Science.gov

Sample records for na peritonite experimental

  1. Experimental Studies of Interacting Electronic States in NaCs

    NASA Astrophysics Data System (ADS)

    Faust, Carl E.

    This dissertation describes methods and results of spectroscopic studies of the NaCs molecule. NaCs is of particular interest in many labs where experimental studies of ultra-cold molecules are being conducted. Data obtained in the present work will also be useful as benchmarks for various theoretical calculations. Our goals in studying this molecule were to map out high lying electronic states and to understand how these states interact with one another. Sodium and cesium metal were heated in a heat-pipe oven to form a vapor of NaCs molecules. These molecules were excited using narrow band, continuous wave (cw), tunable lasers. We employed the optical-optical double resonance (OODR) technique to obtain Doppler-free spectra of transitions to rotational and vibrational levels of high lying electronic states. One state of particular interest was the 12(0+) electronic state. Rovibrational level energies corresponding to this state were measured and used to generate a potential energy curve using computer programs to implement both the Rydberg-Klein-Rees (RKR) method and the inverted perturbation approach (IPA). By observing fluorescence from the 12(0+) state resolved as a function of wavelength, we determined that this state interacts with the nearby 11(0+) electronic state, which was previously mapped out by Ashman et al. A two-stage coupling model was devised to describe the resolved fluorescence originating from these two interacting states. The electronic states interact via spin-orbit coupling, while the individual rovibrational levels interact via a second mechanism, likely nonadiabatic coupling. This two-stage coupling between the levels of these states causes quantum interference between fluorescence pathways associated with different components of the wavefunctions describing these levels. This interference results in more complicated resolved fluorescence spectra. The model was used to fit parameters describing these interactions so that the resolved

  2. Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy

    PubMed Central

    Liu, Jiang; Tian, Jiang; Chaudhry, Muhammad; Maxwell, Kyle; Yan, Yanling; Wang, Xiaoliang; Shah, Preeya T.; Khawaja, Asad A.; Martin, Rebecca; Robinette, Tylor J.; El-Hamdani, Adee; Dodrill, Michael W.; Sodhi, Komal; Drummond, Christopher A.; Haller, Steven T.; Kennedy, David J.; Abraham, Nader G.; Xie, Zijian; Shapiro, Joseph I.

    2016-01-01

    We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac morphological and biochemical changes consistent with human uremic cardiomyopathy. Both inhibition of Na/K-ATPase oxidant amplification with pNaKtide and induction of heme oxygenase-1 (HO-1) with cobalt protoporphyrin (CoPP) markedly attenuated the development of phenotypical features of uremic cardiomyopathy. In a reversal study, administration of pNaKtide after the induction of uremic cardiomyopathy reversed many of the phenotypical features. Attenuation of Na/K-ATPase oxidant amplification may be a potential strategy for clinical therapy of this disorder. PMID:27698370

  3. Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution.

    PubMed

    Zhou, Aifen; Baidoo, Edward; He, Zhili; Mukhopadhyay, Aindrila; Baumohl, Jason K; Benke, Peter; Joachimiak, Marcin P; Xie, Ming; Song, Rong; Arkin, Adam P; Hazen, Terry C; Keasling, Jay D; Wall, Judy D; Stahl, David A; Zhou, Jizhong

    2013-09-01

    Desulfovibrio vulgaris Hildenborough strains with significantly increased tolerance to NaCl were obtained via experimental evolution. A NaCl-evolved strain, ES9-11, isolated from a population cultured for 1200 generations in medium amended with 100 mM NaCl, showed better tolerance to NaCl than a control strain, EC3-10, cultured for 1200 generations in parallel but without NaCl amendment in medium. To understand the NaCl adaptation mechanism in ES9-11, we analyzed the transcriptional, metabolite and phospholipid fatty acid (PLFA) profiles of strain ES9-11 with 0, 100- or 250 mM-added NaCl in medium compared with the ancestral strain and EC3-10 as controls. In all the culture conditions, increased expressions of genes involved in amino-acid synthesis and transport, energy production, cation efflux and decreased expression of flagellar assembly genes were detected in ES9-11. Consistently, increased abundances of organic solutes and decreased cell motility were observed in ES9-11. Glutamate appears to be the most important osmoprotectant in D. vulgaris under NaCl stress, whereas, other organic solutes such as glutamine, glycine and glycine betaine might contribute to NaCl tolerance under low NaCl concentration only. Unsaturation indices of PLFA significantly increased in ES9-11. Branched unsaturated PLFAs i17:1 ω9c, a17:1 ω9c and branched saturated i15:0 might have important roles in maintaining proper membrane fluidity under NaCl stress. Taken together, these data suggest that the accumulation of osmolytes, increased membrane fluidity, decreased cell motility and possibly an increased exclusion of Na(+) contribute to increased NaCl tolerance in NaCl-evolved D. vulgaris.

  4. Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution

    PubMed Central

    Zhou, Aifen; Baidoo, Edward; He, Zhili; Mukhopadhyay, Aindrila; Baumohl, Jason K; Benke, Peter; Joachimiak, Marcin P; Xie, Ming; Song, Rong; Arkin, Adam P; Hazen, Terry C; Keasling, Jay D; Wall, Judy D; Stahl, David A; Zhou, Jizhong

    2013-01-01

    Desulfovibrio vulgaris Hildenborough strains with significantly increased tolerance to NaCl were obtained via experimental evolution. A NaCl-evolved strain, ES9-11, isolated from a population cultured for 1200 generations in medium amended with 100 mM NaCl, showed better tolerance to NaCl than a control strain, EC3-10, cultured for 1200 generations in parallel but without NaCl amendment in medium. To understand the NaCl adaptation mechanism in ES9-11, we analyzed the transcriptional, metabolite and phospholipid fatty acid (PLFA) profiles of strain ES9-11 with 0, 100- or 250 mM-added NaCl in medium compared with the ancestral strain and EC3-10 as controls. In all the culture conditions, increased expressions of genes involved in amino-acid synthesis and transport, energy production, cation efflux and decreased expression of flagellar assembly genes were detected in ES9-11. Consistently, increased abundances of organic solutes and decreased cell motility were observed in ES9-11. Glutamate appears to be the most important osmoprotectant in D. vulgaris under NaCl stress, whereas, other organic solutes such as glutamine, glycine and glycine betaine might contribute to NaCl tolerance under low NaCl concentration only. Unsaturation indices of PLFA significantly increased in ES9-11. Branched unsaturated PLFAs i17:1 ω9c, a17:1 ω9c and branched saturated i15:0 might have important roles in maintaining proper membrane fluidity under NaCl stress. Taken together, these data suggest that the accumulation of osmolytes, increased membrane fluidity, decreased cell motility and possibly an increased exclusion of Na+ contribute to increased NaCl tolerance in NaCl-evolved D. vulgaris. PMID:23575373

  5. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells

    PubMed Central

    Vereninov, Igor A.; Yurinskaya, Valentina E.; Model, Michael A.; Vereninov, Alexey A.

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1–10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential. PMID:27159324

  6. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells.

    PubMed

    Vereninov, Igor A; Yurinskaya, Valentina E; Model, Michael A; Vereninov, Alexey A

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1-10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential.

  7. A quantitative description of the Na-K-2Cl cotransporter and its conformity to experimental data.

    PubMed

    Benjamin, B A; Johnson, E A

    1997-09-01

    In epithelia, the Na-K-2Cl cotransporter cooperates with other transport mechanisms to produce transepithelial NaCl transport. The reaction cycle for the Na-K-2Cl cotransporter has been established experimentally, but whether it accounts, quantitatively, for experimental findings has yet to be established. The differential equations that describe the reaction cycle were formulated, and the steady-state solutions were obtained by digital computation. Conformity between this description and the experimental data obtained from the literature was explored by automatic searches for the sets of rate constants that yielded statistical best-fits to the experimental data. Fits were obtained from renal epithelial cell lines, HeLa cells, and duck erythrocytes. Results show that the reaction cycle for the Na-K-2Cl cotransporter conforms well, quantitatively, with the experimental data.

  8. Chemical weathering of kimberlitic garnets: An experimental study (organic etching in ATP-Na2 salt)

    NASA Astrophysics Data System (ADS)

    Afanasiev, V. P.; Snegirev, O. V.; Kozmenko, O. A.; Pokhilenko, N. P.

    2014-12-01

    The morphology of garnets exposed to chemical weathering has been studied experimentally by etching in ATP disodium salt. After eighteen months, pyropes have developed etch patterns on grain surfaces identical to those produced by dissolution in their naturally occurring counterparts from in lateritic profiles. The mineral surface microtopography mainly corresponds to dislocation patterns, though positive elements of cuboid morphology are present as well. Similar corroded surfaces in pyropes have resulted from HF etching for 42 days: dislocation and cuboid dissolution, scratches, etch channels and grooves. Although the dissolution mechanisms are different, both reagents produce similar surface patterns, possibly, because dissolution localizes primarily at structure defects in minerals. However, HF providing much faster dissolution of pyrope is more preferable for the experimental use than ATP-Na2.

  9. Characteristics of hydrolysis of the complex Na2SnF6 in hydrothermal solutions-An experimental study

    USGS Publications Warehouse

    Wang, Y.; I-Ming, C.

    1987-01-01

    Characteristics of hydrolysis of the complex Na2SnF6, which is used as the starting material, in hydrothermal solutions have been studied at 200-602??C and 1 kbar. Experimental results show that intense hydrolysis of Na2SnF6 occurs at high temperatures and that with the rise of temperature the hydrolysis will become more intense. Under the present experimental conditions the most possible existing form of Sn in the hydrothermal solutions is SnF3(OH) or Na2SnF3(OH). In addition, the hydrolysis constants for Na2SnF6 have also been calculated at 200-602??C, and the relationship between Na2SnF6 hydrolysis and temperature is discussed. ?? 1987 Science Press.

  10. Experimental and theoretical study of the electronic states and spectra of SbNa

    NASA Astrophysics Data System (ADS)

    Setzer, K. D.; Fink, E. H.; Liebermann, H.-P.; Buenker, R. J.; Alekseyev, A. B.

    2015-12-01

    Gas-phase emission spectra of the hitherto unknown free radical SbNa were measured in the NIR region with a Fourier-transform spectrometer. The emissions were observed from a fast-flow system in which antimony vapor in argon or neon carrier gas was passed through a microwave discharge and mixed with sodium vapor in an observation tube. Seven transitions from five low-lying excited states A12, A21, A30+, A40-, and B2 to the X10+ and/or X21 components of the X3Σ- ground state have been observed and analyzed. In parallel to the experiments, relativistic configuration interaction calculations of potential energy curves, vibrational constants, bond lengths, transition moments and radiative lifetimes were carried out to aid in the analysis of the experimental data.

  11. Li-Na ternary amidoborane for hydrogen storage: experimental and first-principles study.

    PubMed

    Li, Wen; Miao, Ling; Scheicher, Ralph H; Xiong, Zhitao; Wu, Guotao; Araújo, C Moysés; Blomqvist, Andreas; Ahuja, Rajeev; Feng, Yuanping; Chen, Ping

    2012-04-28

    Li-Na ternary amidoborane, Na[Li(NH(2)BH(3))(2)], was recently synthesized by reacting LiH and NaH with NH(3)BH(3). This mixed-cation amidoborane shows improved dehydrogenation performance compared to that of single-cation amidoboranes, i.e., LiNH(2)BH(3) and NaNH(2)BH(3). In this paper, we synthesized the Li-Na ternary amidoborane by blending and re-crystallizing equivalent LiNH(2)BH(3) and NaNH(2)BH(3) in tetrahydrofuran (THF), and employed first-principles calculations and the special quasirandom structure (SQS) method to theoretically explore the likelihood for the existence of Li(1-x)Na(x)(NH(2)BH(3)) for various Li/Na ratios. The thermodynamic, electronic and phononic properties were investigated to understand the possible dehydrogenation mechanisms of Na[Li(NH(2)BH(3))(2)].

  12. Experimental Na/K exchange between alkali feldspar and an NaCl-KCl salt melt: chemically induced fracturing and element partitioning

    NASA Astrophysics Data System (ADS)

    Neusser, G.; Abart, R.; Fischer, F. D.; Harlov, D.; Norberg, N.

    2012-08-01

    The exchange of Na+ and K+ between alkali feldspar and a NaCl-KCl salt melt has been investigated experimentally. Run conditions were at ambient pressure and 850 °C as well as 1,000 °C. Cation exchange occurred by interdiffusion of Na+ and K+ on the feldspar sub-lattice, while the Si-Al framework remained unaffected. Due to the compositional dependence of the lattice parameters compositional heterogeneities resulting from Na+/K+ interdiffusion induced coherency stress and associated fracturing. Depending on the sense of chemical shift, different crack patterns developed. For the geometrically most regular case that developed when potassic alkali feldspar was shifted toward more sodium-rich compositions, a prominent set of cracks corresponding to tension cracks opened perpendicular to the direction of maximum tensile stress and did not follow any of the feldspar cleavage planes. The critical stress needed to initiate fracturing in a general direction of the feldspar lattice was estimated at ≤0.35 GPa. Fracturing provided fast pathways for penetration of salt melt or vapor into grain interiors enhancing overall cation exchange. The Na/K partitioning between feldspar and the salt melt attained equilibrium values in the exchanged portions of the grains allowing for extraction of the alkali feldspar mixing properties.

  13. Protective effect of experimental mouthrinses containing NaF and TiF4 on dentin erosive loss in vitro

    PubMed Central

    de CASTILHO, Aline Rogéria Freire; SALOMÃO, Priscila Maria Aranda; BUZALAF, Marília Afonso Rabelo; MAGALHÃES, Ana Carolina

    2015-01-01

    Objective This in vitro study assessed the anti-erosive effect of experimental mouthrinses containing TiF4 and NaF on dentin erosive loss. Material and Methods Bovine dentin specimens were randomly allocated into the groups (n=15): 1) SnCl2/NaF/AmF (Erosion Protection®/GABA, pH 4.5, positive control); 2) experimental solution with 0.0815% TiF4 (pH 2.5); 3) 0.105% NaF (pH 4.5); 4) 0.042% NaF+0.049% TiF4 (pH 4.4); 5) 0.063% NaF+0.036% TiF4 (pH 4.5); 6) no treatment (negative control). Each specimen was cyclically demineralized (Sprite Zero, pH 2.6, 4x90 s/day) and exposed to artificial saliva between the erosive challenges for 7 days. The treatment with the fluoride solutions was done 2x60 s/day, immediately after the first and the last erosive challenges of the day. Dentin erosive loss was measured by profilometry (μm). The data were analyzed using Kruskal Wallis/Dunn tests (p<0.05). Results Mouthrinses containing TiF4 or Sn/F were able to show some protective effect against dentin erosive loss compared to negative control. The best anti-erosive effect was found for experimental solution containing 0.0815% TiF4 (100% reduction in dentin loss), followed by 0.042% NaF+0.049% TiF4 (58.3%), SnCl2/NaF/AmF (52%) and 0.063% NaF+0.036% TiF4 (40%). NaF solution (13.3%) did not significantly differ from control. Conclusion The daily application of experimental mouthrinse containing TiF4 and NaF has the ability to reduce dentin erosion, as well as Erosion Protection® and TiF4 alone. PMID:26537719

  14. Potency testing for the experimental Na-GST-1 hookworm vaccine.

    PubMed

    Jariwala, Amar R; Oliveira, Luciana M; Diemert, David J; Keegan, Brian; Plieskatt, Jordan L; Periago, Maria V; Bottazzi, Maria E; Hotez, Peter J; Bethony, Jeffrey M

    2010-10-01

    Over the next decade, a new generation of vaccines will target the neglected tropical diseases (NTDs). The goal of most NTD vaccines will be to reduce the morbidity and decrease the chronic debilitating nature of these often-forgotten infections – outcomes that are hard to measure in the traditional potency testing paradigm. The absence of measurable correlates of protection, a lack of permissive animal models for lethal infection, and a lack of clinical indications that do not include the induction of sterilizing immunity required us to reconsider the traditional bioassay methods for determining vaccine potency. Owing to these limitations, potency assay design for NTD vaccines will increasingly rely on a paradigm where potency testing is one among many tools to ensure that a manufacturing process yields a product of consistent quality. Herein, we discuss the evolution of our thinking regarding the design of a potency assay along these newly defined lines and its application to the release of the experimental Necator americanus-glutathione-S- transferase-1 (Na-GST-1) vaccine to prevent human hookworm infection. We discuss the necessary steps to accomplish the design and implementation of such a new potency assay as a resource for the burgeoning NTD vaccine community. Our experience is that much of the existing information is proprietary and needs to be pulled together in a single source to aid in our overall understanding of potency testing.

  15. CARS spectroscopy of the NaH2 collision complex: the nature of the Na(32 P)H2 exciplex — ab initio calculations and experimental results

    NASA Astrophysics Data System (ADS)

    de Vivie-Riedle, R.; Hering, P.; Kompa, K. L.

    1990-12-01

    CARS (Coherent Anti-Stokes Raman Scattering) has been used to analyze the rovibronic state distribution of H2 after collision with Na(32 P). New lines, which do not correspond to H2 lines are observed in the CARS spectrum. The experiments point to the formation of a complex of Na(32 P)H2 in A 2 B 2 symmetry. Ab initio calculations of the A 2 B 2 potential were performed. On this surface the vibrational spectra of the exciplex are evaluated. The observed lines can be attributed to vibrational transitions in the complex, in which combinational modes are involved. The connection of experimental and theoretical results indicates that a collisionally stabilized exciplex molecule is formed during the quenching process.

  16. Antibody Profiling in Naïve and Semi-immune Individuals Experimentally Challenged with Plasmodium vivax Sporozoites

    PubMed Central

    Arévalo-Herrera, Myriam; Lopez-Perez, Mary; Dotsey, Emmanuel; Jain, Aarti; Rubiano, Kelly; Felgner, Philip L.; Davies, D. Huw; Herrera, Sócrates

    2016-01-01

    Background Acquisition of malaria immunity in low transmission areas usually occurs after relatively few exposures to the parasite. A recent Plasmodium vivax experimental challenge trial in malaria naïve and semi-immune volunteers from Colombia showed that all naïve individuals developed malaria symptoms, whereas semi-immune subjects were asymptomatic or displayed attenuated symptoms. Sera from these individuals were analyzed by protein microarray to identify antibodies associated with clinical protection. Methodology/Principal Findings Serum samples from naïve (n = 7) and semi-immune (n = 9) volunteers exposed to P. vivax sporozoite-infected mosquito bites were probed against a custom protein microarray displaying 515 P. vivax antigens. The array revealed higher serological responses in semi-immune individuals before the challenge, although malaria naïve individuals also had pre-existing antibodies, which were higher in Colombians than US adults (control group). In both experimental groups the response to the P. vivax challenge peaked at day 45 and returned to near baseline at day 145. Additional analysis indicated that semi-immune volunteers without fever displayed a lower response to the challenge, but recognized new antigens afterwards. Conclusion Clinical protection against experimental challenge in volunteers with previous P. vivax exposure was associated with elevated pre-existing antibodies, an attenuated serological response to the challenge and reactivity to new antigens. PMID:27014875

  17. Experimental Studies of NaK in a Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Gibons, Marc; Sanzi, James; Ljubanovic, Damir

    2011-01-01

    Space fission power systems are being developed at the National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) with a short term goal of building a full scale, non-nuclear, Technology Demonstration Unit (TDU) test at NASA's Glenn Research Center. Due to the geometric constraints, mass restrictions, and fairly high temperatures associated with space reactors, liquid metals are typically used as the primary coolant. A eutectic mixture of sodium (22 percent) and potassium (78 percent), or NaK, has been chosen as the coolant for the TDU with a total system capacity of approximately 55 L. NaK, like all alkali metals, is very reactive, and warrants certain safety considerations. To adequately examine the risk associated with the personnel, facility, and test hardware during a potential NaK leak in the large scale TDU test, a small scale experiment was performed in which NaK was released in a thermal vacuum chamber under controlled conditions. The study focused on detecting NaK leaks in the vacuum environment as well as the molecular flow of the NaK vapor. This paper reflects the work completed during the NaK experiment and provides results and discussion relative to the findings.

  18. Experimental study of NaCl aqueous solutions by Raman spectroscopy: towards a new optical sensor.

    PubMed

    Duricković, Ivana; Marchetti, Mario; Claverie, Rémy; Bourson, Patrice; Chassot, Jean-Marie; Fontana, Marc D

    2010-08-01

    Raman spectroscopy was used to study the NaCl aqueous solutions around the solid-liquid phase transition. Special attention was devoted to the modification induced by the salt on the OH stretching band of water. Investigations were carried out in the temperature range between -21 and 10 degrees C, for concentrations from 0 to 200 g/L. We demonstrated that micro-Raman spectroscopy can be used as a marker, allowing the determination of the salt concentration of an aqueous solution with an error close to +/-5%.

  19. Na+/Ca2+ exchanger contributes to stool transport in mice with experimental diarrhea

    PubMed Central

    NISHIYAMA, Kazuhiro; TANIOKA, Kohta; AZUMA, Yasu-Taka; HAYASHI, Satomi; FUJIMOTO, Yasuyuki; YOSHIDA, Natsuho; KITA, Satomi; SUZUKI, Sho; NAKAJIMA, Hidemitsu; IWAMOTO, Takahiro; TAKEUCHI, Tadayoshi

    2016-01-01

    The Na+/Ca2+ exchanger (NCX) is a bidirectional transporter that is controlled by membrane potential and transmembrane gradients of Na+ and Ca2+. To reveal the functional role of NCX on gastrointestinal motility, we have previously used NCX1 and NCX2 heterozygote knockout mice (HET). We found that NCX1 and NCX2 play important roles in the motility of the gastric fundus, ileum and distal colon. Therefore, we believed that NCX1 and NCX2 play an important role in transport of intestinal contents. Here, we investigated the role of NCX in a mouse model of drug-induced diarrhea. The fecal consistencies in NCX1 HET and NCX2 HET were assessed using a diarrhea induced by magnesium sulfate, 5-hydroxytryptamine (5-HT) and prostaglandin E2 (PGE2). NCX2 HET, but not NCX1 HET, exacerbated magnesium sulfate-induced diarrhea by increasing watery fecals. Likewise, 5-HT-induced diarrheas were exacerbated in NCX2 HET, but not NCX1 HET. However, NCX1 HET and NCX2 HET demonstrated PGE2 induced diarrhea similar to those of wild-type mice (WT). As well as the result of the distal colon shown previously, in the proximal and transverse colons of WT, the myenteric plexus layers and the longitudinal and circular muscle layers were strongly immunoreactive to NCX1 and NCX2. In this study, we demonstrate that NCX2 has important roles in development of diarrhea. PMID:27928109

  20. Experimental and theoretical study of the electronic states and spectra of NaAs

    NASA Astrophysics Data System (ADS)

    Setzer, K. D.; Fink, E. H.; Alekseyev, A. B.; Liebermann, H.-P.; Buenker, R. J.

    2016-02-01

    Gas-phase emission spectra of the hitherto unknown free radical NaAs were measured in the NIR region with a Fourier-transform spectrometer. The emissions were observed from a fast-flow system in which arsenic vapor in argon carrier gas was passed through a microwave discharge and mixed with sodium vapor in an observation tube. Seven transitions from all five Ω components of the low-lying A3Π and a1Δ excited states (A12, A21, A30+, A40-, a2) to the X10+ and/or X21 components of the X3Σ- ground state have been observed and analysed. With the help of parallel relativistic configuration interaction calculations all observed spectral features could be assigned and analyzed.

  1. The front end electronics of the NA62 Gigatracker: challenges, design and experimental measurements

    NASA Astrophysics Data System (ADS)

    Noy, M.; Aglieri Rinella, G.; Ceccucci, A.; Dellacasa, G.; Fiorini, M.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Martin, E.; Mazza, G.; Martoiu, S.; Morel, M.; Perktold, L.; Rivetti, A.; Tiuraniemi, S.

    2011-06-01

    The beam spectrometer of the NA62 experiment consists of 3 Gigatracker (GTK) stations. Each station comprises a pixel detector of 16 cm active area made of an assembly of 10 readout ASICs bump bonded to a 200 μm thick pixel silicon sensor, comprising 18000 pixels of 300 μm×300 μm. The main challenge of the NA62 pixel GTK station is the combination of an extremely high kaon/pion beam rate, where the intensity in the center of the beam reaches up to 1.5 Mhit s mm together with an extreme time resolution of 100 ps. To date, it is the first silicon tracking system with this time resolution. To face this challenge, the pixel analogue front end has been designed with a peaking time of 4 ns, with a planar silicon sensor operating up to 300 V over depletion. Moreover, the radiation level is severe, 2×10 1 MeV n cm per year of operation. Easy replacement of the GTK stations is foreseen as a design requirement. The amount of material of a single station should also be less than 0.5% X to minimize the background, which imposes strong constraints on the mechanics and the cooling system. We report upon the design and architecture of the 2 prototype demonstrator chips both designed in 130 nm CMOS technology, one with a constant fraction discriminator and the time stamp digitisation in each pixel (In-Pixel), and the other with a time-over-threshold discriminator and the processing of the time stamp located in the End of Column (EoC) region at the chip periphery. Some preliminary results are presented.

  2. Experimental optimum design and luminescence properties of NaY(Gd)(MoO4)2:Er3+ phosphors

    NASA Astrophysics Data System (ADS)

    Jia-Shi, Sun; Sai, Xu; Shu-Wei, Li; Lin-Lin, Shi; Zi-Hui, Zhai; Bao-Jiu, Chen

    2016-06-01

    Three-factor orthogonal design (OD) of Er3+/Gd3+/T (calcination temperature) is used to optimize the luminescent intensity of NaY(Gd)(MoO4)2:Er3+ phosphor. Firstly, the uniform design (UD) is introduced to explore the doping concentration range of Er3+/Gd3+. Then OD and range analysis are performed based on the results of UD to obtain the primary and secondary sequence and the best combination of Er3+, Gd3+, and T within the experimental range. The optimum sample is prepared by the high temperature solid state method. Photoluminescence excitation and emission spectra of the optimum sample are detected. The intense green emissions (530 nm and 550 nm) are observed which originate from Er3+ 2H11/2→ 4I15/2 and 4S3/2→4I15/2, respectively. Thermal effect is investigated in the optimum NaY(Gd3+)(MoO4)2:Er3+ phosphors, and the green emission intensity decreases as temperature increases. Project supported by Education Reform Fund of Dalian Maritime University, China (Grant No. 2015Y37), the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2015020190 and 2014025010), the Open Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2015KF27), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3132016121).

  3. Experimental study of the astrophysically important 23Na(α ,p )26Mg and 23Na(α ,n )26Al reactions

    NASA Astrophysics Data System (ADS)

    Avila, M. L.; Rehm, K. E.; Almaraz-Calderon, S.; Ayangeakaa, A. D.; Dickerson, C.; Hoffman, C. R.; Jiang, C. L.; Kay, B. P.; Lai, J.; Nusair, O.; Pardo, R. C.; Santiago-Gonzalez, D.; Talwar, R.; Ugalde, C.

    2016-12-01

    The 23Na(α ,p )26Mg and 23Na(α ,n )26Al reactions are important for our understanding of the 26Al abundance in massive stars. The aim of this work is to report on a direct and simultaneous measurement of these astrophysically important reactions using an active target system. The reactions were investigated in inverse kinematics using 4He as the active target gas in the detector. We measured the excitation functions in the energy range of about 2 to 6 MeV in the center of mass. We have found that the cross sections of the 23Na(α ,p )26Mg and the 23Na(α ,n )26Al reactions are in good agreement with previous experiments and with statistical-model calculations. The astrophysical reaction rate of the 23Na(α ,n )26Al reaction has been reevaluated and it was found to be larger than the recommended rate.

  4. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

    PubMed Central

    Lu, Dawei; Mao, Chenchen; Cho, Suehyun K.; Ahn, Sungmo; Park, Wounjhang

    2016-01-01

    Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we report a systematic study on the dynamics of the ETU process in NaYF4:Yb3+,Er3+ nanoparticles deposited on plasmonic nanograting structure. From the transient near-infrared photoluminescence under various excitation power densities, we observed faster energy transfer rates under stronger excitation conditions until it reached saturation where the highest internal upconversion efficiency was achieved. The experimental data were analyzed using the complete set of rate equations. The internal upconversion efficiency was found to be 56% and 36%, respectively, with and without the plasmonic nanograting. We also analyzed the transient green emission and found that it is determined by the infrared transition rate. To our knowledge, this is the first report of experimentally measured internal upconversion efficiency in plasmon enhanced upconversion material. Our work decouples the internal upconversion efficiency from the overall upconverted luminescence efficiency, allowing more targeted engineering for efficiency improvement. PMID:26739230

  5. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Lu, Dawei; Mao, Chenchen; Cho, Suehyun K.; Ahn, Sungmo; Park, Wounjhang

    2016-01-01

    Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we report a systematic study on the dynamics of the ETU process in NaYF4:Yb3+,Er3+ nanoparticles deposited on plasmonic nanograting structure. From the transient near-infrared photoluminescence under various excitation power densities, we observed faster energy transfer rates under stronger excitation conditions until it reached saturation where the highest internal upconversion efficiency was achieved. The experimental data were analyzed using the complete set of rate equations. The internal upconversion efficiency was found to be 56% and 36%, respectively, with and without the plasmonic nanograting. We also analyzed the transient green emission and found that it is determined by the infrared transition rate. To our knowledge, this is the first report of experimentally measured internal upconversion efficiency in plasmon enhanced upconversion material. Our work decouples the internal upconversion efficiency from the overall upconverted luminescence efficiency, allowing more targeted engineering for efficiency improvement.

  6. Experimental Study on Steel Tank Model Using Shaking Table/ Badania Eksperymentalne Modelu Zbiornika Stalowego Na Stole Sejsmicznym

    NASA Astrophysics Data System (ADS)

    Burkacki, Daniel; Jankowski, Robert

    2014-09-01

    Cylindrical steel tanks are very popular structures used for storage of products of chemical and petroleum industries. Earthquakes are the most dangerous and also the most unpredictable dynamic loads acting on such structures. On the other hand, mining tremors are usually considered to be less severe due to lower acceleration levels observed. The aim of the present paper is to show the results of the experimental study which has been conducted on a scaled model of a real tank located in Poland. The investigation has been carried out under different dynamic excitations (earthquakes and mining tremors) using the shaking table. The results of the study indicate that stored product may significantly influence the values of dynamic parameters and confirm that the level of liquid filling is really essential in the structural analysis. The comparison of the response under moderate earthquakes and mining tremors indicate that the second excitation may be more severe in some cases. Stalowe zbiorniki walcowe są bardzo popularnymi konstrukcjami używanymi do magazynowania produktów przemysłu chemicznego i naftowego. Ich bezpieczeństwo i niezawodność są kluczowe, ponieważ każde uszkodzenie może nieść za sobą bardzo poważne konsekwencje. Trzęsienia ziemi są najbardziej niebezpiecznymi, a zarazem najbardziej nieprzewidywalnymi obciążeniami dynamicznymi, które mogą oddziaływać na tego typu konstrukcje. Z drugiej strony ruchy podłoża związane ze wstrząsami górniczymi są uważane za mniej groźne z powodu osiągania niższych poziomów wartości przyspieszeń. Celem niniejszego artykułu jest przedstawienie wyników badań eksperymentalnych, które przeprowadzono na wykonanym w skali modelu rzeczywistego zbiornika zlokalizowanego na terenie Polski. Badania wykonano przy użyciu stołu sejsmicznego. Zakres badań obejmował testy harmoniczne właściwości dynamicznych oraz zachowanie się stalowego zbiornika walcowego podczas trzęsień ziemi oraz wstrz

  7. Examination and experimental constraints of the stellar reaction rate factor NA<σv> of the 18Ne(α,p)21Na reaction at temperatures of x-ray bursts

    NASA Astrophysics Data System (ADS)

    Mohr, P.; Matic, A.

    2013-03-01

    The 18Ne(α,p)21Na reaction is one key for the breakout from the hot CNO cycles to the rp-process. Recent papers have provided reaction rate factors NA<σv> which are discrepant by at least one order of magnitude. The compatibility of the latest experimental results is tested, and a partial explanation for the discrepant NA<σv> is given. A new rate factor is derived from the combined analysis of all available data. The new rate factor is located slightly below the higher rate factor found by Matic [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.80.055804 80, 055804 (2009)] at low temperatures and significantly below at higher temperatures whereas it is about a factor of 5 higher than the lower rate factor recently published by Salter [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.242701 108, 242701 (2012)].

  8. Mediation of protection and recovery from experimental autoimmune encephalomyelitis by macrophages expressing the human voltage-gated sodium channel NaV1.5.

    PubMed

    Rahgozar, Kusha; Wright, Erik; Carrithers, Lisette M; Carrithers, Michael D

    2013-06-01

    Multiple sclerosis (MS) is the most common nontraumatic cause of neurologic disability in young adults. Despite treatment, progressive tissue injury leads to accumulation of disability in many patients. Here, our goal was to develop an immune-mediated strategy to promote tissue repair and clinical recovery in an MS animal model. We previously demonstrated that a variant of the voltage-gated sodium channel NaV1.5 is expressed intracellularly in human macrophages, and that it regulates cellular signaling. This channel is not expressed in mouse macrophages, which has limited the study of its functions. To overcome this obstacle, we developed a novel transgenic mouse model (C57BL6), in which the human macrophage NaV1.5 splice variant is expressed in vivo in mouse macrophages. These mice were protected from experimental autoimmune encephalomyelitis, the mouse model of MS. During active inflammatory disease, NaV1.5-positive macrophages were found in spinal cord lesions where they formed phagocytic cell clusters; they expressed markers of alternative activation during recovery. NaV1.5-positive macrophages that were adoptively transferred into wild-type recipients with established experimental autoimmune encephalomyelitis homed to lesions and promoted recovery. These results suggest that NaV1.5-positive macrophages enhance recovery from CNS inflammatory disease and could potentially be developed as a cell-based therapy for the treatment of MS.

  9. The 18Ne(α,p)21Na breakout reaction in x-ray bursts: Experimental determination of spin-parities for α resonances in 22Mg via resonant elastic scattering of 21Na+p

    NASA Astrophysics Data System (ADS)

    He, J. J.; Zhang, L. Y.; Parikh, A.; Xu, S. W.; Yamaguchi, H.; Kahl, D.; Kubono, S.; Hu, J.; Ma, P.; Chen, S. Z.; Wakabayashi, Y.; Sun, B. H.; Wang, H. W.; Tian, W. D.; Chen, R. F.; Guo, B.; Hashimoto, T.; Togano, Y.; Hayakawa, S.; Teranishi, T.; Iwasa, N.; Yamada, T.; Komatsubara, T.

    2013-07-01

    The 18Ne(α,p)21Na reaction provides a pathway for breakout from the hot CNO cycles to the rp process in type-I x-ray bursts. To better determine this astrophysical reaction rate, the resonance parameters of the compound nucleus 22Mg have been investigated by measuring the resonant elastic scattering of 21Na+p. An 89 MeV 21Na radioactive ion beam was produced at the CNS Radioactive Ion Beam Separator and bombarded an 8.8 mg/cm2 thick polyethylene target. The recoiled protons were measured at scattering angles of θc.m.≈175∘ and 152∘ by three ΔE-E silicon telescopes. The excitation function was obtained with a thick-target method over energies Ex(22Mg) = 5.5-9.2 MeV. The resonance parameters have been determined through an R-matrix analysis. For the first time, the Jπ values for ten states above the α threshold in 22Mg have been experimentally determined in a single consistent measurement. We have made three new Jπ assignments and confirmed seven of the ten tentative assignments in the previous work. The 18Ne(α,p)21Na reaction rate has been recalculated, and the astrophysical impact of our new rate has been investigated through one-zone postprocessing x-ray burst calculations. We find that the 18Ne(α,p)21Na rate significantly affects the peak nuclear energy generation rate and the onset temperature of this breakout reaction in these phenomena.

  10. Mechanisms of atrial fibrillation termination by rapidly unbinding Na+ channel blockers: insights from mathematical models and experimental correlates.

    PubMed

    Comtois, Philippe; Sakabe, Masao; Vigmond, Edward J; Munoz, Mauricio; Texier, Anne; Shiroshita-Takeshita, Akiko; Nattel, Stanley

    2008-10-01

    Atrial fibrillation (AF) is the most common sustained clinical arrhythmia and is a problem of growing proportions. Recent studies have increased interest in fast-unbinding Na(+) channel blockers like vernakalant (RSD1235) and ranolazine for AF therapy, but the mechanism of efficacy is poorly understood. To study how fast-unbinding I(Na) blockers affect AF, we developed realistic mathematical models of state-dependent Na(+) channel block, using a lidocaine model as a prototype, and studied the effects on simulated cholinergic AF in two- and three-dimensional atrial substrates. We then compared the results with in vivo effects of lidocaine on vagotonic AF in dogs. Lidocaine action was modeled with the Hondeghem-Katzung modulated-receptor theory and maximum affinity for activated Na(+) channels. Lidocaine produced frequency-dependent Na(+) channel blocking and conduction slowing effects and terminated AF in both two- and three-dimensional models with concentration-dependent efficacy (maximum approximately 89% at 60 microM). AF termination was not related to increases in wavelength, which tended to decrease with the drug, but rather to decreased source Na(+) current in the face of large ACh-sensitive K(+) current-related sinks, leading to the destabilization of primary generator rotors and a great reduction in wavebreak, which caused primary rotor annihilations in the absence of secondary rotors to resume generator activity. Lidocaine also reduced the variability and maximum values of the dominant frequency distribution during AF. Qualitatively similar results were obtained in vivo for lidocaine effects on vagal AF in dogs, with an efficacy of 86% at 2 mg/kg iv, as well as with simulations using the guarded-receptor model of lidocaine action. These results provide new insights into the mechanisms by which rapidly unbinding class I antiarrhythmic agents, a class including several novel compounds of considerable promise, terminate AF.

  11. Experimental Investigation of the 19Ne (p ,γ )20Na Reaction Rate and Implications for Breakout from the Hot CNO Cycle

    NASA Astrophysics Data System (ADS)

    Belarge, J.; Kuvin, S. A.; Baby, L. T.; Baker, J.; Wiedenhöver, I.; Höflich, P.; Volya, A.; Blackmon, J. C.; Deibel, C. M.; Gardiner, H. E.; Lai, J.; Linhardt, L. E.; Macon, K. T.; Need, E.; Rasco, B. C.; Quails, N.; Colbert, K.; Gay, D. L.; Keeley, N.

    2016-10-01

    The 19Ne (p ,γ )20Na reaction is the second step of a reaction chain which breaks out from the hot CNO cycle, following the 15O (α ,γ )19Ne reaction at the onset of x-ray burst events. We investigate the spectrum of the lowest proton-unbound states in 20Na in an effort to resolve contradictions in spin-parity assignments and extract reliable information about the thermal reaction rate. The proton-transfer reaction 19Ne(d ,n )20Na is measured with a beam of the radioactive isotope 19Ne at an energy around the Coulomb barrier and in inverse kinematics. We observe three proton resonances with the 19Ne ground state, at 0.44, 0.66, and 0.82 MeV c.m. energies, which are assigned 3+, 1+, and (0+), respectively. In addition, we identify two resonances with the first excited state in 19Ne, one at 0.20 MeV and one, tentatively, at 0.54 MeV. These observations allow us for the first time to experimentally quantify the astrophysical reaction rate on an excited nuclear state. Our experiment shows an efficient path for thermal proton capture in 19Ne(p ,γ )20Na, which proceeds through ground state and excited-state capture in almost equal parts and eliminates the possibility for this reaction to create a bottleneck in the breakout from the hot CNO cycle.

  12. Experimental Investigation of the ^{19}Ne(p,γ)^{20}Na Reaction Rate and Implications for Breakout from the Hot CNO Cycle.

    PubMed

    Belarge, J; Kuvin, S A; Baby, L T; Baker, J; Wiedenhöver, I; Höflich, P; Volya, A; Blackmon, J C; Deibel, C M; Gardiner, H E; Lai, J; Linhardt, L E; Macon, K T; Need, E; Rasco, B C; Quails, N; Colbert, K; Gay, D L; Keeley, N

    2016-10-28

    The ^{19}Ne(p,γ)^{20}Na reaction is the second step of a reaction chain which breaks out from the hot CNO cycle, following the ^{15}O(α,γ)^{19}Ne reaction at the onset of x-ray burst events. We investigate the spectrum of the lowest proton-unbound states in ^{20}Na in an effort to resolve contradictions in spin-parity assignments and extract reliable information about the thermal reaction rate. The proton-transfer reaction ^{19}Ne(d,n)^{20}Na is measured with a beam of the radioactive isotope ^{19}Ne at an energy around the Coulomb barrier and in inverse kinematics. We observe three proton resonances with the ^{19}Ne ground state, at 0.44, 0.66, and 0.82 MeV c.m. energies, which are assigned 3^{+}, 1^{+}, and (0^{+}), respectively. In addition, we identify two resonances with the first excited state in ^{19}Ne, one at 0.20 MeV and one, tentatively, at 0.54 MeV. These observations allow us for the first time to experimentally quantify the astrophysical reaction rate on an excited nuclear state. Our experiment shows an efficient path for thermal proton capture in ^{19}Ne(p,γ)^{20}Na, which proceeds through ground state and excited-state capture in almost equal parts and eliminates the possibility for this reaction to create a bottleneck in the breakout from the hot CNO cycle.

  13. Inhibition of Na(+),K(+)-ATPase in the hypothalamus, pons and cerebellum of the offspring rat due to experimentally-induced maternal hypothyroidism.

    PubMed

    Koromilas, Christos; Liapi, Charis; Zarros, Apostolos; Tsela, Smaragda; Zissis, Konstantinos M; Kalafatakis, Konstantinos; Skandali, Nikolina; Voumvourakis, Konstantinos; Carageorgiou, Haris; Tsakiris, Stylianos

    2015-08-01

    Neurodevelopment is known to be particularly susceptible to thyroid hormone insufficiency and can result in extensive structural and functional deficits within the central nervous system (CNS), subsequently leading to the establishment of cognitive impairment and neuropsychiatric symptomatology. The current study evaluated the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism (as a suggestive multilevel experimental approach to the study of hypothyroidism-induced changes that has been developed and characterized by the authors) on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a CNS region-specific manner. The activities of acetylcholinesterase (AChE), Na(+),K(+)-ATPase and Mg(2+)-ATPase in the offspring hypothalamus, cerebellum and pons were assessed. The study demonstrated that maternal exposure to PTU (0.05% w/v in the drinking water) during the critical periods of neurodevelopment can result in an inhibition of hypothalamic, pontine and cerebellar Na(+),K(+)-ATPase; a major marker of neuronal excitability and metabolic energy production as well as an important regulator of important systems of neurotransmission. On the other hand, no significant changes in the activities of the herein offspring CNS regions' AChE and Mg(2+)-ATPase were recorded. The observed Na(+),K(+)-ATPase inhibition: (i) is region-specific (and non-detectable in whole brain homogenetes), (ii) could constitute a central event in the pathophysiology of clinically-relevant hypothyroidism-associated developmental neurotoxicity, (iii) occurs under all examined experimental schemes, and (iv) certainly deserves further clarification at a molecular and histopathological level. As these findings are analyzed and compared to the available literature, they also underline the need for the adoption and further study of Na(+),K(+)-ATPase activity as a consistent neurochemical marker within the context of a systematic

  14. The experimental determination of the solubility product for NpO{sub 2}OH in NaCl solutions

    SciTech Connect

    Roberts, K.E.; Torretto, P.C.; Prussin, T.

    1995-09-01

    The solubility of Np(V) was measured in NaCl solutions ranging from 0.30 to 5.6 molal at room temperature ({approximately}21 {plus_minus} 2{degrees}C). Experiments were conducted from undersaturation and allowed to equilibrate in a CO{sub 2}-free environment for 37 days. The apparent solubility products varied with NaCl concentration and were between 10{sup -9} and 10{sup -8} mol{sup 2}{sm_bullet}L{sup -2}. Using the specific ion interaction theory (SIT), the log of the solubility product of NpO{sub 2}OH(am) at infinite dilution was found to be - 8.79 {plus_minus} 0.12. The interaction coefficient, {epsilon}(NpO{sub 2}{sup +} - Cl{sup -}), was found to be (0.08 {plus_minus} 0.05).

  15. Theoretical and experimental determination of the electronic structure of V(2)O(5), reduced V(2)O(5-x) and sodium intercalated NaV(2)O(5).

    PubMed

    Laubach, Stefan; Schmidt, Peter C; Thissen, Andreas; Fernandez-Madrigal, Francisco Javier; Wu, Qi-Hui; Jaegermann, Wolfram; Klemm, Matthias; Horn, Siegfried

    2007-05-28

    In this work the electronic structure of V(2)O(5), reduced V(2)O(5-x) (V(16)O(39)) and sodium intercalated NaV(2)O(5) has been studied by both theoretical and experimental methods. Theoretical band structure calculations have been performed using density functional methods (DFT). We have investigated the electron density distribution of the valence states, the total density of states (total DOS) and the partial valence band density of states (PVBDOS). Experimentally, amorphous V(2)O(5) thin films have been prepared by physical vapour deposition (PVD) on freshly cleaved highly oriented pyrolytic graphite (HOPG) substrates at room temperature with an initial oxygen understoichiometry of about 4%, resulting in a net stoichiometry of V(2)O(4.8). These films have been intercalated by sodium using vacuum deposition with subsequent spontaneous intercalation (NaV(2)O(5)) at room temperature. Resonant V3p-V3d photoelectron spectroscopy (ResPES) experiments have been performed to determine the PVBDOS focusing on the calculation of occupation numbers and the determination of effective oxidation state, reflecting ionicity and covalency of the V-O bonds. Using X-ray absorption near edge spectra (XANES) an attempt is made to visualize the changes in the unoccupied DOS due to sodium intercalation. For comparison measurements on nearly stoichiometric V(2)O(5) single crystals have been performed. The experimental data for the freshly cleaved and only marginally reduced V(2)O(5) single crystals and the NaV(2)O(5) results are in good agreement with the calculated values. The ResPES results for V(2)O(4.8) agree in principle with the calculations, but the trends in the change of the ionicity differ between experiment and theory. Experimentally we find partly occupied V 3d states above the oxygen 2p-like states and a band gap between these and the unoccupied states. In theory one finds this occupation scheme assuming oxygen vacancies in V(2)O(5) and by performing a spin

  16. Mathematical modelling in Matlab of the experimental results shows the electrochemical potential difference - temperature of the WC coatings immersed in a NaCl solution

    NASA Astrophysics Data System (ADS)

    Benea, M. L.; Benea, O. D.

    2016-02-01

    The method used for purchasing the corrosion behaviour the WC coatings deposited by plasma spraying, on a martensitic stainless steel substrate consists in measuring the electrochemical potential of the coating, respectively that of the substrate, immersed in a NaCl solution as corrosive agent. The mathematical processing of the obtained experimental results in Matlab allowed us to make some correlations between the electrochemical potential of the coating and the solution temperature is very well described by some curves having equations obtained by interpolation order 4.

  17. Mechanism of reaction in NaAlCl4 molten salt batteries with nickel felt cathodes and aluminum anodes. 2: Experimental results and comparison with model calculations

    NASA Astrophysics Data System (ADS)

    Knutz, B. C.; Berg, R. W.; Hjuler, H. A.; Bjerrum, N. J.

    1993-12-01

    The battery systems: Al/NaCl-AlCl3-Al2 X3/Ni-felt (X = S, Se, Te) and the corresponding system without chalcogen have been studied experimentally at 175 C. Charge/discharge experiments, performed on cells with NaCl saturated melts, show that advantages with regard to rate capability and cyclability can be obtained with systems containing dissolved chalcogen compared with the chalcogen-free system. Exchange of chalcogen between cathode and electrolyte during cycling was confirmed by performing gravimetric analysis and Raman spectroscopy of the electrolytes. Cathode reactions were studied by coulometric titrations (performed on cells with slightly acidic NaCl-AlCl3 melts and small amounts of chalcogen) and compared with model calculations. Cells containing chalcogen revealed at least three voltage plateaus during cycling. The lowest plateau is associated with formation/decomposition of essentially Ni(y)S(z) an d Ni(y)Se(z) in the sulfide and selenide system, respectively. Cells containing selenide revealed extra capacity below the Ni(y) Se(z)-plateau, most probably associated with a Al(v)Ni(y)Se(z) compound. On the second plateau of sulfide systems NiCl2 or a Ni(y)S(z) Cl(2y - 2z) compound with y greater than (4.4 +/- 0.2), z is formed during charging. Reduction of the formed compound to Ni takes place via consumption of sodium chloride.

  18. An experimental design approach for hydrothermal synthesis of NaYF4: Yb3+, Tm3+ upconversion microcrystal: UV emission optimization

    NASA Astrophysics Data System (ADS)

    Kaviani Darani, Masoume; Bastani, Saeed; Ghahari, Mehdi; Kardar, Pooneh

    2015-11-01

    Ultraviolet (UV) emissions of hydrothermally synthesized NaYF4: Yb3+, Tm3+ upconversion crystals were optimized using the response surface methodology experimental design. In these experimental designs, 9 runs, two factors namely (1) Tm3+ ion concentration, and (2) pH value were investigated using 3 different ligands. Introducing UV upconversion emissions as responses, their intensity were separately maximized. Analytical methods such as XRD, SEM, and FTIR could be used to study crystal structure, morphology, and fluorescent spectroscopy in order to obtain luminescence properties. From the photo-luminescence spectra, emissions centered at 347, 364, 452, 478, 648 and 803 nm were observed. Some results show that increasing each DOE factor up to an optimum value resulted in an increase in emission intensity, followed by reduction. To optimize UV emission, as a final result to the UV emission optimization, each design had a suggestion.

  19. Experimental and theoretical MHD performance of a round pipe at high temperature with a NaK-compatible Al{sub 2}O{sub 3} coating

    SciTech Connect

    Reed, C.B.; Natesan, K.; Hua, T.Q.; Kirillov, I.R.; Vitkovski, I.V.; Anisimov, A.M.

    1994-08-01

    A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To begin experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, a new test section was prepared. Aluminum oxide was chosen as the first candidate insulating material because it may be used in combination with NaK in the ITER vacuum vessel and/or the divertor; and MHD performance tests could begin early in ALEX (Argonne` s Liquid Metal EXperiment) because NaK was already the working fluid in use. Details on the methods used to produce the aluminum oxide layer as well as the microstructures of the coating and the aluminide sublayer are presented and discussed. Overall MHD pressure drop, local MHD pressure gradient, local transverse MHD pressure difference, and surface voltage distributions in both the circumferential and the axial directions are reported and discussed. Overall MHD pressure drop, measured at 30C and 85C, was higher than the perfectly insulating case, but many times lower than the bare wall case. It was demonstrated that the increase in MHD pressure drop above the theoretical values is due largely to the presence of instrumentation penetrations in the test section walls, which provide current paths from the fluid to the walls of the pipe, resulting in local areas of near-bare-wall MHD pressure drop.

  20. Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60 °C: Experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Castet, S.; Berger, G.; Loubet, M.; Giffaut, E.

    2006-09-01

    The aqueous interfacial chemistry of kaolinite and Na-montmorillonite samples was investigated by potentiometric measurements using acid/base continuous titrations and batch experiments at 25 and 60 °C. Using the batch experimental method, a continuous drift of pH was observed reflecting the mineral dissolution. Consequently, the continuous titration method appears to be the best way of studying solid surface reactions. For each clay mineral, the net proton surface excess/consumption was calculated as a function of pH and ionic strength (0.025, 0.1 and 0.5 M). At 25 °C, and according to the literature data, the pH corresponding to zero net proton consumption for montmorillonite appears to depend on ionic strength, whereas the value for kaolinite is constant and close to 5. Similar results are obtained at 60 °C, which suggests that the point of zero net proton consumption for clay minerals does not depend on temperature, at least up to 60 °C. On the other hand, the temperature rise induces a slight increase of the net proton surface excess. Finally, the diffuse double layer formalism (DDLM) is used to model the experimental data. The model involves two processes: the protonation/deprotonation of two types of edge sites (aluminol and silanol) and H +/Na + exchange reactions on basal surfaces, while a tiny proportion of the negative structural charge remains uncompensated. This last process maintains a negative surface potential whatever the pH of the solution, which is in agreement with electrokinetic data.

  1. Thermodynamic and kinetic analyses of the CO2 chemisorption mechanism on Na2TiO3: Experimental and theoretical evidences

    SciTech Connect

    Duan, Yuhua

    2014-01-01

    ABSTRACT: Sodium metatitanate (Na2TiO3) was successfully synthesized via a solid-state reaction. The Na2TiO3 structure and microstructure were characterized using X-ray diffraction, scanning and transmission electron microscopy, and N2 adsorption. Then, the CO2 chemisorption mechanism on Na2TiO3 was systematically analyzed to determine the influence of temperature. The CO2 chemisorption capacity of Na2TiO3 was evaluated both dynamically and isothermally, and the products were reanalyzed to elucidate the Na2TiO3-CO2 reaction mechanism. Different chemical species (Na2CO3, Na2O, and Na4Ti5O12 or Na16Ti10O28) were identified during the CO2 capture process in Na2TiO3. In addition, some CO2 chemisorption kinetic parameters were determined. The ΔH‡ was found to be 140.9 kJ/mol, to the Na2TiO3-CO2 system, between 600 and 780 °C. Results evidenced that CO2 chemisorption on Na2TiO3 highly depends on the reaction temperature. Furthermore, the experiments were theoretically supported by different thermodynamic calculations. The calculated thermodynamic properties of CO2 capture reactions by (Na2TiO3, Na4Ti5O12, and Na16Ti10O28) sodium titanates were fully investigated.

  2. Experimental Testing of Innovative Cold-Formed "GEB" Section / Badania Eksperymentalne Innowacyjnego Kształtownika Giętego Na Zimno Typu "Geb"

    NASA Astrophysics Data System (ADS)

    Łukowicz, Agnieszka; Urbańska-Galewska, Elżbieta; Gordziej-Zagórowska, Małgorzata

    2015-03-01

    One of the major advantages of light gauge steel structures made of cold-formed steel sections is their low weight so the production of typical single-storey steel structures of this kind of profiles is still rising. The well known profiles, e.o. Z-sections, C-sections and the so called hat-sections studied and described in the literature, are used mainly as purlins or truss components. A new profile GEB was patented for the use for primary load-bearing member in fabricated steel frames. According to the code [1] every novel cross section should be tested to assign the deformation shape and bearing capacity. The paper deals with the numerical and experimental research of bearing capacity of cold formed GEB profiles. The deformation shape and limit load was obtained from bending tests. The GEB cross section bearing capacity was also determined according to codes [1, 2]. Jedną z najważniejszych zalet lekkich konstrukcji metalowych, wytwarzanych z kształtowników giętych na zimno, jest ich mała masa, dlatego też, producenci coraz częściej wykorzystują możliwości profili giętych do wytwarzania typowych konstrukcji halowych w budownictwie systemowym. Proces gięcia na zimno, pozwala na formowanie różnego rodzaju przekrojów poprzecznych, które mogą być wykorzystywane jako elementy konstrukcji. Typowe kształty elementów. tzn. Z, C oraz tzw. przekroje kapeluszowe, które zostały przebadane i opisane w literaturze, wykorzystuje się głównie jako płatwie lub części składowe wiązarów kratowych. Nowo opatentowany przekrój typu GEB ma być wykorzystany jako element nośny konstrukcji ramowych. W związku z tym innowacyjny kształt oraz parametry geometryczne przekroju takiego kształtownika, związane z możliwością jego wyprodukowania oraz z warunkami nośności, stateczności oraz sztywności, muszą być optymalne. Według normy PN-EN 1993-1-3, każdy nowo uformowany przekrój powinien być przebadany pod kątem nośności elementu i formy

  3. Contribution of non-inactivating Na+ current induced by oxidizing agents to the firing behavior of neuronal action potentials: experimental and theoretical studies from NG108-15 neuronal cells.

    PubMed

    Wu, Sheng-Nan; Lo, Yi-Ching; Shen, Ai-Yu; Chen, Bing-Shuo

    2011-02-28

    The effects of chemical injury with oxidizing agents on voltage-gated Na+ current (I(Na)) in differentiated NG108-15 neuronal cells were investigated in this study. In whole-cell patch-clamp recordings, the challenge of these cells with t-butyl hydroperoxide (t-BHP; 1 mM) decreased the peak amplitude of I(Na) with no modification in the current-voltage relationship. It caused a slowing of current inactivation, although there was no alteration in the activation time course of I(Na). Cell exposure to t-BHP also increased a non-inactivating I(Na) (I(Na(NI)) elicited by long-lasting ramp pulses. The t-BHP-induced increase of I(Na(NI)) was reversed by a further application of riluzole (10 microM) or oxcarbazepine (10 microM). When I(Na) was elicited by simulated waveforms of action potentials (APs), during exposure to t-BHP, the amplitude of this inward current was diminished, accompanied by a reduction in inactivation/deactivation rate and an increase in current fluctuations. Under current-clamp recordings, addition of t-BHP (0.3 mM) enhanced AP firing in combination with clustering-like activity and sub-threshold membrane oscillations. In the simulation study, when the fraction of non-inactivating Na(v) channels was elevated, the simulated window component of I(Na) in response to a long-lasting ramp pulse was reduced; however, the persistent I(Na) was markedly enhanced. Moreover, when simulated firing of APs was generated from a modeled neuron, changes of AP firing caused by the increased fraction of non-inactivating Na(v) channels used to mimic the t-BHP actions were similar to the experimental observations. Taken together, it is anticipated that the effects of oxidizing agents on I(Na(NI)) could be an important mechanism underlying their neurotoxic actions in neurons or neuroendocrine cells occurring in vivo.

  4. Influence of NaCl Concentrations on Coagulation, Temperature, and Electrical Conductivity Using a Perfusion Radiofrequency Ablation System: An Ex Vivo Experimental Study

    SciTech Connect

    Aube, Christophe Schmidt, Diethard; Brieger, Jens; Schenk, Martin; Kroeber, Stefan; Vielle, Bruno; Claussen, Claus D.; Goldberg, S. Nahum; Pereira, Philippe L.

    2007-02-15

    Purpose. To determine, by means of an ex vivo study, the effect of different NaCl concentrations on the extent of coagulation obtained during radiofrequency (RF) ablation performed using a digitally controlled perfusion device. Method. Twenty-eight RF ablations were performed with 40 W for 10 min using continuous NaCl infusion in fresh excised bovine liver. For perfusion, NaCl concentrations ranging from 0 (demineralized water) to 25% were used. Temperature, the amount of energy, and the dimensions of thermal-induced white coagulation were assessed for each ablation. These parameters were compared using the nonparametric Mann-Whitney test. Correlations were calculated according to the Spearman test. Results. RF ablation performed with 0.9% to 25% concentrations of NaCl produced a mean volume of coagulation of 30.7 {+-} 3.8 cm{sup 3}, with a mean short-axis diameter of 3.6 {+-} 0.2 cm. The mean amount of energy was 21,895 {+-} 1,674 W and the mean temperature was 85.4 {+-} 12.8 deg. C. Volume of coagulation, short-axis diameter, and amount of energy did not differ significantly among NaCl concentrations (p > 0.5). A correlation was found between the NaCl concentration and the short-axis diameter of coagulation (r = 0.64) and between the NaCl concentration and the mean temperature (r = 0.67), but not between the NaCl concentration and volume of coagulation. Conclusion. In an ex vivo model, continuous perfusion with high NaCl concentrations does not significantly improve the volume of thermal-induced coagulation. This may be because the use of a low-power generator cannot sufficiently exploit the potential advantage of better tissue conductivity provided by NaCl perfusion.

  5. Experimental study of shortite (Na2Ca2(CO3)3) formation and application to the burial history of the Wilkins Peak Member, Green River Basin, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Jagniecki, Elliot A.; Jenkins, David M.; Lowenstein, Tim K.; Carroll, Alan R.

    2013-08-01

    The temperature at which shortite (Na2Ca2(CO3)3) forms from pirssonite (Na2Ca(CO3)2·2H2O) and calcite using pure synthetic phases in the system Na2CO3-CaCO3-H2O has been experimentally determined. At ˜1 atm pressure, shortite forms via the reaction Na2Ca(CO3)2·2H2O + CaCO3 = Na2Ca2(CO3)3 + 2H2O above 55 ± 2 °C. This equilibrium temperature is lower than determined previously (90 ± 25 °C) by Bradley and Eugster (1969). The solution in equilibrium with synthetic shortite, pirssonite, and calcite approximates a binary H2O-Na2CO3 brine with 1.1 m Na2CO3 (10.6 wt% Na2CO3). The equilibrium temperature is lowered to 52 ± 2 °C with 5 m NaCl added to the system, which shows that this reaction is weakly dependent on the activity of H2O, aO. This study suggests that shortite does not occur in surficial alkaline saline environments because temperatures are too low. Shortite is abundant in the Wilkins Peak Member (WPM) of the Eocene Green River Formation, Green River Basin, Wyoming, USA (>78 million tons/km2), where it occurs as diagenetic displacive crystals, fracture fills, and pseudomorphous replacements of a precursor Na-Ca-carbonate. The large area over which shortite occurs in the WPM indicates that saline pore fluids once existed in the buried lacustrine sediments, and thus, at times, large Na-CO3-rich saline alkaline lakes or laterally extensive saline groundwaters existed in the Green River Basin during WPM time. The thermal stability of shortite, together with vitrinite reflectance data and inferred regional geothermal gradients, establish that the shortite-bearing intervals of the WPM were buried to maximum depths of ˜1000 m in the Green River Basin, and since experienced ˜800 m of erosional exhumation.

  6. Experimental study of local dehydration and partial melting of biotite-amphibole gneiss with participation of the H2O-CO2-(K, Na)Cl fluids at the middle-crustal conditions

    NASA Astrophysics Data System (ADS)

    Safonov, O.; Kozhukhantseva, S.

    2012-04-01

    Activity of aqueous chloride-rich brines coexisting with CO2-rich fluids is identified in many amphibolite and granulite terrains suggesting that this type of fluid is an important agent of high-grade metamorphism in the lower to middle crust (see reviews in Touret, 2009; Newton, Manning, 2010). Although thermodynamic and transport properties of these fluids is well constrained both theoretically and experimentally, their affect on complex natural assemblages is poorly understood and demands systematic experimental study. We report here results of the experiments on interaction of the biotite-amphibole gneiss from the Sand River formation (Limpopo Complex, South Africa) with the fluids H2O-CO2-(K, Na)Cl at 5.5 kbar, 750 and 800 C, the chloride/(H2O+CO2) varying from 0 0.1, and molar CO2/(CO2+H2O) = 0.5. No any reaction textures were identified in the sample interacted with the chloride-free CO2-H2O fluid at 750 C. At this temperature, addition of KCl into the fluid resulted in formation of spectacular reaction textures around biotite (Bt), amphibole (Amp), plagioclase (Pl) and quartz (Qtz) in the starting gneiss. These textures are intergrowths of low-Al clinopyroxene (Cpx) and K-feldspar (Kfs) (sporadically accompanied by ilmenite, sphene and Ti-bearing low-Al mica) corresponding to a progress of the following reactions: Phl + 3An + 18Qtz + 3(K2O in fluid) = 3Di + 7Kfs + (H2O in fluid) and Prg + Ed + 7(K2O in fluid) + 37Qtz + 5An = 9Di + 14Kfs + (2H2O + Na2O in fluid). Local partial melting of the gneiss interacted with KCl-bearing fluids at 750OC was observed only in the run at KCl/(CO2+H2O) = 1/30 and could be caused by local variation of water activity in the sample. Nevertheless, at 800 OC, granitic (>70 wt. % of SiO2) K2O-rich and Cl-bearing melt appears along the grain boundaries in all run samples. This melt produces K-feldspar and clinopyroxene, which are found as euhedral crystals in the glass. Melt films are usually accompanied by K-feldspar microveins

  7. Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery

    PubMed Central

    Ma, Zhaohui; Wang, Yuesheng; Sun, Chunwen; Alonso, J. A.; Fernández-Díaz, M. T.; Chen, Liquan

    2014-01-01

    Sodium-ion batteries have attracted considerable interest as an alternative to lithium-ion batteries for electric storage applications because of the low cost and natural abundance of sodium resources. The materials with an open framework are highly desired for Na-ion insertion/extraction. Here we report on the first visualization of the sodium-ion diffusion path in Na3[Ti2P2O10F] through high-temperature neutron powder diffraction experiments. The evolution of the Na-ion displacements of Na3[Ti2P2O10F] was investigated with high-temperature neutron diffraction (HTND) from room temperature to 600°C; difference Fourier maps were utilized to estimate the Na nuclear-density distribution. Temperature-driven Na displacements indicates that sodium-ion diffusion paths are established within the ab plane. As an anode for sodium-ion batteries, Na3[Ti2P2O10F] exhibits a reversible capacity of ~100 mAh g−1 with lower intercalation voltage. It also shows good cycling stability and rate capability, making it promising applications in sodium-ion batteries. PMID:25427677

  8. Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery.

    PubMed

    Ma, Zhaohui; Wang, Yuesheng; Sun, Chunwen; Alonso, J A; Fernández-Díaz, M T; Chen, Liquan

    2014-11-27

    Sodium-ion batteries have attracted considerable interest as an alternative to lithium-ion batteries for electric storage applications because of the low cost and natural abundance of sodium resources. The materials with an open framework are highly desired for Na-ion insertion/extraction. Here we report on the first visualization of the sodium-ion diffusion path in Na3[Ti2P2O10F] through high-temperature neutron powder diffraction experiments. The evolution of the Na-ion displacements of Na3[Ti2P2O10F] was investigated with high-temperature neutron diffraction (HTND) from room temperature to 600°C; difference Fourier maps were utilized to estimate the Na nuclear-density distribution. Temperature-driven Na displacements indicates that sodium-ion diffusion paths are established within the ab plane. As an anode for sodium-ion batteries, Na3[Ti2P2O10F] exhibits a reversible capacity of ~100 mAh g(-1) with lower intercalation voltage. It also shows good cycling stability and rate capability, making it promising applications in sodium-ion batteries.

  9. Experimental Determinations of the Activity-Composition Relations and Phase Equilibria of H{sub 2}O-CO{sub 2}-NaCl Fluids

    SciTech Connect

    Anovitz, L.M.; Labotka, T.C.; Blencoe, J.G.; Singh, J.; Horita, J.

    1999-09-12

    An understanding of activity-composition (a/X) relations and phase equilibria for halite-bearing, mixed-species supercritical fluids is critically important in many geological and industrial applications. The authors have performed experiments on the a/X relations and phase equilibria of H{sub 2}O-CO{sub 2}-NaCl fluids at 5OO C, 500 bars, to obtain highly accurate and precise data for this ternary system. H{sub 2}O-CO{sub 2}-NaCl samples were reacted at a (H{sub 2}O) = 0.350, 0.425, 0.437, 0.448, 0.560, 0.606, 0.678, 0.798, and 0.841. Results indicate that fluids with these activities lie in the vapor-NaCl two-phase region, and that a fluid with the last value has a composition close to the three-phase (vapor + brine + halite) field. Data from these experiments and NaCl solubility runs also suggest that the vapor comer of the three-phase field lies near X(H{sub 2}O) = 0.760, X(NaCl) = 0.065, which is a significantly more water-rich composition than suggested by the model of [1].

  10. Experimental investigation of the alluaudite + triphylite assemblage, and development of the Na-in-triphylite geothermometer: applications to natural pegmatite phosphates

    NASA Astrophysics Data System (ADS)

    Hatert, Frederic; Ottolini, Luisa; Schmid-Beurmann, Peter

    2011-04-01

    In order to assess the stability of the primary alluaudite + triphylite assemblage, we performed hydrothermal experiments between 400 and 800°C, starting from the LiNa2Mn x Fe{3-/x 2+}Fe3+(PO4)4 compositions ( x = 1.054, 1.502, 1.745) that represent the ideal compositions of the alluaudite + triphylite assemblages from the Kibingo (Rwanda), Hagendorf-Süd (Germany), and Buranga (Rwanda) pegmatites, respectively. The pressure was maintained at 1 kbar, and the oxygen fugacity was controlled by the Ni-NiO buffer. The results of these experiments show that the alluaudite + triphylite assemblage crystallizes at 400 and 500°C, while the association alluaudite + triphylite + marićite appears at 600 and 700°C. The limit between these two domains, at ca. 550°C, corresponds to the maximum temperature that can be reached by the alluaudite + triphylite assemblages in granitic pegmatites, because marićite has never been observed in such geological environments. At 800°C, the formation of the X-phase + triphylite assemblage indicates a strong reduction of the bulk composition, according to the reaction 0.5LiM2+PO4 (triphylite) + 3Na2M2 2+Fe3+(PO4)3 (alluaudite) + 1.5H2O = 4.5NaM2+PO4 (marićite) + Li0.5Na1.5M5 2+(PO4)4 (X-phase) + H3PO4 + 0.75O2 (M2+ = Fe2+, Mn). Secondary ion mass spectrometry (SIMS) was used at our knowledge for the first time to measure Li in all the Li-bearing phosphates. A specific methodological procedure was developed with the ion microprobe to get accurate Li2O data over a wide concentration range spanning from few ppm Li up to ~11 wt%. Li2O. Our SIMS analyses of the synthesized phosphates indicate that the Li contents of alluaudites, marićites, and X-phase increase progressively with temperature, while the Li content of triphylite-type phosphates decreases due to the Li → Na substitution. The Na-exchange equilibrium between triphylite-type phosphates and alluaudite is correlated with the temperature according to the equation: ln( x {Na/Tri}/ x

  11. Experimental Determination of Thermodynamic Properties of Ion-Exchange in Heulandite: Binary Ion-Exchange Experiments at 55 and 85 oC Involving Ca2+, Sr2+, Na+, and K+

    SciTech Connect

    Fridriksson, T; Neuhoff, P S; Viani, B E; Bird, D K

    2004-04-26

    Heulandite is a common rock-forming zeolite that exhibits wide solid solution of extra framework cations, presumably due to ready ion exchange with aqueous solutions. In order to provide a quantitative basis for interpreting and predicting the distribution of aqueous species between heulandite and aqueous solutions, ion exchange equilibrium between heulandite and aqueous solutions with respect to the binary cation pairs Ca{sup 2+} - K{sup +}, Ca{sup 2+} - Na{sup +}, K{sup +} - Na{sup +}, K{sup +} - Sr{sup 2+}, Na{sup +} - Sr{sup 2+}, and Ca{sup 2+} - Sr{sup 2+} was investigated. Homoionic Ca-, K-, and Na-heulandites prepared from natural heulandite were equilibrated with 0.1 N Cl{sup -} solutions containing various proportions of the cations in a given binary pair at 55 and 85 C to define isotherms describing partitioning of the cations over a wide range of heulandite and solution composition with respect to the cations in each pair. In general, the experiments equilibrated rapidly, within 11-15 weeks at 55 C and 3-4 weeks at 85 C. The exception was the Ca{sup 2+} - Sr{sup 2+} binary exchange, which did not equilibrate even after 3 months at 55 C and 4 weeks at 85 C. Slow exchange of Sr{sup 2+} for Ca{sup 2+} also prohibited preparation of homoionic Sr-heulandite from the natural (Ca-rich) heulandite within 10 weeks in 2N SrCl{sub 2} solution at 90 C, although near homoionic Sr-heulandite was produced by exchange of K- and Na-heulandite. Experimentally determined isotherms were used to derive equilibrium constants for the ion exchange reactions and asymmetric Margules models describing the extent of non-ideality in extra framework solid solutions in heulandite. Regressed equilibrium constants for Ca{sup 2+}-Na{sup +}, Ca{sup 2+}-K{sup +}, and K{sup +}-Na{sup +} binary cation pairs at 55 C are internally consistent among each other (complying with the triangle rule), indicating good accuracy of these data. The maximum departure from internal Heulandite ion exchange

  12. Experimental Study of Dehydration and Partial Melting of Biotite-Amphibole Gneiss Under Influence of the H2O-CO2-(K, Na)cl Fluids at 5.5 Kbar and 750 and 800 C

    NASA Astrophysics Data System (ADS)

    Safonov, O.; Kosova, S.

    2012-12-01

    Chloride-rich brines coexisting with CO2-rich fluids are an important agent of high-grade metamorphism and metasomatism in the lower to middle crust. Thermodynamic and transport properties of the chloride-rich fluids are well constrained both theoretically and experimentally. Nevertheless, their effects on complex natural assemblages are poorly understood and demand systematic experimental study. We report results of the experiments on interaction of the biotite-amphibole gneiss from the Sand River formation (Limpopo Complex, South Africa) with the H2O-CO2, H2O-CO2-KCl, H2O-CO2-NaCl, and H2O-CO2-(K, Na)Cl fluids at 5.5 kbar, 750 and 800 C, the chloride/(H2O+CO2) ratio varying from 0 to 0.1, and molar CO2/(CO2+H2O) = 0.5. Experiments were carried out using internally-heated gas pressure vessel. Major purposes of the experiments were to trace changes in phase assemblages in dependence on temperature, salt concentration in a fluid, KCl/NaCl ratio and to show a possibility for partial melting. Heating of the gneiss both at 750 and 800 C without any fluid produced no visible changes in its phase assemblage. Interaction of the gneiss with the H2O-CO2 fluid at 750 C did not significantly influence on its phase assemblage, as well. Addition of KCl in the H2O-CO2 fluid at 750 C resulted in the formation of reaction textures consisting of clinopyroxene and K-feldspar around biotite and amphibole at the contacts with plagioclase. No evidence for partial melting was detected in the samples interacted with the H2O-CO2 and H2O-CO2-KCl fluids at 750 C. Addition of NaCl provokes melting with formation of trachytic and trachyandesitic melts along with the new assemblages Cpx+Kfs+Pl+Ti-Mt and Cpx+Amp+Pl+Ti-Mt. Characteristic of feature of amphiboles, forming in the NaCl-rich fluids is their elevated Na2O content. Products of the runs at 750 C do not contain orthopyroxene. This phase appears at 800 C as a result of biotite breakdown in presence of the H2O-CO2 fluid. It is accompanied

  13. Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline (NaAlSiO 4)-malinkoite (NaBSiO 4) join

    NASA Astrophysics Data System (ADS)

    Pierce, E. M.; Reed, L. R.; Shaw, W. J.; McGrail, B. P.; Icenhower, J. P.; Windisch, C. F.; Cordova, E. A.; Broady, J.

    2010-05-01

    The dissolution kinetics of five glasses along the NaAlSiO 4-NaBSiO 4 join were used to evaluate how the structural variations associated with boron-aluminum substitution affect the rate of dissolution. The composition of each glass varied inversely in mol% of Al 2O 3 (5-25 mol%) and B 2O 3 (20-0 mol%) with Na 2O (25 mol%) and SiO 2 (50 mol%) making up the remaining amount, in every case Na/(Al + B) = 1.0. Single-pass flow-through experiments (SPFT) were conducted under dilute conditions as a function of solution pH (from 7.0 to 12.0) and temperature (from 23 to 90 °C). Analysis of unreacted glass samples by 27Al and 29Si MAS-NMR suggests Al (˜98% [4]Al) and Si-atoms (˜100% [4]Si) occupy a tetrahedral coordination whereas, B-atoms occupy both tetrahedral ( [4]B) and trigonal ( [3]B) coordination. The distribution of [3]B fractionated between [3]B(ring) and [3]B(non-ring) moieties, with the [3]B(ring)/ [3]B(non-ring) ratio increases with an increase in the B/Al ratio. The MAS-NMR results also indicated an increase in the fraction of [4]B with an increase in the B/Al ratio. The 27Al peak maxima shift to lesser values with an increase in the B/Al ratio which suggests mixing between the [4]Al and [3]B sites, assuming avoidance between tetrahedral trivalent cations ( [4]Al-O- [4]B avoidance). Unlike the 27Al and 11B spectra, the 29Si spectra illustrate a subtle shift to more negative chemical shift (chemical shift range between -88 and -84 ppm) and increases in the spectral widths as the B/Al ratio increases. Raman spectroscopy of unreacted glass samples was also used to cross-check the results collected from MAS-NMR and suggested that NeB4 (the glass sample with the highest B content) may consist of B-Na enriched and Al-Si enriched micro-domains, which affected the measured dissolution rates. Results from SPFT experiments suggest a forward rate of reaction and pH power-law coefficients, η, that are independent of B/Al under these neutral to alkaline test conditions

  14. Experimental study of the NaCl-H 2O system up to 28 GPa: Implications for ice-rich planetary bodies

    NASA Astrophysics Data System (ADS)

    Frank, Mark R.; Runge, Claire E.; Scott, Henry P.; Maglio, Steven J.; Olson, Jessica; Prakapenka, Vitali B.; Shen, Guoyin

    2006-04-01

    Recent studies have hypothesized that high-pressure H 2O polymorphs, specifically Ice VI and Ice VII, make up a significant portion of the interiors of select outer planets and their moons; most notably the Galilean satellites, Saturn's Titan and possibly Neptune's moon Triton as well as potential H 2O-rich extra-solar bodies. Several of these bodies have been conjectured to contain subsurface salty H 2O waters; therefore, any potential ice phases in the interior of these satellites could have interacted extensively with the salty oceans. Raman spectroscopy and synchrotron radiation have been used previously to study the bonding structure and unit cell parameters of pure Ice VII. However, no data exist on the effect of salts on the unit cell parameters and volume of solid H 2O at high pressure. To obtain pertinent data for use in planetary physics, it is important to understand the effect of impurities on H 2O at high pressure. The NaCl-H 2O system was chosen as a first order approximation of H 2O-rich planetary bodies. The unit cell parameters and OH stretching frequencies of Ice VII formed from 5 and 10 wt.% NaCl-H 2O solutions were studied in detail up to 27 GPa at 298 K by using a diamond anvil cell, synchrotron X-ray radiation and Raman spectroscopy. The data indicate that, over the range in pressure and temperature of this study, the maximum solubility of solutes in Ice VII was not pressure dependent. Our data suggest that the maximum concentration of NaCl that can be incorporated into Ice VII at 298 K is 7.5 ± 2.5 wt.% (or 2.4 ± 0.8 mol% NaCl). Ice VII formed from a 5 wt.% NaCl-H 2O solution has a density that is up to 5% greater at any given pressure relative to the density of Ice VII formed from pure H 2O. Additionally, the bulk modulus, 26.2 ± 1.4 GPa, was found to be approximately 10-20% greater relative to Ice VII formed from pure H 2O. Relative OH stretching frequency shifts from Ice VII formed from the NaCl-H 2O solutions were compared to Ice VII

  15. Real-time measurement of the Na layer profile for tomographic reconstruction: experimental results and its application to the E-ELT case

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Luke, J. P.; Marichal-Hernández, J. G.; Puga, M.; Rodríguez-Ramos, J. M.

    2011-09-01

    Extremely Large Telescopes are being designed with integrated AO modules and most of their instruments will rely on them for their optimum performance. To reconstruct the wavefront we need to use Guide Stars as references, but the absence of enough Natural GSs to have a good sky coverage make it necessary the use of Laser GSs. Several technical challenges have to be solved in order to perform a good wavefront reconstruction using LGSs. In the case of Na LGSs we need to know the height at which the LGS is focused and the profile and extension of the Na layer. We propose the use of a plenoptic camera to obtain this information. The plenoptic camera was originally created to allow the capture of the Light Field, a four-variable volume representation of all rays and their directions, that allows the creation by synthesis of a 3D image of the observed object. This 3D reconstruction make it possible to retrieve the distances at which the objects are, and for this reason it is especially adequate to measure the height variations of the LGS beacons. This novel approach provides real-time information on the Na layer profile that can be introduced in the reconstruction algorithm to solve the problems derived by the spot elongation. Also we can compute at which height is focused the LGS, overcoming therefore the two challenges mentioned before. We present in this paper the laboratory results obtained with a setup simulating the laser spot and the telescope equipped with the plenoptic camera that proof that the expected height of the layers is retrieved. We also present our plans to implement on-sky tests of our system using the Na LGS of the Optical Ground Station in the Observatorio de Tenerife, and the application of this advanced concept to the E-ELT.

  16. A new experimental procedure for determination of photoelectric efficiency of a NaI(Tl) detector used for nuclear medicine liquid waste monitoring with traceability to a reference standard radionuclide calibrator.

    PubMed

    Ceccatelli, A; Campanella, F; Ciofetta, G; Marracino, F M; Cannatà, V

    2010-02-01

    To determine photopeak efficiency for (99m)Tc of the NaI(Tl) detector used for liquid waste monitoring at the Nuclear Medicine Unit of IRCCS Paediatric Hospital Bambino Gesù in Rome, a specific experimental procedure, with traceability to primary standards, was developed. Working with the Italian National Institute for Occupational Prevention and Safety, two different calibration source geometries were employed and the detector response dependence on geometry was investigated. The large percentage difference (almost 40%) between the two efficiency values obtained showed that geometrical effects cannot be neglected.

  17. Experimental and theoretical studies on the corrosion inhibition of copper by two indazole derivatives in 3.0% NaCl solution.

    PubMed

    Qiang, Yujie; Zhang, Shengtao; Xu, Shenying; Li, Wenpo

    2016-06-15

    Corrosion experiments and theoretical calculations were performed to investigate the inhibition mechanism of indazole (IA) and 5-aminoindazole (AIA) for copper in NaCl solution. The results obtained from weight loss and electrochemical experiments are in good agreement, and reveal that these compounds are high-efficiency inhibitors with inhibition efficiency order: AIA>IA, which was further confirmed by field emission scanning electronic microscope (FESEM) observation. Besides, the quantum chemical calculations and molecular dynamics (MD) simulation showed that both studied inhibitors are adsorbed strongly on the copper surface in parallel mode. The adsorption of these molecules on copper substrate was found to obey Langmuir isotherm.

  18. Communities of purple sulfur bacteria in a Baltic Sea coastal lagoon analyzed by puf LM gene libraries and the impact of temperature and NaCl concentration in experimental enrichment cultures.

    PubMed

    Tank, Marcus; Blümel, Martina; Imhoff, Johannes F

    2011-12-01

    Shallow coastal waters, where phototrophic purple sulfur bacteria (PSB) regularly form massive blooms, are subjected to massive diurnal and event-driven changes of physicochemical conditions including temperature and salinity. To analyze the ability of PSB to cope with these environmental factors and to compete in complex communities we have studied changes of the environmental community of PSB of a Baltic Sea lagoon under experimental enrichment conditions with controlled variation of temperature and NaCl concentration. For the first time, changes within a community of PSB were specifically analyzed using the photosynthetic reaction center genes pufL and M by RFLP and cloning experiments. The most abundant PSB phylotypes in the habitat were found along the NaCl gradient from freshwater conditions up to 7.5% NaCl. They were accompanied by smaller numbers of purple nonsulfur bacteria and aerobic anoxygenic phototrophic bacteria. Major components of the PSB community of the brackish lagoon were affiliated to PSB genera and species known as marine, halophilic or salt-tolerant, including species of M arichromatium, H alochromatium, T hiorhodococcus, A llochromatium, T hiocapsa, T hiorhodovibrio, and T hiohalocapsa. A dramatic shift occurred at elevated temperatures of 41 and 44°C when M arichromatium gracile became most prominent which was not detected at lower temperatures.

  19. Water activities of NaClO4, Ca(ClO4)2, and Mg(ClO4)2 brines from experimental heat capacities: Water activity >0.6 below 200 K

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.

    2016-05-01

    Perchlorate salts found on Mars are extremely hygroscopic and form low eutectic temperature aqueous solutions, which could allow liquid water to exist on Mars despite cold and dry conditions. The formation, dynamics, and potential habitability of perchlorate salt solutions can be broadly understood in terms of water activity. Water activity controls condensation and evaporation of water vapor in brines, deliquescence and efflorescence of crystalline salts, and ice formation during freezing. Furthermore, water activity is a basic parameter defining the habitability of aqueous solutions. Despite the importance of water activity, its value in perchlorate solutions has only been measured at 298.15 K and at the freezing point of water. To address this lack of data, we have determined water activities in NaClO4, Ca(ClO4)2, and Mg(ClO4)2 solutions using experimental heat capacities measured by Differential Scanning Calorimetry. Our results include concentrations up to near-saturation and temperatures ranging from 298.15 to 178 K. We find that water activities in NaClO4 solutions increase with decreasing temperature, by as much as 0.25 aw from 298.15 to 178 K. Consequently, aw reaches ∼0.6-0.7 even for concentrations up to 15 molal NaClO4 below 200 K. In contrast, water activities in Ca(ClO4)2 and Mg(ClO4)2 solutions generally decrease with decreasing temperature. The temperature dependence of water activity indicates that low-temperature NaClO4 solutions will evaporate and deliquesce at higher relative humidity, crystallize ice at higher temperature, and potentially be more habitable for life (at least in terms of water activity) compared to solutions at 298.15 K. The opposite effects occur in Ca(ClO4)2 and Mg(ClO4)2 solutions.

  20. Experimental evidence for glasslike behavior in a KMnF3: Na+ crystal from x-ray diffraction and Raman scattering

    NASA Astrophysics Data System (ADS)

    Ratuszna, Alicja; Daniel, Philippe; Kapusta, Joanna; Rousseau, Michel

    1998-05-01

    Investigation of the structural and vibrational properties of a KMnF3:14% Na-doped perovskite crystal was performed using x-ray diffraction and Raman scattering. While the x-ray results give evidence of the usual sequence of structural phase transition, classically described for the pure KMnF3 compound with only slight differences, the Raman technique suggests the existence of a large structural disorder. In particular, the existence of an intense low-frequency broad band in the Raman spectra is discussed in terms of overdamped soft modes, indicating a relaxation process or glasslike behavior. From lattice-dynamics calculations it is suggested that this peak could be associated with a ``Boson line'' as occurs in glasses. An interpretation is proposed.

  1. Experimental basis of standardized specimen collection: the effect of moderate ethanol consumption on some serum components (K, Na, ASAT, ALAT, CK, LD, total protein).

    PubMed

    Leppänen, E A; Gräsbeck, R

    1987-06-01

    Venous blood was collected on two mornings from seven healthy volunteers using the standard Scandinavian procedure (fasting, sitting and no tourniquet) and serum Na, K, ASAT, ALAT, CK, LD and total protein were assayed. Then ethanol (0.75 g/kg body weight) was given on three consecutive evenings and the subsequent observed values 1, 3, 15, 38, 62 and 110 h post-ethanol were compared with the morning values. The mean component/total protein ratios dropped 14% for ASAT and 19% for ALAT 62 and 15 h post-ethanol, respectively. CK rose 17% at 3 h and dropped 17% at 62 h. However, the absolute values of ASAT, ALAT and CK did not change significantly. The only significant post-ethanol changes occurred in Na +2.14 mmol/l at 1 h (p less than 0.01), K -0.24 mmol/l at 3 h (p less than 0.05) and +0.26 mmol/l at 15 h (p less than 0.05), and LD +31 IU/l at 15 h (p less than 0.05) and +25 IU/l at 110 h (p less than 0.01). In one series, the total protein concentration dropped 4.57 g/l at 110 h post ethanol (p less than 0.001) but this drop was not reproducible in two additional series. It is concluded that moderate (social) ethanol consumption does not produce clinically significant effects on the components analysed. Also it may be misleading to express results as component/total protein ratios.

  2. Experimental constraints on the monazite-fluorapatite-allanite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote phase relations as a function of pressure, temperature, and Ca vs. Na activity in the fluid

    NASA Astrophysics Data System (ADS)

    Budzyń, Bartosz; Harlov, Daniel E.; Majka, Jarosław; Kozub, Gabriela A.

    2014-05-01

    Stability relations of monazite-fluorapatite-allanite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote are strongly dependent on pressure, temperature and fluid composition. The increased Ca bulk content expands stability field of allanite relative to monazite towards higher temperatures (Spear, 2010, Chem Geol 279, 55-62). It was also reported from amphibolite facies Alpine metapelites, that both temperature and bulk CaO/Na2O ratio control relative stabilities of allanite, monazite and xenotime (Janots et al., 2008, J Metam Geol 26, 5, 509-526). This study experimentally defines influence of pressure, temperature, high activity of Ca vs. Na in the fluid, and high vs. moderate bulk CaO/Na2O ratio on the relative stabilities of monazite-fluorapatite-allanite/REE-rich epidote and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote. This work expands previous experimental study on monazite (Budzyń et al., 2011, Am Min 96, 1547-1567) to wide pressure-temperature range of 2-10 kbar and 450-750°C, utilizing most reactive fluids used in previous experiments. Experiments were performed using cold-seal autoclaves on a hydrothermal line (2-4 kbar runs) and piston-cylinder apparatus (6-10 kbar runs) over 4-16 days. Four sets of experiments, two for monazite and two for xenotime, were performed with 2M Ca(OH)2 and Na2Si2O5 + H2O fluids. The starting materials included inclusion-free crystals of monazite (pegmatite, Burnet County, TX, USA) or xenotime (pegmatite, Northwest Frontier Province, Pakistan) mixed with (1) labradorite (Ab37An60Kfs3) + K-feldspar + biotite + muscovite ± garnet + SiO2 + CaF2 + 2M Ca(OH)2 or (2) albite (Ab100) + K-feldspar + biotite + muscovite ± garnet + SiO2 + CaF2 + Na2Si2O5 + H2O. 20-35 mg of solids and 5 mg of fluid were loaded into 3x15 mm Au capsules and arc welded shut. The monazite alteration is observed in all runs. Newly formed REE-rich fluorapatite and/or britholite are stable in all experimental P-T range in the

  3. DETECTORS AND EXPERIMENTAL METHODS: Heuristic approach for peak regions estimation in gamma-ray spectra measured by a NaI detector

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Hua; Liu, Liang-Gang; You, Zhong; Xu, Ao-Ao

    2009-03-01

    In this paper, a heuristic approach based on Slavic's peak searching method has been employed to estimate the width of peak regions for background removing. Synthetic and experimental data are used to test this method. With the estimated peak regions using the proposed method in the whole spectrum, we find it is simple and effective enough to be used together with the Statistics-sensitive Nonlinear Iterative Peak-Clipping method.

  4. Phase relations in the system NaCl-KCl-H2O: IV. Differential thermal analysis of the sylvite liquidus in the KCl-H2O binary, the liquidus in the NaCl-KCl-H2O ternary, and the solidus in the NaCl-KCl binary to 2 kb pressure, and a summary of experimental data for thermodynamic-PTX analysis of solid-liquid equilibria at elevated P-T conditions

    USGS Publications Warehouse

    Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.

    1992-01-01

    The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.

  5. Experimental verification of AI decomposition-based source optimization for M1 two-bar building blocks in 0.33NA EUVL

    NASA Astrophysics Data System (ADS)

    Last, T.; Wang, Z.; van Adrichem, P.; de Winter, L.; Finders, J.

    2016-10-01

    Traditional pupil optimization for horizontal dark field two-bar building blocks yields a dipole matching its local pitch. This classical "rule" guides the placement for the illumination into a pupil area of high contrast and exposure latitude. However under these illumination conditions the feature exhibits an extremely large relative CD Bossung separation limiting its overlapping process window. Here we show experimentally that contrast-aware source optimization is necessary to lift this relative separation. The Tachyon-generated pupil applied is a very close replica of a rigorously obtained asymmetric illumination solution. The latter has emerged out of a study which evidenced that the formation of this rigorous pupil can be traced back to the interdependency of CD Bossung formation and symmetry of the intensity spectrum across the diffraction orders. Compared to standard D90Y and leaf shape illumination, the optimized pupil provides the highest simulated contrast, and experimentally obtained highest depth-of-focus and lowest pattern shift range. Finally we compare the consequences of intensity balancing versus phase aberration minimization across the diffraction orders and conclude that the balancing of the intensity spectrum is the main responsible factor for lifting the feature's CD Bossung asymmetry and separation.

  6. Experimental study of the reactive processes in the gas phase K{sup +}+i-C{sub 3}H{sub 7}Cl collisions: A comparison with Li and Na ions

    SciTech Connect

    Aguilar, J.; Lucas, J. M.; Andres, J. de; Alberti, M.; Aguilar, A.; Bassi, D.

    2013-05-14

    Reactive collisions between alkali ions (Li{sup +}, Na{sup +}, and K{sup +}) and halogenated hydrocarbon molecules have been studied recently in our research group. In this paper, we have reported on the K{sup +}+i-C{sub 3}H{sub 7}Cl system in the 0.20-14.00 eV center-of-mass energy range using a radio frequency guided-ion beam apparatus developed in our laboratory. Aiming at increasing our knowledge about this kind of reactions, we compare our latest results for K{sup +} with those obtained previously for Li{sup +} and Na{sup +}. While the reaction channels are the same in all three cases, their energy profiles, reactivity, measured reactive cross-section energy dependences, and even their reaction mechanisms, differ widely. By comparing experimentally measured reactive cross-sections as a function of the collision energy with the ab initio calculations for the different potential energy surfaces, a qualitative interpretation of the dynamics of the three reactive systems is presented in the present work.

  7. Effects of single or trickle Haemonchus contortus experimental infection on digestibility and host responses of naïve Creole kids reared indoor.

    PubMed

    Bambou, J C; Cei, W; Camous, S; Archimède, H; Decherf, A; Philibert, L; Barbier, C; Mandonnet, N; González-García, E

    2013-01-31

    The objective of this study was to compare the effects of the type of Haemonchus contortus experimental infection (trickle infection, TI versus single infection, SI) on feed intake, nutrients digestibility, parasitological and haematological measures, and plasma leptin in Creole kids. The animals were infected over 2 periods (challenge 1 and challenge 2) of 6 weeks each, corresponding respectively to the primary and the secondary infection. Periods prior infection (1 week each) were considered as controls. The primary infection was realized with 35 Creole kids (18.40±3.76 kg BW) housed in individual boxes and fed a hay-based diet. The secondary infection continued with 29 kids (21.90±3.40 kg BW) from the initial 35. A total of 6 kids and 8 kids were slaughtered for measuring nematode burden at the end of the primary and the secondary infection, respectively. Measurements of nutrients digestibility were made at 0, 3 and 5 weeks post-infection for both challenges. Faecal egg count (FEC), blood eosinophilia and packed cell volume (PCV) were monitored weekly. Feed intake (dry matter intake, DMI) and nutrients digestibility were negatively affected by H. contortus infection only during the primary infection. Plasma leptin changed significantly over time (P=0.0002) but was not affected by the infection type. Effect of infection type was observed only on crude protein digestibility during the primary infection, which was lower in the TI group (P<0.01). The overall level of blood eosinophilia was significantly higher in the TI group (P<0.0001) during both challenges. The overall FEC mean was significantly higher in the SI compared with the TI groups, during both challenges (P<0.02). These results were related to the mean female length significantly higher in the SI group compared with the TI group during challenge 1 (P=0.004), and the number of adult nematode significantly lower in the TI group compared with the SI group during the challenge 2 (P=0.05). The results

  8. Experimental response function of a 3 in×3 in NaI(Tl) detector by inverse matrix method and effective atomic number of composite materials by gamma backscattering technique.

    PubMed

    Kiran, K U; Ravindraswami, K; Eshwarappa, K M; Somashekarappa, H M

    2016-05-01

    Response function of a widely used 3in×3in NaI(Tl) detector is constructed to correct the observed pulse height distribution. A 10×10 inverse matrix is constructed using 7 mono-energetic gamma sources ((57)Co, (203)Hg, (133)Ba, (22)Na, (137)Cs, (54)Mn and (65)Zn) which are evenly spaced in energy scale to unscramble the observed pulse height distribution. Bin widths (E)(1/2) of 0.01 (MeV)(1/2) are used to construct the matrix. Backscattered photons for an angle of 110° are obtained from a well-collimated 0.2146GBq (5.8mCi) (137)Cs gamma source for carbon, aluminium, iron, copper, granite and Portland cement. For each observed spectrum, single scattered spectrum is constructed analytically using detector parameters like FWHM, photo-peak efficiency and peak counts. Response corrected multiple scattered photons are extracted from the observed pulse height distribution by dividing the spectrum into a 10 ×1 matrix. Saturation thicknesses of carbon, aluminium, iron, copper, granite and Portland cement are found out. Variation of multiple scattered photons as a function of target thickness are simulated using MCNP code. A relationship between experimental and simulated saturation thicknesses of carbon, aluminium, iron and copper is obtained as a function of atomic number. Using this relation, effective atomic numbers of granite and Portland cement are obtained from interpolation method. Effective atomic numbers of granite and Portland cement are also obtained by theoretical equation using their elemental composition and comparing with the experimental and simulated results.

  9. Experimental determination of REE fractionation between liquid and vapour in the systems NaCl-H2O and CaCl2-H2O up to 450 °C

    NASA Astrophysics Data System (ADS)

    Shmulovich, Kirill; Heinrich, Wilhelm; Möller, Peter; Dulski, Peter

    2002-09-01

    Fractionation of selected REE between brine and vapour was experimentally determined using a large-volume rocking Ti-autoclave that allowed quasi-isobaric sampling of liquid-vapour pairs. Samples were extracted along the 350, 400 and 450 °C-isotherms of the H2O-NaCl system, and along the 400 °C isotherm of the CaCl2 system. Total salt concentrations were either 6.6 and 10 wt% NaCl or CaCl2, respectively, and total REE concentrations were about 2 ppm of each REE. Starting pH at room temperature was 1.8, added as HCl. In another series of experiments, REEs were added in amounts of 312 ppm. Here, the starting pH at room temperature was 0.5, added as HNO3:HCl=1:2. Liquid-vapour pairs (L-V) were analysed for REE by ICP-MS methods. L-V-partitioning of REE along a particular isotherm follows broadly the partitioning of the main salt components, NaCl or CaCl2. DREE=REEV/REEL decrease rapidly from the critical point with decreasing pressure (equivalent to increasing salinity of the liquid) as the solvus opens. This is independent of the total amount of the added REE. Log DREE values show approximately linear correlations with decreasing pressure from the critical point to salt-saturated conditions where the L-V curve meets the liquid + vapour + solid boundary. At given P and T, we found a systematic variation of DREE along the La-Lu suite. HREE are enriched in the vapour phase relative to LREE. Fractionation coefficients KD=(HREEV/HREEL)/(LREEV/LREEL) increase linearly with ΔP=Pcrit-P along a particular isotherm. At the 450 °C isotherm, KD (Lu/La) at the critical point (425 bar and 10 wt% NaCl) is 1; about 2.5 at 350 bar (33 wt% NaCl in the liquid); and about 5 if extrapolated to salt-saturation (250 bar and 52 wt% NaCl in the liquid). The REE fractionation behaviour is similar along the CaCl2-H2O solvus boundaries. Existing equations of state and thermodynamic databases of REE species cannot predict this behaviour at L-V-equilibrium conditions. That HREE are

  10. PVTx properties of the CO2-H2O and CO2-H2O-NaCl systems below 647 K: assessment of experimental data and thermodynamic models

    USGS Publications Warehouse

    Hu, Jiawen; Duan, Zhenhao; Zhu, Chen; Chou, I.-Ming

    2007-01-01

    Evaluation of CO2 sequestration in formation brine or in seawater needs highly accurate experimental data or models of pressure–volume–temperature-composition (PVTx) properties for the CO2–H2O and CO2–H2O–NaCl systems. This paper presents a comprehensive review of the experimental PVTx properties and the thermodynamic models of these two systems. The following conclusions are drawn from the review: (1) About two-thirds of experimental data are consistent with each other, where the uncertainty in liquid volumes is within 0.5%, and that in gas volumes within 2%. However, this accuracy is not sufficient for assessing CO2 sequestration. Among the data sets for liquids, only a few are available for accurate modeling of CO2 sequestration. These data have an error of about 0.1% on average, roughly covering from 273 to 642 K and from 1 to 35 MPa; (2) There is a shortage of volumetric data of saturated vapor phase. (3) There are only a few data sets for the ternary liquids, and they are inconsistent with each other, where only a couple of data sets can be used to test a predictive density model for CO2 sequestration; (4) Although there are a few models with accuracy close to that of experiments, none of them is accurate enough for CO2 sequestration modeling, which normally needs an accuracy of density better than 0.1%. Some calculations are made available on www.geochem-model.org.

  11. Conversion and Distribution of Lead and Tin in NaOH-NaNO3 Fusion Process

    NASA Astrophysics Data System (ADS)

    Liu, Jingxin; Guo, Xueyi

    2017-04-01

    Oxidizing alkali fusion process has been studied to extract amphoteric metals. Transformation and distribution behaviors of typical amphoteric metals Pb and Sn in the NaOH-NaNO3 fusion process are systemically studied by theoretical analysis and experimental verification done in this work. Functions of NaOH and NaNO3 in the fusion process were also investigated. The results show the fused products, Na2PbO3 and Na2SnO3, are captured in the flux, and Na2PbO4 is speculated to reduce to Pb(II) in the following leaching process. By measuring solubility data of NaOH-Na2SnO3-PbO-H2O system, a strategy of crystallization is proposed to separate Sn with Pb in concentrated alkaline solution, and slice Na2Sn(OH)6 is obtained as a product.

  12. Conversion and Distribution of Lead and Tin in NaOH-NaNO3 Fusion Process

    NASA Astrophysics Data System (ADS)

    Liu, Jingxin; Guo, Xueyi

    2016-12-01

    Oxidizing alkali fusion process has been studied to extract amphoteric metals. Transformation and distribution behaviors of typical amphoteric metals Pb and Sn in the NaOH-NaNO3 fusion process are systemically studied by theoretical analysis and experimental verification done in this work. Functions of NaOH and NaNO3 in the fusion process were also investigated. The results show the fused products, Na2PbO3 and Na2SnO3, are captured in the flux, and Na2PbO4 is speculated to reduce to Pb(II) in the following leaching process. By measuring solubility data of NaOH-Na2SnO3-PbO-H2O system, a strategy of crystallization is proposed to separate Sn with Pb in concentrated alkaline solution, and slice Na2Sn(OH)6 is obtained as a product.

  13. Transmission of foot-and-mouth disease virus from experimentally infected Indian buffalo (Bubalus bubalis) to in-contact naïve and vaccinated Indian buffalo and cattle.

    PubMed

    Madhanmohan, M; Yuvaraj, S; Nagendrakumar, S B; Srinivasan, V A; Gubbins, Simon; Paton, David James; Parida, Satya

    2014-09-03

    This study investigated the transmission of foot-and-mouth disease virus (FMDV) from experimentally infected Indian buffalo to in-contact naïve and vaccinated cattle and buffalo. In each of six rooms, two donor buffalo that had been inoculated with FMDV were housed for five days with four recipient animals, comprising one vaccinated buffalo, one vaccinated calf, one unvaccinated buffalo and one unvaccinated calf. Vaccination was carried out with current Indian vaccine strain (O/IND/R2/75) and challenged on 28 days post-vaccination with an antigenically similar strain (O/HAS/34/05). All 12 donor buffalo and the six unvaccinated cattle and six unvaccinated calves developed clinical signs of foot-and-mouth disease (FMD). In contrast, all six vaccinated cattle (100%) and four out of six vaccinated buffalo (66.6%) were protected from disease but all became infected with FMDV. This confirms that buffalo have the potential to spread FMD by direct contact and that vaccination can block this spread. The numbers of animals in the study were too small to determine if the differences in clinical protection afforded by vaccination of cattle and buffalo are significant and warrant a different dose regime.

  14. Deliquescence of NaCl-NaNO3 and KNO3-NaNO3 Salt Mixtures at 90C

    SciTech Connect

    Carroll, S; Craig, L; Wolery, T

    2003-12-29

    We conducted reversed deliquescence experiments in saturated NaCl-NaNO3-H2O and KNO{sub 3}-NaNO{sub 3}-H{sub 2}O systems at 90 C to determine relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Model predictions agree with experimental results for the NaCl-NaNO{sub 3}-H{sub 2}O system, but underestimate relative humidity by as much as 8% and solution composition by as much as 50% in the KNO{sub 3}-NaNO{sub 3}-H{sub 2}O system.

  15. Experimental investigation of talc solubility in H sub 2 O-MgCl sub 2 -NaCl-HCl fluids in the range 500-700C, 2 kb

    SciTech Connect

    Grabman, K.B.; Popp, R.K. )

    1991-10-01

    The equilibrium solubility of the talc-quartz mineral assemblage in H{sub 2}O-MgCl{sub 2}-NaCl-HCl fluids at 2 kb and temperatures in the range 500-700C has been determined using rapid-quench hydrothermal techniques. At 500C, the concentration of Mg measured in the fluid after quench decreased in a systematic, nonlinear fashion with increasing concentrations of NaCl, from 2.8 m Mg in NaCl-free solutions to 1.5 m in 5.1 m NaCl. In contrast, at 600 and 700C Mg molalities increased with increasing NaCl molalities. At 600C, the concentration of Mg increased from 0.072 to 0.12 m as the concentration of NaCl increased from 0.0 to 6.1 m. At 700C, Mg molality increased from an NaCl-free value of 0.0078 m, to 0.031 m in 6.3 m NaCl. The observed solubilities were compared to concentrations of aqueous species calculated by solving the series of mass-action and mass-balance equations that describe the activities and molalities of the relevant species in the fluid. It is concluded that at 500C, MgCl{sub 2}{sup 0}, MgCl+, and Mg{sup 2+} are the only Mg-species necessary to account for the observed behavior. The calculations suggest that the decrease in Mg results from both the increasing concentrations of Cl{sup {minus}} as NaCl concentration increases, and the changing dielectric properties of the fluid. At 600 and 700C, the presence of Mg-species in addition to MgCl{sub 2}{sup 0}, MgCl{sup +}, and Mg{sup 2+} may be required to describe the increased solubility observed in the experiments. Use of the slope-quantification method for identifying aqueous species indicates that higher order Mg-Cl species or Na-Mg-Cl species are possible, but the precision of the technique is not sufficient to uniquely identify the species.

  16. Revisiting the hydration structure of aqueous Na().

    PubMed

    Galib, M; Baer, M D; Skinner, L B; Mundy, C J; Huthwelker, T; Schenter, G K; Benmore, C J; Govind, N; Fulton, J L

    2017-02-28

    A combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na(+). The high spatial resolution of the XRD measurements corresponds to Qmax = 24 Å(-1) while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 Å(-1). Both provide an accurate measure of the shape and position of the first peak in the Na-O pair distribution function, gNaO(r). The measured Na-O distances of 2.384 ± 0.003 Å (XRD) and 2.37 ± 0.024 Å (EXAFS) are in excellent agreement. These measurements show a much shorter Na-O distance than generally reported in the experimental literature (Na-Oavg ∼ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na-O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based methods, revPBE and BLYP, predict a Na-O distance that is too long by about 0.05 Å with respect to the experimental data (EXAFS and XRD). The inclusion of dispersion interactions (-D3 and -D2) significantly worsens the agreement with experiment by further increasing the Na-O distance by 0.07 Å. In contrast, the use of a classical Na-O Lennard-Jones potential with SPC/E water accurately predicts the Na-O distance as 2.39 Å although the Na-O peak is over-structured with respect to experiment.

  17. The effect of Na vapor on the Na content of chondrules

    NASA Technical Reports Server (NTRS)

    Lewis, R. Dean; Lofgren, Gary E.; Franzen, Hugo F.; Windom, Kenneth E.

    1993-01-01

    Chondrules contain higher concentrations of volatiles (Na) than expected for melt droplets in the solar nebula. Recent studies have proposed that chondrules may have formed under non-canonical nebular conditions such as in particle/gas-rich clumps. Such chondrule formation areas may have contained significant Na vapor. To test the hypothesis of whether a Na-rich vapor would minimize Na volatilization reaction rates in a chondrule analog and maintain the Na value of the melt, experiments were designed where a Na-rich vapor could be maintained around the sample. A starting material with a melting point lower that typical chondrules was required to keep the logistics of working with Na volatilization from NaCl within the realm of feasibility. The Knippa basalt, a MgO-rich alkali olivine basalt with a melting temperature of 1325 +/- 5 C and a Na2O content of 3.05 wt%, was used as the chondrule analog. Experiments were conducted in a 1 atm, gas-mixing furnace with the fO2 controlled by a CO/CO2 gas mixture and fixed at the I-W buffer curve. To determine the extent of Na loss from the sample, initial experiments were conducted at high temperatures (1300 C - 1350 C) for duration of up to 72 h without a Na-rich vapor present. Almost all (up to 98%) Na was volatilized in runs of 72 h. Subsequent trials were conducted at 1330 C for 16 h in the presence of a Na-rich vapor, supplied by a NaCl-filled crucible placed in the bottom of the furnace. Succeeding Knudsen cell weight-loss mass-spectrometry analysis of NaCl determined the P(sub Na) for these experimental conditions to be in the 10(exp -6) atm range. This value is considered high for nebula conditions but is still plausible for non-canonical environments. In these trials the Na2O content of the glass was maintained or in some cases increased; Na2O values ranged from 2.62% wt to 4.37% wt. The Na content of chondrules may be controlled by the Na vapor pressure in the chondrule formation region. Most heating events capable

  18. Experimental Determination of CO_2 Diffusion Coefficient in Aqueous Solutions Under Pressure via Raman Spectroscopy at Room Temparature: Impact of Salinity (NaCl) on Dissolved CO_2 Diffusivity

    NASA Astrophysics Data System (ADS)

    Belgodere, C.; Dubessy, J.; Sterpenich, J.; Pironon, J.; Vautrin, D.; Caumon, M. C.; Robert, P.; Randi, A.; Birat, J. P.

    2014-06-01

    Diffusion coefficient of dissolved CO_ at 40 bar pressure and 21 ± 1°C was calculated using Raman spectroscopy of aqueous solutions, from 0 to 6 molNaCl . Kg^-1 H_2O, loaded in a High-Pressure Optical Cell.

  19. Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465 °C, near-critical to halite saturated conditions

    NASA Astrophysics Data System (ADS)

    Pester, Nicholas J.; Ding, Kang; Seyfried, William E.

    2015-11-01

    Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465 °C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I) > Na > Fe(II) > Zn > Ni(II) ⩾ Mg ⩾ Mn(II) > Co(II) > Ca > Sr > Ba, distinguished with 95% confidence for vapor densities greater than ∼0.2 g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2 > 0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation

  20. Electrophysiological Determination of Submembrane Na(+) Concentration in Cardiac Myocytes.

    PubMed

    Hegyi, Bence; Bányász, Tamás; Shannon, Thomas R; Chen-Izu, Ye; Izu, Leighton T

    2016-09-20

    In the heart, Na(+) is a key modulator of the action potential, Ca(2+) homeostasis, energetics, and contractility. Because Na(+) currents and cotransport fluxes depend on the Na(+) concentration in the submembrane region, it is necessary to accurately estimate the submembrane Na(+) concentration ([Na(+)]sm). Current methods using Na(+)-sensitive fluorescent indicators or Na(+) -sensitive electrodes cannot measure [Na(+)]sm. However, electrophysiology methods are ideal for measuring [Na(+)]sm. In this article, we develop patch-clamp protocols and experimental conditions to determine the upper bound of [Na(+)]sm at the peak of action potential and its lower bound at the resting state. During the cardiac cycle, the value of [Na(+)]sm is constrained within these bounds. We conducted experiments in rabbit ventricular myocytes at body temperature and found that 1) at a low pacing frequency of 0.5 Hz, the upper and lower bounds converge at 9 mM, constraining the [Na(+)]sm value to ∼9 mM; 2) at 2 Hz pacing frequency, [Na(+)]sm is bounded between 9 mM at resting state and 11.5 mM; and 3) the cells can maintain [Na(+)]sm to the above values, despite changes in the pipette Na(+) concentration, showing autoregulation of Na(+) in beating cardiomyocytes.

  1. Experimental constraints on the relative stabilities of the two systems monazite-(Ce) - allanite-(Ce) - fluorapatite and xenotime-(Y) - (Y,HREE)-rich epidote - (Y,HREE)-rich fluorapatite, in high Ca and Na-Ca environments under P-T conditions of 200-1000 MPa and 450-750 °C

    NASA Astrophysics Data System (ADS)

    Budzyń, Bartosz; Harlov, Daniel E.; Kozub-Budzyń, Gabriela A.; Majka, Jarosław

    2016-09-01

    The relative stabilities of phases within the two systems monazite-(Ce) - fluorapatite - allanite-(Ce) and xenotime-(Y) - (Y,HREE)-rich fluorapatite - (Y,HREE)-rich epidote have been tested experimentally as a function of pressure and temperature in systems roughly replicating granitic to pelitic composition with high and moderate bulk CaO/Na2O ratios over a wide range of P-T conditions from 200 to 1000 MPa and 450 to 750 °C via four sets of experiments. These included (1) monazite-(Ce), labradorite, sanidine, biotite, muscovite, SiO2, CaF2, and 2 M Ca(OH)2; (2) monazite-(Ce), albite, sanidine, biotite, muscovite, SiO2, CaF2, Na2Si2O5, and H2O; (3) xenotime-(Y), labradorite, sanidine, biotite, muscovite, garnet, SiO2, CaF2, and 2 M Ca(OH)2; and (4) xenotime-(Y), albite, sanidine, biotite, muscovite, garnet, SiO2, CaF2, Na2Si2O5, and H2O. Monazite-(Ce) breakdown was documented in experimental sets (1) and (2). In experimental set (1), the Ca high activity (estimated bulk CaO/Na2O ratio of 13.3) promoted the formation of REE-rich epidote, allanite-(Ce), REE-rich fluorapatite, and fluorcalciobritholite at the expense of monazite-(Ce). In contrast, a bulk CaO/Na2O ratio of ~1.0 in runs in set (2) prevented the formation of REE-rich epidote and allanite-(Ce). The reacted monazite-(Ce) was partially replaced by REE-rich fluorapatite-fluorcalciobritholite in all runs, REE-rich steacyite in experiments at 450 °C, 200-1000 MPa, and 550 °C, 200-600 MPa, and minor cheralite in runs at 650-750 °C, 200-1000 MPa. The experimental results support previous natural observations and thermodynamic modeling of phase equilibria, which demonstrate that an increased CaO bulk content expands the stability field of allanite-(Ce) relative to monazite-(Ce) at higher temperatures indicating that the relative stabilities of monazite-(Ce) and allanite-(Ce) depend on the bulk CaO/Na2O ratio. The experiments also provide new insights into the re-equilibration of monazite-(Ce) via fluid

  2. Anomalously high Na(+) and low Li(+) mobility in intercalated Na2Ti6O13.

    PubMed

    Ling, Chen; Zhang, Ruigang

    2017-04-12

    We report an anomalous diffusion behavior in intercalated Na2Ti6O13. Using first-principles calculations, the direct migration of inserted Na(+) along the tunnel direction is predicted to have a barrier of 0.24-0.44 eV, while the migration of inserted Li(+) along the tunnel direction has a barrier of 0.86-1.15 eV. Although Li(+) can also diffuse along a zig-zag path in the tunnel, the barrier of 0.86-0.99 eV is still much higher than that for Na(+). Our results surprisingly lead to the conclusion that the diffusion of larger Na(+) is 4-8 orders of magnitude faster than Li(+) in the same host lattice, and explain the experimentally observed exceptional rate capability of Na2Ti6O13 as the Na-ion battery anode. The anomalous diffusion behavior is attributed to the geometric features of Na2Ti6O13. For migration of Li(+) it is necessary to weaken Li-O bonds and to overcome the repulsion between Li and host Na ions simultaneously, while for Na(+) diffusion the improved Na-O bonding at the transition state partially compensates for the energy penalty from the repulsion of host Na ions.

  3. Simulation study of Na-majorite

    NASA Astrophysics Data System (ADS)

    Dymshits, A.; Vinograd, V.; Paulsen, N.; Winkler, B.; Perchuk, L.; Bobrov, A.

    2009-04-01

    Garnets, which are found as inclusions in diamonds, often have the excess of Na2O and SiO2 [Stachel, 2001]. Experimental studies suggest that Na is incorporated in pyrope-rich garnet via the coupled substitution Mg+Al=Na+Si [Bobrov et al., 2008]. This study is concerned with the determination of the structure and the thermodynamic properties of NaGrt (Na2MgSi5O12), which is assumed to be the end-member of pyrope-rich garnets with the excess of Na2O and SiO2. Static lattice energy calculations were performed with the program GULP [Gale & Rohl, 2003] using the force-field model [Vinograd et al., 2007] for 200 structures of Na2MgSi5O12 composition. These structures were prepared from Ia3-d pyrope Mg3Al2Si3O12 by replacing all octahedral Al atoms with Si and 2/3 of Mg atoms with Na. The distribution of Mg and Na was varied randomly. The static energies of these structures were cluster expanded using 8 pairwise effective cluster interactions (ECI). The ECIs were used to constrain Monte Carlo simulations within a 4×4×4 supercell (NNN exchangeable sites). The annealing experiments have shown that the lowest energy structure has the space group I4

  4. Mechanisms and regulation of Na(+) uptake by freshwater fish.

    PubMed

    Kumai, Yusuke; Perry, Steve F

    2012-12-01

    Mechanisms of ion uptake by freshwater (FW) fish have received considerable attention over the past 80 years. Through an assortment of techniques incorporating whole animal physiology, electrophysiology and molecular biological approaches, three models have been proposed to account for Na(+) uptake. (1) Direct exchange of Na(+) and H(+) via one or more types of Na(+)/H(+) exchanger (slc9), (2) uptake of Na(+) through epithelial Na(+) channels energized by an electrical gradient created by H(+)-ATPase and (3) Na(+)/Cl(-) co-transport (slc12). While each mechanism is supported at least in part by theoretical or experimental data, there are several outstanding questions that have not yet been fully resolved. Furthermore, there are few details concerning how these Na(+) uptake mechanisms are fine tuned in response to the fluctuating FW environments. In this review, we summarize the current understanding of these three Na(+) uptake mechanisms and discuss their regulation by endocrine (cortisol and prolactin) and neurohumoral (catecholamines) factors.

  5. An enhancement to the NA4 gear vibration diagnostic parameter

    NASA Technical Reports Server (NTRS)

    Decker, Harry J.; Handschuh, Robert F.; Zakrajsek, James J.

    1994-01-01

    A new vibration diagnostic parameter for health monitoring of gears, NA4*, is proposed and tested. A recently developed gear vibration diagnostic parameter NA4 outperformed other fault detection methods at indicating the start and initial progression of damage. However, in some cases, as the damage progressed, the sensitivity of the NA4 and FM4 parameters tended to decrease and no longer indicated damage. A new parameter, NA4* was developed by enhancing NA4 to improve the trending of the parameter. This allows for the indication of damage both at initiation and also as the damage progresses. The NA4* parameter was verified and compared to the NA4 and FM4 parameters using experimental data from single mesh spur and spiral bevel gear fatigue rigs. The primary failure mode for the test cases was naturally occurring tooth surface pitting. The NA4* parameter is shown to be a more robust indicator of damage.

  6. Behaviour at high pressure of Rb7NaGa8Si12O40·3H2O (a zeolite with EDI topology): a combined experimental-computational study

    NASA Astrophysics Data System (ADS)

    Gatta, G. D.; Tabacchi, G.; Fois, E.; Lee, Y.

    2016-03-01

    The high-pressure behaviour and the P-induced structural evolution of a synthetic zeolite Rb7NaGa8Si12O40·3H2O (with edingtonite-type structure) were investigated both by in situ synchrotron powder diffraction (with a diamond anvil cell and the methanol:ethanol:water = 16:3:1 mixture as pressure-transmitting fluid) up to 3.27 GPa and by ab initio first-principles computational modelling. No evidence of phase transition or penetration of P-fluid molecules was observed within the P-range investigated. The isothermal equation of state was determined; V 0 and K T0 refined with a second-order Birch-Murnaghan equation of state are V 0 = 1311.3(2) Å3 and K T0 = 29.8(7) GPa. The main deformation mechanism (at the atomic scale) in response to the applied pressure is represented by the cooperative rotation of the secondary building units (SBU) about their chain axis (i.e. [001]). The direct consequence of SBU anti-rotation on the zeolitic channels parallel to [001] is the increase in pore ellipticity with pressure, in response to the extension of the major axis and to the contraction of the minor axis of the elliptical channel parallel to [001]. The effect of the applied pressure on the bonding configuration of the extra-framework content is only secondary. A comparison between the P-induced main deformation mechanisms observed in Rb7NaGa8Si12O40·3H2O and those previously found in natural fibrous zeolites is made.

  7. Feb 2008 - Feb 2009 Progress Report and Final Report for NA26215: Experimental Studies of High-Energy Processing of Proto-Planetary and Planetary Materials in the Early Solar System

    SciTech Connect

    Jacobsen, Stein B.

    2009-05-28

    The results of this project are the first experimental data on the behavior of metal-silicate mixtures under very high pressures and temperatures comparable to those of the putative Moon-forming impact experienced by Earth in its early history. Probably the most important outcome of this project was the discovery that metal-silicate interaction and equilibration during highly energetic transient events like impacts may be extremely fast and effective on relatively large scale that was not appreciated before. During the course of this project we have developed a technique for trapping supercritical melts produced in our experiments that allows studying chemical phenomena taking place on a nanosecond timescales. Our results shed new light on the processes and conditions existed in the early Earth history, a subject of perennial interest of the humankind. The results of this project also provide important experimental constraints essential for development of the strategy and technology to mitigate imminent asteroid hazard.

  8. Theoretical study of Na-atom emission from NaCl (100) surfaces

    NASA Astrophysics Data System (ADS)

    Puchin, Vladimir; Shluger, Alexander; Nakai, Yasuo; Itoh, Noriaki

    1994-04-01

    Several models for the elementary processes causing the emission of alkali atoms by electronic excitation of NaCl (100) surfaces have been investigated theoretically. First, the desorption of a Na atom neighboring an electronically excited F center on the surface is simulated using a quantum-mechanical embedded-cluster technique. It is shown that emission of a Na atom is energetically favorable. The kinetics of this process is shown to be controlled by the probability of a nonradiative transition between the two states: the excited state of the F center and that corresponding to a Na atom desorbing from the surface. The potential barrier for desorption of an excited Na atom from the excited F-center state is found to be 2.1 eV. It is also found that the energy for emission of a Na atom from a cluster of F centers (the F3 center) is considerably reduced (for a certain configuration of the defect) with respect to the similar energy for a single F center. The energy barrier for emission of a Na atom neighboring an F' center on the surface is calculated to be 1 eV. It is shown that the electronic excitation of kinklike sites, with a Na atom at the edge, can lead to a barrierless emission of a Na atom, leaving a Vk-type defect behind. The results of calculations are discussed critically on the basis of existing experimental data.

  9. Experimental cross-sections of deuteron-induced reaction on 89Y up to 20 MeV; comparison of natTi(d,x)48V and 27Al(d,x)24Na monitor reactions

    NASA Astrophysics Data System (ADS)

    Lebeda, Ondřej; Štursa, Jan; Ráliš, Jan

    2015-10-01

    We measured cross-sections of the deuteron-induced reactions on 89Y in the energy range of 3.9-19.5 MeV. Excitation functions for formation of 88Zr, 89mZr, 89Zr, 88Y, 90mY and 87mSr were determined and compared with previously published data and prediction of the TALYS code. Thick target yields for production of 88Zr, 89Zrcum, 88Y, 90mY and 87mSr were calculated from the measured cross-sections. Achievable activity versus radionuclidic purity of medically relevant 89Zr is discussed and compared with the production via the 89Y(p,n) reaction. Parallel use of titanium and aluminium beam monitors revealed systematic difference between the recommended cross-sections of both monitoring reactions and provided new cross-section data for formation of 24Na, 27Mg, 43Sc, 44mSc, 44Sc, 46Sc, 47Sc and 48Sc. The cross-sections for the natTi(d,x)46Sc reactions agree very well with recently proposed recommended values.

  10. Laser-induced ionization of Na vapor

    SciTech Connect

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na/sub 2//sup +/ ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na/sub 2/ molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na/sub 2/ D/sup 1/PI..mu.. Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na/sub 2//sup +/ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na/sub 2//sup +/ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na/sub 2/ molecules.

  11. Laser-induced ionization of Na vapor

    NASA Astrophysics Data System (ADS)

    Wu, C. Y. Robert; Judge, D. L.; Roussel, F.; Carré, B.; Breger, P.; Spiess, G.

    1982-09-01

    The production of Na2+ ions by off-resonant laser excitation in the 5800-6200Å region mainly results from two-photon absorption by the Na2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na2 D1Πu Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na2+ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al. we estimate that the cross section for producing Na2+ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na2 molecules.

  12. Hydrogen-fluorine exchange in NaBH4-NaBF4.

    PubMed

    Rude, L H; Filsø, U; D'Anna, V; Spyratou, A; Richter, B; Hino, S; Zavorotynska, O; Baricco, M; Sørby, M H; Hauback, B C; Hagemann, H; Besenbacher, F; Skibsted, J; Jensen, T R

    2013-11-07

    Hydrogen-fluorine exchange in the NaBH4-NaBF4 system is investigated using a range of experimental methods combined with DFT calculations and a possible mechanism for the reactions is proposed. Fluorine substitution is observed using in situ synchrotron radiation powder X-ray diffraction (SR-PXD) as a new Rock salt type compound with idealized composition NaBF2H2 in the temperature range T = 200 to 215 °C. Combined use of solid-state (19)F MAS NMR, FT-IR and DFT calculations supports the formation of a BF2H2(-) complex ion, reproducing the observation of a (19)F chemical shift at -144.2 ppm, which is different from that of NaBF4 at -159.2 ppm, along with the new absorption bands observed in the IR spectra. After further heating, the fluorine substituted compound becomes X-ray amorphous and decomposes to NaF at ~310 °C. This work shows that fluorine-substituted borohydrides tend to decompose to more stable compounds, e.g. NaF and BF3 or amorphous products such as closo-boranes, e.g. Na2B12H12. The NaBH4-NaBF4 composite decomposes at lower temperatures (300 °C) compared to NaBH4 (476 °C), as observed by thermogravimetric analysis. NaBH4-NaBF4 (1:0.5) preserves 30% of the hydrogen storage capacity after three hydrogen release and uptake cycles compared to 8% for NaBH4 as measured using Sievert's method under identical conditions, but more than 50% using prolonged hydrogen absorption time. The reversible hydrogen storage capacity tends to decrease possibly due to the formation of NaF and Na2B12H12. On the other hand, the additive sodium fluoride appears to facilitate hydrogen uptake, prevent foaming, phase segregation and loss of material from the sample container for samples of NaBH4-NaF.

  13. Interaction of NaCl(g) and HCl(g) with condensed NA2SO4

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.; Miller, R. A.

    1977-01-01

    The interaction of Na2SO4(l) with NaCl(g), HCl(g) and H2O(g) was studied in atmospheric pressure flowing air and oxygen at Na2SO4(l) temperatures of 900 and 1000 C. Thermomicrogravimetric and high pressure mass spectrometric sampling techniques were used. Experimental results establish that previously reported enhanced rates of weight loss of Na2SO4(l) in the presence of NaCl(g) are due to the reaction: Na2SO4(c) + 2HCl(g) = 2NaCl(g) + SO2(g) + H2O(g) + 1/2O2(g) being driven to the right in flowing gas systems. The HCl(g) is the product of hydrolysis of NaCl caused by small but significant amounts of H2O(g) present in the system. Thermochemical calculations are used to show that even with sub-ppm levels of H2O(g) present, significant quantities of HCl(g) are produced.

  14. Deliquescence of NaCl-NaNO3, KNO3-NaNO3, and NaCl-KNO3 Salt Mixtures From 90 to 120?C

    SciTech Connect

    Carroll, S A; Craig, L; Wolery, T J

    2004-10-20

    We conducted reversed deliquescence experiments in saturated NaCl-NaNO{sub 3}-H{sub 2}O, KNO{sub 3}-NaNO{sub 3}-H{sub 2}O, and NaCl-KNO{sub 3}-H{sub 2}O systems from 90 to 120 C as a function of relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Discrepancy between model prediction and experimental code can be as high as 8% for relative humidity and 50% for dissolved ion concentration. The discrepancy is attributed primarily to the use of 25 C models for Cl-NO{sub 3} and K-NO{sub 3} ion interactions in the current Yucca Mountain Project high-temperature Pitzer model to describe the non-ideal behavior of these highly concentrated solutions.

  15. Experimental studies of the NaCs 12(0(+)) [7(1)Σ(+)] state: Spin-orbit and non-adiabatic interactions and quantum interference in the 12(0(+)) [7(1)Σ(+)] and 11(0(+)) [5(3)Π0] emission spectra.

    PubMed

    Faust, C; Jones, J; Huennekens, J; Field, R W

    2017-03-14

    We present results from experimental studies of the 11(0(+)) and 12(0(+)) electronic states of the NaCs molecule. An optical-optical double resonance method is used to obtain Doppler-free excitation spectra. Selected data from the 11(0(+)) and 12(0(+)) high-lying electronic states are used to obtain Rydberg-Klein-Rees and Inverse Perturbation Approach potential energy curves. Interactions between these two electronic states are evident in the patterns observed in the bound-bound and bound-free fluorescence spectra. A model, based on two separate interaction mechanisms, is presented to describe how the wavefunctions of the two states mix. The electronic parts of the wavefunctions interact via spin-orbit coupling, while the individual rotation-vibration levels interact via a second mechanism, which is likely to be non-adiabatic coupling. A modified version of the BCONT program was used to simulate resolved fluorescence from both upper states. Parameters of the model that describe the two interaction mechanisms were varied until simulations were able to adequately reproduce experimental spectra.

  16. Testing Na+ in blood

    PubMed Central

    Lava, Sebastiano A.G.; Bianchetti, Mario G.; Milani, Gregorio P.

    2017-01-01

    Abstract Both direct potentiometry and indirect potentiometry are currently used for Na+ testing in blood. These measurement techniques show good agreement as long as protein and lipid concentrations in blood remain normal. In severely ill patients, indirect potentiometry commonly leads to relevant errors in Na+ estimation: 25% of specimens show a disagreement between direct and indirect potentiometry, which is ≥4 mmol/L (mostly spuriously elevated Na+ level due to low circulating albumin concentration). There is a need for increased awareness of the poor performance of indirect potentiometry in some clinical settings.

  17. Search for K + to π + ν bar{ν } at the NA62 Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Minucci, Elisa

    The NA62 experiment aims to measure the branching ratio (BR) of the ultra-rare K + to π + ν bar{ν } decay with a 10% precision. NA62 started in October 2014, took data during the pilot runs in 2014 and 2015. The NA62 experimental strategy and the quality of data collected during the 2015 run are reported.

  18. Minimizing Load Effects on NA4 Gear Vibration Diagnostic Parameter

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Zakrajsek, James J.

    2001-01-01

    NA4 is a vibration diagnostic parameter, developed by researchers at NASA Glenn Research Center, for health monitoring of gears in helicopter transmissions. The NA4 reacts to the onset of gear pitting damage and continues to react to the damage as it spreads. This research also indicates NA4 reacts similarly to load variations. The sensitivity of NA4 to load changes will substantially affect its performance on a helicopter gearbox that experiences continuously changing load throughout its flight regimes. The parameter NA4 has been used to monitor gear fatigue tests at constant load. At constant load, NA4 effectively detects the onset of pitting damage and tracks damage severity. Previous research also shows that NA4 reacts to changes in load applied to the gears in the same way it reacts to the onset of pitting damage. The method used to calculate NA4 was modified to minimize these load effects. The modified NA4 parameter was applied to four sets of experimental data. Results indicate the modified NA4 is no longer sensitive to load changes, but remains sensitive to pitting damage.

  19. Light-induced drift of Na atoms

    NASA Astrophysics Data System (ADS)

    Werij, H. G. C.; Woerdman, J. P.

    1988-10-01

    Light can induce a flux of optically absorbing particles immersed in a buffer gas, when these particles have a different mobility in the ground and excited state. This paper presents a study of light-induced drift (LID) of Na atoms in noble gases, which can be regarded as the “canonical” system for experiments in this field. We have experimentally studied the LID effect in the optically thin and the optically thick regimes. Parameters which have been varied are laser frequency, laser intensity, buffer gas pressure and buffer gas species. This work gives the first critical comparison of LID experiments with realistic theory in which the multilevel complications of the Na atom have been incorporated. In the optically thick case (“optical piston”) one can distinguish the open cell and the closed cell regimes. Effects of adsorption and desorption of Na atoms at the surface of the cell wall have been incorporated into the theory. The experimental data are in excellent agreement with the results of a four-level rate-equation model for LID which incorporates the fine and hyperfine structure of the level scheme of the Na absorbers.

  20. Experimental Pi.

    ERIC Educational Resources Information Center

    Corris, G.

    1990-01-01

    Discusses the calculation of pi by means of experimental methods. Polygon circle ratios, Archimedes' method, Buffon's needles, a Monte Carlo method, and prime number approaches are used. Presents three BASIC programs for the calculations. (YP)

  1. The NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Venditti, Stefano

    2016-12-01

    The goal of the NA62 experiment at CERN is to collect O(100) events of the ultrarare K+→ π +ν bar {ν } decay in two years. After a long R&D phase and a successful pilot run in 2014, the first data-taking phase took place in 2015. In this paper the importance of the experiment's physics goal, as well as the experimental solutions adopted in order to attain it, will be reviewed.

  2. The NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Piccini, Mauro

    2016-11-01

    The rare decays K → πvv¯ are excellent processes to make tests of new physics at the highest scale complementary to LHC thanks to their theoretically cleanness. The NA62 experiment at CERN SPS aims to collect of the order of 100 events in two years of data taking for the decay K+ → π+vv¯, keeping the background at the level of 10%. Part of the experimental apparatus has been commissioned during a technical run in 2012. The diverse and innovative experimental techniques will be explained and some preliminary results obtained during the 2014 pilot run will be reviewed.

  3. Na/beta-alumina/NaAlCl4, Cl2/C circulating cell

    NASA Astrophysics Data System (ADS)

    Cherng, Jing-Yih; Bennion, Douglas N.

    1987-09-01

    A study was made of a high specific energy battery based on a sodium negative electrode and a chlorine positive electrode with molten AlCl3-NaCl electrolyte and a solid beta alumina separator. The basic performance of a Na beta-alumina NaAlCl4, Cl2/C circulating cell at 200 C was demonstrated. This cell can be started at 150 C. The use of melting sodium chloroaluminate electrolyte overcomes some of the material problems associated with the high working temperatures of present molten salt systems, such as Na/S and LiAl/FeS, and retains the advantages of high energy density and relatively efficient electrode processes. Preliminary investigations were conducted on a sodium-chlorine static cell, material compability, electrode design, wetting, and theoretical calculations to assure a better chance of success before assembling a Na/Cl2 circulating cell. Mathematical models provide a theoretical explanation for the performance of the NaCl2 battery. The results of mathematical models match the experimental results very well. According to the result of the mathematical modeling, an output at 180 mA/sq cm and 3.2 V can be obtained with optimized cell design.

  4. Experimental philosophy.

    PubMed

    Knobe, Joshua; Buckwalter, Wesley; Nichols, Shaun; Robbins, Philip; Sarkissian, Hagop; Sommers, Tamler

    2012-01-01

    Experimental philosophy is a new interdisciplinary field that uses methods normally associated with psychology to investigate questions normally associated with philosophy. The present review focuses on research in experimental philosophy on four central questions. First, why is it that people's moral judgments appear to influence their intuitions about seemingly nonmoral questions? Second, do people think that moral questions have objective answers, or do they see morality as fundamentally relative? Third, do people believe in free will, and do they see free will as compatible with determinism? Fourth, how do people determine whether an entity is conscious?

  5. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles.

    PubMed

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-28

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO4). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  6. Recent results and prospects from NA62

    NASA Astrophysics Data System (ADS)

    Bizzeti, Andrea

    2016-11-01

    A large sample of charged kaon decays in 2007 has been collected by the NA62 experiment at CERN SPS using the experimental setup of the former NA48 experiment. Its intense kaon beam provides an abundant source of tagged neutral pions in vacuum. A measurement of the electromagnetic transition form factor slope of the neutral pion from 1:05 × 106 fully reconstructed π0 Dalitz decays is presented. The obtained preliminary value a = (3.70 ± 0.53stat ± 0.36syst) × 10-2 is the first 5.8σ observation of a non-zero slope in the time-like region of momentum transfer. K+ → π+ vv¯ is a theoretically very clean decay where indirect effects of new physics may be detectable. The NA62 apparatus has been significantly upgraded between 2008 and 2014 in order to measure the branching ratio of this decay with 10% precision. The NA62 experiment took data with the new setup in pilot runs in 2014 and 2015, reaching the design beam intensity. Results of first data quality studies in view of the 2016-2017 physics runs are presented.

  7. First principles study of the crystal, electronic structure, and diffusion mechanism of polaron-Na vacancy of Na3MnPO4CO3 for Na-ion battery applications

    NASA Astrophysics Data System (ADS)

    Debbichi, M.; Debbichi, L.; Dinh, Van An; Lebègue, S.

    2017-02-01

    Based on first principles calculations, we investigate the geometry, electronic structure, and diffusion mechanism of Na ions in Na3MnPO4CO3 using density functional theory with a Hubbard potential correction. Our results suggest that the structure of Na3MnPO4CO3 can be deintercalated with more than one Na ion, and that the removal of a Na ion can form a bound polaron. We find that our calculations of the intercalation voltages for the redox couples Mn2+ /Mn3+ and Mn3+ /Mn4+ agree very well with the experimental data. In addition, we demonstrate that Na in Na3MnPO4CO3 can diffuse in three directions with low activation energy barriers, allowing a fast charging rate.

  8. Animal experimentation.

    PubMed

    Kolar, Roman

    2006-01-01

    Millions of animals are used every year in often times extremely painful and distressing scientific procedures. Legislation of animal experimentation in modern societies is based on the supposition that this is ethically acceptable when certain more or less defined formal (e.g. logistical, technical) demands and ethical principles are met. The main parameters in this context correspond to the "3Rs" concept as defined by Russel and Burch in 1959, i.e. that all efforts to replace, reduce and refine experiments must be undertaken. The licensing of animal experiments normally requires an ethical evaluation process, often times undertaken by ethics committees. The serious problems in putting this idea into practice include inter alia unclear conditions and standards for ethical decisions, insufficient management of experiments undertaken for specific (e.g. regulatory) purposes, and conflicts of interest of ethics committees' members. There is an ongoing societal debate about ethical issues of animal use in science. Existing EU legislation on animal experimentation for cosmetics testing is an example of both the public will for setting clear limits to animal experiments and the need to further critically examine other fields and aspects of animal experimentation.

  9. Beyond lithium-ion batteries: A computational study on Na-S and Na-O batteries

    NASA Astrophysics Data System (ADS)

    Masedi, M. C.; Ngoepe, P. E.; Sithole, H. M.

    2017-02-01

    The first principle pseudopotential calculations based on the Perdew-Burke-Ernzerhof (PBE) form of generalized gradient approximation (GGA) within density functional theory (DFT) has been utilized to investigate the stabilities of insoluble discharge products of oxygen and sulphur in the Na-O and Na-S batteries. Their structural, mechanical and electronic properties were determined. The lattice parameters were well reproduced and agree with the available experimental data. The heats of formation predict that all structures are generally stable and Na2S has the lowest value. The elastic constants suggest that all the structures are mechanically stable which in good agreement with the calculated phonon dispersions.

  10. Sol formation ability of Ca/Na-montmorillonite at low ionic strength

    NASA Astrophysics Data System (ADS)

    Birgersson, Martin; Hedström, Magnus; Karnland, Ola

    Various colloidal phases of Wyoming type Ca/Na-montmorillonite have been investigated experimentally by sedimentation and swelling tests of originally pure Ca- or Na-montmorillonite in different CaCl 2/NaCl solutions of low ionic strength. Forces contributing to colloid (de)stability are discussed, and the experimental findings are compared with a theoretical sol formation zone in the [Ca 2+]-[Na +] diagram derived from simple assumptions regarding the forces. It is found that the sol formation ability drastically lowers when calcium ions are present in the system. This effect could be due to an explicit influence of these ions on edge face interactions.

  11. Zero-gravity growth of NaF-NaCl eutectics in the NASA Skylab program

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Allen, F. G.; Yu, J. G.

    1976-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, were produced in space and on earth. The production of continuous fibers in a eutectic mixture is attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It is shown that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis. A new concept is advanced to explain the phenomenon of transmittance versus far infrared wavelength of the directionally solidified NaCl-NaF eutectic in terms of the two-dimensional Bragg Scattering and the polarization effect of Rayleigh scattering. This concept can be applied to other eutectic systems as long as the index of refraction of the matrix over a range of wavelengths is known. Experimental data are in agreement with the theoretical prediction.

  12. Na+ coordination at the Na2 site of the Na+/I- symporter.

    PubMed

    Ferrandino, Giuseppe; Nicola, Juan Pablo; Sánchez, Yuly E; Echeverria, Ignacia; Liu, Yunlong; Amzel, L Mario; Carrasco, Nancy

    2016-09-13

    The sodium/iodide symporter (NIS) mediates active I(-) transport in the thyroid-the first step in thyroid hormone biosynthesis-with a 2 Na(+): 1 I(-) stoichiometry. The two Na(+) binding sites (Na1 and Na2) and the I(-) binding site interact allosterically: when Na(+) binds to a Na(+) site, the affinity of NIS for the other Na(+) and for I(-) increases significantly. In all Na(+)-dependent transporters with the same fold as NIS, the side chains of two residues, S353 and T354 (NIS numbering), were identified as the Na(+) ligands at Na2. To understand the cooperativity between the substrates, we investigated the coordination at the Na2 site. We determined that four other residues-S66, D191, Q194, and Q263-are also involved in Na(+) coordination at this site. Experiments in whole cells demonstrated that these four residues participate in transport by NIS: mutations at these positions result in proteins that, although expressed at the plasma membrane, transport little or no I(-) These residues are conserved throughout the entire SLC5 family, to which NIS belongs, suggesting that they serve a similar function in the other transporters. Our findings also suggest that the increase in affinity that each site displays when an ion binds to another site may result from changes in the dynamics of the transporter. These mechanistic insights deepen our understanding not only of NIS but also of other transporters, including many that, like NIS, are of great medical relevance.

  13. Experimental macroevolution†

    PubMed Central

    Bell, Graham

    2016-01-01

    The convergence of several disparate research programmes raises the possibility that the long-term evolutionary processes of innovation and radiation may become amenable to laboratory experimentation. Ancestors might be resurrected directly from naturally stored propagules or tissues, or indirectly from the expression of ancestral genes in contemporary genomes. New kinds of organisms might be evolved through artificial selection of major developmental genes. Adaptive radiation can be studied by mimicking major ecological transitions in the laboratory. All of these possibilities are subject to severe quantitative and qualitative limitations. In some cases, however, laboratory experiments may be capable of illuminating the processes responsible for the evolution of new kinds of organisms. PMID:26763705

  14. Experimental determination of quartz solubility and melting in the system SiO2-H2O-NaCl at 15-20 kbar and 900-1100 °C: implications for silica polymerization and the formation of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Cruz, Miguel F.; Manning, Craig E.

    2015-10-01

    We investigated quartz solubility and melting in the system SiO2-NaCl-H2O at 15-20 kbar and 900-1100 °C using hydrothermal piston-cylinder methods. The solubility of natural, high-purity quartz was determined by weight loss. Quartz solubility decreases with increasing NaCl mole fraction ( X NaCl) at fixed pressure and temperature. The decline is greatest at low X NaCl. The solubility patterns can be explained by changes in the concentration and identity of silica oligomers. Modeling of results at 1000 °C, 15 kbar, reveals that silica monomers and dimers predominate at low Si concentration (high X NaCl), that higher oligomers assumed to be trimers become detectable at X NaCl = 0.23, and that the trimers contain >50 % of dissolved Si at X NaCl = 0. The modeling further implies a hydration number for the silica monomer of 1.6, significantly lower than is observed in previous studies. Results at 15 kbar and 1100 °C provide evidence of two coexisting fluid phases. Although solubility could not be determined directly in these cases, the presence or absence of phases over a range of bulk compositions permitted mapping of the topology of the phase diagram. At 1100 °C, 15 kbar, addition of only a small amount of NaCl ( X NaCl = 0.05) leads to separation of two fluid phases, one rich in H2O and SiO2, the other rich in NaCl with lower SiO2. Textural identification of two fluids is supported by very low quench pH due to preferential partitioning of Na into the fluid that is rich in SiO2 and H2O, confirmed by electron microprobe analyses. The addition of NaCl causes the upper critical end point on the SiO2-H2O melting curve to migrate to significantly higher pressure. Correspondence between depolymerization and phase separation of SiO2-H2O-NaCl fluids indicates that polymerization plays a fundamental role in producing critical mixing behavior in silicate-fluid systems.

  15. Decomposition reactions for NaAl H4 , Na3 Al H6 , and NaH: First-principles study

    NASA Astrophysics Data System (ADS)

    Ke, Xuezhi; Tanaka, Isao

    2005-01-01

    The electronic properties and lattice dynamics of the sodium alanate phases have been studied by the density functional calculations. The phases include NaAlH4 (space group, I41/a ), Na3AlH6 (space group, P21/n ), and NaH (space group, Fm-3m ). The electronic properties are discussed on the basis of the electronic band structures, the atomic charges, the bond overlap population analysis, and the Born effective charges. The phonon dispersion relations and phonon density of states (DOS) of the phases are calculated by a direct force-constant method. Within the quasiharmonic approximation, the calculated thermodynamic functions including the heat capacity, the vibrational enthalpy, and the vibrational entropy are in good agreement with experimental values. Three decomposition reactions are studied based on the thermodynamic functions. The reactions are (1) NaAlH4→(1)/(3)Na3AlH6+(2)/(3)Al+H2 , (2) (1)/(3)Na3AlH6→NaH+(1)/(3)Al+(1)/(2)H2 , and (3) NaH→Na+(1)/(2)H2 . The reactions (1), (2), and (3) are predicted to take place at 285, 390, and 726K , respectively, which are in good agreement with the experiment (353, 423, and 698K , respectively). The individual contributions to the reactions including the enthalpy and entropy are investigated. We found that the enthalpy for the reaction is almost constant, and the net entropy contribution ( TΔS ) to the reaction is approximately equal to the entropy contribution of the H2 gas molecule (produced in that reaction).

  16. Status of the NA62 Experiment

    NASA Astrophysics Data System (ADS)

    Palladino, Vito

    2016-04-01

    The rare decays {{{K}}^ + } to {π ^ + }{{ν bar ν }} are excellent processes to make tests of new physics at the highest scale complementary to LHC thanks to their theoretically cleaness. The NA62 experiment at CERN SPS aims to collect of the order of 100 events in two years of data taking, keeping the background at the level of 10%. Part of the experimental apparatus has been commissioned during a technical run in 2012. The physics prospects and the status of the experiment will be reviewed after the commissioning run of 2014 and the data taking in 2015.

  17. Measurement and Modeling of Mean Activity Coefficients of NaCl in an Aqueous Mixed Electrolyte Solution Containing Glycine

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Paniz; Dehghani, M. R.; Safahieh, Tina

    2016-08-01

    An electrochemical cell with two ion-selective electrodes (Na+ glass) and (Cl- solid state) was used to measure the mean ionic activity coefficient of NaCl in an aqueous mixture containing NaCl, glycine, and NaNO3 at 308.15 K. The experiments were conducted at fixed molality of NaNO3 (0.1 m) and various molalities of glycine (0-1 m) and NaCl (up to 0.8 m). The experimental data were modeled using a modified version of the Pitzer equation. Finally the activity coefficient ratio of glycine was determined based on the Maxwell equation.

  18. Preparation of Al-La Master Alloy by Thermite Reaction in NaF-NaCl-KCl Molten Salt

    NASA Astrophysics Data System (ADS)

    Jang, Poknam; Li, Hyonmo; Kim, Wenjae; Wang, Zhaowen; Liu, Fengguo

    2015-05-01

    A NaF-NaCl-KCl ternary system containing La2O3 was investigated for the preparation of Al-La master alloy by the thermite reaction method. The solubility of La2O3 in NaF-NaCl-KCl molten salt was determined by the method of isothermal solution saturation. Inductively coupled plasma-optical emission spectroscopy and x-ray diffraction (XRD) analyses were used to consider the content of La2O3 in molten salt and the supernatant composition of molten salt after dissolution of La2O3, respectively. The results showed that the content of NaF had a positive influence on the solubility of La2O3 in NaF-NaCl-KCl molten salts, and the solubility of La2O3 could reach 8.71 wt.% in molten salts of 50 wt.%NaF-50 wt.% (44 wt.%NaCl + 56 wt.%KCl). The XRD pattern of cooling molten salt indicated the formation of LaOF in molten salt, which was probably obtained by the reaction between NaF and La2O3. The kinetic study showed that the thermite reaction was in accord with a first-order reaction model. The main influence factors on La content in the Al-La master alloy product, including molten salt composition, amount of Al, concentration of La2O3, stirring, reduction time and temperature, were investigated by single-factor experimentation. The content of La in the Al-La master alloy could be reached to 10.1 wt.%.

  19. Na Cauda do Cometa

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.

    2009-01-01

    Quando viam um cometa, os antigos gregos imaginavam uma estrela com uma vasta cabeleira. Não à toa, a palavra deriva do termo koma, que significa cabelo. Constituídos por fragmentos de gelo e gases, os cometas possuem um núcleo sólido, que pode ter vários quilômetros de diâmetro, e uma cauda que sempre aponta na direção contrária ao Sol, devido aos ventos solares. Graças à aparência de pontos luminosos em movimento (ao contrário de outros astros, que parecem estáticos), esses corpos celestes foram interpretados por diferentes povos com muito misticismo, inspirando mitos tanto de boas-novas como de maus presságios. Conheça algumas dessas histórias:

  20. In rat hepatocytes, the hypertonic activation of Na(+) conductance and Na(+)-K(+)-2Cl(-) symport--but not Na(+)-H(+) antiport--is mediated by protein kinase C.

    PubMed

    Heinzinger, H; van den Boom, F; Tinel, H; Wehner, F

    2001-11-01

    1. The initial event in the regulatory volume increase (RVI) of rat hepatocytes is an import of extracellular Na(+) via Na(+) conductance, Na(+)-K(+)-2Cl(-) symport, and Na(+)-H(+) antiport. 2. Here, the protein kinase inhibitors staurosporine (100 nmol l(-1)) and bis-indolyl-maleimide I (400 nmol l(-1)) were used to test for a possible contribution of protein kinase C (PKC) to the hypertonic activation of these transporters in confluent primary cultures. 3. Stimulation of Na(+) conductance was monitored: (i) by use of a differential approach based on Na(+) fluxes, (ii) by means of cable analysis, and (iii) in experiments with low Na(+) pulses. All three experimental protocols in concert demonstrated a block of the activation of Na(+) conductance by staurosporine and bis-indolyl-maleimide I. 4. In addition, both compounds significantly reduced the hypertonic activation of Na(+)-K(+)-2Cl(-) symport (quantified on the basis of furosemide-sensitive (86)Rb(+) uptake) to approximately 30 %. 5. In contrast, neither staurosporine nor bis-indolyl-maleimide I had any detectable effect on the hypertonicity-induced alkalinization of cell pH via Na(+)-H(+) antiport (determined fluorometrically). 6. Staurosporine and bis-indolyl-maleimide I completely blocked the RVI of rat hepatocytes (quantified by means of confocal laser-scanning microscopy). The high efficiency of the block suggests an additional inhibitory effect of both compounds on the activity of Na(+)/K(+)-ATPase (determined as ouabain-sensitive (86)Rb(+) uptake). 7. It is concluded that the hypertonic activation of rat hepatocyte Na(+) conductance and Na(+)-K(+)-2Cl(-) symport--but not Na(+)-H(+) antiport--is probably mediated by PKC.

  1. Preparation of zeolite NaA for CO2 capture from nickel laterite residue

    NASA Astrophysics Data System (ADS)

    Du, Tao; Liu, Li-ying; Xiao, Penny; Che, Shuai; Wang, He-ming

    2014-08-01

    Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range of experimental techniques, such as X-ray diffraction, scanning electronic microscopy, and infrared spectroscopy. It was revealed that the structures of the produced zeolites were dependent on the molar ratios of the reactants and hydrothermal reaction conditions, so the synthesis conditions were optimized to obtain pure zeolite NaA. Adsorption of nitrogen and carbon dioxide on the prepared zeolite NaA was also measured and analyzed. The results showed that zeolite NaA could be prepared with reasonable purity, it had physicochemical properties comparable with zeolite NaA made from other methods, and it had excellent gas adsorption properties, thus demonstrating that zeolite NaA could be prepared from nickel laterite residue.

  2. Na+ coordination at the Na2 site of the Na+/I− symporter

    PubMed Central

    Ferrandino, Giuseppe; Nicola, Juan Pablo; Sánchez, Yuly E.; Echeverria, Ignacia; Liu, Yunlong; Amzel, L. Mario; Carrasco, Nancy

    2016-01-01

    The sodium/iodide symporter (NIS) mediates active I− transport in the thyroid—the first step in thyroid hormone biosynthesis—with a 2 Na+: 1 I− stoichiometry. The two Na+ binding sites (Na1 and Na2) and the I− binding site interact allosterically: when Na+ binds to a Na+ site, the affinity of NIS for the other Na+ and for I− increases significantly. In all Na+-dependent transporters with the same fold as NIS, the side chains of two residues, S353 and T354 (NIS numbering), were identified as the Na+ ligands at Na2. To understand the cooperativity between the substrates, we investigated the coordination at the Na2 site. We determined that four other residues—S66, D191, Q194, and Q263—are also involved in Na+ coordination at this site. Experiments in whole cells demonstrated that these four residues participate in transport by NIS: mutations at these positions result in proteins that, although expressed at the plasma membrane, transport little or no I−. These residues are conserved throughout the entire SLC5 family, to which NIS belongs, suggesting that they serve a similar function in the other transporters. Our findings also suggest that the increase in affinity that each site displays when an ion binds to another site may result from changes in the dynamics of the transporter. These mechanistic insights deepen our understanding not only of NIS but also of other transporters, including many that, like NIS, are of great medical relevance. PMID:27562170

  3. Theoretical calculation of low-lying states of NaAr and NaXe

    NASA Technical Reports Server (NTRS)

    Laskowski, B. C.; Langhoff, S. R.; Stallcop, J. R.

    1981-01-01

    Potential curves as well as dipole moments and linking transition moments are calculated for the ground X 2 Sigma + and low lying excited A 2 Pi, B 2 Sigma +, C 2 Sigma +, (4) 2 Sigma +, (2) 2 Pi and (1) 2 Delta states of NaAr and NaXe. Calculations are performed using a self-consistent field plus configuration-interaction procedure with the core electrons replaced by an ab initio effective core potential. The potential curves obtained are found to be considerably less repulsive than the semiempirical curves of Pascale and Vandeplanque (1974) and to agree well with existing experimental data, although the binding energies of those states having potential minima due to van der Waals interactions are underestimated. Emission bands are also calculated for the X 2 Sigma + - C 2 Sigma + excimer transitions of NaAr and NaXe using the calculated transition moments and potential curves, and shown to agree well with experiment on the short-wavelength side of the maximum.

  4. Proper shielding for NaI(Tl) detectors in combined neutron-γ fields using MCNP

    NASA Astrophysics Data System (ADS)

    Yazdi, M. H. Hadizadeh; Mowlavi, A. A.; Thompson, M. N.; Hakimabad, H. Miri

    2004-04-01

    The importance of reducing the activation of NaI(Tl) detectors when used to detect γ-rays in the presence of an intense neutron environment is discussed. Monte-Carlo calculations are used to design proper shielding for these NaI(Tl) detectors. These results are compared with the experimental measurements.

  5. Gamma-ray spectrometer experiment, Apollo 17: NaI(T1) detector crystal activation

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Schmadebeck, R. L.; Bielefeld, M.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Schonfeld, E.; Peterson, L. E.; Arnold, J. R.

    1973-01-01

    An attempt was made to obtain experimental data on proton induced activity and its effect on gamma ray spectral measurements. A NaI(T1) crystal flown in Apollo 17 command module was used for the experiment.

  6. Direct observation of electronic conductivity transitions and solid electrolyte interphase stability of Na2Ti3O7 electrodes for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Zarrabeitia, Maider; Nobili, Francesco; Muñoz-Márquez, Miguel Ángel; Rojo, Teófilo; Casas-Cabanas, Montse

    2016-10-01

    This communication reports the first experimental evidence of an interesting change of transport properties, and particularly of electron conductivity, during the Na+ insertion/extraction process in Na2Ti3O7 negative electrodes. Probed by electrochemical impedance spectroscopy, for 0.0 ≤ x < 1.4 in Na2+xTi3O7 the material exhibits insulator behaviour, the bulk electronic conductivity being the limiting factor in the insertion process. After further Na+ insertion, the material becomes electronic conductor and at around 0.13 V vs. Na+/Na the rate of interfacial charge-transfer becomes the limiting factor. The observed conductivity transition is reversible upon cycling. Additionally, this impedance study sheds new light on the solid electrolyte interphase layer performance which is found to be unstable upon electrochemical cycling and negatively contributes on the capacity fading observed for this electrode material.

  7. Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3.

    PubMed

    Schlessinger, Avner; Sun, Nina N; Colas, Claire; Pajor, Ana M

    2014-06-13

    Metabolic intermediates, such as succinate and citrate, regulate important processes ranging from energy metabolism to fatty acid synthesis. Cytosolic concentrations of these metabolites are controlled, in part, by members of the SLC13 gene family. The molecular mechanism underlying Na(+)-coupled di- and tricarboxylate transport by this family is understood poorly. The human Na(+)/dicarboxylate cotransporter NaDC3 (SLC13A3) is found in various tissues, including the kidney, liver, and brain. In addition to citric acid cycle intermediates such as α-ketoglutarate and succinate, NaDC3 transports other compounds into cells, including N-acetyl aspartate, mercaptosuccinate, and glutathione, in keeping with its dual roles in cell nutrition and detoxification. In this study, we construct a homology structural model of NaDC3 on the basis of the structure of the Vibrio cholerae homolog vcINDY. Our computations are followed by experimental testing of the predicted NaDC3 structure and mode of interaction with various substrates. The results of this study show that the substrate and cation binding domains of NaDC3 are composed of residues in the opposing hairpin loops and unwound portions of adjacent helices. Furthermore, these results provide a possible explanation for the differential substrate specificity among dicarboxylate transporters that underpin their diverse biological roles in metabolism and detoxification. The structural model of NaDC3 provides a framework for understanding substrate selectivity and the Na(+)-coupled anion transport mechanism by the human SLC13 family and other key solute carrier transporters.

  8. A Comparative Investigation on the JT Effect in Triangular Compounds of NaMnO2, NaNiO2 and NaTiO2

    NASA Astrophysics Data System (ADS)

    Ouyang, Sheng-De; Quan, Ya-Min; Liu, Da-Yong; Zou, Liang-Jian

    2011-06-01

    We present a study on the Jahn—Teller (JT) distortions of the TiO6, NiO6 and MnO6 complexes in NaTiO2, NaNiO2 and NaMnO2 triangular compounds with a C2/m structure. The JT vibronic normal modes are found to be Q3, Q'4 and Q6 by the group symmetry on the C2/m structure. The magnitude of the normal coordinates (Q3, Q'4, Q6) and the structural parameters of distorted octahedra MO6 (M=Ti, Ni, Mn) are obtained and in good agreement with experimental data. The energy level splitting of 3d orbitals and the highest occupied molecular orbital (HOMO) character in the MO6 complex are also calculated in accordance with the JT distortions. These results provide a first insight into the groundstate and magnetic properties of distorted triangular compounds AMO2.

  9. Solidification of NaCl-NaF eutectic in space

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yu, J. G.

    1974-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, have been produced in space and on earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis.

  10. Xenon adsorption in NaA zeolite cavities

    NASA Astrophysics Data System (ADS)

    McCormick, A. V.; Chmelka, B. F.

    Adsorption of xenon atoms in the α-cages of NaA zeolite has been studied using 129Xe NMR spectroscopy to probe directly the distribution and configuration of molecules in confined, microporous environments. The 129Xe NMR spectrum is sensitive to subtle changes in xenon environment, so relative populations of α-cages containing different numbers of xenon guests can be determined and the effects of other co-adsorbed species monitored. On the basis of 129Xe NMR spectra, the distribution of xenon atoms among NaA α-cages is shown to exhibit a marked dependence on the pressure at which the xenon guests are introduced. 129Xe NMR spectra recorded at 200 K reveal that xenon atoms in the NaA α-cages experience diminished mobility (resembling condensation phenomena) at higher temperatures than in the bulk gas of equivalent density. Thus, the chemical potential of adsorbed xenon can be investigated experimentally as a function of both temperature and guest density. The density dependence of the 129Xe chemical shift in Xe/NaA and in bulk xenon gas shows that Xe-Xe interactions in the proximity of the NaA cage wall are important in α-cages containing more than five xenon guests. This trend is linked to entropic effects which may enhance xenon adsorption in the confined environment of the NaA α-cages.

  11. Elastic properties of NaXH4 (X = B, Al)

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Dong; Jiang, Zhen-Yi; Hou, Yu-Qing; Li, Li-Sha

    2009-07-01

    Elastic properties of NaXH4 (X = B, Al) have been studied by first-principles calculations using a projected augmented plane-wave approach. The calculated elastic constants compare favorably with experimental values. Our calculations show that the theoretically calculated elastic constants and bulk moduli have small values compared with those of typical metals and intermetallic compounds, which indicates that NaXH4 (X = B, Al) are highly compressible. Comparison of bulk moduli B of different complex hydrides shows a correlation between B and the decomposition temperatures. Also, we calculated the elastic anisotropies and the Debye temperatures from the elastic constants.

  12. Na+ recirculation and isosmotic transport.

    PubMed

    Larsen, E H; Møbjerg, N

    2006-01-01

    The Na(+) recirculation theory for solute-coupled fluid absorption is an expansion of the local osmosis concept introduced by Curran and analyzed by Diamond & Bossert. Based on studies on small intestine the theory assumes that the observed recirculation of Na(+) serves regulation of the osmolarity of the absorbate. Mathematical modeling reproducing bioelectric and hydrosmotic properties of small intestine and proximal tubule, respectively, predicts a significant range of observations such as isosmotic transport, hyposmotic transport, solvent drag, anomalous solvent drag, the residual hydraulic permeability in proximal tubule of AQP1 (-/-) mice, and the inverse relationship between hydraulic permeability and the concentration difference needed to reverse transepithelial water flow. The model reproduces the volume responses of cells and lateral intercellular space (lis) following replacement of luminal NaCl by sucrose as well as the linear dependence of volume absorption on luminal NaCl concentration. Analysis of solvent drag on Na(+) in tight junctions provides explanation for the surprisingly high metabolic efficiency of Na(+) reabsorption. The model predicts and explains low metabolic efficiency in diluted external baths. Hyperosmolarity of lis is governed by the hydraulic permeability of the apical plasma membrane and tight junction with 6-7 mOsm in small intestine and < or = 1 mOsm in proximal tubule. Truly isosmotic transport demands a Na(+) recirculation of 50-70% in small intestine but might be barely measurable in proximal tubule. The model fails to reproduce a certain type of observations: The reduced volume absorption at transepithelial osmotic equilibrium in AQP1 knockout mice, and the stimulated water absorption by gallbladder in diluted external solutions. Thus, it indicates cellular regulation of apical Na(+) uptake, which is not included in the mathematical treatment.

  13. Na,K-ATPase activity in mouse muscle is regulated by AMPK and PGC-1α.

    PubMed

    Ingwersen, Maria S; Kristensen, Michael; Pilegaard, Henriette; Wojtaszewski, Jørgen F P; Richter, Erik A; Juel, Carsten

    2011-07-01

    Na,K-ATPase activity, which is crucial for skeletal muscle function, undergoes acute and long-term regulation in response to muscle activity. The aim of the present study was to test the hypothesis that AMP kinase (AMPK) and the transcriptional coactivator PGC-1α are underlying factors in long-term regulation of Na,K-ATPase isoform (α,β and PLM) abundance and Na(+) affinity. Repeated treatment of mice with the AMPK activator AICAR decreased total PLM protein content but increased PLM phosphorylation, whereas the number of α- and β-subunits remained unchanged. The K(m) for Na(+) stimulation of Na,K-ATPase was reduced (higher affinity) after AICAR treatment. PLM abundance was increased in AMPK kinase-dead mice compared with control mice, but PLM phosphorylation and Na,K-ATPase Na(+) affinity remained unchanged. Na,K-ATPase activity and subunit distribution were also measured in mice with different degrees of PGC-1α expression. Protein abundances of α1 and α2 were reduced in PGC-1α +/- and -/- mice, and the β(1)/β(2) ratio was increased with PGC-1α overexpression (TG mice). PLM protein abundance was decreased in TG mice, but phosphorylation status was unchanged. Na,K-ATPase V (max) was decreased in PCG-1α TG and KO mice. Experimentally in vitro induced phosphorylation of PLM increased Na,K-ATPase Na(+) affinity, confirming that PLM phosphorylation is important for Na,K-ATPase function. In conclusion, both AMPK and PGC-1α regulate PLM abundance, AMPK regulates PLM phosphorylation and PGC-1α expression influences Na,K-ATPase α(1) and α(2) content and β(1)/β(2) isoform ratio. Phosphorylation of the Na,K-ATPase subunit PLM is an important regulatory mechanism.

  14. The gasotransmitter hydrogen sulphide decreases Na+ transport across pulmonary epithelial cells

    PubMed Central

    Althaus, M; Urness, KD; Clauss, WG; Baines, DL; Fronius, M

    2012-01-01

    BACKGROUND AND PURPOSE The transepithelial absorption of Na+ in the lungs is crucial for the maintenance of the volume and composition of epithelial lining fluid. The regulation of Na+ transport is essential, because hypo- or hyperabsorption of Na+ is associated with lung diseases such as pulmonary oedema or cystic fibrosis. This study investigated the effects of the gaseous signalling molecule hydrogen sulphide (H2S) on Na+ absorption across pulmonary epithelial cells. EXPERIMENTAL APPROACH Ion transport processes were electrophysiologically assessed in Ussing chambers on H441 cells grown on permeable supports at air/liquid interface and on native tracheal preparations of pigs and mice. The effects of H2S were further investigated on Na+ channels expressed in Xenopus oocytes and Na+/K+-ATPase activity in vitro. Membrane abundance of Na+/K+-ATPase was determined by surface biotinylation and Western blot. Cellular ATP concentrations were measured colorimetrically, and cytosolic Ca2+ concentrations were measured with Fura-2. KEY RESULTS H2S rapidly and reversibly inhibited Na+ transport in all the models employed. H2S had no effect on Na+ channels, whereas it decreased Na+/K+-ATPase currents. H2S did not affect the membrane abundance of Na+/K+-ATPase, its metabolic or calcium-dependent regulation, or its direct activity. However, H2S inhibited basolateral calcium-dependent K+ channels, which consequently decreased Na+ absorption by H441 monolayers. CONCLUSIONS AND IMPLICATIONS H2S impairs pulmonary transepithelial Na+ absorption, mainly by inhibiting basolateral Ca2+-dependent K+ channels. These data suggest that the H2S signalling system might represent a novel pharmacological target for modifying pulmonary transepithelial Na+ transport. PMID:22352810

  15. Experimental determination of solubilities of di-calcium ethylenediaminetetraacetic acid hydrate [Ca2C10H12N2O8·7H2O(s)] in NaCl and MgCl2 solutions to high ionic strengths and its Pitzer model: Applications to geological disposal of nuclear waste and other low temperature environments

    DOE PAGES

    Xiong, Yongliang; Kirkes, Leslie; Westfall, Terry

    2017-04-01

    In this study, solubility measurements on di-calcium ethylenediaminetetraacetic acid [Ca2C10H12N2O8(s), abbreviated as Ca2EDTA(s)] as a function of ionic strength are conducted in NaCl solutions up to I = 5.0 mol•kg–1 and in MgCl2 solutions up to I = 7.5 mol•kg–1, at room temperature (22.5 ± 0.5oC).

  16. Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Kim, H.; Park, G.; Li, X.; Eom, H.-J.; Ro, C.-U.

    2014-12-01

    NaCl in fresh sea-salt aerosol (SSA) particles can partially or fully react with atmospheric NOx / HNO3, so internally mixed NaCl and NaNO3 aerosol particles can co-exist over a wide range of mixing ratios. Laboratory-generated, micrometer-sized NaCl and NaNO3 mixture particles at ten mixing ratios (mole fractions of NaCl (XNaCl) = 0.1 to 0.9) were examined systematically to observe their hygroscopic behavior, derive experimental phase diagrams for deliquescence and efflorescence, and understand the efflorescence mechanism. During the humidifying process, aerosol particles with the eutonic composition (XNaCl = 0.38) showed only one phase transition at their mutual deliquescence relative humidity (MDRH) of 67.9(± 0.5)%. On the other hand, particles with other mixing ratios showed two distinct deliquescence transitions, i.e., the eutonic component dissolved at MDRH and the remainder in the solid phase dissolved completely at their DRHs depending on the mixing ratios, resulting in a phase diagram composed of four different phases, as predicted thermodynamically. During the dehydration process, NaCl-rich particles (XNaCl > 0.38) showed two-stage efflorescence transitions: the first stage was purely driven by the homogeneous nucleation of NaCl and the second stage at the mutual efflorescence RH (MERH) of the eutonic components, with values in the range of 30.0-35.5%. Interestingly, aerosol particles with the eutonic composition (XNaCl = 0.38) also showed two-stage efflorescence with NaCl crystallizing first followed by heterogeneous nucleation of the remaining NaNO3 on the NaCl seeds. NaNO3-rich particles XNaCl ≤ 0.3) underwent single-stage efflorescence transitions at ERHs progressively lower than the MERH, because of the homogeneous nucleation of NaCl and the almost simultaneous heterogeneous nucleation of NaNO3 on the NaCl seeds. SEM/EDX elemental mapping indicated that the effloresced NaCl-NaNO3 particles at all mixing ratios were composed of a homogeneously

  17. Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Kim, H.; Park, G.; Li, X.; Eom, H.-J.; Ro, C.-U.

    2015-03-01

    NaCl in fresh sea-salt aerosol (SSA) particles can partially or fully react with atmospheric NOx/HNO3, so internally mixed NaCl and NaNO3 aerosol particles can co-exist over a wide range of mixing ratios. Laboratory-generated, micrometer-sized NaCl and NaNO3 mixture particles at 10 mixing ratios (mole fractions of NaCl (XNaCl) = 0.1 to 0.9) were examined systematically to observe their hygroscopic behavior, derive experimental phase diagrams for deliquescence and efflorescence, and understand the efflorescence mechanism. During the humidifying process, aerosol particles with the eutonic composition (XNaCl = 0.38) showed only one phase transition at their mutual deliquescence relative humidity (MDRH) of 67.9 (±0.5)% On the other hand, particles with other mixing ratios showed two distinct deliquescence transitions; i.e., the eutonic component dissolved at MDRH, and the remainder in the solid phase dissolved completely at their DRHs depending on the mixing ratios, resulting in a phase diagram composed of four different phases, as predicted thermodynamically. During the dehydration process, NaCl-rich particles (XNaCl > 0.38) showed a two stage efflorescence transition: the first stage was purely driven by the homogeneous nucleation of NaCl and the second stage at the mutual efflorescence RH (MERH) of the eutonic components, with values in the range of 30.0-35.5%. Interestingly, aerosol particles with the eutonic composition (XNaCl = 0.38) also showed two-stage efflorescence, with NaCl crystallizing first followed by heterogeneous nucleation of the remaining NaNO3 on the NaCl seeds. NaNO3-rich particles (XNaCl ≤ 0.3) underwent single-stage efflorescence transitions at ERHs progressively lower than the MERH because of the homogeneous nucleation of NaCl and the almost simultaneous heterogeneous nucleation of NaNO3 on the NaCl seeds. SEM/EDX elemental mapping indicated that the effloresced NaCl-NaNO3 particles at all mixing ratios were composed of a homogeneously

  18. Electronic Structure, Phonon Dynamical Properties, and CO2 Capture Capability of Na2-xMxZrO3 ( M=Li ,K): Density-Functional Calculations and Experimental Validations

    SciTech Connect

    Duan, Yuhua; Lekse, Jonathan; Wang, Xianfeng; Li, Bingyun; Alcántar-Vázquez, Brenda; Pfeiffer, Heriberto; Halley, J. W.

    2015-04-22

    The electronic structural and phonon properties of Na2-αMαZrO3 (M ¼ Li,K, α = ¼ 0.0,0.5,1.0,1.5,2.0) are investigated by first-principles density-functional theory and phonon dynamics. The thermodynamic properties of CO2 absorption and desorption in these materials are also analyzed. With increasing doping level α, the binding energies of Na2-αLiαZrO3 are increased while the binding energies of Na2-α KαZrO3 are decreased to destabilize the structures. The calculated band structures and density of states also show that, at the same doping level, the doping sites play a significant role in the electronic properties. The phonon dispersion results show that few soft modes are found in several doped configurations, which indicates that these structures are less stable than other configurations with different doping levels. From the calculated relationships among the chemical-potential change, the CO2 pressure, and the temperature of the CO2 capture reactions by Na2-αMαZrO3, and from thermogravimetric-analysis experimental measurements, the Li- and K-doped mixtures Na2-αMαZrO3 have lower turnover temperatures (Tt) and higher CO2 capture capacities, compared to pure Na2ZrO3. The Li-doped systems have a larger Tt decrease than the K-doped systems. When increasing the Li-doping level α, the Tt of the corresponding mixture Na2-αLiαZrO3 decreases further to a low-temperature range. However, in the case of K-doped systems Na2-αKαZrO3, although doping K into Na2ZrO3 initially shifts its Tt to lower temperatures, further increases of the K-doping level α causes Tt to increase. Therefore

  19. Molecular dynamics investigation of Na{sup +} in Na{sub 2}Ni{sub 2}TeO{sub 6}

    SciTech Connect

    Sau, Kartik Kumar, P. Padma

    2014-04-24

    An inter-atomic potential for Na{sub 2}Ni{sub 2}TeO{sub 6} in the Parrinello- Rahman-Vashishta (PRV) model is parameterized empirically. The potential reproduces variety of structural and transport properties of that material in good agreement with recent experimental results. The study provides fresh insights on the migration channels and mechanism of Na{sup +} in the system.

  20. n-Selective Single Capture Following Xe{sup 18+} And Xe{sup 54+} Impact On Na(3s) And Na*(3p)

    SciTech Connect

    Otranto, S.; Olson, R. E.; Hasan, V. G.; Hoekstra, R.

    2011-06-01

    State selective single charge exchange n-level cross sections are calculated for collisions of Xe18+ and Xe54+ ions with Na(3s) and Na*(3p) over the energy range of 0.1 to 10.0 keV/amu. The CTMC method is used which includes all two-body interactions. Experimental state-selective cross sections and their corresponding transverse momentum spectra for Xe18+ are found to be in reasonable accord with the calculations.

  1. Study of resonant scattering of 21Na+p relevant to astrophysical 18Ne(α,p)21Na reaction

    NASA Astrophysics Data System (ADS)

    He, J. J.; Zhang, L. Y.; Xu, S. W.; Chen, S. Z.; Hu, J.; Ma, P.; Chen, R. F.; Yamaguchi, H.; Kubono, S.; Hashimoto, T.; Kahl, D.; Hayakawa, S.; Wakabayashi, Y.; Togano, Y.; Wang, H. W.; Tian, W. D.; Guo, B.; Teranishi, T.; Iwasa, N.; Yamada, T.; Komatsubara, T.

    2012-11-01

    Astrophysical 18Ne(α,p)21Na reaction is one of the most probable breakout routes, which lead to the rp-process from the hot-CNO cycle, converting the initial CNO elements into heavier elements in Type I x-ray bursters. Presently, there is no much experimental cross-section data reported at the energy of astrophysical interest, and resonant spectroscopic information in compound 22Mg is scarce as well. The experiment has been carried out by using the CNS radioactive ion beam separator (CRIB). Resonant properties in 22Mg have been studied via the resonant elastic scattering of 21Na+p, and cross section of the time-reversal reaction of 21Na(p,α)18Ne been measured simultaneously. A wide excitation energy region up to Ex ~ 9.5 MeV in 22Mg has been scanned with a thick-target method. Some preliminary results will be reported.

  2. NaI detector neutron activation spectra for PGNAA applications

    PubMed

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known.

  3. Prospects for observation at CERN in NA62

    NASA Astrophysics Data System (ADS)

    Hahn, F.; NA62 Collaboration; Aglieri Rinella, G.; Aliberti, R.; Ambrosino, F.; Angelucci, B.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Azhinenko, I.; Balev, S.; Bendotti, J.; Biagioni, A.; Biino, C.; Bizzeti, A.; Blazek, T.; Blik, A.; Bloch-Devaux, B.; Bolotov, V.; Bonaiuto, V.; Bragadireanu, M.; Britton, D.; Britvich, G.; Brook, N.; Bucci, F.; Butin, F.; Capitolo, E.; Capoccia, C.; Capussela, T.; Carassiti, V.; Cartiglia, N.; Cassese, A.; Catinaccio, A.; Cecchetti, A.; Ceccucci, A.; Cenci, P.; Cerny, V.; Cerri, C.; Chikilev, O.; Ciaranfi, R.; Collazuol, G.; Cooke, P.; Cooper, P.; Corradi, G.; Cortina Gil, E.; Costantini, F.; Cotta Ramusino, A.; Coward, D.; D'Agostini, G.; Dainton, J.; Dalpiaz, P.; Danielsson, H.; Degrange, J.; De Simone, N.; Di Filippo, D.; Di Lella, L.; Dixon, N.; Doble, N.; Duk, V.; Elsha, V.; Engelfried, J.; Enik, T.; Falaleev, V.; Fantechi, R.; Federici, L.; Fiorini, M.; Fry, J.; Fucci, A.; Fulton, L.; Gallorini, S.; Gatignon, L.; Gianoli, A.; Giudici, S.; Glonti, L.; Goncalves Martins, A.; Gonnella, F.; Goudzovski, E.; Guida, R.; Gushchin, E.; Hahn, F.; Hallgren, B.; Heath, H.; Herman, F.; Hutchcroft, D.; Iacopini, E.; Jamet, O.; Jarron, P.; Kampf, K.; Kaplon, J.; Karjavin, V.; Kekelidze, V.; Kholodenko, S.; Khoriauli, G.; Khudyakov, A.; Kiryushin, Yu; Kleinknecht, K.; Kluge, A.; Koval, M.; Kozhuharov, V.; Krivda, M.; Kudenko, Y.; Kunze, J.; Lamanna, G.; Lazzeroni, C.; Leitner, R.; Lenci, R.; Lenti, M.; Leonardi, E.; Lichard, P.; Lietava, R.; Litov, L.; Lomidze, D.; Lonardo, A.; Lurkin, N.; Madigozhin, D.; Maire, G.; Makarov, A.; Mannelli, I.; Mannocchi, G.; Mapelli, A.; Marchetto, F.; Massarotti, P.; Massri, K.; Matak, P.; Mazza, G.; Menichetti, E.; Mirra, M.; Misheva, M.; Molokanova, N.; Morant, J.; Morel, M.; Moulson, M.; Movchan, S.; Munday, D.; Napolitano, M.; Newson, F.; Norton, A.; Noy, M.; Nuessle, G.; Obraztsov, V.; Padolski, S.; Page, R.; Palladino, V.; Pardons, A.; Pedreschi, E.; Pepe, M.; Perez Gomez, F.; Perrin-Terrin, M.; Petrov, P.; Petrucci, F.; Piandani, R.; Piccini, M.; Pietreanu, D.; Pinzino, J.; Pivanti, M.; Polenkevich, I.; Popov, I.; Potrebenikov, Yu; Protopopescu, D.; Raffaelli, F.; Raggi, M.; Riedler, P.; Romano, A.; Rubin, P.; Ruggiero, G.; Russo, V.; Ryjov, V.; Salamon, A.; Salina, G.; Samsonov, V.; Santovetti, E.; Saracino, G.; Sargeni, F.; Schifano, S.; Semenov, V.; Sergi, A.; Serra, M.; Shkarovskiy, S.; Sotnikov, A.; Sougonyaev, V.; Sozzi, M.; Spadaro, T.; Spinella, F.; Staley, R.; Statera, M.; Sutcliffe, P.; Szilasi, N.; Tagnani, D.; Valdata-Nappi, M.; Valente, P.; Vasile, M.; Vassilieva, V.; Velghe, B.; Veltri, M.; Venditti, S.; Vormstein, M.; Wahl, H.; Wanke, R.; Wertelaers, P.; Winhart, A.; Winston, R.; Wrona, B.; Yushchenko, O.; Zamkovsky, M.; Zinchenko, A.

    2015-07-01

    The rare decays are excellent processes to probe the Standard Model and indirectly search for new physics complementary to the direct LHC searches. The NA62 experiment at CERN SPS aims to collect and analyse O(1013) kaon decays before the CERN long-shutdown 2 (in 2018). This will allow to measure the branching ratio to a level of 10% accuracy. The experimental apparatus has been commissioned during a first run in autumn 2014.

  4. Gibbs ensemble Monte Carlo simulation of supercritical CO2 adsorption on NaA and NaX zeolites

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan; Yang, Xiaoning

    2006-06-01

    Adsorption of supercritical carbon dioxide on two kinds of zeolites with identical chemical composition but different pore structure (NaA and NaX) was studied using the Gibbs ensemble Monte Carlo simulation. The model frameworks for the two zeolites with Si /Al ratio being unity have been chosen as the solid structures in the simulation. The adsorption behaviors of supercritical CO2 on the NaA and NaX zeolites, based on the adsorption isotherms and isosteric heats of adsorption, were discussed in detail and were compared with the available experimental results. A good agreement between the simulated and experimental results is obtained for both the adsorbed amount and the bulk phase density. The intermediate configurational snapshots and the radial distribution functions between zeolite and adsorbed CO2 molecules were collected in order to investigate the preferable adsorption locations and the confined structure behavior of CO2. The structure behaviors of the adsorbed CO2 molecules show various performances, as compared with the bulk phase, due to the confined effect in the zeolite pores.

  5. G4MoNA - A Geant4 Simulation for unbound nuclides detected with MoNA/LISA

    NASA Astrophysics Data System (ADS)

    Gueye, Paul; Freeman, Jessica; Frank, Nathan; MoNA Collaboration

    2017-01-01

    The MoNA Collaboration has conducted a plethora of experiments to study unbound nuclei near the neutron dripline using the invariant mass technique since 2005. These experiments used a variety of secondary beams from the Coupled Cyclotron Facility of the National Superconducting Cyclotron Laboratory. The experimental setup consists of a large gap superconducting Sweeper magnet for charged fragments separation and the MoNA/LISA neutron detector arrays for neutron detection. Recently, a multi-layered Si/Be segmented target consisting of three 700 mg/cm2 thick 9Be slabs and four 140 μ m Si detectors were added to the setup. This target improves the resolution of the reconstructed decay energy spectra of the unbound nuclides. The Geant4 Monte Carlo simulation toolkit was used to develop a complete realistic model of the setup including a new class to treat the decay of unbound nuclei, the Si/Be segmented target, the MoNA/LISA and the charged fragments detector systems. Comparison between simulated and experimental data will be presented. DoENNSA - DE-NA0000979.

  6. Vibrational frequency shifts of H2, N2 and O2 adsorbed in NaA zeolite.

    NASA Astrophysics Data System (ADS)

    Koubi, Laure; Blain, Monique; Cohen De Lara, Evelyne; Leclercq, Jean-Marie

    1995-04-01

    We report ab initio calculations on H2,N2 and O2 and on the same molecules in interaction with a Na+ cation. The results are compared to experimental data on induced infrared band of H2, N2 and O2 adsorbed in NaA zeolite. (AIP)

  7. Astrocytes generate Na+-mediated metabolic waves.

    PubMed

    Bernardinelli, Yann; Magistretti, Pierre J; Chatton, Jean-Yves

    2004-10-12

    Glutamate-evoked Na+ increase in astrocytes has been identified as a signal coupling synaptic activity to glucose consumption. Astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. Here we show that intercellular Na+ waves are also evoked by activation of single cultured cortical mouse astrocytes in parallel with Ca2+ waves; however, there are spatial and temporal differences. Indeed, maneuvers that inhibit Ca2+ waves also inhibit Na+ waves; however, inhibition of the Na+/glutamate cotransporters or enzymatic degradation of extracellular glutamate selectively inhibit the Na+ wave. Thus, glutamate released by a Ca2+ wave-dependent mechanism is taken up by the Na+/glutamate cotransporters, resulting in a regenerative propagation of cytosolic Na+ increases. The Na+ wave gives rise to a spatially correlated increase in glucose uptake, which is prevented by glutamate transporter inhibition. Therefore, astrocytes appear to function as a network for concerted neurometabolic coupling through the generation of intercellular Na+ and metabolic waves.

  8. Europlanet NA2 Science Networking

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Szego, Karoly; Genzer, Maria; Schmidt, Walter; Krupp, Norbert; Lammer, Helmut; Kallio, Esa; Haukka, Harri

    2013-04-01

    Europlanet RI / NA2 Science Networking [1] focused on determining the major goals of current and future European planetary science, relating them to the Research Infrastructure that the Europlanet RI project [2] developed, and placing them in a more global context. NA2 also enhanced the ability of European planetary scientists to participate on the global scene with their own agenda-setting projects and ideas. The Networking Activity NA2 included five working groups, aimed at identifying key science issues and producing reference books on major science themes that will bridge the gap between the results of present and past missions and the scientific preparation of the future ones. Within the Europlanet RI project (2009-2012) the NA2 and NA2-WGs organized thematic workshops, an expert exchange program and training groups to improve the scientific impact of this Infrastructure. The principal tasks addressed by NA2 were: • Science activities in support to the optimal use of data from past and present space missions, involving the broad planetary science community beyond the "space club" • Science activities in support to the preparation of future planetary missions: Earth-based preparatory observations, laboratory studies, R&D on advanced instrumentation and exploration technologies for the future, theory and modeling etc. • Develop scientific activities, joint publications, dedicated meetings, tools and services, education activities, engaging the public and industries • Update science themes and addressing the two main scientific objectives • Prepare and support workshops of the International Space Science Institute (ISSI) in Bern and • Support Trans National Activities (TNAs), Joined Research Activities (JRAs) and the Integrated and Distributed Information Service (IDIS) of the Europlanet project These tasks were achieved by WG workshops organized by the NA2 working groups, by ISSI workshops and by an Expert Exchange Program. There were 17 official WG

  9. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE PAGES

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; ...

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  10. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    SciTech Connect

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.

  11. Ionic regulation of Na absorption in proximal colon: cation inhibition of electroneutral Na absorption

    SciTech Connect

    Sellin, J.H.; De Soignie, R.

    1987-01-01

    Active Na absorption (J/sub net//sup NA/) in rabbit proximal colon in vitro is paradoxically stimulated as (Na) in the bathing media is lowered with constant osmolarity. J/sub m..-->..s//sup Na/ increases almost linearly from 0 to 50 mM (Na)/sub 0/ but then plateaus and actually decreases from 50 to 140 mM (Na)/sub 0/, consistent with inhibition of an active transport process. Both lithium and Na are equally effective inhibitors of J/sub net//sup Na/, whereas choline and mannitol do not block the high rate of J/sub net//sup Na/ observed in decreased (Na)/sub 0/. Either gluconate or proprionate replacement of Cl inhibits J/sub net//sup Na/. J/sub net//sup Na/ at lowered (Na)/sub 0/ is electrically silent and is accompanied by increased Cl absorption; it is inhibited by 10/sup -3/ M amiloride and 10/sup -3/ theophylline but not by 10/sup -4/ M bumetanide. Epinephrine is equally effective at stimulating Na absorption at 50 and 140 mM (Na). Na gradient experiments are consistent with a predominantly serosal effect of the decreased (Na)/sub 0/. These results suggest that 1) Na absorption in rabbit proximal colon in vitro is stimulated by decreased (Na); 2) the effect is cation specific, both Na and Li blocking the stimulatory effect; 3) the transport is mediated by Na-H exchange and is Cl dependent but 4) is under different regulatory mechanisms than the epinephrine-sensitive Na-Cl cotransport previously described in proximal colon. Under the appropriate conditions, proximal colon absorbs Na extremely efficiently. Na-H exchange in this epithelium is cation inhibitable, either directly or by a secondary regulatory process.

  12. [Experimental nuclear physics

    SciTech Connect

    Not Available

    1992-12-01

    An earlier study of unusual electromagnetic decays in {sup 86}Zr was extended in order to make comparisons with its isotone {sup 84}Sr and with {sup 84}Zr. The K=14 (t {sub {1/2}} = 70 ns) high-spin isomer in {sup 176}W was found to have a 13% branch directly to the K=O ground-state band, one of the strongest violations of K-selection rules known. A new program to search for a predicted region of oblate deformation involving neutron deficient isotopes in the Rn/Fr/Ra region was begun. In the area of nuclear astrophysics, as part of a study of the onset of the rp-Process, a set of measurements searching for possible new resonances for {sup 14}O+{alpha} and {sup 17}F+p reactions was completed and a coincidence experiment measuring the {sup 19}F({sup 3}He,t){sup 19}Ne({alpha}){sup 15}O and {sup 19}F({sup 3}He,t){sup 19}Ne(p){sup 18}F reactions in order to determine the rates of the {sup 18}F(p,{alpha}){sup 15}O and {sup 18}F(p,{gamma}){sup 19}Ne reactions was begun. Experimental measurements of {beta}n{alpha} coincidences from the {sup 15}N(d,p){sup 16}N({beta}{sup {minus}}{nu}){sup 16}O({alpha}){sup 12}C reaction have also been completed and are currently being analyzed to determine the rate of the {sup 12}C({alpha},{gamma}) reaction. In the APEX collaboration, we have completed the assembly and testing of two position-sensitive Na barrels which surround the axial silicon detector arrays and serve as the e{sup +} triggers by detecting their back-to-back annihilation quanta were completed. The HI@AGS and RHIC collaborations, construction and implementation activities associated with the space-time-tracker detector and in the design of the central detector for the PHENIX experiment were carried out. Operation of the ESTU tandem accelerator has been reliable, delivering beam on target at terminal voltages as high as 19.3 MV and running for as long as 143 days between tank openings. Fabrication and bench testing of a new negative ion source system have been completed.

  13. Phonons in the ordered c(2 × 2) phases of Na and Li on Al(001).

    PubMed

    Rusina, G G; Eremeev, S V; Borisova, S D; Sklyadneva, I Yu; Echenique, P M; Chulkov, E V

    2007-07-04

    The vibrational properties of the Al(001)-c(2 × 2)-Na (Li) ordered phases formed by alkali atoms (Na and Li) on the Al(001) surface at low and room temperatures are presented. The equilibrium structural characteristics, phonon dispersions and polarization of vibrational modes as well as the local density of phonon states are calculated using the embedded-atom method. The obtained structural parameters are in close agreement with experimental data.

  14. Phonons in the ordered c(2 × 2) phases of Na and Li on Al(001)

    NASA Astrophysics Data System (ADS)

    Rusina, G. G.; Eremeev, S. V.; Borisova, S. D.; Sklyadneva, I. Yu; Echenique, P. M.; Chulkov, E. V.

    2007-07-01

    The vibrational properties of the Al(001)-c(2 × 2)-Na (Li) ordered phases formed by alkali atoms (Na and Li) on the Al(001) surface at low and room temperatures are presented. The equilibrium structural characteristics, phonon dispersions and polarization of vibrational modes as well as the local density of phonon states are calculated using the embedded-atom method. The obtained structural parameters are in close agreement with experimental data.

  15. Na/K-ATPase Signaling and Salt Sensitivity: The Role of Oxidative Stress

    PubMed Central

    Liu, Jiang; Yan, Yanling; Nie, Ying; Shapiro, Joseph I.

    2017-01-01

    Other than genetic regulation of salt sensitivity of blood pressure, many factors have been shown to regulate renal sodium handling which contributes to long-term blood pressure regulation and have been extensively reviewed. Here we present our progress on the Na/K-ATPase signaling mediated sodium reabsorption in renal proximal tubules, from cardiotonic steroids-mediated to reactive oxygen species (ROS)-mediated Na/K-ATPase signaling that contributes to experimental salt sensitivity. PMID:28257114

  16. Na+ Tolerance and Na+ Transport in Higher Plants

    PubMed Central

    TESTER, MARK; DAVENPORT, ROMOLA

    2003-01-01

    Tolerance to high soil [Na+] involves processes in many different parts of the plant, and is manifested in a wide range of specializations at disparate levels of organization, such as gross morphology, membrane transport, biochemistry and gene transcription. Multiple adaptations to high [Na+] operate concurrently within a particular plant, and mechanisms of tolerance show large taxonomic variation. These mechanisms can occur in all cells within the plant, or can occur in specific cell types, reflecting adaptations at two major levels of organization: those that confer tolerance to individual cells, and those that contribute to tolerance not of cells per se, but of the whole plant. Salt‐tolerant cells can contribute to salt tolerance of plants; but we suggest that equally important in a wide range of conditions are processes involving the management of Na+ movements within the plant. These require specific cell types in specific locations within the plant catalysing transport in a coordinated manner. For further understanding of whole plant tolerance, we require more knowledge of cell‐specific transport processes and the consequences of manipulation of transporters and signalling elements in specific cell types. PMID:12646496

  17. The stability of sodalite in the system NaAlSiO sub 4 -NaCl

    SciTech Connect

    Sharp, Z.D. ); Helffrich, G.R. ); Bohlen, S.R. ); Essene, E.J. )

    1989-08-01

    The reaction sodalite = {beta}-nepheline + NaCl (s) was reversed in solid-medium apparatus and the reaction sodalite = carnegieite + NaCl (l) was reversed at 1 bar (1,649-1,652 K). The experimental reversals between 923 K and 973 K can be fit with a dP/dT of {minus}11 bar/K, suggesting that the excess entropy for sodalite is present only above 923 K. A phase diagram for the NaAlSiO{sub 4}-NaCl system that is consistent with the measured thermochemical data and the experiments between 973 and 1,650 K can be generated if the 61.7 J/mol{center dot}K entropy contribution is included in the S{sup 0}{sub 298} of sodalite. This entropy contribution must be removed below 973 K for the experiments to fit with calculations. Previously unreported thermodynamic data estimated in this study are {Delta}G{sup 0}{sub 298} for sodalite ({minus}12,697 kJ/mol) and carnegieite (NaAlSiO{sub 4}) ({minus}1,958 kJ/mol), S{sup 0}{sub 298} of carnegieite (129.6 J/mol{center dot}K) and compressibility of NaCl{sub liquid} (V{sup P}{sub 298} (cm{sup 3}) = 31.6{center dot}(1 - 24.7{center dot}10{sup {minus}3}{center dot}P + 800{center dot}10{sup {minus}6}{center dot}P{sup 2}))(T in K; P in kbar). Sodalite is a high-temperature, low-pressure phase, stable well above the solidus in sodic silica-undersaturated magmas enriched in NaCl, and its presence constrains NaCl activities in magmas. Estimates of minimum NaCl (l) activities in the Mont St-Hilaire sodalite syenites are 0.05 at 1,073 K and 0.13 at 1,273 K. Density calculations are consistent with the field observations that sodalite phenocrysts will float in a nepheline syenite liquid. This explains the enrichment of sodalite in the upper levels of the sodalite syenites at Mont St.Hilaire and elsewhere.

  18. Cross Section Measurements for the 23Na(p,γ)24Mg Reaction at LUNA

    NASA Astrophysics Data System (ADS)

    Boeltzig, Axel; LUNA Collaboration

    2016-02-01

    LUNA, the Laboratory for Underground Nuclear Astrophysics, is an accelerator facility for measurements of nuclear cross sections of astrophysical interest. The greatly reduced cosmic ray background at LUNA's underground location in the Gran Sasso National Laboratory (LNGS) allows direct measurements of weak reactions at low energies. One of the reactions currently under study at LUNA is 23Na(p,γ)24Mg, which links the NeNa and MgAl cycles in stellar burning. The LUNA facility is presented, with a focus on the current experimental efforts to study the reaction 23Na(p,γ)24Mg.

  19. The loss of Na and Cl during the pyrolysis of a NaCl-loaded brown coal sample

    SciTech Connect

    Mody, D.; Li, C.Z.

    1999-07-01

    A Victorian brown coal was physically loaded with NaCl and pyrolyzed in a quartz fluidized-bed reactor. The fluidized-bed reactor was equipped with a quartz frit in the freeboard zone to enable the total devolatilization of the coal particles. The introduction of NaCl into the coal has caused only minor reductions in the weight loss. A significant amount of chlorine was volatilized during pyrolysis at temperatures as low as 200 C. At temperatures around 400--500 C where the loss of sodium was not very significant, about 70% of chlorine was volatilized from the coal particles. With the volatilization of chlorine at this temperature level, sodium must have been bonded to the char matrix. With increasing temperature, the volatilization of chlorine decreased and then increased again, whereas the volatilization of sodium increased monotonically with increasing temperature. Almost all the Na in coal could be volatilized at temperatures higher than about 800 C. These experimental results clearly indicate that chlorine and Na interacted strongly with coal/char at high temperatures. Na and Cl in the coal did not volatilize as NaCl molecules. Significant amounts of species containing a COO-group such as acetate, formate and oxalate were observed in the pyrolysis products although the exact forms of these species (i.e., as acids, salts or esters) in the pyrolysis product remain unknown. The yields of the species containing a COO-group decreased with increasing temperature, possibly due to the intensified thermal cracking reactions at high temperatures.

  20. Luminescence and radiation resistance of undoped NaI crystals

    SciTech Connect

    Shiran, N. Boiaryntseva, I.; Gektin, A.; Gridin, S.; Shlyakhturov, V.; Vasuykov, S.

    2014-11-15

    Highlights: • The performance of NaI scintillators depends on luminescence properties. • A criterion of crystals’ purity level is radiation colorability at room temperature. • The traces of the most dangerous impurities were detected. • Crucial role in efficiency of pure NaI scintillator play the crystal perfection. - Abstract: Undoped NaI single crystal is an excellent scintillator at low temperature. However, scintillation parameters of different quality crystals vary in a wide range, significantly exceeding measurement error. Experimental data demonstrate the features of luminescence, radiation induced coloration, and afterglow dependence on the quality of nominally pure crystals. It is found that defects level that allows to elucidate artefacts introduced by traces of harmful impurities corresponds to 3 × 10{sup 15} cm{sup −3} that significantly overhead accuracy of chemical and absorption analysis. It is shown that special raw material treatment before and during the single crystal growth allows to reach NaI purity level that avoids impurities influence to the basic luminescence data.

  1. Application of polyelectrolyte theories for analysis of DNA melting in the presence of Na+ and Mg2+ ions.

    PubMed Central

    Korolev, N; Lyubartsev, A P; Nordenskiöld, L

    1998-01-01

    Numerical calculations, using Poisson-Boltzmann (PB) and counterion condensation (CC) polyelectrolyte theories, of the electrostatic free energy difference, DeltaGel, between single-stranded (coil) and double-helical DNA have been performed for solutions of NaDNA + NaCl with and without added MgCl2. Calculations have been made for conditions relevant to systems where experimental values of helix coil transition temperature (Tm) and other thermodynamic quantities have been measured. Comparison with experimental data has been possible by invoking values of Tm for solutions containing NaCl salt only. Resulting theoretical values of enthalpy, entropy, and heat capacity (for NaCl salt-containing solutions) and of Tm as a function of NaCl concentration in NaCl + MgCl2 solutions have thus been obtained. Qualitative and, to a large extent, quantitative reproduction of the experimental Tm, DeltaHm, DeltaSm, and DeltaCp values have been found from the results of polyelectrolyte theories. However, the quantitative resemblance of experimental data is considerably better for PB theory as compared to the CC model. Furthermore, some rather implausible qualitative conclusions are obtained within the CC results for DNA melting in NaCl + MgCl2 solutions. Our results argue in favor of the Poisson-Boltzmann theory, as compared to the counterion condensation theory. PMID:9826624

  2. Software and Systems Producibility Collaboration and Experimentation Environment (SPRUCE)

    DTIC Science & Technology

    2014-04-01

    SOFTWARE AND SYSTEMS PRODUCIBILITY COLLABORATION AND EXPERIMENTATION ENVIRONMENT ( SPRUCE ) LOCKHEED MARTIN ADVANCED TECHNOLOGY LABORATORIES APRIL...PRODUCIBILITY COLLABORATION AND EXPERIMENTATION ENVIRONMENT ( SPRUCE ) 5a. CONTRACT NUMBER FA8750-08-C-0064 5b. GRANT NUMBER N/A 5c. PROGRAM...Environment ( SPRUCE ) project program execution during Phases 2, 3, and 4 spanning the period from April 2008 to September 2013. The SPRUCE was intended to

  3. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon.

    PubMed

    Soto, Fernando A; Yan, Pengfei; Engelhard, Mark H; Marzouk, Asma; Wang, Chongmin; Xu, Guiliang; Chen, Zonghai; Amine, Khalil; Liu, Jun; Sprenkle, Vincent L; El-Mellouhi, Fedwa; Balbuena, Perla B; Li, Xiaolin

    2017-03-07

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ion storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1) ; ≈ 1/10 of the normal capacity (250 mAh g(-1) ). Unusual selective/preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.

  4. Structure and ionic conductivity of the solid electrolyte interphase layer on tin anodes in Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Kuo, Liang-Yin; Moradabadi, Ashkan; Huang, Hsin-Fu; Hwang, Bing-Joe; Kaghazchi, Payam

    2017-02-01

    Structure, stability, and ionic conductivity of the SEI layer on Sn anodes in Na-ion batteries (NIBs) are studied using experimental and theoretical methods. Raman spectra show that the SEI layer consists of Na2O and Na2CO3, the latter becoming more dominant close to the discharged state (at 0.3 V). According to our theoretical phase diagrams, Na2O can be stable in the whole voltage range of charge/discharge (from 0.0 V to 1.90 V), but Na2CO3 can decompose under carbon and/or oxygen poor conditions, leading to the formation of Na2O. These findings are in agreement with our experimental cyclic voltammetry and Raman spectra as function of voltage. Both compounds of the SEI layer have very low ionic conductivity close to the discharge state (0.2-0.3 V), but the ionic conductivity of Na2O is much larger than that of Na2CO3 for a wide range of voltages from 0.4 V to the charge state (∼1.5 V). This work suggests that engineered artificial SEI with Na2O or naturally formed SEI in a carbon and/or oxygen poor environment can improve the conductivity of the SEI layer in NIBs.

  5. An Experimental Investigation of Effects of Fluxes (Na3AlF6 and K2TiF6), Element Alloys (Mg), and Composite Powders ((Al + TiC)CP and (Al + B4C)CP) on Distribution of Particles and Phases in Al-B4C and Al-TiC Composites

    NASA Astrophysics Data System (ADS)

    Mazaheri, Younes; Emadi, Rahmatollah; Meratian, Mahmood; Zarchi, Mehdi Karimi

    2017-04-01

    The wettability, incorporation, and gravity segregation of TiC and B4C particles into molten aluminum are important problems in the production of Al-TiC and Al-B4C composites by the casting techniques. In order to solve these problems, different methods consisting of adding the Na3AlF6 and K2TiF6 fluxes and Mg (as the alloying element) into the molten aluminum and injection of the (Al + TiC)CP and (Al + B4C)CP composite powders instead of B4C and TiC particles are evaluated. In this work, the conditions of sample preparation, such as particle addition temperature, stirring speed, and stirring time, are determined after many studies and tests. Microstructural characterizations of samples are investigated by scanning electron microscopy equipped with energy dispersive spectroscopy (EDS) and X-ray diffractometry. The results show better distribution and incorporation of TiCp and B4Cp in aluminum matrix when the fluxes are used, as well as EDS analysis of the interface between the matrix and reinforcement-strengthened formation of the different phases such as Al4C3 in the Al-TiC composites and Al3BC, TiB2 in the Al-B4C composites.

  6. An Experimental Investigation of Effects of Fluxes (Na3AlF6 and K2TiF6), Element Alloys (Mg), and Composite Powders ((Al + TiC)CP and (Al + B4C)CP) on Distribution of Particles and Phases in Al-B4C and Al-TiC Composites

    NASA Astrophysics Data System (ADS)

    Mazaheri, Younes; Emadi, Rahmatollah; Meratian, Mahmood; Zarchi, Mehdi Karimi

    2017-01-01

    The wettability, incorporation, and gravity segregation of TiC and B4C particles into molten aluminum are important problems in the production of Al-TiC and Al-B4C composites by the casting techniques. In order to solve these problems, different methods consisting of adding the Na3AlF6 and K2TiF6 fluxes and Mg (as the alloying element) into the molten aluminum and injection of the (Al + TiC)CP and (Al + B4C)CP composite powders instead of B4C and TiC particles are evaluated. In this work, the conditions of sample preparation, such as particle addition temperature, stirring speed, and stirring time, are determined after many studies and tests. Microstructural characterizations of samples are investigated by scanning electron microscopy equipped with energy dispersive spectroscopy (EDS) and X-ray diffractometry. The results show better distribution and incorporation of TiCp and B4Cp in aluminum matrix when the fluxes are used, as well as EDS analysis of the interface between the matrix and reinforcement-strengthened formation of the different phases such as Al4C3 in the Al-TiC composites and Al3BC, TiB2 in the Al-B4C composites.

  7. A long-life Na-air battery based on a soluble NaI catalyst.

    PubMed

    Yin, Wen-Wen; Shadike, Zulipiya; Yang, Yin; Ding, Fei; Sang, Lin; Li, Hong; Fu, Zheng-Wen

    2015-02-11

    A Na-air battery with NaI dissolved in a typical organic electrolyte could run up to 150 cycles with a capacity limit of 1000 mA h g(-1). The low charge voltage plateau of 3.2 V vs. Na(+)/Na in a Na-air battery should mainly be attributed to the oxidation reaction of active iodine anions.

  8. Silicene for Na-ion battery applications

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Schwingenschlögl, Udo

    2016-09-01

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954 mAh/g for freestanding silicene and 730 mAh/g for the graphene-silicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of \\gt 0.3 {{V}} against the Na{}+/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be \\lt 0.3 {eV}.

  9. Parameter estimation for mathematical models of a nongastric H+(Na+)-K+(NH4+)-ATPase

    PubMed Central

    Nadal-Quirós, Mónica; Moore, Leon C.

    2015-01-01

    The role of nongastric H+-K+-ATPase (HKA) in ion homeostasis of macula densa (MD) cells is an open question. To begin to explore this issue, we developed two mathematical models that describe ion fluxes through a nongastric HKA. One model assumes a 1H+:1K+-per-ATP stoichiometry; the other assumes a 2H+:2K+-per-ATP stoichiometry. Both models include Na+ and NH4+ competitive binding with H+ and K+, respectively, a characteristic observed in vitro and in situ. Model rate constants were obtained by minimizing the distance between model and experimental outcomes. Both 1H+(1Na+):1K+(1NH4+)-per-ATP and 2H+(2Na+):2K+(2NH4+)-per-ATP models fit the experimental data well. Using both models, we simulated ion net fluxes as a function of cytosolic or luminal ion concentrations typical for the cortical thick ascending limb and MD region. We observed that 1) K+ and NH4+ flowed in the lumen-to-cytosol direction, 2) there was competitive behavior between luminal K+ and NH4+ and between cytosolic Na+ and H+, 3) ion fluxes were highly sensitive to changes in cytosolic Na+ or H+ concentrations, and 4) the transporter does mostly Na+/K+ exchange under physiological conditions. These results support the concept that nongastric HKA may contribute to Na+ and pH homeostasis in MD cells. Furthermore, in both models, H+ flux reversed at a luminal pH that was <5.6. Such reversal led to Na+/H+ exchange for a luminal pH of <2 and 4 in the 1:1-per-ATP and 2:2-per-ATP models, respectively. This suggests a novel role of nongastric HKA in cell Na+ homeostasis in the more acidic regions of the renal tubules. PMID:26109090

  10. Discrimination of Stem Cell Status after Subjecting Cynomolgus Monkey Pluripotent Stem Cells to Naïve Conversion

    PubMed Central

    Honda, Arata; Kawano, Yoshihiro; Izu, Haruna; Choijookhuu, Narantsog; Honsho, Kimiko; Nakamura, Tomonori; Yabuta, Yukihiro; Yamamoto, Takuya; Takashima, Yasuhiro; Hirose, Michiko; Sankai, Tadashi; Hishikawa, Yoshitaka; Ogura, Atsuo; Saitou, Mitinori

    2017-01-01

    Experimental animal models have played an indispensable role in the development of human induced pluripotent stem cell (iPSC) research. The derivation of high-quality (so-called “true naïve state”) iPSCs of non-human primates enhances their application and safety for human regenerative medicine. Although several attempts have been made to convert human and non-human primate PSCs into a truly naïve state, it is unclear which evaluation methods can discriminate them as being truly naïve. Here we attempted to derive naïve cynomolgus monkey (Cm) (Macaca fascicularis) embryonic stem cells (ESCs) and iPSCs. Several characteristics of naïve Cm ESCs including colony morphology, appearance of naïve-related mRNAs and proteins, leukaemia inhibitory factor dependency, and mitochondrial respiration were confirmed. Next, we generated Cm iPSCs and converted them to a naïve state. Transcriptomic comparison of PSCs with early Cm embryos elucidated the partial achievement (termed naïve-like) of their conversion. When these were subjected to in vitro neural differentiation, enhanced differentiating capacities were observed after naïve-like conversion, but some lines exhibited heterogeneity. The difficulty of achieving contribution to chimeric mouse embryos was also demonstrated. These results suggest that Cm PSCs could ameliorate their in vitro neural differentiation potential even though they could not display true naïve characteristics. PMID:28349944

  11. Solubility of triuranyl diphosphate tetrahydrate (TDT) and Na autunite at 23 and 50 degrees C

    SciTech Connect

    Armstrong, Christopher R.; Felmy, Andrew R.; Clark, Sue B.

    2010-11-01

    In this report we present experimental solubility data for well-characterized triuranyl diphosphate tetrahydrate (TDT: (UO2)(3)(PO4)(2)center dot 4H(2)O) and Na autunite (Na[UO2PO4]center dot xH(2)O) at 23 and 50 degrees C in NaClO4-HClO4 solutions at pC(H+) = 2. Duplicate samples of TDT in 0.1, 0.5, 1.0, 2.0 and 5.0 in solutions were equilibrated at 23 and 50 degrees C. TDT solid was synthesized and characterized with ICP-OES, ATR-IR and powder XRD before and after solubility experiments. The pH of the suspensions were monitored throughout the experiments. Equilibrium was achieved from undersaturation with respect to TDT and oversaturation for Na autunite. Steady-state conditions were achieved in all cases within 82 d. TDT was unstable at ionic strengths above 0.1 m, where its complete conversion to Na autunite was observed. The ion-interaction model was used to interpret the experimental solubility data. The solubility product, log K-sp, for TDT was determined to be -49.7 and -51.3 at 23 and 50 degrees C respectively. log K for Na autunite was determined to be -24.4 (23 degrees C) and -24.1 +/- 0.2 (50 degrees C).

  12. The I427T neuraminidase (NA) substitution, located outside the NA active site of an influenza A(H1N1)pdm09 variant with reduced susceptibility to NA inhibitors, alters NA properties and impairs viral fitness.

    PubMed

    Tu, Véronique; Abed, Yacine; Barbeau, Xavier; Carbonneau, Julie; Fage, Clément; Lagüe, Patrick; Boivin, Guy

    2017-01-01

    Emergence of pan neuraminidase inhibitor (NAI)-resistant variants constitutes a serious clinical concern. An influenza A(H1N1)pdm09 variant containing the I427T/Q313R neuraminidase (NA) substitutions was previously identified in a surveillance study. Although these changes are not part of the NA active site, the variant showed reduced susceptibility to many NAIs. In this study, we investigated the mechanism of resistance for the I427T/Q313R substitution and its impact on the NA enzyme and viral fitness. Recombinant wild-type (WT), I427T/Q313R and I427T A(H1N1)pdm09 viruses were generated by reverse genetics and tested for their drug susceptibilities, enzymatic properties and replication kinetics in vitro as well as their virulence in mice. Molecular dynamics (MD) simulations were performed for NA structural analysis. The I427T substitution, which was responsible for the resistance phenotype observed in the double (I427T/Q313R) mutant, induced 17-, 56-, 7-, and 14-fold increases in IC50 values against oseltamivir, zanamivir, peramivir and laninamivir, respectively. The I427T substitution alone or combined to Q313R significantly reduced NA affinity. The I427T/Q313R and to a lesser extent I427T recombinant viruses displayed reduced viral titers vs WT in vitro. In experimentally-infected mice, the mortality rates were 62.5%, 0% and 14.3% for the WT, I417T/Q313R and I427T viruses, respectively. There were about 2.5- and 2-Log reductions in mean lung viral titers on day 5 post-infection for the I427T/Q313R and I427T mutants, respectively, compared to WT. Results from simulations revealed that the I427T change indirectly altered the stability of the catalytic R368 residue of the NA enzyme causing its reduced binding to the substrate/inhibitor. This study demonstrates that the I427T/Q313R mutant, not only alters NAI susceptibility but also compromises NA properties and viral fitness, which could explain its infrequent detection in clinic.

  13. Is animal experimentation fundamental?

    PubMed

    d'Acampora, Armando José; Rossi, Lucas Félix; Ely, Jorge Bins; de Vasconcellos, Zulmar Acciolli

    2009-01-01

    The understanding about the utilization of experimental animals in scientific research and in teaching is many times a complex issue. Special attention needs to be paid to attain the understanding by the general public of the importance of animal experimentation in experimental research and in undergraduate medical teaching. Experimental teaching and research based on the availability of animals for experimentation is important and necessary for the personal and scientific development of the physician-to-be. The technological arsenal which intends to mimic experimentation animals and thus fully replace their use many times does not prove to be compatible with the reality of the living animal. The purpose of this paper is to discuss aspects concerning this topic, bringing up an issue which is complex and likely to arouse in-depth reflections.

  14. Japanese Papilio butterflies puddle using Na+ detected by contact chemosensilla in the proboscis.

    PubMed

    Inoue, Takashi A; Hata, Tamako; Asaoka, Kiyoshi; Ito, Tetsuo; Niihara, Kinuko; Hagiya, Hiroshi; Yokohari, Fumio

    2012-12-01

    Many butterflies acquire nutrients from non-nectar sources such as puddles. To better understand how male Papilio butterflies identify suitable sites for puddling, we used behavioral and electrophysiological methods to examine the responses of Japanese Papilio butterflies to Na(+), K(+), Ca(2+), and Mg(2+). Based on behavioral analyses, these butterflies preferred a 10-mM Na(+) solution to K(+), Ca(2+), and Mg(2+) solutions of the same concentration and among a tested range of 1 mM to 1 M NaCl. We also measured the ion concentrations of solutions sampled from puddling sites in the field. Na(+) concentrations of the samples were up to 6 mM, slightly lower than that preferred by butterflies in the behavioral experiments. Butterflies that sipped the 10 mM Na(+) solution from the experimental trays did not continue to puddle on the ground. Additionally, butterflies puddled at sites where the concentrations of K(+), Ca(2+), and/or Mg(2+) were higher than that of Na(+). This suggests that K(+), Ca(2+), and Mg(2+) do not interfere with the detection of Na(+) by the Papilio butterfly. Using an electrophysiological method, tip recordings, receptor neurons in contact chemosensilla inside the proboscis evoked regularly firing impulses to 1, 10, and 100 mM NaCl solutions but not to CaCl(2) or MgCl(2). The dose-response patterns to the NaCl solutions were different among the neurons, which were classified into three types. These results showed that Japanese Papilio butterflies puddle using Na(+) detected by the contact chemosensilla in the proboscis, which measure its concentration.

  15. Japanese Papilio butterflies puddle using Na+ detected by contact chemosensilla in the proboscis

    NASA Astrophysics Data System (ADS)

    Inoue, Takashi A.; Hata, Tamako; Asaoka, Kiyoshi; Ito, Tetsuo; Niihara, Kinuko; Hagiya, Hiroshi; Yokohari, Fumio

    2012-12-01

    Many butterflies acquire nutrients from non-nectar sources such as puddles. To better understand how male Papilio butterflies identify suitable sites for puddling, we used behavioral and electrophysiological methods to examine the responses of Japanese Papilio butterflies to Na+, K+, Ca2+, and Mg2+. Based on behavioral analyses, these butterflies preferred a 10-mM Na+ solution to K+, Ca2+, and Mg2+ solutions of the same concentration and among a tested range of 1 mM to 1 M NaCl. We also measured the ion concentrations of solutions sampled from puddling sites in the field. Na+ concentrations of the samples were up to 6 mM, slightly lower than that preferred by butterflies in the behavioral experiments. Butterflies that sipped the 10 mM Na+ solution from the experimental trays did not continue to puddle on the ground. Additionally, butterflies puddled at sites where the concentrations of K+, Ca2+, and/or Mg2+ were higher than that of Na+. This suggests that K+, Ca2+, and Mg2+ do not interfere with the detection of Na+ by the Papilio butterfly. Using an electrophysiological method, tip recordings, receptor neurons in contact chemosensilla inside the proboscis evoked regularly firing impulses to 1, 10, and 100 mM NaCl solutions but not to CaCl2 or MgCl2. The dose-response patterns to the NaCl solutions were different among the neurons, which were classified into three types. These results showed that Japanese Papilio butterflies puddle using Na+ detected by the contact chemosensilla in the proboscis, which measure its concentration.

  16. Growth of binary organic NLO crystals: m.NA-p.NA and m.NA-CNA system

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.

    1993-01-01

    Experiments were carried out to grow 3.Nitroaniline (m.NA) crystals doped with 4.Nitroaniline (p.NA) and 2.chloro 4.Nitroaniline (CNA). The measured undercooling for m.NA, p.NA, and CNA were 0.21 tm K, 0.23 tm K, and 0.35 tm K respectively, where tm represents the melting temperature of the pure component. Because of the crystals' large heat of fusion and large undercooling, it was not possible to grow good quality crystals with low thermal gradients. In the conventional two-zone Bridgman furnace we had to raise the temperature of the hot zone above the decomposition temperature of CNA, p.NA, and m.NA to achieve the desired thermal gradient. To avoid decomposition, we used an unconventional Bridgman furnace. Two immiscible liquids, silicone oil and ethylene glycol, were used to build a special two-zone Bridgman furnace. A temperature gradient of 18 K/cm was achieved without exceeding the decomposition temperature of the crystal. The binary crystals, m.NA-p.NA and m.NA-CNA, were grown in centimeter size in this furnace. X-ray and optical characterization showed good optical quality.

  17. Modification of single Na+ channels by batrachotoxin.

    PubMed Central

    Quandt, F N; Narahashi, T

    1982-01-01

    The modifications in the properties of voltage-gated Na+ channels caused by batrachotoxin were studied by using the patch clamp method for measuring single channel currents from excised membranes of N1E-115 neuroblastoma cells. The toxin-modified open state of the Na+ channel has a decreased conductance in comparison to that of normal Na+ channels. The lifetime of the modified open state is drastically prolonged, and channels now continue to open during a maintained depolarization so that the probability of a channel being open becomes constant. Modified and normal open states of Na+ channels coexist in batrachotoxin-exposed membrane patches. Unlike the normal condition, Na+ channels exposed to batrachotoxin open spontaneously at large negative potentials. These spontaneous openings apparently cause the toxin-induced increase in Na+ permeability which, in turn, causes membrane depolarization. PMID:6292915

  18. Summary of recent experimental results on strangeness production

    NASA Astrophysics Data System (ADS)

    Kalweit, Alexander

    2017-01-01

    This article summarises the highlights of the recent experimental findings on strangeness production presented at the 16th edition of the International Conference on Strangeness in Quark Matter in Berkeley. Results obtained by eight large experimental collaborations (ALICE, ATLAS, CMS, HADES, LHCb, NA-61, PHENIX, STAR) spanning a large range in centre-of-mass energy and a variety of collision systems were presented at the conference. The article does not aim at being a complete review, but rather at connecting the experimental highlights of the different collaborations and at pointing towards questions which should be addressed by these experiments in future.

  19. Hygroscopic growth and deliquescence of NaCl nanoparticles mixed with surfactant SDS.

    PubMed

    Harmon, Christopher W; Grimm, Ronald L; McIntire, Theresa M; Peterson, Mark D; Njegic, Bosiljka; Angel, Vanessa M; Alshawa, Ahmad; Underwood, Joelle S; Tobias, Douglas J; Gerber, R Benny; Gordon, Mark S; Hemminger, John C; Nizkorodov, Sergey A

    2010-02-25

    Several complementary experimental and theoretical methodologies were used to explore water uptake on sodium chloride (NaCl) particles containing varying amounts of sodium dodecyl sulfate (SDS) to elucidate the interaction of water with well-defined, environmentally relevant surfaces. Experiments probed the hygroscopic growth of mixed SDS/NaCl nanoparticles that were generated by electrospraying aqueous 2 g/L solutions containing SDS and NaCl with relative NaCl/SDS weight fractions of 0, 5, 11, 23, or 50 wt/wt %. Particles with mobility-equivalent diameters of 14.0(+/-0.2) nm were size selected and their hygroscopic growth was monitored by a tandem nano-differential mobility analyzer as a function of relative humidity (RH). Nanoparticles generated from 0 and 5 wt/wt % solutions deliquesced abruptly at 79.1(+/-1.0)% RH. Both of these nanoparticle compositions had 3.1(+/-0.5) monolayers of adsorbed surface water prior to deliquescing and showed good agreement with the Brunauer-Emmett-Teller and the Frenkel-Halsey-Hill isotherms. Above the deliquescence point, the growth curves could be qualitatively described by Kohler theory after appropriately accounting for the effect of the particle shape on mobility. The SDS/NaCl nanoparticles with larger SDS fractions displayed gradual deliquescence at a RH that was significantly lower than 79.1%. All compositions of SDS/NaCl nanoparticles had monotonically suppressed mobility growth factors (GF(m)) with increasing fractions of SDS in the electrosprayed solutions. The Zdanovskii-Stokes-Robinson model was used to estimate the actual fractions of SDS and NaCl in the nanoparticles; it suggested the nanoparticles were enhanced in SDS relative to their electrospray solution concentrations. X-ray photoelectron spectroscopy (XPS), FTIR, and AFM were consistent with SDS forming first a monolayer and then a crystalline phase around the NaCl core. Molecular dynamics simulations of water vapor interacting with SDS/NaCl slabs showed that

  20. Maintaining the NA atmosphere of Mercury

    NASA Astrophysics Data System (ADS)

    Killen, R. M.; Morgan, T. H.

    1993-02-01

    The possible sources of the Na atmosphere of Mercury are calculatively studied. The likely structure, composition, and temperature of the planet's upper crust is examined along with the probable flux of Na from depth by grain boundary diffusion and by Knudsen flow. The creation of fresh regolith is considered along with mechanisms for supplying Na from the surface to the exosphere. The implications of the calculations for the probable abundances in the regolith are discussed.

  1. Maintaining the Na atmosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Morgan, Thomas H.

    1993-01-01

    The possible sources of the Na atmosphere of Mercury are calculatively studied. The likely structure, composition, and temperature of the planet's upper crust is examined along with the probable flux of Na from depth by grain boundary diffusion and by Knudsen flow. The creation of fresh regolith is considered along with mechanisms for supplying Na from the surface to the exosphere. The implications of the calculations for the probable abundances in the regolith are discussed.

  2. Relationship between extracellular osmolarity, NaCl concentration and cell volume in rat glioma cells.

    PubMed

    Rouzaire-Dubois, Béatrice; Ouanounou, Gilles; Dubois, Jean Marc

    2011-06-01

    The cell volume, which controls numerous cellular functions, is theoretically linearly related with the inverse osmolarity. However, deviations from this law have often been observed. In order to clarify the origin of these deviations we electronically measured the mean cell volume of rat glioma cells under three different experimental conditions, namely: at different osmolarities and constant NaCl concentration; at different NaCl concentrations and constant osmolarity and at different osmolarities caused by changes in NaCl concentration. In each condition, the osmolarity was maintained constant or changed with NaCl or mannitol. We showed that the cell volume was dependent on both the extracellular osmolarity and the NaCl concentration. The relationship between cell volume, osmolarity and NaCl concentration could be described by a new equation that is the product of the Boyle-van't Hoff law and the Michaelis-Menten equation at a power of 4. Together, these results suggest that in hyponatriemia, the cell volume deviates from the Boyle-van't Hoff law because either the activity of aquaporin 1, expressed in glioma cells, is decreased or the reduced NaCl influx decreases the osmotically obliged influx of water.

  3. Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites

    DOE PAGES

    Wang, Yonggang; Wang, Qingfei; Liu, Zhenpu; ...

    2015-06-10

    High-performance solid electrolytes are critical for realizing all-solid-state batteries with enhance safety and cycling efficiency. However, currently available candidates (sulfides and the NASICON-typ ceramics) still suffer from drawbacks such as inflammability, high-cost and unfavorable machinability Here we present the structural manipulation approaches to improve the sodium ionic conductivity in series of affordable Na-rich antiperovskites. Experimentally, the whole solid solutions of Na3OX (X ¼ Cl Br, I) are synthesized via a facile and timesaving route from the cheapest raw materials (Na, NaOH an NaX). The materials are nonflammable, suitable for thermoplastic processing due to low melting temperature (<300° C) without decomposing.more » Notably, owing to the flexibility of perovskite-type structure it's feasible to control the local structure features by means of size-mismatch substitution an unequivalent-doping for a favorable sodium ionic diffusion pathway. Enhancement of sodium ioni conductivity by 2 magnitudes is demonstrated by these chemical tuning methods. The optimized sodiu ionic conductivity in Na2.9Sr0.05OBr0.6I0.4 bulk samples reaches 1.9 10- 3 S/cm at 200° C and even highe at elevated temperature. Here, we believe further chemical tuning efforts on Na-rich antiperovskites wil promote their performance greatly for practical all-solid state battery applications.« less

  4. Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites

    SciTech Connect

    Wang, Yonggang; Wang, Qingfei; Liu, Zhenpu; Zhou, Zhengyang; Li, Shuai; Zhu, Jinlong; Zou, Ruqiang; Wang, Yingxia; Lin, Jianhua; Zhao, Yusheng

    2015-06-10

    High-performance solid electrolytes are critical for realizing all-solid-state batteries with enhance safety and cycling efficiency. However, currently available candidates (sulfides and the NASICON-typ ceramics) still suffer from drawbacks such as inflammability, high-cost and unfavorable machinability Here we present the structural manipulation approaches to improve the sodium ionic conductivity in series of affordable Na-rich antiperovskites. Experimentally, the whole solid solutions of Na3OX (X ¼ Cl Br, I) are synthesized via a facile and timesaving route from the cheapest raw materials (Na, NaOH an NaX). The materials are nonflammable, suitable for thermoplastic processing due to low melting temperature (<300° C) without decomposing. Notably, owing to the flexibility of perovskite-type structure it's feasible to control the local structure features by means of size-mismatch substitution an unequivalent-doping for a favorable sodium ionic diffusion pathway. Enhancement of sodium ioni conductivity by 2 magnitudes is demonstrated by these chemical tuning methods. The optimized sodiu ionic conductivity in Na2.9Sr0.05OBr0.6I0.4 bulk samples reaches 1.9 10- 3 S/cm at 200° C and even highe at elevated temperature. Here, we believe further chemical tuning efforts on Na-rich antiperovskites wil promote their performance greatly for practical all-solid state battery applications.

  5. Mesopore control of high surface area NaOH-activated carbon.

    PubMed

    Tseng, Ru-Ling

    2006-11-15

    Activated carbon with BET surface areas in a narrow range from 2318 to 2474 m2/g was made by soaking the char made from corncob in a concentrated NaOH solution at NaOH/char ratios from 3 to 6; the mesopore volumes of the activated carbon were significantly changed from 21 to 58%. The relationships between pore properties (Sp, Vpore, Vmicro/Vpore, Dp) and NaOH dosage were investigated. Comparisons between the methods of NaOH and KOH activation revealed that NaOH activation can suitably control the mesopore specific volume of the activated carbon. Elemental analysis revealed that the H/C and O/C values of the activated carbons of NaOH/char ratios from 3 to 6 were significantly lower. SEM observation of surface hole variation of the activated carbon ascertained that the reaction process was inner pore etching. Based on the above three measurements and experimental investigations, the assumption made by previous researchers, namely that NaOH and KOH produce similar results, was challenged. Furthermore, the adsorption kinetics was used to investigate the adsorption rate of an Elovich equation to determine the relationships between the adsorption behavior on larger molecules (dyes) and smaller molecules (phenols) and the pore structure of the activated carbon.

  6. NA61/SHINE facility at the CERN SPS: beams and detector system

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Andreeva, O.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bogusz, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Efthymiopoulos, I.; Ereditato, A.; Fabich, A.; Feofilov, G. A.; Fodor, Z.; Fulop, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivashkin, A.; Jokovic, D.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kielczewska, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Koversarski, P.; Kowalski, S.; Krasnoperov, A.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Maletic, D.; Manglunki, D.; Manic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messina, M.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Peryt, W.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadala, M.; Puławski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Schmidt, K.; Sekiguchi, T.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Sipos, R.; Skrzypczak, E.; Słodkowski, M.; Sosin, Z.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarz, A.; Wyszyński, O.; Zambelli, L.; Zipper, W.

    2014-06-01

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013.

  7. NaNet-10: a 10GbE network interface card for the GPU-based low-level trigger of the NA62 RICH detector.

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Fiorini, M.; Frezza, O.; Lonardo, A.; Lamanna, G.; Lo Cicero, F.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Tosoratto, L.; Vicini, P.

    2016-03-01

    A GPU-based low level (L0) trigger is currently integrated in the experimental setup of the RICH detector of the NA62 experiment to assess the feasibility of building more refined physics-related trigger primitives and thus improve the trigger discriminating power. To ensure the real-time operation of the system, a dedicated data transport mechanism has been implemented: an FPGA-based Network Interface Card (NaNet-10) receives data from detectors and forwards them with low, predictable latency to the memory of the GPU performing the trigger algorithms. Results of the ring-shaped hit patterns reconstruction will be reported and discussed.

  8. NA-NET numerical analysis net

    SciTech Connect

    Dongarra, J. . Dept. of Computer Science Oak Ridge National Lab., TN ); Rosener, B. . Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  9. NA-NET numerical analysis net

    SciTech Connect

    Dongarra, J. |; Rosener, B.

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  10. Painful Na-channelopathies: an expanding universe.

    PubMed

    Waxman, Stephen G

    2013-07-01

    The universe of painful Na-channelopathies--human disorders caused by mutations in voltage-gated sodium channels--has recently expanded in three dimensions. We now know that mutations of sodium channels cause not only rare genetic 'model disorders' such as inherited erythromelalgia and channelopathy-associated insensitivity to pain but also common painful neuropathies. We have learned that mutations of NaV1.8, as well as mutations of NaV1.7, can cause painful Na-channelopathies. Moreover, recent studies combining atomic level structural models and pharmacogenomics suggest that the goal of genomically guided pain therapy may not be unrealistic.

  11. Siegel[JMMM 7,312(`78)] FIRST EXPERIMENTAL DISCOVERY of Giant-Magnetoresistance Decade Pre ``Fert'' and ``Gruenberg'' ['88 - `78] = 10-Years = One-Decade Sounds, for Nuclear-Power Naïve ``Panacea'' for Global-Warming/Climate-Chan

    NASA Astrophysics Data System (ADS)

    Hoffmann, Masterace; Siegel, Edward

    Siegel[JMMM 7,312(`78); Monju (12/'95) LMFBR PREDICTION!!!] following: Wigner[JAP 17,857(`46)]-(Alvin)Weinberg(ANL/ORNL/ANS)-(Sidney)Siegel(ANL/ORNL/ANS)-Seitz-Overhauser-Rollnick-Pollard-Lofaro-Markey-Pringle[Nuclear-PowerFrom Physics to Politics(`79)] FIRST EXPERIMENTAL DISCOVERY [Siegel<<<''Fert''-''Gruenberg'':2007-Physics-Nobel/2006:-Wolf/Japan-prizes:[`88 -`78] =10-years =1-decade precedence!!!] of granular giant-magnetoresistance(GMR) [Google: ``EDWARD SIEGEL GIANT-MAGNETORESISTANCE ICMAO 1977 FLICKER''] [Google: ``Ana Mayo If LEAKS`Could' KILL''] in austenitic/FCC Ni/Fe-based (so MIScalled)''super''alloy-182/82 transition-welds GENERIC ENDEMIC EXTANT detrimental (SYNONYMS): Wigner's-disease/Ostwald-ripening/spinodal-decompositio/OVERageing-EMBRITTLEMENT/THERMAL-leading-to-mechanical (TLTM)-INstability/``sensitization'' in: nuclear-reactors/spent-fuel dry-casks/refineries/jet/missile/rocket-engines/...SOUNDS A DIRE WARNING FOR NAIVE Hansen-Sommerville-Holdren-DOE-NRC-OSTP-WNA-NEI-AIP-APS-...calls/media-hype/P.R./spin-doctoring for carbon-``free'' nuclear-power as a SUPPOSED ``panacea'' for climate-change/global-warming: ``TRUST BUT VERIFY!!!'' ; a VERY LOUD CAVEAT EMPTOR!!!

  12. The Experimental College.

    ERIC Educational Resources Information Center

    Meiklejohn, Alexander

    "The Experimental College" tells the story of a 4-year academic experiment at the University of Wisconsin established by Alexander Meiklejohn. Aimed at finding a method of teaching that would help students develop "intelligence in the conduct of their own lives," the Experimental College discarded major requirements,…

  13. On experimental oil spills

    SciTech Connect

    Mackay, D.; Thornton, D. E.; Blackall, P. J.; Sergy, G. S.; Snow, N.; Hume, H.

    1980-09-01

    Experimental oil spills are an essential component of overall oil pollution research efforts. However, such experiments must be carefully designed and coordinated in order to cull the most information possible. Physical, biological, and ecological impacts must be examined simultaneously. Long-term monitoring of the multidisciplinary effects of experimental oil spills is recommended.

  14. Questioning and Experimentation

    ERIC Educational Resources Information Center

    Mutanen, Arto

    2014-01-01

    The paper is a philosophical analysis of experimentation. The philosophical framework of the analysis is the interrogative model of inquiry developed by Hintikka. The basis of the model is explicit and well-formed logic of questions and answers. The framework allows us to formulate a flexible logic of experimentation. In particular, the formulated…

  15. 7. VIEW WEST, FERNOW EXPERIMENTAL FOREST WELL HOUSE, FERNOW EXPERIMENTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST, FERNOW EXPERIMENTAL FOREST WELL HOUSE, FERNOW EXPERIMENTAL FOREST BUNKHOUSE, FERNOW EXPERIMENTAL FOREST GARAGE, AND FERNOW EXPERIMENTAL FOREST RESIDENCE. - Parsons Nursery, South side of U.S. Route 219, Parsons, Tucker County, WV

  16. Novel Experimental Simulations of the Atmospheric Injection of Meteoric Metals

    NASA Astrophysics Data System (ADS)

    Gómez Martín, J. C.; Bones, D. L.; Carrillo-Sánchez, J. D.; James, A. D.; Trigo-Rodríguez, J. M.; Fegley, B., Jr.; Plane, J. M. C.

    2017-02-01

    A newly developed laboratory, Meteoric Ablation Simulator (MASI), is used to test model predictions of the atmospheric ablation of interplanetary dust particles (IDPs) with experimental Na, Fe, and Ca vaporization profiles. MASI is the first laboratory setup capable of performing time-resolved atmospheric ablation simulations, by means of precision resistive heating and atomic laser-induced fluorescence detection. Experiments using meteoritic IDP analogues show that at least three mineral phases (Na-rich plagioclase, metal sulfide, and Mg-rich silicate) are required to explain the observed appearance temperatures of the vaporized elements. Low melting temperatures of Na-rich plagioclase and metal sulfide, compared to silicate grains, preclude equilibration of all the elemental constituents in a single melt. The phase-change process of distinct mineral components determines the way in which Na and Fe evaporate. Ca evaporation is dependent on particle size and on the initial composition of the molten silicate. Measured vaporized fractions of Na, Fe, and Ca as a function of particle size and speed confirm differential ablation (i.e., the most volatile elements such as Na ablate first, followed by the main constituents Fe, Mg, and Si, and finally the most refractory elements such as Ca). The Chemical Ablation Model (CABMOD) provides a reasonable approximation to this effect based on chemical fractionation of a molten silicate in thermodynamic equilibrium, even though the compositional and geometric description of IDPs is simplistic. Improvements in the model are required in order to better reproduce the specific shape of the elemental ablation profiles.

  17. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart

    PubMed Central

    Shattock, Michael J; Ottolia, Michela; Bers, Donald M; Blaustein, Mordecai P; Boguslavskyi, Andrii; Bossuyt, Julie; Bridge, John H B; Chen-Izu, Ye; Clancy, Colleen E; Edwards, Andrew; Goldhaber, Joshua; Kaplan, Jack; Lingrel, Jerry B; Pavlovic, Davor; Philipson, Kenneth; Sipido, Karin R; Xie, Zi-Jian

    2015-01-01

    This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field. PMID:25772291

  18. Spectrophotometric Investigation of U(VI) Chloride Complexation in the NaCl/NaClO{sub 4} System

    SciTech Connect

    Paviet-Hartmann, P.; Lin, M.R.; Runde, W.H.

    1998-11-30

    Post closure radioactive release scenarios from geologic salt formation, such as the WIPP (Waste Isolation Pilot Plant)(USA) include hydrologic transport of radionuclides through a chloride saturated aquifer. Consequently, the understanding of actinide solution chemistry in brines is essential for modeling requiring accurate knowledge of the interaction between AnO{sub 2}{sup 2+} and chloride ions. Complexation constants of two U(VI) chloride species, UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0}, have been intensively studied for about 40 years using different methods. However, large uncertainties reflect the general difficulty in determining accurate stability constants of weak complexes. In order to model the behavior of U(VI) in brines, we studied the formation of its chloride complexes by UV-Vis spectroscopy as a function of the NaCl concentration at 25 C. The experiments were performed at constant ionic strength by varying the concentration ratio of NaCl and NaClO{sub 4}. Deconvolution resulted in single component absorption spectra for UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0}. The apparent stability constants of UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0} are at different ionic strengths and the experimental data are used to parameterize using the SIT approach.

  19. Exploration of NaVOPO4 as a cathode for a Na-ion battery.

    PubMed

    Song, Jie; Xu, Maowen; Wang, Long; Goodenough, John B

    2013-06-11

    Monoclinic NaVOPO4 is explored as a cathode material for a sodium ion battery. It exhibits electrochemical activity operating at an average potential of 3.6 V (vs. Na(+)/Na) and delivers a reversible capacity of 90 mA h g(-1) at 1/15 C.

  20. First-principles study on structure stabilities of α-S and Na-S battery systems

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    To understand microscopic mechanisms of charge and discharge reactions in Na-S batteries, there has been increasing needs to study fundamental atomic and electronic structures of elemental S as well as that of Na-S phases. The most stable form of S is known to be an orthorhombic α-S crystal at ambient temperature and pressure, and α-S consists of puckered S8 rings which crystallize in space group Fddd . In this study, the crystal structure of α-S is examined by using first-principles calculations with and without the van der Waals interaction corrections of Grimme's method, and results clearly show that the van der Waals interactions between the S8 rings have crucial roles on cohesion of α-S. We also study structure stabilities of Na2S, NaS, NaS2, and Na2S5 phases with reported crystal structures. Using calculated total energies of the crystal structure models, we estimate discharge voltages assuming discharge reactions from 2Na+ xS -->Na2Sx, and discharge reactions in Na/S battery systems are discussed by comparing with experimental results. This work was partially supported by Elements Strategy Initiative for Catalysts and Batteries (ESICB) of Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  1. Cosmogenic radionuclide production in NaI(Tl) crystals

    NASA Astrophysics Data System (ADS)

    Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Ginestra, C.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2015-02-01

    The production of long-lived radioactive isotopes in materials due to the exposure to cosmic rays on Earth surface can be an hazard for experiments demanding ultra-low background conditions, typically performed deep underground. Production rates of cosmogenic isotopes in all the materials present in the experimental set-up, as well as the corresponding cosmic rays exposure history, must be both well known in order to assess the relevance of this effect in the achievable sensitivity of a given experiment. Although NaI(Tl) scintillators are being used in experiments aiming at the direct detection of dark matter since the first nineties of the last century, very few data about cosmogenic isotopes production rates have been published up to date. In this work we present data from two 12.5 kg NaI(Tl) detectors, developed in the frame of the ANAIS project, which were installed inside a convenient shielding at the Canfranc Underground Laboratory just after finishing surface exposure to cosmic rays. The very fast start of data taking allowed to identify and quantify isotopes with half-lives of the order of tens of days. Initial activities underground have been measured and then production rates at sea level have been estimated following the history of detectors; values of about a few tens of nuclei per kg and day for Te isotopes and 22Na and of a few hundreds for I isotopes have been found. These are the first direct estimates of production rates of cosmogenic nuclides in NaI crystals. A comparison of the so deduced rates with calculations using typical cosmic neutron flux at sea level and a carefully selected description of excitation functions will be also presented together with an estimate of the corresponding contribution to the background at low and high energies, which can be relevant for experiments aiming at rare events searches.

  2. Magnetohydrodynamic generator experimental studies

    NASA Technical Reports Server (NTRS)

    Pierson, E. S.

    1972-01-01

    The results for an experimental study of a one wavelength MHD induction generator operating on a liquid flow are presented. First the design philosophy and the experimental generator design are summarized, including a description of the flow loop and instrumentation. Next a Fourier series method of treating the fact that the magnetic flux density produced by the stator is not a pure traveling sinusoid is described and some results summarized. This approach appears to be of interest after revisions are made, but the initial results are not accurate. Finally, some of the experimental data is summarized for various methods of excitation.

  3. Experimental Semiotics: A Review

    PubMed Central

    Galantucci, Bruno; Garrod, Simon

    2010-01-01

    In the last few years a new line of research has appeared in the literature. This line of research, which may be referred to as experimental semiotics (ES; Galantucci, 2009; Galantucci and Garrod, 2010), focuses on the experimental investigation of novel forms of human communication. In this review we will (a) situate ES in its conceptual context, (b) illustrate the main varieties of studies thus far conducted by experimental semioticians, (c) illustrate three main themes of investigation which have emerged within this line of research, and (d) consider implications of this work for cognitive neuroscience. PMID:21369364

  4. Negative electrodes for Na-ion batteries.

    PubMed

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  5. High NA Nicrostepper Final Optical Design Report

    SciTech Connect

    Hudyma, R

    1999-09-24

    The development of a new EUV high NA small-field exposure tool has been proposed for obtaining mask defect printability data in a timeframe several years before beta-tools are available. The imaging system for this new Micro-Exposure Tool (MET), would have a numerical aperture (NA) of about 0.3, similar to the NA for a beta-tool, but substantially larger than the 0.10 NA for the Engineering Test Stand (ETS) and 0.088 NA for the existing 10x Microstepper. This memorandum discusses the development and summarizes the performance of the camera for the MET and includes a listing of the design prescription, detailed analysis of the distortion, and analysis demonstrating the capability to resolution 30 nm features under the conditions of partially coherent illumination.

  6. Na+ binding to the Na(+)-glucose cotransporter is potential dependent.

    PubMed

    Bennett, E; Kimmich, G A

    1992-02-01

    Activity of the Na(+)-glucose cotransporter in LLC-PK1 epithelial cells was assayed by measuring sugar-induced currents (IAMG) using whole cell recording techniques. IAMG was compared among cells by standardizing the measured currents to cell size using cell capacitance measurements. IAMG at a given membrane potential was measured as a function of alpha-methylglucoside (AMG) concentration and can be fit to Michaelis-Menten kinetics. IAMG at varying Na+ concentrations can be described by the Hill equation with a Hill coefficient of 1.6 at all tested potentials. At high external Na+ levels (155 mM), Na+ is at least 90% saturating at all tested potentials. Maximal currents at a given membrane potential (Im) are calculated from the Michaelis-Menten equation fit to data measuring IAMG vs. AMG concentration at a constant Na+ concentration. Im showed potential dependence under all conditions. Potential-dependent Na+ binding rate(s) cannot alone explain the observed potential dependence of Im under saturating Na+ conditions. Therefore, because Im is potential dependent, at least one step of the transport cycle other than external Na+ binding must be potential dependent. Im was also calculated from data taken at 40 mM external Na+. At all potentials studied, Im at 155 mM Na+ is greater than Im calculated at 40 mM Na+. This implies that the rate of external Na+ binding to the transporter at 40 mM also affects the maximal transport rate. Furthermore, Im at 40 mM external Na+ increases with hyperpolarization faster than Im at 155 mM Na+. Together, these facts indicate that the rate at which Na+ binds to the transporter is also potential dependent.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Summary of experimental talks

    SciTech Connect

    Derrick, M.

    1999-12-08

    This final talk of the meeting briefly discussed a number of experimental topics that the author found particularly interesting in the area of High Energy Physics. It also includes some critical comments about the future direction of their discipline.

  8. Nuclear test experimental science

    SciTech Connect

    Struble, G.L.; Middleton, C.; Bucciarelli, G.; Carter, J.; Cherniak, J.; Donohue, M.L.; Kirvel, R.D.; MacGregor, P.; Reid, S.

    1989-01-01

    This report discusses research being conducted at Lawrence Livermore Laboratory under the following topics: prompt diagnostics; experimental modeling, design, and analysis; detector development; streak-camera data systems; weapons supporting research.

  9. Pharmacological modulation of human cardiac Na+ channels.

    PubMed

    Krafte, D S; Davison, K; Dugrenier, N; Estep, K; Josef, K; Barchi, R L; Kallen, R G; Silver, P J; Ezrin, A M

    1994-02-15

    Pharmacological modulation of human sodium current was examined in Xenopus oocytes expressing human heart Na+ channels. Na+ currents activated near -50 mV with maximum current amplitudes observed at -20 mV. Steady-state inactivation was characterized by a V1/2 value of -57 +/- 0.5 mV and a slope factor (k) of 7.3 +/- 0.3 mV. Sodium currents were blocked by tetrodotoxin with an IC50 value of 1.8 microM. These properties are consistent with those of Na+ channels expressed in mammalian myocardial cells. We have investigated the effects of several pharmacological agents which, with the exception of lidocaine, have not been characterized against cRNA-derived Na+ channels expressed in Xenopus oocytes. Lidocaine, quinidine and flecainide blocked resting Na+ channels with IC50 values of 521 microM, 198 microM, and 41 microM, respectively. Use-dependent block was also observed for all three agents, but concentrations necessary to induce block were higher than expected for quinidine and flecainide. This may reflect differences arising due to expression in the Xenopus oocyte system or could be a true difference in the interaction between human cardiac Na+ channels and these drugs compared to other mammalian Na+ channels. Importantly, however, this result would not have been predicted based upon previous studies of mammalian cardiac Na+ channels. The effects of DPI 201-106, RWJ 24517, and BDF 9148 were also tested and all three agents slowed and/or removed Na+ current inactivation, reduced peak current amplitudes, and induced use-dependent block. These data suggest that the alpha-subunit is the site of interaction between cardiac Na+ channels and Class I antiarrhythmic drugs as well as inactivation modifiers such as DPI 201-106.

  10. Na-doped optical Germanium bulk crystals

    NASA Astrophysics Data System (ADS)

    Pekar, G. S.; Singaevsky, A. F.

    2012-09-01

    In an effort to develop a material for infrared (IR) optics with improved parameters, bulk crystals of optical germanium doped with Na have been first grown and studied. Single-crystalline and coarse-crystalline Ge:Na boules of different shapes and dimensions, up to 10 kg by weight, have been grown. Sodium was incorporated into the Ge crystal during the crystal growing from the melt. Despite the fact that Na contamination in the source material was not strictly controlled, the density of Na in the grown crystals determined by the neutron activation analysis as well as by the glow discharge mass spectrometry did not exceed 1015 cm-3. Just this value may be supposed to be close to the solubility limit of Na incorporated in Ge in the course of bulk crystal growth. A first demonstration of donor behavior of Na in bulk Ge crystals is made by means of a thermoelectric type of testing. An interstitial location of Na impurity has been verified by experiments on donor drift in the dc electric field. The crystals are grown with free electron density in the range from 5ṡ1013 to 4ṡ1014 cm-3 which is optimal for using Ge crystals as an optical material for fabricating passive elements of the IR technique. A comparison between the properties of Ge:Na crystals and Ge crystals doped with Sb, a conventional impurity in optical germanium, grown under the same technological conditions and from the same intrinsic Ge as a source material, revealed a number of advantages of Ge:Na crystals; among them, the higher transparency in the IR region, smaller radiation scattering and higher regular optical transmission, lower dislocation density, more uniform distribution of electrical and optical characteristics over the crystal volume, the identity of optical parameters in the single-crystalline, and coarse-crystalline boules. No degradation of optical elements fabricated from Ge:Na crystals was detected in the course of their commercial application, starting from 1998.

  11. Phase relations in the system NaCl-KCl-H2O II: Differential thermal analysis of the halite liquidus in the NaCl-H2O binary above 450°c

    USGS Publications Warehouse

    Gunter, W.D.; Chou, I.-Ming; Girsperger, Sven

    1983-01-01

    The solubility of halite can be expressed as a function of the mole-fractional-based activity of NaCl in the liquid phase (L) in temperature (T, °K) and pressure (P, bars) In  Our liquidus data (based on 10 compositions) above 500 bars for these brines were combined with this equation to generate activity coefficients of NaCl which were fit within their experimental uncertainties to the following one parameter Margules equation In . Concentrated solutions of NaCl show negative deviations from ideality which rapidly increase in magnitude with decreasing XNaCl.

  12. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  13. Cytosolic Na+ controls and epithelial Na+ channel via the Go guanine nucleotide-binding regulatory protein.

    PubMed Central

    Komwatana, P; Dinudom, A; Young, J A; Cook, D I

    1996-01-01

    In tight Na+-absorbing epithelial cells, the fate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-beta-S, pertussis toxin, and antibodies against the alpha-subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-. Images Fig. 4 PMID:8755611

  14. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis

    PubMed Central

    Augé, Robert M.; Toler, Heather D.; Saxton, Arnold M.

    2014-01-01

    Arbuscular mycorrhizal (AM) symbiosis can enhance plant resistance to NaCl stress in several ways. Two fundamental roles involve osmotic and ionic adjustment. By stimulating accumulation of solutes, the symbiosis can help plants sustain optimal water balance and diminish Na+ toxicity. The size of the AM effect on osmolytes has varied widely and is unpredictable. We conducted a meta-analysis to determine the size of the AM effect on 22 plant solute characteristics after exposure to NaCl and to examine how experimental conditions have influenced the AM effect. Viewed across studies, AM symbioses have had marked effects on plant K+, increasing root and shoot K+ concentrations by an average of 47 and 42%, respectively, and root and shoot K+/Na+ ratios by 47 and 58%, respectively. Among organic solutes, soluble carbohydrates have been most impacted, with AM-induced increases of 28 and 19% in shoots and roots. The symbiosis has had no consistent effect on several characteristics, including root glycine betaine concentration, root or shoot Cl− concentrations, leaf Ψπ, or shoot proline or polyamine concentrations. The AM effect has been very small for shoot Ca++ concentration and root concentrations of Na+, Mg++ and proline. Interpretations about AM-conferred benefits regarding these compounds may be best gauged within the context of the individual studies. Shoot and root K+/Na+ ratios and root proline concentration showed significant between-study heterogeneity, and we examined nine moderator variables to explore what might explain the differences in mycorrhizal effects on these parameters. Moderators with significant impacts included AM taxa, host type, presence or absence of AM growth promotion, stress severity, and whether NaCl constituted part or all of the experimental saline stress treatment. Meta-regression of shoot K+/Na+ ratio showed a positive response to root colonization, and root K+/Na+ ratio a negative response to time of exposure to NaCl. PMID:25368626

  15. Isotope selective photoionization of NaK by optimal control: theory and experiment.

    PubMed

    Schäfer-Bung, Boris; Bonacić-Koutecký, Vlasta; Sauer, Franziska; Weber, Stefan M; Wöste, Ludger; Lindinger, Albrecht

    2006-12-07

    We present a joint theoretical and experimental study of the maximization of the isotopomer ratio (23)Na(39)K(23)Na(41)K using tailored phase-only as well as amplitude and phase modulated femtosecond laser fields obtained in the framework of optimal control theory and closed loop learning (CLL) technique. A good agreement between theoretically and experimentally optimized pulse shapes is achieved which allows to assign the optimized processes directly to the pulse shapes obtained by the experimental isotopomer selective CLL approach. By analyzing the dynamics induced by the optimized pulses we show that the mechanism involving the dephasing of the wave packets between the isotopomers (23)Na (39)K and (23)Na (41)K on the first excited state is responsible for high isotope selective ionization. Amplitude and phase modulated pulses, moreover, allow to establish the connection between the spectral components of the pulse and corresponding occupied vibronic states. It will be also shown that the leading features of the theoretically shaped pulses are independent from the initial conditions. Since the underlying processes can be assigned to the individual features of the shaped pulses, we show that optimal control can be used as a tool for analysis.

  16. Light-induced drift of Na using a frequency-modulated laser

    NASA Astrophysics Data System (ADS)

    de Lignie, M. C.; Bloemink, H. I.; de Boer, A. H.; Eliel, E. R.

    1990-08-01

    The influence of the bandwidth of the radiation source on light-induced drift (LID) of Na is studied experimentally. Broadband radiation can be used to eliminate optical hyperfine pumping on the one hand, and to provide more efficient excitation due to an increased velocity coverage, on the other hand. These aspects are highlighted in two separate experiments. An increase of the drift velocity of Na by a factor of 4 compared to monochromatic excitation has been measured. A frequency-modulated (FM) ring dye laser is used as a broadband radiation source, having a bandwidth continuously variable from single mode to multimode with a bandwidth of 10 GHz. Contrary to passive multimode lasers, the spectrum of such a laser is well defined and stable. Various modulation frequencies are used to study the dependence of the drift velocity on the mode spacing of the multimode laser. Only small differences are found. All experimental results are compared with results of a four-level rate-equation model for LID of Na, in which the excited-state hyperfine structure of Na and the detailed shape of the FM spectrum are taken into account. Good agreement between the model and the experimental data is found. The model is also used to show that the FM spectrum yields almost the same values for the drift velocity as a rectangular spectrum, which so far has been considered optimal for LID.

  17. A Biophysically Based Mathematical Model for the Kinetics of Mitochondrial Na+-Ca2+ Antiporter

    PubMed Central

    Pradhan, Ranjan K.; Beard, Daniel A.; Dash, Ranjan K.

    2010-01-01

    Sodium-calcium antiporter is the primary efflux pathway for Ca2+ in respiring mitochondria, and hence plays an important role in mitochondrial Ca2+ homeostasis. Although experimental data on the kinetics of Na+-Ca2+ antiporter are available, the structure and composition of its functional unit and kinetic mechanisms associated with the Na+-Ca2+ exchange (including the stoichiometry) remains unclear. To gain a quantitative understanding of mitochondrial Ca2+ homeostasis, a biophysical model of Na+-Ca2+ antiporter is introduced that is thermodynamically balanced and satisfactorily describes a number of independent data sets under a variety of experimental conditions. The model is based on a multistate catalytic binding mechanism for carrier-mediated facilitated transport and Eyring's free energy barrier theory for interconversion and electrodiffusion. The model predicts the activating effect of membrane potential on the antiporter function for a 3Na+:1Ca2+ electrogenic exchange as well as the inhibitory effects of both high and low pH seen experimentally. The model is useful for further development of mechanistic integrated models of mitochondrial Ca2+ handling and bioenergetics to understand the mechanisms by which Ca2+ plays a role in mitochondrial signaling pathways and energy metabolism. PMID:20338843

  18. Linear and nonlinear optical properties of 3-nitroaniline (m-NA) and 4-nitroaniline (p-NA) crystals: A DFT/TDDFT study

    NASA Astrophysics Data System (ADS)

    Dadsetani, M.; Omidi, A. R.

    2015-10-01

    We have studied the electronic structure and optical responses of 3-nitroaniline and 4-nitroaniline crystals within the framework of density functional theory (DFT). In addition, the excitonic effects are investigated by using the recently published bootstrap exchange-correlation kernel within the time dependent density functional theory (TDDFT) framework. Our calculations based on mBJ approximation yield the indirect band gap for both crystals, but the larger one for m-NA. Due to the excitonic effects, the TDDFT calculations gives rise to the enhanced and red-shifted spectra (compared to RPA). Due to the weak intermolecular interactions, band-structure calculations yield bands with low dispersion for both crystals. This study shows that the substituent groups play an important role in the top of valence band and the bottom of conduction band. Due to the linear structure of p-NA molecule, the highest peaks are located in the optical spectra of p-NA crystal, while m-NA has more sharp peaks, especially at lower energies. Both DFT and TDDFT calculations for the energy loss spectra show plasmon peaks around 27 and 28 eV for p-NA and m-NA, respectively. Due to the non-centrosymmetric structure of m-NA crystal, we also have reported its nonlinear spectra and the 2ω/ω intra-band and inter-band contributions to the dominant susceptibilities. Findings indicate the opposite signs for these contributions, especially at higher energies. The comparison between nonlinear spectra and the linear spectra (as a function of both ω and 2ω) reveals the significant resemblance between linear and nonlinear patterns. In addition to the reasonable agreement between our results with experimental data, this study reveals the spectral similarities between crystalline susceptibility and molecular polarizability.

  19. NMR studies on Na+ transport in Synechococcus PCC 6311

    NASA Technical Reports Server (NTRS)

    Nitschmann, W. H.; Packer, L.

    1992-01-01

    The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.

  20. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-10-01

    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  1. Generation of Radio Frequency Plasma in High-Conductivity NaCl Solution

    NASA Astrophysics Data System (ADS)

    Amano, Tatsuya; Mukasa, Shinobu; Honjoya, Naoki; Okumura, Hidehiko; Maehara, Tsunehiro

    2012-10-01

    Experimental investigations were carried out on RF plasma within a ceramic tube placed on an insulating plate in dense NaCl solution (1.7-24.5 S m-1). RF power was applied between two electrodes, and the insulating plate was placed between them. Upon performing spectroscopic measurements, we observed H and OH lines as well as strong Na lines in the emission spectra of RF plasma. Colored solution containing methylene blue was exposed to the plasma. The absorbance spectra of the colored solution before and after exposure to RF plasma clearly show that obvious degradation of methylene blue was realized.

  2. Combined effects Na and SO2 in flue gas on Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO by NH3 simulated by Na2SO4 doping

    NASA Astrophysics Data System (ADS)

    Zhou, Aiyi; Yu, Danqing; Yang, Liu; Sheng, Zhongyi

    2016-08-01

    A series of Mn-Ce/TiO2 catalysts were synthesized through an impregnation method and used for low temperature selective catalytic reduction (SCR) of NOx with ammonia (NH3). Na2SO4 was added into the catalyst to simulate the combined effects of alkali metal and SO2 in the flue gas. Experimental results showed that Na2SO4 had strong and fluctuant influence on the activity of Mn-Ce/TiO2, because the effect of Na2SO4 included pore occlusion and sulfation effect simultaneously. When Na2SO4 loading content increased from 0 to 1 wt.%, the SCR activities of Na2SO4-doped catalysts decreased greatly. With further increasing amount of Na2SO4, however, the catalytic activity increased gradually. XRD results showed that Na2SO4 doping could induce the crystallization of MnOx phases, which were also confirmed by TEM and SEM results. BET results showed that the surface areas decreased and a new bimodal mesoporous structure formed gradually with the increasing amount of Na2SO4. XPS results indicated that part of Ce4+ and Mn3+ were transferred to Ce3+ and Mn4+ due to the sulfation after Na2SO4 deposition on the surface of the catalysts. When the doped amounts of Na2SO4 increased, NH3-TPD results showed that the Lewis acid sites decreased and the Brønsted acid sites of Mn-Ce/TiO2 increased quickly, which could be considered as another reason for the observed changes in the catalytic activity. The decreased Mn and Ce atomic concentration, the changes of their oxidative states, and the variation in acidic properties on the surface of Na2SO4-doped catalysts could be the reasons for the fluctuant changes of the catalytic activity.

  3. Experimental scattershot boson sampling

    PubMed Central

    Bentivegna, Marco; Spagnolo, Nicolò; Vitelli, Chiara; Flamini, Fulvio; Viggianiello, Niko; Latmiral, Ludovico; Mataloni, Paolo; Brod, Daniel J.; Galvão, Ernesto F.; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sciarrino, Fabio

    2015-01-01

    Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy. PMID:26601164

  4. Characteristics and pharmacological regulation of epithelial Na+ channel (ENaC) and epithelial Na+ transport.

    PubMed

    Marunaka, Yoshinori

    2014-01-01

    Epithelial Na(+) transport participates in control of various body functions and conditions: e.g., homeostasis of body fluid content influencing blood pressure, control of amounts of fluids covering the apical surface of alveolar epithelial cells at appropriate levels for normal gas exchange, and prevention of bacterial/viral infection. Epithelial Na(+) transport via the transcellular pathway is mediated by the entry step of Na(+) across the apical membrane via Epithelial Na(+) Channel (ENaC) located at the apical membrane, and the extrusion step of Na(+) across the basolateral membrane via the Na(+),K(+)-ATPase located at the basolateral membrane. The rate-limiting step of the epithelial Na(+) transport via the transcellular pathway is generally recognized to be the entry step of Na(+) across the apical membrane via ENaC. Thus, up-/down-regulation of ENaC essentially participates in regulatory systems of blood pressure and normal gas exchange. Amount of ENaC-mediated Na(+) transport is determined by the number of ENaCs located at the apical membrane, activity (open probability) of individual ENaC located at the apical membrane, single channel conductance of ENaC located at the apical membrane, and driving force for the Na(+) entry via ENaCs across the apical membrane. In the present review article, I discuss the characteristics of ENaC and how these factors are regulated.

  5. P- T- X controls on Ca and Na distribution between Mg-Al tourmaline and fluid

    NASA Astrophysics Data System (ADS)

    Berryman, Eleanor J.; Wunder, Bernd; Rhede, Dieter; Schettler, Georg; Franz, Gerhard; Heinrich, Wilhelm

    2016-04-01

    Ca-Na partitioning between tourmaline and a coexisting fluid is investigated in the system CaO-Na2O-B2O3-Al2O3-MgO-SiO2-H2O-Cl between 0.2-4.0 GPa and 500-700 °C. The synthesis experiments produced a mineral assemblage of tourmaline, coesite/quartz, and in some cases additional phases, typically comprising <1 wt% of the solid product. The synthesized tourmalines are solid solutions of dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], "oxy-uvite" (i.e. "Ca-Mg-O root name") [CaMg3Al6Si6O18(BO3)3(OH)3O], and magnesio-foitite [☐(Mg2Al)Al6Si6O18(BO3)3(OH)3(OH)]. Starting materials comprised a fluid of constant ionic strength (2.00 m) and an oxide mixture with a constant Mg/Al ratio. As a result, the number of vacancies at the X site and the Mg/Al ratio of tourmaline crystals synthesized at the same temperature vary only slightly. The major solid solution is Ca-Na exchange at the X site via the exchange vector X Ca W O[ X Na W (OH)]-1, with the exchange vector X (Ca☐)[ X Na2]-1 serving as a secondary Ca-incorporation mechanism. Tourmaline's X-site composition reflects the fluid composition, whereby the Ca (or Na) concentration in the fluid corresponds with the Ca (or Na) content in tourmaline at each pressure and temperature. At 0.2 GPa, 700 °C, Ca preferentially partitions into tourmaline, producing the most Ca-rich tourmaline crystals synthesized here. At pressures >1.0 GPa, Ca partitions preferentially into the fluid, resulting in Na-dominant tourmaline compositions. Temperature has a secondary effect on Ca-Na partitioning, with higher temperatures correlating with increased Ca incorporation in tourmaline. Based on the experimental findings, tourmaline is expected to have Ca-rich compositions when it forms in low pressure, high-temperature Ca-rich rocks, consistent with the current record of tourmaline occurrence. The bulk Mg/Al ratio and the pH of the tourmaline-forming system may also affect Ca incorporation in tourmaline, but remain to be investigated experimentally.

  6. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.

    PubMed

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H

    2016-03-08

    The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect

  7. Interaction between Na+ and H+ ions on Na-H exchange in sheep cardiac Purkinje fibers.

    PubMed

    Wu, M L; Vaughan-Jones, R D

    1997-04-01

    The interaction between Na+ and H+ ions upon Na-H exchange (NHE) was examined in sheep cardiac Purkinje fibers. Acid equivalent fluxes through NHE were examined using recordings of intracellular pH and Na+ in isolated preparations measured with ion selective microelectrodes. The extent of acid-extrusion by NHE was estimated from pH(i) recovery-rate, multiplied by beta(i) (intracellular buffering power) in response to an internal acid load induced by 20 mm NH4Cl removal (nominally HCO3- free media). A mixed inhibitory effect was found of extracellular H+ on external Na+-activation of NHE (i.e. an increase, at low pH(o), in the apparent Michaelis constant for external Na+ ions [K(Nao)(0.5)] and a decrease in the maximum transport rate [V(Nao)(max)]). In addition, we confirmed that the stoichiometry of Na(o) binding is unaffected by the pH(o) (between 7.5 and 6.5), showing a Hill coefficient close to one. The interaction between Na+ and H+ ions at the internal face of the cardiac NHE was also studied. Our evidence suggests that an increase in the intracellular Na+ ion concentration ([Na+]i) inhibits acid efflux and that this inhibition can be approximated by the decrease in thermodynamic driving force caused by reducing the transmembrane Na+ gradient. It appears, however, that small variations in [Na+]i from the normal resting level (intracellular sodium activity, a(i)Na = 7 to 13 mm) have little or no effect on acid efflux, suggesting that variation of a(i)Na is not a physiologically important controller of NHE activity in heart.

  8. SPHINX experimenters information package

    SciTech Connect

    Zarick, T.A.

    1996-08-01

    This information package was prepared for both new and experienced users of the SPHINX (Short Pulse High Intensity Nanosecond X-radiator) flash X-Ray facility. It was compiled to help facilitate experiment design and preparation for both the experimenter(s) and the SPHINX operational staff. The major areas covered include: Recording Systems Capabilities,Recording System Cable Plant, Physical Dimensions of SPHINX and the SPHINX Test cell, SPHINX Operating Parameters and Modes, Dose Rate Map, Experiment Safety Approval Form, and a Feedback Questionnaire. This package will be updated as the SPHINX facilities and capabilities are enhanced.

  9. Questioning and Experimentation

    NASA Astrophysics Data System (ADS)

    Mutanen, Arto

    2014-08-01

    The paper is a philosophical analysis of experimentation. The philosophical framework of the analysis is the interrogative model of inquiry developed by Hintikka. The basis of the model is explicit and well-formed logic of questions and answers. The framework allows us to formulate a flexible logic of experimentation. In particular, the formulated model can be interpreted realistically. Moreover, the model demonstrates an explicit logic of knowledge acquisition. So, the natural extension of the model is to apply it to an analysis of the learning process.

  10. Experimental probes of axions

    SciTech Connect

    Chou, Aaron S.; /Fermilab

    2009-10-01

    Experimental searches for axions or axion-like particles rely on semiclassical phenomena resulting from the postulated coupling of the axion to two photons. Sensitive probes of the extremely small coupling constant can be made by exploiting familiar, coherent electromagnetic laboratory techniques, including resonant enhancement of transitions using microwave and optical cavities, Bragg scattering, and coherent photon-axion oscillations. The axion beam may either be astrophysical in origin as in the case of dark matter axion searches and solar axion searches, or created in the laboratory from laser interactions with magnetic fields. This note is meant to be a sampling of recent experimental results.

  11. Coulomb breakup of neutron-rich 29,30Na isotopes near the island of inversion

    NASA Astrophysics Data System (ADS)

    Rahaman, A.; Datta, Ushasi; Aumann, T.; Beceiro-Novo, S.; Boretzky, K.; Caesar, C.; Carlson, B. V.; Catford, W. N.; Chakraborty, S.; Chartier, M.; Cortina-Gil, D.; De Angelis, G.; Diaz Fernandez, P.; Emling, H.; Ershova, O.; Fraile, L. M.; Geissel, H.; Gonzalez-Diaz, D.; Johansson, H.; Jonson, B.; Kalantar-Nayestanaki, N.; Kröll, T.; Krücken, R.; Kurcewicz, J.; Langer, C.; Le Bleis, T.; Leifels, Y.; Marganiec, J.; Münzenberg, G.; Najafi, M. A.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Plag, R.; Reifarth, R.; Ricciardi, M. V.; Rigollet, C.; Rossi, D.; Scheidenberger, C.; Scheit, H.; Simon, H.; Taylor, J. T.; Togano, Y.; Typel, S.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Weigand, M.; Winfield, J. S.; Yakorev, D.; Zoric, M.

    2017-04-01

    First results are reported on the ground state configurations of the neutron-rich 29,30Na isotopes, obtained via Coulomb dissociation (CD) measurements. The invariant mass spectra of these nuclei have been obtained through measurement of the four-momenta of all decay products after Coulomb excitation of those nuclei on a 208Pb target at energies of 400–430 MeV/nucleon using the FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated inclusive CD cross-sections (CD) of 89 (7) mb and 167 (13) mb for one neutron removal from 29Na and 30Na, respectively, have been extracted up to an excitation energy of 10 MeV. The major part of one neutron removal, CD cross-sections of those nuclei populate the core, in its ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of 29Na (3/{2}+) and 30Na ({2}+) is the d-orbital with a small contribution from the s-orbital, which are coupled with the ground state of the core. One of the major components of the ground state configurations of these nuclei are 28Na{}{gs}({1}+)\\otimes {ν }s,d and 29Na{}{gs}(3/{2}+)\\otimes {ν }s,d, respectively. The ground state spin and parity of these nuclei obtained from this experiment are in agreement with earlier reported values. The spectroscopic factors for the valence neutron occupying the s and d orbitals for these nuclei in the ground state have been extracted and reported for the first time. A comparison of the experimental findings with shell model calculation using the MCSM suggests a lower limit of around 4.3 MeV of the sd–pf shell gap in 30Na.

  12. Impact of environmental conditions on the sorption behavior of Pb(II) in Na-bentonite suspensions.

    PubMed

    Yang, Shitong; Zhao, Donglin; Zhang, Hui; Lu, Songsheng; Chen, Lei; Yu, Xianjin

    2010-11-15

    In this study, a local bentonite from Lin'an county (Zhejiang province, China) was converted to Na-purified form and the Na-bentonite sample was characterized by using FTIR and XRD to determine its chemical constituents and micro-structure. The removal of lead from wastewaters by Na-bentonite was studied as a function of various environmental parameters such as contact time, pH, ionic strength, foreign ions, humic substances and temperature under ambient conditions. The results indicated that the sorption of Pb(II) on Na-bentonite was strongly dependent on pH and ionic strength. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms of Pb(II) at three different temperatures of 298, 318 and 338 K. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature dependent sorption isotherms indicated that the sorption process of Pb(II) on Na-bentonite was endothermic and spontaneous. At low pH, the sorption of Pb(II) was dominated by outer-sphere surface complexation and ion exchange with Na(+)/H(+) on Na-bentonite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. From the experimental results, it is possible to conclude that Na-bentonite has good potentialities for cost-effective disposal of lead bearing wastewaters.

  13. Thermodynamic Model for the Solubility of Cr(OH)(3)(am) in Concentrated NaOH and NaOH-NaNO3 Solutions

    SciTech Connect

    Rai, Dhanpat ); Hess, Nancy J. ); Rao, Linfeng; Zhang, Zhicheng; Felmy, Andrew R. ); Moore, Dean A. ); Clark, Sue B.; Lumetta, Gregg J. )

    2001-12-01

    The objectives of this study were to develop a reliable thermodynamic model for predicting Cr(III) behavior in concentrated NaOH and in mixed NaOH-NaNO3 solutions for application to effective caustic leaching strategies for high-level tank sludges. To meet these objectives, the solubility of Cr(OH)3(am) was measured in 0.003 to 10.5 m NaOH, 3.0 m es in NaOH concentration...

  14. Experimental conditions can obscure the second high-affinity site in LeuT.

    PubMed

    Quick, Matthias; Shi, Lei; Zehnpfennig, Britta; Weinstein, Harel; Javitch, Jonathan A

    2012-01-15

    Neurotransmitter:Na(+) symporters (NSSs), the targets of antidepressants and psychostimulants, recapture neurotransmitters from the synapse in a Na(+)-dependent symport mechanism. The crystal structure of the NSS homolog LeuT from Aquifex aeolicus revealed one leucine substrate in an occluded, centrally located (S1) binding site next to two Na(+) ions. Computational studies combined with binding and flux experiments identified a second substrate (S2) site and a molecular mechanism of Na(+)-substrate symport that depends upon the allosteric interaction of substrate molecules in the two high-affinity sites. Here we show that the S2 site, which has not yet been identified by crystallographic approaches, can be blocked during preparation of detergent-solubilized LeuT, thereby obscuring its crucial role in Na(+)-coupled symport. This finding points to the need for caution in selecting experimental environments in which the properties and mechanistic features of membrane proteins can be delineated.

  15. The Experimental College.

    ERIC Educational Resources Information Center

    Meiklejohn, Alexander; Powell, John Walker, Ed.

    In the early twentieth century, Alexander Meiklejohn believed the undergraduate college must teach students how to think. He aspired to make students into thinking, caring, active citizens with the intellectual skills to participate in a democratic society. In 1927, with the founding of the Experimental College at the University of Wisconsin, he…

  16. Experimental fluvial geomorphology

    SciTech Connect

    Schumm, S.A.; Mosley, M.P.; Weaver, W.

    1987-01-01

    The authors bring together the results of several years of experimental work in drainage basin evolution, hydrology, river-channel morphology, and sedimentology. These investigations are related to real-world applications, particularly geological exploration and mapping. This text shows how awareness of natural phenomena can improve management of the natural environment, such as the control of rivers and eroding gullies.

  17. Communicating Uncertain Experimental Evidence

    ERIC Educational Resources Information Center

    Davis, Alexander L.; Fischhoff, Baruch

    2014-01-01

    Four experiments examined when laypeople attribute unexpected experimental outcomes to error, in foresight and in hindsight, along with their judgments of whether the data should be published. Participants read vignettes describing hypothetical experiments, along with the result of the initial observation, considered as either a possibility…

  18. EXPERIMENTAL ANIMAL MAINTENANCE

    DOEpatents

    Finkel, M.P.

    1962-01-22

    A method of housing experimental animals such as mice in individual tube- like plastic enclosures is described. Contrary to experience, when this was tried with metal the mice did not become panicky. Group housing, with its attendant difficulties, may thus be dispensed with. (AEC)

  19. Na(+):K(+):ATPase mRNA expression in the kidney during adaptation to sodium intake and furosemide treatment.

    PubMed

    Merino, A; Moreno, G; Mercado, A; Bobadilla, N A; Gamba, G

    2000-01-01

    Nephron tubular epithelium possesses the capacity of adaptation to any salt ingestion condition. The mechanism of adaptation is due in part to an increase in the activity of Na(+):K(+):ATPase at the basolateral membrane. The goal of the present study was to analyze the long-term regulation of the Na(+):K(+):ATPase alpha(1)-subunit mRNA expression during changes in NaCl metabolism. Male Wistar rats given a normal, high, or low NaCl diet, and intraperitoneal administration of the loop diuretic furosemide from 12 h to 7 days were studied. Rats were kept in metabolic cages 4 days before and throughout the study to determine daily urinary electrolyte excretion and osmolarity. At the end of each experimental period, creatinine clearance and serum electrolytes were also measured. Total RNA was extracted from each individual cortex or outer medulla and from pooled inner medullas using the guanidine/cesium chloride method. Na(+):K(+):ATPase alpha(1)-subunit mRNA expression was assessed by nonradioactive dot-blot analysis. Experimental maneuvers were well tolerated and all groups developed the appropriate renal response to each experimental condition. Urinary sodium excretion was significantly higher in rats administered a high sodium diet or furosemide and lower in rats treated with a low sodium diet after 7 days of treatment. Glomerular filtration rate was similar among all groups. However, the level of expression of the Na(+):K(+):ATPase alpha(1)-subunit did not change in any model. Nephron adaptation to the modification in NaCl intake or furosemide administration over 7 days did not include changes in Na(+):K(+):ATPase alpha(1)-subunit mRNA levels.

  20. Administrative Aspects of Human Experimentation.

    ERIC Educational Resources Information Center

    Irvine, George W.

    1992-01-01

    The following administrative aspects of scientific experimentation with human subjects are discussed: the definition of human experimentation; the distinction between experimentation and treatment; investigator responsibility; documentation; the elements and principles of informed consent; and the administrator's role in establishing and…

  1. Thermal transformation of quaternary compounds in NaF-CaF{sub 2}-AlF{sub 3} system

    SciTech Connect

    Zaitseva, Julia N.; Yakimov, Igor S.; Kirik, Sergei D.

    2009-08-15

    Details of quaternary compounds formation in the system NaF-CaF{sub 2}-AlF{sub 3} are specified. To achieve this aim, the samples of phases NaCaAlF{sub 6} and Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} have been obtained by high-temperature solid-phase synthesis. Their thermal behavior when heated up to 800 deg. C has been studied using the methods of high-temperature X-ray diffraction (XRD) and thermal analysis (TA). The system under consideration can be regarded as a quasibinary section CaF{sub 2}-NaAlF{sub 4}, where at T=745-750 deg. C invariant equilibrium is implemented with the phases CaF{sub 2}-NaCaAlF{sub 6}-Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14}-(liquid melt)-(NaAlF{sub 4}). The peculiarity of the equilibrium is NaAlF{sub 4} metastability at normal pressure. Below the equilibrium temperature the quaternary phase Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} is stable and NaCaAlF{sub 6} above this temperature. The phase NaCaAlF{sub 6} fixed by rapid quenching from high temperatures and when heated up to 640 deg. C decomposes, yielding Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14}. Further heating in vacuum at temperature up to 740 deg. C results in decomposition of Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} into CaF{sub 2} and Na{sub 3}AlF{sub 6}. The expected reverse transformation of Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} into NaCaAlF{sub 6} has not been observed under experimental conditions. Transformations in bulk samples reveal direct and reverse transformation of quaternary phases. Synopsis: Thermal transformation of the quaternary compounds in system (NaF-CaF{sub 2}-AlF{sub 3}) was investigated using high-temperature X-ray diffraction (XRD) and thermal analysis (TA). In the system the invariant equilibrium is implemented with the phases CaF{sub 2}-NaCaAlF{sub 6}-Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14}-(liquid melt)-(NaAlF{sub 4}) at T=745-750 deg. C. - Graphical Abstract: The paper concerns of a small piece of the ternary system (NaF-CaF{sub 2}-AlF{sub 3}) which is very important for

  2. Experimental design and husbandry.

    PubMed

    Festing, M F

    1997-01-01

    Rodent gerontology experiments should be carefully designed and correctly analyzed so as to provide the maximum amount of information for the minimum amount of work. There are five criteria for a "good" experimental design. These are applicable both to in vivo and in vitro experiments: (1) The experiment should be unbiased so that it is possible to make a true comparison between treatment groups in the knowledge that no one group has a more favorable "environment." (2) The experiment should have high precision so that if there is a true treatment effect there will be a good chance of detecting it. This is obtained by selecting uniform material such as isogenic strains, which are free of pathogenic microorganisms, and by using randomized block experimental designs. It can also be increased by increasing the number of observations. However, increasing the size of the experiment beyond a certain point will only marginally increase precision. (3) The experiment should have a wide range of applicability so it should be designed to explore the sensitivity of the observed experimental treatment effect to other variables such as the strain, sex, diet, husbandry, and age of the animals. With in vitro data, variables such as media composition and incubation times may also be important. The importance of such variables can often be evaluated efficiently using "factorial" experimental designs, without any substantial increase in the overall number of animals. (4) The experiment should be simple so that there is little chance of groups becoming muddled. Generally, formal experimental designs that are planned before the work starts should be used. (5) The experiment should provide the ability to calculate uncertainty. In other words, it should be capable of being statistically analyzed so that the level of confidence in the results can be quantified.

  3. Accurate thermoelastic tensor and acoustic velocities of NaCl

    NASA Astrophysics Data System (ADS)

    Marcondes, Michel L.; Shukla, Gaurav; da Silveira, Pedro; Wentzcovitch, Renata M.

    2015-12-01

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.

  4. Accurate thermoelastic tensor and acoustic velocities of NaCl

    SciTech Connect

    Marcondes, Michel L.; Shukla, Gaurav; Silveira, Pedro da; Wentzcovitch, Renata M.

    2015-12-15

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.

  5. Effects of Experimental Negative Affect Manipulations on Ad Lib Smoking: A Meta-Analysis

    PubMed Central

    Heckman, Bryan W.; Carpenter, Mathew J.; Correa, John B.; Wray, Jennifer M.; Saladin, Michael E.; Froeliger, Brett; Drobes, David J.; Brandon, Thomas H.

    2015-01-01

    Aims To quantify the effect of negative affect (NA), when manipulated experimentally, upon smoking as measured within laboratory paradigms. Quantitative meta-analyses tested the effects of NA vs. neutral conditions on 1) latency to smoke and 2) number of puffs taken. Methods Twelve experimental studies tested the influence of NA induction, relative to a neutral control condition (N = 1,190; range = 24–235). Those providing relevant data contributed to separate random effects meta-analyses to examine the effects of NA on two primary smoking measures: 1) latency to smoke (nine studies) and 2) number of puffs taken during ad lib smoking (eleven studies). Hedge’s g was calculated for all studies through the use of post-NA cue responses relative to post-neutral cue responses. This effect size estimate is similar to Cohen’s d, but corrects for small sample size bias. Results NA reliably decreased latency to smoke (g = −.14; CI = −.23 to −.04; p = .007) and increased number of puffs taken (g = .14; CI = .02 to .25; p = .02). There was considerable variability across studies for both outcomes (I2 = 51% and 65% for latency and consumption, respectively). Potential publication bias was indicated for both outcomes, and adjusted effect sizes were smaller and no longer statistically significant. Conclusions In experimental laboratory studies of smokers, negative affect appears to reduce latency to smoking and increase number of puffs taken but this could be due to publication bias. PMID:25641624

  6. Vascular contractile reactivity in hypotension due to reduced renal reabsorption of Na(+) and restricted dietary Na().

    PubMed

    Alshahrani, Saeed; Rapoport, Robert M; Soleimani, Manoocher

    2017-03-01

    Reduced renal Na(+) reabsorption along with restricted dietary Na(+) depletes intravascular plasma volume which can then result in hypotension. Whether hypotension occurs and the magnitude of hypotension depends in part on compensatory angiotensin II-mediated increased vascular resistance. We investigated whether the ability of vascular resistance to mitigate the hypotension was compromised by decreased contractile reactivity. In vitro reactivity was investigated in aorta from mouse models of reduced renal Na(+) reabsorption and restricted dietary Na(+) associated with considerable hypotension and renin-angiotensin system activation: (1) the Na(+)-Cl(-)-Co-transporter (NCC) knockout (KO) with Na(+) restricted diet (0.1%, 2 weeks) and (2) the relatively more severe pendrin (apical chloride/bicarbonate exchanger) and NCC double KO. Contractile sensitivity to KCl, phenylephrine, and/or U46619 remained unaltered in aorta from both models. Maximal KCl and phenylephrine contraction expressed as force/aorta length from NCC KO with Na(+)-restricted diet remained unaltered, while in pendrin/NCC double KO were reduced to 49 and 64%, respectively. Wet weight of aorta from NCC KO with Na(+)-restricted diet remained unaltered, while pendrin/NCC double KO was reduced to 67%, consistent with decreased medial width determined with Verhoeff-Van Gieson stain. These findings suggest that hypotension associated with severe intravascular volume depletion, as the result of decreased renal Na(+) reabsorption, may in part be due to decreased contractile reactivity as a consequence of reduced vascular hypertrophy.

  7. Glutamate Water Gates in the Ion Binding Pocket of Na(+) Bound Na(+), K(+)-ATPase.

    PubMed

    Han, Minwoo; Kopec, Wojciech; Solov'yov, Ilia A; Khandelia, Himanshu

    2017-01-13

    The dynamically changing protonation states of the six acidic amino acid residues in the ion binding pocket of the Na(+), K(+) -ATPase (NKA) during the ion transport cycle are proposed to drive ion binding, release and possibly determine Na(+) or K(+) selectivity. We use molecular dynamics (MD) and density functional theory (DFT) simulations to determine the protonation scheme of the Na(+) bound conformation of NKA. MD simulations of all possible protonation schemes show that the bound Na(+) ions are most stably bound when three or four protons reside in the binding sites, and that Glu954 in site III is always protonated. Glutamic acid residues in the three binding sites act as water gates, and their deprotonation triggers water entry to the binding sites. From DFT calculations of Na(+) binding energies, we conclude that three protons in the binding site are needed to effectively bind Na(+) from water and four are needed to release them in the next step. Protonation of Asp926 in site III will induce Na(+) release, and Glu327, Glu954 and Glu779 are all likely to be protonated in the Na(+) bound occluded conformation. Our data provides key insights into the role of protons in the Na(+) binding and release mechanism of NKA.

  8. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump

    PubMed Central

    1990-01-01

    The red cell Na/K pump is known to continue to extrude Na when both Na and K are removed from the external medium. Because this ouabain- sensitive flux occurs in the absence of an exchangeable cation, it is referred to as uncoupled Na efflux. This flux is also known to be inhibited by 5 mM Nao but to a lesser extent than that inhibitable by ouabain. Uncoupled Na efflux via the Na/K pump therefore can be divided into a Nao-sensitive and Nao-insensitive component. We used DIDS- treated, SO4-equilibrated human red blood cells suspended in HEPES- buffered (pHo 7.4) MgSO4 or (Tris)2SO4, in which we measured 22Na efflux, 35SO4 efflux, and changes in the membrane potential with the fluorescent dye, diS-C3 (5). A principal finding is that uncoupled Na efflux occurs electroneurally, in contrast to the pump's normal electrogenic operation when exchanging Nai for Ko. This electroneutral uncoupled efflux of Na was found to be balanced by an efflux of cellular anions. (We were unable to detect any ouabain-sensitive uptake of protons, measured in an unbuffered medium at pH 7.4 with a Radiometer pH-STAT.) The Nao-sensitive efflux of Nai was found to be 1.95 +/- 0.10 times the Nao-sensitive efflux of (SO4)i, indicating that the stoichiometry of this cotransport is two Na+ per SO4=, accounting for 60-80% of the electroneutral Na efflux. The remainder portion, that is, the ouabain-sensitive Nao-insensitive component, has been identified as PO4-coupled Na transport and is the subject of a separate paper. That uncoupled Na efflux occurs as a cotransport with anions is supported by the result, obtained with resealed ghosts, that when internal and external SO4 was substituted by the impermeant anion, tartrate i,o, the efflux of Na was inhibited 60-80%. This inhibition could be relieved by the inclusion, before DIDS treatment, of 5 mM Cli,o. Addition of 10 mM Ko to tartrate i,o ghosts, with or without Cli,o, resulted in full activation of Na/K exchange and the pump's electrogenicity

  9. Glutamate Water Gates in the Ion Binding Pocket of Na+ Bound Na+, K+-ATPase

    PubMed Central

    Han, Minwoo; Kopec, Wojciech; Solov’yov, Ilia A.; Khandelia, Himanshu

    2017-01-01

    The dynamically changing protonation states of the six acidic amino acid residues in the ion binding pocket of the Na+, K+ -ATPase (NKA) during the ion transport cycle are proposed to drive ion binding, release and possibly determine Na+ or K+ selectivity. We use molecular dynamics (MD) and density functional theory (DFT) simulations to determine the protonation scheme of the Na+ bound conformation of NKA. MD simulations of all possible protonation schemes show that the bound Na+ ions are most stably bound when three or four protons reside in the binding sites, and that Glu954 in site III is always protonated. Glutamic acid residues in the three binding sites act as water gates, and their deprotonation triggers water entry to the binding sites. From DFT calculations of Na+ binding energies, we conclude that three protons in the binding site are needed to effectively bind Na+ from water and four are needed to release them in the next step. Protonation of Asp926 in site III will induce Na+ release, and Glu327, Glu954 and Glu779 are all likely to be protonated in the Na+ bound occluded conformation. Our data provides key insights into the role of protons in the Na+ binding and release mechanism of NKA. PMID:28084301

  10. Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters.

    PubMed

    Forster, I C; Loo, D D; Eskandari, S

    1999-04-01

    The stoichiometry of the rat and flounder isoforms of the renal type II sodium-phosphate (Na+-Pi) cotransporter was determined directly by simultaneous measurements of phosphate (Pi)-induced inward current and uptake of radiolabeled Pi and Na+ in Xenopus laevis oocytes expressing the cotransporters. There was a direct correlation between the Pi-induced inward charge and Pi uptake into the oocytes; the slope indicated that one net inward charge was transported per Pi. There was also a direct correlation between the Pi-induced inward charge and Na+ influx; the slope indicated that the influx of three Na+ ions resulted in one net inward charge. This behavior was similar for both isoforms. We conclude that for both Na+-Pi cotransporter isoforms the Na+:Pi stoichiometry is 3:1 and that divalent Pi is the transported substrate. Steady-state activation of the currents showed that the Hill coefficients for Pi were unity for both isoforms, whereas for Na+, they were 1.8 (flounder) and 2.5 (rat). Therefore, despite significant differences in the apparent Na+ binding cooperativity, the estimated Na+:Pi stoichiometry was the same for both isoforms.

  11. The electronic structure and optical properties of ABP 2O 7 ( A = Na, Li) double phosphates

    NASA Astrophysics Data System (ADS)

    Hizhnyi, Yu. A.; Oliynyk, A.; Gomenyuk, O.; Nedilko, S. G.; Nagornyi, P.; Bojko, R.; Bojko, V.

    2008-01-01

    Partial densities of states and reflection spectra of NaAlP 2O 7, KAlP 2O 7 and LiInP 2O 7 double phosphate crystals are calculated by the full-potential linear-augmented-plane-wave (FLAPW) method. Experimental reflection spectra of KAlP 2O 7, CsAlP 2O 7 and NaInP 2O 7 are measured in the 4-20 eV energy range. The values of band gaps, Eg, are found from a comparison of experiment and calculations to be 6.0 eV for NaAlP 2O 7 and KAlP 2O 7, and 4.6 eV for LiInP 2O 7.

  12. Topological Metal of NaBi with Ultralow Lattice Thermal Conductivity and Electron-phonon Superconductivity

    PubMed Central

    Li, Ronghan; Cheng, Xiyue; Xie, Qing; Sun, Yan; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2015-01-01

    By means of first-principles and ab initio tight-binding calculations, we found that the compound of NaBi is a three-dimensional non-trivial topological metal. Its topological feature can be confirmed by the presence of band inversion, the derived effective Z2 invariant and the non-trivial surface states with the presence of Dirac cones. Interestingly, our calculations further demonstrated that NaBi exhibits the uniquely combined properties between the electron-phonon coupling superconductivity in nice agreement with recent experimental measurements and the obviously anisotropic but extremely low thermal conductivity. The spin-orbit coupling effects greatly affect those properties. NaBi may provide a rich platform to study the relationship among metal, topology, superconductivity and thermal conductivity. PMID:25676863

  13. Metal-insulator transition in Na{sub x}WO{sub 3}: Photoemission spectromicroscopy study

    SciTech Connect

    Paul, Sanhita Ghosh, Anirudha Raj, Satyabrata

    2014-04-24

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, Na{sub x}WO{sub 3} by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of Na{sub x}WO{sub 3} reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in Na{sub x}WO{sub 3}.

  14. Influence of sodium halides (NaF, NaCl, NaBr, NaI) on the photocatalytic performance of hydrothermally synthesized hematite photoanodes.

    PubMed

    Wang, Tsinghai; Huang, Mao-Chia; Hsieh, Yi-Kong; Chang, Wen-Sheng; Lin, Jing-Chie; Lee, Chih-Hao; Wang, Chu-Fang

    2013-08-28

    It has been suggested that a high concentration of Fe(3+) in solution, a low pH, and noncomplexing ions of high ionic strength are all essential for developing a high-quality hematite array. Our curiosity was piqued regarding the role of the electrolyte ions in the hydrothermal synthesis of hematite photoanodes. In this study, we prepared hematite photoanodes hydrothermally from precursor solutions of 0.1 M FeCl3 at pH 1.55 with a background electrolyte of 1.0 M sodium halide (NaF, NaCl, NaBr, or NaI). We compared the structures and properties of the as-obtained hematite photoanodes with those of the material prepared in 1.0 M NaNO3, the most widely adopted electrolyte in previous studies. Among our studied systems, we found that the hematite photoanode prepared in NaCl solution was the only one possessing properties similar to those of the sample obtained from the NaNO3 solution-most importantly in terms of photoelectrochemical performance (ca. 0.2 mA/cm(2) with +0.4 V vs SCE). The hematites obtained from the NaF, NaBr, and NaI solutions exhibited much lower (by approximately 2 orders of magnitude) photocurrent densities under the same conditions, possibly because of their relatively less ordered crystallinity and the absence of rodlike morphologies. Because the synthetic protocol was identical in each case, we believe that these two distinct features reflect the environments in which these hematite photoanodes were formed. Consistent with the latest studies reported in the literature of the X-ray photoelectron spectra of fast-frozen hematite colloids in aqueous solutions, it appears that the degree of surface ion loading at the electrolyte-hematite interface (Stern layer) is critical during the development of hematite photoanodes. We suspect that a lower ion surface loading benefits the hematite developing relatively higher-order and a rodlike texture, thereby improving the photoelectrochemical activity.

  15. Elastic Coulomb breakup of 34Na

    NASA Astrophysics Data System (ADS)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  16. EDITORIAL: TaCoNa-Photonics 2008 TaCoNa-Photonics 2008

    NASA Astrophysics Data System (ADS)

    Chigrin, Dmitry N.; Busch, Kurt; Lavrinenko, Andrei V.

    2009-11-01

    intensify theoretical discussions and to put them on `solid' ground it was decided to invite world-leading experts in experimental photonics for plenary talks. Over three days, the workshop has brought together more than 70 specialists in theoretical and computational nano-photonics. The workshop took place in the historical `Physikzentrum Bad Honnef', whose unique atmosphere supported a multitude of highly interesting debates and discussions that often lasted until midnight and beyond. Different theoretical and numerical aspects of light generation, control and detection in general inhomogeneous media, photonic crystals, plasmonic structures, metamaterials and integrated optical systems were covered in 15 invited talks and 52 contributed oral and posters presentations. The plenary talks were given by Professor M Wegener (metamaterials) and Professor W Barnes (plasmonics). This special section is a cross-sectional selection of papers which were submitted by the authors of invited and contributed oral presentations. It also includes two papers of the winners of the Best Poster Awards. We hope that these papers will enhance the interest of the scientific community regarding nano-photonics in general and regarding the TaCoNa-Photonics workshop series in particular. It is our distinct pleasure to acknowledge the generous financial support of our sponsors: Karlsruhe School of Optics & Photonics (KSOP) (Germany), U.S. Army International Technology Center-Atlantic, Research Division (USA), and the Office of Naval Research Global (USA). Without the organizational assistance from the International Department of the Universität Karlsruhe GmbH (Germany) this event would simply have been impossible.

  17. Properties of magnetically attractive experimental resin composites.

    PubMed

    Hirano, S; Yasukawa, H; Nomoto, R; Moriyama, K; Hirasawa, T

    1996-12-01

    SUS444 stainless steel filled chemically cured resin composites that can attract magnet were fabricated. The filler was treated with various concentrations of silane. The experimental composite was easy to handle and showed a good shelf life. The maximal properties obtained are as follows; The attraction force to a magnetic attachment was 1/3-1/4 lower than the commercially available magnet-keeper system for dental magnetic attachment. Flexural strength and Knoop hardness of the composite were 76MPa (7.7 kgf/mm2) and 64 KHN. These values were lower than the commercially available chemically cured composite used as a reference. Eluted metal from the composite in 1% lactic acid solution for 7 days showed 0.7 mg/cm2, but in 0.9% NaCl solution for 7 days, it could not be detected.

  18. MINOS Calibration and NA49 Hadronic Production Studies

    SciTech Connect

    Morse, Robert James

    2003-08-01

    An overview of the current status of the Main Injector Neutrino Oscillation Search (MINOS) is presented. MINOS is a long-baseline experiment with two detectors situated in North America. The near detector is based at the emission point of the NuMI beam at Fermilab, Chicago, the far detector is 735 km downstream in a disused iron mine in Soudan, Minnesota. A third detector, the calibration detector, is used to cross-calibrate these detectors by sampling different particle beams at CERN. A detailed description of the design and construction of the light-injection calibration system is included. Also presented are experimental investigations into proton-carbon collisions at 158 GeV/c carried out with the NA49 experiment at CERN. The NA49 experiment is a Time Projection Chamber (TPC) based experiment situated at CERN's North Area. It is a well established experiment with well known characteristics. The data gained from this investigation are to be used to parameterize various hadronic production processes in accelerator and atmospheric neutrino production. These hadronic production parameters will be used to improve the neutrino generation models used in calculating the neutrino oscillation parameters in MINOS.

  19. Geoengineering as Collective Experimentation.

    PubMed

    Stilgoe, Jack

    2016-06-01

    Geoengineering is defined as the 'deliberate and large-scale intervention in the Earth's climatic system with the aim of reducing global warming'. The technological proposals for doing this are highly speculative. Research is at an early stage, but there is a strong consensus that technologies would, if realisable, have profound and surprising ramifications. Geoengineering would seem to be an archetype of technology as social experiment, blurring lines that separate research from deployment and scientific knowledge from technological artefacts. Looking into the experimental systems of geoengineering, we can see the negotiation of what is known and unknown. The paper argues that, in renegotiating such systems, we can approach a new mode of governance-collective experimentation. This has important ramifications not just for how we imagine future geoengineering technologies, but also for how we govern geoengineering experiments currently under discussion.

  20. Experimental temporal quantum steering

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Černoch, Antonín; Lemr, Karel; Miranowicz, Adam; Nori, Franco

    2016-11-01

    Temporal steering is a form of temporal correlation between the initial and final state of a quantum system. It is a temporal analogue of the famous Einstein-Podolsky-Rosen (spatial) steering. We demonstrate, by measuring the photon polarization, that temporal steering allows two parties to verify if they have been interacting with the same particle, even if they have no information about what happened with the particle in between the measurements. This is the first experimental study of temporal steering. We also performed experimental tests, based on the violation of temporal steering inequalities, of the security of two quantum key distribution protocols against individual attacks. Thus, these results can lead to applications for secure quantum communications and quantum engineering.

  1. Experimental temporal quantum steering

    PubMed Central

    Bartkiewicz, Karol; Černoch, Antonín; Lemr, Karel; Miranowicz, Adam; Nori, Franco

    2016-01-01

    Temporal steering is a form of temporal correlation between the initial and final state of a quantum system. It is a temporal analogue of the famous Einstein-Podolsky-Rosen (spatial) steering. We demonstrate, by measuring the photon polarization, that temporal steering allows two parties to verify if they have been interacting with the same particle, even if they have no information about what happened with the particle in between the measurements. This is the first experimental study of temporal steering. We also performed experimental tests, based on the violation of temporal steering inequalities, of the security of two quantum key distribution protocols against individual attacks. Thus, these results can lead to applications for secure quantum communications and quantum engineering. PMID:27901121

  2. MSFC Skylab experimenter's reference

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The methods and techniques for experiment development and integration that evolved during the Skylab Program are described to facilitate transferring this experience to experimenters in future manned space programs. Management responsibilities and the sequential process of experiment evolution from initial concept through definition, development, integration, operation and postflight analysis are outlined in the main text and amplified, as appropriate, in appendixes. Emphasis is placed on specific lessons learned on Skylab that are worthy of consideration by future programs.

  3. Experimental Neutrino Physics

    ScienceCinema

    Walter, Chris [Duke University, Durham, North Carolina, United States

    2016-07-12

    In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

  4. Approche thermodynamique de la corrosion des refractaires aluminosiliceux par le bain cryolithique : modelisation thermodynamique du systeme quaternaire reciproque AlF3-NaF-SiF 4-Al2O3-Na2O-SiO2

    NASA Astrophysics Data System (ADS)

    Lambotte, Guillaume

    The main objective of this thesis is the thermodynamic modeling of liquid and solid solutions, the stoichiometric compounds and the gaseous phase of the chemical system which represent the species involved in the corrosion of the refractory lining of the electrolysis cell. This chemical system is the quaternary reciprocal system AlF3-NaF-SiF4-Al 2O3-Na2O-SiO2 with aluminum and carbon. The modeling of the entire reciprocal system has never been realized before and is very challenging due to the nature of the oxyfluoride solution. The thermodynamic modeling is based on Gibbs free energy functions coming from the theory of solutions. The central hypothesis of this project is that, if it is possible to reproduce the strong short-range ordering observed between the ions of the liquid solution, then reasonable results will be obtained for the phase equilibria involved in this chemical system. The thermodynamic model used in this thesis is the Modified Quasichemical Model in the Quadruplet Approximation (MQMQA) which takes into account the short-range ordering between first- and also second-nearest-neighbors, and is the best suited to model the oxyfluoride liquid solution. First, the reciprocal system with the most negative Gibbs free energy change for the exchange reaction between the end-members, NaF-SiF4-Na 2O-SiO2, was modeled, allowing thus the validation of the recent modifications of the MQMQA aimed at improving the modeling of the thermodynamic properties of reciprocal solutions presenting a strong short-range order among first-nearest neighbors as well as second-nearest neighbors. In order to model this system, an estimate of the thermodynamic properties of the hypothetical SiF4 liquid was necessary. The experimental data in the binary systems NaF-SiF4 and Na2O-SiO2 are reproduced within the experimental error limits. In the reciprocal system, a group of data in conflict with all others could not be reproduced. The data considered reliable are well reproduced. A

  5. Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes.

    PubMed

    Hu, Xiaofei; Li, Zifan; Zhao, Yaran; Sun, Jianchao; Zhao, Qing; Wang, Jianbin; Tao, Zhanliang; Chen, Jun

    2017-02-01

    Na-CO2 batteries using earth-abundant Na and greenhouse gas CO2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi-solid state Na-CO2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride-co-hexafluoropropylene)]-4% SiO2/NaClO4-TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm(-1)), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na(+) plating/stripping (5.7 to 16.5 mA cm(-2)). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO2 batteries to successfully cycle in wide CO2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g(-1) with a fixed capacity of 1000 mA·hour g(-1) in pure CO2. Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg(-1)). This study makes quasi-solid state Na-CO2 batteries an attractive prospect.

  6. Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes

    PubMed Central

    Hu, Xiaofei; Li, Zifan; Zhao, Yaran; Sun, Jianchao; Zhao, Qing; Wang, Jianbin; Tao, Zhanliang; Chen, Jun

    2017-01-01

    Na-CO2 batteries using earth-abundant Na and greenhouse gas CO2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi–solid state Na-CO2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride-co-hexafluoropropylene)]–4% SiO2/NaClO4–TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm−1), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na+ plating/stripping (5.7 to 16.5 mA cm−2). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO2 batteries to successfully cycle in wide CO2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g−1 with a fixed capacity of 1000 mA·hour g−1 in pure CO2. Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg−1). This study makes quasi–solid state Na-CO2 batteries an attractive prospect. PMID:28164158

  7. Woodward Effect Experimental Verifications

    NASA Astrophysics Data System (ADS)

    March, Paul

    2004-02-01

    The work of J. F. Woodward (1990 1996a; 1996b; 1998; 2002a; 2002b; 2004) on the existence of ``mass fluctuations'' and their use in exotic propulsion schemes was examined for possible application in improving space flight propulsion and power generation. Woodward examined Einstein's General Relativity Theory (GRT) and assumed that if the strong Machian interpretation of GRT as well as gravitational / inertia like Wheeler-Feynman radiation reaction forces hold, then when an elementary particle is accelerated through a potential gradient, its rest mass should fluctuate around its mean value during its acceleration. Woodward also used GRT to clarify the precise experimental conditions necessary for observing and exploiting these mass fluctuations or ``Woodward effect'' (W-E). Later, in collaboration with his ex-graduate student T. Mahood, they also pushed the experimental verification boundaries of these proposals. If these purported mass fluctuations occur as Woodward claims, and his assumption that gravity and inertia are both byproducts of the same GRT based phenomenon per Mach's Principle is correct, then many innovative applications such as propellantless propulsion and gravitational exotic matter generators may be feasible. This paper examines the reality of mass fluctuations and the feasibility of using the W-E to design propellantless propulsion devices in the near to mid-term future. The latest experimental results, utilizing MHD-like force rectification systems, will also be presented.

  8. SAA drift: Experimental results

    NASA Astrophysics Data System (ADS)

    Grigoryan, O. R.; Romashova, V. V.; Petrov, A. N.

    According to the paleomagnetic analysis there are variations of Earth’s magnetic field connected with magnetic moment changing. These variations affect on the South Atlantic Anomaly (SAA) location. Indeed different observations approved the existence of the SAA westward drift rate (0.1 1.0 deg/year) and northward drift rate (approximately 0.1 deg/year). In this work, we present the analysis of experimental results obtained in Scobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) onboard different Earth’s artificial satellites (1972 2003). The fluxes of protons with energy >50 MeV, gamma quanta with energy >500 keV and neutrons with energy 0.1 1.0 MeV in the SAA region have been analyzed. The mentioned above experimental data were obtained onboard the orbital stations Salut-6 (1979), MIR (1991, 1998) and ISS (2003) by the similar experimental equipment. The comparison of the data obtained during these two decades of investigations confirms the fact that the SAA drifts westward. Moreover the analysis of fluxes of electrons with energy about hundreds keV (Cosmos-484 (1972) and Active (Interkosmos-24, 1991) satellites) verified not only the SAA westward drift but northward drift also.

  9. Genetics of experimental hypertension.

    PubMed

    Dominiczak, A F; Clark, J S; Jeffs, B; Anderson, N H; Negrin, C D; Lee, W K; Brosnan, M J

    1998-12-01

    Experimental models of genetic hypertension are used to develop paradigms to study human essential hypertension while removing some of the complexity inherent in the study of human subjects. Since 1991 several quantitative trait loci responsible for blood pressure regulation have been identified in various rat crosses. More recently, a series of interesting quantitative trait loci influencing cardiac hypertrophy, stroke, metabolic syndrome and renal damage has also been described. It is recognized that the identification of large chromosomal regions containing a quantitative trait locus is only a first step towards gene identification. The next step is the production of congenic strains and substrains to confirm the existence of the quantitative trait locus and to narrow down the chromosomal region of interest. Several congenic strains have already been produced, with further refinement of the methodology currently in progress. The ultimate goal is to achieve positional cloning of the causal gene, a task which has so far been elusive. There are several areas of cross-fertilization between experimental and human genetics of hypertension, with a successful transfer of two loci directly from rats to humans and with new pharmacogenetic approaches which may be utilized in both experimental and clinical settings.

  10. Experimental alcohol blastopathy.

    PubMed

    Sandor, S

    1988-01-01

    Experimental data are presented with respect to "experimental alcohol blastopathy" performed in our laboratory. As in our interpretation the notion of blastopathy involves both pathological changes during preimplantation development due to previous, preconceptional or preimplantation influences and later, pre- or postnatal effects induced by factors active during the preimplantation period, up to now the following experimental models were applied (on rats and mice): chronic and acute maternal, biparental or paternal ethanol alcoholization; preimplantation treatment with acetaldehyde or disulfiram followed by ethanol administration; acute ethanol intoxication before implantation on the background of chronic maternal ethanol intake; chronic maternal intake of various beverages. The main components of experimental alcohol blastopathy detected (by using a complex control methodology) were: pathological changes during the preimplantation developmental stages (lower mean number of embryos/animal, retardation of development, lowered migration rate of the embryos from the oviduct to the uterus, higher number of pathological morphological features), delayed implantation, disturbances of the early postimplantation development, retarded late foetal and placental growth. The effect of ethanol may be direct (ethanol being detectable in the oviductal and uterine fluid after both acute and chronic alcoholization) or indirect, via changes of the maternal macro- or microenvironment. The increase of the maternal blood acetaldehyde level may contribute to the appearance of alcohol blastopathy. Chronic beer and wine intake and acute intoxication with cognac suggest - up to now - the enhancing effect of beverage congeners. The noxious effect of acute ethanol intoxication superposed to chronic alcoholization is more marked that the separate effect of the two kinds of treatment. The chronic ethanol intake of fertilizing males (in mice) leads, both in the case of treated or untreated

  11. Selective and reversible entrapment of He and Ne in NaA zeolite at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Saig, A.; Danon, A.; Finkelstein, Y.; Koresh, J. E.

    2003-03-01

    The He(Ne)/NaA-zeolite system was studied using temperature programmed desorption mass spectrometry (TPD-MS) with a supersonic molecular-beam inlet. Controllable, stable, and reversible entrapment of He and Ne by the β cages of NaA zeolite was experimentally achieved at ambient pressure and around 200 °C. Decapsulation of either He or Ne from NaA is shown to be of a doublet character, indicating on the occurrence of effectively two classes of β cavities: completely blocked cages, never previously observed, and partly blocked ones. The encapsulation of Ne and He in NaA is associated with the coupling of two reversible mechanisms governing the effective free aperture dimension, i.e., apertures thermal dilation and activated ion mobility. Characteristic admission temperatures between 130 °C and 200 °C, show highly selective sieving effect between He and Ne, suggesting its potential utilization for gas separation via a temperature swing practice and for a possible experimental realization of quantum sieving.

  12. Measurement of (23)Na(n,2n) cross section in well-defined reactor spectra.

    PubMed

    Košťál, Michal; Švadlenková, Marie; Baroň, Petr; Milčák, Ján; Mareček, Martin; Uhlíř, Jan

    2016-05-01

    The present paper aims to compare the calculated and experimental reaction rates of (23)Na(n,2n)(22)Na in a well-defined reactor spectra of a special core assembled in the LR-0 reactor. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination. The resulting value averaged in spectra is 0.91±0.02µb. This cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Generally the best C/E agreement, within 2%, was found using the ROSFOND-2010 data set, whereas the worst, as high as 40%, was found using the ENDF/B-VII.0.

  13. Design and response function of NaI detectors of Aragats complex installation

    NASA Astrophysics Data System (ADS)

    Arakelyan, K.; Daryan, A.; Kozliner, L.; Hovsepyan, G.; Reimers, A.

    2014-11-01

    In 2011, a network of five thallium-doped sodium iodide (Nal(Tl)) detectors was installed on Aragats Space Environmental Center (ASEC) and was included into ASEC detectors system. Along with monitoring of different species of secondary cosmic rays, ASEC detectors register several thunderstorm ground enhancements (TGEs). NaI(Tl) detector integration in the ASEC detector system is of great importance for the study of thunderstorm phenomena for the reason that NaI(Tl) detectors have a higher efficiency of gamma rays detection compared with plastic ones. In this article, the design and characteristics of NaI(Tl) detectors are described. Simulations of detector response are performed. Comparison of simulation results with experimental data showed good agreement between simulations and experimentally observed distributions for analog-to-digital converter (ADC) channels (codes) of NaI(Tl) detectors at two depths of the atmosphere, thus, indicating the correctness of the detector's response determination. A procedure for reconstruction of gamma energy spectrum was developed and approximation of the energy spectrum of recorded TGE event was carried out by a power function under the assumption that the recorded fluxes consist mainly of gamma quanta.

  14. A thermo-mechanical stress prediction model for contemporary planar sodium sulfur (NaS) cells

    NASA Astrophysics Data System (ADS)

    Jung, Keeyoung; Colker, Jeffrey P.; Cao, Yuzhe; Kim, Goun; Park, Yoon-Cheol; Kim, Chang-Soo

    2016-08-01

    We introduce a comprehensive finite-element analysis (FEA) computational model to accurately predict the thermo-mechanical stresses at heterogeneous joints and components of large-size sodium sulfur (NaS) cells during thermal cycling. Quantification of the thermo-mechanical stress is important because the accumulation of stress during cell assembly and/or operation is one of the critical issues in developing practical planar NaS cells. The computational model is developed based on relevant experimental assembly and operation conditions to predict the detailed stress field of a state-of-the-art planar NaS cell. Prior to the freeze-and-thaw thermal cycle simulation, residual stresses generated from the actual high temperature cell assembly procedures are calculated and implemented into the subsequent model. The calculation results show that large stresses are developed on the outer surface of the insulating header and the solid electrolyte, where component fracture is frequently observed in the experimental cell fabrication process. The impacts of the coefficients of thermal expansion (CTE) of glass materials and the thicknesses of cell container on the stress accumulation are also evaluated to improve the cell manufacturing procedure and to guide the material choices for enhanced thermo-mechanical stability of large-size NaS cells.

  15. Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization

    SciTech Connect

    McDaniel, Anthony H.; Ihlefeld, Jon F.; Bartelt, Norman Charles

    2015-10-01

    Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with first principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.

  16. Experimental determination of solubilities of di-calcium ethylenediaminetetraacetic acid hydrate [Ca2C10H12N2O8·7H2O(s)] in NaCl and MgCl2 solutions to high ionic strengths and its Pitzer model: Applications to geological disposal of nuclear waste and other low temperature environments

    SciTech Connect

    Xiong, Yongliang; Kirkes, Leslie; Westfall, Terry

    2016-02-01

    In this study, solubility measurements on di-calcium ethylenediaminetetraacetic acid [Ca2C10H12N2O8(s), abbreviated as Ca2EDTA(s)] as a function of ionic strength are conducted in NaCl solutions up to I = 5.0 mol•kg–1 and in MgCl2 solutions up to I = 7.5 mol•kg–1, at room temperature (22.5 ± 0.5oC).

  17. Complexation of pectin with macro- and microelements. Antianemic activity of Na, Fe and Na, Ca, Fe complexes.

    PubMed

    Minzanova, S T; Mironov, V F; Vyshtakalyuk, A B; Tsepaeva, O V; Mironova, L G; Mindubaev, A Z; Nizameev, I R; Kholin, K V; Milyukov, V A

    2015-12-10

    New water-soluble pectin complexes with Ca(2+), Mg(2+), Co(2+), Cu(2+), Fe(2+), Mn(2+), Zn(2+) on the basis of pectin biopolymer have been synthesized and successfully tested on white rats. For a starting, we have obtained a sodium pectate to enhance solubility of target complexes as a whole. Shortly afterwards, running the reaction of ligand exchange of Nа(+) ions with corresponding s-, d- metal cations we were able to synthesize new pectin complexes. The ranges of s-, d-metals salts concentrations were detected experimentally, in which the selective formation of water-soluble complexes occurred. Antianemic effect of new pectin complexes with Na, Fe and Na, Ca, Fe was investigated on white rats with posthemorrhagic anemia. Under the effect of complexes, the improvement of animals and prevention of erythropoiesis disorders were observed. Antianemic effect of the complexes manifested itself in the doses equivalent to 25% or 50% of the iron daily rate, recommended in the treatment of iron-deficiency anemia with the drugs based on iron sulphate.

  18. Voltage dependence of Na translocation by the Na/K pump.

    PubMed

    Nakao, M; Gadsby, D C

    During each complete reaction cycle, the Na/K pump transports three Na ions out across the cell membrane and two K ions in. The resulting net extrusion of positive charge generates outward membrane current but, until now, it was unclear how that net charge movement occurs. Reasonable possibilities included a single positive charge moving outwards during Na translocation; or a single negative charge moving inwards during K translocation; or either positive or negative charges moving during both translocation steps, but in unequal quantities. Any step that involves net charge movement through the membrane must have voltage-dependent transition rates. Here we report measurements of transient, voltage-dependent, displacement currents generated by the pump when its normal Na/K transport cycle has been interrupted by removal of external K and it is thus constrained to carry out Na/Na exchange. The quantity and voltage sensitivity of the charge moved during these transient currents suggests that Na translocation includes a voltage-dependent transition involving movement of one positive charge across the membrane. This single step can thus fully account for the electrogenic nature of Na/K exchange. The result provides important new insight into the molecular mechanism of active cation transport.

  19. Dynamics of Na(+)(Benzene) + Benzene Association and Ensuing Na(+)(Benzene)2* Dissociation.

    PubMed

    Paul, Amit K; Kolakkandy, Sujitha; Hase, William L

    2015-07-16

    Chemical dynamics simulations were used to study Bz + Na(+)(Bz) → Na(+)(Bz)2* association and the ensuing dissociation of the Na(+)(Bz)2* cluster (Bz = benzene). An interesting and unexpected reaction found from the simulations is direct displacement, for which the colliding Bz molecule displaces the Bz molecule attached to Na(+), forming Na(+)(Bz). The rate constant for Bz + Na(+)(Bz) association was calculated at 750 and 1000 K, and found to decrease with increase in temperature. By contrast, the direct displacement rate constant increases with temperature. The cross section and rate constant for direct displacement are approximately an order of magnitude lower than those for association. The Na(+)(Bz)2* cluster, formed by association, dissociates with a biexponential probability, with the rate constant for the short-time component approximately an order of magnitude larger than that for the longer time component. The latter rate constant agrees with that of Rice-Ramsperger-Kassel-Marcus (RRKM) theory, consistent with rapid intramolecular vibrational energy redistribution (IVR) and intrinsic RRKM dynamics for the Na(+)(Bz)2* cluster. A coupled phase space model was used to analyze the biexponential dissociation probability.

  20. Une argile modèle pour l'étude du gonflement des sols argileux: la laponite-Na de synthèse

    NASA Astrophysics Data System (ADS)

    Al-Mukhtar, Muzahim; Touray, Jean-Claude; Bergaya, Faïza

    1999-08-01

    The swelling behaviour of many natural clay soils is generally limited to a small range of water contents, over which they are plastic. Moreover, it is difficult to control the initial conditions, mainly water content and density, and study the experimental swelling behaviour. Experimental studies were undertaken on synthetic clay, Na-laponite, using it as a model soil to understand the swelling behaviour of clay soils. Na-laponite has a high affinity for water and remains plastic for a large range of water contents. Experimental results suggest that the swelling pressure is independent of the initial water content for the relative humidity conditions between 32 and 98 %.

  1. Low-affinity Na+ uptake in the halophyte Suaeda maritima.

    PubMed

    Wang, Suo-Min; Zhang, Jin-Lin; Flowers, Timothy J

    2007-10-01

    Na(+) uptake by plant roots has largely been explored using species that accumulate little Na(+) into their shoots. By way of contrast, the halophyte Suaeda maritima accumulates, without injury, concentrations of the order of 400 mM NaCl in its leaves. Here we report that cAMP and Ca(2+) (blockers of nonselective cation channels) and Li(+) (a competitive inhibitor of Na(+) uptake) did not have any significant effect on the uptake of Na(+) by the halophyte S. maritima when plants were in 25 or 150 mM NaCl (150 mM NaCl is near optimal for growth). However, the inhibitors of K(+) channels, TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (5 mM), significantly reduced the net uptake of Na(+) from 150 mM NaCl over 48 h, by 54%, 24%, and 29%, respectively. TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (1 mm) also significantly reduced (22)Na(+) influx (measured over 2 min in 150 mM external NaCl) by 47%, 30%, and 31%, respectively. In contrast to the situation in 150 mm NaCl, neither TEA(+) (1-10 mM) nor Cs(+) (0.5-10 mM) significantly reduced net Na(+) uptake or (22)Na(+) influx in 25 mM NaCl. Ba(2+) (at 5 mm) did significantly decrease net Na(+) uptake (by 47%) and (22)Na(+) influx (by 36% with 1 mM Ba(2+)) in 25 mM NaCl. K(+) (10 or 50 mM) had no effect on (22)Na(+) influx at concentrations below 75 mM NaCl, but the influx of (22)Na(+) was inhibited by 50 mM K(+) when the external concentration of NaCl was above 75 mM. The data suggest that neither nonselective cation channels nor a low-affinity cation transporter are major pathways for Na(+) entry into root cells. We propose that two distinct low-affinity Na(+) uptake pathways exist in S. maritima: Pathway 1 is insensitive to TEA(+) or Cs(+), but sensitive to Ba(2+) and mediates Na(+) uptake under low salinities (25 mM NaCl); pathway 2 is sensitive to TEA(+), Cs(+), and Ba(2+) and mediates Na(+) uptake under higher external salt concentrations (150 mM NaCl). Pathway 1 might be mediated by a high-affinity K transporter

  2. Effect of NaFeEDTA-fortified soy sauce on zinc absorption in children.

    PubMed

    Li, Min; Wu, Jinghuan; Ren, Tongxiang; Wang, Rui; Li, Weidong; Piao, Jianhua; Wang, Jun; Yang, Xiaoguang

    2015-03-01

    NaFeEDTA has been applied in many foods as an iron fortificant and is used to prevent iron deficiency in Fe-depleted populations. In China, soy sauce is fortified with NaFeEDTA to control iron deficiency. However, it is unclear whether Fe-fortified soy sauce affects zinc absorption. To investigate whether NaFeEDTA-fortified soy sauce affects zinc absorption in children, sixty children were enrolled in this study and randomly assigned to three groups (10 male children and 10 female children in each group). All children received daily 3 mg of (67)Zn and 1.2 mg of dysprosium orally, while the children in the three groups were supplemented with NaFeEDTA-fortified soy sauce (6 mg Fe, NaFeEDTA group), FeSO₄-fortified soy sauce (6 mg Fe, FeSO₄ group), and no iron-fortified soy sauce (control group), respectively. Fecal samples were collected during the experimental period and analyzed for the Zn content, (67)Zn isotope ratio and dysprosium content. The Fe intake from NaFeEDTA-fortified and FeSO₄-fortified groups was significantly higher than that in the control group (P < 0.0001). The daily total Zn intake was not significantly different among the three groups. There were no significant differences in fractional Zn absorption (FZA) (P = 0.3895), dysprosium recovery (P = 0.7498) and Zn absorption (P = 0.5940) among the three groups. Therefore, NaFeEDTA-fortified soy sauce does not affect Zn bioavailability in children.

  3. Theoretical assessment on mixing properties of liquid Tl-Na alloys

    NASA Astrophysics Data System (ADS)

    Jha, I. S.; Khadka, R.; Koirala, R. P.; Singh, B. P.; Adhikari, D.

    2016-06-01

    Thermodynamic and structural properties of mixing of molten Tl-Na alloys at 673 K have been investigated using quasi-chemical model. To understand the mixing behaviour in more detail, emphasis is placed on the role of interaction energy term, and viscosity and surface tension of the alloys have also been analysed under statistical considerations. Our study shows negative deviation from the Raoultian behaviour in the properties of Tl-Na alloy thereby indicating hetero-coordination in the Tl-Na melt at 673 K in the full range of concentration. Theoretically, computed thermodynamic data at 673 K agree very well with the corresponding experimental data. The viscosities of the alloys computed from Kaptay equation show small negative deviation and those computed from Singh and Sommer's formulation show small positive deviation from ideal values while the Budai-Benko-Kaptay equation predicts noticeable negative deviation in Na-rich end and positive deviation in Tl-rich end of the composition. The calculations of surface tension reveal that results obtained from layered structure approach and compound formation model are in good agreement in the Na-rich side and in reasonable agreement in Tl-rich side of the composition, while those computed from Butler equation show noticeable deviations in the intermediate compositions. Both the viscosity and surface tension of liquid Tl-Na alloys increase with addition of Tl-component, viscosity having approximately linear variation with concentration. The study shows that there is non-linear variation in surface composition with bulk concentration and for most of the compositions the surface of the alloy is enriched with Na-atoms which segregate to the surface.

  4. Bioinformatic characterizations and prediction of K+ and Na+ ion channels effector toxins

    PubMed Central

    Soli, Rima; Kaabi, Belhassen; Barhoumi, Mourad; El-Ayeb, Mohamed; Srairi-Abid, Najet

    2009-01-01

    Background K+ and Na+ channel toxins constitute a large set of polypeptides, which interact with their ion channel targets. These polypeptides are classified in two different structural groups. Recently a new structural group called birtoxin-like appeared to contain both types of toxins has been described. We hypothesized that peptides of this group may contain two conserved structural motifs in K+ and/or Na+ channels scorpion toxins, allowing these birtoxin-like peptides to be active on K+ and/or Na+ channels. Results Four multilevel motifs, overrepresented and specific to each group of K+ and/or Na+ ion channel toxins have been identified, using GIBBS and MEME and based on a training dataset of 79 sequences judged as representative of K+ and Na+ toxins. Unexpectedly birtoxin-like peptides appeared to present a new structural motif distinct from those present in K+ and Na+ channels Toxins. This result, supported by previous experimental data, suggests that birtoxin-like peptides may exert their activity on different sites than those targeted by classic K+ or Na+ toxins. Searching, the nr database with these newly identified motifs using MAST, retrieved several sequences (116 with e-value < 1) from various scorpion species (test dataset). The filtering process left 30 new and highly likely ion channel effectors. Phylogenetic analysis was used to classify the newly found sequences. Alternatively, classification tree analysis, using CART algorithm adjusted with the training dataset, using the motifs and their 2D structure as explanatory variables, provided a model for prediction of the activity of the new sequences. Conclusion The phylogenetic results were in perfect agreement with those obtained by the CART algorithm. Our results may be used as criteria for a new classification of scorpion toxins based on functional motifs. PMID:19284552

  5. Solving the Mechanism of Na+/H+ Antiporters Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Dotson, David L.

    Na+/H+ antiporters are vital membrane proteins for cell homeostasis, transporting Na+ ions in exchange for H+ across the lipid bilayer. In humans, dysfunction of these transporters are implicated in hypertension, heart failure, epilepsy, and autism, making them well-established drug targets. Although experimental structures for bacterial homologs of the human Na+/H+ have been obtained, the detailed mechanism for ion transport is still not well-understood. The most well-studied of these transporters, Escherichia coli NhaA, known to transport 2 H+ for every Na+ extruded, was recently shown to bind H+ and Na+ at the same binding site, for which the two ion species compete. Using molecular dynamics simulations, the work presented in this dissertation shows that Na+ binding disrupts a previously-unidentified salt bridge between two conserved residues, suggesting that one of these residues, Lys300, may participate directly in transport of H+. This work also demonstrates that the conformational change required for ion translocation in a homolog of NhaA, Thermus thermophilus NapA, thought by some to involve only small helical movements at the ion binding site, is a large-scale, rigid-body movement of the core domain relative to the dimerization domain. This elevator-like transport mechanism translates a bound Na+ up to 10 A across the membrane. These findings constitute a major shift in the prevailing thought on the mechanism of these transporters, and serve as an exciting launchpad for new developments toward understanding that mechanism in detail.

  6. Establishment and Maintenance of the Human Naïve CD4+ T-Cell Compartment

    PubMed Central

    Silva, Susana L.; Sousa, Ana E.

    2016-01-01

    The naïve CD4+ T-cell compartment is considered essential to guarantee immune competence throughout life. Its replenishment with naïve cells with broad diverse receptor repertoire, albeit with reduced self-reactivity, is ensured by the thymus. Nevertheless, cumulative data support a major requirement of post-thymic proliferation both for the establishment of the human peripheral naïve compartment during the accelerated somatic growth of childhood, as well as for its lifelong maintenance. Additionally, a dynamic equilibrium is operating at the cell level to fine-tune the T-cell receptor threshold to activation and survival cues, in order to counteract the continuous naïve cell loss by death or conversion into memory/effector cells. The main players in these processes are low-affinity self-peptide/MHC and cytokines, particularly IL-7. Moreover, although naïve CD4+ T-cells are usually seen as a homogeneous population regarding stage of maturation and cell differentiation, increasing evidence points to a variety of phenotypic and functional subsets with distinct homeostatic requirements. The paradigm of cells committed to a distinct lineage in the thymus are the naïve regulatory T-cells, but other functional subpopulations have been identified based on their time span after thymic egress, phenotypic markers, such as CD31, or cytokine production, namely IL-8. Understanding the regulation of these processes is of utmost importance to promote immune reconstitution in several clinical settings, namely transplantation, persistent infections, and aging. In this mini review, we provide an overview of the mechanisms underlying human naïve CD4+ T-cell homeostasis, combining clinical data, experimental studies, and modeling approaches. PMID:27843891

  7. Combined fast reversible liquidlike elastic deformation with topological phase transition in Na3Bi

    NASA Astrophysics Data System (ADS)

    Cheng, Xiyue; Li, Ronghan; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2015-10-01

    By means of first-principles calculations, we identified the structural phase transition of Na3Bi from the hexagonal ground state to the cubic c F 16 phase above 0.8 GPa, in agreement with the experimental findings. Upon the releasing of pressure, the cF 16 phase of Na3Bi is mechanically stable at ambient condition. The calculations revealed that the c F 16 phase is topological semimetal (TS), similar to well-known HgTe, and it even exhibits an unusually low C' modulus (only about 1.9 GPa) and a huge anisotropy Au of as high as 11, which is the third-highest value among all known cubic crystals in their elastic behaviors. These facts render cF 16 -type Na3Bi very soft with a liquidlike elastic deformation in the (110)<1 1 ¯0 > slip system. Importantly, accompanying this deformation, Na3Bi shows a topological phase transition from a TS state at its strain-free cubic phase to a topological insulator (TI) at its distorted phase. Because the C' elastic deformation has almost no energy cost in a reversible and liquidlike soft manner, cF 16 -type Na3Bi would potentially provide a fast on/off switching method between TS and TI, which would be beneficial to quantum electronic devices for practical applications.

  8. Solvation of Na^+ in water from first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    White, J. A.; Schwegler, E.; Galli, G.; Gygi, F.

    2000-03-01

    We have carried out ab initio molecular dynamics (MD) simulations of the Na^+ ion in water with an MD cell containing a single alkali ion and 53 water molecules. The electron-electron and electron-ion interactions were modeled by density functional theory with a generalized gradient approximation for the exchange-correlation functional. The computed radial distribution functions, coordination numbers, and angular distributions are consistent with available experimental data. The first solvation shell contains 5.2±0.6 water molecules, with some waters occasionally exchanging with those of the second shell. The computed Na^+ hydration number is larger than that from calculations for water clusters surrounding an Na^+ ion, but is consistent with that derived from x-ray measurements. Our results also indicate that the first hydration shell is better defined for Na^+ than for K^+ [1], as indicated by the first minimum in the Na-O pair distribution function. [1] L.M. Ramaniah, M. Bernasconi, and M. Parrinello, J. Chem. Phys. 111, 1587 (1999). This work was performed for DOE under contract W-7405-ENG-48.

  9. An extended high pressure-temperature phase diagram of NaBH4.

    PubMed

    George, Lyci; Drozd, Vadym; Couvy, Helene; Chen, Jiuhua; Saxena, Surendra K

    2009-08-21

    We have studied the structural stability of NaBH(4) under pressures up to 17 GPa and temperatures up to 673 K in a diamond anvil cell and formed an extended high P-T phase diagram using combined synchrotron x-ray diffraction and Raman spectroscopy. Even though few reports on phase diagram of NaBH(4) are found in current literature, up to our knowledge this is the first experimental work using diamond anvil cell in a wide pressure/temperature range. Bulk modulus, its temperature dependence, and thermal expansion coefficient for the ambient cubic phase of NaBH(4) are found to be 18.76(1) GPa, -0.0131 GPa K(-1), and 12.5x10(-5)+23.2x10(-8) T/K, respectively. We have also carried out Raman spectroscopic studies at room temperature up to 30 GPa to reinvestigate the phase transitions observed for NaBH(4). A comparative symmetry analysis also has been carried out for different phases of NaBH(4).

  10. Excitation Mechanisms in Moderate-Energy Na+-He and K+-He Collisions

    NASA Astrophysics Data System (ADS)

    Kita, Shigetomo; Hattori, Takehito; Shimakura, Noriyuki

    2015-01-01

    Excitation mechanisms in Na+-He and K+-He collisions were studied at laboratory collision energies of 1000 ≤ Elab ≤ 1500 eV by differential scattering spectroscopy. Extensive measurements were performed at Elab = 1500 eV. Double differential cross sections σ(Θ)k were measured over a wide range of center-of-mass scattering angles, 7.3 ≤ Θ ≤ 173°, by detecting all the scattered particles (Na+, Na, K+, K, He+, and He), where the subscript k denotes the number of exit channels in the reactions. At the collision energy of Elab = 1500 eV, one- and two-electron excitations were observed appreciably for the Na+-He collisions, while only one-electron excitations were observed in the K+-He collisions. The analyses of the experimental results for these collision systems indicate that the electronic transitions in the Na+-He and K+-He collisions take place at the internuclear distances of R < RC = 0.63 × 10-10 m [potential height V(R) > 49 eV] and R < RC = 0.80 × 10-10 m [V(R) > 36 eV], respectively. For these asymmetric systems, at Elab= 1500 eV, the electronic transition probabilities around the threshold angles are so small that the integral excitation cross sections have small values of Sex < 1.2 × 10-21 m2.

  11. Production and relevance of cosmogenic radionuclides in NaI(Tl) crystals

    SciTech Connect

    Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Ginestra, C.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2015-08-17

    The cosmogenic production of long-lived radioactive isotopes in materials is an hazard for experiments demanding ultra-low background conditions. Although NaI(Tl) scintillators have been used in this context for a long time, very few activation data were available. We present results from two 12.5 kg NaI(Tl) detectors, developed within the ANAIS project and installed at the Canfranc Underground Laboratory. The prompt data taking starting made possible a reliable quantification of production of some I, Te and Na isotopes with half-lives larger than ten days. Tnitial activities underground were measured and then production rates at sea level were estimated following the history of detectors; a comparison of these rates with calculations using typical cosmic neutron flux at sea level and a selected description of excitation functions was also carried out. After including the contribution from the identified cosmogenic products in the detector background model, we found that the presence of {sup 3}H in the crystal bulk would help to fit much better our background model and experimental data. We have analyzed the cosmogenic production of {sup 3}H in NaI, and although precise quantification has not been attempted, we can conclude that it could imply a very relevant contribution to the total background below 15 ke in NaI detectors.

  12. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump

    SciTech Connect

    Dissing, S.; Hoffman, J.F. )

    1990-07-01

    The red cell Na/K pump is known to continue to extrude Na when both Na and K are removed from the external medium. Because this ouabain-sensitive flux occurs in the absence of an exchangeable cation, it is referred to as uncoupled Na efflux. This flux is also known to be inhibited by 5 mM Nao but to a lesser extent than that inhibitable by ouabain. Uncoupled Na efflux via the Na/K pump therefore can be divided into a Nao-sensitive and Nao-insensitive component. We used DIDS-treated, SO4-equilibrated human red blood cells suspended in HEPES-buffered (pHo 7.4) MgSO4 or (Tris)2SO4, in which we measured 22Na efflux, 35SO4 efflux, and changes in the membrane potential with the fluorescent dye, diS-C3 (5). A principal finding is that uncoupled Na efflux occurs electroneurally, in contrast to the pump's normal electrogenic operation when exchanging Nai for Ko. This electroneutral uncoupled efflux of Na was found to be balanced by an efflux of cellular anions. (We were unable to detect any ouabain-sensitive uptake of protons, measured in an unbuffered medium at pH 7.4 with a Radiometer pH-STAT.) The Nao-sensitive efflux of Nai was found to be 1.95 +/- 0.10 times the Nao-sensitive efflux of (SO4)i, indicating that the stoichiometry of this cotransport is two Na+ per SO4=, accounting for 60-80% of the electroneutral Na efflux. The remainder portion, that is, the ouabain-sensitive Nao-insensitive component, has been identified as PO4-coupled Na transport and is the subject of a separate paper. That uncoupled Na efflux occurs as a cotransport with anions is supported by the result, obtained with resealed ghosts, that when internal and external SO4 was substituted by the impermeant anion, tartrate i,o, the efflux of Na was inhibited 60-80%. This inhibition could be relieved by the inclusion, before DIDS treatment, of 5 mM Cli,o.

  13. Theoretical study of the spectroscopy of the alkali oxides LiO, NaO, and KO

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Partridge, Harry; Bauschlicher, Charles W., Jr.

    1991-01-01

    A state-averaged complete-active-space self-consistent-field multireference configuration-interaction method is presented to characterize the bound-bound emission from the CPi-2 state into the two lowest ionic states of LiO, NaO, and KO. Ab initio calculations use the experimental results obtained by Woodward et al. (1989) of the emitting state as CPi-2, but indicate that the tentative experimental band assignments are incorrect.

  14. A thermochemical explanation for the stability of NaCl3 and NaCl7

    NASA Astrophysics Data System (ADS)

    Fernandes de Farias, Robson

    2017-03-01

    Thermodynamically stable cubic and orthorhombic NaCl3 as well as NaCl7 have been synthesized (Zhang et al., 2013). In the present work, a thermochemical explanation for the stability of such unusual sodium chlorides is provided, based on lattice energy values. Using the Glasser-Jenkins generalized equation (Glasser and Jenkins, 2000) lattice energies (kJ mol-1) of -162.5, -168.9 and -113.1 are calculated for Pm3n NaCl3, Pnma NaCl3 and NaCl7, respectively. It is postulated that any NaxCly compound could be synthesized, if the ionic character of the Nasbnd Cl bond in the prepared compound remains around 80%, and the sodium charge below unit.

  15. The influence of uniaxial compressive stress on the phase transitions and dielectric properties of NaNO2

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Suleymanov, Rauf A.; Bulut, Nebahat; Salehli, Ferid

    2016-06-01

    The effect of uniaxial stress on dielectric properties of sodium nitrite (NaNO2) ferroelectric has been investigated. The real part of the dielectric susceptibility was measured at the frequency of 1 kHz without and on applying compressive uniaxial stress along different crystallographic directions using a uniaxial compress meter. Extraordinary changes in the dielectric constant of NaNO2 under the influence of applied uniaxial stresses were observed for the first time. The shifts of the phase transition points Ti and Tc under the uniaxial stresses σyy and σzz were investigated. The "uniaxial pressure-temperature" phase diagram of NaNO2 was obtained from these results. The observed phenomena were interpreted on the base of the phenomenological Landau theory of phase transitions in NaNO2 by taking into account the uniaxial compressive stress effect. A best agreement between the theoretical predictions and experimental results has been revealed.

  16. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes.

    PubMed

    Cardona, Karen; Trenor, Beatriz; Giles, Wayne R

    2016-01-01

    The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O'Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase.

  17. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes

    PubMed Central

    Giles, Wayne R.

    2016-01-01

    The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O’Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase. PMID:27875582

  18. Investigation of dynamic behind the seasonal variations of Es and sporadic Na layer near the turbopause of aurora free zone

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Sojka, J. J.; Criddle, N.; Cai, X.; Rice, D.

    2013-12-01

    The dearth of experimental observations, as well as dynamics study, near the turbopause (100-120 km) is the culprit for the mystery of this critical layer in the lower thermosphere. The sporadic E layer (Es) and the sporadic Na layer, occurring within this region, provide unique tracers for such topic. It is believed that the downward transporting of Es, which is full with metal ions (such as Na+), enriches the Na reservoir in the lower E region that causes the occurrence of sporadic Na layer within. In this paper, a statistic study show strong positive correlation between Es and sporadic Na layer above 100 km, measured by Utah State University Na lidar at Logan, Utah and CADI (ionosonde) at Bear Lake Observatory nearby. Both of these two turbopause features indicate strong seasonal variation with peak occurrence rate in the summer and minimum during the winter. To explain the dynamics behind the variations in the aurora free zone, HAMMONIA model produced monthly zonal wind climatology and Climatological Tidal Model of the Thermospehre (CTMT) are joining together to reproduce the hourly zonal wind variation within the turbopause, along with the temperature prediction from the two models. Using the well accepted wind shear theory of the Es formation, we conclude that such seasonal behaviors of Es and sporadic Na layer are due to large negative zonal wind shear driven by tidal wave peaking near the turbopause during summer time in the early evening.

  19. Effect of Na substitution on electronic and optical properties of CuInS{sub 2} chalcopyrite semiconductor

    SciTech Connect

    Mishra, S.; Ganguli, B.

    2015-12-15

    Electronic & optical properties of Na substituted CuNaIn{sub 2}S{sub 4} chalcopyrite semiconductors are significantly modified due to Na substitution in the Cu deficient CuInS{sub 2} semiconductor. These properties are obtained form first principle calculation using density functional theory based tight binding Linear muffin tin orbital method. The presence of Na alters the structural distortion and enhances strengths of Cu d and S p hybridization in CuNaIn{sub 2}S{sub 4}. This effect reduces band gap, in agreement with experimental observations and modify other properties significantly. Calculations of optical matrix elements (OME) and joint density of states (JDOS) show that effects of Na substitution on optical properties come through p–d hybridization and structural distortion. OME contribution is prominent near band edge. Both systems show anisotropic optical properties. - Graphical abstract: The figure shows the band structure and total density of states of CuNaIn{sub 2}S{sub 4}. It illustrates energy bands at various symmetry points, band gap and contribution of various orbitals.

  20. Experimental turbine VT-400

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Milčák, Petr; Noga, Tomáš

    2016-03-01

    The experimental air turbine VT400 is located in hall laboratories of the Department of Power System Engineering. It is a single-stage air turbine located in the suction of the compressor. It is able to solve various problems concerning the construction solution of turbine stages. The content of the article will deal mainly with the description of measurements on this turbine. The up-to-now research on this test rig will be briefly mentioned, too, as well as the description of the ongoing reconstruction.

  1. Experimental models of stress

    PubMed Central

    Patchev, Vladimir K.; Patchev, Alexandre V.

    2006-01-01

    Illustrating the complexity of the stress response and its multifaceted manifestations is the leading idea of this overview of experimental paradigms used for stress induction in laboratory animals. The description of key features of models based on naturalistic stressors, pharmacological challenges, and genomic manipulations is complemented by comprehensive analysis of physiological, behavioral, neurochemical, and endocrine changes and their appropriatness as outcome readouts. Particular attention has been paid to the role of sex and age as determinants of the dynamics of the stress response. Possible translational applications of stress-inducing paradigms as models of disease are briefly sketched. PMID:17290800

  2. EXPERIMENTAL ANIMAL WATERING DEVICE

    DOEpatents

    Finkel, M.P.

    1964-04-01

    A device for watering experimental animals confined in a battery of individual plastic enclosures is described. It consists of a rectangular plastic enclosure having a plurality of fluid-tight compartments, each with a drinking hole near the bottom and a filling hole on the top. The enclosure is immersed in water until filled, its drinking holes sealed with a strip of tape, and it is then placed in the battery. The tape sealing prevents the flow of water from the device, but permits animals to drink by licking the drinking holes. (AEC)

  3. Outsourcing of experimental work.

    PubMed

    Nielsen, Henrik

    2011-01-01

    With the development of new technologies for simultaneous analysis of many genes, transcripts, or proteins (the "omics" revolution), it has become common to outsource parts of the experimental work. In order to maintain the integrity of the research projects, it is important that the interphase between the researcher and the service is further developed. This involves robust protocols for sample preparation, an informed choice of analytical tool, development of standards for individual technologies, and transparent data analysis. This chapter introduces some of the problems related to analysis of RNA samples in the "omics" context and gives a few hints and key references related to sample preparation for the non-specialist.

  4. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. A.

    1985-01-01

    With a view to developing simulation criteria for the laboratory testing of high-temperature materials for gas turbine engines, the deposition rates of sodium sulfate from sodium salt-seeded combustion gases were determined experimentally using a well instrumented high-velocity burner. In the experiments, Na2SO4, NaCl, NaNO3, and simulated sea salt solutions were injected into the combustor of the Mach 0.3 burner rig operating at constant fuel/air ratios. The deposits formed on an inert rotating collector were then weighed and analyzed. The experimental results are compared to Rosner's vapor diffusion theory. Some additional test results, including droplet size distribution of an atomized salt spray, are used in interpreting the deposition rate data.

  5. Modification of a Na-montmorillonite with quaternary ammonium salts and its application for organics removal from TNT red water.

    PubMed

    Zhang, Qian; Meng, Zilin; Zhang, Yihe; Lv, Guocheng; Lv, Fengzhu; Wu, Limei

    2014-01-01

    Na-montmorillonite (Na-Mont) and organic montmorillonite modified by cetyltrimethylammonium bromide (CTAB-Mont) and tetramethylammonium bromide (TMAB-Mont) were prepared as adsorbents to remove organic contaminants from 2,4,6-trinitrotoluene (TNT) red water. The characterizations of the samples were performed with X-ray diffraction and Fourier transform infrared spectroscopy. The adsorption capacity of CTAB-Mont (15.9 mg/g) was much larger than Na-Mont (0.26 mg/g) and TMAB-Mont (1.7 mg/g). Langmuir isotherm and the pseudo-second-order kinetic models fitted the experimental results well. The main factor in the adsorption promotion was the distribution phase in the interlayer of CTAB-Mont. The arrangement of molecules analyzed by molecular simulation corresponded to the experimental data and supported the adsorption mechanism.

  6. Long-range magnetic ordering in Na2IrO3

    NASA Astrophysics Data System (ADS)

    Liu, X.; Berlijn, T.; Yin, W.-G.; Ku, W.; Tsvelik, A.; Kim, Young-June; Gretarsson, H.; Singh, Yogesh; Gegenwart, P.; Hill, J. P.

    2011-06-01

    We report a combined experimental and theoretical investigation of the magnetic structure of the honeycomb-lattice magnet Na2IrO3, a candidate for a realization of a gapless spin liquid. Using resonant x-ray magnetic scattering at the Ir L3 edge, we find three-dimensional long-range antiferromagnetic order below TN=13.3 K. From the azimuthal dependence of the magnetic Bragg peak, the ordered moment is determined to be predominantly along the a axis. Combining the experimental data with first-principles calculations, we propose that the most likely spin structure is a zig-zag structure.

  7. Targeting voltage gated sodium channels NaV1.7, Na V1.8, and Na V1.9 for treatment of pathological cough.

    PubMed

    Muroi, Yukiko; Undem, Bradley J

    2014-02-01

    Recent advances in our understanding of voltage-gated sodium channels (NaVs) lead to the rational hypothesis that drugs capable of selective blockade of NaV subtypes may be a safe and effective strategy for the treatment of unwanted cough. Among the nine NaV subtypes (NaV1.1-NaV1.9), the afferent nerves involved in initiating cough, in common with nociceptive neurons in the somatosensory system, express mainly NaV1.7, NaV1.8, and NaV1.9. Although knowledge about the effect of selectively blocking these channels on the cough reflex is limited, their biophysical properties indicate that each may contribute to the hypertussive and allotussive state that typifies subacute and chronic nonproductive cough.

  8. Intracellular [Na+], Na+ pathways, and fluid transport in cultured bovine corneal endothelial cells.

    PubMed

    Kuang, Kunyan; Li, Yansui; Yiming, Maimaiti; Sánchez, José M; Iserovich, Pavel; Cragoe, E J; Diecke, Friedrich P J; Fischbarg, Jorge

    2004-07-01

    The mechanism of fluid transport across corneal endothelium remains unclear. We examine here the relative contributions of cellular mechanisms of Na+ transport and the homeostasis of intracellular [Na+] in cultured bovine corneal endothelial cells, and the influence of ambient Na+ and HCO3- on the deturgescence of rabbit cornea. Bovine corneal endothelial cells plated on glass coverslips were incubated for 60 min with 10 microm of the fluorescent Na+ indicator SBFI precursor in HCO3- HEPES (BH) Ringer's solution. After loading, cells were placed in a perfusion chamber. Indicator fluorescence (490 nm) was determined with a Chance-Legallais time-sharing fluorometer. Its voltage output was the ratio of the emissions excited at 340 and 380 nm. For calibration, cells were treated with gramicidin D. For fluid transport measurements, rabbit corneas were mounted in a Dikstein-Maurice chamber, and stromal thickness was measured with a specular microscope. The steady-state [Na+]i in BH was 14.36+/-0.38 mM (n = mean+/-s.e.). Upon exposure to Na+ -free BH solution (choline substituted), [Na+]i decreased to 1.81+/-0.20mM (n = 19). When going from Na+ -free plus 100 microm ouabain to BH plus ouabain, [Na+]i increased to 46.17+/-2.50 (n = 6) with a half time of 1.26+/-0.04 min; if 0.1 microm phenamil plus ouabain were present, it reached only 21.78+/-1.50mm. The exponential time constants (min-1) were: 0.56+/-0.04 for the Na+ pump; 0.39+/-0.01 for the phenamil sensitive Na+ channel; and 0.17+/-0.02 for the ouabain-phenamil-insensitive pathways. In HCO3- free medium (gluconate substituted), [Na+]i was 14.03+/-0.11mM; upon changing to BH medium, it increased to 30.77+/-0.74 mm. This last [Na+]i increase was inhibited 66% by 100 microm DIDS. Using BH medium, corneal thickness remained nearly constant, increasing at a rate of only 2.9+/-0.9 microm hr-1 during 3 hr. However, stromal thickness increased drastically (swelling rate 36.1+/-2.6 microm hr-1) in corneas superfused with BH

  9. Compact clinical high-NA multiphoton endoscopy

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2012-02-01

    Multiphoton imaging methods are excellent for non-invasive imaging of living tissue without any need of additional contrast agents. The increasing demand for endoscopic techniques has forced the development of multiphoton endoscopes for imaging of areas with reduced accessibility like chronic wounds. Gradient index (GRIN) lenses can miniaturize the bulky distal focusing optics of conventional tomographs to a diameter of less than 1.4 mm and a numerical aperture (NA) of 0.8. We combined a high NA clinical multiphoton endoscope with existing multiphoton tomographs like the DermaInspect® and the MPTflex® to enable the examination of wound healing processes.

  10. Sodium-difluoro(oxalato)borate (NaDFOB): a new electrolyte salt for Na-ion batteries.

    PubMed

    Chen, Juner; Huang, Zhenguo; Wang, Caiyun; Porter, Spencer; Wang, Baofeng; Lie, Wilford; Liu, Hua Kun

    2015-06-18

    A new electrolyte salt, sodium-difluoro(oxalato)borate (NaDFOB), was synthesized and studied, which enables excellent reversible capacity and high rate capability when used in Na/Na0.44MnO2 half cells. NaDFOB has excellent compatibility with various common solvents used in Na-ion batteries, in strong contrast to the solvent dependent performances of NaClO4 and NaPF6. In addition, NaDFOB possesses good stability and generates no toxic or dangerous products when exposed to air and water. All these properties demonstrate that NaDFOB could be used to prepare high performance electrolytes for emerging Na-ion batteries.

  11. A new low-voltage plateau of Na₃V₂(PO₄)₃ as an anode for Na-ion batteries

    DOE PAGES

    Jian, Zelang; Sun, Yang; Ji, Xiulei

    2015-04-04

    A low-voltage plateau at ~0.3 V is discovered during the deep sodiation of Na₃V₂(PO₄)₃ by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na₃V₂(PO₄)₃, turning it into a promising anode for Na-ion batteries.

  12. [Animal experimentation in Israel].

    PubMed

    Epstein, Yoram; Leshem, Micah

    2002-04-01

    In 1994 the Israeli parliament (Knesset) amended the Cruelty to Animals Act to regulate the use of experimental animals. Accordingly, animal experiments can only be carried out for the purposes of promoting health and medical science, reducing suffering, advancing scientific research, testing or production of materials and products (excluding cosmetics and cleaning products) and education. Animal experiments are only permitted if alternative methods are not possible. The National Board for Animal Experimentation was established to implement the law. Its members are drawn from government ministries, representatives of doctors, veterinarians, and industry organizations, animal rights groups, and academia. In order to carry out an animal experiment, the institution, researchers involved, and the specific experiment, all require approval by the Board. To date the Board has approved some 35 institutions, about half are public institutions (universities, hospitals and colleges) and the rest industrial firms in biotechnology and pharmaceutics. In 2000, 250,000 animals were used in research, 85% were rodents, 11% fowls, 1,000 other farm animals, 350 dogs and cats, and 39 monkeys. Academic institutions used 74% of the animals and industry the remainder. We also present summarized data on the use of animals in research in other countries.

  13. Experimentation in machine discovery

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Simon, Herbert A.

    1990-01-01

    KEKADA, a system that is capable of carrying out a complex series of experiments on problems from the history of science, is described. The system incorporates a set of experimentation strategies that were extracted from the traces of the scientists' behavior. It focuses on surprises to constrain its search, and uses its strategies to generate hypotheses and to carry out experiments. Some strategies are domain independent, whereas others incorporate knowledge of a specific domain. The domain independent strategies include magnification, determining scope, divide and conquer, factor analysis, and relating different anomalous phenomena. KEKADA represents an experiment as a set of independent and dependent entities, with apparatus variables and a goal. It represents a theory either as a sequence of processes or as abstract hypotheses. KEKADA's response is described to a particular problem in biochemistry. On this and other problems, the system is capable of carrying out a complex series of experiments to refine domain theories. Analysis of the system and its behavior on a number of different problems has established its generality, but it has also revealed the reasons why the system would not be a good experimental scientist.

  14. Experimental Models of Pancreatitis

    PubMed Central

    Hyun, Jong Jin

    2014-01-01

    Acute pancreatitis is an inflammatory disease characterized by interstitial edema, inflammatory cell infiltration, and acinar cell necrosis, depending on its severity. Regardless of the extent of tissue injury, acute pancreatitis is a completely reversible process with evident normal tissue architecture after recovery. Its pathogenic mechanism has been known to be closely related to intracellular digestive enzyme activation. In contrast to acute pancreatitis, chronic pancreatitis is characterized by irreversible tissue damage such as acinar cell atrophy and pancreatic fibrosis that results in exocrine and endocrine insufficiency. Recently, many studies of chronic pancreatitis have been prompted by the discovery of the pancreatic stellate cell, which has been identified and distinguished as the key effector cell of pancreatic fibrosis. However, investigations into the pathogenesis and treatment of pancreatitis face many obstacles because of its anatomical location and disparate clinical course. Due to these difficulties, most of our knowledge on pancreatitis is based on research conducted using experimental models of pancreatitis. In this review, several experimental models of pancreatitis will be discussed in terms of technique, advantages, and limitations. PMID:24944983

  15. Increased dietary potassium and magnesium attenuate experimental volume dependent hypertension possibly through endogenous sodium-potassium pump inhibitor.

    PubMed

    Pamnani, Motilal B; Bryant, Howard J; Clough, David L; Schooley, James F

    2003-02-01

    We and others have shown that inhibition of cardiovascular muscle (CVM) cell Na+,K-ATPase activity (NKPTA) due to increased level of endogenous sodium potassium pump inhibitor (SPI) is involved in the mechanism of volume expanded (VE) experimental and human essential hypertension (HT). Since diets fortified with very high potassium (K) or very high magnesium (Mg) decrease blood pressure (BP), we have examined the effect of a moderate increase in dietary K alone and a moderate increase in dietary K and Mg on plasma levels of SPI, CVM cell NKPTA, and BP in reduced renal mass (RRM)-salt HT rats, a classical model of VE HT. Seventy Percent-RRM rats were divided in four dietary groups, (1) Na free and normal K and Mg (0Na-K-Mg); (2) normal Na, K and Mg (Na-K-Mg); (3) normal Na and high K (2 x normal), and normal Mg (Na-2K-Mg); and (4) normal Na and high K (2 x normal), and high Mg (2 x normal) (Na-2K-2Mg). As expected, compared to control 0Na-K-Mg rats, Na-K-Mg rats developed HT. Blood pressure increased significantly less in Na-2K-Mg rats whereas, BP did not increase in Na-2K-2Mg rats. Hypertension in NA-K-Mg rats was associated with an increase in plasma SPI and digitalis like factor (DIF) and a decrease in renal and myocardial NKPTA. However, doubling the Mg along with K in the diet (Na-2K-2Mg) normalized SPI and DIF and increased myocardial and renal NKPTA, compared to control 0Na-K-Mg rats. Also, compared to 0Na-K-Mg rats, water consumption, urine excretion, urinary sodium excretion urinary potassium excretion (U(Na)V), and (U(K)V) increased in the other three groups, more so in Na-2K-2Mg rats. These data show that K and Mg have additive effects in preventing an increase in SPI, thus probably preventing the BP increase in RRM rats.

  16. Experimental assessment of the microbocenosis stability in chemically polluted soils

    NASA Astrophysics Data System (ADS)

    Sorokin, N. D.; Grodnitskaya, I. D.; Shapchenkova, O. A.; Evgrafova, S. Yu.

    2009-06-01

    Water solutions of fluorine and sulfur-containing salts of sodium—NaF, Na2SO3, and NaF + Na2SO3 (30, 150, and 300 MPC, respectively)—and salts of heavy metals—(Cu(NO3)2 · 3H2O, NiSO4, and Pb(NO3)2 (10, 25, and 50 MPC, respectively)—were applied as pollutants to dark gray forest soils of experimental plots (1 m2) in Siberian larch ( Larix sibirica Ledeb.) plantations once per growing period. The soil samples for the determination of the microbial biomass, respiration, and enzymatic activity (urease, protease, invertase, and catalase) were taken from the mineral soil layer (0-5 cm) at the beginning of the growing seasons before the application of the pollutants then in 14- to 18-day intervals every month. The fluorine and sulfur-containing compounds applied activated the respiration, lowered the enzymatic activity of the microorganisms, and decreased the microbial biomass by 1.3-2.2 times in the soils of the test plots as compared to the control one. The single application of Cu, Ni, and Pb increased the microbial biomass, while the changes in the basal respiration were compatible with its natural variability. Two months after the beginning of the experiment, all the parameters characterizing the functioning of the soil microbocenoses were restored.

  17. Experimental studies on the interaction of groundwater with bentonite

    SciTech Connect

    Sasaki, Y.; Shibata, M.; Yui, M.; Ishikawa, H.

    1995-12-31

    Interactions of sodium bentonite with distilled water and two types of synthetic groundwater were studied by batch experiments. In the experiments, clay and pure minerals were reacted at room temperature under aerobic and anaerobic condition as a function of time and liquid/solid ratio. The clay and pure minerals used in the experiments were Kunigel-V1 (crude Na-bentonite), Kunipia F (purified Na-bentonite), purified Na-smectite (purified from Kunipia F), calcite and pyrite as accessory minerals. The chemical composition in the liquid phase was analyzed through centrifugation and ultrafiltration. Alteration of the distribution of exchangeable cation in the bentonite was analyzed by NH{sub 4}Ac and XRD. The results indicated that the interaction between bentonite (Kunigel-V1) and groundwater under aerobic condition was described by ion exchange reaction of smectite, dissolution of calcite and oxidation of pyrite. From these experimental studies, the model of the interaction of groundwater with bentonite proposed by Wanner was modified. The comparison between calculation and experimental results showed good agreement and indicated that this model could be adopted to predict porewater chemistry of bentonite for performance assessment of geological isolation system of high level waste.

  18. Energetic stability, oxidation states, and electronic structure of Bi-doped NaTaO3: a first-principles hybrid functional study.

    PubMed

    Joo, Paul H; Behtash, Maziar; Yang, Kesong

    2016-01-14

    We studied the defect formation energies, oxidation states of the dopants, and electronic structures of Bi-doped NaTaO3 using first-principles hybrid density functional theory calculations. Three possible structural models, including Bi-doped NaTaO3 with Bi at the Na site (Bi@Na), with Bi at the Ta site (Bi@Ta), and with Bi at both Na and Ta sites [Bi@(Na,Ta)], are constructed. Our results show that the preferred doping sites of Bi are strongly related to the preparation conditions of NaTaO3. It is energetically more favorable to form a Bi@Na structure under Na-poor conditions, to form a Bi@Ta structure under Na-rich conditions, and to form a Bi@(Na,Ta) structure under mildly Na-rich conditions. The Bi@Na doped model shows an n-type conducting character along with an expected blueshift of the optical absorption edge, in which the Bi atoms exist as Bi(3+) (6s(2)6p(0)). The Bi@Ta doped model has empty gap states consisting of Bi 6s states in its band gap, which can lead to visible-light absorption via the electron transition among the valence band, the conduction band, and the gap states. The Bi dopant is present as a Bi(5+) ion in this model, consistent with the experimental results. In contrast, the Bi@(Na,Ta) doped model has occupied gap states consisting of Bi 6s states in its band gap, and thus visible-light absorption is also expected in this system due to electron excitation from these occupied states to the conduction band, in which the Bi dopants exist as Bi(3+) ions. Our first-principles electronic structure calculations revealed the relationship between the Bi doping sites and the material preparation conditions, and clarified the oxidation states of Bi dopants in NaTaO3 as well as the origin of different visible-light photocatalytic hydrogen evolution behaviors in Bi@Ta and Bi@(Na,Ta) doped NaTaO3. This work can provide a useful reference for preparing a Bi-doped NaTaO3 photocatalyst with desired doping sites.

  19. Role of the Na(+)-translocating NADH:quinone oxidoreductase in voltage generation and Na(+) extrusion in Vibrio cholerae.

    PubMed

    Vorburger, Thomas; Nedielkov, Ruslan; Brosig, Alexander; Bok, Eva; Schunke, Emina; Steffen, Wojtek; Mayer, Sonja; Götz, Friedrich; Möller, Heiko M; Steuber, Julia

    2016-04-01

    For Vibrio cholerae, the coordinated import and export of Na(+) is crucial for adaptation to habitats with different osmolarities. We investigated the Na(+)-extruding branch of the sodium cycle in this human pathogen by in vivo (23)Na-NMR spectroscopy. The Na(+) extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). In a V. cholerae deletion mutant devoid of the Na(+)-NQR encoding genes (nqrA-F), rates of respiratory Na(+) extrusion were decreased by a factor of four, but the cytoplasmic Na(+) concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (ΔΨ, inside negative) and did not grow under hypoosmotic conditions at pH8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na(+)/H(+) antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na(+) concentrations, the Na(+)-NQR is crucial for generation of a transmembrane voltage to drive the import of H(+) by electrogenic Na(+)/H(+) antiporters. Our study provides the basis to understand the role of the Na(+)-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na(+) pump for respiration.

  20. Understanding the Effect of Na in Improving the Performance of CuInSe2 Based Photovoltaics

    SciTech Connect

    Dobson, Kevin D.

    2015-11-17

    nature and role of Na diffusion into grain interiors was less clear. In Task 2, single crystal CuInSe2 was used as a model system to represent the grain interiors of CIGS. Crystals processed by two different methods of different compositions and dislocation densities, were evaluated. Diffusion coefficients were obtained at two temperatures after Na diffusion, giving near identical values, ~2x1011 cm2/s and ~6x1011 cm2/s at 420°C and 480°C, respectively, for each crystal. Characterization confirmed that dislocation densities were too low to significantly impact the effective diffusion coefficient. The Cu-poor crystal had a higher solubility suggesting that Na diffusion is mediated by Cu-vacancies, but was not accompanied by an expected increase in diffusion coefficient. The activation energy for diffusion was similar to values expected for interstitial diffusion, but the large size of Na+ ions should result in a solubility that is much lower than what was experimentally measured. A hybrid interstitial-substitutional mechanism is proposed that combines the fast diffusion of interstitial atoms with the high solubility common for substitutional impurities. Lattice diffusion of Na proceeds fast enough that CIGS grain interiors will have Na concentrations near the solubility limit of 1018 cm-3 when manufactured under standard conditions. Na and K treated epitaxial CIS films showed a significant increase in cathodoluminescence emission intensity, indicating a reduction of non-radiative recombination pathways, which is consistent with improvements in CIGS device performance, though the mechanism is not clear. Pathways forward: Despite the success of this project, there are a number of questions remaining related to further the understanding of the chemistry of Na in CIGS films and devices. These include further elucidation of the mechanisms of Na passivation in CIGS GBs, with identification of which defects are

  1. Conversion of eugenol to methyleugenol: Computational study and experimental

    NASA Astrophysics Data System (ADS)

    Kurniawan, Muhammad Arsyik; Matsjeh, Sabirin; Triono, Sugeng

    2017-03-01

    This study provides comprehensive benchmark calculations for the computational study and experimental research on conversion of eugenol to methyleugenol with different pathway of the transition state compounds. First-principle calculation (DFT) were used to generate the structure optimization, energies of species. The calculation parameter are used to predict reactant, product and transition state species as guide to predict the experimental development of chemical characterization method including NMR and IR. The calculation showed significant effect of NaOH in formation of transition state in reaction. Experimentally, the step was nucleophilic substitution reaction of eugenolate ion to dimethylsulfate compound, it was obtained methyleugenol compound with purity of 90.73 %, which analyzed by Infrared and H-NMR spectrometer.

  2. Electronic Polarisability of NaNO2-NaNO3 and NaOH-NaNO3 Ionic Melts and Effective Ionic Radius of OH-

    NASA Astrophysics Data System (ADS)

    Iwadate, Yasuhiko; Ohnishi, Ryosuke; Ohkubo, Takahiro

    2017-01-01

    Molar volumes and refractive indexes of molten NaNO2-NaNO3 and NaOH-NaNO3 systems were measured by dilatometry and goniometry, respectively. The molar volumes of both systems increased with increasing temperature. Refractive indexes decreased with a rise of temperature or with increasing wavelength of the incident visible light. Assuming that the electronic polarisability is inherent in an ion, the electronic polarisability of a OH- ion in the melt was estimated from the Lorentz-Lorenz equation to be 1.26×10-30 m3, being comparable with that in the crystal. The effective ionic radius of a OH- ion was evaluated from the obtained electronic polarisability to be 1.34×10-10 m, using the correlation between the third power of the ionic radius and the electronic polarisability of an ion so far reported. The effective ionic radius obtained in this work was in good agreement with that assigned by Shannon.

  3. Mechanisms contributing to the cardiac inotropic effect of Na pump inhibition and reduction of extracellular Na

    PubMed Central

    1987-01-01

    Reduction of the transsarcolemmal [Na] gradient in rabbit cardiac muscle leads to an increase in the force of contraction. This has frequently been attributed to alteration of Ca movements via the sarcolemmal Na/Ca exchange system. However, the specific mechanisms that mediate the increased force at individual contractions have not been clearly established. In the present study, the [Na] gradient was decreased by reduction of extracellular [Na] or inhibition of the Na pump by either the cardioactive steroid acetylstrophanthidin or by reduction of extracellular [K]. Contractile performance and changes in extracellular Ca (sensed by double-barreled Ca-selective microelectrodes) were studied in order to elucidate the underlying basis for the increase in force. In the presence of agents that inhibit sarcoplasmic reticulum (SR) function (10 mM caffeine, 100-500 nM ryanodine), reduction of the [Na] gradient produced increases in contractile force similar to that observed in the absence of caffeine or ryanodine. It is concluded that an intact, functioning SR is not required for the inotropic effect of [Na] gradient reduction (at least in rabbit ventricle). However, this does not exclude a possible contribution of enhanced SR Ca release in the inotropic response to [Na] gradient reduction in the absence of caffeine or ryanodine. Acetylstrophanthidin (3-5 microM) usually leads to an increase in the magnitude of extracellular Ca depletions associated with individual contractions. However, acetylstrophanthidin can also increase extracellular Ca accumulation during the contraction, especially at potentiated contractions. This extracellular Ca accumulation can be suppressed by ryanodine and it is suggested that this apparent enhancement of Ca efflux is secondary to an enhanced release of Ca from the SR. Under conditions where Ca efflux during contractions is minimized (after a rest interval in the presence of ryanodine), acetylstrophanthidin increased both the rate and the

  4. Future experimental programs

    NASA Astrophysics Data System (ADS)

    Murayama, Hitoshi

    2013-12-01

    I was asked to discuss future experimental programs even though I am a theorist. As a result, I present my own personal views on where the field is, and where it is going, based on what I myself have been working on. In particular, I discuss why we need expeditions into high energies to find clues to where the relevant energy scale is for dark matter, baryon asymmetry and neutrino mass. I also argue that the next energy frontier machine should be justified on the basis of what we know, namely the mass of the Higgs boson, so that we will learn what energy we should aim at once we nail the Higgs sector. Finally, I make remarks on dark energy.

  5. Experimental traumatic brain injury

    PubMed Central

    2010-01-01

    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury. PMID:20707892

  6. Experimental evolution gone wild

    PubMed Central

    Scheinin, M.; Riebesell, U.; Rynearson, T. A.; Lohbeck, K. T.; Collins, S.

    2015-01-01

    Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change. PMID:25833241

  7. Fusion of experimental data

    NASA Astrophysics Data System (ADS)

    Di Gesú, Vito; Maccarone, Maria Concetta

    The integration of information from various sensory systems is one of the most difficult challenges in understanding both perception and cognition. For example, the problem of auditory-visual integration is a correspondence problem between perceived auditory and visual scenes. Two main questions arise when designing data analysis systems: what is the useful information to be integrated?, and what are the integration rules? The problem of integrating information becomes relevant whenever: (a) the same kind of data are detected by spatially distributed sensors; (b) heterogeneous data are detected by different sensors; (c) heterogeneous distributed data are involved. General problems concerning the integration of experimental data are reviewed. The case of the BeppoSAX X-ray astronomical satellite is given as an example.

  8. Experimental adaptive process tomography

    NASA Astrophysics Data System (ADS)

    Pogorelov, I. A.; Struchalin, G. I.; Straupe, S. S.; Radchenko, I. V.; Kravtsov, K. S.; Kulik, S. P.

    2017-01-01

    Adaptive measurements were recently shown to significantly improve the performance of quantum state tomography. Utilizing information about the system for the online choice of optimal measurements allows one to reach the ultimate bounds of precision for state reconstruction. In this article we generalize an adaptive Bayesian approach to the case of process tomography and experimentally show its superiority in the task of learning unknown quantum operations. Our experiments with photonic polarization qubits cover all types of single-qubit channels. We also discuss instrumental errors and the criteria for evaluation of the ultimate achievable precision in an experiment. It turns out that adaptive tomography provides a lower noise floor in the presence of strong technical noise.

  9. Experimentalism in bioethics research.

    PubMed

    Ackerman, T F

    1983-05-01

    Basson's commentary on my proposals regarding the structure and function of research in bioethics provides a welcome opportunity for extended comparison of standard approaches with the suggestions made in 'What Bioethics Should Be.' I begin by noting a common assumption underlying our respective views. I then address points of fundamental difference, indicating why the experimental method proposed in my original essay presents a potentially more productive strategy for examining moral issues in biomedicine. In the latter respect, I certainly disagree with Basson's contention that "we are unable to test" metaethical hypotheses "against reality" (Basson, p. 185) - a proposition which seems no more defensible than the equally untenable claim that we cannot refine methods of natural science research through examination of their usefulness in advancing our understanding of the correlation of events in nature.

  10. An Experimental LISP Machine

    NASA Astrophysics Data System (ADS)

    Lun, Wang

    1987-04-01

    This paper presents a multi-microprocessor LISP machine whose goal is to exploit the inherent parallelism in the LISP programs fully. The base architecture is a MIMD architecture based on a hybrid model for combinating data driven, demand driven and VoN Neumann process schemes. The basic evaluation strategy is data driven. Lazy evaluation mechanism is introduced to avoid unnecessary and unsafe computations. An experimental system with the four processor elements has been built in HIT, China. The system consists of a Z80 microcomputer and three TP8O1s interconnected through three buses. Each processor evaluates a part of programs asynchronously. The shared memory is divided into two parts: list cell area and enviroment area, each of which has the indepen-dent common bus to avoid the bus bottleneck.

  11. Planetary impact experimentation

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Schultz, Peter H.; Hoerz, Friedrich

    1987-01-01

    An understanding of impact processes in low- and microgravity environments would be advanced significantly by the construction and use of an impact facility on the Space Station. It is proposed that initial studies begin as soon as possible in ground-based impact laboratories, on the NASA KC-135 Reduced-Gravity Aircraft, and in existing drop towers. The resulting experience and information base could then be applied toward an experiment package designed for use on Shuttle orbiters to support pilot studies in orbital environments. These experiments, as well as the first efforts made on the IOC Space Station, should involve the impact of various free-floating targets; such studies would yield a substantial scientific return while providing valuable experience and engineering information for use in refining the design of the dedicated Space Station Impact Facility. The dedicated facility should be designed to support impact experimentation, including but not limited to cratering, asteroid and ring-particle dynamics, and accretional processes.

  12. Experimental Quantum Coin Tossing

    NASA Astrophysics Data System (ADS)

    Molina-Terriza, G.; Vaziri, A.; Ursin, R.; Zeilinger, A.

    2005-01-01

    In this Letter we present the first implementation of a quantum coin-tossing protocol. This protocol belongs to a class of “two-party” cryptographic problems, where the communication partners distrust each other. As with a number of such two-party protocols, the best implementation of the quantum coin tossing requires qutrits, resulting in a higher security than using qubits. In this way, we have also performed the first complete quantum communication protocol with qutrits. In our experiment the two partners succeeded to remotely toss a row of coins using photons entangled in the orbital angular momentum. We also show the experimental bounds of a possible cheater and the ways of detecting him.

  13. Experimental Sloshing Reference Test

    NASA Astrophysics Data System (ADS)

    Lada, C.; Such-Taboada, M.; Ngan, I.; Grigore, L.; Appolloni, M.; Roure, S.; Murray, N.; Mendes Leal, M.; de Wilde, D.; Longo, J.; Bureo-Dacal, R.; Cozzani, A.; Laine, B.

    2014-06-01

    This article describes the sloshing experiment performed on the HYDRA multi-axis hydraulic shaker at ESTEC. Two tank geometries, a rectangular tank and a pill shaped tank, were excited in the lateral direction. Both tanks, manufactured from a transparent material in order to provide high visibility of the phenomenon, were filled with water and several fill ratios were tested, varying the amplitude of the input and the sweep rate. The results of the test are presented from a structural point of view, with the main objective to study the interface force due to dynamic fluid sloshing motion. An investigation of the behaviour of the water around the main resonance of the assembly is conducted through the observation of the identified modes and the damping values. The experimental results confirm the amplification effect at low frequency caused by water sloshing motion and a comparison with data from numerical simulation is provided.

  14. Intracellular Na(+) and metabolic modulation of Na/K pump and excitability in the rat suprachiasmatic nucleus neurons.

    PubMed

    Wang, Yi-Chi; Yang, Jyh-Jeen; Huang, Rong-Chi

    2012-10-01

    Na/K pump activity and metabolic rate are both higher during the day in the suprachiasmatic nucleus (SCN) that houses the circadian clock. Here we investigated the role of intracellular Na(+) and energy metabolism in regulating Na/K pump activity and neuronal excitability. Removal of extracellular K(+) to block the Na/K pump excited SCN neurons to fire at higher rates and return to normal K(+) to reactivate the pump produced rebound hyperpolarization to inhibit firing. In the presence of tetrodotoxin to block the action potentials, both zero K(+)-induced depolarization and rebound hyperpolarization were blocked by the cardiac glycoside strophanthidin. Ratiometric Na(+) imaging with a Na(+)-sensitive fluorescent dye indicated saturating accumulation of intracellular Na(+) in response to pump blockade with zero K(+). The Na(+) ionophore monensin also induced Na(+) loading and hyperpolarized the membrane potential, with the hyperpolarizing effect of monensin abolished in zero Na(+) or by pump blockade. Conversely, Na(+) depletion with Na(+)-free pipette solution depolarized membrane potential but retained residual Na/K pump activity. Cyanide inhibition of oxidative phosphorylation blocked the Na/K pump to depolarize resting potential and increase spontaneous firing in most cells, and to raise intracellular Na(+) levels in all cells. Nonetheless, the Na/K pump was incompletely blocked by cyanide but completely blocked by iodoacetate to inhibit glycolysis, indicating the involvement of both oxidative phosphorylation and glycolysis in fueling the Na/K pump. Together, the results indicate the importance of intracellular Na(+) and energy metabolism in regulating Na/K pump activity as well as neuronal excitability in the SCN neurons.

  15. Effect of Experimental Parameters on the Hydrothermal Synthesis of Bi2WO6 Nanostructures

    NASA Astrophysics Data System (ADS)

    Cui, Ziming; Yang, Hua; Wang, Bin; Li, Ruishan; Wang, Xiangxian

    2016-04-01

    Bi2WO6 nanostructures were synthesized by a hydrothermal route, where the effect of various experimental parameters on the products was investigated. It is demonstrated that the sample morphology and size is highly dependent on the NaOH content (or pH value). At C NaOH = 0-0.0175 mol (pH range of 1-4), the prepared samples present flower-like hierarchical microspheres which are constructed from thin nanosheets via the self-assembly process. The size of the hierarchical microspheres exhibits a decreasing trend with increasing the NaOH content, from 7 μm at C NaOH = 0 mol to 1.5 μm at C NaOH = 0.0175 mol. At C NaOH = 0.03-0.0545 mol (pH: 5-9), the prepared samples exhibit irregular flake-like structures, and their size increases with the increase in NaOH content. At C NaOH = 0.055-0.05525 mol (pH: 10-11), the prepared samples are composed of uniform sphere-like particles with an average size of 85 nm. Compared to the NaOH content, the reaction temperature and time has a relatively small effect on the product morphology and size. The photocatalytic activity of the samples was evaluated by degrading rhodamine B (RhB) under irradiation of simulated sunlight. Among these samples, the samples composed of flower-like hierarchical microspheres have relatively high photocatalytic activity. In particular, the microspheres prepared at C NaOH = 0.01 mol exhibit the highest photocatalytic activity, and the degradation percentage reaches 99 % after 2 h of irradiation.

  16. [Regulation of the Na/Ca exchanger].

    PubMed

    DiPolo, R; Rojas, H; Beaugé, L

    1993-01-01

    The introduction of the squid giant axon preparation to studies on Ca homeostasis has proven very useful in laying the foundations in the study of Ca regulation. In particular the Na/Ca exchange mechanism has been characterized in terms of its regulatory processes using the well define technique of intracellular dialysis and membrane potential control. The Na/Ca exchange countertransport system plays a critical role in physiological processes including cardiac contractility and photoreception. It has also been implicate in the etiology of essential hypertension, cardiac arrhythmias and cell death. The ability of the Na/Ca exchanger to regulate the intracellular ionized Ca concentration ([Ca2+i]) under physiological conditions, is determined by the direction (net Ca efflux or Ca influx), and magnitude of transport. The direction of Ca transport is decided by the chemical gradient of sodium and calcium. The magnitude of the exchange is regulated by kinetic factors. This kinetic factors are critical since they decide whether the exchanger will mediate a net Ca movement under certain conditions. Recently, a large effort has been put together to characterize the secondary modulation of the Na/Ca exchanger. In particular modulation by MgATP and intracellular Ca2+. In nerve cells we have discover that MgATP regulates the exchanger through as phosphorylation-dephosphorylation processes most probably relate to the action of a kinase-phosphatase system. The other important ligand that regulates the exchange activity is the level of [Ca2+i]. We have found the presence of a regulatory site in the cytoplasmic face of the exchanger different from the transport site and probably responsible for turning the carrier "on" or "off". In this article we will depict some of the processes involved in the metabolic and ionic regulation of the Na/Ca exchanger.

  17. Laser trapping of {sup 21}Na atoms

    SciTech Connect

    Lu, Zheng-Tian

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive {sup 21}Na (t{sub l/2} = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped {sup 21}Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of {sup 21}Na {yields} {sup 21}Ne + {Beta}{sup +} + v{sub e}, which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, {sup 21}Na atoms were produced by bombarding {sup 24}Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The {sup 21}Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined.

  18. Studies of Relationships among Bile Flow, Liver Plasma Membrane NaK-ATPase, and Membrane Microviscosity in the Rat

    PubMed Central

    Keeffe, Emmet B.; Scharschmidt, Bruce F.; Blankenship, Nancy M.; Ockner, Robert K.

    1979-01-01

    Liver plasma membrane (LPM) NaK-ATPase activity, LPM fluidity, and bile acid-independent flow (BAIF) were studied in rats pretreated with one of five experimental agents. Compared with controls, BAIF was increased 24.6% by thyroid hormone and 34.4% by phenobarbital, decreased by ethinyl estradiol, but unchanged by propylene glycol and cortisone acetate. Parallel to the observed changes in BAIF, NaK-ATPase activity also was increased by thyroid hormone (40.8%) and decreased by ethinyl estradiol (26.2%). In contrast, NaK-ATPase activity failed to increase after phenobarbital but did increase 36% after propylene glycol and 34.8% after cortisone acetate. Thus BAIF and NaK-ATPase activity did not always change in parallel. The NaK-ATPase Km for ATP was not affected by any of these agents. LPM fluidity, measured by fluorescence polarization using the probe 1,6-diphenyl-1,3,5-hexatriene, was found to be increased by propylene glycol, thyroid hormone, and cortisone acetate, decreased by ethinyl estradiol, and unaffected by phenobarbital. Thus in these cases, induced changes in LPM fluidity paralleled those in NaK-ATPase activity. In no case did Mg-ATPase or 5′-nucleotidase activities change in the same direction as NaK-ATPase, and the activity of neither of these enzymes correlated with LPM fluidity, thus indicating the selective nature of the changes in LPM enzyme activity caused by the agents. These findings indicate that LPM fluidity correlates with NaK-ATPase activity and may influence the activity of this enzyme. However, the nature of the role of LPM NaK-ATPase in bile secretion is uncertain and needs further study. Images PMID:227937

  19. Unique atom hyper-kagome order in Na4Ir3O8 and in low-symmetry spinel modifications.

    PubMed

    Talanov, V M; Shirokov, V B; Talanov, M V

    2015-05-01

    Group-theoretical and thermodynamic methods of the Landau theory of phase transitions are used to investigate the hyper-kagome atomic order in structures of ordered spinels and a spinel-like Na4Ir3O8 crystal. The formation of an atom hyper-kagome sublattice in Na4Ir3O8 is described theoretically on the basis of the archetype (hypothetical parent structure/phase) concept. The archetype structure of Na4Ir3O8 has a spinel-like structure (space group Fd\\bar 3m) and composition [Na1/2Ir3/2](16d)[Na3/2](16c)O(32e)4. The critical order parameter which induces hypothetical phase transition has been stated. It is shown that the derived structure of Na4Ir3O8 is formed as a result of the displacements of Na, Ir and O atoms, and ordering of Na, Ir and O atoms, ordering dxy, dxz, dyz orbitals as well. Ordering of all atoms takes place according to the type 1:3. Ir and Na atoms form an intriguing atom order: a network of corner-shared Ir triangles called a hyper-kagome lattice. The Ir atoms form nanoclusters which are named decagons. The existence of hyper-kagome lattices in six types of ordered spinel structures is predicted theoretically. The structure mechanisms of the formation of the predicted hyper-kagome atom order in some ordered spinel phases are established. For a number of cases typical diagrams of possible crystal phase states are built in the framework of the Landau theory of phase transitions. Thermodynamical conditions of hyper-kagome order formation are discussed by means of these diagrams. The proposed theory is in accordance with experimental data.

  20. MFCI experiments on the influence of NaCl-saturated water on phreatomagmatic explosions

    NASA Astrophysics Data System (ADS)

    Grunewald, U.; Zimanowski, B.; Büttner, R.; Phillips, L. F.; Heide, K.; Büchel, G.

    2007-01-01

    Molten-Fuel-Coolant Interaction (MFCI) experiments were performed using remelted foiditic rock samples from the West Eifel volcanic field (Germany). Two experimental series were carried out with one magmatic melt and two water compositions. Bi-distilled water was used in the first series (DW-1 to DW-5). In the second series (SW-1 to SW-5), the bi-distilled water was saturated (350 g L - 1 ) with sodium chloride (NaCl). For both experimental series the fragmentation history and the energy release were recorded and compared. The smallest particles (≤ 125 μm) were studied using scanning electron microscopy (SEM). Most MFCI experiments with bi-distilled water reached higher explosion intensities than the experiments with the saline water. This was accompanied by higher particle ejection velocities as well as the formation of more fine-grained and more interactive particles of angular shape. Additionally, the smallest artificial pyroclasts were examined by evolved gas analyses (EGA). The particles from the MFCI experiments with salt solutions are found to contain more sodium hydroxide (NaOH). These observations can be explained by thermodynamic arguments. In contrast to the MFCI experiments with pure water, an additional reaction occurs with saline water that results in evolution of hydrogen chloride (HCl) gas and leaves a residue of sodium hydroxide. The MFCI process with saline water consumes more enthalpy and Gibbs free energy, so that less energy is available for the explosion. With other sodium halides dissolved in the water (NaF, NaBr or NaI) the additional reaction can be predicted to have greater or lesser effects on phreatomagmatic explosions.

  1. Calculation of the fundamental vibrational frequencies and intensities of H2, D2, and N2 in the presence of Li(+) or Na

    NASA Astrophysics Data System (ADS)

    Bishop, David M.; Cybulski, Slawomir M.

    1994-11-01

    Self-consistent-field (SCF) and second-order Moller-Plesset (MP2) calculations, using large basis sets, have been carried out for the system X2...Y(+), with X = H, D, and N and Y = Li and Na. In particular, the fundamental vibrational frequency shifts and intensities induced in the diatomic by the cation have been found. For Y = Na these properties may be compared with the experimental infrared spectra of the same diatomics when trapped in a NaA zeolite. There is good agreement between theory and experiment for the frequency shifts but the calculated intensity for N2...Na(+) is several times larger than that found in the zeolite. This indicates that either the model for the trapped species is too simple or the experimental result needs reassessment.

  2. Experimental Literacy Assessment Battery (LAB).

    DTIC Science & Technology

    READING, * LITERACY , EDUCATION, HUMAN RESOURCES, MODELS, EXPERIMENTAL DESIGN, AIR FORCE TRAINING, LANGUAGE, RESOURCE MANAGEMENT, PSYCHOLOGICAL TESTS, VOCABULARY, INFORMATION PROCESSING, COMPREHENSION.

  3. The Na4(+3) Clusters in Sodium Sodalite

    DTIC Science & Technology

    1992-05-15

    ATES COVOIN0i-15-92 Technical 06-01-91 to 05-31-92 4. TITLE ANA SUGTITLE S. RNORNG NUMBER The Na4+ 3 Clusters in Sodium Sodalite NN l14-e0-J-se59a 𔄀...3 [AlSiO 4]3 sodalite prepared by high vacuum deposition of sodium atoms. The samples with a Na 43 +:Na33+ cluster ratio up to 1:10 show a single...absorption feature with -m. = 628 nm (1.99 eV). The absorption originates from the individual sodalite cages containing Na 43+ cluster. For the Na 43+:Na

  4. Ultrafast bulk diffusion of AlHx in high-entropy dehydrogenation intermediates of NaAlH4 [Highly mobile AlHx species and the dehydogenation kinetics of NaAlH4

    DOE PAGES

    Zhang, Feng; Wood, Brandon C.; Wang, Yan; ...

    2014-07-21

    Using first-principles molecular dynamics (FPMD) and total-energy calculations, we demonstrate low-barrier bulk diffusion of Al-bearing species in γ-NaAlH4, a recently proposed high-entropy polymorph of NaAlH4. For charged AlH4– and neutral AlH3 vacancies, the computed barriers for diffusion are <0.1 eV, and we directly observe the predicted diffusive pathways in FPMD simulations at picosecond time scales. In contrast, such diffusion in the α phase is inaccessible to FPMD, consistent with much higher barriers. The transport behavior of γ-NaAlH4, in addition to key dynamical and structural signatures, is consistent with experimental observations of high-mobility species, strongly supporting the idea that an intermediatemore » transition from the α phase to a high-entropy polymorph facilitates the hydrogen-releasing decomposition of NaAlH4. Lastly, our results provide an answer to longstanding questions regarding the responsible agent for the experimentally observed efficient Al transport during dehydrogenation and suggest that mass transport and phase transformation kinetics are coupled. Implications for understanding the (de)hydrogenation of undoped and catalyzed NaAlH4 are discussed.« less

  5. The solubility of Cr(OH){sub 3}(am) in concentrated NaOH and NaOH-NaNO{sub 3} solutions

    SciTech Connect

    Felmy, A.R.; Rai, D.; Fulton, R.W.

    1994-08-01

    Chromium is a major component of the Hanford waste tank sludges, and the presence of Cr in the sludges is a significant concern in the disposal of these sludges because Cr can interfere with the formation of waste glasses. One of the current pretreatment strategies for removing constituents that can interfere with glass formation, such as P and Cr, is to wash/dissolve the sludges in basic NaOH solutions. The solubility of Cr(OH){sub 3}(am) was measured in concentrated NaOH ranging in concentration from 0.1M to 6.0M and in NaOH-NaNO{sub 3} solutions with fixed NaOH concentration and variable NaNO{sub 3} concentration at room temperature (22--23 C). Equilibrium between solids and solutions was approached relatively slowly and required approximately 60--70 days before steady-state concentrations were reached. A thermodynamic model, based upon the Pitzer equations, was developed from the solubility data in NaOH, which includes only two aqueous Cr species (Cr(OH){sub 4}{sup {minus}} and NaCr(OH){sub 4}(aq)) and ion-interaction parameters for Na{sup +} with Cr(OH){sub 4}{sup {minus}}. This model was then tested in the mixed NaOH-NaNO{sub 3} solutions and found to be reliable.

  6. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton.

    PubMed

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A Egrinya; Li, Weijiang

    2012-03-01

    A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100 mM) or non-uniform NaCl concentrations (0/200 and 50/150 mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na(+) concentrations in leaves. The [Na(+)] in the '0' side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the '0' side phloem was girdled, suggesting that the increased [Na(+)] in the '0' side roots was possibly due to transportation of foliar Na(+) to roots through phloem. Plants under non-uniform salinity extruded more Na(+) from the root than those under uniform salinity. Root Na(+) efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na(+) efflux and H(+) influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na(+) extrusion was probably due to active Na(+)/H(+) antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na(+) concentration, transport of excessive foliar Na(+) to the low salinity side, and enhanced Na(+) efflux from the low salinity root.

  7. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    NASA Astrophysics Data System (ADS)

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-01

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO 2 and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 °C for 2-6 h by changing the SiO 2/Al 2O 3, H 2O/Na 2O and Na 2O/SiO 2 molar ratios of precursors in the two-step process. The surface area and NH 4+-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m 2/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m 2/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of ˜3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously.

  8. Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+ -K+ -ATPase.

    PubMed

    Song, Jianliang; Zhang, Xue-Qian; Wang, JuFang; Cheskis, Ellina; Chan, Tung O; Feldman, Arthur M; Tucker, Amy L; Cheung, Joseph Y

    2008-10-01

    Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct

  9. Characterization of the Cation Binding Sites in the NCKX2 Na(+)/Ca(2+)-K(+) Exchanger.

    PubMed

    Zhekova, Hristina; Zhao, Chunfeng; Schnetkamp, Paul P M; Noskov, Sergei Yu

    2016-11-22

    NCKX1-5 are proteins involved in K(+)-dependent Na(+)/Ca(2+) exchange in various signal tissues. Here we present a homology model of NCKX2 based on the crystal structure of the NCX_Mj transporter found in Methanoccocus jannaschii. Molecular dynamics simulations were performed on the resultant wild-type NCKX2 model and two mutants (D548N and D575N) loaded with either four Na(+) ions or one Ca(2+) ion and one K(+) ion, in line with the experimentally observed transport stoichiometry. The selectivity of the active site in wild-type NCKX2 for Na(+), K(+), and Li(+) and the electrostatic interactions of the positive Na(+) ions in the negatively charged active site of wild-type NCKX2 and the two mutants were evaluated from free energy perturbation calculations. For validation of the homology model, our computational results were compared to available experimental data obtained from numerous prior functional studies. The NCKX2 homology model is in good agreement with the discussed experimental data and provides valuable insights into the structure of the active site, which is lined with acidic and polar residues. The binding of the potassium and calcium ions is accomplished via Asp 575 and 548, respectively. Mutation of these residues to Asn alters the functionality of NCKX2 because of the elimination of the favorable carboxylate-cation interactions. The knowledge obtained from the NCKX2 model can be transferred to other isoforms of the NCKX family: newly discovered pathological mutations in NCKX4 and NCKX5 affect residues that are involved in ion binding and/or transport according to our homology model.

  10. Experimental Particle Physics

    SciTech Connect

    Rosenfeld, Carl; Mishra, Sanjib R.; Petti, Roberto; Purohit, Milind V.

    2014-08-31

    The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the BaBar experiment

  11. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices.

    PubMed

    Xu, Xu; Yan, Mengyu; Tian, Xiaocong; Yang, Chuchu; Shi, Mengzhu; Wei, Qiulong; Xu, Lin; Mai, Liqiang

    2015-06-10

    In the past decades, Li ion batteries are widely considered to be the most promising rechargeable batteries for the rapid development of mobile devices and electric vehicles. There arouses great interest in Na ion batteries, especially in the field of static grid storage due to their much lower production cost compared with Li ion batteries. However, the fundamental mechanism of Li and Na ion transport in nanoscale electrodes of batteries has been rarely experimentally explored. This insight can guide the development and optimization of high-performance electrode materials. In this work, single nanowire devices with multicontacts are designed to obtain detailed information during the electrochemical reactions. This unique platform is employed to in situ investigate and compare the transport properties of Li and Na ions at a single nanowire level. To give different confinement for ions and electrons during the electrochemical processes, two different configurations of nanowire electrode are proposed; one is to fully immerse the nanowire in the electrolyte, and the other is by using photoresist to cover the nanowire with only one end exposed. For both configurations, the conductivity of nanowire decreases after intercalation/deintercalation for both Li and Na ions, indicating that they share the similar electrochemical reaction mechanisms in layered electrodes. However, the conductivity degradation and structure destruction for Na ions is more severe than those of Li ions during the electrochemical processes, which mainly results from the much larger volume of Na ions and greater energy barrier encountered by the limited layered spaces. Moreover, the battery performances of coin cells are compared to further confirm this conclusion. The present work provides a unique platform for in situ electrochemical and electrical probing, which will push the fundamental and practical research of nanowire electrode materials for energy storage applications.

  12. Transepithelial glucose transport and Na+/K+ homeostasis in enterocytes: an integrative model

    PubMed Central

    Drengstig, Tormod; Ruoff, Peter

    2014-01-01

    The uptake of glucose and the nutrient coupled transcellular sodium traffic across epithelial cells in the small intestine has been an ongoing topic in physiological research for over half a century. Driving the uptake of nutrients like glucose, enterocytes must have regulatory mechanisms that respond to the considerable changes in the inflow of sodium during absorption. The Na-K-ATPase membrane protein plays a major role in this regulation. We propose the hypothesis that the amount of active Na-K-ATPase in enterocytes is directly regulated by the concentration of intracellular Na+ and that this regulation together with a regulation of basolateral K permeability by intracellular ATP gives the enterocyte the ability to maintain ionic Na+/K+ homeostasis. To explore these regulatory mechanisms, we present a mathematical model of the sodium coupled uptake of glucose in epithelial enterocytes. Our model integrates knowledge about individual transporter proteins including apical SGLT1, basolateral Na-K-ATPase, and GLUT2, together with diffusion and membrane potentials. The intracellular concentrations of glucose, sodium, potassium, and chloride are modeled by nonlinear differential equations, and molecular flows are calculated based on experimental kinetic data from the literature, including substrate saturation, product inhibition, and modulation by membrane potential. Simulation results of the model without the addition of regulatory mechanisms fit well with published short-term observations, including cell depolarization and increased concentration of intracellular glucose and sodium during increased concentration of luminal glucose/sodium. Adding regulatory mechanisms for regulation of Na-K-ATPase and K permeability to the model show that our hypothesis predicts observed long-term ionic homeostasis. PMID:24898586

  13. Critical Evaluation and Thermodynamic Optimization of the Na2O-FeO-Fe2O3 System

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-02-01

    A complete literature review, critical evaluation, and thermodynamic optimization of experimental phase diagrams and thermodynamic properties of the Na2O-FeO-Fe2O3 system were performed at 1 bar total pressure. A set of optimized model parameters obtained for all phases present in this system reproduces available and reliable thermodynamic properties and phase equilibria within experimental error limits from 298 K (25 °C) to above liquidus temperatures for all compositions and oxygen partial pressures from metallic saturation to 1 atm. The liquid phase was modeled based on the Modified Quasichemical Model by considering the possible formation of NaFeO2 associate in the liquid state. Complicated subsolidus phase relations depending on the oxygen partial pressure and temperature were elucidated, and discrepancies among experimental data were resolved.

  14. Final-state symmetry of Na 1s core-shell excitons in NaCl and NaF

    SciTech Connect

    Nagle, K.P.; Seidler, G.T.; Shirley, E.L.; Fister, T.T.; Bradley, J.A.; Brown, F.C.

    2009-08-13

    We report measurements of the Na 1s contribution to the nonresonant inelastic x-ray scattering (NRIXS) from NaCl and NaF. Prior x-ray absorption studies have observed two pre-edge excitons in both materials. The momentum-transfer dependence (q dependence) of the measured NRIXS cross section and of real-space full multiple scattering and Bethe-Salpeter calculations determine that the higher-energy core excitons are s type for each material. The lower-energy core excitons contribute at most weakly to the NRIXS signal and we propose that these may be surface core excitons, as have been observed in several other alkali halides. The analysis of the orbital angular momentum of these features leads to a discussion of the limited sensitivity of NRIXS measurements to d-type final states when investigating 1s initial states. In this case the s- and p-type final density of states can be characterized by measurements at a small number of momentum transfers. This is in contrast to the case of more complex initial states for which measurements at a large number of momentum transfers are needed to separate the rich admixture of accessible and contributing final-state symmetries.

  15. Particle physics---Experimental

    SciTech Connect

    Lord, J.J.; Boynton, P.E.; Burnett, T.H.; Wilkes, R.J.

    1991-08-21

    We are continuing a research program in particle astrophysics and high energy experimental particle physics. We have joined the DUMAND Collaboration, which is constructing a deep undersea astrophysical neutrino detector near Hawaii. Studies of high energy hadronic interactions using emulsion chamber techniques were also continued, using balloon flight exposures to ultra-high cosmic ray nuclei (JACEE) and accelerator beams. As members of the DUMAND Collaboration, we have responsibility for development a construction of critical components for the deep undersea neutrino detector facility. We have designed and developed the acoustical positioning system required to permit reconstruction of muon tracks with sufficient precision to meet the astrophysical goals of the experiment. In addition, we are making significant contributions to the design of the database and triggering system to be used. Work has been continuing in other aspects of the study of multiparticle production processes in nuclei. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators, using balloon-borne emulsion chambers. On one of the flights we found two nuclear interactions of multiplicity over 1000 -- one with a multiplicity of over 2000 and pseudorapidity density {approximately} 800 in the central region. At the statistical level of the JACEE experiment, the frequency of occurrence of such events is orders of magnitude too large. We have continued our ongoing program to study hadronic interactions in emulsions exposed to high energy accelerator beams.

  16. Experimental Toxoplasmosis in Chimpanzees

    PubMed Central

    Draper, C. C.; Killick-Kendrick, R.; Hutchison, W. M.; Siim, J. Chr.; Garnham, P. C. C.

    1971-01-01

    Two chimpanzees were given by mouth large numbers of viable oocysts of Toxoplasma gondii obtained from the faeces of experimentally infected cats. Before the experiment the first chimpanzee had a positive dye test reaction (1:250), an indication that it had undergone an earlier infection of toxoplasmosis; the serum antibody titres remained unchanged, no evidence of illness was found, and oocysts did not appear in its faeces during the subsequent six weeks. The second chimpanzee showed a negative dye test reaction before infection, and this converted to positive on the 7th day, rose to a peak on the 35th day, and remained high for six months. This animal appeared unwell during the first week, and on the 7th day its blood proved infective to mice; on the 40th day the lymph nodes became enlarged and biopsy specimens of a node and muscle in the 11th week were also infective to mice. No oocysts were passed in the faeces. The presumed cycle in the chimpanzee and in man and the relationships between Toxoplasma and Isospora are discussed. PMID:5575975

  17. Experimental quantum data locking

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Cao, Zhu; Wu, Cheng; Fukuda, Daiji; You, Lixing; Zhong, Jiaqiang; Numata, Takayuki; Chen, Sijing; Zhang, Weijun; Shi, Sheng-Cai; Lu, Chao-Yang; Wang, Zhen; Ma, Xiongfeng; Fan, Jingyun; Zhang, Qiang; Pan, Jian-Wei

    2016-08-01

    Classical correlation can be locked via quantum means: quantum data locking. With a short secret key, one can lock an exponentially large amount of information in order to make it inaccessible to unauthorized users without the key. Quantum data locking presents a resource-efficient alternative to one-time pad encryption which requires a key no shorter than the message. We report experimental demonstrations of a quantum data locking scheme originally proposed by D. P. DiVincenzo et al. [Phys. Rev. Lett. 92, 067902 (2004), 10.1103/PhysRevLett.92.067902] and a loss-tolerant scheme developed by O. Fawzi et al. [J. ACM 60, 44 (2013), 10.1145/2518131]. We observe that the unlocked amount of information is larger than the key size in both experiments, exhibiting strong violation of the incremental proportionality property of classical information theory. As an application example, we show the successful transmission of a photo over a lossy channel with quantum data (un)locking and error correction.

  18. Theoretical and experimental study of mixed solvent electrolytes. Final report, February 1, 1994--January 31, 1995

    SciTech Connect

    Cummings, P.T. |

    1995-12-31

    The research objectives were: perform Gibbs ensemble Monte Carlo simulation of mixed solvent electrolytes (ethanol/water/NaCl); perform molecular dynamics simulation of supercritical aqueous (electrolyte) solutions; measure experimentally phase equilibria in water/alcohol/organic salt mixtures; and conduct integral equation studies of mixed solvent electrolytes. Progress on all objectives is reported (the most progress was on the molecular dynamics simulation).

  19. Experimental verification of vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Santoro, Gilbert J.

    1985-01-01

    The main objective has been the experimental verification of the corrosive vapor deposition theory in high-temperature, high-velocity environments. Towards this end a Mach 0.3 burner-rig appartus was built to measure deposition rates from salt-seeded (mostly Na salts) combustion gases on the internally cooled cylindrical collector. Deposition experiments are underway.

  20. Computational interpretation of 23Na MQMAS NMR spectra: A comprehensive investigation of the Na environment in silicate glasses

    NASA Astrophysics Data System (ADS)

    Gambuzzi, Elisa; Charpentier, Thibault; Menziani, Maria Cristina; Pedone, Alfonso

    2014-09-01

    Molecular dynamics, density functional theory calculations and 23Na NMR experiments have been used to inspect the chemical and structural characteristics of the Na environment in soda-lime silicate (CSN) and aluminosilicate (CASN) glasses. The use of an improved 3QMAS pulse sequence has allowed a clear identification of different Na sites. Average coordination numbers have been extracted by fitting the 23Na 3QMAS spectra with the computed NMR parameters. The results show that the 23Na δiso values correlate with the average <Na-O> distances only when the different coordination numbers are explicitly taken into account.

  1. Phase diagram of the binary H2O-NaCl and salty ice VII at pressure and temperature conditions of exoplanets and large icy moons

    NASA Astrophysics Data System (ADS)

    Journaux, B.; Daniel, I.

    2011-10-01

    We present here the first experimental data for the phase diagram of the H2O-NaCl system at high. Our results show a significant influence of NaCl on the phase diagram. A lot of NaCl is directly disolved into the dense ice phase. This would increase the depth of the solid phase transition inside large icy moons or super-earth exoplanets. These results may have major implication for astrophysical, geophysical and geodynamical modelisations of this water-rich planetary bodies.

  2. Vibrational frequency shifts of diatomic molecules in interaction with a Na + cation by ab initio calculations. Comparison with experiment on H 2 and N 2 adsorbed in NaA zeolite

    NASA Astrophysics Data System (ADS)

    Koubi, Laure; Blain, Monique; de Lara, Evelyne Cohen; Leclerq, Jean-Marie

    1994-01-01

    Ab initio calculations on H 2 and N 2 and on the same molecules in the presence of a Na + cation are presented. The equilibrium configuration and the vibrational frequency shift due to the interaction are calculated. The potential energy surfaces are obtained by local osculatory interpolations and extrapolations. The vibrational frequencies are calculated by the Numerov—Cooley method. The direction of the frequency shift is found to be related to the orientation of the diatomic molecule with respect to the cation. The results are compared with experimental data on induced infrared bands of H 2 and N 2 adsorbed in NaA zeolite.

  3. Elementary immunology: Na(+) as a regulator of immunity.

    PubMed

    Schatz, Valentin; Neubert, Patrick; Schröder, Agnes; Binger, Katrina; Gebhard, Matthias; Müller, Dominik N; Luft, Friedrich C; Titze, Jens; Jantsch, Jonathan

    2017-02-01

    The skin can serve as an interstitial Na(+) reservoir. Local tissue Na(+) accumulation increases with age, inflammation and infection. This increased local Na(+) availability favors pro-inflammatory immune cell function and dampens their anti-inflammatory capacity. In this review, we summarize available data on how NaCl affects various immune cells. We particularly focus on how salt promotes pro-inflammatory macrophage and T cell function and simultaneously curtails their regulatory and anti-inflammatory potential. Overall, these findings demonstrate that local Na(+) availability is a promising novel regulator of immunity. Hence, the modulation of tissue Na(+) levels bears broad therapeutic potential: increasing local Na(+) availability may help in treating infections, while lowering tissue Na(+) levels may be used to treat, for example, autoimmune and cardiovascular diseases.

  4. U. S. EPA’S NA APPROACH FOR PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Most evaluations of NA of petroleum hydrocarbons use geochemical data to document the NA through biodegradation. The expected trends during biodegradation (plume interior vs. background concentrations) are Dissolved oxygen concentrations below background, Nitrate concentrations ...

  5. Inelastic and reactive collisions with polarized excited Na atoms

    SciTech Connect

    Schmidt, H.; Hertel, I.V.; Lee, Y.T.

    1985-07-01

    Polarization effects in inelastic collisions of laser state-prepared Na(3/sup 2/P, M/sub J/) with Na/sup +/ leading to Na(3/sup 2/D) or Na(3/sup 2/S) are discussed for the energy range E/sub cm/ = 5-47.5eV. Studies with linearly polarized light can be explained with a simple ''locking'' model of the Na(P)-orbital. The investigations employing circularly polarized light are a very sensitive test of the models describing the nonadiabatic angular momentum coupling between electronic and nuclear motion. The dynamical effects of the electronic spin on the angular momentum transfer are discussed. Recent crossed-beam experiments on the Na + O/sub 2/ -> NaO = O reaction in the energy range E/sub cm/ = 0/3-0.8eV show a pronounced dependence on the electric electronic symmetry of Na. 17 refs., 11 figs.

  6. How does CO capture process on microporous NaY zeolites? A FTIR and DFT combined study.

    PubMed

    Cairon, O; Guesmi, H

    2011-06-21

    Reliable experimental IR and theoretical approaches, both investigating CO adsorption on NaY faujasites, are supporting that CO capture occurs through the completion of the vacant coordination of Na(+) cations located in the accessible S(II) sites. As a result, carbonyl adsorbed species are formed by the capture of one, two or three CO molecules and are experimentally discernable by their respective IR positions that are down-shifted by an average 11-12 cm(-1) value for each captured CO molecule. DFT analysis is proposed for comparison and reproduces well the observed experimental shift of the ν(CO) positions of the different polycarbonyls of interest. In addition, the effect of Si or Al composition surrounding the SII Na(+) cation is investigated and results suggest that polycarbonyls that are formed might be in connection with the acidic strength of the cationic sites. This combined study completes and improves the understanding of the complex issue of CO adsorption at 80 K widely used as a model to explain how physical adsorption takes place in NaY faujasites working as an efficient industrial adsorbent in gas separation or gas purification processes.

  7. Design of Na(+) -Selective Fluorescent Probes: A Systematic Study of the Na(+) -Complex Stability and the Na(+) /K(+) Selectivity in Acetonitrile and Water.

    PubMed

    Schwarze, Thomas; Müller, Holger; Schmidt, Darya; Riemer, Janine; Holdt, Hans-Jürgen

    2017-02-14

    There is a tremendous demand for highly Na(+) -selective fluoroionophores to monitor the top analyte Na(+) in life science. Here, we report a systematic route to develop highly Na(+) /K(+) selective fluorescent probes. Thus, we synthesized a set of fluoroionophores 1, 3, 4, 5, 8 and 9 (see Scheme ) to investigate the Na(+) /K(+) selectivity and Na(+) - complex stability in CH3 CN and H2 O. These Na(+) -probes bear different 15-crown-5 moieties to bind Na(+) stronger than K(+) . In the set of the diethylaminocoumarin-substituted fluoroionophores 1-5, the following trend of fluorescence quenching 1>3>2>4>5 in CH3 CN was observed. Therefore, the flexibility of the aza-15-crown-5 moieties in 1-4 determines the conjugation of the nitrogen lone pair with the aromatic ring. As a consequence, 1 showed in CH3 CN the highest Na(+) -induced fluorescence enhancement (FE) by a factor of 46.5 and a weaker K(+) induced FE of 3.7. The Na(+) -complex stability of 1-4 in CH3 CN is enhanced in the following order of 2>4>3>1, assuming that the O-atom of the methoxy group in the ortho-position, as shown in 2, strengthened the Na(+) -complex formation. Furthermore, we found for the N-(o-methoxyphenyl)aza-15-crown-5 substituted fluoroionophores 2, 8 and 9 in H2 O, an enhanced Na(+) -complex stability in the following order 8>2>9 and an increased Na(+) /K(+) selectivity in the reverse order 9>2>8. Notably, the Na(+) -induced FE of 8 (FEF=10.9), 2 (FEF=5.0) and 9 (FEF=2.0) showed a similar trend associated with a decreased K(+) -induced FE [8 (FEF=2.7)>2 (FEF=1.5)>9 (FEF=1.1)]. Here, the Na(+) -complex stability and Na(+) /K(+) selectivity is also influenced by the fluorophore moiety. Thus, fluorescent probe 8 (Kd =48 mm) allows high-contrast, sensitive, and selective Na(+) measurements over extracellular K(+) levels. A higher Na(+) /K(+) selectivity showed fluorescent probe 9, but also a higher Kd value of 223 mm. Therefore, 9 is a suitable tool to measure Na(+) concentrations up to

  8. Na+-driven bacterial flagellar motors.

    PubMed

    Imae, Y; Atsumi, T

    1989-12-01

    Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

  9. Experimental Deformation of Magnetite

    NASA Astrophysics Data System (ADS)

    Till, J. L.; Rybacki, E.; Morales, L. F. G.

    2015-12-01

    Magnetite is an important iron ore mineral and the most prominent Fe-oxide phase in the Earth's crust. The systematic occurrence of magnetite in zones of intense deformation in oceanic core complexes suggests that it may play a role in strain localization in some silicate rocks. We performed a series of high-temperature deformation experiments on synthetic magnetite aggregates and natural single crystals to characterize the rheological behavior of magnetite. As starting material, we used fine-grained magnetite powder that was hot isostatically pressed at 1100°C for several hours, resulting in polycrystalline material with a mean grain size of around 40 μm and containing 3-5% porosity. Samples were deformed to 15-20% axial strain under constant load (approximating constant stress) conditions in a Paterson-type gas apparatus for triaxial deformation at temperatures between 900 and 1100°C and 300 MPa confining pressure. The aggregates exhibit typical power-law creep behavior. At high stresses, samples deformed by dislocation creep exhibit stress exponents close to 3, revealing a transition to near-Newtonian creep with stress exponents around 1.3 at lower stresses. Natural magnetite single crystals deformed at 1 atm pressure and temperatures between 950°C and 1150 °C also exhibit stress exponents close to 3, but with lower flow stresses and a lower apparent activation energy than the aggregates. Such behavior may result from the different oxygen fugacity buffers used. Crystallographic-preferred orientations in all polycrystalline samples are very weak and corroborate numerical models of CPO development, suggesting that texture development in magnetite may be inherently slow compared with lower symmetry phases. Comparison of our results with experimental deformation data for various silicate minerals suggests that magnetite should be weaker than most silicates during ductile creep in dry igneous rocks.

  10. X-38 Experimental Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Merski, N. Ronald; Fitzgerald, Steve M.

    2000-01-01

    The X-38 program seeks to demonstrate an autonomously returned orbital test flight vehicle to support the development of an operational Crew Return Vehicle for the International Space Station. The test flight, anticipated in 2002, is intended to demonstrate the entire mission profile of returning Space Station crew members safely back to earth in the event of medical or mechanical emergency. Integral to the formulation of the X-38 flight data book and the design of the thermal protection system, the aerothermodynamic environment is being defined through a synergistic combination of ground based testing and computational fluid dynamics. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at the NASA Langley Research Center in support of the X-38 development. Global and discrete surface heat transfer force and moment, surface streamline patterns, and shock shapes were measured on scaled models of the proposed X-38 configuration in different test gases at Mach 6, 10 and 20. The test parametrics include angle of attack from 0 to 50 degs, unit Reynolds numbers from 0.3 x 10 (exp 6) to 16 x 10 (exp 6)/ ft, rudder deflections of 0, 2, and 5 deg. and body flap deflections from 0 to 30 deg. Results from hypersonic aerodynamic screening studies that were conducted as the configuration evolved to the present shape at, presented. Heavy gas simulation tests have indicated that the primary real gas effects on X-38 aerodynamics at trim conditions are expected to favorably influence flap effectiveness. Comparisons of the experimental heating and force and moment data to prediction and the current aerodynamic data book are highlighted. The effects of discrete roughness elements on boundary layer transition were investigated at Mach 6 and the development of a transition correlation for the X-38 vehicle is described. Extrapolation of ground based heating measurements to flight radiation equilibrium wall temperatures at Mach 6 and 10 were

  11. Prediction of production of 22Na in a gas-cell target irradiated by protons using Monte Carlo tracking

    NASA Astrophysics Data System (ADS)

    Eslami, M.; Kakavand, T.; Mirzaii, M.; Rajabifar, S.

    2015-01-01

    The 22Ne(p,n)22Na is an optimal reaction for the cyclotron production of 22Na. This work tends to monitor the proton induced production of 22Na in a gas-cell target, containing natural and enriched neon gas, using Monte Carlo method. The excitation functions of reactions are calculated by both TALYS-1.6 and ALICE/ASH codes and then the optimum energy range of projectile for the high yield production is selected. A free gaseous environment of neon at a particular pressure and temperature is prearranged and the proton beam is transported within it using Monte Carlo codes MCNPX and SRIM. The beam monitoring performed by each of these codes indicates that the gas-cell has to be designed as conical frustum to reach desired interactions. The MCNPX is also employed to calculate the energy distribution of proton in the designed target and estimation of the residual nuclei during irradiation. The production yield of 22Na in 22Ne(p,n)22Na and natNe(p,x)22Na reactions are estimated and it shows a good agreement with the experimental results. The results demonstrate that Monte Carlo makes available a beneficial manner to design and optimize the gas targets as well as calibration of detectors, which can be used for the radionuclide production purposes.

  12. Na+/H+ exchanger 1 inhibition reverses manifestation of peripheral diabetic neuropathy in type 1 diabetic rats

    PubMed Central

    Lupachyk, Sergey; Watcho, Pierre; Shevalye, Hanna; Vareniuk, Igor; Obrosov, Alexander; Obrosova, Irina G.

    2013-01-01

    Evidence for an important role for Na+/H+ exchangers in diabetic complications is emerging. The aim of this study was to evaluate whether Na+/H+ exchanger 1 inhibition reverses experimental peripheral diabetic neuropathy. Control and streptozotocin-diabetic rats were treated with the specific Na+/H+ exchanger 1 inhibitor cariporide for 4 wk after 12 wk without treatment. Neuropathy end points included sciatic motor and sensory nerve conduction velocities, endoneurial nutritive blood flow, vascular reactivity of epineurial arterioles, thermal nociception, tactile allodynia, and intraepidermal nerve fiber density. Advanced glycation end product and markers of oxidative stress, including nitrated protein levels in sciatic nerve, were evaluated by Western blot. Rats with 12-wk duration of diabetes developed motor and sensory nerve conduction deficits, thermal hypoalgesia, tactile allodynia, and intraepidermal nerve fiber loss. All these changes, including impairment of nerve blood flow and vascular reactivity of epineurial arterioles, were partially reversed by 4 wk of cariporide treatment. Na+/H+ exchanger 1 inhibition was also associated with reduction of diabetes-induced accumulation of advanced glycation endproduct, oxidative stress, and nitrated proteins in sciatic nerve. In conclusion, these findings support an important role for Na+/H+ exchanger 1 in functional, structural, and biochemical manifestations of peripheral diabetic neuropathy and provide the rationale for development of Na+/H+ exchanger 1 inhibitors for treatment of diabetic vascular and neural complications. PMID:23736542

  13. The two C-terminal tyrosines stabilize occluded Na/K pump conformations containing Na or K ions.

    PubMed

    Vedovato, Natascia; Gadsby, David C

    2010-07-01

    Interactions of the three transported Na ions with the Na/K pump remain incompletely understood. Na/K pump crystal structures show that the extended C terminus of the Na,K-adenosine triphosphatase (ATPase) alpha subunit directly contacts transmembrane helices. Deletion of the last five residues (KETYY in almost all Na/K pumps) markedly lowered the apparent affinity for Na activation of pump phosphorylation from ATP, a reflection of cytoplasmic Na affinity for forming the occluded E1P(Na3) conformation. ATPase assays further suggested that C-terminal truncations also interfere with low affinity Na interactions, which are attributable to extracellular effects. Because extracellular Na ions traverse part of the membrane's electric field to reach their binding sites in the Na/K pump, their movements generate currents that can be monitored with high resolution. We report here electrical measurements to examine how Na/K pump interactions with extracellular Na ions are influenced by C-terminal truncations. We deleted the last two (YY) or five (KESYY) residues in Xenopus laevis alpha1 Na/K pumps made ouabain resistant by either of two kinds of point mutations and measured their currents as 10-mM ouabain-sensitive currents in Xenopus oocytes after silencing endogenous Xenopus Na/K pumps with 1 microM ouabain. We found the low affinity inhibitory influence of extracellular Na on outward Na/K pump current at negative voltages to be impaired in all of the C-terminally truncated pumps. Correspondingly, voltage jump-induced transient charge movements that reflect pump interactions with extracellular Na ions were strongly shifted to more negative potentials; this signals a several-fold reduction of the apparent affinity for extracellular Na in the truncated pumps. Parallel lowering of Na affinity on both sides of the membrane argues that the C-terminal contacts provide important stabilization of the occluded E1P(Na3) conformation, regardless of the route of Na ion entry into the

  14. The complex lightcurve of 1992 NA

    NASA Technical Reports Server (NTRS)

    Wisniewski, Wieslaw Z.; Harris, A. W.

    1994-01-01

    Amor asteroid 1992 NA was monitored during three nights at a large phase angle of -65 deg. The lightcurves obtained did not reveal a repeatable curve with two maxima and two minima. However, some features suggested a periodicity with three maxima and three minima. A satisfactory composite lightcurve of this form was obtained by means of an 'eyeball' fit and by Fourier analysis. Individual and composite lightcurves are presented. The observed colors are consistent with the C class.

  15. First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites.

    PubMed

    Fang, Hanjun; Kamakoti, Preeti; Ravikovitch, Peter I; Aronson, Matthew; Paur, Charanjit; Sholl, David S

    2013-08-21

    The development of accurate force fields is vital for predicting adsorption in porous materials. Previously, we introduced a first principles-based transferable force field for CO2 adsorption in siliceous zeolites (Fang et al., J. Phys. Chem. C, 2012, 116, 10692). In this study, we extend our approach to CO2 adsorption in cationic zeolites which possess more complex structures. Na-exchanged zeolites are chosen for demonstrating the approach. These methods account for several structural complexities including Al distribution, cation positions and cation mobility, all of which are important for predicting adsorption. The simulation results are validated with high-resolution experimental measurements of isotherms and microcalorimetric heats of adsorption on well-characterized materials. The choice of first-principles method has a significant influence on the ability of force fields to accurately describe CO2-zeolite interactions. The PBE-D2 derived force field, which performed well for CO2 adsorption in siliceous zeolites, does not do so for Na-exchanged zeolites; the PBE-D2 method overestimates CO2 adsorption energies on multi-cation sites that are common in cationic zeolites with low Si/Al ratios. In contrast, a force field derived from the DFT/CC method performed well. Agreement was obtained between simulation and experiment not only for LTA-4A on which the force field fitting is based, but for other two common adsorbents, NaX and NaY.

  16. Structure of Ni(100)-c(2×2)-Na: A LEED analysis

    NASA Astrophysics Data System (ADS)

    Nielsen, M. M.; Burchhardt, J.; Adams, D. L.

    1994-09-01

    The structure of Ni(100)-c(2×2)-Na has been investigated by analysis of extensive new low-energy electron-diffraction (LEED) data. The structure is found to contain Na atoms adsorbed in fourfold hollow sites on an unreconstructed and essentially unrelaxed substrate. The Na-Ni layer spacing is 2.38+/-0.04 Å and the first Ni-Ni layer spacing is 1.75+/-0.01 Å. These results are in good agreement with the conclusions of an early study by Demuth et al. [J. Phys. C 8, L25 (1975)]. Good agreement between experimental and calculated LEED intensities is obtained using the dynamic theory of LEED, with a conventional, muffin-tin potential for the adsorbed Na atoms and a step potential at the surface. The good agreement pertains not only to the energy positions and relative intensities of peaks in intensity-energy spectra for the diffracted beams, but also to the relative beam intensities, which span a range of nearly two orders of magnitude.

  17. Theoretical study of the CsNa molecule: adiabatic and diabatic potential energy and dipole moment.

    PubMed

    Mabrouk, N; Berriche, H

    2014-09-25

    The adiabatic and diabatic potential energy curves of the low-lying electronic states of the NaCs molecule dissociating into Na (3s, 3p) + Cs (6s, 6p, 5d, 7s, 7p, 6d, 8s, 4f) have been investigated. The molecular calculations are performed using an ab initio approach based on nonempirical pseudopotential, parametrized l-dependent polarization potentials and full configuration interaction calculations through the CIPCI quantum chemistry package. The derived spectroscopic constants (Re, De, Te, ωe, ωexe, and Be) of the ground state and lower excited states are compared with the available theoretical and experimental works. Moreover, accurate permanent and transition dipole moment have been determined as a function of the internuclear distance. The adiabatic permanent dipole moment for the first nine (1)Σ(+) electronic states have shown both ionic characters associated with electron transfer related to Cs(+)Na(-) and Cs(-)Na(+) arrangements. By a simple rotation, the diabatic permanent dipole moment is determined and has revealed a linear behavior, particularly at intermediate and large distances. Many peaks around the avoided crossing locations have been observed for the transition dipole moment between neighbor electronic states.

  18. NaV1.5 and interacting proteins in human arrhythmogenic cardiomyopathy.

    PubMed

    Gillet, Ludovic; Shy, Diana; Abriel, Hugues

    2013-07-01

    Evaluation of: Noorman M, Hakim S, Kessler E et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm 10(3), 412-419 (2013). Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease characterized by a progressive replacement of the ventricular myocardium with adipose and fibrous tissue. This disease is often associated with mutations in genes encoding desmosomal proteins in the majority of patients. Based on results obtained from recent experimental models, a disturbed distribution of gap junction proteins and cardiac sodium channels may also be observed in AC phenotypes, secondary to desmosomal dysfunction. The study from Noorman et al. examined heart sections from patients diagnosed with AC and performed immunohistochemical analyses of N-cadherin, PKP2, PKG, Cx43 and the cardiac sodium channel NaV1.5. Altered expression/distribution of Cx43, PKG and NaV1.5 was found in most cases of patients with AC. The altered expression and/or distribution of NaV1.5 channels in AC hearts may play a mechanistic role in the arrhythmias leading to sudden cardiac death in AC patients. Thus, NaV1.5 should be considered as a supplemental element in the evaluation of risk stratification and management strategies. However, additional experiments are required to clearly understand the mechanisms leading to AC phenotypes.

  19. Recent Experimental Progress on Surrogate Reactions

    NASA Astrophysics Data System (ADS)

    Beausang, Cornelius

    2014-09-01

    -process rp- and p-processes etc.), for nuclear energy generation and for national security applications. Many such reactions occur on short-lived unstable nuclei. Even with the present generation of radioactive beam facilities, many such reactions are difficult, if not impossible, to measure directly. For these reactions, often the surrogate reaction technique provides the only option to provide some experimental guidance for the calculations. The experimental and theoretical techniques required are described in some detail in the recent review article by Escher et al.. Originally introduced in the 1970's the last decade has seen a resurgence of interest in the surrogate technique. Various ratio techniques, external, internal and hybrid, have been developed to minimize the effect of target contamination. In the actinide region, a large number of surrogate (n,f) cross sections have been measured. In general, these show agreement to within 5--10%, with directly measured (n,f) data where these data exist (benchmarking), for equivalent neutron energies ranging from ~100 keV up to tens of MeV. For (n, γ) reactions, measurements have been attempted for select nuclei in various mass regions (A ~ 90, 150 and 235) and for these the agreement with directly measured data is less good. The various experimental techniques employed will be described as well as the current state of the experimental data. Some future directions will be described. This work was partly supported by the US Department of Energy under Grant Numbers DE-FG52-06NA26206 and DE-FG02-05ER41379.

  20. Excited-state spectroscopy for producing ultracold ground-state NaRb molecule

    NASA Astrophysics Data System (ADS)

    Wang, Dajun; Zhu, Bing; Guo, Mingyang; Li, Xiaoke; Lu, Bo; Wang, Fudong; Ye, Xin; Vexiau, Romain; Luc, Eliane; Bouloufa-Maafa, Nadia; Dulieu, Olivier

    2015-05-01

    We report a joint experimental and theoretical investigation on the excited states of NaRb molecule. In particular, we focus on the A1Σ+ /b3 Π admixture which is a promising intermediate state for transferring weakly-bound NaRb Feshbach molecules to the v = 0 level of the X1Σ+ state. Based on RKR potentials obtained from conventional molecular spectroscopy [1], we identified several levels which satisfy the requirements for efficient two-photon population transfer. Starting from a pure sample of NaRb Feshbach molecules, we have experimentally observed most of these levels. The detailed characterization of these levels, including their transition strengths and singlet/triplet mixing ratios, as well as searching of the v = 0 level of the X1Σ+ state with two-photon Autler-Townes spectroscopy, are well underway. This work is jointly supported by Agence Nationale de la Recherche (#ANR-13-IS04-0004-01) and Hong Kong Research Grant Council (#A-CUHK403/13) through the COPOMOL project.

  1. Spontaneous NA+ transients in individual mitochondria of intact astrocytes.

    PubMed

    Azarias, Guillaume; Van de Ville, Dimitri; Unser, Michael; Chatton, Jean-Yves

    2008-02-01

    Mitochondria in intact cells maintain low Na(+) levels despite the large electrochemical gradient favoring cation influx into the matrix. In addition, they display individual spontaneous transient depolarizations. The authors report here that individual mitochondria in living astrocytes exhibit spontaneous increases in their Na(+) concentration (Na(mit)(+) spiking), as measured using the mitochondrial probe CoroNa Red. In a field of view with approximately 30 astrocytes, up to 1,400 transients per minute were typically detected under resting conditions. Na(mit)(+) spiking was also observed in neurons, but was scarce in two nonneural cell types tested. Astrocytic Na(mit)(+) spikes averaged 12.2 +/- 0.8 s in duration and 35.5 +/- 3.2 mM in amplitude and coincided with brief mitochondrial depolarizations; they were impaired by mitochondrial depolarization and ruthenium red pointing to the involvement of a cation uniporter. Na(mit)(+) spiking activity was significantly inhibited by mitochondrial Na(+)/H(+) exchanger inhibition and sensitive to cellular pH and Na(+) concentration. Ca(2+) played a permissive role on Na(mit)(+) spiking activity. Finally, the authors present evidence suggesting that Na(mit)(+) spiking frequency was correlated with cellular ATP levels. This study shows that, under physiological conditions, individual mitochondria in living astrocytes exhibit fast Na(+) exchange across their inner membrane, which reveals a new form of highly dynamic and localized functional regulation.

  2. Glial Na(+) -dependent ion transporters in pathophysiological conditions.

    PubMed

    Boscia, Francesca; Begum, Gulnaz; Pignataro, Giuseppe; Sirabella, Rossana; Cuomo, Ornella; Casamassa, Antonella; Sun, Dandan; Annunziato, Lucio

    2016-10-01

    Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.

  3. An analytical and experimental study of zoning in plagioclase

    NASA Technical Reports Server (NTRS)

    Smith, R. K.; Lofgren, G. E.

    1983-01-01

    A detailed electron microprobe study has been conducted on natural and experimentally grown zoned plagioclase feldspars. Discontinuous, sector, and oscillatory chemical zoning are observed superimposed on continuous normal or reverse zoning trends. The relative accuracy of 3 element (Na, Ca, K) microprobe traverses was found statistically to be 2 mole percent. Comparison of microprobe data on natural zoned plagioclase with zoned plagioclase grown in controlled experiments has shown that it may be possible to distinguish zonal development resulting from physio-chemical changes to the bulk magma from zoning related to local kinetic control on the growth of individual crystals.

  4. POST-OPERATIONAL TREATMENT OF RESIDUAL NA COOLLANT IN EBR-2 USING CARBONATION

    SciTech Connect

    Sherman, S.; Knight, C.

    2011-03-08

    At the end of 2002, the Experimental Breeder Reactor Two (EBR-II) facility became a U.S. Resource Conservation and Recovery Act (RCRA) permitted site, and the RCRA permit1 compelled further treatment of the residual sodium in order to convert it into a less reactive chemical form and remove the by-products from the facility, so that a state of RCRA 'closure' for the facility may be achieved (42 U.S.C. 6901-6992k, 2002). In response to this regulatory driver, and in recognition of project budgetary and safety constraints, it was decided to treat the residual sodium in the EBR-II primary and secondary sodium systems using a process known as 'carbonation.' In early EBR-II post-operation documentation, this process is also called 'passivation.' In the carbonation process (Sherman and Henslee, 2005), the system containing residual sodium is flushed with humidified carbon dioxide (CO{sub 2}). The water vapor in the flush gas reacts with residual sodium to form sodium hydroxide (NaOH), and the CO{sub 2} in the flush gas reacts with the newly formed NaOH to make sodium bicarbonate (NaHCO{sub 3}). Hydrogen gas (H{sub 2}) is produced as a by-product. The chemical reactions occur at the exposed surface of the residual sodium. The NaHCO{sub 3} layer that forms is porous, and humidified carbon dioxide can penetrate the NaHCO{sub 3} layer to continue reacting residual sodium underneath. The rate of reaction is controlled by the thickness of the NaHCO{sub 3} surface layer, the moisture input rate, and the residual sodium exposed surface area. At the end of carbonation, approximately 780 liters of residual sodium in the EBR-II primary tank ({approx}70% of original inventory), and just under 190 liters of residual sodium in the EBR-II secondary sodium system ({approx}50% of original inventory), were converted into NaHCO{sub 3}. No bare surfaces of residual sodium remained after treatment, and all remaining residual sodium deposits are covered by a layer of NaHCO{sub 3}. From a

  5. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps.

    PubMed

    Vedovato, Natascia; Gadsby, David C

    2014-04-01

    A single Na(+)/K(+)-ATPase pumps three Na(+) outwards and two K(+) inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na(+) than K(+) generates outward current across the cell membrane. Less well understood is the ability of Na(+)/K(+) pumps to generate an inward current of protons. Originally noted in pumps deprived of external K(+) and Na(+) ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K(+) and Na(+) concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na(+) release from phosphorylated Na(+)/K(+) pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na(+)/K(+) pumps that enables proton import is not required for completion of the 3 Na(+)/2 K(+) transport cycle. However, the back-step occurs readily during Na(+)/K(+) transport when external K(+) ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na(+)-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na(+) and K(+) ions that passes through binding site II. The inferred occurrence of Na(+)/K(+) exchange and H(+) import during the same conformational cycle of a single molecule identifies the Na(+)/K(+) pump as a hybrid transporter. Whether Na(+)/K(+) pump-mediated proton inflow may have any physiological or

  6. Electronic and structural properties of NaZnX (X = P, As, Sb): an ab initio study

    NASA Astrophysics Data System (ADS)

    Jaiganesh, G.; Merita Anto Britto, T.; Eithiraj, R. D.; Kalpana, G.

    2008-02-01

    The first-principles tight-binding linear muffin-tin orbital method within the local density approximation (LDA) has been used to calculate the ground-state properties, structural phase stability and pressure dependence of the band gap of NaZnX (X = P, As, Sb). All three compounds are found to crystallize in the tetragonal Cu2Sb-type (C38) structure. NaZnAs is also found to crystallize in the zinc-blende-type related structure, i.e. the MgAgAs (order CaF2)-type structure. By interchanging the position of the atoms in the zinc-blende structure, three phases (α, β and γ) are formed. The energy-volume relations for these compounds have been obtained in the Cu2Sb-type and cubic α, β and γ phases of the zinc-blende-type related structure. Under ambient conditions these compounds are more stable in the Cu2Sb-type structure and are in agreement with experimental observations. At high pressure, these compounds undergo a structural phase transition from the tetragonal Cu2Sb-type to cubic α (or β) phase, and the transition pressures were calculated. The equilibrium lattice parameter, bulk modulus and the cohesive energy for these compounds have also been calculated and are compared with the available results. In the Cu2Sb-type structure, NaZnP is found to be a direct-band-gap semiconductor, NaZnAs shows a very small direct band gap and NaZnSb is found to be a metal. In the α and β phases, NaZnP is found to be a direct-band-gap semiconductor, whereas NaZnAs and NaZnSb are found to be semi-metallic. In the γ-phase, all three compounds are found to exhibit metallic behaviour. However, this phase is energetically unfavourable.

  7. Discrimination of Intra- and Extracellular 23Na+ Signals in Yeast Cell Suspensions Using Longitudinal Magnetic Resonance Relaxography

    PubMed Central

    Zhang, Yajie; Poirer-Quinot, Marie; Springer, Charles S.; Balschi, James A

    2010-01-01

    This study tested the ability of MR Relaxography (MRR) to discriminate intra- (Nai+) and extracellular (Nae+) 23Na+ signals using their longitudinal relaxation time constant (T1) values. Na+-loaded yeast cell (Saccharomyces cerevisiae) suspensions were investigated. Two types of compartmental 23Na+ T1 differences were examined: a selective Nae+ T1 decrease induced by an extracellular relaxation reagent (RRe), GdDOTP5−; and, an intrinsic T1 difference. Parallel studies using the established method of 23Na MRS with an extracellular shift reagent (SRe), TmDOTP5−, were used to validate the MRR measurements. With 12.8 mM RRe, the 23Nae+ T1 was 2.4 ms and the 23Nai+ T1 was 9.5 ms (9.4T, 24°C). The Na+ amounts and spontaneous efflux rate constants were found to be identical within experimental error whether measured by MRR/RRe or by MRS/SRe. Without RRe, the Na+-loaded yeast cell suspension 23Na MR signal exhibited two T1 values, 9.1 (± 0.3) ms and 32.7 (± 2.3) ms, assigned to 23Nai+ and 23Nae+, respectively. The Nai+ content measured was lower, 0.88 (± 0.06); while Nae+ was higher, 1.43 (± 0.12) compared with MRS/SRe measures on the same samples. However, the measured efflux rate constant was identical. T1 MRR potentially may be used for Nai+ determination in vivo and Na+ flux measurements; with RRe for animal studies and without RRe for humans. PMID:20430659

  8. Discrimination of intra- and extracellular 23Na + signals in yeast cell suspensions using longitudinal magnetic resonance relaxography

    NASA Astrophysics Data System (ADS)

    Zhang, Yajie; Poirer-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2010-07-01

    This study tested the ability of MR relaxography (MRR) to discriminate intra- (Nai+) and extracellular (Nae+)23Na + signals using their longitudinal relaxation time constant ( T1) values. Na +-loaded yeast cell ( Saccharomyces cerevisiae) suspensions were investigated. Two types of compartmental 23Na +T1 differences were examined: a selective Nae+T1 decrease induced by an extracellular relaxation reagent (RR e), GdDOTP 5-; and, an intrinsic T1 difference. Parallel studies using the established method of 23Na MRS with an extracellular shift reagent (SR e), TmDOTP 5-, were used to validate the MRR measurements. With 12.8 mM RR e, the 23Nae+T1 was 2.4 ms and the 23Nai+T1 was 9.5 ms (9.4T, 24 °C). The Na + amounts and spontaneous efflux rate constants were found to be identical within experimental error whether measured by MRR/RR e or by MRS/SR e. Without RR e, the Na +-loaded yeast cell suspension 23Na MR signal exhibited two T1 values, 9.1 (±0.3) ms and 32.7 (±2.3) ms, assigned to 23Nai+ and 23Nae+, respectively. The Nai+ content measured was lower, 0.88 (±0.06); while Nae+ was higher, 1.43 (±0.12) compared with MRS/SR e measures on the same samples. However, the measured efflux rate constant was identical. T1 MRR potentially may be used for Nai+ determination in vivo and Na + flux measurements; with RR e for animal studies and without RR e for humans.

  9. Mechanism of the association between Na+ binding and conformations at the intracellular gate in neurotransmitter:sodium symporters

    DOE PAGES

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; ...

    2015-04-13

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na+-dependent reuptake of released neurotransmitters. Previous studies suggested that Na+-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. Here we describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two differentmore » perturbations disrupting Na+ binding and transport (i.e. replacing Na+ with Li+ or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na+ cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na+ dependence. Furthermore, the detailed AIN generated from our method is shown to connect Na+ binding with global conformational changes that are critical for the transport mechanism. Lastly, that the AIN between the Na+ binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.« less

  10. Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters.

    PubMed

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; Gotfryd, Kamil; Khelashvili, George; Gether, Ulrik; Loland, Claus J; Javitch, Jonathan A; Noskov, Sergei; Weinstein, Harel; Shi, Lei

    2015-05-29

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na(+)-dependent reuptake of released neurotransmitters. Previous studies suggested that Na(+)-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na(+) binding and transport (i.e. replacing Na(+) with Li(+) or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na(+) cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na(+) dependence. Thus, the detailed AIN generated from our method is shown to connect Na(+) binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na(+) binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.

  11. Theoretical investigation on local structure and transport properties of NaFsbnd AlF3 molten salts under electric field environment

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-08-01

    The effect of electric field and molecular ratio CR (NaF/AlF3) on basic structure and transport properties of NaFsbnd AlF3 molten salts were investigated by molecular dynamics simulations with the Buckingham potential model. The [AlF6]3- groups are the dominant specie in NaFsbnd AlF3 molten salts at CR ≥ 2.6, and followed by the [AlF5]2- groups, while CR ≤ 2.4, [AlF5]2- groups are the protagonists up to 40%. In NaFsbnd AlF3 system, with the increase of CR, the proportion of Fb decreases slightly and the percentage of Ff increases dramatically. The Alsbnd F bonds have ionic characters as well as partial covalently characters due to the hybridization of F-2p and Al-3s, 3p orbitals. The order of ion diffusion ability follows as Na+ > F- > Al3+. Adding more NaF can break some F bridges of structure networks and decrease the polymerization degree of NaFsbnd AlF3 molten salts, the viscosity reduces and ionic conductivity increases as a consequence. The calculated results of ionic conductivity are in agreement with the experimental results. Electric field has no significant impact on the local structure characters, while transport properties are not. The change of CR (NaF/AlF3) can significantly affect these characters of both the structure and transport.

  12. Ethylenediamine-Assisted Hydrothermal Synthesis of NaCaSiO3OH: Controlled Morphology, Mechanism, and Luminescence Properties by Doping Eu(3+)/Tb(3).

    PubMed

    Chen, Mingyue; Xia, Zhiguo; Liu, Quanlin

    2016-11-07

    This paper demonstrates a facile hydrothermal method using ethylenediamine (EDA) as a "shape modifier" for the controlled synthesis of rod bunch, decanedron, spindle, flakiness, and flowerlike NaCaSiO3OH microarchitectures. The set of experimental conditions is important to obtain adjustable shape and size of NaCaSiO3OH particles, as the change in either the amount of EDA/H2O or reaction time, or the amount of NaOH. Accordingly, the crystal growth mechanism during the synthesis process is proposed, and it is found that the EDA, acting as the chelating agent and shape modifier, plays a crucial role in fine-tuning the NaCaSiO3OH morphology. Morphology evolution process of flowerlike NaCaSiO3OH as a function of NaOH is also explained in detail. Eu(3+)/Tb(3+) doped NaCaSiO3OH samples exhibit strong red and green emission under ultraviolet excitation, corresponding to the characteristic electronic transitions of Eu(3+) and Tb(3+). These results imply that the morphology-tunable NaCaSiO3OH:Eu(3+)/Tb(3+) microarchitectures with tunable luminescence properties are expected to have promising applications for micro/nano optical functional devices.

  13. pNaKtide inhibits Na/K-ATPase reactive oxygen species amplification and attenuates adipogenesis

    PubMed Central

    Sodhi, Komal; Maxwell, Kyle; Yan, Yanling; Liu, Jiang; Chaudhry, Muhammad A.; Getty, Morghan; Xie, Zijian; Abraham, Nader G.; Shapiro, Joseph I.

    2015-01-01

    Obesity has become a worldwide epidemic and is a major risk factor for metabolic syndrome. Oxidative stress is known to play a role in the generation and maintenance of an obesity phenotype in both isolated adipocytes and intact animals. Because we had identified that the Na/K-ATPase can amplify oxidant signaling, we speculated that a peptide designed to inhibit this pathway, pNaKtide, might ameliorate an obesity phenotype. To test this hypothesis, we first performed studies in isolated murine preadipocytes (3T3L1 cells) and found that pNaKtide attenuated oxidant stress and lipid accumulation in a dose-dependent manner. Complementary experiments in C57Bl6 mice fed a high-fat diet corroborated our in vitro observations. Administration of pNaKtide in these mice reduced body weight gain, restored systemic redox and inflammatory milieu, and, crucially, improved insulin sensitivity. Thus, we propose that inhibition of Na/K-ATPase amplification of oxidative stress may ultimately be a novel way to combat obesity, insulin resistance, and metabolic syndrome. PMID:26601314

  14. DoRiNA 2.0—upgrading the doRiNA database of RNA interactions in post-transcriptional regulation

    PubMed Central

    Blin, Kai; Dieterich, Christoph; Wurmus, Ricardo; Rajewsky, Nikolaus; Landthaler, Markus; Akalin, Altuna

    2015-01-01

    The expression of almost all genes in animals is subject to post-transcriptional regulation by RNA binding proteins (RBPs) and microRNAs (miRNAs). The interactions between both RBPs and miRNAs with mRNA can be mapped on a whole-transcriptome level using experimental and computational techniques established in the past years. The combined action of RBPs and miRNAs is thought to form a post-transcriptional regulatory code. Here we present doRiNA 2.0, available at http://dorina.mdc-berlin.de. In this highly improved new version, we have completely reworked the user interface and expanded the database to improve the usability of the website. Taking into account user feedback over the past years, the input forms for both the simple and the combinatorial search function have been streamlined and combined into a single web page that will also display the search results. Especially, custom uploads is one of the key new features in doRiNA 2.0. To enable the inclusion of doRiNA into third-party analysis pipelines, all operations are accessible via a REST API. Alternatively, local installations can be queried using a Python API. Both the web application and the APIs are available under an OSI-approved Open Source license that allows research and commercial access and re-use. PMID:25416797

  15. Temperature invariance of NaCl solubility in water: inferences from salt-water cluster behavior of NaCl, KCl, and NH4Cl.

    PubMed

    Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind

    2012-09-27

    The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.

  16. Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi

    PubMed Central

    Dracatos, Peter M.; Payne, Jennifer; Di Pietro, Antonio; Anderson, Marilyn A.; Plummer, Kim M.

    2016-01-01

    Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (An∆pmtA, An∆pmtB, and An∆pmtC). An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol) signalling knockout mutants from the cell wall integrity (CWI) and high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2. PMID:27598152

  17. Experimental Design and Some Threats to Experimental Validity: A Primer

    ERIC Educational Resources Information Center

    Skidmore, Susan

    2008-01-01

    Experimental designs are distinguished as the best method to respond to questions involving causality. The purpose of the present paper is to explicate the logic of experimental design and why it is so vital to questions that demand causal conclusions. In addition, types of internal and external validity threats are discussed. To emphasize the…

  18. Effect of Na+ on surface fractal dimension of compacted bentonite

    NASA Astrophysics Data System (ADS)

    Xiang, G. S.; Xu, Y. F.; Jiang, H.

    2015-05-01

    Compacted Tsukinuno bentonite was immersed into NaCl solutions of different concentrations in oedometers, and the surface fractal dimension of bentonite-saline association was measured by nitrogen adsorption isotherms. The application of the Frenkel-Halsey-Hill equation and the Neimark thermodynamic method to nitrogen adsorption isotherms indicated that the surface roughness was greater for the bentonite-saline association. The surface fractal dimension of bentonite increased in the NaCl solution with low Na+ concentration, but decreased at high Na+ concentration. This process was accompanied by the same tendency in specific surface area and microporosity with the presence of Na+ coating in the clay particles.

  19. Na+-K+ pump regulation and skeletal muscle contractility.

    PubMed

    Clausen, Torben

    2003-10-01

    In skeletal muscle, excitation may cause loss of K+, increased extracellular K+ ([K+]o), intracellular Na+ ([Na+]i), and depolarization. Since these events interfere with excitability, the processes of excitation can be self-limiting. During work, therefore, the impending loss of excitability has to be counterbalanced by prompt restoration of Na+-K+ gradients. Since this is the major function of the Na+-K+ pumps, it is crucial that their activity and capacity are adequate. This is achieved in two ways: 1) by acute activation of the Na+-K+ pumps and 2) by long-term regulation of Na+-K+ pump content or capacity. 1) Depending on frequency of stimulation, excitation may activate up to all of the Na+-K+ pumps available within 10 s, causing up to 22-fold increase in Na+ efflux. Activation of the Na+-K+ pumps by hormones is slower and less pronounced. When muscles are inhibited by high [K+]o or low [Na+]o, acute hormone- or excitation-induced activation of the Na+-K+ pumps can restore excitability and contractile force in 10-20 min. Conversely, inhibition of the Na+-K+ pumps by ouabain leads to progressive loss of contractility and endurance. 2) Na+-K+ pump content is upregulated by training, thyroid hormones, insulin, glucocorticoids, and K+ overload. Downregulation is seen during immobilization, K+ deficiency, hypoxia, heart failure, hypothyroidism, starvation, diabetes, alcoholism, myotonic dystrophy, and McArdle disease. Reduced Na+-K+ pump content leads to loss of contractility and endurance, possibly contributing to the fatigue associated with several of these conditions. Increasing excitation-induced Na+ influx by augmenting the open-time or the content of Na+ channels reduces contractile endurance. Excitability and contractility depend on the ratio between passive Na+-K+ leaks and Na+-K+ pump activity, the passive leaks often playing a dominant role. The Na+-K+ pump is a central target for regulation of Na+-K+ distribution and excitability, essential for second

  20. Na+ channel function, regulation, structure, trafficking and sequestration

    PubMed Central

    Chen-Izu, Ye; Shaw, Robin M; Pitt, Geoffrey S; Yarov-Yarovoy, Vladimir; Sack, Jon T; Abriel, Hugues; Aldrich, Richard W; Belardinelli, Luiz; Cannell, Mark B; Catterall, William A; Chazin, Walter J; Chiamvimonvat, Nipavan; Deschenes, Isabelle; Grandi, Eleonora; Hund, Thomas J; Izu, Leighton T; Maier, Lars S; Maltsev, Victor A; Marionneau, Celine; Mohler, Peter J; Rajamani, Sridharan; Rasmusson, Randall L; Sobie, Eric A; Clancy, Colleen E; Bers, Donald M

    2015-01-01

    This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na+ channel function and regulation, Na+ channel structure and function, and Na+ channel trafficking, sequestration and complexing. PMID:25772290

  1. Proton-decaying states in 22 Mg and the nucleosynthesis of 22 Na in novae

    NASA Astrophysics Data System (ADS)

    Davids, B.; Beijers, J. P.; van den Berg, A. M.; Dendooven, P.; Harmsma, S.; Hunyadi, M.; de Huu, M. A.; Siemssen, R. H.; Wilschut, H. W.; Wörtche, H. J.; Hernanz, M.; José, J.

    2003-11-01

    Populating states in 22 Mg via the ( p,t ) reaction in inverse kinematics with a 55-MeV/nucleon 24 Mg beam, we have measured the proton-decay branching ratios of the levels at 5.96 MeV and 6.05 MeV and obtained an experimental upper limit on the branching ratio of the 5.71-MeV state. On the basis of the present and previous measurements, we assign spins and parities to the 5.96-MeV and 6.05-MeV states. We combine our branching ratios with independent measurements of the lifetimes of these states or their 22 Ne analogs to compute the resonance strengths and thereby the astrophysical rate of the 21 Na ( p,γ ) 22 Mg reaction. We perform hydrodynamic calculations of nova outbursts with this new rate and analyze its impact on 22 Na yields.

  2. Proton-decaying states in ^22Mg and the nucleosynthesis of ^22Na in novae

    NASA Astrophysics Data System (ADS)

    Davids, B.; Beijers, J. P. M.; van den Berg, A. M.; Dendooven, P.; Harmsma, S.; Hunyadi, M.; de Huu, M. A.; Siemssen, R. H.; Wilschut, H. W.; Wörtche, H. J.; José, J.

    2003-10-01

    Populating states in ^22Mg via the (p,t) reaction in inverse kinematics with a 55 MeV/nucleon ^24Mg beam, we have measured the proton-decay branching ratios of the levels at 5.96 MeV and 6.05 MeV and obtained an experimental upper limit on the branching ratio of the 5.71 MeV state. On the basis of the present and previous measurements, we assign spins and parities to the 5.96 MeV and 6.05 MeV states. We combine our branching ratios with independent measurements of the lifetimes of these states or their ^22Ne analogs to compute the resonance strengths and thereby the astrophysical rate of the ^21Na(p,γ)^22Mg reaction. With this rate we perform hydrodynamic calculations of nova outbursts in order to predict their ^22Na γ-ray fluxes.

  3. 23Na (α,p )26Mg Reaction Rate at Astrophysically Relevant Energies

    NASA Astrophysics Data System (ADS)

    Howard, A. M.; Munch, M.; Fynbo, H. O. U.; Kirsebom, O. S.; Laursen, K. L.; Diget, C. Aa.; Hubbard, N. J.

    2015-07-01

    The production of 26Al in massive stars is sensitive to the 23Na (α,p )26Mg cross section. Recent experimental data suggest the currently recommended cross sections are underestimated by a factor of ˜40 . We present here differential cross sections for the 23Na (α,p )26Mg reaction measured in the energy range Ec .m .=1.7 - 2.5 MeV . Concurrent measurements of Rutherford scattering provide absolute normalizations that are independent of variations in target properties. Angular distributions are measured for both p0 and p1 permitting the determination of total cross sections. The results show no significant deviation from the statistical model calculations upon which the recommended rates are based. We therefore retain the previous recommendation without the increase in cross section and resulting stellar reaction rates by a factor of 40, impacting the 26Al yield from massive stars by more than a factor of 3.

  4. Adsorptive removal of methylene blue by agar: effects of NaCl and ethanol

    PubMed Central

    2012-01-01

    Adsorption of methylene blue (MB) on agar was investigated as a function of temperature (308-328 K), different concentrations of NaCl and HCl and various weight percentages of binary mixtures of ethanol with water. It was observed that the maximum experimental adsorption capacity, qm, exp, in water is up to 50 mg g-1 and decreases with increase in weight percentage of ethanol and NaCl and HCl concentration compared to that of water. Analysis of data using ARIAN model showed that MB adsorbs as monomer and dimer on the surface of agar. Binding constants of MB to agar were calculated using the Temkin isotherm. The process is exothermic in water and other solutions. The mean adsorption energy (E) value indicated binding of MB to agar is chemical adsorption. Kinetics of this interaction obeys from the pseudo-second-order model and diffusion of the MB molecules into the agar is the main rate-controlling step. PMID:22339759

  5. FXYD5: Na+/K+-ATPase Regulator in Health and Disease

    PubMed Central

    Lubarski Gotliv, Irina

    2016-01-01

    FXYD5 (Dysadherin, RIC) is a single span type I membrane protein that plays multiple roles in regulation of cellular functions. It is expressed in a variety of epithelial tissues and acts as an auxiliary subunit of the Na+/K+-ATPase. During the past decade, a correlation between enhanced expression of FXYD5 and tumor progression has been established for various tumor types. In this review, current knowledge on FXYD5 is discussed, including experimental data on the functional effects of FXYD5 on the Na+/K+-ATPase. FXYD5 modulates cellular junctions, influences chemokine production, and affects cell adhesion. The accumulated data may provide a basis for understanding the molecular mechanisms underlying FXYD5 mediated phenotypes. PMID:27066483

  6. Short-range correlations in the magnetic ground state of Na4 Ir3 O8

    NASA Astrophysics Data System (ADS)

    Dally, Rebecca; Hogan, Tom; Amato, Alex; Luetkens, Hubertus; Baines, Chris; Rodriguez-Rivera, Jose; Graf, Michael; Wilson, Stephen

    2015-03-01

    The magnetic ground state of the candidate three-dimensional quantum spin liquid Na4 Ir3O8 has been studied through bulk magnetization, muon spin relaxation and neutron scattering measurements. Na4 Ir3O8 possesses a unique hyper-Kagome lattice of Ir moments that is potentially accompanied by a novel realization of Heisenberg-Kitaev exchange. This fact combined with the absence of previously reported magnetic ordering has led to its candidacy as a three-dimensional quantum spin liquid. Our combined experimental data show that a short-range, frozen, ground state comprised of quasi-static moments develops in this material below a characteristic temperature TF = 6 K , persisting down until at least 20 mK. The expected dynamical ground state of a quantum spin liquid was not observed but rather an inhomogeneous quasi-static spin state that survives with persistent long timescale fluctuations.

  7. Enhanced 1G 4 emission in NaLaF 4: Pr 3+, Yb 3+ and charge transfer in NaLaF 4: Ce 3+, Yb 3+ studied by fourier transform luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    van der Kolk, E.; Ten Kate, O. M.; Wiegman, J. W.; Biner, D.; Krämer, K. W.

    2011-05-01

    A high resolution luminescence study of NaLaF 4: 1%Pr 3+, 5%Yb 3+ and NaLaF 4: 1%Ce 3+, 5%Yb 3+ in the UV to NIR spectral range using a InGaAs detector and a fourier transform interferometer is reported. Although the Pr 3+( 3P 0 → 1G 4), Yb 3+( 2F 7/2 → 2F 5/2) energy transfer step takes place, significant Pr 3+1G 4 emission around 993, 1330 and 1850 nm is observed. No experimental proof for the second energy transfer step in the down-conversion process between Pr 3+ and Yb 3+ can be given. In the case of NaLaF 4: Ce 3+, Yb 3+ it is concluded that the observed Yb 3+ emission upon Ce 3+ 5d excitation is the result of a charge transfer process instead of down-conversion.

  8. Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries

    SciTech Connect

    Li, Xin; Wang, Yan; Wu, Di; Liu, Lei; Bo, Shou-Hang; Ceder, Gerbrand

    2016-08-30

    Na energy storage technology is strategically attractive for large scale applications such as grid energy storage. Here, we show in this paper that there is a clear relation between the Jahn$-$Teller activity of a transition metal ion at the end of charge and the mobility of Na in a cathode material. This is particularly important as mobility at the end of charge limits the capacity of current materials. Consequently, by using this classical piece of physics in the battery world, it is possible to create higher capacity Na-cathode materials. Even more exciting is that the ideal element to impart this effect on cathodes is Fe, which is the least expensive of the transition metal oxides and can therefore enable low cost cathode materials.

  9. Rutile solubility in NaF–NaCl–KCl-bearing aqueous fluids at 0.5–2.79GPa and 250–650°C

    DOE PAGES

    Tanis, Elizabeth A.; Simon, Adam; Zhang, Youxue; ...

    2016-01-14

    The complex nature of trace element mobility in subduction zone environments is thought to be primarily controlled by fluid-rock interactions, episodic behavior of fluids released, mineral assemblages, and element partitioning during phase transformations and mineral breakdown throughout the transition from hydrated basalt to blueschist to eclogite. Quantitative data that constrain the partitioning of trace elements between fluid(s) and mineral(s) are required in order to model trace element mobility during prograde and retrograde metamorphic fluid evolution in subduction environments. The stability of rutile has been proposed to control the mobility of HFSE during subduction, accounting for the observed depletion of Nbmore » and Ta in arc magmas. Recent experimental studies demonstrate that the solubility of rutile in aqueous fluids at temperatures >700 degrees C and pressures <2 GPa increases by several orders of magnitude relative to pure H2O as the concentrations of ligands (e.g., F and Cl) in the fluid increase. Considering that prograde devolatilization in arcs begins at similar to 300 degrees C, there is a need for quantitative constraints on rutile solubility and the partitioning of HFSE between rutile and aqueous fluid over a wider range of temperature and pressure than is currently available. In this study, new experimental data are presented that quantify the solubility of rutile in aqueous fluids from 0.5 to 2.79 GPa and 250 to 650 degrees C. Rutile solubility was determined by using synchrotron X-ray fluorescence to measure the concentration of Zr in an aqueous fluid saturated with a Zr-bearing rutile crystal within a hydrothermal diamond anvil cell. At the PT conditions of the experiments, published diffusion data indicate that Zr is effectively immobile (log D-Zr similar to 10(-25) m(2)/s at 650 degrees C and similar to 10(-30) m(2)/s at 250 degrees C) with diffusion length-scales of <0.2 mu m in rutile for our run durations (<10 h). Hence, the Zr

  10. Rutile solubility in NaF–NaCl–KCl-bearing aqueous fluids at 0.5–2.79GPa and 250–650°C

    SciTech Connect

    Tanis, Elizabeth A.; Simon, Adam; Zhang, Youxue; Chow, Paul; Xiao, Yuming; Hanchar, John M.; Tschauner, Oliver; Shen, Guoyin

    2016-01-14

    The complex nature of trace element mobility in subduction zone environments is thought to be primarily controlled by fluid-rock interactions, episodic behavior of fluids released, mineral assemblages, and element partitioning during phase transformations and mineral breakdown throughout the transition from hydrated basalt to blueschist to eclogite. Quantitative data that constrain the partitioning of trace elements between fluid(s) and mineral(s) are required in order to model trace element mobility during prograde and retrograde metamorphic fluid evolution in subduction environments. The stability of rutile has been proposed to control the mobility of HFSE during subduction, accounting for the observed depletion of Nb and Ta in arc magmas. Recent experimental studies demonstrate that the solubility of rutile in aqueous fluids at temperatures >700 degrees C and pressures <2 GPa increases by several orders of magnitude relative to pure H2O as the concentrations of ligands (e.g., F and Cl) in the fluid increase. Considering that prograde devolatilization in arcs begins at similar to 300 degrees C, there is a need for quantitative constraints on rutile solubility and the partitioning of HFSE between rutile and aqueous fluid over a wider range of temperature and pressure than is currently available. In this study, new experimental data are presented that quantify the solubility of rutile in aqueous fluids from 0.5 to 2.79 GPa and 250 to 650 degrees C. Rutile solubility was determined by using synchrotron X-ray fluorescence to measure the concentration of Zr in an aqueous fluid saturated with a Zr-bearing rutile crystal within a hydrothermal diamond anvil cell. At the PT conditions of the experiments, published diffusion data indicate that Zr is effectively immobile (log D-Zr similar to 10(-25) m(2)/s at 650 degrees C and similar to 10(-30) m(2)/s at 250 degrees C) with diffusion length-scales of <0.2 mu m in rutile for our run durations (<10 h). Hence, the Zr/Ti ratio

  11. Rutile solubility in NaF-NaCl-KCl-bearing aqueous fluids at 0.5-2.79 GPa and 250-650 °C

    NASA Astrophysics Data System (ADS)

    Tanis, Elizabeth A.; Simon, Adam; Zhang, Youxue; Chow, Paul; Xiao, Yuming; Hanchar, John M.; Tschauner, Oliver; Shen, Guoyin

    2016-03-01

    The complex nature of trace element mobility in subduction zone environments is thought to be primarily controlled by fluid-rock interactions, episodic behavior of fluids released, mineral assemblages, and element partitioning during phase transformations and mineral breakdown throughout the transition from hydrated basalt to blueschist to eclogite. Quantitative data that constrain the partitioning of trace elements between fluid(s) and mineral(s) are required in order to model trace element mobility during prograde and retrograde metamorphic fluid evolution in subduction environments. The stability of rutile has been proposed to control the mobility of HFSE during subduction, accounting for the observed depletion of Nb and Ta in arc magmas. Recent experimental studies demonstrate that the solubility of rutile in aqueous fluids at temperatures >700 °C and pressures <2 GPa increases by several orders of magnitude relative to pure H2O as the concentrations of ligands (e.g., F and Cl) in the fluid increase. Considering that prograde devolatilization in arcs begins at ∼300 °C, there is a need for quantitative constraints on rutile solubility and the partitioning of HFSE between rutile and aqueous fluid over a wider range of temperature and pressure than is currently available. In this study, new experimental data are presented that quantify the solubility of rutile in aqueous fluids from 0.5 to 2.79 GPa and 250 to 650 °C. Rutile solubility was determined by using synchrotron X-ray fluorescence to measure the concentration of Zr in an aqueous fluid saturated with a Zr-bearing rutile crystal within a hydrothermal diamond anvil cell. At the PT conditions of the experiments, published diffusion data indicate that Zr is effectively immobile (log DZr ∼10-25 m2/s at 650 °C and ∼10-30 m2/s at 250 °C) with diffusion length-scales of <0.2 μm in rutile for our run durations (<10 h). Hence, the Zr/Ti ratio of the starting rutile, which was quantified, does not change

  12. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    SciTech Connect

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-15

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO{sub 2} and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 deg. C for 2-6 h by changing the SiO{sub 2}/Al{sub 2}O{sub 3}, H{sub 2}O/Na{sub 2}O and Na{sub 2}O/SiO{sub 2} molar ratios of precursors in the two-step process. The surface area and NH{sub 4}{sup +}-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m{sup 2}/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m{sup 2}/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of {approx}3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously. - Graphical Abstract: Novel Na-X zeolite/porous carbon composite.

  13. Specific oxidation pattern of soluble starch with TEMPO-NaBr-NaClO system.

    PubMed

    Hao, Jie; Lu, Jiaojiao; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2016-08-01

    Oxidized starch, one of the most important starch derivatives, has many different properties and applications. Currently, there are two ways to produce oxidized starch, through specific and nonspecific oxidation. Specific oxidation using the stable nitroxyl radical, 2,2,6,6-tetramethyl preparidinloxy (TEMPO), with NaBr and NaClO can produce oxidized starches with different properties under good quality control. In the current study, we examine the products of specifically oxidized starch. As the amount of oxidant and the temperature, two critical factors impacting the oxidation of starch were thoroughly investigated. Analysis of the molecular weight (MW), degree of oxidization (DO) and the detailed structures of corresponding products was accomplished using gel permeation chromatography with multi-angle laser light scattering (GPC-MALLS), infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and quadrapole time-of-flight mass spectrometry (Q/TOF-MS). According to the analytical results, the oxidation patterns of starch treated with specific oxidant TEMPO-NaBr-NaClO were established. When high amounts of oxidant was applied, more glucose residues within starch were oxidized to glucuronic acids (higher DO) and substantial degradation to starch oligosaccharides was observed. By selecting a reaction temperature of 25°C a high DO could be obtained for a given amount of oxidant. The reducing end sugar residue within oxidized starch was itself oxidized and ring opened in all TEMPO-NaBr-NaClO reactions. Furthermore, extra oxidant generated additional novel structures in the reducing end residues of some products, particularly in low temperature reactions.

  14. Chelators as antidotes of metal toxicity: therapeutic and experimental aspects.

    PubMed

    Blanusa, Maja; Varnai, Veda M; Piasek, Martina; Kostial, Krista

    2005-01-01

    The effects of chelating drugs used clinically as antidotes to metal toxicity are reviewed. Human exposure to a number of metals such as lead, cadmium, mercury, manganese, aluminum, iron, copper, thallium, arsenic, chromium, nickel and platinum may lead to toxic effects, which are different for each metal. Similarly the pharmacokinetic data, clinical use and adverse effects of most of the chelating drugs used in human metal poisoning are also different for each chelating drug. The chelating drugs with worldwide application are dimercaprol (BAL), succimer (meso-DMSA), unithiol (DMPS), D-penicillamine (DPA), N-acetyl-D-penicillamine (NAPA), calcium disodium ethylenediaminetetraacetate (CaNa(2)EDTA), calcium trisodium or zinc trisodium diethylenetriaminepentaacetate (CaNa(3)DTPA, ZnNa(3)DTPA), deferoxamine (DFO), deferiprone (L1), triethylenetetraamine (trientine), N-acetylcysteine (NAC), and Prussian blue (PB). Several new synthetic homologues and experimental chelating agents have been designed and tested in vivo for their metal binding effects. These include three groups of synthetic chelators, namely the polyaminopolycarboxylic acids (EDTA and DTPA), the derivatives of BAL (DMPS, DMSA and mono- and dialkylesters of DMSA) and the carbodithioates. Many factors have been shown to affect the efficacy of the chelation treatment in metal poisoning. Within this context it has been shown in experiments using young and adult animals that metal toxicity and chelation effects could be influenced by age. These findings may have a bearing in the design of new therapeutic chelation protocols for metal toxicity.

  15. Neutron spectroscopy of water dynamics in NaX and NaA zeolites

    NASA Astrophysics Data System (ADS)

    Kamitakahara, William A.; Wada, Noboru

    2008-04-01

    We have investigated the dynamics of water molecules in zeolites NaA and NaX by high-resolution quasielastic neutron scattering methods. Between 260 and 310 K, the local translational diffusive motion of water in the zeolites is one to two orders of magnitude slower than in bulk water. The Q dependence of the scattering shows effects of confinement and the presence of both relatively mobile and immobile molecules. The speed of the diffusive motion depends strongly on hydration level. Comparison with other hydrated siliceous materials indicates that the host charge per water molecule is a major factor in determining the time scale of diffusion.

  16. Design and implementation of the NaI(Tl)/CsI(Na) detectors output signal generator

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Cong-Zhan; Zhao, Jian-Ling; Zhang, Fei; Zhang, Yi-Fei; Li, Zheng-Wei; Zhang, Shuo; Li, Xu-Fang; Lu, Xue-Feng; Xu, Zhen-Ling; Lu, Fang-Jun

    2014-02-01

    We designed and implemented a signal generator that can simulate the output of the NaI(Tl)/CsI(Na) detectors' pre-amplifier onboard the Hard X-ray Modulation Telescope (HXMT). Using the development of the FPGA (Field Programmable Gate Array) with VHDL language and adding a random constituent, we have finally produced the double exponential random pulse signal generator. The statistical distribution of the signal amplitude is programmable. The occurrence time intervals of the adjacent signals contain negative exponential distribution statistically.

  17. Effect of acetylcysteine on experimental corneal wounds in dogs.

    PubMed

    Aldavood, S J; Behyar, R; Sarchahi, A A; Rad, M A; Noroozian, I; Ghamsari, S M; Sadeghi-Hashjin, G

    2003-01-01

    The effects of 3, 10 and 20% concentrations of acetylcysteine on experimental corneal wound healing in dogs were evaluated. Experimental corneal wounds were induced surgically, up to the depth of the anterior third of the stroma, in both eyes of 18 dogs. One of the eyes was treated topically with 0.9% NaCl solution three times a day. The contralateral eye was treated topically with acetylcysteine (3, 10 and 20% concentrations) in each of 6 cases separately. Corneal wounds were measured by fluorescein staining every day. The mean time of healing in the 3% group was significantly different from control eyes (6.17 +/- 1.94 days). It was 7.19 +/- 0.75 days in the 20% group and 7 +/- 2 days in the 10% group. The last two groups were not significantly different from the controls (9.67 +/- 3.01 days and 8.17 +/- 3.60 days, respectively).

  18. FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite.

    PubMed

    Zhirong, Liu; Azhar Uddin, Md; Zhanxue, Sun

    2011-09-01

    Na-bentonite has been studied extensively because of its strong adsorption capacity and complexation ability. In this work, surface area, total pore volume, mean pore diameter, TG, DTA, FT-IR and XRD were carried out in order to reveal the characteristics of natural Na-bentonite. XRD and FT-IR of natural Na-bentonite (China) and Cu-loaded Na-bentonite as a function of Na-bentonite dosage and temperature using batch technique were characterized in detail, respectively.

  19. FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite

    NASA Astrophysics Data System (ADS)

    Zhirong, Liu; Azhar Uddin, Md.; Zhanxue, Sun

    2011-09-01

    Na-bentonite has been studied extensively because of its strong adsorption capacity and complexation ability. In this work, surface area, total pore volume, mean pore diameter, TG, DTA, FT-IR and XRD were carried out in order to reveal the characteristics of natural Na-bentonite. XRD and FT-IR of natural Na-bentonite (China) and Cu-loaded Na-bentonite as a function of Na-bentonite dosage and temperature using batch technique were characterized in detail, respectively.

  20. Majorana Thermosyphon Prototype Experimental Setup

    SciTech Connect

    Reid, Douglas J.; Guzman, Anthony D.; Munley, John T.

    2011-08-01

    This report presents the experimental setup of Pacific Northwest National Laboratory’s MAJORANA DEMONSTRATOR thermosyphon prototype cooling system. A nitrogen thermosyphon prototype of such a system has been built and tested at PNNL. This document presents the experimental setup of the prototype that successfully demonstrated the heat transfer performance of the system.

  1. Experimental Learning Enhancing Improvisation Skills

    ERIC Educational Resources Information Center

    Pereira Christopoulos, Tania; Wilner, Adriana; Trindade Bestetti, Maria Luisa

    2016-01-01

    Purpose: This study aims to present improvisation training and experimentation as an alternative method to deal with unexpected events in which structured processes do not seem to work. Design/Methodology/Approach: Based on the literature of sensemaking and improvisation, the study designs a framework and process model of experimental learning…

  2. Experimental Mathematics and Computational Statistics

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2009-04-30

    The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.

  3. Assessing Pupils' Skills in Experimentation

    ERIC Educational Resources Information Center

    Hammann, Marcus; Phan, Thi Thanh Hoi; Ehmer, Maike; Grimm, Tobias

    2008-01-01

    This study is concerned with different forms of assessment of pupils' skills in experimentation. The findings of three studies are reported. Study 1 investigates whether it is possible to develop reliable multiple-choice tests for the skills of forming hypotheses, designing experiments and analysing experimental data. Study 2 compares scores from…

  4. Cage-to-cage migration rates of Xe atoms in zeolite NaA from magnetization transfer experiments and simulations

    NASA Astrophysics Data System (ADS)

    Jameson, A. Keith; Jameson, Cynthia J.; Gerald, Rex E., II

    1994-08-01

    Xenon trapped in the alpha cages of zeolite NaA exhibits distinct NMR signals for clusters Xe1, Xe2, Xe3,..., up to Xe8. Using multisite magnetization transfer experiments, we have measured the rate constants kmn for the elementary processes that are involved in the cage-to-cage transfer of Xe atoms in the zeolite NaA, that is, for a single Xe atom leaving a cage containing Xen to appear in a neighboring cage containing Xem-1, thereby forming Xem. In a random walk simulation, these rate constants reproduce over a hundred magnetization decay/recovery curves that we have measured in four samples of Xe in zeolite NaA at room temperature, in selective inversion, and complementary experiments for all the significantly populated clusters. The simulations also lead to the correct experimental equilibrium distributions, that is, the fractions of the alpha cages containing Xe1,Xe2,...,Xe8.

  5. Brown adipose tissue (Na+-K+)-ATPase activity and substrate uptake during the breeding cycle of rats.

    PubMed

    Zamora, F; Arola, L

    1989-05-01

    Brown adipose tissue (Na+-K+)-ATPase activity, in vitro glucose and 2-aminoisobutyric acid uptake, as well as mitochondrial GDP-binding and succinate dehydrogenase activity were determined in order to study the relationship between these parameters and the thermogenic status. Analysis were carried out on control animal, pregnant rats, dams and pups during lactation, GDP-binding, (Na+-K+)-ATPase and glucose uptake were found to be decreased in brown adipose tissue from pregnant rats and dams, and increased in pups, 2-aminoisobutyric acid uptake was only increased in pups, but no changes were observed in the other experimental groups tested. GDP-binding and (Na+-K+)-ATPase activity showed a parallelism which suggests that the enzyme is a good index of thermogenic status of the animal.

  6. The NA62 Gigatracker pixel detector system

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Fiorini, M.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Noy, M.; Petrucci, F.; Riedler, P.; Rivetti, A.; Tiuraniemi, S.

    2010-05-01

    The silicon tracker for the NA62 experiment has to provide both a time resolution of 150 ps rms and a space resolution of about 100 μm rms. These challenging specifications require the development of a new readout electronics in order to address the problem of measuring the tracks arrival time with such a high channel density. Moreover, the high particle density (up to 1.5 MHz/mm2 in the center and 0.8-1 GHz in total) requires a high speed measurement and data transmission in order to keep the dead time below 1%.

  7. Validation of a novel, physiologic model of experimental acute pancreatitis in the mouse

    PubMed Central

    Ziegler, Kathryn M; Wade, Terence E; Wang, Sue; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2011-01-01

    Background: Many experimental models of acute pancreatitis suffer from lack of clinical relevance. We sought to validate a recently reported murine model of acute pancreatitis that more closely represents the physiology of human biliary pancreatitis. Methods: Mice (C57BL/6J n=6 and CF-1 n=8) underwent infusion of 50μl of 5% sodium taurocholate (NaT) or 50μl of normal saline (NaCl) directly into the pancreatic duct. Twenty-four hours later, pancreatitis severity was graded histologically by three independent observers, and pancreatic tissue concentration of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) were determined by ELISA. Results: Twenty four hours after retrograde injection, the total pancreatitis score was significantly greater in mice infused with NaT than in those infused with NaCl (6.3 ± 1.2 vs. 1.2 ± 0.4, p<0.05). In addition, the inflammatory mediators IL-6 and MCP-1 were increased in the NaT group relative to the NaCl group. Discussion: Retrograde pancreatic duct infusion of sodium taurocholate induces acute pancreatitis in the mouse. This model is likely representative of human biliary pancreatitis pathophysiology, and therefore provides a powerful tool with which to elucidate basic mechanisms underlying the pathogenesis of acute pancreatitis. PMID:21416058

  8. Unseeded Supersolubility of Lithium Carbonate: Experimental Measurement and Simulation with Mathematical Models

    NASA Astrophysics Data System (ADS)

    Sun, Yuzhu; Song, Xingfu; Wang, Jin; Luo, Yan; Yu, Jianguo

    2009-12-01

    A laser aparatus was employed to investigate the unseeded supersolubility values of Li 2CO 3 in aqueous solution. It shows the supersolubility of Li 2CO 3 decreases with the raise of temperature and stirring speed, and with a reduction of feeding rate of Na 2CO 3. The introduce of ultrasound field leads to obvious reduction on supersolubility, whereas magnetic field causes little effect. The involving factors of impurities and additives on the supersolubility were also studied. It is found that the supersolubility value decreases with the addition of NaCl, KCl, NaNO 3 and NaBr, while increases at the presence of Na 2SO 4, CH 4N 2O, NH 4Cl, (NH 4) 2SO 4 and EDTA disodium. Meanwhile, two mathematical models, empirical correlation and BP neural network, were used to simulate the supersolubility value as a function of temperature and feeding rate of Na 2CO 3. Compared with empirical correlation method, BP neural network simulation has better consistence with the experimental data.

  9. Psychopharmacology's debt to experimental psychology.

    PubMed

    Schmied, Lori A; Steinberg, Hannah; Sykes, Elizabeth A B

    2006-05-01

    The role of experimental psychology in the development of psychopharmacology has largely been ignored in recent historical accounts. In this article the authors attempt to redress that gap by outlining work in early experimental psychology that contributed significantly to the field. While psychiatrists focused on the therapeutic nature of drugs or their mimicry of psychopathology, experimental psychologists used psychoactive drugs as tools to study individual differences in normal behavior as well as to develop methodologies using behavior to study mechanisms of drug action. Experimental work by Kraepelin, Rivers, and Hollingworth was particularly important in establishing drug-screening protocols still used today. Research on nitrous oxide and on the effects of drug combinations is discussed to illustrate the importance of experimental psychology to psychopharmacology.

  10. Deformation and Transformation Textures in the NaMgF3 Perovskite→Post-Perovskite System

    NASA Astrophysics Data System (ADS)

    Miyagi, L. M.; Jugle, M.

    2014-12-01

    MgSiO3 post-perovskite (pPv) is believed to be a major mineral component in the lowermost mantle. However MgSiO3 pPv is only stable above 125 GPa making deformation experiments on this phase particularly challenging. Thus it is of interest to determine suitable analogs for MgSiO3 pPv. NaMgF3 is isostructural with MgSiO3 perovskite (Pv) at ambient conditions and transforms to the pPv structure at 30 GPa, making this system a potentially useful analog. Here we report on deformation and texture development in the NaMgF3Pv-pPv system. During room temperature compression in the diamond anvil cell, NaMgF3 Pv rapidly develops a 100 texture. Simulations using the visco plastic self-consistent code (VPSC) indicate that a 100 texture in Pv is due to (100) slip or twinning on {110}<1-10>. After inducing the transformation to pPv by laser heating at 30 GPa, NaMgF3 pPv exhibits a texture maximum near {110} indicating that {100}Pv → {110}pPv. This is consistent with transformation mechanisms proposed by theoretical work (Tsuchiya et al 2004; Oganov et al 2005) and with experimental work on MgGeO3 (Miyagi et al 2011) and NaNiF3(Dobson et al 2013). Upon further compression to 66 GPa the 110 textures disperses and develops a maximum toward 001 with a minimum near 100. VPSC modeling was performed using the 110 transformation texture as a starting texture for the simulations. (010)<101> slip generates a strong maximum at 010 and a minimum at 001. Slip on (001)<100> results in a maxima near 110 with a shoulder close to 001, similar to the experimental deformation texture. Thus it is most likely that at room temperature, NaMgF3 pPv slips predominantly on the (001) plane, consistent with MgSiO3 pPv (Miyagi et al 2010) and MgGeO3 (Miyagi et al 2011).Dobson, D. P., et al., Nature Geoscience, 6(7), 575-578 (2013) Miyagi, L., et al., Science, 329(5999), 1639 -1641 (2010). Miyagi, L., et al., Physics and Chemistry of Minerals, 38(9), 665-678 (2011) Oganov, A. R., et al., Nature, 438

  11. Novel regulation of cell [Na(+)] in macula densa cells: apical Na(+) recycling by H-K-ATPase.

    PubMed

    Peti-Peterdi, János; Bebok, Zsuzsa; Lapointe, Jean-Yves; Bell, P Darwin

    2002-02-01

    Na-K-ATPase is the nearly ubiquitous enzyme that maintains low-Na(+), high-K(+) concentrations in cells by actively extruding Na(+) in exchange for K(+). The prevailing paradigm in polarized absorbing epithelial cells, including renal nephron segments and intestine, has been that Na-K-ATPase is restricted to the basolateral membrane domain, where it plays a prominent role in Na(+) absorption. We have found, however, that macula densa (MD) cells lack functionally and immunologically detectable amounts of Na-K-ATPase protein. In fact, these cells appear to regulate their cytosolic [Na(+)] via another member of the P-type ATPase family, the colonic form of H-K-ATPase, which is located at the apical membrane in these cells. We now report that this constitutively expressed apical MD colonic H-K-ATPase can function as a Na(H)-K-ATPase and regulate cytosolic [Na(+)] in a novel manner. This apical Na(+)-recycling mechanism may be important as part of the sensor function of MD cells and represents a new paradigm in cell [Na(+)] regulation.

  12. Penning and associative ionization in crossed-beam Na/Na collisions assisted by strong resonant laser fields

    SciTech Connect

    Weiner, J.; Polak-Dingels, P.

    1981-01-01

    We observe the production of Na/sub 2//sup +/ and Na/sup +/ arising from single collisions between crossed beams of sodium atoms when a laser field is tuned near the Na(3p /sup 2/P/sub 3/2/) and Na(3p /sup 2/P/sub 1/2/) transitions. Measurements of ion intensity vs laser intensity show that at moderately high power true laser-induced processes dominate over purely collisional effects. Relative intensity of mass-selected ions produced at either member of the Na resonance doublet shows conclusively that Na/sup +/ does not arise simply from photodissociation of Na/sub 2//sup +/ but must result from a direct, laser-induced collisional ionization.

  13. Vanadate sensitivity of Na+, K+-ATPase from Schistosoma mansoni and its modulation by Na+, K+ and Mg2+.

    PubMed

    Noel, F; Pardon, R S

    1989-01-01

    Vanadate inhibitory effects on Na+, K+-ATPases from carcass of Schistosoma mansoni and from lamb kidney outer medulla were compared in the presence of various concentrations of Na+, K+ and Mg2+. Depending on the ionic conditions, the schistosomal Na+, K+-ATPase was 2.4- to 175-fold less sensitive to vanadate than the lamb kidney enzyme. In 100 mM Na+, 3 mM K+ and 3 mM Mg2+, schistosomal Na+, K+-ATPase was surprisingly resistant to vanadate (I50 = 944 microM). The difference in vanadate sensitivity between schistosomal and lamb Na+, K+-ATPases may be due to a species difference in the efficacy of Na+, K+ and Mg2+ in promoting conformational changes between E1 and E2 forms of the enzyme.

  14. Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Santoro, G. J.

    1986-01-01

    The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory an the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.

  15. NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7: novel single crystal pyrochlore antiferromagnets

    NASA Astrophysics Data System (ADS)

    Sanders, M. B.; Krizan, J. W.; Plumb, K. W.; McQueen, T. M.; Cava, R. J.

    2017-02-01

    The crystal structures and magnetic properties of three previously unreported A2B2F7 pyrochlore materials, NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7 are presented. In these compounds, either S  =  2Fe2+ or S  =  5/2Mn2+ is on the B site, while nonmagnetic Na and Ca (Na and Sr) are disordered on the A site. The materials, which were grown as crystals via the floating zone method, display high effective magnetic moments and large Curie-Weiss thetas. Despite these characteristics, no ordering transition is detected. However, freezing of the magnetic spins, characterized by peaks in the susceptibility or specific heat, is observed at very low temperatures. The empirical frustration index, f  =  -θ CW/T f, for the materials are 36 (NaSrMn2F7), 27 (NaSrFe2F7), and 19 (NaCaFe2F7). AC susceptibility, DC susceptibility, and heat capacity measurements are used to characterize the observed spin glass behavior. The results suggest that the compounds are frustrated pyrochlore antiferromagnets with weak bond disorder. The magnetic phenomena that these fluoride pyrochlores exhibit, in addition to their availability as relatively large single crystals, make them promising candidates for the study of geometric magnetic frustration.

  16. The NA62 GigaTracker

    NASA Astrophysics Data System (ADS)

    Aglieri Rinella, G.; Feito, D. Alvarez; Arcidiacono, R.; Biino, C.; Bonacini, S.; Ceccucci, A.; Chiozzi, S.; Gil, E. Cortina; Ramusino, A. Cotta; Degrange, J.; Fiorini, M.; Gamberini, E.; Gianoli, A.; Kaplon, J.; Kluge, A.; Mapelli, A.; Marchetto, F.; Minucci, E.; Morel, M.; Noël, J.; Noy, M.; Perktold, L.; Perrin-Terrin, M.; Petagna, P.; Petrucci, F.; Poltorak, K.; Romagnoli, G.; Ruggiero, G.; Velghe, B.; Wahl, H.

    2017-02-01

    The GigaTracker is a hybrid silicon pixel detector built for the NA62 experiment aiming at measuring the branching fraction of the ultra-rare kaon decay K+ →π+ ν ν bar at the CERN SPS. The detector has to track particles in a beam with a flux reaching 1.3 MHz/mm2 and provide single-hit timing with 200 ps RMS resolution for a total material budget of less than 0.5% X0 per station. The tracker comprises three 60.8 mm×27 mm stations installed in vacuum (∼10-6 mbar) and cooled with liquid C6F14 circulating through micro-channels etched inside a few hundred micron thick silicon plates. Each station is composed of a 200 μm thick silicon sensor read out by 2×5 custom 100 μm thick ASICs, called TDCPix. Each chip contains 40×45 asynchronous pixels, 300 μm×300 μm each and is instrumented with 100 ps bin time-to-digital converters. In order to cope with the high rate, the TDCPix is equipped with four 3.2 Gb/s serialisers sending out the data. We will describe the detector and the results from the 2014 and 2015 NA62 runs.

  17. Elevated intracellular Na(+) concentrations in developing spinal neurons.

    PubMed

    Lindsly, Casie; Gonzalez-Islas, Carlos; Wenner, Peter

    2017-03-01

    Over 25 years ago it was first reported that intracellular chloride levels (Cl(-)in ) were higher in developing neurons than in maturity. This finding has had significant implications for understanding the excitability of developing networks and recognizing the underlying causes of hyperexcitability associated with disease and neural injury. While there is some evidence that intracellular sodium levels (Na(+)in ) change during the development of non-neural cells, it has largely been assumed that Na(+)in is the same in developing and mature neurons. Here, using the sodium indicator SBFI, we test this idea and find that Na(+)in is significantly higher in embryonic spinal motoneurons and interneurons than in maturity. We find that Na(+)in reaches ~ 60 mM in mid-embryonic development and is then reduced to ~ 30 mM in late embryonic development. By retrogradely labeling motoneurons with SBFI we can reliably follow Na(+)in levels in vitro for hours. Bursts of spiking activity, and blocking voltage-gated sodium channels did not influence observed motoneuron sodium levels. On the other hand, Na(+)in was reduced by blocking the Na(+) -K(+) -2Cl(-) cotransporter NKCC1, and was highly sensitive to changes in external Na(+) and a blocker of the Na(+) /K(+) ATPase. Our findings suggest that the Na(+) gradient is weaker in embryonic neuronal development and strengthens in maturity in a manner similar to that of Cl(-) .

  18. Rydberg States of Na-doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Drabbels, Marcel

    2008-03-01

    The dynamics of excited states of Na atoms deposited on the surface of helium nanodroplets has been investigated with velocity map ion imaging, photoelectron spectroscopy and time-of-flight mass-spectroscopy. For the first time, the excitation spectra of Na-doped helium nanodroplets corresponding to Rydberg states of Na atoms have been measured from the lowest excited 3p state up to the ionization threshold. All lines in the excitation spectra are shifted and broadened with respect to the corresponding atomic lines. In addition to bare Na* atoms also Na*HeN (N = 1-6) exciplexes are detected upon excitation. Photoelectron spectroscopy reveals the desorption of Na* not only in the initially excited states but also in lower lying states, indicating that relaxation plays an important role. The recorded velocity distributions show interesting characteristics: for the lowest states the mean kinetic energy of Na* increases linearly with excitation energy. The velocity distributions of Na*HeN exciplexes do not manifest such remarkable properties. The observations can be largely explained by assuming that the interaction of Na* with the helium nanodroplet can be described by the sum of Na*-He pair potentials.

  19. Experimental study of chlorine behavior in hydrous silicic melts

    SciTech Connect

    Metrich, N. ); Rutherford, M.J. )

    1992-02-01

    Chlorine solubility in silicate melts has been investigated at 830-850 {plus minus} 5C and at pressures ranging from 50 to 200 MPa, using both natural (pantellerite, rhyolite, phonolite) and synthetic (SiO{sub 2}-Al{sub 2}O{sub 3}-K{sub 2}O-Na{sub 2}O) compositions and a stated H{sub 2}O-NaCl-KCl fluid phase near 4 molal. At 100 MPa, Cl contents in pantelleritic melts reach a solubility plateau at initial aqueous phase molality near 2. This plateau coincides with a large immiscibility gap between aqueous and chloride-rich fluids. With the coexisting Cl-saturated aqueous phase, Cl ranges from 2,720 {plus minus} 120 ppm in rhyolite to 8,960 {plus minus} 85 ppm in pantellerite and reaches 6,270 {plus minus} 170 ppm in phonolite, at 100 MPa. Between 50 and 200 MPa, the Cl content in pantelleritic melt decreases from 9,640 {plus minus} 200 ppm to 5,040 {plus minus} 150 ppm. Although Cl solubility increases with increasing FeO{sup *} in high SiO{sub 2} melts, it is mainly controlled by the Al/Si and (Na + K)/Al molar ratios of the melt with a minimum at Na + K/Al = 1 in a series of synthetic rhyolitic to pantelleritic melts. The experimental results suggest that chlorine occurs as alkali-chloride complexes in high SiO{sub 2} melts. They also indicate that Cl is concentrated in the aqueous fluids in equilibrium with SiO{sub 2}-rich melts, the exact value of D depending on melt composition and melt chlorine concentration. Volcanic degassing will create chlorine-rich hydrothermal fluids and decrease chlorine melt content.

  20. Direct interaction of Na-azide with the KATP channel.

    PubMed

    Trapp, S; Ashcroft, F M

    2000-11-01

    1. The effects of the metabolic inhibitor sodium azide were tested on excised macropatches from Xenopus oocytes expressing cloned ATP-sensitive potassium (KATP) channels of the Kir6.2/SUR1 type. 2. In inside-out patches from oocytes expressing Kir6.2 delta C36 (a truncated form of Kir6.2 that expresses in the absence of SUR), intracellular Na-azide inhibited macroscopic currents with an IC50 of 11 mM. The inhibitory effect of Na-azide was mimicked by the same concentration of NaCl, but not by sucrose. 3. Na-azide and NaCl blocked Kir6.2/SUR1 currents with IC50 of 36 mM and 19 mM, respectively. Inhibition was abolished in the absence of intracellular Mg2+. In contrast, Kir6.2 delta C36 currents were inhibited by Na-azide both in the presence or absence of intracellular Mg2+. 4. Kir6.2/SUR1 currents were less sensitive to 3 mM Na-azide in the presence of MgATP. This apparent reduction in sensitivity is caused by a small activatory effect of Na-azide conferred by SUR. 5. We conclude that, in addition to its well-established inhibitory effect on cellular metabolism, which leads to activation of KATP channels in intact cells, intracellular Na-azide has direct effects on the KATP channel. Inhibition is intrinsic to Kir6.2, is mediated by Na+, and is modulated by SUR. There is also a small, ATP-dependent, stimulatory effect of Na-azide mediated by the SUR subunit. The direct effects of 3 mM Na-azide on KATP channels are negligible in comparison to the metabolic activation produced by the same Na-azide concentration.

  1. 24Mg(p, α)21Na reaction study for spectroscopy of 21Na

    DOE PAGES

    Cha, S. M.; Chae, K. Y.; Kim, A.; ...

    2015-11-03

    The Mg-24(p, alpha)Na-21 reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain the spins and parities of the energy levels in Na-21 for the astrophysically important F-17(alpha, p)Ne-20 reaction rate calculation. 31-MeV proton beams from the 25-MV tandem accelerator and enriched Mg-24 solid targets were used. When recoiling He-4 particles from the Mg-24(p, alpha)Na-21 reaction we used a highly segmented silicon detector array to detect them; it measured the yields of He-4 particles over a range of angles simultaneously. A observed a new level at 6661 ± 5 keVmore » in the present work. The extracted angular distributions for the first four levels of Na-21 and the results from distorted wave Born approximation (DWBA) calculations were compared to verify and extract the angular momentum transfer.« less

  2. [Cryogenic Raman spectroscopic studies in the system of NaCl-MgCl2-H2O].

    PubMed

    Yang, Dan; Xu, Wen-Yi

    2010-03-01

    In the present paper, the best experimental conditions for producing hydrates in the NaCl-H2O and MgCl2-H2O systems were found through the cryogenic Raman spectroscopy. This experimental condition is rapidly cooling to -180 degrees C and slowly warming to observe hydrate formation process (that is manifested as a darkening of the vision in the microscope), and finally, rapidly cooling down to -180 degrees C. Moreover, a qualitative or semiquantitative analytical method for NaCl-MgCl2-H2O system was established. This method is that 3 537 cm(-1) may instruct the existence of NaCl hydrates, 3 514 cm(-1) may instruct the existence of MgCl2 hydrates, and comparison of the intensity of 3 537 and 3 514 cm(-1) peaks can be used to estimate the ratio of NaCl and MgCl2 in the system. All these are the foundations for quantifying the components of natural fluid inclusions. The author supports Samson's idea through observing the phenomenon of experiments in the controversy of the meta-stable eutectics formation model, that is ice forms on initial cooling, leaving a residual, interstitial, hypersaline liquid. On warming, the salt hydrates crystallize from this liquid.

  3. Experimentation on humans and nonhumans.

    PubMed

    Pluhar, Evelyn B

    2006-01-01

    In this article, I argue that it is wrong to conduct any experiment on a nonhuman which we would regard as immoral were it to be conducted on a human, because such experimentation violates the basic moral rights of sentient beings. After distinguishing the rights approach from the utilitarian approach, I delineate basic concepts. I then raise the classic "argument from marginal cases" against those who support experimentation on nonhumans but not on humans. After next replying to six important objections against that argument, I contend that moral agents are logically required to accord basic moral rights to every sentient being. I conclude by providing criteria for distinguishing ethical from unethical experimentation.

  4. QCD Tests at the NA48/2 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Bloch-Devaux, Brigitte

    2009-08-01

    Very large statistics of charged kaon decays have been accumulated in 2003-2004 by the NA48/2 experiment at the CERN SPS. The analyses of K→πππ(K3π) and K→ππeν(K) decays give complementary approaches to the study of low energy ππ scattering. From data samples of ˜60 millions K3π and ˜1 million K decays, precise values of a and a, the isospin 0 and 2 S-wave ππ scattering lengths, can be extracted with an unprecedented experimental precision of few percents, allowing accurate tests of Chiral Perturbation Theory predictions.

  5. Prospect for the formation of a gas of ultracold polar NaRb molecules

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Vexiau, Romain; Wang, Gaoren; Lepers, Maxence; Luc, Eliane; Bouloufa-Maafa, Nadia; Dulieu, Olivier; Wang, Dajun

    2015-05-01

    We present a complete theoretical model for the formation of an ultracold gas of polar NaRb molecules, based on high-precision spectroscopic data completed with accurate quantum chemistry calculations. Weakly-bound molecules are first created via a Feshbach resonance with main triplet character. The population is transfered down to the lowest rovibrational level of the ground state by a coherent STIRAP process. The efficiency of various paths via different electronically-excited molecular states is discussed in relation of the ongoing experimental implementation. Supported by Agence Nationale de la Recherche (ANR), project COPOMOL (# ANR-13-IS04-0004-01).

  6. Search for K+ → π+νν¯ at the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Duk, Viacheslav

    2016-11-01

    Looking for phenomena beyond the Standard Model (SM) in rare decays is a complementary approach to direct searches for New Physics (NP) at colliders. One of the theoretically cleanest processes is the ultra rare decay K+ → π+νν¯. The goal of the NA62 experiment at CERN SPS is to measure the branching ratio (BR) of this decay with 10% precision. The experiment has been launched in 2014. In 2015, the detector was commissioned at a low intensity beam. The experimental setup is described and performances achieved in 2015 are discussed in view of the final measurement.

  7. Thermonuclear reaction rate of 18Ne(α ,p ) 21Na from Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Mohr, P.; Longland, R.; Iliadis, C.

    2014-12-01

    The 18Ne(α ,p ) 21Na reaction impacts the break-out from the hot CNO cycles to the r p process in type-I x-ray bursts. We present a revised thermonuclear reaction rate, which is based on the latest experimental data. The new rate is derived from Monte Carlo calculations, taking into account the uncertainties of all nuclear physics input quantities. In addition, we present the reaction rate uncertainty and probability density versus temperature. Our results are also consistent with estimates obtained using different indirect approaches.

  8. Two-dimensional simulation of superlubricity on NaCl and highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Steiner, Pascal; Roth, Raphael; Gnecco, Enrico; Baratoff, Alexis; Maier, Sabine; Glatzel, Thilo; Meyer, Ernst

    2009-01-01

    The friction between an atomically sharp tip and a solid surface (NaCl and highly oriented pyrolytic graphite) is analyzed theoretically in the framework of a modified Tomlinson model in two dimensions. Lateral forces are studied as a function of temperature, load, and magnitude of actuation. The actuation leads to a reduction in friction and allows one to enter a dynamic superlubricity regime. In addition, our model is able to describe other ultralow friction states as static superlubricity and thermolubricity. We find a good agreement between the calculations and the experimental results.

  9. Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels.

    PubMed

    Aman, Teresa K; Grieco-Calub, Tina M; Chen, Chunling; Rusconi, Raffaella; Slat, Emily A; Isom, Lori L; Raman, Indira M

    2009-02-18

    The beta subunits of voltage-gated Na channels (Scnxb) regulate the gating of pore-forming alpha subunits, as well as their trafficking and localization. In heterologous expression systems, beta1, beta2, and beta3 subunits influence inactivation and persistent current in different ways. To test how the beta4 protein regulates Na channel gating, we transfected beta4 into HEK (human embryonic kidney) cells stably expressing Na(V)1.1. Unlike a free peptide with a sequence from the beta4 cytoplasmic domain, the full-length beta4 protein did not block open channels. Instead, beta4 expression favored open states by shifting activation curves negative, decreasing the slope of the inactivation curve, and increasing the percentage of noninactivating current. Consequently, persistent current tripled in amplitude. Expression of beta1 or chimeric subunits including the beta1 extracellular domain, however, favored inactivation. Coexpressing Na(V)1.1 and beta4 with beta1 produced tiny persistent currents, indicating that beta1 overcomes the effects of beta4 in heterotrimeric channels. In contrast, beta1(C121W), which contains an extracellular epilepsy-associated mutation, did not counteract the destabilization of inactivation by beta4 and also required unusually large depolarizations for channel opening. In cultured hippocampal neurons transfected with beta4, persistent current was slightly but significantly increased. Moreover, in beta4-expressing neurons from Scn1b and Scn1b/Scn2b null mice, entry into inactivated states was slowed. These data suggest that beta1 and beta4 have antagonistic roles, the former favoring inactivation, and the latter favoring activation. Because increased Na channel availability may facilitate action potential firing, these results suggest a mechanism for seizure susceptibility of both mice and humans with disrupted beta1 subunits.

  10. Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties

    NASA Astrophysics Data System (ADS)

    Zhang, Baohua; Shan, Shuangming; Wu, Xiaoping

    2016-02-01

    Hydrogen and alkali ion diffusion in plagioclase feldspars is important to study the evolution of the crust and the kinetics of exsolution and ion-exchange reactions in feldspars. Using the available PVT equation of state of feldspars, we show that the diffusivities of H and alkali in plagioclase feldspars as a function of temperature can be successfully reproduced in terms of the bulk elastic and expansivity data through a thermodynamic model that interconnects point defect parameters with bulk properties. Our calculated diffusion coefficients of H, Na, and K well agree with experimental ones when uncertainties are considered. Additional point defect parameters such as activation enthalpy, activation entropy, and activation volume are also predicted. Furthermore, the electrical conductivity of feldspars inferred from our predicted diffusivities of H, Na, and K through the Nernst-Einstein equation is compared with previous experimental data.

  11. [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes

    PubMed Central

    1989-01-01

    Na/K pump current was determined between -140 and +60 mV as steady- state, strophanthidin-sensitive, whole-cell current in guinea pig ventricular myocytes, voltage-clamped and internally dialyzed via wide- tipped pipettes. Solutions were designed to minimize all other components of membrane current. A device for exchanging the solution inside the pipette permitted investigation of Na/K pump current-voltage (I-V) relationships at several levels of pipette [Na] [( Na]pip) in a single cell; the effects of changes in external [Na] [( Na]o) or external [K] [( K]o) were also studied. At 50 mM [Na]pip, 5.4 mM [K]o, and approximately 150 mM [Na]o, Na/K pump current was steeply voltage dependent at negative potentials but was approximately constant at positive potentials. Under those conditions, reduction of [Na]o enhanced pump current at negative potentials but had little effect at positive potentials: at zero [Na]o, pump current was only weakly voltage dependent. At 5.4 mM [K]o and approximately 150 mM [Na]o, reduction of [Na]pip from 50 mM scaled down the sigmoid pump I-V relationship and shifted it slightly to the right (toward more positive potentials). Pump current at 0 mV was activated by [Na]pip according to the Hill equation with best-fit K0.5 approximately equal to 11 mM and Hill coefficient nH approximately equal to 1.4. At zero [Na]o, reduction of [Na]pip seemed to simply scale down the relatively flat pump I-V relationship: Hill fit parameters for pump activation by [Na]pip at 0 mV were K0.5 approximately equal to 10 mM, nH approximately equal to 1.4. At 50 mM [Na]pip and high [Na]o, reduction of [K]o from 5.4 mM scaled down the sigmoid I-V relationship and shifted it slightly to the right: at 0 mV, K0.5 approximately equal to 1.5 mM and nH approximately equal to 1.0. At zero [Na]o, lowering [K]o simply scaled down the flat pump I-V relationships yielding, at 0 mV, K0.5 approximately equal to 0.2 mM, nH approximately equal to 1.1. The voltage

  12. The endocannabinoid system in renal cells: regulation of Na+ transport by CB1 receptors through distinct cell signalling pathways

    PubMed Central

    Sampaio, L S; Taveira Da Silva, R; Lima, D; Sampaio, C L C; Iannotti, F A; Mazzarella, E; Di Marzo, V; Vieyra, A; Reis, R A M; Einicker-Lamas, M

    2015-01-01

    Background and Purpose The function of the endocannabinoid system (ECS) in renal tissue is not completely understood. Kidney function is closely related to ion reabsorption in the proximal tubule, the nephron segment responsible for the re-absorption of 70–80% of the filtrate. We studied the effect of compounds modulating the activity of cannabinoid (CB) receptors on the active re-absorption of Na+ in LLC-PK1 cells. Experimental Approach Changes in Na+/K+-ATPase activity were assessed after treatment with WIN55,212-2 (WIN), a non-selective lipid agonist, and haemopressin (HP), an inverse peptide agonist at CB1 receptors. Pharmacological tools were used to investigate the signalling pathways involved in the modulation of Na+ transport. Key Results In addition to CB1 and CB2 receptors and TRPV1 channels, the mRNAs encoding for enzymes of the ECS were also expressed in LLC-PK1. WIN (10−7 M) and HP (10−6 M) altered Na+ re-absorption in LLC-PK1 in a dual manner. They both acutely (after 1 min) increased Na+/K+-ATPase activity in a TRPV1 antagonist-sensitive way. WIN's stimulating effect persisted for 30 min, and this effect was partially blocked by a CB1 antagonist or a PKC inhibitor. In contrast, HP inhibited Na+/K+-ATPase after 30 min incubation, and this effect was attenuated by a CB1 antagonist or a PKA inhibitor. Conclusion and Implications The ECS is expressed in LLC-PK1 cells. Both CB1 receptors and TRPV1 channels regulate Na+/K+-ATPase activity in these cells, and are modulated by lipid and peptide CB1 receptor ligands, which act via different signalling pathways. PMID:25537261

  13. Down-regulated Na+/K+-ATPase activity in ischemic penumbra after focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Huang, Hao; Chen, Yang-Mei; Zhu, Fei; Tang, Shi-Ting; Xiao, Ji-Dong; Li, Lv-Li; Lin, Xin-Jing

    2015-01-01

    This study was aimed to examine whether the Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na+/K+-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na+/K+-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na+/K+-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na+/K+-ATPase activity. Our results suggest that down-regulated Na+/K+-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease. PMID:26722460

  14. 3D assembly of upconverting NaYF4 nanocrystals by AFM nanoxerography: creation of anti-counterfeiting microtags

    NASA Astrophysics Data System (ADS)

    Sangeetha, Neralagatta M.; Moutet, Pierre; Lagarde, Delphine; Sallen, Gregory; Urbaszek, Bernhard; Marie, Xavier; Viau, Guillaume; Ressier, Laurence

    2013-09-01

    Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags.Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags. Electronic supplementary information (ESI) available: Detailed experimental procedures for the synthesis of upconverting NaYF4 nanocrystals and their transmission electron microscopy images. KFM and AFM images corresponding to the assembly of positively charged β-NaYF4:Er3+,Yb3+ nanocrystals from water suspensions by AFM nanoxerography. Photoluminescence spectra of β-NaYF4:Er3+,Yb3+ nanocrystals

  15. Ion association in concentrated NaCI brines from ambient to supercritical conditions: results from classical molecular dynamics simulations

    PubMed Central

    Sherman, David M; Collings, Matthew D

    2002-01-01

    Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H2O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m) NaCl–water mixtures under ambient (25°C, 1 bar), hydrothermal (325°C, 1 kbar) and deep crustal (625°C, 15 kbar) conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757). With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (NanClm)n-m clusters in addition to simple NaCl ion pairs. Large polyatomic (NanClm)n-m clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions.

  16. The plant defensin NaD1 induces tumor cell death via a non-apoptotic, membranolytic process.

    PubMed

    Baxter, Amy A; Poon, Ivan Kh; Hulett, Mark D

    2017-01-01

    Cationic anti-microbial peptides (CAPs) have an important role in host innate defense against pathogens such as bacteria and fungi. Many CAPs including defensins also exhibit selective cytotoxic activity towards mammalian cells via both apoptotic and non-apoptotic processes, and are being investigated as potential anticancer agents. The anti-fungal plant defensin from ornamental tobacco, Nicotiana alata Defensin 1 (NaD1), was recently shown to induce necrotic-like cell death in a number of tumor cell types within 30 min of treatment, at a concentration of 10 μM. NaD1-mediated cell killing within these experimental parameters has been shown to occur via binding to the plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) in target cells to facilitate membrane destabilization and subsequent lysis. Whether NaD1 is also capable of inducing apoptosis in tumor cells has not been reported previously. In this study, treatment of MM170 (melanoma) and Jurkat T (leukemia) cells with subacute (<10 μM) concentrations of NaD1 over 6-24 h was investigated to determine whether NaD1 could induce cell death via apoptosis. At subacute concentrations, NaD1 did not efficiently induce membrane permeabilization within 30 min, but markedly reduced cell viability over 24 h. In contrast to other CAPs that have been shown to induce apoptosis through caspase activation, dying cells were not sensitive to a pancaspase inhibitor nor did they display caspase activity or DNA fragmentation over the 24 h treatment time. Furthermore, over the 24 h period, cells exhibited necrotic phenotypes and succumbed to membrane permeabilization. These results indicate that the cytotoxic mechanism of NaD1 at subacute concentrations is membranolytic rather than apoptotic and is also likely to be mediated through a PIP2-targeting cell lytic pathway.

  17. The plant defensin NaD1 induces tumor cell death via a non-apoptotic, membranolytic process

    PubMed Central

    Baxter, Amy A; Poon, Ivan KH; Hulett, Mark D

    2017-01-01

    Cationic anti-microbial peptides (CAPs) have an important role in host innate defense against pathogens such as bacteria and fungi. Many CAPs including defensins also exhibit selective cytotoxic activity towards mammalian cells via both apoptotic and non-apoptotic processes, and are being investigated as potential anticancer agents. The anti-fungal plant defensin from ornamental tobacco, Nicotiana alata Defensin 1 (NaD1), was recently shown to induce necrotic-like cell death in a number of tumor cell types within 30 min of treatment, at a concentration of 10 μM. NaD1-mediated cell killing within these experimental parameters has been shown to occur via binding to the plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) in target cells to facilitate membrane destabilization and subsequent lysis. Whether NaD1 is also capable of inducing apoptosis in tumor cells has not been reported previously. In this study, treatment of MM170 (melanoma) and Jurkat T (leukemia) cells with subacute (<10 μM) concentrations of NaD1 over 6–24 h was investigated to determine whether NaD1 could induce cell death via apoptosis. At subacute concentrations, NaD1 did not efficiently induce membrane permeabilization within 30 min, but markedly reduced cell viability over 24 h. In contrast to other CAPs that have been shown to induce apoptosis through caspase activation, dying cells were not sensitive to a pancaspase inhibitor nor did they display caspase activity or DNA fragmentation over the 24 h treatment time. Furthermore, over the 24 h period, cells exhibited necrotic phenotypes and succumbed to membrane permeabilization. These results indicate that the cytotoxic mechanism of NaD1 at subacute concentrations is membranolytic rather than apoptotic and is also likely to be mediated through a PIP2-targeting cell lytic pathway. PMID:28179997

  18. Mechanical design and fabrication of a prototype facility for processing NaK using a chlorine reaction method

    SciTech Connect

    Dafoe, R.; Keller, D.; Stoll, F.

    1990-01-01

    A prototype facility has been built at the Idaho National Engineering Laboratory (INEL) to dispose of 180 gal(0.68 m{sup 3}) of radioactively contaminated NaK (sodium-potassium) that have been stored on site for 35 years. The NaK was used as primary coolant for the Experimental Breeder Reactor I (EBR-I) at the INEL and was contaminated during a meltdown of the Mark II core in November 1955. The NaK then was transferred to four containers for temporary storage. The facility process will react the NaK with elemental chlorine using a batch process to produce chemically stable sodium chloride and potassium chloride salts. The first use of the facility will be on a prototype level to verify the method. If results are favorable, the facility will be modified to eventually dispose of the EBR-I NaK. The design and intended operation of the prototype facility are described. 2 figs.

  19. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    PubMed Central

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production. PMID:26137469

  20. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries.

    PubMed

    Zhang, Xiaoming; Hu, Junping; Cheng, Yingchun; Yang, Hui Ying; Yao, Yugui; Yang, Shengyuan A

    2016-08-18

    "Two-dimensional (2D) materials as electrodes" is believed to be the trend for future Li-ion and Na-ion battery technologies. Here, by using first-principles methods, we predict that the recently reported borophene (2D boron sheets) can serve as an ideal electrode material with high electrochemical performance for both Li-ion and Na-ion batteries. The calculations are performed on two experimentally stable borophene structures, namely β12 and χ3 structures. The optimized Li and Na adsorption sites are identified, and the host materials are found to maintain good electric conductivity before and after adsorption. Besides advantages including small diffusion barriers and low average open-circuit voltages, most remarkably, the storage capacity can be as high as 1984 mA h g(-1) in β12 borophene and 1240 mA h g(-1) in χ3 borophene for both Li and Na, which are several times higher than the commercial graphite electrode and are the highest among all the 2D materials discovered to date. Our results highly support that borophenes can be appealing anode materials for both Li-ion and Na-ion batteries with extremely high power density.

  1. Fluorine-19 NMR and computational quantification of isoflurane binding to the voltage-gated sodium channel NaChBac

    PubMed Central

    Kinde, Monica N.; Bondarenko, Vasyl; Granata, Daniele; Bu, Weiming; Grasty, Kimberly C.; Loll, Patrick J.; Carnevale, Vincenzo; Klein, Michael L.; Eckenhoff, Roderic G.; Tang, Pei

    2016-01-01

    Voltage-gated sodium channels (NaV) play an important role in general anesthesia. Electrophysiology measurements suggest that volatile anesthetics such as isoflurane inhibit NaV by stabilizing the inactivated state or altering the inactivation kinetics. Recent computational studies suggested the existence of multiple isoflurane binding sites in NaV, but experimental binding data are lacking. Here we use site-directed placement of 19F probes in NMR experiments to quantify isoflurane binding to the bacterial voltage-gated sodium channel NaChBac. 19F probes were introduced individually to S129 and L150 near the S4–S5 linker, L179 and S208 at the extracellular surface, T189 in the ion selectivity filter, and all phenylalanine residues. Quantitative analyses of 19F NMR saturation transfer difference (STD) spectroscopy showed a strong interaction of isoflurane with S129, T189, and S208; relatively weakly with L150; and almost undetectable with L179 and phenylalanine residues. An orientation preference was observed for isoflurane bound to T189 and S208, but not to S129 and L150. We conclude that isoflurane inhibits NaChBac by two distinct mechanisms: (i) as a channel blocker at the base of the selectivity filter, and (ii) as a modulator to restrict the pivot motion at the S4–S5 linker and at a critical hinge that controls the gating and inactivation motion of S6. PMID:27856739

  2. Impact of NaCl reduction on lactic acid bacteria during fermentation of Nocellara del Belice table olives.

    PubMed

    Zinno, Paola; Guantario, Barbara; Perozzi, Giuditta; Pastore, Gianni; Devirgiliis, Chiara

    2017-05-01

    Table olives are widely consumed worldwide but, due to the presence of NaCl in fermenting brines, they contain high levels of sodium. A promising strategy to lower sodium content is the reduction or substitution of NaCl in brines with other chlorides. However, these procedures may impact safety, spoilage, as well as quality and technological properties, including the evolution and final composition of the fermenting microbiota. In the present work the effects of partially replacing NaCl with KCl in fermenting brines on the microbiological quality of Nocellara del Belice olives produced by Spanish style (Sivigliano) or Castelvetrano methods have been analyzed. In both cases, the fermentation steps were performed in parallel, in brines containing either NaCl alone, or partially replaced with different proportions of KCl (25, 50 and 75%), while maintaining a final saline concentration of 9% (Sivigliano method) or 7% (Castelvetrano). To compare microbial dynamics in the experimental brines, changes in bacterial ecology were monitored during fermentation with a polyphasic approach, including both microbiological methods and culture-independent techniques based on DGGE and NGS analysis. The main microbial groups detected in the olive microbiota from both production procedures were LAB and yeasts. Overall, the data demonstrate that partial replacement of NaCl with KCl does not increase the risk of contamination, nor the overgrowth of pathogens or spoiler microbes.

  3. Hygroscopic Properties of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic Acids

    SciTech Connect

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei V.; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy and X-ray elemental microanalysis.Hygroscopic properties of inte rnally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of Na-malonate and Na-glutarate salts resulted by HCl evaporation from dehydrating particles.

  4. Coordinated regulation of cardiac Na(+)/Ca (2+) exchanger and Na (+)-K (+)-ATPase by phospholemman (FXYD1).

    PubMed

    Cheung, Joseph Y; Zhang, Xue-Qian; Song, Jianliang; Gao, Erhe; Chan, Tung O; Rabinowitz, Joseph E; Koch, Walter J; Feldman, Arthur M; Wang, JuFang

    2013-01-01

    Phospholemman (PLM) is the founding member of the FXYD family of regulators of ion transport. PLM is a 72-amino acid protein consisting of the signature PFXYD motif in the extracellular N terminus, a single transmembrane (TM) domain, and a C-terminal cytoplasmic tail containing three phosphorylation sites. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. The TM domain of PLM interacts with TM9 of the α-subunit of Na(+)-K(+)-ATPase, while its cytoplasmic tail interacts with two small regions (spanning residues 248-252 and 300-304) of the proximal intracellular loop of Na(+)/Ca(2+) exchanger. Under stress, catecholamine stimulation phosphorylates PLM at serine(68), resulting in relief of inhibition of Na(+)-K(+)-ATPase by decreasing K(m) for Na(+) and increasing V(max), and simultaneous inhibition of Na(+)/Ca(2+) exchanger. Enhanced Na(+)-K(+)-ATPase activity lowers intracellular Na(+), thereby minimizing Ca(2+) overload and risks of arrhythmias. Inhibition of Na(+)/Ca(2+) exchanger reduces Ca(2+) efflux, thereby preserving contractility. Thus, the coordinated actions of PLM during stress serve to minimize arrhythmogenesis and maintain inotropy. In acute cardiac ischemia and chronic heart failure, either expression or phosphorylation of PLM or both are altered. PLM regulates important ion transporters in the heart and offers a tempting target for development of drugs to treat heart failure.

  5. Pyrophosphate-Fueled Na+ and H+ Transport in Prokaryotes

    PubMed Central

    Malinen, Anssi M.; Luoto, Heidi H.

    2013-01-01

    SUMMARY In its early history, life appeared to depend on pyrophosphate rather than ATP as the source of energy. Ancient membrane pyrophosphatases that couple pyrophosphate hydrolysis to active H+ transport across biological membranes (H+-pyrophosphatases) have long been known in prokaryotes, plants, and protists. Recent studies have identified two evolutionarily related and widespread prokaryotic relics that can pump Na+ (Na+-pyrophosphatase) or both Na+ and H+ (Na+,H+-pyrophosphatase). Both these transporters require Na+ for pyrophosphate hydrolysis and are further activated by K+. The determination of the three-dimensional structures of H+- and Na+-pyrophosphatases has been another recent breakthrough in the studies of these cation pumps. Structural and functional studies have highlighted the major determinants of the cation specificities of membrane pyrophosphatases and their potential use in constructing transgenic stress-resistant organisms. PMID:23699258

  6. The paranodal cytoskeleton clusters Na(+) channels at nodes of Ranvier.

    PubMed

    Amor, Veronique; Zhang, Chuansheng; Vainshtein, Anna; Zhang, Ao; Zollinger, Daniel R; Eshed-Eisenbach, Yael; Brophy, Peter J; Rasband, Matthew N; Peles, Elior

    2017-01-30

    A high density of Na(+) channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na(+) channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na(+) channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na(+) channels requires axonal βII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na(+)channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton.

  7. The Beginnings of Experimental Petrology

    ERIC Educational Resources Information Center

    Eugster, Hans P.

    1971-01-01

    An account of Van't Hoff's change from theoretical chemistry to petrology provides data on the European intellectual climate of the early 1900's and shows how his work laid the foundation for experimental petrology of hard rocks." (AL)

  8. Experimental studies: randomized clinical trials.

    PubMed

    Gjorgov, A N

    1998-01-01

    There are two major approaches to medical investigations: observational studies and experimental trials. The classical application of the experimental design to studies of human populations is the randomized clinical trial of the efficacy of a new drug or treatment. A further application of the experimental studies is to the testing of hypotheses about the etiology of a disease, already tested and corroborated from various forms of observational studies. Ethical considerations and requirements for consent of the experimental subjects are of primary concern in the clinical trials, and those concerns set the first and final limits for implementing a trial. General moral principles in research with human and animal beings, defined by the "Nuremberg Code," deal with strict criteria for approval, endorsement and evaluation of a clinical trial.

  9. Animal Experimentation in High Schools

    ERIC Educational Resources Information Center

    Ansevin, Kystyna D.

    1970-01-01

    Recommends that teacher and student be provided with the broadest possible spectrum of meaningful and feasible experiments in which the comfort of the experimental animal is protected by the design of the experiment. (BR)

  10. Experimental models of uveal melanoma.

    PubMed

    Blanco, Paula L; Caissie, Amanda L; Burnier, Miguel N

    2004-06-01

    Over the past several decades, considerable effort has been directed toward developing suitable experimental models for the study of uveal melanoma. Animal models of uveal melanoma have undergone many improvements, leading to the development of experimental systems that better represent the disease in human beings. A major advance has come from the use of human uveal melanoma cell lines capable of inducing tumour growth and metastatic disease in immunodeficient hosts. Knowledge gained from the use of experimental models will ultimately be translated into better diagnostic and therapeutic strategies for patients with uveal melanoma. In this review the authors describe the current state-of-the-art designs of experimental models of uveal melanoma, highlighting the advantages and disadvantages of the available models. Novel findings from a rabbit model of uveal melanoma are also presented.

  11. Immunology of experimental and natural human hookworm infection.

    PubMed

    Gaze, S; Bethony, J M; Periago, M V

    2014-08-01

    Human hookworm infection is one amongst the most prevalent of the neglected tropical diseases. An informative experimental animal model, that is, one that parallels a human infection, is not available for the study of human hookworm infection. Much of our current understanding of the human immune response during hookworm infection relies on the studies from experimental infection of hookworm-naïve individuals or the natural infections from individuals residing in hookworm-endemic areas. The experimental human infections tend to be acute, dose-controlled infections, often with a low larval inoculum so that they are well tolerated by human volunteers. Natural hookworm infections usually occur in areas where hookworm transmission is constant and infection is chronic. In cases where there has been drug administration in an endemic area, re-infection often occurs quickly even amongst those who were treated. Hence, although many of the characteristics of experimental and natural hookworm infection differ, both models have elements in common: mainly an intense Th2 response with the production of total and specific IgE as well as elevated levels of eosinophilia, IL-5, IL-10 and TNF. While hookworm infection affects millions of individuals worldwide, much of the human immunology of this infection still needs to be studied and understood.

  12. Corrosion Behavior of Ti60 Alloy under a Solid NaCl Deposit in Wet Oxygen Flow at 600 °C

    PubMed Central

    Fan, Lei; Liu, Li; Yu, Zhongfen; Cao, Min; Li, Ying; Wang, Fuhui

    2016-01-01

    The corrosion behavior of Ti60 alloy covered with a solid NaCl deposit in wet oxygen flow at 600 °C has been studied further by SEM, EDX, XPS, XRD, TEM and EPMA analysis. The results show that solid NaCl and H2O react with Ti oxides, which destroyed the Ti oxide scale to yield the non-protective Na4Ti5O12 and other volatile species. The resulting corrosion product scale was multilayered and contained abundant rapid diffusion channels leading to the fast diffusion which improved the corrosion rate. A possible mechanism has been proposed for the NaCl-covered Ti60 alloy, based on the experimental results. PMID:27357732

  13. Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings.

    PubMed

    Zhang, Run Hua; Li, Jun; Guo, Shi Rong; Tezuka, Takafumi

    2009-06-01

    The effects of 10 mM putrescine (Put) treated by spraying on leaves on growth, chlorophyll content, photosynthetic gas-exchange characteristics, and chlorophyll fluorescence were investigated by growing cucumber plants (Cucumis sativus L. cv. ChangChun mici) using hydroponics with or without 65 mM NaCl as a salt stress. Salt stress caused the reduction of growth such as leaf area, root volume, plant height, and fresh and dry weights. Furthermore, net photosynthesis rate (P(n)), stomatal conductance (g(s)), intercellular CO(2) concentration (C(i)), and transpiration rate (T(r)) were also reduced by NaCl, but water use efficiency (WUE; P(n)/T(r)) showed a tendency to be enhanced rather than reduced by NaCl. However, Put alleviated the reduction of P (n) by NaCl, and showed a further reduction of C (i) by NaCl. The reduction of g(s) and T(r) by NaCl was not alleviated at all. The enhancement of WUE by NaCl was shown to have no alleviation at day 1 after starting the treatment, but after that, the enhancement was gradually reduced till the control level. Maximum quantum efficiency of PSII (F(v)/F(m)) showed no effects by any conditions based on the combination of NaCl and Put, and in addition, kept constant values in plants grown in each nutrient solution during this experimental period. The efficiency of excitation energy capture by open photosystem II (PSII) (F(v)'/F(m)'), actual efficiency of PSII (Phi(PSII)), and the coefficient on photochemical quenching (qP) of plants with NaCl were reduced with time, and the reduction was alleviated till the control level by treatment with Put. The F(v)'/F(m)', Phi(PSII), and qP of plants without NaCl and/or with Put showed no variation during the experiment. Non-photochemical quenching of the singlet excited state of chlorophyll a (NPQ) showed quite different manner from the others as mentioned above, namely, continued to enhance during the experiment.

  14. Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries.

    PubMed

    Eguía-Barrio, Aitor; Castillo-Martínez, Elizabeth; Zarrabeitia, Maider; Muñoz-Márquez, Miguel A; Casas-Cabanas, Montse; Rojo, Teófilo

    2015-03-14

    H2Ti3O7 was prepared as a single phase material by ionic exchange from Na2Ti3O7. The complete ionic exchange was confirmed by (1)H and (23)Na solid state Nuclear Magnetic Resonance (NMR). The atomic positions of H2Ti3O7 were obtained from the Rietveld refinement of powder X-ray diffraction (PXRD) and neutron diffraction experimental data, the latter collected at two different wavelengths to precisely determine the hydrogen atomic positions in the structure. All H(+) cations are hydrogen bonded to two adjacent [Ti3O7](2-) layers leading to the gliding of the layers and lattice centring with respect to the parent Na2Ti3O7. In contrast with a previous report where protons were located in two different positions of H2Ti3O7, 3 types of proton positions were found. Two of the three types of proton are bonded to the only oxygen linked to a single titanium atom forming an H-O-H angle close to that of the water molecule. H2Ti3O7 is able to electrochemically insert Na(+). The electrochemical insertion of sodium into H2Ti3O7 starts with a solid solution regime of the C-centred phase. Then, between 0.6 and 1.2 inserted Na(+) the reaction proceeds through a two phase reaction and a plateau at 1.3 V vs. Na(+)/Na is observed in the voltage-composition curve. The second phase resembles the primitive Na2Ti3O7 cell as detected by in situ PXRD. Upon oxidation, from 0.9 to 2.2 V, the PXRD pattern remains mostly unchanged probably due to H(+) removal instead of Na(+), with the capacity quickly fading upon cycling. Conditioning H2Ti3O7 for two cycles at 0.9-2.2 V before cycling in the 0.05-1.6 V range yields similar specific capacity and better retention than the original Na2Ti3O7 in the same voltage range.

  15. [The ethics of animal experimentation].

    PubMed

    Goffi, Jean-Yves

    2013-01-01

    The paper starts with a short definition of animal experimentation, then three main approaches to the practice are considered: unconditional approval (as advocated by Claude Bernard), conditional and restricted approval (as advocated by Peter Singer) and strict prohibition (as advocated by Tom Regan and Gary Francione). It is argued that what is actually approved or condemned in animal experimentation is the value of the scientific enterprise.

  16. Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3

    NASA Astrophysics Data System (ADS)

    Yahia, H. Ben; Essehli, R.; Avdeev, M.; Park, J.-B.; Sun, Y.-K.; Al-Maadeed, M. A.; Belharouak, I.

    2016-06-01

    The new compounds NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 were synthesized by sol-gel method and their crystal structures were determined by using neutron powder diffraction data. These compounds were characterized by galvanometric cycling and cyclic voltammetry. NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 crystallize with a stuffed α-CrPO4-type structure. The structure consists of a 3D-framework made of octahedra and tetrahedra that are sharing corners and/or edges generating channels along [100] and [010], in which the sodium atoms are located. Of significance, in the structures of NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 a statistical disorder Ni2+/Cr3+ was observed on both the 8g and 4a atomic positions, whereas in NaCoCr2(PO4)3 the statistical disorder Co2+/Cr3+ was only observed on the 8g atomic position. When tested as negative electrode materials, NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 delivered specific capacities of 352, 385, and 368 mA h g-1, respectively, which attests to the electrochemical activity of sodium in these compounds.

  17. Simulation of Na D emission near Europa during eclipse

    USGS Publications Warehouse

    Cassidy, T.A.; Johnson, R.E.; Geissler, P.E.; Leblanc, F.

    2008-01-01

    The Cassini imaging science subsystem observed Europa in eclipse during Cassini's Jupiter flyby. The disk-resolved observations revealed a spatially nonuniform emission in the wavelength range of 200-1050 nm (clear filters). By building on observations and simulations of Europa's Na atmosphere and torus we find that electron-excited Na in Europa's tenuous atmosphere can account for the observed emission if the Na is ejected preferentially from Europa's dark terrain. Copyright 2008 by the American Geophysical Union.

  18. Magnesium correction to the NaKCa chemical geothermometer

    USGS Publications Warehouse

    Fournier, R.O.; Potter, R.W.

    1979-01-01

    Equations and graphs have been devised to correct for the adverse effects of magnesium upon the Na-K-Ca chemical geothermometer. Either the equations or graphs can be used to determine appropriate temperature corrections for given waters with calculated NaKCa temperatures > 70??C and R 50 are probably derived from relatively cool aquifers with temperatures approximately equal to the measured spring temperature, irrespective of much higher calculated Na-K-Ca temperatures. ?? 1979.

  19. Periodic ab initio calculation of nuclear quadrupole parameters as an assignment tool in solid-state NMR spectroscopy: applications to 23Na NMR spectra of crystalline materials.

    PubMed

    Johnson, Clive; Moore, Elaine A; Mortimer, Michael

    2005-05-01

    Periodic ab initio HF calculations using the CRYSTAL code have been used to calculate (23)Na NMR quadrupole parameters for a wide range of crystalline sodium compounds including Na(3)OCl. An approach is developed that can be used routinely as an alternative to point-charge modelling schemes for the assignment of distinct lines in (23)Na NMR spectra to specific crystallographic sodium sites. The calculations are based on standard 3-21 G and 6-21 G molecular basis sets and in each case the same modified basis set for sodium is used for all compounds. The general approach is extendable to other quadrupolar nuclei. For the 3-21 G calculations a 1:1 linear correlation between experimental and calculated values of C(Q)((23)Na) is obtained. The 6-21 G calculations, including the addition of d-polarisation functions, give better accuracy in the calculation of eta((23)Na). The sensitivity of eta((23)Na) to hydrogen atom location is shown to be useful in testing the reported hydrogen-bonded structure of Na(2)HPO(4).

  20. Conformational Dynamics on the Extracellular Side of LeuT Controlled by Na+ and K+ Ions and the Protonation State of Glu290.

    PubMed

    Khelashvili, George; Schmidt, Solveig Gaarde; Shi, Lei; Javitch, Jonathan A; Gether, Ulrik; Loland, Claus J; Weinstein, Harel

    2016-09-16

    Ions play key mechanistic roles in the gating dynamics of neurotransmitter:sodium symporters (NSSs). In recent microsecond scale molecular dynamics simulations of a complete model of the dopamine transporter, a NSS protein, we observed a partitioning of K(+) ions from the intracellular side toward the unoccupied Na2 site of dopamine transporter following the release of the Na2-bound Na(+) Here we evaluate with computational simulations and experimental measurements of ion affinities under corresponding conditions, the consequences of K(+) binding in the Na2 site of LeuT, a bacterial homolog of NSS, when both Na(+) ions and substrate have left, and the transporter prepares for a new cycle. We compare the results with the consequences of binding Na(+) in the same apo system. Analysis of >50-μs atomistic molecular dynamics and enhanced sampling trajectories of constructs with Glu(290), either charged or neutral, point to the Glu(290) protonation state as a main determinant in the structural reconfiguration of the extracellular vestibule of LeuT in which a "water gate" opens through coordinated motions of residues Leu(25), Tyr(108), and Phe(253) The resulting water channel enables the binding/dissociation of the Na(+) and K(+) ions that are prevalent, respectively, in the extracellular and intracellular environments.

  1. Kinetic properties and Na+ dependence of rheogenic Na(+)-HCO3- co-transport in frog retinal pigment epithelium.

    PubMed Central

    la Cour, M

    1991-01-01

    1. Na(+)-HCO3- co-transport across the retinal membrane of the frog retinal pigment epithelium was studied by means of double-barrelled pH-selective microelectrodes. Transient changes in the intracellular pH were monitored in response to abrupt changes in the Na+ concentration on the retinal side of the epithelium. 2. The experiments were performed as follows. The Na(+)-HCO3- co-transport was inhibited by perfusing the retinal side of the epithelium with a Na(+)-free solution. The co-transport was then stimulated by changing the perfusate from the Na(+)-free solution to a solution which contained from 5 to 110 mM-Na+. The resulting inward Na(+)-HCO3- co-transport produced an intracellular alkalinization, the initial rate of which was used to calculate the initial rate of Na(+)-HCO3- co-transport, JHCO3-. 3. The Na+ dependence of the Na(+)-HCO3- co-transport was studied at two different values of extracellular pH (7.40 and 7.10), at constant extracellular HCO3- concentration (27.5 mM) and at two different extracellular HCO3- concentrations (27.5 mM and 55 mM) at constant extracellular pH (7.40). In these experiments, the calculated values of JHCO3- followed single Michaelis-Menten kinetics with respect to the extracellular Na+ concentration. 4. The data are consistent with a model in which the co-transporter has a single binding site for the Na+ ion with an apparent affinity constant (apparent Km) of 37 mM. The apparent affinity constant for Na+ was independent of the extracellular concentration of CO3(2-) in the range of 16-65 microM, and of the extracellular HCO3- concentration in the range 27.5-55 mM. 5. The NaCO3- ion-pair hypothesis, in which sodium binds to the co-transporter and is translocated across the cell membrane as the NaCO3- ion pair, was analysed. For stoichiometries 1:2 and 1:3 of the Na(+)-HCO3- co-transport, the NaCO3- ion-pair hypothesis was found incompatible with the data. 6. The intracellular buffer capacity as measured by the CO2 method was

  2. The NA49 large acceptance hadron detector

    NASA Astrophysics Data System (ADS)

    Afanasiev, S.; Alber, T.; Appelshäuser, H.; Bächler, J.; Barna, D.; Barnby, L. S.; Bartke, J.; Barton, R. A.; Betev, L.; Bialkowska, H.; Bieser, F.; Billmeier, A.; Blyth, C. O.; Bock, R.; Bormann, C.; Bracinik, J.; Brady, F. P.; Brockmann, R.; Brun, R.; Buncic, P.; Caines, H. L.; Cebra, D.; Cooper, G. E.; Cramer, J. G.; Csato, P.; Cyprian, M.; Dunn, J.; Eckardt, V.; Eckhardt, F.; Empl, T.; Eschke, J.; Ferguson, M. I.; Fessler, H.; Fischer, H. G.; Flierl, D.; Fodor, Z.; Frankenfeld, U.; Foka, P.; Freund, P.; Friese, V.; Ftacnik, J.; Fuchs, M.; Gabler, F.; Gal, J.; Ganz, R.; Gaździcki, M.; Gładysz, E.; Grebieszkow, J.; Günther, J.; Harris, J. W.; Hegyi, S.; Henkel, T.; Hill, L. A.; Hlinka, V.; Huang, I.; Hümmler, H.; Igo, G.; Irmscher, D.; Ivanov, M.; Janik, R.; Jacobs, P.; Jones, P. G.; Kadija, K.; Kolesnikov, V. I.; Kowalski, M.; Lasiuk, B.; Lévai, P.; Liebicher, K.; Lynen, U.; Malakhov, A. I.; Margetis, S.; Markert, C.; Marks, C.; Mayes, B.; Melkumov, G. L.; Mock, A.; Molnár, J.; Nelson, J. M.; Oldenburg, M.; Odyniec, G.; Palla, G.; Panagiotou, A. D.; Pestov, Y.; Petridis, A.; Pikna, M.; Pimpl, W.; Pinsky, L.; Piper, A.; Porter, R. J.; Poskanzer, A. M.; Poziombka, S.; Prindle, D. J.; Pühlhofer, F.; Rauch, W.; Reid, J. G.; Renfordt, R.; Retyk, W.; Ritter, H. G.; Röhrich, D.; Roland, C.; Roland, G.; Rudolph, H.; Rybicki, A.; Sammer, T.; Sandoval, A.; Sann, H.; Schäfer, E.; Schmidt, R.; Schmischke, D.; Schmitz, N.; Schönfelder, S.; Semenov, A. Yu.; Seyboth, J.; Seyboth, P.; Seyerlein, J.; Sikler, F.; Sitar, B.; Skrzypczak, E.; Squier, G. T. A.; Stelzer, H.; Stock, R.; Strmen, P.; Ströbele, H.; Struck, C.; Susa, T.; Szarka, I.; Szentpetery, I.; Szymański, P.; Sziklai, J.; Toy, M.; Trainor, T. A.; Trentalange, S.; Ullrich, T.; Vassiliou, M.; Veres, G.; Vesztergombi, G.; Vranic, D.; Wang, F. Q.; Weerasundara, D. D.; Wenig, S.; Whitten, C.; Wieman, H.; Wienold, T.; Wood, L.; Yates, T. A.; Zimanyi, J.; Zhu, X.-Z.; Zybert, R.

    1999-07-01

    The NA49 detector is a wide acceptance spectrometer for the study of hadron production in p+p, p+A, and A+A collisions at the CERN SPS. The main components are 4 large-volume TPCs for tracking and particle identification via d E/d x. TOF scintillator arrays complement particle identification. Calorimeters for transverse energy determination and triggering, a detector for centrality selection in p+A collisions, and beam definition detectors complete the set-up. A description of all detector components is given with emphasis on new technical realizations. Performance and operational experience are discussed in particular with respect to the high track density environment of central Pb+Pb collisions.

  3. Pion and kaon freezeout in NA44

    SciTech Connect

    NA44 Collaboration

    1994-12-01

    The NA44 spectrometer is optimized for the study of single and two-particle particle spectra near mid-rapidity for transverse momenta below {approx} 1 GeV/c. A large fraction of all pairs in the spectrometer`s acceptance are at low relative momenta, resulting in small statistical uncertainties on the extracted size parameters. In addition, the spectrometer`s clean particle identification allows the authors to measure correlation functions for pions, kaons, and protons. This contribution will concentrate on the source size parameters determined from pion and kaon correlation functions. These size parameters will be compared to calculations from the RQMD event generator and also interpreted in the context of a hydrodynamic model. Finally, the measured single particle spectra will be examined from the viewpoint of hydrodynamics.

  4. Na-Zn liquid metal battery

    NASA Astrophysics Data System (ADS)

    Xu, Junli; Kjos, Ole Sigmund; Osen, Karen Sende; Martinez, Ana Maria; Kongstein, Ole Edvard; Haarberg, Geir Martin

    2016-11-01

    A new kind of membrane free liquid metal battery was developed. The battery employs liquid sodium and zinc as electrodes both in liquid state, and NaCl-CaCl2 molten salts as electrolyte. The discharge flat voltage is in the range of about 1.4 V-1.8 V, and the cycle efficiency achieved is about 90% at low discharge current densities (below 40 mA cm-2). Moreover, this battery can also be charged and discharged at high current density with good performance. The discharge flat voltage is above 1.1 V when it is discharged at 100 mA cm-2, while it is about 0.8 V with 100% cycle efficiency when it is discharged at 200 mA cm-2. Compared to other reported liquid metal battery, this battery has lower cost, which suggests broad application prospect in energy storage systems for power grid.

  5. Study of OSL in NaF: Ca,Cu

    NASA Astrophysics Data System (ADS)

    More, Y. K.; Wankhede, S. P.; Moharil, S. V.

    2013-06-01

    Sodium Fluoride containing Cu+ ions was prepared by R.A.P. followed by melt-quenching technique. Results on photo, thermo and optically stimulated luminescence in NaF:Ca,Cu are reported. OSL sensitivity of NaF:Ca,Cu is approximately 2 times than that of standard phosphor LMP. The rate of OSL depletion for 90% decay for NaF:Ca,Cu is 0.3 times as that of OSL phosphor LMP. NaF:Ca,Cu thus deserves much more attention than it has received up till now.

  6. New solid conductors of Na/+/ and K/+/ ions

    NASA Technical Reports Server (NTRS)

    Singer, J.; Fielder, W. L.; Kautz, H. E.; Fordyce, J. S.

    1976-01-01

    About 40 structure types for solid conductors of Na(+) and K(+) ions are surveyed. Five compounds in three structure types are discovered to be good solid conductors of alkali metal ions, capable of ion transport with conductivities in the vicinity of 0.00001/ohm-cm at 25 C. These compounds are a bcc form of NaSbO3, an orthorhombic layer structure of the composition 2M2O.3Nb2O5 with M equal to Na or K, and the Na pyrochlores NaTa2O5F and NaTaWO6. Ion exchange is required to produce each of these Na compounds. Only the 2K2O.3Nb2O5 can so far be synthesized directly from the oxides and thus is the only one which can be sintered readily. The niobate is about as good a conductor of K(+) ion as is K-beta alumina. The NaSbO3 compares well with Na beta at 280 C. A number of phase diagrams are developed.

  7. The Physiological Relevance of Na+-Coupled K+-Transport.

    PubMed Central

    Maathuis, FJM.; Verlin, D.; Smith, F. A.; Sanders, D.; Fernandez, J. A.; Walker, N. A.

    1996-01-01

    Plant roots utilize at least two distinct pathways with high and low affinities to accumulate K+. The system for high-affinity K+ uptake, which takes place against the electrochemical K+ gradient, requires direct energization. Energization of K+ uptake via Na+ coupling has been observed in algae and was recently proposed as a mechanism for K+ uptake in wheat (Triticum aestivum L.). To investigate whether Na+ coupling has general physiological relevance in energizing K+ transport, we screened a number of species, including Arabidopsis thaliana L. Heynh. ecotype Columbia, wheat, and barley (Hordeum vulgare L.), for the presence of Na+-coupled K+ uptake. Rb+-flux analysis and electrophysiological K+-transport assays were performed in the presence and absence of Na+ and provided evidence for a coupling between K+ and Na+ transport in several aquatic species. However, all investigated terrestrial species were able to sustain growth and K+ uptake in the absence of Na+. Furthermore, the addition of Na+ was either without effect or inhibited K+ absorption. The latter characteristic was independent of growth conditions with respect to Na+ status and pH. Our results suggest that in terrestrial species Na+-coupled K+ transport has no or limited physiological relevance, whereas in certain aquatic angiosperms and algae this type of secondary transport energization plays a significant role. PMID:12226467

  8. Influenza virus neuraminidase (NA): a target for antivirals and vaccines.

    PubMed

    Jagadesh, Anitha; Salam, Abdul Ajees Abdul; Mudgal, Piya Paul; Arunkumar, Govindakarnavar

    2016-08-01

    Influenza, the most common infectious disease, poses a great threat to human health because of its highly contagious nature and fast transmissibility, often leading to high morbidity and mortality. Effective vaccination strategies may aid in the prevention and control of recurring epidemics and pandemics associated with this infectious disease. However, antigenic shifts and drifts are major concerns with influenza virus, requiring effective global monitoring and updating of vaccines. Current vaccines are standardized primarily based on the amount of hemagglutinin, a major surface antigen, which chiefly constitutes these preparations along with the varying amounts of neuraminidase (NA). Anti-influenza drugs targeting the active site of NA have been in use for more than a decade now. However, NA has not been approved as an effective antigenic component of the influenza vaccine because of standardization issues. Although some studies have suggested that NA antibodies are able to reduce the severity of the disease and induce a long-term and cross-protective immunity, a few major scientific issues need to be addressed prior to launching NA-based vaccines. Interestingly, an increasing number of studies have shown NA to be a promising target for future influenza vaccines. This review is an attempt to consolidate studies that reflect the strength of NA as a suitable vaccine target. The studies discussed in this article highlight NA as a potential influenza vaccine candidate and support taking the process of developing NA vaccines to the next stage.

  9. Tuning NaYF4 Nanoparticles through Alkaline Earth Doping

    PubMed Central

    Chen, Xian; Peng, Dengfeng; Wang, Feng

    2013-01-01

    Phase and size of lanthanide-doped nanoparticles are the most important characteristics that dictate optical properties of these nanoparticles and affect their technological applications. Herein, we present a systematic study to examine the effect of alkaline earth doping on the formation of NaYF4 upconversion nanoparticles. We show that alkaline earth doping has a dual function of tuning particle size of hexagonal phase NaYF4 nanoparticles and stabilizing cubic phase NaYF4 nanoparticles depending on composition and concentration of the dopant ions. The study described here represents a facile and general strategy to tuning the properties of NaYF4 upconversion nanoparticles. PMID:28348353

  10. Kaolin-based geopolymers with various NaOH concentrations

    NASA Astrophysics Data System (ADS)

    Heah, C. Y.; Kamarudin, H.; Mustafa Al Bakri, A. M.; Bnhussain, M.; Luqman, M.; Khairul Nizar, I.; Ruzaidi, C. M.; Liew, Y. M.

    2013-03-01

    Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80°C for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na2O decreased. The increased Na2O content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.

  11. Transcriptional regulators of Na,K-ATPase subunits

    PubMed Central

    Li, Zhiqin; Langhans, Sigrid A.

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease. PMID:26579519

  12. Mercury's Na Exosphere from MESSENGER Data

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Burger, M. H.; Cassidy, T. A.; Sarantos, M.; Vervack, R. J.; McClintock, W. El; Merkel, A. W.; Sprague, A. L.; Solomon, S. C.

    2012-01-01

    MESSENGER entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UWS) channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) has been observing Mercury's exosphere nearly continuously. Daily measurements of Na brightness were fitted with non-uniform exospheric models. With Monte Carlo sampling we traced the trajectories of a representative number of test particles, generally one million per run per source process, until photoionization, escape from the gravitational well, or permanent sticking at the surface removed the atom from the simulation. Atoms were assumed to partially thermally accommodate on each encounter with the surface with accommodation coefficient 0.25. Runs for different assumed source processes are run separately, scaled and co-added. Once these model results were saved onto a 3D grid, we ran lines of sight from the MESSENGER spacecraft :0 infinity using the SPICE kernels and we computed brightness integrals. Note that only particles that contribute to the measurement can be constrained with our method. Atoms and molecules produced on the nightside must escape the shadow in order to scatter light if the excitation process is resonant-light scattering, as assumed here. The aggregate distribution of Na atoms fits a 1200 K gas, with a PSD distribution, along with a hotter component. Our models constrain the hot component, assumed to be impact vaporization, to be emitted with a 2500 K Maxwellian. Most orbits show a dawnside enhancement in the hot component broadly spread over the leading hemisphere. However, on some dates there is no dawn/dusk asymmetry. The portion of the hot/cold source appears to be highly variable.

  13. Mercury's Na Exosphere from MESSENGER data

    NASA Astrophysics Data System (ADS)

    Killen, Rosemary M.; Burger, M. H.; Cassidy, T. A.; Sarantos, M.; Vervack, R. J.; McClintock, W. E.; Merkel, A. W.; Sprague, A. L.; Solomon, S. C.

    2012-10-01

    MESSENGER entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UVVS) channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) has been observing Mercury's exosphere nearly continuously. Daily measurements of Na brightness were fitted with non-uniform exospheric models. With Monte Carlo sampling we traced the trajectories of a representative number of test particles, generally one million per run per source process, until photoionization, escape from the gravitational well, or permanent sticking at the surface removed the atom from the simulation. Atoms were assumed to partially thermally accommodate on each encounter with the surface with accommodation coefficient 0.25. Runs for different assumed source processes are run separately, scaled and co-added. Once these model results were saved onto a 3D grid, we ran lines of sight from the MESSENGER spacecraft to infinity using the SPICE kernels and we computed brightness integrals. Note that only particles that contribute to the measurement can be constrained with our method. Atoms and molecules produced on the nightside must escape the shadow in order to scatter light if the excitation process is resonant-light scattering, as assumed here. The aggregate distribution of Na atoms fits a 1200 K gas, with a PSD distribution, along with a hotter component. Our models constrain the hot component, assumed to be impact vaporization, to be emitted with a 2500 K Maxwellian. Most orbits show a dawnside enhancement in the hot component broadly spread over the leading hemisphere. However, on some dates there is no dawn/dusk asymmetry. The hot portion of the source appears to be highly variable. The authors acknowledge support from NASA through the MESSENGER Participating Scientist Program and Planetary Atmospheres research grants.

  14. Sodium phenylacetate inhibits adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice at multiple steps.

    PubMed

    Dasgupta, Subhajit; Zhou, You; Jana, Malabendu; Banik, Naren L; Pahan, Kalipada

    2003-04-01

    Experimental allergic encephalomyelitis (EAE) is the animal model for multiple sclerosis. The present study underlines the importance of sodium phenylacetate (NaPA), a drug approved for urea cycle disorders, in inhibiting the disease process of adoptively transferred EAE in female SJL/J mice at multiple steps. Myelin basic protein (MBP)-primed T cells alone induced the expression of NO synthase (iNOS) and the activation of NF-kappaB in mouse microglial cells through cell-cell contact. However, pretreatment of MBP-primed T cells with NaPA markedly inhibited its ability to induce microglial expression of iNOS and activation of NF-kappaB. Consistently, adoptive transfer of MBP-primed T cells, but not that of NaPA-pretreated MBP-primed T cells, induced the clinical symptoms of EAE in female SJL/J mice. Furthermore, MBP-primed T cells isolated from NaPA-treated donor mice were also less efficient than MBP-primed T cells isolated from normal donor mice in inducing iNOS in microglial cells and transferring EAE to recipient mice. Interestingly, clinical symptoms of EAE were much less in mice receiving NaPA through drinking water than those without NaPA. Similar to NaPA, sodium phenylbutyrate, a chemically synthesized precursor of NaPA, also inhibited the disease process of EAE. Histological and immunocytochemical analysis showed that NaPA inhibited EAE-induced spinal cord mononuclear cell invasion and normalized iNOS, nitrotyrosine, and p65 (the RelA subunit of NF-kappaB) expression within the spinal cord. Taken together, our results raise the possibility that NaPA or sodium phenylbutyrate taken through drinking water or milk may reduce the observed neuroinflammation and disease process in multiple sclerosis patients.

  15. [Modeling and experimental study on frequency-domain electricity properties of biological materials].

    PubMed

    Tian, Hua; Luo, Shiqiang; Zhang, Rui; Yang, Gang; Huang, Hua

    2009-12-01

    Frequency-domain electricity properties of four objects, including bullfrog skin, bullfrog muscle, triply distilled water and 0.9% NaCl, were tested in the range of 100Hz-10MHz using home-made electrode and measuring system. The experimental results showed that the resistance of 0.9% NaCl decreased dramatically, that the amplitude frequency characteristics of bullfrog's muscle and skin were similar, but that of triply distilled water did not change significantly. The frequency dependence of 0.9% NaCl showed that the electrode had great influence on the measuring system, so a new equivalent circuit model based on the electrode system was needed. These findings suggest that the new five-parameter equivalent circuit model, which embodies considerations on the interaction between electrodes and tissues, is a reasonable equivalent circuit for studying the electrical characteristics of biological materials.

  16. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds

    NASA Astrophysics Data System (ADS)

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds.

  17. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds.

    PubMed

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds.

  18. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  19. Open-system Monte Carlo simulations of Xe in NaA

    NASA Astrophysics Data System (ADS)

    Van Tassel, Paul R.; Davis, H. Ted; McCormick, Alon V.

    1993-06-01

    The grand canonical ensemble Monte Carlo method is used to determine the adsorption isotherm, energy, entropy, occupancy distribution, and density distribution of Xe atoms adsorbed in zeolite NaA, which is modeled as a single alpha cage and as a network of connected cages. The isotherms exhibit multiple plateaus, indicating the existence of certain favored loadings. These plateaus can be predicted by considering constant loading energy and density distributions found previously. A linear regression method of determining the constant loading entropy of Xe atoms is presented. The entropy is a smooth function of loading, which suggests that the structure of the adsorbed Xe is also smoothly varying. The pressures needed to obtain complete loading are quite large and beyond the range of conventional experiment. However, the simulated isotherm and occupancy distribution compare well with the available experimental data. Structural modifications of NaA in the form of cation removal are investigated. A cation-poor model NaA adsorbs fewer Xe at low chemical potential due to its smaller electric field, but has a larger overall adsorption capacity due to its greater accessible volume.

  20. Thermoelastic properties of rock-salt NaCl at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Santos, M. L. M.; Shukla, G.; Wentzcovitch, R. M.

    2014-12-01

    Rock-salt NaCl is an important mineral in our daily lives, in high pressure science/technology, and in the oil/gas industry. The latter has come to prominence since the discovery of deep water pre-salt structures containing great hydrocarbon reserves out of the SE coast of Brazil. The unique aspects of these regions, such as deep water (greater than 2 km below sea level) and deep hydrocarbon reserves (more than 5 km deep) are challenging for oil/gas explorations. Oil/gas field imaging algorithms require good velocity models for seismic wave-propagation within the salt layer. Despite its importance, there is still insufficient information on the elasticity of and sound velocities in NaCl at relevant P,T conditions. Here we report such properties in rock-salt NaCl at relevant P,T conditions as obtained by first principles (DFT) quasiharmonic calculations. We compare intermediate and final results with available experimental data on thermodynamics and thermoelastic properties and combine them for optimum accuracy. These results should be useful for and facilitate imaging pre-salt hydrocarbon reserves. Research supported by CAPES from Brazil, NSF/DMR, and NSF/EAR.