © 2010 The Royal Microscopical Society.

Top