Sample records for na si te

  1. Phase Equilibria Study in the TeO2-Na2O-SiO2 System in Air Between 723 K (500 °C) and 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Santoso, Imam; Taskinen, Pekka

    2016-08-01

    Knowledge of phase equilibria in the TeO2-Na2O-SiO2 system at elevated temperatures is important for ceramic and glass industries and for improving the operation of the smelting process of tellurium-containing materials. A review of previous investigations has indicated, however, that there are omissions in the available datasets on the liquidus temperatures of the molten TeO2-Na2O-SiO2 mixtures. The employed experimental method included equilibration of mixtures made from high purity oxides, rapid quenching of the equilibrated samples in water and followed by compositional analysis of the phases using an electron probe X-ray microanalyzer. The liquidus and phase equilibria in the TeO2-SiO2, TeO2-Na2O, and SiO2-TeO2-Na2O systems have been studied for a wide range of compositions between 723 K (500 °C) and 1473 K (1200 °C) at TeO2, SiO2, and Na2SiO3 saturations. New data have been generated in the SiO2-TeO2-Na2O system at SiO2 saturation. The liquidus compositions in the TeO2-Na2O system at TeO2 saturation have been compared with the previous data and an assessed phase diagram.

  2. Condition of Si crystal formation by vaporizing Na from NaSi

    NASA Astrophysics Data System (ADS)

    Morito, Haruhiko; Karahashi, Taiki; Yamane, Hisanori

    2012-09-01

    NaSi was heated at various Na vapor pressures (pNa 0.1-1.2 atm) and temperatures (973-1173 K) to investigate the condition of Si crystal formation from NaSi by Na evaporation. Silicon single crystals 1-3 mm in diameter were grown by evaporation of Na from Na-Si melt at 1173 K and pNa=0.74 atm.

  3. Formation of Si grains from a NaSi melt prepared by reaction of SiO2 and Na

    NASA Astrophysics Data System (ADS)

    Yamane, Hisanori; Morito, Haruhiko; Uchikoshi, Masahito

    2013-08-01

    A mixture of Na2SiO3 and NaSi was found to be formed by reaction of SiO2 and Na at 650 °C as follows: 5Na+3SiO2→2Na2SiO3+NaSi. Single crystals of NaSi were grown by cooling the mixture of Na2SiO3 and NaSi with an excess amount of Na from 850 °C, and polycrystalline Si was obtained by vaporization of Na from the crystals. Coarse grains of Si were also crystallized by Na evaporation after the formation of Na2SiO3 and Si-dissolved liquid Na at 830 °C. The Si grains were collected by washing the product with water. The yield of the Si grains was 85% of the ideal amount expected from the reaction.

  4. High pressure structural stability of the Na-Te system

    NASA Astrophysics Data System (ADS)

    Wang, Youchun; Tian, Fubo; Li, Da; Duan, Defang; Xie, Hui; Liu, Bingbing; Zhou, Qiang; Cui, Tian

    2018-03-01

    The ab initio evolutionary algorithm is used to search for all thermodynamically stable Na-Te compounds at extreme pressure. In our calculations, several new structures are discovered at high pressure, namely, Imma Na2Te, Pmmm NaTe, Imma Na8Te2 and P4/mmm NaTe3. Like the known structures of Na2Te (Fm-3m, Pnma and P63/mmc), the Pmmm NaTe, Imma Na8Te2 and P4/mmm NaTe3 structures also show semiconductor properties with band-gap decreases when pressure increased. However, we find that the band-gap of Imma Na2Te structure increases with pressure. We presume that the result may be caused by the increasing of splitting between Te p states and Na s, Na p and Te d states. Furthermore, we think that the strong hybridization between Na p state and Te d state result in the band gap increasing with pressure.

  5. Si-Sb-Te materials for phase change memory applications.

    PubMed

    Rao, Feng; Song, Zhitang; Ren, Kun; Zhou, Xilin; Cheng, Yan; Wu, Liangcai; Liu, Bo

    2011-04-08

    Si-Sb-Te materials including Te-rich Si₂Sb₂Te₆ and Si(x)Sb₂Te₃ with different Si contents have been systemically studied with the aim of finding the most suitable Si-Sb-Te composition for phase change random access memory (PCRAM) use. Si(x)Sb₂Te₃ shows better thermal stability than Ge₂Sb₂Te₅ or Si₂Sb₂Te₆ in that Si(x)Sb₂Te₃ does not have serious Te separation under high annealing temperature. As Si content increases, the data retention ability of Si(x)Sb₂Te₃ improves. The 10 years retention temperature for Si₃Sb₂Te₃ film is ~393 K, which meets the long-term data storage requirements of automotive electronics. In addition, Si richer Si(x)Sb₂Te₃ films also show improvement on thickness change upon annealing and adhesion on SiO₂ substrate compared to those of Ge₂Sb₂Te₅ or Si₂Sb₂Te₆ films. However, the electrical performance of PCRAM cells based on Si(x)Sb₂Te₃ films with x > 3.5 becomes worse in terms of stable and long-term operations. Si(x)Sb₂Te₃ materials with 3 < x < 3.5 are proved to be suitable for PCRAM use to ensure good overall performance.

  6. Threshold switching in SiGeAsTeN chalcogenide glass prepared by As ion implantation into sputtered SiGeTeN film

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Wu, Liangcai; Song, Zhitang; Liu, Yan; Li, Tao; Zhang, Sifan; Song, Sannian; Feng, Songlin

    2017-12-01

    A memory cell composed of a selector device and a storage device is the basic unit of phase change memory. The threshold switching effect, main principle of selectors, is a universal phenomenon in chalcogenide glasses. In this work, we put forward a safe and controllable method to prepare a SiGeAsTeN chalcogenide film by implanting As ions into sputtered SiGeTeN films. For the SiGeAsTeN material, the phase structure maintains the amorphous state, even at high temperature, indicating that no phase transition occurs for this chalcogenide-based material. The electrical test results show that the SiGeAsTeN-based devices exhibit good threshold switching characteristics and the switching voltage decreases with the increasing As content. The decrease in valence alternation pairs, reducing trap state density, may be the physical mechanism for lower switch-on voltage, which makes the SiGeAsTeN material more applicable in selector devices through component optimization.

  7. Precursor Routes to Complex Ternary Intermetallics: Single-Crystal and Microcrystalline Preparation of Clathrate-I Na8Al8Si38 from NaSi + NaAlSi.

    PubMed

    Dong, Yongkwan; Chai, Ping; Beekman, Matt; Zeng, Xiaoyu; Tritt, Terry M; Nolas, George S

    2015-06-01

    Single crystals of the ternary clathrate-I Na8Al8Si38 were synthesized by kinetically controlled thermal decomposition (KCTD), and microcrystalline Na8Al8Si38 was synthesized by spark plasma sintering (SPS) using a NaSi + NaAlSi mixture as the precursor. Na8AlxSi46-x compositions with x ≤ 8 were also synthesized by SPS from precursor mixtures of different ratios. The crystal structure of Na8Al8Si38 was investigated using both Rietveld and single-crystal refinements. Temperature-dependent transport and UV/vis measurements were employed in the characterization of Na8Al8Si38, with diffuse-reflectance measurement indicating an indirect optical gap of 0.64 eV. Our results indicate that, when more than one precursor is used, both SPS and KCTD are effective methods for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.

  8. Effect of Sn addition on glassy Si-Te bulk sample

    NASA Astrophysics Data System (ADS)

    Babanna, Jagannatha K.; Roy, Diptoshi; Varma, Sreevidya G.; Asokan, Sundarrajan; Das, Chandasree

    2018-05-01

    Bulk Si20Te79Sn1 glass is prepared by melt-quenching method, amorphous nature of the as-quenched glass is confirmed by XRD. I-V characteristics reveals that Si20Te79Sn1 bulk sample exhibits threshold type electrical switching behavior. The thermal parameters such as crystallization temperature, glass transition temperature are obtained using differential scanning calorimetry. The crystalline peak study of the sample annealed at crystallization temperature for 2 hr shows that the Sn atom interact with Si or Te but do not interact with the Si-Te matrix in a greater extent and it forms a separate phase network individually.

  9. Ultrathin nanosheets of CrSiTe 3. A semiconducting two-dimensional ferromagnetic material

    DOE PAGES

    Lin, Ming -Wei; Zhung, Houlong L.; Yan, Jiaqiang; ...

    2015-11-27

    Finite range ferromagnetism and antiferromagnetism in two-dimensional (2D) systems within an isotropic Heisenberg model at non-zero temperature were originally proposed to be impossible. However, recent theoretical studies using an Ising model have recently shown that 2D magnetic crystals can exhibit magnetism. Experimental verification of existing 2D magnetic crystals in this system has remained elusive. In this work we for the first time exfoliate the CrSiTe 3, a bulk ferromagnetic semiconductor, to mono- and few-layer 2D crystals onto a Si/SiO 2 substrate. The Raman spectra show the good stability and high quality of the exfoliated flakes, consistent with the computed phononmore » spectra of 2D CrSiTe 3, giving a strong evidence for the existence of 2D CrSiTe 3 crystals. When the thickness of the CrSiTe 3 crystals is reduced to few-layers, we observed a clear change in resistivity at 80~120 K, consistent with the theoretical calculations on the Curie temperature (Tc) of ~80 K for the magnetic ordering of 2D CrSiTe 3 crystals. As a result, the ferromagnetic mono- and few-layer 2D CrSiTe 3 indicated here should enable numerous applications in nano-spintronics.« less

  10. Strong spin-lattice coupling in CrSiTe 3

    DOE PAGES

    Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; ...

    2015-03-19

    CrSiTe 3 has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe 3 is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of themore » phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. In conclusion, the Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Lastly, spin-lattice coupling constants are also extracted.« less

  11. Photoluminescence of Molecular Beam Epitaxy-Grown Mercury Cadmium Telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si Technologies

    NASA Astrophysics Data System (ADS)

    Mynbaev, K. D.; Bazhenov, N. L.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Marin, D. V.; Yakushev, M. V.

    2018-05-01

    Properties of HgCdTe films grown by molecular beam epitaxy on GaAs and Si substrates have been studied by performing variable-temperature photoluminescence (PL) measurements. A substantial difference in defect structure between films grown on GaAs (013) and Si (013) substrates was revealed. HgCdTe/GaAs films were mostly free of defect-related energy levels within the bandgap, which was confirmed by PL and carrier lifetime measurements. By contrast, the properties of HgCdTe/Si films are affected by uncontrolled point defects. These could not be always associated with typical "intrinsic" HgCdTe defects, such as mercury vacancies, so consideration of other defects, possibly inherent in HgCdTe/Si structures, was required. The post-growth annealing was found to have a positive effect on the defect structure by reducing the full-widths at half-maximum of excitonic PL lines for both types of films and lowering the concentration of defects specific to HgCdTe/Si.

  12. Segmented SiGe-PbTe couples

    NASA Technical Reports Server (NTRS)

    Eggers, P. E.; Mueller, J. J.

    1969-01-01

    New design of segmented couples incorporates an intermediate junction contacted by pressure, and eliminates transition members that bond materials differing in thermal expansion. Development of a reproducible and reliable intermediate junction between PbTe and SiGe will be applicable to direct conversion of energy.

  13. The synthesis of ternary acetylides with tellurium: Li 2 TeC 2 and Na 2 TeC 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Németh, Károly; Unni, Aditya K.; Kalnmals, Christopher

    The synthesis of ternary acetylides Li 2TeC 2 and Na 2TeC 2 is presented as the first example of ternary acetylides with metalloid elements instead of transition metals. The synthesis was carried out by the direct reaction of the corresponding bialkali acetylides with tellurium powder in liquid ammonia. Alternatively, the synthesis of Na 2TeC 2 was also carried out by the direct reaction of tellurium powder and two equivalents of NaC 2H in liquid ammonia leading to Na 2TeC 2 and acetylene gas through an equilibrium containing the assumed NaTeC 2H molecules besides the reactants and the products. The resultingmore » disordered crystalline materials were characterized by X-ray diffraction and Raman spectroscopy. Implications of these new syntheses on the synthesis of other ternary acetylides with metalloid elements and transition metals are also discussed.« less

  14. Effect of mixed Ge/Si cross-linking on the physical properties of amorphous Ge-Si-Te networks

    NASA Astrophysics Data System (ADS)

    Gunasekera, K.; Boolchand, P.; Micoulaut, M.

    2014-04-01

    Amorphous GexSixTe1-2x glasses are studied as a function of composition by a combination of experimental and theoretical methods, allowing for a full description of the network structure in relationship with physico-chemical properties. Calorimetric and thermal measurements reveal that such glasses display an anomalous behavior across a range of compositions xc1=7.5% and Si) are increased. The structural manifestation of these anomalies is understood from 119Sn Mössbauer spectroscopy and First Principles Molecular Dynamics at selected compositions (Ge20Te80, Si20Te80, and Ge10Si10Te80). The numerical models reveal the quite different roles played by the modifier or network cross-linker Ge or Si atoms, Si being more tetrahedral in sp3 geometry, whereas Mössbauer spectroscopy shows that the nature of chemical bonding is dramatically changed around x ≃ 8%. The precise evolution of the local structure and chemical bonding ultimately allows understanding the origin of the intermediate phase in these complex tellurides.

  15. First principles study of crystal Si-doped Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Yan, Beibei; Yang, Fei; Chen, Tian; Wang, Minglei; Chang, Hong; Ke, Daoming; Dai, Yuehua

    2017-02-01

    Ge2Sb2Te5 (GST) and Si-doped GST with hexagonal structure were investigated by means of First-principles calcucations. We performed many kinds of doping types and studied the electronic properties of Si-doped GST with various Si concentrations. The theoretical calculations show that the lowest formation energy appeared when Si atoms substitute the Sb atoms (SiSb). With the increasing of Si concentrations from 10% to 30%, the impurity states arise around the Fermi level and the band gap of the SiSb structure broadens. Meanwhile, the doping supercell has the most favorable structure when the doping concentration keeps in 20%. The Si-doped GST exhibits p-type metallic characteristics more distinctly owing to the Fermi level moves toward the valence band. The Te p, d-orbitals electrons have greater impact on electronic properties than that of Te s-orbitals.

  16. Highly Luminescent Hybrid SiO2-Coated CdTe Quantum Dots Retained Initial Photoluminescence Efficiency in Sol-Gel SiO2 Film.

    PubMed

    Sun, Hongsheng; Xing, Yugui; Wu, Qinan; Yang, Ping

    2015-02-01

    A highly luminescent silica film was fabricated using tetraethyl orthosilicate (TEOS) and 3-aminopropyltrimethoxysilane (APS) through a controlled sol-gel reaction. The pre-hydrolysis of TEOS and APS which resulted in the mixture of TEOS and APS in a molecular level is a key for the formation of homogenous films. The aminopropyl groups in APS play an important role for obtaining homogeneous film with high photoluminescence (PL). Red-emitting hybrid SiO2-coated CdTe nano-crystals (NCs) were fabricated by a two-step synthesis including a thin SiO2 coating via a sol-gel process and a subsequent refluxing using green-emitting CdTe NCs. The hybrid SiO2-coated CdTe NCs were embedded in a functional SiO2 film via a two-step process including adding the NCs in SiO2 sol with a high viscosity and almost without ethanol and a subsequent spinning coating. The hybrid SiO2-coated CdTe NCs retained their initial PL efficiency (54%) in the film. Being encapsulated with the hybrid NCs in the film, no change on the absorption and PL spectra of red-emitting CdTe NCs (632 nm) was observed. This indicates the hybrid NCs is stable enough during preparation. This phenomenon is ascribed to the controlled sol-gel process and a hybrid SiO2 shell on CdTe NCs. Because these films exhibited high PL efficiency and stability, they will be utilizable for potential applications in many fields.

  17. Synthesis of ternary Si clathrates in the A-Al-Si (A = Na and K) system

    NASA Astrophysics Data System (ADS)

    Imai, Motoharu; Singh, Shiva Kumar; Nishio, Mitsuaki; Yamada, Takahiro; Yamane, Hisanori

    2015-07-01

    With the aim of producing functional materials based on earth-abundant elements, we examined the synthesis of the ternary type-I clathrates A8AlxSi46-x (A = Na and K). The type-I Si clathrate K7.9(1)Al7.1(1)Si38.9(4), having a lattice parameter of 10.434(1) Å, was successfully synthesized via the direct reaction of K, Al, and Si by optimization of both the synthesis temperature and the molar ratios among the raw ingredients. K8Al7Si39 exhibited metallic conduction: its electrical resistivity increased with increasing temperature. The high pressure synthesis of Na8AlxSi46-x was also examined, using a belt-type apparatus and employing a mixture of NaSi, Al, and Si as the reagents. In this manner, the type-I Si clathrate Na8.7(9)Al0.5(1)Si45(2), having a lattice parameter of 10.211(1) Å, was synthesized at 5.5 GPa and 1570 K.

  18. MBE Growth of HgCdTe on Large-Area Si and CdZnTe Wafers for SWIR, MWIR and LWIR Detection

    NASA Astrophysics Data System (ADS)

    Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Franklin, J. A.; Vang, T.; Smith, E. P. G.; Wehner, J. G. A.; Kasai, I.; Bangs, J. W.; Johnson, S. M.

    2008-09-01

    Molecular beam epitaxy (MBE) growth of HgCdTe on large-size Si (211) and CdZnTe (211)B substrates is critical to meet the demands of extremely uniform and highly functional third-generation infrared (IR) focal-panel arrays (FPAs). We have described here the importance of wafer maps of HgCdTe thickness, composition, and the macrodefects across the wafer not only to qualify material properties against design specifications but also to diagnose and classify the MBE-growth-related issues on large-area wafers. The paper presents HgCdTe growth with exceptionally uniform composition and thickness and record low macrodefect density on large Si wafers up to 6-in in diameter for the detection of short-wave (SW), mid-wave (MW), and long-wave (LW) IR radiation. We have also proposed a cost-effective approach to use the growth of HgCdTe on low-cost Si substrates to isolate the growth- and substrate-related problems that one occasionally comes across with the CdZnTe substrates and tune the growth parameters such as growth rate, cutoff wavelength ( λ cutoff) and doping parameters before proceeding with the growth on costly large-area CdZnTe substrates. In this way, we demonstrated HgCdTe growth on large CdZnTe substrates of size 7 cm × 7 cm with excellent uniformity and low macrodefect density.

  19. Analysis of Nanoprecipitates in a Na-Doped PbTe-SrTe Thermoelectric Material with a High Figure of Merit.

    PubMed

    Kim, Yoon-Jun; Zhao, Li-Dong; Kanatzidis, Mercouri G; Seidman, David N

    2017-07-05

    The dimensionless figure of merit, ZT, of bulk thermoelectric materials depends mainly on the transport properties of charge carriers and heat-carrying phonons. PbTe-4 mol % SrTe doped with 2 mol % Na (Pb 0.94 Na 0.02 Sr 0.04 Te) is a nanostructured material system that exhibits a ZT higher than 2. The precipitate size distribution of SrTe precipitates is believed to play a key role. This raises the question of whether its performance is limited by precipitate coarsening (Ostwald ripening) at elevated temperatures. Herein, we utilize an atom-probe tomography (APT) to study the number density and mean radii of precipitates in concert with partial radial distribution functions (RDFs) of individual atoms. We find that the SrTe precipitates actually contain oxygen: SrTe 1-x O x . We correlate this information with the overall ZT performance, specifically focusing on the electrical and lattice thermal conductivities after isothermal heat treatments at 300 and 400 °C for 7 days, followed by furnace cooling. Comparison of the samples annealed at 400 and 300 °C demonstrates significant coarsening of SrTe 1-x O x precipitates as well as strong segregation of oxygen impurities in the SrTe 1-x O x precipitates. Additionally, on the basis of the partial RDFs, the Na dopant atoms cluster with other Na atoms as well as with Pb, Te, and Sr atoms; clustering depends strongly on the annealing temperature and concomitantly affects the overall ZT values. We found that the coarsening slightly increases the lattice thermal conductivity and also increases the electrical conductivity, thereby having little or even a beneficial effect on the ZT values. Importantly, these findings demonstrate that APT enables quantitative analyses in three dimensions of the PbTe-4 mol % SrTe samples in addition to correlation of their properties with the thermoelectric performance.

  20. Toxicity evaluation of hydrophilic CdTe quantum dots and CdTe@SiO2 nanoparticles in mice.

    PubMed

    Sadaf, Asma; Zeshan, Basit; Wang, Zhuyuan; Zhang, Ruohu; Xu, Shuhong; Wang, Chunlei; Cui, Yiping

    2012-11-01

    Quantum dots have drawn tremendous attention in the field of in vitro and small animal in vivo fluorescence imaging in the last decade. However, concerns over the cytotoxicity of their heavy metal constituents have limited their use in clinical applications. Here, we report our comparative studies on the toxicities of quantum dots (QDs) and silica coated CdTe nanoparticles (NPs) to mice after intravenous injection. The blood cells analysis showed significant increased level of white blood cells (WBCs) in groups treated with CdTe QDs as compared to the control while red blood cells (RBCs) and platelet counts were normal in treated as well as control groups. The concentration of biochemical markers of hepatic damage, alanine amino transferase (ALT) and aspartate aminotransferase (AST) were in the normal range in all the groups. However, renal function analyses of mice showed significantly increased in the concentration of blood urea nitrogen (BUN) and creatinine (CREA) in mice treated with CdTe QDs while remained within normal ranges in both the CdTe@SiO2 NPs and control group. The results of histopathology showed that the CdTe QDs caused mild nephrotoxicity while other organs were normal and no abnormalities were detected in control and CdTe@SiO2 treated group. These findings suggest that the nephrotoxicity could be minimized by silica coating which would be useful for many biomedical applications.

  1. Thermodynamic Model of the Na-Al-Si-O-F Melts

    NASA Astrophysics Data System (ADS)

    Dolejs, D.; Baker, D. R.

    2004-05-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids which links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals or fluoride-silicate immiscibility in natural felsic melts. Configurational properties of the liquid are defined by mixing of alkali fluoride, polyhedral aluminofluoride and silicofluoride species and non-bridging terminations of the silicate network. Abundances of individual structural species are described by a homogeneous equilibrium, representing melt depolymerization: F- (free) + O0 (bridging) = F0 (terminal) + O- (non-bridging), which is a replacement of one oxygen bridge, Si-O-Si, by two terminations, Si-F | Na-O-Si. In cryolite-bearing systems, the self-dissociation of octahedral aluminofluoride complexes: Na3[AlF6] = Na[AlF4] + 2 NaF, and the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F, represent two additional interaction mechanisms. Portrayal of these equilibria in ternary Thompson reaction space allows to decrease the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the interaction parameters are incorporated directly in configurational properties, thus the complete melt speciation can be calculated, and the activities of any macroscopic species are readily derived. The model has been applied to subsystems of the Na2O-NaAlO2-SiO2-F2O-1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra in fluoride solvent. Phase-equilibria in cryolite-nepheline and cryolite-albite systems illustrate an overall increase of Na3AlF6 self

  2. Electronic structures and superconductivity in LuTE2Si2 phases (TE = d-electron transition metal)

    NASA Astrophysics Data System (ADS)

    Samsel-Czekała, M.; Chajewski, G.; Wiśniewski, P.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    In the course of our search for unconventional superconductors amidst the 1:2:2 phases, we have re-investigated the LuTE2Si2 compounds with TE = Fe, Co, Ni, Ru, Pd and Pt. In this paper, we present the results of our fully relativistic ab initio calculations of the band structures, performed using the full-potential local-orbital code. The theoretical data are supplemented by the results of low-temperature electrical transport and specific heat measurements performed down to 0.35 K. All the materials studied but LuPt2Si2 crystallize with the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm). Their Fermi surfaces exhibit a three-dimensional multi-band character. In turn, the Pt-bearing compound adopts the primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm), and its Fermi surface consists of predominantly quasi-two-dimensional sheets. Bulk superconductivity was found only in LuPd2Si2 and LuPt2Si2 (independent of the structure type and dimensionality of the Fermi surface). The key superconducting characteristics indicate a fully-gapped BCS type character. Though the electronic structure of LuFe2Si2 closely resembles that of the unconventional superconductor YFe2Ge2, this Lu-based silicide exhibits neither superconductivity nor spin fluctuations at least down to 0.35 K.

  3. Molecular beam epitaxy and metalorganic chemical vapor deposition growth of epitaxial CdTe on (100) GaAs/Si and (111) GaAs/Si substrates

    NASA Technical Reports Server (NTRS)

    Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.

    1988-01-01

    Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.

  4. A 125Te and 23Na NMR investigation of the structure and crystallisation of sodium tellurite glasses.

    PubMed

    Holland, D; Bailey, J; Ward, G; Turner, B; Tierney, P; Dupree, R

    2005-01-01

    125Te static nuclear magnetic resonance (NMR) and 23Na and 125Te magic angle spinning (MAS) NMR have been used, in conjunction with X-ray diffraction, to examine the structure and crystallisation behaviour of glasses of composition xNa2O.(1-x)TeO2 (0.075 x 0.4). The MAS NMR 23Na spectra from the glasses are broad and featureless but shift by approximately +5 ppm with increased x, i.e. as the system becomes more ionic. The static 125Te NMR spectra show an increase in axial symmetry with increasing x, indicating a shift from predominantly [TeO4] to [TeO3] structural units. The 23Na and 125Te spectra from the crystallised samples have been fitted to obtain information on the sites in the metastable crystal phases, which are the first to form on heating and which are therefore more closely related to the glass structure than thermodynamically stable crystal phases. New sodium tellurite phases are reported, including a sodium stabilised, face centred cubic phase related to delta-TeO2; a metastable form of Na2Te4O9 containing 3 sodium and 4 tellurium sites; and a metastable form of Na2Te2O5 containing 2 sodium sites. There is evidence of oxidation of TeIV to TeVI occurring in glasses with high values of x and, at x=0.40 and 0.50 (outside the glass forming range), some sodium metatellurate (Na2TeO4) is formed at the same time as sodium metatellurite (Na2TeO3). The 125Te shift is very sensitive to environment within the sodium tellurite system, covering more than 320 ppm, with anisotropies varying from 640 to 1540 ppm. The lack of features in the 125Te spectra of the glass phases, combined with the large shift range and high but variable anisotropy, means than it is not possible to obtain a unique fit to any presumed species present. Furthermore, the chemical shift anisotropy parameters for three of the four Te sites in the Na2Te4O9 phase are found to lie outside the range used for previous simulations of glass spectra.

  5. Dry etched SiO2 Mask for HgCdTe Etching Process

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  6. Controlled thermal decomposition of NaSi to derive silicon clathrate compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Hiro-omi; Kikudome, Takashi; Teramura, Kyosuke

    Formation conditions of two types of sodium containing silicon clathrate compounds were determined by the controlled thermal decomposition of sodium monosilicide NaSi under vacuum. The decomposition began at 360 deg. C. Much higher decomposition temperatures and the presence of sodium metal vapor were favorable for the formation of type I clathrate compound Na{sub 8}Si{sub 46}. Type II clathrate compound Na{sub x}Si{sub 136} was obtained as a single phase at a decomposition temperature <440 deg. C under the condition without sodium metal vapor. The type I clathrate compound was decomposed to crystalline Si above 520 deg. C. The type II clathratemore » compound was thermally more stable, and retained at least up to 550 deg. C in vacuum. - Graphical Abstract: The optimal condition to prepare type II silicon clathrate Na{sub x}Si{sub 136} with minimal contamination of the type I phase is proposed. The starting NaSi should be thermally decomposed below 440 deg. C, and the rapid removal of Na vapor evolved is essentially important.« less

  7. Transport properties and electronic structure of Na0.28PtSi

    NASA Astrophysics Data System (ADS)

    Itahara, Hiroshi; Suzumura, Akitoshi; Oh, Song-Yul

    2017-07-01

    We have investigated the electronic structure and properties of Na0.28PtSi, which is a Pt-based intermetallic compound with no reported physical properties. Na0.28PtSi powder with an average grain size of 15 µm was demonstrated to be stable in a strongly acidic aqueous solution. The ab initio calculations revealed that there is a band crossing the Fermi level and that the density of states (DOS) under the Fermi level mainly consists of d orbitals of Pt atoms. Here, we used the model of Na0.25PtSi with an approximately ordered structure (space group I4, full Na site occupation), which was set instead of the reported statistically disordered structure of Na0.28PtSi (I4/mcm, Na site occupancy: 0.258). The calculated electronic structure corresponded to the measured metallic properties of the Na0.28PtSi sintered body: i.e., the electrical resistivity of Na0.28PtSi was increased from 1.77 × 10-8 Ω m at 30 K to 2.67 × 10-7 Ω m at 300 K and the Seebeck coefficient was 0.11 µV K-1 at 300 K.

  8. Superconducting FeSe0.1Te0.9 thin films integrated on Si-based substrates

    NASA Astrophysics Data System (ADS)

    Huang, Jijie; Chen, Li; Li, Leigang; Qi, Zhimin; Sun, Xing; Zhang, Xinghang; Wang, Haiyan

    2018-05-01

    With the goal of integrating superconducting iron chalcogenides with Si-based electronics, superconducting FeSe0.1Te0.9 thin films were directly deposited on Si and SiOx/Si substrates without any buffer layer by a pulsed laser deposition (PLD) method. Microstructural characterization showed excellent film quality with mostly c-axis growth on both types of substrates. Superconducting properties (such as superconducting transition temperature T c and upper critical field H c2) were measured to be comparable to that of the films on single crystal oxide substrates. The work demonstrates the feasibility of integrating superconducting iron chalcogenide (FeSe0.1Te0.9) thin films with Si-based microelectronics.

  9. Fabrication and characterization study of ZnTe/n-Si heterojunction solar cell application

    NASA Astrophysics Data System (ADS)

    AlMaiyaly, BushraK H.; Hussein, Bushra H.; Shaban, Auday H.

    2018-05-01

    Different thicknesses (150 250 and 350) ±20 nm has been deposited on the glass substrate and nSi wafer to fabricate ZnTe/n-Si heterojunction solar cell by vacuum evaporation technique Structural optical electrical and photovoltaic properties are investigated for the samples. The structural characteristics studied via X ray analyses indicated that the films are polycrystalline besides having a cubic (zinc blende) structure also average diameter and surface roughness calculated from AFM images The optical measurements of the deposited films were performed in different thicknesses to determine the transmission spectrum as a function of incident wavelength in the range of wavelength (4001000) nm and the optical energy gap calculated from the optical absorption spectra was found to reduse with thickness The IV characteristic at (dark and illuminated) and CV measurement for ZnTe/n-Si heterojunction shows the good rectifying behaviour under dark condition. The measurements of opencircuit voltage (VOC) short-circuit current density (JSC) fill factor (FF) and quantum fficiencies of the ZnTe/n-Si heterojunction are calculated for all samples The results of these studies are presented and discussed in this paper.

  10. Optimization of plasma etching of SiO2 as hard mask for HgCdTe dry etching

    NASA Astrophysics Data System (ADS)

    Chen, Yiyu; Ye, Zhenhua; Sun, Changhong; Zhang, Shan; Xin, Wen; Hu, Xiaoning; Ding, Ruijun; He, Li

    2016-10-01

    HgCdTe is one of the dominating materials for infrared detection. To pattern this material, our group has proven the feasibility of SiO2 as a hard mask in dry etching process. In recent years, the SiO2 mask patterned by plasma with an auto-stopping layer of ZnS sandwiched between HgCdTe and SiO2 has been developed by our group. In this article, we will report the optimization of SiO2 etching on HgCdTe. The etching of SiO2 is very mature nowadays. Multiple etching recipes with deferent gas mixtures can be used. We utilized a recipe containing Ar and CHF3. With strictly controlled photolithography, the high aspect-ratio profile of SiO2 was firstly achieved on GaAs substrate. However, the same recipe could not work well on MCT because of the low thermal conductivity of HgCdTe and CdTe, resulting in overheated and deteriorated photoresist. By decreasing the temperature, the photoresist maintained its good profile. A starting table temperature around -5°C worked well enough. And a steep profile was achieved as checked by the SEM. Further decreasing of temperature introduced profile with beveled corner. The process window of the temperature is around 10°C. Reproducibility and uniformity were also confirmed for this recipe.

  11. The Si/CdTe semiconductor camera of the ASTRO-H Hard X-ray Imager (HXI)

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Hagino, Kouichi; Watanabe, Shin; Genba, Kei; Harayama, Atsushi; Kanematsu, Hironori; Kataoka, Jun; Katsuragawa, Miho; Kawaharada, Madoka; Kobayashi, Shogo; Kokubun, Motohide; Kuroda, Yoshikatsu; Makishima, Kazuo; Masukawa, Kazunori; Mimura, Taketo; Miyake, Katsuma; Murakami, Hiroaki; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Onishi, Mitsunobu; Saito, Shinya; Sato, Rie; Sato, Tamotsu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin`ichiro; Yuasa, Takayuki

    2016-09-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard the ASTRO-H mission [1-4] to be launched in early 2016. The HXI is the focal plane detector of the hard X-ray reflecting telescope that covers an energy range from 5 to 80 keV. It will execute observations of astronomical objects with a sensitivity for point sources as faint as 1/100,000 of the Crab nebula at > 10 keV. The HXI camera - the imaging part of the HXI - is realized by a hybrid semiconductor detector system that consists of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors. Here, we present the final design of the HXI camera and report on the development of the flight model. The camera is composed of four layers of Double-sided Silicon Strip Detectors (DSSDs) and one layer of CdTe Double-sided Strip Detector (CdTe-DSD), each with an imaging area of 32 mm×32 mm. The strip pitch of the Si and CdTe sensors is 250 μm, and the signals from all 1280 strips are processed by 40 Application Specified Integrated Circuits (ASICs) developed for the HXI. The five layers of sensors are vertically stacked with a 4 mm spacing to increase the detection efficiency. The thickness of the sensors is 0.5 mm for the Si, and 0.75 mm for the CdTe. In this configuration, soft X-ray photons will be absorbed in the Si part, while hard X-ray photons will go through the Si part and will be detected in the CdTe part. The design of the sensor trays, peripheral circuits, power connections, and readout schemes are also described. The flight models of the HXI camera have been manufactured, tested and installed in the HXI instrument and then on the satellite.

  12. Effect of Solids-To-Liquids, Na2SiO3-To-NaOH and Curing Temperature on the Palm Oil Boiler Ash (Si + Ca) Geopolymerisation System

    PubMed Central

    Yahya, Zarina; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Abd Razak, Rafiza; Sandu, Andrei Victor

    2015-01-01

    This paper investigates the effect of the solids-to-liquids (S/L) and Na2SiO3/NaOH ratios on the production of palm oil boiler ash (POBA) based geopolymer. Sodium silicate and sodium hydroxide (NaOH) solution were used as alkaline activator with a NaOH concentration of 14 M. The geopolymer samples were prepared with different S/L ratios (0.5, 1.0, 1.25, 1.5, and 1.75) and Na2SiO3/NaOH ratios (0.5, 1.0, 1.5, 2.0, 2.5, and 3.0). The main evaluation techniques in this study were compressive strength, X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscope (SEM). The results showed that the maximum compressive strength (11.9 MPa) was obtained at a S/L ratio and Na2SiO3/NaOH ratio of 1.5 and 2.5 at seven days of testing.

  13. Influence of Si and N additions on structure and phase stability of Ge(2)Sb(2)Te(5) thin films.

    PubMed

    Kölpin, Helmut; Music, Denis; Laptyeva, Galyna; Ghadimi, Reza; Merget, Florian; Richter, Silvia; Mykhaylonka, Ruslàn; Mayer, Joachim; Schneider, Jochen M

    2009-10-28

    The influence of Si and N in Ge(2)Sb(2)Te(5) (space group [Formula: see text]) on structure and phase stability thereof was studied experimentally by thin film growth and characterization as well as theoretically by ab initio calculations. It was found that Si and N most probably accumulate in the amorphous matrix embedding Ge(2)Sb(2)Te(5) grains. The incorporation of Si and N in these samples causes an increase of the crystallization temperature and the formation of finer grains. N is more efficient in increasing the crystallization temperature and in reducing the grain size than Si which can be understood based on the bonding analysis. The incorporation of both Si and N in Ge(2)Sb(2)Te(5) is energetically unfavourable, leading to finer grains and larger crystallization temperatures. While in the case of Si additions no significant changes in bonding are observed, N additions appear to enable the formation of strong Te-N bonds in the amorphous matrix, which are shown to be almost twice as strong as the strongest bonds in unalloyed Ge(2)Sb(2)Te(5).

  14. Analysis of Mesa Dislocation Gettering in HgCdTe/CdTe/Si(211) by Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, R. N.; Stoltz, A. J.; Benson, J. D.; Smith, P.; Lennon, C. M.; Almeida, L. A.; Farrell, S.; Wijewarnasuriya, P. S.; Brill, G.; Chen, Y.; Salmon, M.; Zu, J.

    2013-11-01

    Due to its strong infrared absorption and variable band-gap, HgCdTe is the ideal detector material for high-performance infrared focal-plane arrays (IRFPAs). Next-generation IRFPAs will utilize dual-color high-definition formats on large-area substrates such as Si or GaAs. However, heteroepitaxial growth on these substrates is plagued by high densities of lattice-mismatch-induced threading dislocations (TDs) that ultimately reduce IRFPA operability. Previously we demonstrated a postgrowth technique with the potential to eliminate or move TDs such that they have less impact on detector operability. In this technique, highly reticulated mesa structures are produced in as-grown HgCdTe epilayers, and then subjected to thermal cycle annealing. To fully exploit this technique, better understanding of the inherent mechanism is required. In this work, we employ scanning transmission electron microscopy (STEM) analysis of HgCdTe/CdTe/Si(211) samples prepared by focused ion beam milling. A key factor is the use of defect-decorated samples, which allows for a correlation of etch pits observed on the surface with underlying dislocation segments viewed in cross-section STEM images. We perform an analysis of these dislocations in terms of the general distribution, density, and mobility at various locations within the mesa structures. Based on our observations, we suggest factors that contribute to the underlying mechanism for dislocation gettering.

  15. Controlled thermal decomposition of NaSi to derive silicon clathrate compounds

    NASA Astrophysics Data System (ADS)

    Horie, Hiro-omi; Kikudome, Takashi; Teramura, Kyosuke; Yamanaka, Shoji

    2009-01-01

    Formation conditions of two types of sodium containing silicon clathrate compounds were determined by the controlled thermal decomposition of sodium monosilicide NaSi under vacuum. The decomposition began at 360 °C. Much higher decomposition temperatures and the presence of sodium metal vapor were favorable for the formation of type I clathrate compound Na 8Si 46. Type II clathrate compound Na xSi 136 was obtained as a single phase at a decomposition temperature <440 °C under the condition without sodium metal vapor. The type I clathrate compound was decomposed to crystalline Si above 520 °C. The type II clathrate compound was thermally more stable, and retained at least up to 550 °C in vacuum.

  16. Application of core-shell-structured CdTe@SiO2 quantum dots synthesized via a facile solution method for improving latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Han, Jiaxing; Lv, Caifeng; Wang, Qin; Zhang, Jun; Li, Qun; Bao, Liru; Li, Xin

    2012-10-01

    Fingerprint detection is important in criminal investigation. This paper reports a facile powder brushing technique for improving latent fingerprint detection using core-shell-structured CdTe@SiO2 quantum dots (QDs) as fluorescent labeling marks. Core-shell-structured CdTe@SiO2 QDs are prepared via a simple solution-based approach using NH2NH2·H2O as pH adjustor and stabilizer, and their application for improving latent fingerprint detection is explored. The obtained CdTe@SiO2 QDs show spherical shapes with well-defined core-shell structures encapsulating different amounts of QDs depending on the type of the pH adjustor and stabilizer. Moreover, the fluorescence of CdTe@SiO2 QDs is largely enhanced by surface modification of the SiO2 shell. The CdTe@SiO2 QDs overcome the oxidation problem of pure CdTe QDs in air, thus affording better variability with strong adhesive ability, better resolution, and bright emission colors for practical application in latent fingerprint detection. In comparison with the conventional fluorescence powders, silver powders, and others, the effectiveness of CdTe@SiO2 QD powders for detection of latent fingerprints present on a large variety of object surfaces is greatly improved. The synthesis method for CdTe@SiO2 QDs is simple, cheap, and easy for large-scale production, and thus offers many advantages in the practical application of fingerprint detection.

  17. Molecular beam epitaxy grown long wavelength infrared HgCdTe on compliant Si substrates

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.; Chen, Yuanping; Brill, Gregory; Dhar, Nibir K.; Carmody, Michael; Bailey, Robert; Arias, Jose

    2006-05-01

    At the Army Research Laboratory (ARL), a new ternary semiconductor system CdSe xTe 1-x/Si(211) is being investigated as an alternative substrate to bulk-grown CdZnTe substrates for HgCdTe growth by molecular beam epitaxy. Under optimized conditions, best layers show surface defect density less than 400 cm -2 and full width at half maximum of X-ray double crystal rocking curve as low as 100 arc-sec with excellent uniformity over 3 inch area. LW-HgCdTe layers on these compliant substrates exhibit comparable electrical properties to those grown on bulk CZT substrates. Photovoltaic devices fabricated on these LWIR material shows diffusion limited performance at 78K indicating high quality material. Measured R °A at 78K on λ co = 10 μm material is on the order of 340 Ω-cm II. In addition to single devices, we have fabricated 256x256 2-D arrays with 40 μm pixel pitch on LW-HgCdTe grown on Si compliant substrates. Data shows excellent QE operability of 99% at 78K under a tactical background flux of 6.7x10 15 ph/cm2sec. Most probable dark current at the peak distribution is 5.5 x 10 9 e-/sec and is very much consistent with the measured R °A values from single devices. Initial results indicate NETD of 33 mK for a cut-off wavelength of 10 μm with 40 micron pixels size. This work demonstrates CdSe xTe 1-x/Si(211) substrates provides a potential road map to more affordable, robust 3 rd generation FPAs.

  18. On the origin of high ionic conductivity in Na-doped SrSiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen

    Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less

  19. On the origin of high ionic conductivity in Na-doped SrSiO 3

    DOE PAGES

    Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen; ...

    2016-02-17

    Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less

  20. SAW propagation characteristics of TeO3/3C-SiC/LiNbO3 layered structure

    NASA Astrophysics Data System (ADS)

    Soni, Namrata D.

    2018-04-01

    Surface acoustic wave (SAW) devices based on Lithium Niobate (LiNbO3) single crystal are advantageous because of its high SAW phase velocity, electromechanical coupling coefficient and cost effectiveness. In the present work a new multi-layered TeO3/3C-SiC/128° Y-X LiNbO3 SAW device has been proposed. SAW propagation properties such as phase velocity, coupling coefficient and temperature coefficient of delay (TCD) of the TeO3/SiC/128° Y-X LiNbO3 multi layered structure is examined using theoretical calculations. It is found that the integration of 0.09λ thick 3C-SiC over layer on 128° Y-X LiNbO3 increases its electromechanical coupling coefficient from 5.3% to 9.77% and SAW velocity from 3800 ms‑1 to 4394 ms‑1. The SiC/128° Y-X LiNbO3 bilayer SAW structure exhibits a high positive TCD value. A temperature stable layered SAW device could be obtained with introduction of 0.007λ TeO3 over layer on SiC/128° Y-X LiNbO3 bilayer structure without sacrificing the efficiency of the device. The proposed TeO3/3C-SiC/128° Y-X LiNbO3 multi-layered SAW structure is found to be cost effective, efficient, temperature stable and suitable for high frequency application in harsh environment.

  1. Fabrication of Si-As-Te ternary amorphous semiconductor in the microgravity environment (M-13)

    NASA Technical Reports Server (NTRS)

    Hamakawa, Yoshihiro

    1993-01-01

    Ternary chalcogenide Si-As-Te system is an interesting semiconductor from the aspect of both basic physics and technological applications. Since a Si-As-Te system consists of a IV-III-II hedral bonding network, it has a very large glass forming region with a wide physical constant controllability. For example, its energy gap can be controlled in a range from 0.6 eV to 2.5 eV, which corresponds to the classical semiconductor Ge (0.66 eV), Si (1.10 eV), GaAs (1.43 eV), and GaP (2.25 eV). This fact indicates that it would be a suitable system to investigate the compositional dependence of the atomic and electronic properties in the random network of solids. In spite of these significant advantages in the Si-As-Te amorphous system, a big barrier impending the wide utilization of this material is the huge difficulty encountered in the material preparation which results from large differences in the weight density, melting point, and vapor pressure of individual elements used for the alloying composition. The objective of the FMPT/M13 experiment is to fabricate homogeneous multi-component amorphous semiconductors in the microgravity environment of space, and to make a series of comparative characterizations of the amorphous structures and their basic physical constants on the materials prepared both in space and in normal terrestrial gravity.

  2. Hydrogenation properties of KSi and NaSi Zintl phases.

    PubMed

    Tang, Wan Si; Chotard, Jean-Noël; Raybaud, Pascal; Janot, Raphaël

    2012-10-14

    The recently reported KSi-KSiH(3) system can store 4.3 wt% of hydrogen reversibly with slow kinetics of several hours for complete absorption at 373 K and complete desorption at 473 K. From the kinetics measured at different temperatures, the Arrhenius plots give activation energies (E(a)) of 56.0 ± 5.7 kJ mol(-1) and 121 ± 17 kJ mol(-1) for the absorption and desorption processes, respectively. Ball-milling with 10 wt% of carbon strongly improves the kinetics of the system, i.e. specifically the initial rate of absorption becomes about one order of magnitude faster than that of pristine KSi. However, this fast absorption causes a disproportionation into KH and K(8)Si(46), instead of forming the KSiH(3) hydride from a slow absorption. This disproportionation, due to the formation of stable KH, leads to a total loss of reversibility. In a similar situation, when the pristine Zintl NaSi phase absorbs hydrogen, it likewise disproportionates into NaH and Na(8)Si(46), indicating a very poorly reversible reaction.

  3. Lowest-energy structures and electronic properties of Na-Si binary clusters from ab initio global search.

    PubMed

    Sai, Linwei; Tang, Lingli; Zhao, Jijun; Wang, Jun; Kumar, Vijay

    2011-11-14

    The ground state structures of neutral and anionic clusters of Na(n)Si(m) (1 ≤ n ≤ 3, 1 ≤ m ≤ 11) have been determined using genetic algorithm incorporated in first principles total energy code. The size dependence of the structural and electronic properties is discussed in detail. It is found that the lowest-energy structures of Na(n)Si(m) clusters resemble those of the pure Si clusters. Interestingly, Na atoms in neutral Na(n)Si(m) clusters are usually well separated by the Si(m) skeleton, whereas Na atoms can form Na-Na bonds in some anionic clusters. The ionization potentials, adiabatic electron affinities, and photoelectron spectra are also calculated and the results compare well with the experimental data. © 2011 American Institute of Physics

  4. Atomic and electronic structure of the silicon and silicon-metal Si{sub 20}, Si{sub 20}{sup -}, NaSi{sub 20}, KSi{sub 20} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borshch, N. A., E-mail: ssd18@phys.vsu.ru; Pereslavtseva, N. S.; Kurganskii, S. I.

    The results of atomic-structure optimization and calculation of the electronic structure of the Si{sub 20}, Si{sub 20}{sup -}, NaSi{sub 20}, and KSi{sub 20} clusters are reported. The PM3 and AM1 semiempirical methods were used in the calculations. It is shown that the Na and K atoms stabilize the fullerene-like silicon structure. The effect of configuration of the clusters on their electronic structure is analyzed.

  5. A Versatile Low Temperature Synthetic Route to Zintl Phase Precursors: Na4Si4, Na4Ge4 and K4Ge4 as Examples

    PubMed Central

    Ma, Xuchu; Xu, Fen; Atkins, Tonya; Goforth, Andrea M.; Neiner, Doinita; Navrotsky, Alexandra; Kauzlarich, Susan M.

    2010-01-01

    Na4Si4 and Na4Ge4 are ideal chemical precursors for inorganic clathrate structures, clusters, and nanocrystals. The monoclinic Zintl phases, Na4Si4 and Na4Ge4, contain isolated homo-tetrahedranide [Si4]4− and [Ge4]4− clusters surrounded by alkali metal cations. In this study, a simple scalable route has been applied to prepare Zintl phases of composition Na4Si4 and Na4Ge4 using the reaction between NaH and Si or Ge at low temperature (420 °C for Na4Si4 and 270 °C for Na4Ge4). The method was also applied to K4Ge4, using KH and Ge as raw materials, to show the versatility of this approach. The influence of specific reaction conditions on the purity of these Zintl phases has been studied by controlling five factors: the method of reagent mixing (manual or ball milled), the stoichiometry between raw materials, the reaction temperature, the heating time and the gas flow rate. Moderate ball-milling and excess NaH or KH facilitate the formation of pure Na4Si4, Na4Ge4 or K4Ge4 at 420 °C (Na4Si4) or 270 °C (both M4Ge4 compounds, M = Na, K). TG/DSC analysis of the reaction of NaH and Ge indicates that ball milling reduces the temperature for reaction and confirms the formation temperature. This method provides large quantities of high quality Na4Si4 and Na4Ge4 without the need for specialized laboratory equipment, such as Schlenk lines, niobium/tantalum containers, or an arc welder, thereby expanding the accessibility and chemical utility of these phases by making them more convenient to prepare. This new synthetic method may also be extended to lithium-containing Zintl phases (LiH is commercially available) as well as to alkali metal-tetrel Zintl compounds of other compositions, e.g. K4Ge9. PMID:19921060

  6. Effects of NaBF4 + NaF on the Tensile and Impact Properties of Al-Si-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Zongning; Wang, Tongmin; Zhao, Yufei; Zheng, Yuanping; Kang, Huijun

    2015-05-01

    NaBF4 + NaF were found to play three roles, i.e., Fe-eliminator, grain refiner, and eutectic modifier, in treating A356 alloy with a high Fe content. The joint effects led to significant improvement in both tensile and impact properties of thus treated alloy. The multiple reactions between the NaBF4 + NaF and Al-Si-Mg-Fe system are suggested to form Fe2B, AlB2, and Na in the melt, as per thermodynamic analysis. The three are responsible for Fe removal, grain refinement, and eutectic modification, respectively. When NaBF4 and NaF are mixed in weight ratio of 1:1, an optimum addition rate is in the range between 1.0 and 2.0 wt pct for treating AlSi7Mg0.3Fe0.65 alloy, based on the results of tensile and impact tests. Excessive addition of the salt may deteriorate the mechanical properties of the alloy, basically owing to overmodification of Si and contamination of salt inclusions.

  7. Tunability of the topological nodal-line semimetal phase in ZrSi X -type materials ( X = S ,   Se ,   Te )

    DOE PAGES

    Hosen, M. Mofazzel; Dimitri, Klauss; Belopolski, Ilya; ...

    2017-04-03

    The discovery of a topological nodal-line (TNL) semimetal phase in ZrSiS has invigorated the study of other members of this family. In this paper, we present a comparative electronic structure study ofmore » $$\\mathrm{ZrSi}X$$ (where $$X=\\text{S}$$, Se, Te) using angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. Our ARPES studies show that the overall electronic structure of $$\\mathrm{ZrSi}X$$ materials comprises the diamond-shaped Fermi pocket, the nearly elliptical-shaped Fermi pocket, and a small electron pocket encircling the zone center ($$\\mathrm{{\\Gamma}}$$) point, the $M$ point, and the $X$ point of the Brillouin zone, respectively. We also observe a small Fermi surface pocket along the $$M{-}\\mathrm{{\\Gamma}}{-}M$$ direction in ZrSiTe, which is absent in both ZrSiS and ZrSiSe. Furthermore, our theoretical studies show a transition from nodal-line to nodeless gapped phase by tuning the chalcogenide from S to Te in these material systems. Finally, our findings provide direct evidence for the tunability of the TNL phase in $$\\mathrm{ZrSi}X$$ material systems by adjusting the spin-orbit coupling strength via the $X$ anion.« less

  8. Robust diamond-like Fe-Si network in the zero-strain Na xFeSiO 4 cathode

    DOE PAGES

    Ye, Zhuo; Zhao, Xin; Li, Shouding; ...

    2016-07-14

    Sodium orthosilicates Na 2 MSiO 4 ( M denotes transition metals) have attracted much attention due to the possibility of exchanging two electrons per formula unit. In this work, we report a group of sodium iron orthosilicates Na 2FeSiO 4. Their crystal structures are characterized by a diamond-like Fe-Si network. The Fe-Si network is quite robust against the charge/discharge process, which explains the high structural stability observed in experiment. Furthermore, using the density functional theory within the GGA + U framework and X-ray diffraction studies, the crystal structures and structural stabilities during the sodium extraction/re-insertion process are systematically investigated.

  9. Thermopower of thermoelectric materials with resonant levels: PbTe:Tl versus PbTe:Na and Cu1 -xNix

    NASA Astrophysics Data System (ADS)

    Wiendlocha, Bartlomiej

    2018-05-01

    Electronic transport properties of thermoelectric materials containing resonant levels are discussed by analyzing the two best known examples: copper-nickel metallic alloy (Cu-Ni, constantan) and thallium-doped lead telluride (PbTe:Tl). As a contrasting example of a material with a nonresonant impurity, sodium-doped PbTe is considered. Theoretical calculations of the electronic structure, Bloch spectral functions, and energy-dependent electrical conductivity at T =0 K are done using the Korringa-Kohn-Rostoker method with the coherent potential approximation and the Kubo-Greenwood formalism. The effect of a resonance on the residual resistivity and electronic lifetimes in PbTe is analyzed. By using the full Fermi integrals, room-temperature thermopower is calculated, confirming its increase in PbTe:Tl versus PbTe:Na, due to the presence of the resonant level. In addition, our calculations support the self-compensation model, in which the experimentally observed reduction of carrier concentration in PbTe:Tl against the nominal one is explained by the presence of n -type Te vacancies.

  10. Ab initio investigation on the valence and dipole-bound states of CNa - and SiNa -

    NASA Astrophysics Data System (ADS)

    Kalcher, Josef; Sax, Alexander F.

    2000-08-01

    CNa - and SiNa - have been studied by the CAS-ACPF method. The 3Σ- ground states have binding energies of 5420 and 7517 cm -1, respectively. The 5Σ- excited states are 494 and 1551 cm -1 above the respective ground states. The 1Δ , 3Π , and 1Π valence-excited states for SiNa - should be at least metastable. CNa - and SiNa - possess dipole-bound 5Σ- and 3Σ- states. Binding energies of these states in CNa - are 217 and 236 cm -1, respectively. SiNa - has two stable 5Σ- dipole-bound states, whose binding energies are 246 and 118 cm -1, respectively.

  11. Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der Waals heterostructures.

    PubMed

    Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo

    2018-05-25

    As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe 3 /CrSiTe 3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe 3 /CrSiTe 3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe 3 /CrSiTe 3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe 3 /CrSiTe 3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.

  12. Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo

    2018-05-01

    As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe3/CrSiTe3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe3/CrSiTe3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe3/CrSiTe3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe3/CrSiTe3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.

  13. The structure of Na{sub 3}SbTe{sub 3}: How ionic and covalent bonding forces work together

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jianhua; Miller, G.J.

    1994-12-01

    The compound Na{sub 3}SbTe{sub 3} has been synthesized from the elements and characterized by single crystal X-ray diffraction. Na{sub 3}SbTe{sub 3} is cubic, crystallizing in the cP28 structure type (isomorphous with Na{sub 3}AsS{sub 3}); space group P2{sub 1}3 (No. 198); a=9.6114(9) {angstrom}; Z = 4; R1 = 0.0324; wR2 = 0.0561 (I {le} 2{sigma}(I)). The structure consists of isolated sodium cations and trigonal pyramidal [SbTe{sub 3}]{sup {minus}3} anions with a Sb-Te bond length of 2.787(1) {angstrom} and a Te-Sb-Te bond angle of 100.0(1){degrees}. The structure is related to both the Li{sub 3}Bi and K{sub 3}AsS{sub 4}-type structures. Both lattice energymore » and semiempirical electronic structure calculations are utilized to evaluate various local and long-range structural aspects of this Zintl phase.« less

  14. Topological Crystalline Insulator SnTe/Si Vertical Heterostructure Photodetectors for High-Performance Near-Infrared Detection.

    PubMed

    Zhang, Hongbin; Man, Baoyuan; Zhang, Qi

    2017-04-26

    Due to the gapless surface state and narrow bulk band gap, the light absorption of topological crystalline insulators covers a broad spectrum ranging from terahertz to infrared, revealing promising applications in new generation optoelectronic devices. To date, the photodetectors based on topological insulators generally suffer from a large dark current and a weaker photocurrent especially under the near-infrared lights, which severely limits the practical application of devices. Owing to the lower excitation energy of infrared lights, the photodetection application of topological crystalline insulators in the near-infrared region relies critically on understanding the preparation and properties of their heterostructures. Herein, we fabricate the high-quality topological crystalline insulator SnTe film/Si vertical heterostructure by a simple physical vapor deposition process. The resultant heterostructure exhibits an excellent diode characteristic, enabling the construction of high-performance near-infrared photodetectors. The built-in electric field at SnTe/Si interface enhances the absorption efficiency of near-infrared lights and greatly facilitates the separation of photogenerated carriers, making the device capable of operating as a self-driven photodetector. The as-grown SnTe film acts as the hole transport layer in heterostructure photodetectors, promoting the transport of holes to electrode and reducing electron-hole recombination effectively. These merits enable the SnTe/Si heterostructure photodetector to have a high responsivity of 2.36 AW -1 , a high detectivity of 1.54 × 10 14 Jones, and a large bandwidth of 10 4 Hz in the near-infrared wavelength, which makes the detector have a promising market in novel device applications.

  15. Ab initio computational study on the lattice thermal conductivity of Zintl clathrates [Si19P4] Cl4 and Na4[Al4Si19

    NASA Astrophysics Data System (ADS)

    Härkönen, Ville J.; Karttunen, Antti J.

    2016-08-01

    The lattice thermal conductivity of silicon clathrate framework Si23 and two Zintl clathrates, [Si19P4] Cl4 and Na4[Al4Si19] , is investigated by using an iterative solution of the linearized Boltzmann transport equation in conjunction with ab initio lattice dynamical techniques. At 300 K, the lattice thermal conductivities for Si23, [Si19P4] Cl4 , and Na4[Al4Si19] were found to be 43 W/(m K), 25 W/(m K), and 2 W/(m K), respectively. In the case of Na4[Al4Si19] , the order-of-magnitude reduction in the lattice thermal conductivity was found to be mostly due to relaxation times and group velocities differing from Si23 and [Si19P4] Cl4 . The difference in the relaxation times and group velocities arises primarily due to the phonon spectrum at low frequencies, resulting eventually from the differences in the second-order interatomic force constants (IFCs). The obtained third-order IFCs were rather similar for all materials considered here. The present findings are similar to those obtained earlier for some skutterudites. The predicted lattice thermal conductivity of Na4[Al4Si19] is in line with the experimentally measured thermal conductivity of recently synthesized type-I Zintl clathrate Na8[Al8Si38] (polycrystalline samples).

  16. On the clathrate form of elemental silicon, Si 136: preparation and characterisation of Na xSi 136 ( x→0)

    NASA Astrophysics Data System (ADS)

    Ammar, Abdelaziz; Cros, Christian; Pouchard, Michel; Jaussaud, Nicolas; Bassat, Jean-Marc; Villeneuve, Gérard; Duttine, Mathieu; Ménétrier, Michel; Reny, Edouard

    2004-05-01

    The clathrate form of silicon, Si 136 (otherwise known as Si 34), having a residual sodium content as low as 35 ppm (i.e., x˜0.0058 in Na xSi 136), has been prepared by thermal decomposition of NaSi under high vacuum, followed by several other treatments under vacuum, and completed by repeated reactions with iodine. The residual amount of sodium has been determined by a combination of analytic and spectroscopic methods involving XRD, electron probe microanalysis, atomic absorption, NMR and EPR. This latter technique proved to be very appropriate to the characterisation of very diluted sodium atoms in such clathrate structure and to the quantitative determination of its residual concentration.

  17. Low-Cost Lattice Matching Zn(Se)Te/Si Composite Substrates for HgCdSe and Type-2 Superlattices

    DTIC Science & Technology

    2013-09-01

    far from optimized. In similar fashion, we studied the impact of Zn/Te flux ratio during ZnTe growth. In this case , three ZnTe(100) layers were...6.1 Å, such as HgCdSe and GaSb-based type-II strained-layer superlattices. In this report, we present our findings on the systematic studies of...versus lattice parameter for several semiconductor material systems. We conducted systematic studies on the MBE growth of ZnTe on Si in both (211) and

  18. Quaternary structure and apical membrane sorting of the mammalian NaSi-1 sulfate transporter in renal cell lines.

    PubMed

    Regeer, Ralf R; Nicke, Annette; Markovich, Daniel

    2007-01-01

    NaSi-1 encodes a Na(+)-sulfate cotransporter expressed on the apical membrane of renal proximal tubular cells, which is responsible for body sulfate homeostasis. Limited information is available on NaSi-1 protein structure and the mechanisms controlling its apical membrane sorting. The aims of this study were to biochemically determine the quaternary structure of the rat NaSi-1 protein and to characterize its expression in renal epithelial cell lines. Hexahistidyl-tagged NaSi-1 (NaSi-1-His) proteins expressed in Xenopus oocytes, appeared as two bands of about 60 and 75 kDa. PNGase F treatment shifted both bands to 57 kDa while endoglycosidase H treatment led to a downward shift of the lower molecular mass band only. Mutagenesis of a putative N-glycosylation site (N591S) produced a single band that was not shifted by endoglycosidase H or PNGase F, confirming a single glycosylation site at residue 591. Blue native-PAGE and cross-linking experiments revealed dimeric complexes, suggesting the native form of NaSi-1 to be a dimer. Transient transfection of EGFP/NaSi-1 in renal epithelial cells (OK, LLC-PK1 and MDCK) demonstrated apical membrane sorting, which was insensitive to tunicamycin. Transfection of the EGFP/NaSi-1 N591S glycosylation mutant also showed apical expression, suggesting N591 is not essential for apical sorting. Treatment with cholesterol depleting compounds did not disrupt apical sorting, but brefeldin A led to misrouting to the basolateral membrane, suggesting that NaSi-1 sorting is through the ER to Golgi pathway. Our data demonstrates that NaSi-1 forms a dimeric protein which is glycosylated at N591, whose sorting to the apical membrane in renal epithelial cells is brefeldin A-sensitive and independent of lipid rafts or glycosylation.

  19. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer

    PubMed Central

    Abdul Razak, Rafiza; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  20. ZnTe Alloying Effect on Enhanced Thermoelectric Properties of p-Type PbTe.

    PubMed

    Ahn, Kyunghan; Shin, Hocheol; Im, Jino; Park, Sang Hyun; Chung, In

    2017-02-01

    We investigate the effect of ZnTe incorporation on PbTe to enhance thermoelectric performance. We report structural, microscopic, and spectroscopic characterizations, ab initio theoretical calculations, and thermoelectric transport properties of Pb 0.985 Na 0.015 Te-x% ZnTe (x = 0, 1, 2, 4). We find that the solid solubility limit of ZnTe in PbTe is less than 1 mol %. The introduction of 2% ZnTe in p-type Pb 0.985 Na 0.015 Te reduces the lattice thermal conductivity through the ZnTe precipitates at the microscale. Consequently, a maximum thermoelectric figure of merit (ZT) of 1.73 at 700 K is achieved for the spark plasma-sintered Pb 0.985 Na 0.015 Te-2% ZnTe, which arises from a decreased lattice thermal conductivity of ∼0.69 W m -1 K -1 at ∼700 K in comparison with Pb 0.985 Na 0.015 Te.

  1. On the existence of a high-temperature polymorph of Na2Ca6Si4O15—implications for the phase equilibria in the system Na2O-CaO-SiO2

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Maier, Matthias

    2016-12-01

    Singe crystals of a new high-temperature polymorph of Na2Ca6Si4O15 have been obtained from solid state reactions performed at 1300 °C. The basic crystallographic data of this so-called β-phase at ambient conditions are as follows: space group P1 c1, a = 9.0112(5) Å, b = 7.3171(5) Å, c = 10.9723(6) Å, β = 107.720(14)°, V = 689.14(7) Å3, Z = 2. The crystals showed twinning by reticular merohedry (mimicking an orthorhombic C-centred unit cell) which was accounted for during data processing and structure solution. Structure determination was accomplished by direct methods. Least-squares refinements resulted in a residual of R(|F|) = 0.043 for 5811 observed reflections with I > 2σ(I). From a structural point of view β-Na2Ca6Si4O15 can be attributed to the group of mixed-anion silicates containing [Si2O7]-dimers as well as isolated [SiO4]-tetrahedra in the ratio 1:2, i.e. more precisely the formula can be written as Na2Ca6[SiO4]2[Si2O7]. The tetrahedral groups are arranged in layers parallel to (100). Sodium and calcium cations are located between the silicate anions for charge compensation and are coordinated by six to eight nearest oxygen ligands. Alternatively, the structure can be described as a mixed tetrahedral-octahedral framework based on kröhnkite-type [Ca(SiO4)2O2]-chains in which the CaO6-octahedra are corner-linked to bridging SiO4-tetrahedra. The infinite chains are running parallel to [001] and are concentrated in layers parallel to (010). Adjacent layers are shifted relative to each other by an amount of +δ or -δ along a*. Consequently, a …ABABAB… stacking sequence is created. A detailed comparison with related structures such as α-Na2Ca6Si4O15 and other A2B6Si4O15 representatives including topological as well as group theoretical aspects is presented. There are strong indications that monoclinic Na2Ca3Si2O8 mentioned in earlier studies is actually misinterpreted β-Na2Ca6Si4O15. In addition to the detailed crystallographic analysis of

  2. Thermodynamic modeling of melts in the system Na 2O-NaAlO 2-SiO 2-F 2O -1

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Baker, Don R.

    2005-12-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms and thermodynamic description in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids that links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals, fluoride-silicate immiscibility in natural felsic melts, and metallurgical processes. Configurational properties of fluorosilicate melts are described by mixing on three site levels (sublattices): (1) alkali fluoride, polyhedral aluminofluoride and silicofluoride species and nonbridging terminations of the aluminosilicate network, (2) alkali-aluminate and silicate tetrahedra within the network and (3) bridging oxygen, nonbridging oxygen and terminal fluorine atoms on tetrahedral apices of the network. Abundances of individual chemical species are described by a homogeneous equilibrium representing melt depolymerization: F - (free) + O 0 (bridging) = F 0 (terminal) + O - (nonbridging) which corresponds to a replacement of an oxygen bridging two tetrahedra by a pair of terminations, one with F and the other with an O and a charge-balancing Na. In cryolite-bearing systems two additional interaction mechanisms occur: (1) the self-dissociation of octahedral aluminofluoride complexes: [AlF 6] = [AlF 4] + 2 [F], and (2) the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F. Portrayal of these equilibria in ternary Thompson reaction space allows for the decrease in the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the nonideal thermodynamic properties are represented by reaction energies of homogeneous equilibria, thus defining directly individual chemical species concentrations and configurational

  3. Thermodynamic properties of Na2O-SiO2-CaO melts at 1000 to 1100 °C

    NASA Astrophysics Data System (ADS)

    Neudorf, D. A.; Elliott, J. F.

    1980-12-01

    The thermodynamic properties of Na2O-SiO2 and Na2O-SiO2-CaO melts have been measured using the galvanic cellbegin{array}{*{20}c} {O_2 (g), (Na_2 O), Pt} \\ {Na_2 O - WO_3 liq} \\ left| begin{gathered} Na^ + \\ β - alumina \\ right| begin{array}{*{20}c} {Pt,(Na_2 O), O_2 (g)} \\ {Na_2 O - SiO_2 - CaO liq} \\ Activities of Na2O were calculated from the reversible emf of the cell. This is possible because the activity of Na2O in the Na2O-WO3 liquid is known from previous work. Data for the binary Na2O-SiO2 system were obtained between 1000 and 1100 °C and for compositions ranging from 25 wt pct to 40 wt pct Na2O. At 1050 °C, Loga_{Na_2 O} varied from approximately 10.2 at 25 wt pct Na2O to approximately -8.3 at 40 wt pct Na2O, the dependence with respect to composition being nearly linear. The Gibbs-Duhem equation was used to calculate the activities of SiO2(s), and the integral mixing properties, G M, HM, and S M, were derived. At the di-silicate composition, G M = -83 kJ/mol, H M = -41 kJ mol and S M = 33 J/mol K at 1000 °C. (Standard states are pure, liquid Na2O and pure, solid tridymite.) The activity data are interpreted in terms of the polymeric nature of silicate melts. Activities of Na2O in the Na2O-CaO-SiO2 system were measured for the 25, 30 and 35 wt pct Na2O binary compositions with up to 10 wt pct CaO added. The addition of CaO caused an increase in the activity of Na2O at constantN_{Na_2 O} /N_{SiO_2 } . The experimental data agree well with the behavior predicted by Richardson’s ternary mixing model.

  4. Dynamic Curvature and Stress Studies for MBE CdTe on Si and GaAs Substrates

    NASA Astrophysics Data System (ADS)

    Jacobs, R. N.; Jaime Vasquez, M.; Lennon, C. M.; Nozaki, C.; Almeida, L. A.; Pellegrino, J.; Arias, J.; Taylor, C.; Wissman, B.

    2015-09-01

    Infrared focal plane arrays (IRFPA) based on HgCdTe semiconductor alloys have been shown to be ideal for tactical and strategic applications. High density (>1 M pixel), high operability HgCdTe detectors on large area, low-cost composite substrates, such as CdTe-buffered Si or GaAs, are envisioned for next-generation IRFPAs. Thermal expansion mismatch is among various material parameters that govern the structural properties of the final detector layer. It has previously been shown that thermal expansion mismatch plays the dominant role in the residual stress characteristics of these heteroepitaxial structures (Jacobs et al. in J Electron Mater 37:1480, 2008). The wafer curvature (bowing) resulting from residual stress, is a likely source of problems that may occur during subsequent processing. This includes cracking of the film and substrate during post-growth annealing processes or even certain characterization techniques. In this work, we examine dynamic curvature and stress during molecular beam epitaxy (MBE), of CdTe on Si and GaAs substrates. The effect of temperature changes on wafer curvature throughout the growth sequence is documented using a multi-beam optical sensor developed by K-Space Associates. This monitoring technique makes possible the study of growth sequences which employ annealing schemes and/or interlayers to influence the final residual stress state of the heteroepitaxial structures.

  5. Magnetic Correlations in the Quasi-Two-Dimensional Semiconducting Ferromagnet CrSiTe 3

    DOE PAGES

    Williams, Travis J.; Aczel, Adam A.; Lumsden, Mark D.; ...

    2015-10-02

    Intrinsic, 2D ferromagnetic semiconductors are an important class of materials for overcoming dilute magnetic semiconductors’ limitations for spintronics. CrSiTe 3 is a particularly interesting material of this class, since it can likely be exfoliated to single layers, for which T c is predicted to increase dramatically. Establishing the nature of the bulk material’s magnetism is necessary for understanding the thin-film magnetic behavior and the material’s possible applications. In this work, we use elastic and inelastic neutron scattering to measure the magnetic properties of single crystalline CrSiTe 3. We find a very small single ion anisotropy that favors magnetic ordering alongmore » the c-axis and that the measured spin waves fit well to a model in which the moments are only weakly coupled along that direction. Then, we find that both static and dynamic correlations persist within the ab-plane up to at least 300 K, which is strong evidence of the material's 2D characteristics that are relevant for future studies on thin film and monolayer samples.« less

  6. Electrical switching studies on Si15Te85-xCux bulk (1 ≤ x ≤ 5) glasses

    NASA Astrophysics Data System (ADS)

    Roy, Diptoshi; Nadig, Chinmayi H. S.; Krishnan, Aravindh; Karanam, Akshath; Abhilash, R.; Jagannatha K., B.; Das, Chandasree

    2018-05-01

    Bulk ingots of Si15Te85-xCux (1 ≤ x ≤ 5) glasses are concocted by typical melt quenching technique. XRD validate the non-crystalline feature of the prepared quenched sample. The samples are found to display threshold type of electrical switching behavior. The switching behavior on all the samples is noticed without any disturbances. Compositional dependence of threshold voltage of Si15Te85-xCux (1 ≤ x ≤ 5) glasses has been studied and it has been found that VT increases as the atomic percentage of dopant (copper) increases in the host matrix. The distinguished behavior has been envisaged and correlated to the improvement in network connectivity and rigidity with the addition of Cu.

  7. Si

    NASA Astrophysics Data System (ADS)

    Fiameni, S.; Famengo, A.; Agresti, F.; Boldrini, S.; Battiston, S.; Saleemi, M.; Johnsson, M.; Toprak, M. S.; Fabrizio, M.

    2014-06-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion in the middle-high temperature range. The detrimental effect of the presence of MgO on the TE properties of Mg2Si based materials is widely known. For this reason, the conditions used for synthesis and sintering were optimized to limit oxygen contamination. The effect of Bi doping on the TE performance of dense Mg2Si materials was also investigated. Synthesis was performed by ball milling in an inert atmosphere starting from commercial Mg2Si powder and Bi powder. The samples were consolidated, by spark plasma sintering, to a density >95%. The morphology, and the composition and crystal structure of samples were characterized by field-emission scanning electronic microscopy and x-ray diffraction, respectively. Moreover, determination of Seebeck coefficients and measurement of electrical and thermal conductivity were performed for all the samples. Mg2Si with 0.1 mol% Bi doping had a ZT value of 0.81, indicative of the potential of this method for fabrication of n-type bulk material with good TE performance.

  8. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin`ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Atsushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji

    2014-11-01

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60-600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm×12 cm×12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and the signals from all 13,312 pixels are processed by 208 ASICs developed for the SGD. Good energy resolution is afforded by semiconductor sensors and low noise ASICs, and the obtained energy resolutions with the prototype Si and CdTe pixel sensors are 1.0-2.0 keV (FWHM) at 60 keV and 1.6-2.5 keV (FWHM) at 122 keV, respectively. This results in good background rejection capability due to better constraints on Compton kinematics. Compton camera energy resolutions achieved with the final prototype are 6.3 keV (FWHM) at 356 keV and 10.5 keV (FWHM) at 662 keV, which satisfy the instrument requirements for the SGD Compton camera (better than 2%). Moreover, a low intrinsic background has been confirmed by the background measurement with the final prototype.

  9. Shock-induced transformations in the system NaAlSiO4-SiO2 - A new interpretation

    NASA Technical Reports Server (NTRS)

    Sekine, Toshimori; Ahrens, Thomas J.

    1992-01-01

    New internally consistent interpretations of the phases represented by the high pressure phase shock wave data for an albite-rich rock, jadeite, and nepheline in the system NaAlSiO4-SiO2, are obtained using the results of static high pressure investigations, and the recent discovery of the hollandite phase in a shocked meteorite. We conclude that nepheline transforms directly to the calcium ferrite structure, whereas albite transforms possibly to the hollandite structure. Shock Hugoniots for the other plagioclase and alkali feldspars also indicate that these transform to hollandite structures. The pressure-volume data at high pressure could alternatively represent the compression of an amorphous phase. Moreover, the shock Hugoniot data are expected to reflect the properties of the melt above shock stresses of 60-80 GPa. The third order Birch-Murnaghan equation of state parameters are given for the calcium ferrite type NaAlSiO4 and for albite-rich, orthoclase-rich, and anorthite-rich hollandites.

  10. Magnetic order and interactions in ferrimagnetic Mn 3 Si 2 Te 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Andrew F.; Liu, Yaohua; Calder, Stuart

    2017-05-01

    The magnetism in Mn 3Si 2Te 6 has been investigated using thermodynamic measurements, first principles calculations, neutron diffraction and diffuse neutron scattering on single crystals. These data con rm that Mn3Si2Te6 is a ferrimagnet below T C 78 K. The magnetism is anisotropic, with magnetization and neutron diffraction demonstrating that the moments lie within the basal plane of the trigonal structure. The saturation magnetization of 1.6 B/Mn at 5K originates from the different multiplicities of the two antiferromagnetically-aligned Mn sites. First principles calculations reveal antiferromagnetic exchange for the three nearest Mn-Mn pairs, which leads to a competition between the ferrimagneticmore » ground state and three other magnetic configurations. The ferrimagnetic state results from the energy associated with the third-nearest neighbor interaction, and thus long- range interactions are essential for the observed behavior. Di use magnetic scattering is observed around the 002 Bragg reflection at 120 K, which indicates the presence of strong spin correlations well above T C . These are promoted by the competing ground states that result in a relative suppression of T C , and may be associated with a small ferromagnetic component that produces anisotropic magnetism below ≈ 330 K.« less

  11. Molecular beam epitaxy growth of PbSe on Si (211) using a ZnTe buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X. J.; Chang, Y.; Hou, Y. B.

    2011-09-15

    The authors report the results of successful growth of single crystalline PbSe on Si (211) substrates with ZnTe as a buffer layer by molecular beam epitaxy. Single crystalline PbSe with (511) orientation was achieved on ZnTe/Si (211), as evidenced by RHEED patterns indicative of 2 dimensional (2D) growth, x ray diffraction rocking curves with a full width at half maximum as low as 153 arc sec and mobility as large as 1.1x10{sup 4}cm{sup 2}V{sup -1}s{sup -1} at 77 K. Cross hatch patterns were found on the PbSe(511) surface in Nomarski filtered microscope images suggesting the presence of a surface thermalmore » strain relaxation mechanism, which was confirmed by Fourier transformed high resolution transmission electron microscope images.« less

  12. Crystallization kinetics of bioactive glasses in the ZnO-Na2O-CaO-SiO2 system.

    PubMed

    Malavasi, Gianluca; Lusvardi, Gigliola; Pedone, Alfonso; Menziani, Maria Cristina; Dappiaggi, Monica; Gualtieri, Alessandro; Menabue, Ledi

    2007-08-30

    The crystallization kinetics of Na(2)O.CaO.2SiO(2) (x = 0) and 0.68ZnO.Na(2)O.CaO.2SiO(2) (x = 0.68, where x is the ZnO stoichiometric coefficient in the glass formula) bioactive glasses have been studied using both nonisothermal and isothermal methods. The results obtained from isothermal XRPD analyses have showed that the first glass crystallizes into the isochemical Na(2)CaSi(2)O(6) phase, whereas the Na(2)ZnSiO(4) crystalline phase is obtained from the Zn-rich glass, in addition to Na(2)CaSi(2)O(6). The activation energy (Ea) for the crystallization of the Na(2)O.CaO.2SiO(2) glass is 193 +/- 10 and 203 +/- 5 kJ/mol from the isothermal in situ XRPD and nonisothermal DSC experiments, respectively. The Avrami exponent n determined from the isothermal method is 1 at low temperature (530 degrees C), and its value increases linearly with temperature increase up to 2 at 607 degrees C. For the crystallization of Na(2)CaSi(2)O(6) from the Zn-containing glass, higher values of both the crystallization temperature (667 and 661 degrees C) and Ea (223 +/- 10 and 211 +/- 5 kJ/mol) have been found from the isothermal and nonisothermal methods, respectively. The Na(2)ZnSiO(4) crystalline phase crystallizes at lower temperature with respect to Na(2)CaSi(2)O(6), and the Ea value is 266 +/- 20 and 245 +/- 15 kJ/mol from the isothermal and nonisothermal methods, respectively. The results of this work show that the addition of Zn favors the crystallization from the glass at lower temperature with respect to the Zn-free glass. In fact, it causes an increase of Ea for the Na diffusion process, determined using MD simulations, and consequently an overall increase of Ea for the crystallization process of Na(2)CaSi(2)O(6). Our results show good agreement between the Ea and n values obtained with the two different methods and confirm the reliability of the nonisothermal method applied to kinetic crystallization of glassy systems. This study allows the determination of the temperature

  13. NaF-assisted combustion synthesis of MoSi2 nanoparticles and their densification behavior

    NASA Astrophysics Data System (ADS)

    Nersisyan, Hayk H.; Lee, Tae Hyuk; Ri, Vladislav; Lee, Jong Hyeon; Suh, Hoyoung; Kim, Jin-Gyu; Son, Hyeon Taek; Kim, Yong-Ho

    2017-03-01

    The exothermic reduction of oxides mixture (MoO3+2SiO2) by magnesium in NaF melt enables the synthesis of nanocrystalline MoSi2 powders in near-quantitative yields. The combustion wave with temperature of about 1000-1200 °C was recorded in highly diluted by NaF starting mixtures. The by-products of combustion reaction (NaF and MgO) were subsequently removed by leaching with acid and washing with water. The as-prepared MoSi2 nanopowder composed of spherical and dendritic shape particles was consolidated using the spark plasma sintering method at 1200-1500 °C and 50 MPa for 10 min. The result was dense compacts (98.6% theoretical density) possessing submicron grains and exhibiting hardness of 8.74-12.92 GPa.

  14. Experimental and thermodynamic study of heterogeneous and homogeneous equilibria in the system NaAlSiO4-SiO2

    NASA Astrophysics Data System (ADS)

    Waterwiese, Tanja; Chatterjee, Niranjan D.; Dierdorf, Ivana; Göttlicher, Jörg; Kroll, Herbert

    1995-08-01

    Internally consistent thermodynamic datasets available at present call for a further improvement of the data for nepheline (Holland and Powell 1988; Berman 1991). Because nepheline is a common rock-forming mineral, an attempt has been made to improve on the present state of knowledge of its thermodynamic properties. To achieve that goal, two heterogeneous reactions involving nepheline, albite, jadeite and a-quartz in the system NaAlSiO4-SiO2 have been reversed by long duration runs in the range 460 ≤ T(°C) ≤ 960 and 10 ≤ P(kbar) ≤ 22. Given sufficiently long run times, the albite run products approach internal equilibrium with respect to their Al,Si order-disorder states. Using appropriate thermochemical, thermophysical, and volumetric data, Landau expansion for albite, and the relevant reaction reversals, a refined thermodynamic dataset (ΔfH{i/0} and S{i/0}) has been derived for nepheline, jadeite, a-quartz, albite, and monalbite. Our refined data agree very well with their calorimetric counterparts, but have smaller uncertainties. The refined dataset for ΔfH{i/0} and S{i/0}, including their uncertainties and correlation, help generate the NaAlSiO4-SiO2 phase diagram including 2a confidence interval for each P-T curve (Fig. 5).

  15. NaI(Tl) scintillator read out with SiPM array for gamma spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, Tuchen; Fu, Qibin; Lin, Shaopeng; Wang, Biao

    2017-04-01

    The NaI(Tl) scintillator is widely used in gamma spectrometer with photomultiplier tube (PMT) readout. Recently developed silicon photomultiplier (SiPM) offers gain and efficiency similar to those of PMT, but with merits such as low bias voltage, compact volume, low cost, high ruggedness and magnetic resonance compatibility. In this study, 2-in. and 1-in. NaI(Tl) scintillators were readout with SiPM arrays, which were made by tiling multiple SiPMs each with an active area of 6×6 mm2 on a printed circuit board. The energy resolutions for 661.6 keV gamma rays, obtained with Φ2×2 in. scintillator coupled to 6×6 ch SiPM array and Φ1×1 in. scintillator coupled to 4×4 ch SiPM array were 7.6% and 7.8%, respectively, and were very close to the results obtained with traditional bialkali PMT (7.3% and 7.6%, respectively). Scintillator coupled to photodetector with smaller area was also studied by adding a light guide or using scintillator with tapered head. The latter showed better performance than using light guide. The 1-in. NaI(Tl) scintillator with tapered head coupled to 2×2 ch SiPM array achieved 7.7% energy resolution at 661.6 keV, the same as that obtained with standard Φ1×1 in. scintillator coupled to 4×4 ch SiPM array. While the 2-in. scintillator with similar geometry showed degraded energy resolution, 10.2% at 661.6 keV, but could still be used when high efficiency is preferred over energy resolution.

  16. A P2-Type Layered Superionic Conductor Ga-Doped Na2 Zn2 TeO6 for All-Solid-State Sodium-Ion Batteries.

    PubMed

    Li, Yuyu; Deng, Zhi; Peng, Jian; Chen, Enyi; Yu, Yao; Li, Xiang; Luo, Jiahuan; Huang, Yangyang; Zhu, Jinlong; Fang, Chun; Li, Qing; Han, Jiantao; Huang, Yunhui

    2018-01-24

    Here, a P2-type layered Na 2 Zn 2 TeO 6 (NZTO) is reported with a high Na + ion conductivity ≈0.6×10 -3  S cm -1 at room temperature (RT), which is comparable to the currently best Na 1+n Zr 2 Si n P 3-n O 12 NASICON structure. As small amounts of Ga 3+ substitutes for Zn 2+ , more Na + vacancies are introduced in the interlayer gaps, which greatly reduces strong Na + -Na + coulomb interactions. Ga-substituted NZTO exhibits a superionic conductivity of ≈1.1×10 -3  S cm -1 at RT, and excellent phase and electrochemical stability. All solid-state batteries have been successfully assembled with a capacity of ≈70 mAh g -1 over 10 cycles with a rate of 0.2 C at 80 °C. 23 Na nuclear magnetic resonance (NMR) studies on powder samples show intra-grain (bulk) diffusion coefficients D NMR on the order of 12.35×10 -12  m 2  s -1 at 65 °C that corresponds to a conductivity σ NMR of 8.16×10 -3  S cm -1 , assuming the Nernst-Einstein equation, which thus suggests a new perspective of fast Na + ion conductor for advanced sodium ion batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Peierls instability as the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers

    NASA Astrophysics Data System (ADS)

    Kang, Myung Ho; Kwon, Se Gab; Jung, Sung Chul

    2018-03-01

    Density functional theory (DFT) calculations are used to investigate the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers. In the coverage definition, one monolayer refers to one Na atom per surface Si atom, so this surface contains an odd number of electrons (i.e., three Si dangling-bond electrons plus two Na electrons) per 3 × 1 unit cell. Interestingly, this odd-electron surface has been ascribed to a Mott-Hubbard insulator to account for the measured insulating band structure with a gap of about 0.8 eV. Here, we instead propose a Peierls instability as the origin of the experimental band gap. The concept of Peierls instability is fundamental in one-dimensional metal systems but has not been taken into account in previous studies of this surface. Our DFT calculations demonstrate that the linear chain structure of Si dangling bonds in this surface is energetically unstable with respect to a × 2 buckling modulation, and the buckling-induced band gap of 0.79 eV explains well the measured insulating nature.

  18. Thin-film formation of Si clathrates on Si wafers

    NASA Astrophysics Data System (ADS)

    Ohashi, Fumitaka; Iwai, Yoshiki; Noguchi, Akihiro; Sugiyama, Tomoya; Hattori, Masashi; Ogura, Takuya; Himeno, Roto; Kume, Tetsuji; Ban, Takayuki; Nonomura, Shuichi

    2014-04-01

    In this study, we prepared Si clathrate films (Na8Si46 and NaxSi136) using a single-crystalline Si substrate. Highly oriented film growth of Zintl-phase sodium silicide, which is a precursor of Si clathrate, was achieved by exposing Na vapour to Si substrates under an Ar atmosphere. Subsequent heat treatment of the NaSi film at 400 °C (3 h) under vacuum (<10-2 Pa) resulted in a film of Si clathrates having a thickness of several micrometres. Furthermore, this technique enabled the selective growth of Na8Si46 and NaxSi136 using the appropriate crystalline orientation of Si substrates.

  19. Significantly improved dielectric performances of nanocomposites via loading two-dimensional core-shell structure Bi2Te3@SiO2 nanosheets

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Wang, Xiucai; Yu, Xinmei; Fan, Yun; Duan, Zhikui; Jiang, Yewen; Yang, Faquan; Zhou, Yuexia

    2018-07-01

    Polymer/semiconductor-insulator nanocomposites can display high dielectric constants with a relatively low dissipation factor under low electric fields, and thus seem to promising for high energy density capacitors. Here, a novel nanocomposite films is developed by loading two-dimensional (2D) core-shell structure Bi2Te3@SiO2 nanosheets in the poly (vinylidene fluoride-hexafluoro propylene) (P(VDF-HFP)) polymer matrix. The 2D Bi2Te3 nanosheets were prepared through simple microwave-assisted method. The experimental results suggesting that the SiO2 shell layer between the fillers and polymer matrix could effectively improve the dielectric constant, dielectric loss, AC conductivity, and breakdown strength of composites films. The composite films load with 10 vol.% 2D Bi2Te3@SiO2 nanosheets exhibits a high dielectric constant of 70.3 at 1 kHz and relatively low dielectric loss of 0.058 at 1 kHz. The finite element simulation of electric field and electric current density distribution revealed that the SiO2 shell layer between the fillers and polymer matrix could effectively improve the energy loss, local electric field strength, and breakdown strength of composite films. Therefore, this work will provide a promising route to achieve high-performance capacitors.

  20. Synthesis, structure, and polymorphism of A{sub 3}LnSi{sub 2}O{sub 7} (A=Na, K; Ln=Sm, Ho, Yb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latshaw, Allison M.; Yeon, Jeongho; Smith, Mark D.

    2016-03-15

    Four new members of the A{sub 3}LnSi{sub 2}O{sub 7} family, K{sub 3}SmSi{sub 2}O{sub 7}, Na{sub 3}HoSi{sub 2}O{sub 7}, and two polymorphs of Na{sub 3}YbSi{sub 2}O{sub 7}, are reported. K{sub 3}SmSi{sub 2}O{sub 7} crystallizes in the hexagonal space group P6{sub 3}/mcm, Na{sub 3}HoSi{sub 2}O{sub 7} and Na{sub 3}YbSi{sub 2}O{sub 7} crystallize in the hexagonal space group P6{sub 3}/m, and Na{sub 3}YbSi{sub 2}O{sub 7} crystallizes in the trigonal space group P31c. The Na{sub 3}YbSi{sub 2}O{sub 7} composition that crystallizes in P31c is a new structure type. The magnetic properties for the Ho and Yb analogs are reported. - Graphical abstract: The differentmore » structure types and polymorphs of the A{sub 3}LnSi{sub 2}O{sub 7} family reported. - Highlights: • Four new members of the A{sub 3}LnSi{sub 2}O{sub 7} family are presented. • Na{sub 3}YbSi{sub 2}O{sub 7} is reported as two polymorphs, one is a new structure type. • Crystals synthesized out of molten fluoride fluxes.« less

  1. UV-visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites

    NASA Astrophysics Data System (ADS)

    Mavengere, Shielah; Kim, Jung-Sik

    2018-06-01

    In this study, a new novel composite photocatalyst of NaYF4:(Gd, Si)/TiO2 phosphor has been synthesized by two step method of solution combustion and sol-gel. The photocatalyst powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. Raman spectroscopy confirmed the anatase TiO2 phase which remarkably increased with existence of yttrium silicate compounds between 800 cm-1 and 900 cm-1. Double-addition of Gd3+-Si4+ ions in NaYF4 host introduced sub-energy band levels with intense absorption in the ultraviolet (UV) light region. Photocatalytic activity was examined by exposing methylene blue (MB) solutions mixed with photocatalyst powders to 254 nm UV-C fluorescent lamp and 200 W visible lights. The UV and visible photocatalytic reactivity of the NaYF4:(Gd, 1% Si)/TiO2 phosphor composites showed enhanced MB degradation efficiency. The coating of NaYF4:(Gd, 1% Si) phosphor with TiO2 nanoparticles creates energy band bending at the phosphor/TiO2 interfaces. Thus, these composites exhibited enhanced absorption of UV/visible light and the separation of electron and hole pairs for efficient photocatalysis.

  2. Effect of Na2SiO3/NaOH on mechanical properties and microstructure of geopolymer mortar using fly ash and rice husk ash as precursor

    NASA Astrophysics Data System (ADS)

    Saloma, Hanafiah, Elysandi, Debby Orjina; Meykan, Della Garnesia

    2017-11-01

    Geopolymer concrete is an eco-friendly concrete that can reduce carbon emissions on the earth surface because it used industrial waste material such as fly ash, rice husk ash, bagasse ash, and palm oil fuel. Geopolymer is semi-crystalline amorphous materials which has irregular chemical bonds structure. The material is produced by geosynthesis of aluminosilicates and alkali-silicates which produce the Si-O-Al polymer structure. This research used the ratio of fly ash and rice husk ash as precursors e.g. 100:0, 75:25, 50:50, and 25:75. NaOH solutions of 14 M and Na2SiO3 solutions with the variation e.g. 2.5, 2.75, 3.00, and 3.25 were used as activators on mortar geopolymer mixture. The tests of fresh mortar were slump flow and setting time. The optimum compressive strength is 68.36 MPa for 28 days resulted from mixture using 100% fly ash and Na2SiO3 and NaOH with ratio 2.75. The largest value of slump flow test resulted from mixture using Na2SiO3 and NaOH with ratio 2.50 is 17.25 cm. Based on SEM test results, mortar geopolymer microstructure with mixture RHA 0% has less pores and denser CSH structure.

  3. First investigations on the quaternary system Na2O-K2O-CaO-SiO2: synthesis and crystal structure of the mixed alkali calcium silicate K1.08Na0.92Ca6Si4O15

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Mayerl, Michael Jean-Philippe; Schmidmair, Daniela; Krüger, Hannes; Tribus, Martina

    2018-04-01

    In the course of an exploratory study on the quaternary system Na2O-K2O-CaO-SiO2 single crystals of the first anhydrous sodium potassium calcium silicate have been obtained from slow cooling of a melt in the range between 1250 and 1050 °C. Electron probe micro analysis suggested the following idealized molar ratios of the oxides for the novel compound: K2O:Na2O:CaO:SiO2 = 1:1:12:8 (or KNaCa6Si4O15). Single-crystal diffraction measurements on a crystal with chemical composition K1.08Na0.92Ca6Si4O15 resulted in the following basic crystallographic data: monoclinic symmetry, space group P 21/ c, a = 8.9618(9) Å, b = 7.3594(6) Å, c = 11.2453(11) Å, β= 107.54(1)°, V = 707.2(1) Å3, Z = 2. Structure solution was performed using direct methods. The final least-squares refinement converged at a residual of R(|F|) = 0.0346 for 1288 independent reflections and 125 parameters. From a structural point of view, K1.08Na0.92Ca6Si4O15 belongs to the group of mixed-anion silicates containing [Si2O7]- and [SiO4]-units in the ratio 1:2. The mono- and divalent cations occupy a total of four crystallographically independent positions located in voids between the tetrahedra. Three of these sites are exclusively occupied by calcium. The fourth site is occupied by 54(1)% K and 46%(1) Na, respectively. Alternatively, the structure can be described as a heteropolyhedral framework based on corner-sharing silicate tetrahedra and [CaO6]-octahedra. The network can build up from kröhnkite-like [Ca(SiO4)2O2]-chains running along [001]. A detailed comparison with other A2B6Si4O15-compounds including topological and group-theoretical aspects is presented.

  4. The Heat of Formation of Na2SiF6.

    ERIC Educational Resources Information Center

    DeVore, T. C.; Gallaher, T. N.

    1986-01-01

    Describes a physical chemistry experiment which uses spectroscopy to measure the heat of formation of Na2SiF6. Discusses the opportunities for students to see the use of a familiar instrument in an unfamiliar application, emphasizing that there are often many ways to attack problems in science. (TW)

  5. Three-dimensional and multienergy gamma-ray simultaneous imaging by using a Si/CdTe Compton camera.

    PubMed

    Suzuki, Yoshiyuki; Yamaguchi, Mitsutaka; Odaka, Hirokazu; Shimada, Hirofumi; Yoshida, Yukari; Torikai, Kota; Satoh, Takahiro; Arakawa, Kazuo; Kawachi, Naoki; Watanabe, Shigeki; Takeda, Shin'ichiro; Ishikawa, Shin-nosuke; Aono, Hiroyuki; Watanabe, Shin; Takahashi, Tadayuki; Nakano, Takashi

    2013-06-01

    To develop a silicon (Si) and cadmium telluride (CdTe) imaging Compton camera for biomedical application on the basis of technologies used for astrophysical observation and to test its capacity to perform three-dimensional (3D) imaging. All animal experiments were performed according to the Animal Care and Experimentation Committee (Gunma University, Maebashi, Japan). Flourine 18 fluorodeoxyglucose (FDG), iodine 131 ((131)I) methylnorcholestenol, and gallium 67 ((67)Ga) citrate, separately compacted into micro tubes, were inserted subcutaneously into a Wistar rat, and the distribution of the radioisotope compounds was determined with 3D imaging by using the Compton camera after the rat was sacrificed (ex vivo model). In a separate experiment, indium 111((111)In) chloride and (131)I-methylnorcholestenol were injected into a rat intravenously, and copper 64 ((64)Cu) chloride was administered into the stomach orally just before imaging. The isotope distributions were determined with 3D imaging after sacrifice by means of the list-mode-expectation-maximizing-maximum-likelihood method. The Si/CdTe Compton camera demonstrated its 3D multinuclear imaging capability by separating out the distributions of FDG, (131)I-methylnorcholestenol, and (67)Ga-citrate clearly in a test-tube-implanted ex vivo model. In the more physiologic model with tail vein injection prior to sacrifice, the distributions of (131)I-methylnorcholestenol and (64)Cu-chloride were demonstrated with 3D imaging, and the difference in distribution of the two isotopes was successfully imaged although the accumulation on the image of (111)In-chloride was difficult to visualize because of blurring at the low-energy region. The Si/CdTe Compton camera clearly resolved the distribution of multiple isotopes in 3D imaging and simultaneously in the ex vivo model.

  6. Magnetic ground state of the layered honeycomb compound Na2Co2TeO6

    NASA Astrophysics Data System (ADS)

    Bera, A. K.; Yusuf, S. M.

    2018-04-01

    The magnetic correlations in the 2D layered honeycomb compound Na2Co2TeO6 has been investigated. The temperature dependent susceptibility curve reveals a transition to the magnetically ordered state at TN ˜ 25 K. The temperature dependent neutron diffraction study confirms an antiferromagnetic ordering below TN. The magnetic ground state is determined to be a zigzag antiferromagnet that appears due to competing exchange interactions beyond nearest neighbors. The moments align along the crystallographic b axis with reduced ordered magnetic moment values of 2.72(2) μB/Co2+ and 2.52(3) μB/Co2+ for two Co sites, respectively. In comparison to the theoretical phase diagram the determined zigzag antiferromagnetic ground state suggests that the compound Na2Co2TeO6 is situated in the proximity to the quantum spin liquid state in the phase diagram.

  7. The influence of Na + and Ca 2+ ions on the SiO 2-AlPO 4 materials structure — IR and Raman studies

    NASA Astrophysics Data System (ADS)

    Rokita, M.; Mozgawa, W.; Handke, M.

    2001-09-01

    The series of samples containing 0-20 mol% of NaCaPO4 and 20-0 mol% of AlPO4, respectively, with the constant amount of SiO2 (80 mol%) have been selected. The materials were prepared using both sol-gel as well as aerosil pseudo-aqua solution method. The AlPO4·SiO2 and NaCaPO4·SiO2 (80 mol% of SiO2) samples have been prepared. IR and Raman spectra of these samples are presented. The spectra of materials from NaCaPO4-AlPO4-SiO2 system are compared to those of NaCaPO4·SiO2 and AlPO4·SiO2 sample (samples without Al3+ or Na+ and Ca2+ cations, respectively). The studies have enabled us to identify the bands arising from the internal and lattice vibrations. The slight differences between the spectra of sol-gel and aerosil pseudo-aqua solution materials are pointed out and discussed. The influence of Na+ and Ca2+ ions on the AlPO4-SiO2 materials structure is analysed.

  8. Studies on solid solutions based on layered honeycomb-ordered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berthelot, Romain; Schmidt, Whitney; Sleight, A.W.

    2012-12-15

    Three complete solid solutions between the layered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) have been prepared by conventional solid state method and investigated through X-ray diffraction, magnetism and optical measurements. All compositions are characterized by a M{sup 2+}/X{sup 6+} honeycomb ordering within the slabs and crystallize in a hexagonal unit cell. However, a structural transition based on a different stacking is observed as nickel (space group P6{sub 3}/mcm) is substituted by zinc or cobalt (space group P6{sub 3}22). All compositions exhibit a paramagnetic Curie-Weiss behavior at high temperatures; and the magnetic moment values confirm the presence of Ni{supmore » 2+} and/or Co{sup 2+} cations. The low-temperature antiferromagnetic order of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. The color of the obtained compositions varies from pink, to light green and white when M=Co, Ni, Zn, respectively. - Graphical abstract: The comparison between the structure of Na{sub 2}Ni{sub 2}TeO{sub 6} (left) and Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Zn) (right) evidences the stacking difference with distinct atom sequences along the hexagonal c-axis. Highlights: Black-Right-Pointing-Pointer Solid solutions between lamellar phases Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) are investigated. Black-Right-Pointing-Pointer A M{sup 2+}/X{sup 6+} honeycomb ordering characterized all the compositions. Black-Right-Pointing-Pointer A structural transition is shown when Ni is replaced by Co or Zn. Black-Right-Pointing-Pointer The low-temperature AFM ordering of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. Black-Right-Pointing-Pointer Color changes from pink to light green and white when M=Co, Ni, Zn, respectively.« less

  9. Preparation of Microkernel-Based Mesoporous (SiO2-CdTe-SiO2)@SiO2 Fluorescent Nanoparticles for Imaging Screening and Enrichment of Heat Shock Protein 90 Inhibitors from Tripterygium Wilfordii.

    PubMed

    Hu, Yue; Miao, Zhao-Yi; Zhang, Xiao-Jing; Yang, Xiao-Tong; Tang, Ying-Ying; Yu, Sheng; Shan, Chen-Xiao; Wen, Hong-Mei; Zhu, Dong

    2018-05-01

    The currently utilized ligand fishing for bioactive molecular screening from complex matrixes cannot perform imaging screening. Here, we developed a new solid-phase ligand fishing coupled with an in situ imaging protocol for the specific enrichment and identification of heat shock protein 90 (Hsp 90) inhibitors from Tripterygium wilfordii, utilizing a multiple-layer and microkernel-based mesoporous nanostructure composed of a protective silica coating CdTe quantum dot (QD) core and a mesoporous silica shell, i.e., microkernel-based mesoporous (SiO 2 -CdTe-SiO 2 )@SiO 2 fluorescent nanoparticles (MMFNPs) as extracting carries and fluorescent probes. The prepared MMFNPs showed a highly uniform spherical morphology, retention of fluorescence emission, and great chemical stability. The fished ligands by Hsp 90α-MMFNPs were evaluated via the preliminary bioactivity based on real-time cellular morphology imaging by confocal laser scanning microscopy (CLSM) and then identified by mass spectrometry (MS). Celastrol was successfully isolated as an Hsp 90 inhibitor, and two other specific components screened by Hsp 90α-MMFNPs, i.e., demecolcine and wilforine, were preliminarily identified as potential Hsp 90 inhibitors through the verification of strong affinity to Hsp 90 and antitumor bioactivity. The approach based on the MMFNPs provides a strong platform for imaging screening and discovery of plant-derived biologically active molecules with high efficiency and selectivity.

  10. β-Na2TeO4: Phase Transition from an Orthorhombic to a Monoclinic Form. Reversible CO2 Capture.

    PubMed

    Galven, Cyrille; Pagnier, Thierry; Rosman, Noël; Le Berre, Françoise; Crosnier-Lopez, Marie-Pierre

    2018-06-18

    The present work concerns the tellurate Na 2 TeO 4 which has a 1D structure and could then present a CO 2 capture ability. It has been synthesized in a powder form via a solid-state reaction and structurally characterized by thermal X-ray diffraction experiments, Raman spectroscopy, and differential scanning calorimetry. The room temperature structure corresponds to the β-Na 2 TeO 4 orthorhombic form, and we show that it undergoes a reversible structural transition near 420 °C toward a monoclinic system. Ab initio computations were also performed on the room temperature structure, the Raman vibration modes calculated, and a normal mode attribution proposed. In agreement with our expectations, this sodium oxide is able to trap CO 2 by a two-step mechanism: Na + /H + exchange and carbonation of the released sodium as NaHCO 3 . This capture is reversible since CO 2 can be released upon heating by recombination of the mother phase.

  11. Precursor routes to quaternary intermetallics: Synthesis, crystal structure, and physical properties of clathrate-II Cs8Na16Al24Si112

    NASA Astrophysics Data System (ADS)

    Wei, Kaya; Dong, Yongkwan; Nolas, George S.

    2016-05-01

    A new quaternary clathrate-II composition, Cs8Na16Al24Si112, was synthesized by kinetically controlled thermal decomposition (KCTD) employing both NaSi and NaAlSi as the precursors and CsCl as a reactive flux. The crystal structure and composition of Cs8Na16Al24Si112 were investigated using both Rietveld refinement and elemental analysis, and the temperature dependent transport properties were investigated. Our results indicate that KCTD with multiple precursors is an effective method for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.

  12. Luminescent properties of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} and its potential application in white light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhijun, E-mail: wangzhijunmail@yahoo.com.cn; Li, Panlai; Li, Ting

    2013-06-01

    Graphical abstract: Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} phosphor can be effectively excited by an ultraviolet and near-ultraviolet light, and produce a bright blue emission centered at 436 nm. The CIE chromaticity coordinations (x, y) of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+}(NSCE)/Li{sub 2}SrSiO{sub 4}:Eu{sup 2+}(LSSE) vary with the molar ratio of the two constituents. When NSCE/LSSE is 1:3, the CIE chromaticity coordination is (0.332, 0.346), which is close to that of the natural sunlight (0.33, 0.33). The results indicate that Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} may be a promising blue phosphor for UV chip-based multi-phosphor converted white light emitting diodes. Highlights: ► Na{sub 2}CaSiO{sub 4}:Eu{supmore » 2+} shows the blue emission with a peak at 436 nm and broad excitation band in the UV/n-UV range. ► White light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor with the Li{sub 2}SrSiO{sub 4}:Eu{sup 2+} yellow phosphor. ► Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} would be a promising blue phosphor candidate for UV chip-based multi-phosphor converted white LEDs. - Abstract: A novel blue phosphor Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} is synthesized by a high temperature solid-state reaction, and its luminescent properties are systematically studied. Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} can be effectively excited by the 354 nm radiation, and create blue emission (436 nm). The emission intensity of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} is influenced by the Eu{sup 2+} doping content, and the optimal doping content is 1.5%, and the concentration quenching mechanism of Eu{sup 2+} in Na{sub 2}CaSiO{sub 4} can be attributed to the multipolar interaction. The white light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} with the yellow phosphor Li{sub 2}SrSiO{sub 4}:Eu{sup 2+}. The results indicate that Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} may be a potential blue emitting phosphor for UV chip-based multi

  13. Effects of Combining Na and Sr additions on Eutectic Modification in Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Zhu, G. L.; Gu, N. J.; Zhou, B. J.

    2017-09-01

    Experiments were designed to investigate the effects of strontium and sodium modified on the eutectic silicon for Al-Si alloy. It was found that combining addition of Na and Sr did not appear to cause deleterious interactions of modification, at at the same time, Sr-Na was fairly constant with holding time and without obvious modification fading. Addition of Na-Sr modifier could take effect quickly and decrease incubation period.

  14. Thermodynamics of open networks: Ordering and entropy in NaAlSiO4 glass, liquid, and polymorphs

    USGS Publications Warehouse

    Richet, P.; Robie, R.A.; Rogez, J.; Hemingway, B.S.; Courtial, P.; Tequi, C.

    1990-01-01

    The thermodynamic properties of carnegieite and NaAlSiO4 glass and liquid have been investigated through Cp determinations from 10 to 1800 K and solution-calorimetry measurements. The relative entropies S298-S0 of carnegieite and NaAlSiO4 glass are 118.7 and 124.8 J/mol K, respectively. The low-high carnegieite transition has been observed at 966 K with an enthalpy of transition of 8.1??0.3 kJ/mol, and the enthalpy of fusion of carnegieite at the congruent melting point of 1799 K is 21.7??3 kJ/mol. These results are consistent with the reported temperature of the nepheline-carnegieite transition and available thermodynamic data for nepheline. The entropy of quenched NaAlSiO4 glass at 0 K is 9.7??2 J/mol K and indicates considerable ordering among AlO4 and SiO4 tetrahedra. In the liquid state, progressive, temperature-induced Si, Al disordering could account for the high configurational heat capacity. Finally, the differences between the entropies and heat capacities of nepheline and carnegieite do not seem to conform to current polyhedral modeling of these properties ?? 1990 Springer-Verlag.

  15. Effect of Aluminum on Characterization of ZnTe/n-Si Heterojunction Photo detector

    NASA Astrophysics Data System (ADS)

    Maki, Samir A.; Hassun, Hanan K.

    2018-05-01

    Aluminum doped zinc telluride ZnTenSi thin films of (400nm) thickness with (005 01 015 and 02) wt % were deposited on the glass substrate and nSi wafer to fabricate ZnTenSi heterojunction Photodetector by using thermal vacuum evaporation technique Structural optical electrical and photovoltaic properties are investigated for the samples XRD analysis shows that all the deposited ZnTenSi films show polycrystalline structure with cubic phases and highest sharp peak corresponding to (111) planes and from AFM images shows the surface roughness increase with increase Al percentage ratio The optical absorption measurement of the films was find from transmittance ranges in the variety of wavelength (400 1000) nm and the optical energy band gap decrease from 224 eV to 186 eV dependent upon the Aluminum ratio in the films moreover our studies contain the calculation of the electrical properties of hetero junction were obtained via IV (dark and light condition) and C V measurement The photoelectric properties indicated rise illumination current of heterojunctions through increasing both of incident lighting intensity and Aluminum dopant The values of specific detectivity and quantum efficiency are calculated for all samples also the best spectral response occurs when Al doping ratio 02% The high photo sensitivity and comparatively fast response haste are attributable to in height crystal quality of the [ZnTe ] thin films.

  16. On the temperature dependence of Na migration in thin SiO 2 films during ToF-SIMS O 2+ depth profiling

    NASA Astrophysics Data System (ADS)

    Krivec, Stefan; Detzel, Thomas; Buchmayr, Michael; Hutter, Herbert

    2010-10-01

    The detection of Na in insulating samples by means of time of flight-secondary ion mass spectrometry (ToF-SIMS) depth profiling has always been a challenge. In particular the use of O 2+ as sputter species causes a severe artifact in the Na depth distribution due to Na migration under the influence of an internal electrical filed. In this paper we address the influence of the sample temperature on this artifact. It is shown that the transport of Na is a dynamic process in concordance with the proceeding sputter front. Low temperatures mitigated the migration process by reducing the Na mobility in the target. In the course of this work two sample types have been investigated: (i) A Na doped PMMA layer, deposited on a thin SiO 2 film. Here, the incorporation behavior of Na into SiO 2 during depth profiling is demonstrated. (ii) Na implanted into a thin SiO 2 film. By this sample type the migration behavior could be examined when defects, originating from the implantation process, are present in the SiO 2 target. In addition, we propose an approach for the evaluation of an implanted Na profile, which is unaffected by the migration process.

  17. Synthesis of surface molecular imprinting polymer on SiO2-coated CdTe quantum dots as sensor for selective detection of sulfadimidine

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiping; Ying, Haiqin; Liu, Yanyan; Xu, Wanzhen; Yang, Yanfei; Luan, Yu; Lu, Yi; Liu, Tianshu; Yu, Shui; Yang, Wenming

    2017-05-01

    This paper demonstrates a facile method to synthesize surface molecular imprinting polymer (MIP) on SiO2-coated CdTe QDs for selective detection of sulfadimidine (SM2). The fluorescent MIP sensor was prepared using cadmium telluride quantum dots (CdTe QDs) as the material of fluorescent signal readout, sulfadimidine as template molecule, 3-aminopropyltriethoxysilane (APTES) as functional monomer and tetraethyloxysilane (TEOS) as cross-linking agent. The CdTe cores were embed in the silicon shells by a sol-gel reaction and then the molecular imprinting layers were immobilized on the surface of the SiO2-coated CdTe QDs. Under the optimized conditions, the relative fluorescent intensity weakened in a linear way with the increasing concentration of sulfadimidine in the range of 10-60 μmol L-1. The practical application of the fluorescent MIP sensor was evaluated by means of analyzing sulfadimidine in the real milk samples. The recoveries were at the range of 90.3-99.6% and the relative standard deviation (RSD) ranged from 1.9 to 3.1%, which indicates the successful synthesis of the fluorescent MIP sensor. This sensor provides an alternative solution for selective determination of sulfadimidine from real milk samples.

  18. Inhibitory effects of α-Na8SiW11CoO40 on tyrosinase and its application in controlling browning of fresh-cut apples.

    PubMed

    Chen, Bing-Nian; Xing, Rui; Wang, Fang; Zheng, A-Ping; Wang, Li

    2015-12-01

    α-Na8SiW11CoO40 was synthesized and characterized. The inhibitory effects of α-Na8SiW11CoO40 on the activity of mushroom tyrosinase and the effects of α-Na8SiW11CoO40 on the browning of fresh-cut apples were studied. The Native-PAGE result showed that α-Na8SiW11CoO40 had a significant inhibitory effect on tyrosinase. Kinetic analyses showed that α-Na8SiW11CoO40 was an irreversible and competitive inhibitor. The inhibitor concentration leading to a 50% reduction in activity (IC50) was estimated to be 0.239 mM. Additionally, the results also showed that α-Na8SiW11CoO40 treatment could significantly decrease the browning process of apple slices and inhibit the polyphenol oxidase (PPO) activity. Moreover, application of α-Na8SiW11CoO40 resulted in higher peroxidase activity and promoted high amounts of phenolic compounds and ascorbic acid. This study may provide a promising method for the use of polyoxometalates to inhibit tyrosinase activity and control the browning of fresh-cut apples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Crystal structure of the true Nasicon: Na/sub 3/Zr/sub 2/Si/sub 2/PO/sub 12/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boilot, J.P.; Collin, G.; Colomban, P.

    For the first time, the results of single crystal determination of the true Nasicon are given. The structure refinement yielded the following composition: Na/sub 3.09(8)/Zr/sub 2.01(1)/P/sub 0.91/Si/sub 2.09/O/sub 12/. Evidence of the total occupancy of the Zr octahedron is found, displaying that only the Si/P non-stoichiometry mechanism is present in the Nasicon crystal. For the two temperatures which have been investigated (R.T. and 623K), the structures are very close to that of the Nasicon analog: Na/sub 3/Sc/sub 2/P/sub 3/O/sub 12/. However the Si/P substitution prevents the sodium long range ordering even in the monoclinic low temperature phase and therefore themore » cross over to the rhombohedral symmetry only involves very small atomic displacements. For both structures, a new sodium position (mid-Na) is displayed in the conduction channel, intermediate between the usual Na(1) and Na(2) sites.« less

  20. Synthesis and Characterization of Monodisperse Core-shell Lanthanide Upconversion Nanoparticles NaYF4: Yb,Tm/SiO2

    NASA Astrophysics Data System (ADS)

    Manurung, R. V.; Wiranto, G.; Hermida, I. D. P.

    2018-05-01

    Lanthanide up-converting luminescent nanoparticles (UCNPs) are exciting and promising materials for optical bioimaging, biosensor and theranostic due to their unique and advantageous optical and chemical properties. The UCNPs absorb low energy near-infrared (NIR) light and emit high-energy shorter wavelength photons (visible light). Their unique features allow them to overcome various problems associated with conventional imaging probes such as photostability, lack of toxicity, and to provide versatility for creating nanoplatforms with both imaging and therapeutic modalities. This paper reports synthesis and characterization of core-shell structured of NaYF4:Yb,Tm/SiO2 microspheres. The synthesis of lanthanide upconversion nanoparticles NaYF4:Yb,Tm was prepared by thermal decomposition process which involves dissolving organic precursors in high-boiling-point solvents oleic acid (OA) and octadecene (ODE). After that, the NaYF4:Yb,Tm phosphors was coated by silica via reverse microemulsion process to obtain core-shell structured NaYF4:Yb,Tm/SiO2. Scanning electron microscopy, transmission electron microscopy, specific area electron diffraction, and photoluminescence were applied to characterize these samples. The obtained core-shell structured NaYF4:Yb,Tm/SiO2 phosphors exhibit a perfect cubic morphology with narrow size distribution and smooth surface. Upon IR excitation at 980 nm, the NaYF4:Yb,Tm/SiO2 samples exhibit whitish blue upconversion (UC) luminescence, respectively. These phosphors show potential applications in the displaying on biological fields and biosensing.

  1. Pressure induced coordination change of Al in silicate melts from Al K edge XANES of high pressure NaAlSi2O6-NaAlSi3O8 glasses

    NASA Astrophysics Data System (ADS)

    Li, Dien; Secco, R. A.; Bancroft, G. M.; Fleet, M. E.

    Aluminum K-edge XANES spectra of high pressure and high temperature (4.4 GPa and 1575°C) glasses along the NaAlSi2O6 (Jd)-NaAlSi3O8 (Ab) join are reported using synchrotron radiation, and shown to provide direct experimental evidence for the pressure-induced coordination change of Al. Five- and six-fold coordinated Al (5Al and 6Al), characterized by Al K-edge positions at 1567.8 and 1568.7 eV, respectively, first appear in glass of composition Jd60Ab40 and increase in proportion progressively with increasing Jd content. The end-member jadeite glass contains about 6% of each of 5Al and 6Al. The present direct measurements confirm literature suggestions for the important role of Al in controlling viscosity and diffusion in mantle melts.

  2. High-pressure systematic of NaMe3+Si2O6 pyroxenes: volume compression vs Me3+ cation radius

    NASA Astrophysics Data System (ADS)

    Periotto, Benedetta; Nestola, Fabrizio; Balic-Zunic, Tonci; Pasqual, Daria; Alvaro, Matteo; Ohashi, Haruo

    2010-05-01

    Recent investigations have been experimentally demonstrated that Na-clinopyroxenes (Na-cpx) can be stable throughout a wide range of temperatures and pressures in the upper mantle and several works have been carried out in order to better constrain their physical properties. In this work the equation of state of a synthetic NaInSi2O6 clinopyroxene characterized by a trivalent non 3d-transition metal at the Me3+ crystallographic site (space group C2/c) was determined up to about 8 GPa by in situ single-crystal X-ray diffraction. Since previous investigations on CaMe2+Si2O6 showed a different effect when 3d- and non 3d-transition elements located at Me site, the aim of this study is to provide a definitive model capable to predict the high-pressure behaviour of (Ca,Na)(Me2+, Me3+)Si2O6 clinopyroxenes. A single crystal of NaInSi2O6 with size 150*80*50 microns3 was selected for the high-pressure single-crystal X-ray diffraction study. The sample was loaded in an ETH-type diamond anvil cell assembled with a diamond culet of 600 microns in diameter and a gasket preindented to 90 microns with a spark eroded hole of 200 microns in diameter. The cpx was loaded together with a single-crystal of quartz used as an internal pressure standard and some ruby chips used for more approximate determination of the internal pressure. The measurements were performed using a four-circles STOE STADI IV diffractometer on which the software SINGLE08 has been recently installed allowing to perform the eight-position diffracted-beam centering and to fit the diffraction peak profiles. Such centering procedure allows to obtain precise and accurate unit-cell parameters in order to provide values of room pressure bulk modulus affected by a significantly small error. The NaInSi2O6 cpx was investigated at 12 different pressures up to 7.83 GPa. No evidences of phase transformation were found throughout the pressure range investigated. The sample compresses anisotropically with the b direction being

  3. Reaction of the thermo-labile triazenide Na[tBu3SiNNNSiMe3] with CO2: formation of the imido carbonate (tBu3SiO)(Me3SiO)C[double bond, length as m-dash]N-SitBu3 and carbamine acid (tBu3SiO)CONH2.

    PubMed

    Lerner, H-W; Bolte, M; Wagner, M

    2017-07-11

    The thermo-labile triazenide Na[tBu 3 SiNNNSiMe 3 ] was prepared by the reaction of Me 3 SiN 3 with Na(thf) 2 [SitBu 3 ] in pentane at -78 °C. Treatment of Na[tBu 3 SiNNNSiMe 3 ] with an excess of carbon dioxide in pentane at -78 °C yielded the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 and the carbamine acid (tBu 3 SiO)CONH 2 along with other products. From the reaction solution we could isolate the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 and carbamine acid (tBu 3 SiO)CONH 2 . At first single crystals of the carbamine acid (tBu 3 SiO)CONH 2 (triclinic, space group P1[combining macron]) were grown from this solution at room temperature. A second crop of crystals were obtained by concentrating the solution. The second charge consisted of the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 (monoclinic, space group P2 1 /n).

  4. Rich structural chemistry in new alkali metal yttrium tellurites: three-dimensional frameworks of NaYTe4O10, KY(TeO3)2, RbY(TeO3)2, and a novel variant of hexagonal tungsten bronze, CsYTe3O8.

    PubMed

    Kim, Youngkwon; Lee, Dong Woo; Ok, Kang Min

    2015-01-05

    Pure polycrystalline phases and single crystals of four new quaternary alkali metal yttrium tellurites, NaYTe4O10, KY(TeO3)2, RbY(TeO3)2, and CsYTe3O8, have been prepared by solid-state and hydrothermal reactions using A2CO3 (A = Na, K, Rb, and Cs), Y(NO3)3·6H2O, Y2O3, and TeO2 as starting reagents. X-ray diffraction analyses suggest that NaYTe4O10 exhibits a highly symmetric three-dimensional (3D) framework consisting of YO8 square antiprisms and chains of TeO4 polyhedra. Within the framework, six- (6-) and eight-membered ring (8-MR) channels are observed. KY(TeO3)2 and RbY(TeO3)2 are isostructural to each other and reveal another 3D framework with structures containing YO6 octahedra and TeO3 trigonal pyramids with 4-MR and 12-MR channels. CsYTe3O8 shows a hexagonal tungsten bronze (HTB)-like topology composed of hexagonal tungsten oxide-like layers of TeO4 polyhedra and YO6 octahedral linkers with 3-MR and 6-MR channels. Thermal analyses, elemental analyses, and spectroscopic characterizations, such as UV-vis diffuse reflectance and infrared spectra, are presented, as are local dipole moment calculations for the constituent asymmetric polyhedra TeO3 and TeO4.

  5. Characterization of solar-grade silicon produced by the SiF4-Na process

    NASA Technical Reports Server (NTRS)

    Sanjurjo, A.; Sancier, K. M.; Emerson, R. M.; Leach, S. C.; Minahan, J.

    1986-01-01

    A process was developed for producing low cost solar grade silicon by the reaction between SiF4 gas and sodium metal. The results of the characterization of the silicon are presented. These results include impurity levels, electronic properties of the silicon after crystal growth, and the performance of solar photovoltaic cells fabricated from wafers of the single crystals. The efficiency of the solar cells fabricated from semiconductor silicon and SiF4-Na silicon was the same.

  6. Mechanism of Na accumulation at extended defects in Si from first-principles

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Chan, Maria K. Y.

    2018-04-01

    Sodium (Na) impurities in silicon solar cells are considered to play an important role in potential-induced degradation (PID), a significant cause of solar cell degradation and failure. Shorting due to Na accumulation at extended defects has been suggested as a culprit for PID. However, it is not clear how the extended defects are decorated by Na impurities. Using first-principles density functional theory calculations, we find that Na impurities segregate from the bulk into extended defects such as intrinsic stacking faults and Σ3 (111) grain boundaries. The energy barrier required for Na to escape from the extended defects is substantial and similar to the sum of the barrier energy in bulk Si (1.1-1.2 eV) and the segregation energy to the stacking fault (˜0.7 eV). Surprisingly, the migration barrier for Na diffusion within the extended defects is even higher than the energy barrier for escaping. The results suggest that the extended defects likely accumulate Na as the impurities segregate to the defects from the bulk, rather than because of migration through the extended defects.

  7. Direct Growth of CdTe on a (211) Si Substrate with Vapor Phase Epitaxy Using a Metallic Cd Source

    NASA Astrophysics Data System (ADS)

    Iso, Kenji; Gokudan, Yuya; Shiraishi, Masumi; Murakami, Hisashi; Koukitu, Akinori

    2017-10-01

    We successfully performed epitaxial CdTe growth on a Si (211) substrate with vapor-phase epitaxy using a cost-effective metallic cadmium source as a group-II precursor. The thermodynamic data demonstrate that the combination of metallic Cd and diisopropyl-telluride (DiPTe) with a H2 carrier gas enables the growth of CdTe crystals. A CdTe single crystal with a (422) surface orientation was obtained when a growth temperature between 600°C and 650°C was employed. The surface morphology and crystalline quality were improved with increasing film thickness. The full-width at half-maximum of the x-ray rocking curves with a film thickness of 15.7 μm for the skew-symmetrical (422) and asymmetrical (111) reflection were 528 arcsec and 615 arcsec, respectively.

  8. Density of dislocations in CdHgTe heteroepitaxial structures on GaAs(013) and Si(013) substrates

    NASA Astrophysics Data System (ADS)

    Sidorov, Yu. G.; Yakushev, M. V.; Varavin, V. S.; Kolesnikov, A. V.; Trukhanov, E. M.; Sabinina, I. V.; Loshkarev, I. D.

    2015-11-01

    Epitaxial layers of Cd x Hg1- x Te (MCT) on GaAs(013) and Si(013) substrates were grown by molecular beam epitaxy. The introduction of ZnTe and CdTe intermediate layers into the structures made it possible to retain the orientation close to that of the substrate in MCT epitaxial layers despite the large mismatch between the lattice parameters. The structures were investigated using X-ray diffraction and transmission electron microscopy. The dislocation families predominantly removing the mismatch between the lattice parameters were found. Transmission electron microscopy revealed Γ-shaped misfit dislocations (MDs), which facilitated the annihilation of threading dislocations. The angles of rotation of the lattice due to the formation of networks of misfit dislocations were measured. It was shown that the density of threading dislocations in the active region of photodiodes is primarily determined by the network of misfit dislocations formed in the MCT/CdTe heterojunction. A decrease in the density of threading dislocations in the MCT film was achieved by cyclic annealing under conditions of the maximally facilitated nonconservative motion of dislocations. The dislocation density was determined from the etch pits.

  9. Studies on interface between In2O3 and CuInTe2 thin films

    NASA Astrophysics Data System (ADS)

    Ananthan, M. R.; Malar, P.; Osipowicz, Thomas; Kasiviswanathan, S.

    2017-10-01

    Interface between dc sputtered In2O3 and stepwise flash evaporated CuInTe2 films were studied by probing Si/In2O3/CuInTe2 and Si/CuInTe2/In2O3 structures with the help of glancing angle X-ray diffraction, Rutherford backscattering spectrometry and micro-Raman spectroscopy. The results showed that in Si/In2O3/CuInTe2 structure, a ∼20 nm thick interface consisting of In, Cu and O had formed between In2O3 and CuInTe2 and was attributed to the diffusion of Cu from CuInTe2 into In2O3 film. On the other hand, in Si/CuInTe2/In2O3 structure, homogeneity of the underlying CuInTe2 film was found lost completely. An estimate of the masses of the constituent elements showed that the damage was caused by loss of Te from CuInTe2 film during the growth of In2O3 film on Si/CuInTe2.

  10. Enhanced photoelectrochemical aptasensing platform based on exciton energy transfer between CdSeTe alloyed quantum dots and SiO2@Au nanocomposites.

    PubMed

    Fan, Gao-Chao; Zhu, Hua; Shen, Qingming; Han, Li; Zhao, Ming; Zhang, Jian-Rong; Zhu, Jun-Jie

    2015-04-25

    High-efficient exciton energy transfer between CdSeTe alloyed quantum dots and SiO2@Au nanocomposites was applied to develop an enhanced photoelectrochemical aptasensing platform with ultrahigh sensitivity, good selectivity, reproducibility and stability.

  11. Production of Na-22 and Other Radionuclides by Neutrons in Al, SiO2, Si, Ti, Fe and Ni Targets: Implications for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Jones, D. T. L.; Binns, P. J.; Langen, K.; Schroeder, I.; Buthelezi, Z.; Latti, E.; Brooks, F. D.; Buffler, A.; Allie, M. S.; hide

    2001-01-01

    Cross section measurements for neutron-induced reactions are summarized. Measured cross sections for 22 Na produced by neutrons in Al and Si are used to calculate the production rate for 22 Na in lunar rock 12002 by galactic cosmic ray particles. Additional information is contained in the original extended abstract.

  12. Evaluation of Electroplated Co-P Film as Diffusion Barrier Between In-48Sn Solder and SiC-Dispersed Bi2Te3 Thermoelectric Material

    NASA Astrophysics Data System (ADS)

    Li, Siyang; Yang, Donghua; Tan, Qing; Li, Liangliang

    2015-06-01

    The diffusion barrier property of Co-P film as a buffer layer between SiC-dispersed Bi2Te3 bulk material and In-48Sn solder was investigated. A Co-P film with thickness of ~6 µm was electroplated on SiC-dispersed Bi2Te3 substrate, joined with In-48Sn solder by a reflow process, and annealed at 100°C for up to 625 h. The formation and growth kinetics of intermetallic compounds (IMCs) at the interface between the In-48Sn and substrate were studied using transmission electron microscopy and scanning electron microscopy with energy-dispersive x-ray spectroscopy. The results showed that crystalline Co(In,Sn)3 formed as an irregular layer adjacent to the solder side at the solder/Co-P interface due to diffusion of Co towards the solder, and a small amount of amorphous Co45P13In12Sn30 appeared at the Co-P side because of diffusion of In and Sn into Co-P. The growth of Co(In,Sn)3 and Co45P13In12Sn30 during solid-state aging was slow, being controlled by interfacial reaction and diffusion, respectively. For comparison, In-48Sn/Bi2Te3-SiC joints were prepared and the IMCs in the joints analyzed. Without a diffusion barrier, In penetrated rapidly into the substrate, which led to the formation of amorphous In x Bi y phase in crystalline In4Te3 matrix. These IMCs grew quickly with prolongation of the annealing time, and their growth was governed by volume diffusion of elements. The experimental data demonstrate that electroplated Co-P film is an effective diffusion barrier for use in Bi2Te3-based thermoelectric modules.

  13. Sodium Ion Diffusion in Nasicon (Na3Zr2Si2PO12) Solid Electrolytes: Effects of Excess Sodium.

    PubMed

    Park, Heetaek; Jung, Keeyoung; Nezafati, Marjan; Kim, Chang-Soo; Kang, Byoungwoo

    2016-10-04

    The Na superionic conductor (aka Nasicon, Na 1+x Zr 2 Si x P 3-x O 12 , where 0 ≤ x ≤ 3) is one of the promising solid electrolyte materials used in advanced molten Na-based secondary batteries that typically operate at high temperature (over ∼270 °C). Nasicon provides a 3D diffusion network allowing the transport of the active Na-ion species (i.e., ionic conductor) while blocking the conduction of electrons (i.e., electronic insulator) between the anode and cathode compartments of cells. In this work, the standard Nasicon (Na 3 Zr 2 Si 2 PO 12 , bare sample) and 10 at% Na-excess Nasicon (Na 3.3 Zr 2 Si 2 PO 12 , Na-excess sample) solid electrolytes were synthesized using a solid-state sintering technique to elucidate the Na diffusion mechanism (i.e., grain diffusion or grain boundary diffusion) and the impacts of adding excess Na at relatively low and high temperatures. The structural, thermal, and ionic transport characterizations were conducted using various experimental tools including X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). In addition, an ab initio atomistic modeling study was carried out to computationally examine the detailed microstructures of Nasicon materials, as well as to support the experimental observations. Through this combination work comprising experimental and computational investigations, we show that the predominant mechanisms of Na-ion transport in the Nasicon structure are the grain boundary and the grain diffusion at low and high temperatures, respectively. Also, it was found that adding 10 at% excess Na could give rise to a substantial increase in the total conductivity (e.g., ∼1.2 × 10 -1 S/cm at 300 °C) of Nasicon electrolytes resulting from the enlargement of the bottleneck areas in the Na diffusion channels of polycrystalline grains.

  14. Comparison of efficiency degradation in polycrystalline-Si and CdTe thin-film PV modules via accelerated lifecycle testing

    NASA Astrophysics Data System (ADS)

    Lai, T.; Potter, B. G.; Simmons-Potter, K.

    2017-08-01

    Thin-film solar cells normally have the shortest energy payback time due to their simpler mass-production process compared to polycrystalline-Si photovoltaic (PV) modules, despite the fact that crystalline-Si-based technology typically has a longer total lifetime and a higher initial power conversion efficiency. For both types of modules, significant aging occurs during the first two years of usage with slower long-term aging over the module lifetime. The PV lifetime and the return-on-investment for local PV system installations rely on long-term device performance. Understanding the efficiency degradation behavior under a given set of environmental conditions is, therefore, a primary goal for experimental research and economic analysis. In the present work, in-situ measurements of key electrical characteristics (J, V, Pmax, etc.) in polycrystalline-Si and CdTe thin-film PV modules have been analyzed. The modules were subjected to identical environmental conditions, representative of southern Arizona, in a full-scale, industrial-standard, environmental degradation chamber, equipped with a single-sun irradiance source, temperature, and humidity controls, and operating an accelerated lifecycle test (ALT) sequence. Initial results highlight differences in module performance with environmental conditions, including temperature de-rating effects, for the two technologies. Notably, the thin-film CdTe PV module was shown to be approximately 15% less sensitive to ambient temperature variation. After exposure to a seven-month equivalent compressed night-day weather cycling regimen the efficiency degradation rates of both PV technology types were obtained and will be discussed.

  15. Ab initio calculation of 1H, 17O, 27Al and 29Si NMR parameters, vibrational frequencies and bonding energetics in hydrous silica and Na-aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.; Sykes, D. G.

    2004-10-01

    Ab initio, molecular orbital (MO) calculations were performed on model systems of SiO 2, NaAlSi 3O 8 (albite), H 2O-SiO 2 and H 2O-NaAlSi 3O 8 glasses. Model nuclear magnetic resonance (NMR) isotropic chemical shifts (δ iso) for 1H, 17O, 27Al and 29Si are consistent with experimental data for the SiO 2, NaAlSi 3O 8, H 2O-SiO 2 systems where structural interpretations of the NMR peak assignments are accepted. For H 2O-NaSi 3AlO 8 glass, controversy has surrounded the interpretation of NMR and infrared (IR) spectra. Calculated δ iso1H, δ iso17O, δ iso27Al and δ iso29Si are consistent with the interpretation of Kohn et al. (1992) that Si-(OH)-Al linkages are responsible for the observed peaks in hydrous Na-aluminosilicate glasses. In addition, a theoretical vibrational frequency associated with the Kohn et al. (1992) model agrees well with the observed shoulder near 900 cm -1 in the IR and Raman spectra of hydrous albite glasses. MO calculations suggest that breaking this Si-(OH)-Al linkage requires ˜+56 to +82 kJ/mol which is comparable to the activation energies for viscous flow in hydrous aluminosilicate melts.

  16. Activation of an intense near band edge emission from ZnTe/ZnMgTe core/shell nanowires grown on silicon.

    PubMed

    Wojnar, P; Szymura, M; Zaleszczyk, W; Kłopotowski, L; Janik, E; Wiater, M; Baczewski, L T; Kret, S; Karczewski, G; Kossut, J; Wojtowicz, T

    2013-09-13

    The absence of luminescence in the near band edge energy region of Te-anion based semiconductor nanowires grown by gold catalyst assisted molecular beam epitaxy has strongly limited their applications in the field of photonics. In this paper, an enhancement of the near band edge emission intensity from ZnTe/ZnMgTe core/shell nanowires grown on Si substrates is reported. A special role of the use of Si substrates instead of GaAs substrates is emphasized, which results in an increase of the near band edge emission intensity by at least one order of magnitude accompanied by a simultaneous reduction of the defect related luminescence. A possible explanation of this effect relies on the presence of Ga-related deep level defects in structures grown on GaAs substrates, which are absent when Si substrates are used. Monochromatic mapping of the cathodoluminescence clearly confirms that the observed emission originates, indeed, from the ZnTe/ZnMgTe core/shell nanowires, whereas individual objects are studied by means of microphotoluminescence.

  17. Precursor routes to quaternary intermetallics: Synthesis, crystal structure, and physical properties of clathrate-II Cs{sub 8}Na{sub 16}Al{sub 24}Si{sub 112}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Kaya; Dong, Yongkwan; Nolas, George S., E-mail: gnolas@usf.edu

    A new quaternary clathrate–II composition, Cs{sub 8}Na{sub 16}Al{sub 24}Si{sub 112}, was synthesized by kinetically controlled thermal decomposition (KCTD) employing both NaSi and NaAlSi as the precursors and CsCl as a reactive flux. The crystal structure and composition of Cs{sub 8}Na{sub 16}Al{sub 24}Si{sub 112} were investigated using both Rietveld refinement and elemental analysis, and the temperature dependent transport properties were investigated. Our results indicate that KCTD with multiple precursors is an effective method for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques. - Graphical abstract: Quaternary Cs{sub 8}Na{sub 16}Al{sub 24}S{submore » 112} clathrate–II was synthesized for the first time by kinetically controlled thermal decomposition (KCTD) employing a NaSi+NaAlSi precursor mixture with CsCl as the reactive flux, and the structural and transport properties were investigated. Our approach demonstrates a new synthetic pathway for the synthesis of multinary inorganic compounds. This work reports the exploration of a new clathrate composition as this class of materials continues to be of interest for thermoelectrics and other energy-related applications.« less

  18. Analysis of Etched CdZnTe Substrates

    NASA Astrophysics Data System (ADS)

    Benson, J. D.; Bubulac, L. O.; Jaime-Vasquez, M.; Lennon, C. M.; Arias, J. M.; Smith, P. J.; Jacobs, R. N.; Markunas, J. K.; Almeida, L. A.; Stoltz, A.; Wijewarnasuriya, P. S.; Peterson, J.; Reddy, M.; Jones, K.; Johnson, S. M.; Lofgreen, D. D.

    2016-09-01

    State-of-the-art as-received (112)B CdZnTe substrates have been examined for surface impurity contamination and polishing residue. Two 4 cm × 4 cm and one 6 cm × 6 cm (112)B state-of-the-art as-received CdZnTe wafers were analyzed. A maximum surface impurity concentration of Al = 1.7 × 1015 atoms cm-2, Si = 3.7 × 1013 atoms cm-2, Cl = 3.12 × 1015 atoms cm-2, S = 1.7 × 1014 atoms cm-2, P = 1.1 × 1014 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 1.2 × 1014 atoms cm-2, and Cu = 4 × 1012 atoms cm-2 was observed on the as-received CdZnTe wafers. CdZnTe particulates and residual SiO2 polishing grit were observed on the surface of the as-received (112)B CdZnTe substrates. The polishing grit/CdZnTe particulate density on CdZnTe wafers was observed to vary across a 6 cm × 6 cm wafer from ˜4 × 107 cm-2 to 2.5 × 108 cm-2. The surface impurity and damage layer of the (112)B CdZnTe wafers dictate that a molecular beam epitaxy (MBE) preparation etch is required. The contamination for one 4 cm × 4 cm and one 6 cm × 6 cm CdZnTe wafer after a standard MBE Br:methanol preparation etch procedure was also analyzed. A maximum surface impurity concentration of Al = 2.4 × 1015 atoms cm-2, Si = 4.0 × 1013 atoms cm-2, Cl = 7.5 × 1013 atoms cm-2, S = 4.4 × 1013 atoms cm-2, P = 9.8 × 1013 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 2.9 × 1014 atoms cm-2, and Cu = 5.2 × 1012 atoms cm-2 was observed on the MBE preparation-etched CdZnTe wafers. The MBE preparation-etched surface contamination consists of Cd(Zn)Te particles/flakes. No residual SiO2 polishing grit was observed on the (112)B surface.

  19. Effect of KOH to Na2SiO3 Ratio on Microstructure and Hardness of Plasma Electrolytic Oxidation Coatings on AA 6061 Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Jang, Yong-Joo; Jung, Jae Pil

    2017-10-01

    In this study, plasma electrolytic oxidation (PEO) process has been employed to fabricate alumina coatings on AA 6061 aluminum alloy from an electrolyte containing water glass (Na2SiO3) and alkali (KOH). The effect of deposition time and the alkali to water glass (KOH: Na2SiO3) composition ratio on the coating morphology and properties are studied. The different phases of the oxide layer and microstructure are investigated by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. The results indicate that initially γ-Al2O3 forms in the coating, and as the processing time is increased from 5 to 60 minutes, α-Al2O3 phase becomes prominent. Further, higher the content of Na2SiO3, higher is the hardness and coating growth rate due to the formation of stable α-Al2O3 and Al-Si-O phase. It has been reported that the optimum properties of the PEO coatings can be obtained at a ratio of KOH: Na2SiO3 ≈ 15:10 followed by 10:10.

  20. Characterization of HgCdTe and Related Materials For Third Generation Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Vaghayenegar, Majid

    Hg1-xCdxTe (MCT) has historically been the primary material used for infrared detectors. Recently, alternative substrates for MCT growth such as Si, as well as alternative infrared materials such as Hg1-xCdxSe, have been explored. This dissertation involves characterization of Hg-based infrared materials for third generation infrared detectors using a wide range of transmission electron microscopy (TEM) techniques. A microstructural study on HgCdTe/CdTe heterostructures grown by MBE on Si (211) substrates showed a thin ZnTe layer grown between CdTe and Si to mediate the large lattice mismatch of 19.5%. Observations showed large dislocation densities at the CdTe/ZnTe/Si (211) interfaces, which dropped off rapidly away from the interface. Growth of a thin HgTe buffer layer between HgCdTe and CdTe layers seemed to improve the HgCdTe layer quality by blocking some defects. A second study investigated the correlation of etch pits and dislocations in as-grown and thermal-cycle-annealed (TCA) HgCdTe (211) films. For as-grown samples, pits with triangular and fish-eye shapes were associated with Frank partial and perfect dislocations, respectively. Skew pits were determined to have a more complex nature. TCA reduced the etch-pit density by 72%. Although TCA processing eliminated the fish-eye pits, dislocations reappeared in shorter segments in the TCA samples. Large pits were observed in both as-grown and TCA samples, but the nature of any defects associated with these pits in the as-grown samples is unclear. Microstructural studies of HgCdSe revealed large dislocation density at ZnTe/Si(211) interfaces, which dropped off markedly with ZnTe thickness. Atomic-resolution STEM images showed that the large lattice mismatch at the ZnTe/Si interface was accommodated through {111}-type stacking faults. A detailed analysis showed that the stacking faults were inclined at angles of 19.5 and 90 degrees at both ZnTe/Si and HgCdSe/ZnTe interfaces. These stacking faults were associated

  1. Complete Al-SI Order in Scapolite Me[subscript 37.5], Ideally Ca[subscript 3]Na[subscript 5][Al[subscript 8]Si[subscript 16]O[subscript 48

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Hassan, Ishmael; West Indies)

    2011-09-06

    The structure of an intermediate scapolite (Me{sub 36.6}) from Lake Clear, Ontario, was obtained using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinement in space group P4{sub 2}/n. The chemical formula obtained by electron microprobe is Na{sub 2.19}Ca{sub 1.35}K{sub 0.16}[Al{sub 3.95}Si{sub 8.05}O{sub 24}]Cl{sub 0.55}(CO{sub 3}){sub 0.41}(SO{sub 4}){sub 0.04}, equivalent to Me{sub 36.6}. The unit-cell parameters are a 12.07899(1), c 7.583467(9) {angstrom}, and V 1106.443(2) {angstrom}{sup 3}. The average distances are = 1.617(1) {angstrom}, = 1.744(1) {angstrom}, and = 1.601(1) {angstrom}. Therefore, the T1 and T3 sites contain only Si atoms, and the T2 sitemore » contains only Al atoms, so the Al and Si atoms are completely ordered. Complete Al-Si order was predicted for Me{sub 37.5}, ideally Ca{sub 3}Na{sub 5}[Al{sub 8}Si{sub 16}O{sub 48}]Cl(CO{sub 3}), and is confirmed in this study. Antiphase domain boundaries (APBs) in scapolite cannot arise from Al-Si order because the average distances indicate complete Al-Si order in Me{sub 36.6}. If APBs were to arise from Al-Si order, switching of the T sites across the APBs will occur, and complete Al-Si order cannot be observed. Therefore, Al-Si order, which is present to various extents across the scapolite series, can be ruled out as the cause for the APBs. Order involving Cl and CO{sub 3} is the cause for the APBs in scapolite.« less

  2. Evaluation of Surface Cleaning of Si(211) for Molecular-Beam Epitaxy Deposition of Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Jaime-Vasquez, M.; Jacobs, R. N.; Benson, J. D.; Stoltz, A. J.; Almeida, L. A.; Bubulac, L. O.; Chen, Y.; Brill, G.

    2010-07-01

    We report an assessment of the reproducibility of the HF cleaning process and As passivation prior to the nucleation of ZnTe on the Si(211) surface using temperature desorption spectroscopy, ion scattering spectroscopy, and electron spectroscopy. Observations suggest full H coverage of the Si(211) surface with mostly monohydride and small amounts of dihydride states, and that F is uniformly distributed across the top layer as a physisorbed species. Variations in major contaminants are observed across the Si surface and at the CdTe-ZnTe/Si interface. Defects act as getters for impurities present on the Si surface, and some are buried under the CdTe/ZnTe heterostructure. Overall, the data show evidence of localized concentration of major impurities around defects, supporting the hypothesis of a physical model explaining the electrical activation of defects in long-wave infrared (LWIR) HgCdTe/CdTe/Si devices.

  3. Demonstration of in-vivo Multi-Probe Tracker Based on a Si/CdTe Semiconductor Compton Camera

    NASA Astrophysics Data System (ADS)

    Takeda, Shin'ichiro; Odaka, Hirokazu; Ishikawa, Shin-nosuke; Watanabe, Shin; Aono, Hiroyuki; Takahashi, Tadayuki; Kanayama, Yousuke; Hiromura, Makoto; Enomoto, Shuichi

    2012-02-01

    By using a prototype Compton camera consisting of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors, originally developed for the ASTRO-H satellite mission, an experiment involving imaging multiple radiopharmaceuticals injected into a living mouse was conducted to study its feasibility for medical imaging. The accumulation of both iodinated (131I) methylnorcholestenol and 85Sr into the mouse's organs was simultaneously imaged by the prototype. This result implies that the Compton camera is expected to become a multi-probe tracker available in nuclear medicine and small animal imaging.

  4. Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry

    NASA Astrophysics Data System (ADS)

    Grove, Timothy L.; Baker, Michael B.; Kinzler, Rosamond J.

    1984-10-01

    The rate of CaAl-NaSi interdiffusion in plagioclase feldspar was determined under 1 atm anhydrous conditions over the temperature range 1400° to 1000°C in calcic plagioclase (An 80-81) by homogenizing coherent exsolution lamellae. The dependence of the average interdiffusion coefficient on temperature is given by the expression: D˜ = 10.99 ( cm 2/sec) exp (-123.4( kcal/mol)/RT), (T in °K). This value is for diffusion perpendicular to the (03 1¯) interface of the lamellae. CaAl-NaSi interdiffusion is 4 to 5 orders of magnitude slower than oxygen diffusion in the temperature range 1400° to 1200°C and possibly 10 orders of magnitude slower at subsolidus temperatures. The large differences in diffusion rates explain the apparent contradiction posed by the plagioclases of large layered intrusions ( e.g., the Skaergaard), which retain delicate Ca, Na compositional zoning profiles on the micron scale, but have undergone complete oxygen isotopic exchange with heated meteoric groundwater from the surrounding wall rocks. CaAl-NaSi diffusion is slow, the closure temperature is high (within the solidus-liquidus interval), and Ca-Na zoning is preserved. Oxygen diffusion is faster, the closure temperature is lower (350°-400°C) and the feldspars exchange oxygen with the low-temperature hydrothermal fluids. The complex micron-scale oscillatory zones in plagioclase can also be used as cooling rate speedometers for volcanic and plutonic plagioclase. Cooling histories typical of large mafic intrusions ( e.g. the Stillwater) are slow, begin at high initial temperatures (1200°C) and result in homogenization of oscillatory zones on the scale of 10 microns. The oscillatory zones found in the plagioclase of granodioritic plutons are preserved because cooling is initiated at a lower temperature (1000°C) limiting diffusion to submicron length scales despite the slow cooling rate of the intrusion.

  5. CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Swanson, Drew E.; Reich, Carey; Abbas, Ali; Shimpi, Tushar; Liu, Hanxiao; Ponce, Fernando A.; Walls, John M.; Zhang, Yong-Hang; Metzger, Wyatt K.; Sampath, W. S.; Holman, Zachary C.

    2018-05-01

    As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.

  6. CdCl2 Passivation of Polycrystalline CdMgTe and CdZnTe Absorbers for Tandem Photovoltaic Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, Wyatt K; Swanson, Drew; Reich, Carey

    As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extendingmore » Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.« less

  7. Silicon content design of CrSiN films for good anti-corrosion and anti-wear performances in NaOH solution

    NASA Astrophysics Data System (ADS)

    Wang, Haixin; Ye, Yuwei; Wang, Chunting; Zhang, Guangan; Liu, Wei

    2018-06-01

    The CrSiN films with different silicon contents were fabricated by medium frequency magnetron sputtering. The 304L stainless steel and Si (1 0 0) wafer were used for substrate specimens. Film plasticity, corrosion and tribological behaviors in 0.1 M NaOH solution were systematically investigated. Results show that the plasticity of CrN film could be improved by the addition of silicon. During the corrosion test, with the increase of silicon content, the corrosion current density exhibited a descending trend and impedance presented a rising trend. The COF and wear rate of as-prepared CrSiN film initially decreased and then increased as the silicon content increased. The CrSiN film with 12.7 at.% Si exhibited the lowest COF of 0.04 and a wear rate of 6.746  ×  10‑8 mm3 Nm‑1 in 0.1 M NaOH solution.

  8. High Efficiency Thin Film CdTe and a-Si Based Solar Cells: Final Technical Report, 4 March 1998--15 October 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2003-10-01

    This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Simore » materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.« less

  9. Admittance of MIS-Structures Based on HgCdTe with a Double-Layer CdTe/Al2O3 Insulator

    NASA Astrophysics Data System (ADS)

    Dzyadukh, S. M.; Voitsekhovskii, A. V.; Nesmelov, S. N.; Sidorov, G. Yu.; Varavin, V. S.; Vasil'ev, V. V.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.

    2018-03-01

    Admittance of MIS structures based on n( p)- Hg1-xCdxTe (at x from 0.22 to 0.40) with SiO2/Si3N4, Al2O3, and CdTe/Al2O3 insulators is studied experimentally at 77 K. Growth of an intermediate CdTe layer during epitaxy results in the almost complete disappearance of the hysteresis of electrophysical characteristics of MIS structures based on graded-gap n-HgCdTe for a small range of the voltage variation. For a wide range of the voltage variation, the hysteresis of the capacitance-voltage characteristics appears for MIS structures based on n-HgCdTe with the CdTe/Al2O3 insulator. However, the hysteresis mechanism differs from that in case of a single-layer Al2O3 insulator. For MIS structures based on p-HgCdTe, introduction of an additional CdTe layer does not lead to a significant decrease of the hysteresis phenomena, which may be due to the degradation of the interface properties when mercury leaves the film as a result of low-temperature annealing changing the conductivity type of the semiconductor.

  10. The first Fe-based Na+-ion cathode with two distinct types of polyanions: Fe 3P 5SiO 19

    DOE PAGES

    Kan, W. H.; Huq, A.; Manthiram, A.

    2015-05-15

    We report the synthesis, structure, and electrochemistry of the first Na +-ion cathode with two distinct types of polyanions: Fe 3P 5SiO 19. The Fe-based cathode has a reversible capacity of ca. 70 mAh g -1; ca. 1.7 Na + ions per formula can be inserted/extracted at an average voltage of 2.5 V versus Na +/Na.

  11. Novel hybrid structure silica/CdTe/molecularly imprinted polymer: synthesis, specific recognition, and quantitative fluorescence detection of bovine hemoglobin.

    PubMed

    Li, Dong-Yan; He, Xi-Wen; Chen, Yang; Li, Wen-You; Zhang, Yu-Kui

    2013-12-11

    This work presented a novel strategy for the synthesis of the hybrid structure silica/CdTe/molecularly imprinted polymer (Si-NP/CdTe/MIP) to recognize and detect the template bovine hemoglobin (BHb). First, amino-functionalized silica nanoparticles (Si-NP) and carboxyl-terminated CdTe quantum dots (QDs) were assembled into composite nanoparticles (Si-NP/CdTe) using the EDC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride) chemistry. Next, Si-NP/CdTe/MIP was synthesized by anchoring molecularly imprinted polymer (MIP) layer on the surface of Si-NP/CdTe through the sol-gel technique and surface imprinting technique. The hybrid structure possessed the selectivity of molecular imprinting technique and the sensitivity of CdTe QDs as well as well-defined morphology. The binding experiment and fluorescence method demonstrated its special recognition performance toward the template BHb. Under the optimized conditions, the fluorescence intensity of the Si-NP/CdTe/MIP decreased linearly with the increase of BHb in the concentration range 0.02-2.1 μM, and the detection limit was 9.4 nM. Moreover, the reusability and reproducibility and the successful applications in practical samples indicated the synthesis of Si-NP/CdTe/MIP provided an alternative solution for special recognition and determination of protein from real samples.

  12. Study of gold nanostar@SiO2@CdTeS quantum dots@SiO2 with enhanced-fluorescence and photothermal therapy multifunctional cell nanoprobe

    NASA Astrophysics Data System (ADS)

    Yin, Naiqiang; Jiang, Tongtong; Yu, Jing; He, Jiawei; Li, Xu; Huang, Qianpeng; Liu, Ling; Xu, Xiaoliang; Zhu, Lixin

    2014-03-01

    A novel class of cell probe structured as gold nanostar@SiO2@CdTeS quantum dots@SiO2 nanoprobes with multifunctional (MFNPs) fluorescent and photothermal properties were demonstrated. The MFNPs with good homogeneity (129 ± 10 nm) and dispersity were synthesized by a liquid phase method. The fluorescence signal of quantum dots was enhanced in the MFNPs, compared with the pure quantum dots. The vitro study showed that the MFNPs can realize the targeted labeling after functionalized with anti-body. Furthermore, the nanoprobe displays strong surface plasmonic resonance absorbance in the near-infrared region, thus exhibiting an NIR (808 nm)-induced temperature elevation. When cancer cells were cultured with the anti-body linked MFNPs and irradiated by laser, the MFNPs were demonstrated as good candidates for curing cancer cells. Therefore, such a multifunctional probe can be developed as a promising nanosystem that integrates multiple capabilities for effective cancer diagnosis and therapy.

  13. Overcoming Etch Challenges on a 6″ Hg1- x Cd x Te MBE on Si Wafer

    NASA Astrophysics Data System (ADS)

    Apte, Palash; Norton, Elyse; Robinson, Solomon

    2017-10-01

    The effect of increasing photoresist (PR) thickness on the inductively coupled plasma (ICP) dry etched characteristics of a 6″ (c.15 cm) molecular beam epitaxy Hg1- x Cd x Te/Si wafer is investigated. It is determined that the Hg1- x Cd x Te etch rate (ER) does not vary significantly with a change in the PR thickness. Also, the vertical ER of the PR is seen to be independent of the PR thickness, but the lateral ER is seen to reduce significantly with increased PR thickness. Indeed, very little reduction in the pixel mesa area post-dry etch is seen for the thicker PR. Consequently, the trench sidewall angle is also seen to vary as a function of the PR thickness. Since ICP is the more attractive choice for dry etching Hg1- x Cd x Te, this simple, cost-effective way to extend the capabilities of dry etching (larger mesa top area post-dry etch, ability to create tailor-made trench sidewall angles for optimal conformal passivation deposition, and potential for reduced dry etch damage) described here would allow for the fabrication of next generation infrared detectors with increased yield and reduced cost. Although similar results have been presented using the electron cyclotron resonance system to dry etch Hg1- x Cd x Te, to the best of our knowledge, this is the first time that such results have been presented using an ICP system.

  14. Self-Tuning n-Type Bi2(Te,Se)3/SiC Thermoelectric Nanocomposites to Realize High Performances up to 300 °C.

    PubMed

    Pan, Yu; Aydemir, Umut; Sun, Fu-Hua; Wu, Chao-Feng; Chasapis, Thomas C; Snyder, G Jeffrey; Li, Jing-Feng

    2017-11-01

    Bi 2 Te 3 thermoelectric materials are utilized for refrigeration for decades, while their application of energy harvesting requires stable thermoelectric and mechanical performances at elevated temperatures. This work reveals that a steady zT of ≈0.85 at 200 to 300 °C can be achieved by doping small amounts of copper iodide (CuI) in Bi 2 Te 2.2 Se 0.8 -silicon carbide (SiC) composites, where SiC nanodispersion enhances the flexural strength. It is found that CuI plays two important roles with atomic Cu/I dopants and CuI precipitates. The Cu/I dopants show a self-tuning behavior due to increasing solubility with increasing temperatures. The increased doping concentration increases electrical conductivity at high temperatures and effectively suppresses the intrinsic excitation. In addition, a large reduction of lattice thermal conductivity is achieved due to the "in situ" CuI nanoprecipitates acting as phonon-scattering centers. Over 60% reduction of bipolar thermal conductivity is achieved, raising the maximum useful temperature of Bi 2 Te 3 for substantially higher efficiency. For module applications, the reported materials are suitable for segmentation with a conventional ingot. This leads to high device ZT values of ≈0.9-1.0 and high efficiency up to 9.2% from 300 to 573 K, which can be of great significance for power generation from waste heat.

  15. Blue-green tunable color of Ce3+/Tb3+ coactivated NaBa3La3Si6O20 phosphor via energy transfer

    PubMed Central

    Jia, Zhen; Xia, Mingjun

    2016-01-01

    A series of color tunable phosphors NaBa3La3Si6O20:Ce3+, Tb3+ were synthesized via the high-temperature solid-state method. NaBa3La3Si6O20 crystallizes in noncentrosymmetric space group Ama2 with the cell parameters of a = 14.9226(4) Å, b = 24.5215(5) Å and c = 5.6241(2) Å by the Rietveld refinement method. The Ce3+ ions doped NaBa3La3Si6O20 phosphors have a strong absorption band from 260 to 360 nm and show near ultraviolet emission light centered at 378 nm. The Ce3+ and Tb3+ ions coactivated phosphors exhibit color tunable emission light from deep blue to green by adjusting the concentration of the Tb3+ ions. An energy transfer of Ce3+ → Tb3+ investigated by the photoluminescence properties and lifetime decay, is demonstrated to be dipole–quadrupole interaction. These results indicate the NaBa3La3Si6O20:Ce3+, Tb3+ phosphors can be considered as potential candidates for blue-green components for white light emitting diodes. PMID:27628111

  16. Heat capacity measurements for cryolite (Na3AlF6) and reactions in the system NaFeAlSiOF

    USGS Publications Warehouse

    Anovitz, Lawrence M.; Hemingway, B.S.; Westrum, E.F.; Metz, G.W.; Essene, E.J.

    1987-01-01

    The heat capacity of cryolite (Na3AlF6) has been measured from 7 to 1000 K by low-temperature adiabatic and high-temperature differential scanning calorimetry. Low-temperature data were obtained on material from the same hand specimen in the calorimetric laboratories of the University of Michigan and U.S. Geological Survey. The results obtained are in good agreement, and yield average values for the entropy of cryolite of: S0298 = 238.5 J/mol KS0T-S0298 = 145.114 ln T+ 193.009*10-3T- 10.366* 105 T2- 872.89 J/mol K (273-836.5 K)??STrans = 9.9J/mol KS0T-S0298 =198.414 ln T+73.203* 10-3T-63.814* 105 T2-1113.11 J/mol K (836.5-1153 K) with the transition temperature between ??- and ??-cryolite taken at 836.5 K. These data have been combined with data in the literature to calculate phase equilibria for the system NaFeAlSiOF. The resultant phase diagrams allow constraints to be placed on the fO2, fF2, aSiO2 and T conditions of formation for assemblages in alkalic rocks. A sample application suggests that log fO2 is approximately -19.2, log fF2 is -31.9 to -33.2, and aSiO2 is -1.06 at assumed P T conditions of 1000 K, 1 bar for the villiaumite-bearing Ilimaussaq intrusion in southwestern Greenland. ?? 1987.

  17. Experimental Determination of the Effect of the Ratio of B/Al on Glass Dissolution along the Nepheline (NaAlSiO 4) – Malinkoite (NaBSiO 4) Join

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M; Reed, Lunde R; Shaw, Wendy J

    2010-03-27

    The dissolution kinetics of five glasses along the NaAlSiO 4-NaBSiO 4 join were used to evaluate how the structural variations associated with boron-aluminum substitution affect the rate of dissolution. The composition of each glass varied inversely in mol% of Al 2O 3 (5 to 25 mol%) and B 2O 3 (20 to 0 mol%) with Na 2O (25 mol%) and SiO 2 (50 mol%) making up the remaining amount, in every case Na/(Al+B) = 1.0. Single-pass flow-through experiments (SPFT) were conducted under dilute conditions as a function of solution pH (from 7.0 to 12.0) and temperature (from 23° to 90°C).more » Analysis by 27Al and 29Si MAS-NMR suggests Al (~98% [4]Al) and Si atoms (~100% [4]Si) occupy a tetrahedral coordination whereas, B atoms occupy both tetrahedral ([4]B) and trigonal ( [3]B) coordination. The distribution of [3]B fractionated between [3]B(ring) and [3]B(non-ring) moieties, with the [3]B(ring)/ [3]B(non-ring) ratio increases with the B/Al ratio. The MAS-NMR results also indicated an increase in the fraction of [4]B with an increase in the B/Al ratio. But despite the changes in the B/Al ratio and B coordination, the 29Si spectra maintain a chemical shift between -88 to -84 ppm for each glass. Unlike the 29Si spectra, the 27Al resonances shift to more positive values with an increase in the B/Al ratio which suggests mixing between the [4]Al and [3]B sites, assuming avoidance between tetrahedral trivalent cations ( [4]Al-O- [4]B avoidance). Raman spectroscopy was use to augment the results collected from MAS-NMR and demonstrated that NeB4 (glass sample with the highest B content) was glass-glass phase separated (e.g., heterogeneous glass). Results from SPFT experiments suggest a forward rate of reaction and pH power law coefficients,η, that are independent of B/Al under these neutral to alkaline test conditions for all homogeneous glasses. The temperature dependence shows an order of magnitude increase in the dissolution rate with a 67°C increase in temperature and

  18. Cherenkov light identification in TeO2 crystals with Si low-temperature detectors

    NASA Astrophysics Data System (ADS)

    Gironi, L.; Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Faverzani, M.; Ferri, E.; Giachero, A.; Gotti, C.; Maino, M.; Margesin, B.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pozzi, S.; Previtali, E.; Puiu, A.; Sisti, M.; Terranova, F.

    2017-09-01

    Low temperature thermal detectors with particle identification capabilities are among the best detectors for next generation experiments for the search of neutrinoless double beta decay. Thermal detectors allow to reach excellent energy resolution and to optimize the detection efficiency, while the possibility to identify the interacting particle allows to greatly reduce the background. Tellurium dioxide is one of the favourite compounds since it has long demonstrated the first two features and could reach the third through Cherenkov emission tagging [1]. A new generation of cryogenic light detectors are however required to detect the few Cherenkov photons emitted by electrons of few MeV energy. Preliminary measurements with new Si light detectors demonstrated a clear event-by-event discrimination between alpha and beta/gamma interactions at the 130Te neutrinoless double beta decay Q-value (2528 keV).

  19. Phthalocyanine-Conjugated Upconversion NaYF4 :Yb3+ /Er3+ @SiO2 Nanospheres for NIR-Triggered Photodynamic Therapy in a Tumor Mouse Model.

    PubMed

    Kostiv, Uliana; Patsula, Vitalii; Noculak, Agnieszka; Podhorodecki, Artur; Větvička, David; Poučková, Pavla; Sedláková, Zdenka; Horák, Daniel

    2017-12-19

    Photodynamic therapy (PDT) has garnered immense attention as a minimally invasive clinical treatment modality for malignant cancers. However, its low penetration depth and photodamage of living tissues by UV and visible light, which activate a photosensitizer, limit the application of PDT. In this study, monodisperse NaYF 4 :Yb 3+ /Er 3+ nanospheres 20 nm in diameter, that serve as near-infrared (NIR)-to-visible light converters and activators of a photosensitizer, were synthesized by high-temperature co-precipitation of lanthanide chlorides in a high-boiling organic solvent (octadec-1-ene). The nanoparticles were coated with a thin shell (≈3 nm) of homogenous silica via the hydrolysis and condensation of tetramethyl orthosilicate. The NaYF 4 :Yb 3+ /Er 3+ @SiO 2 particles were further functionalized by methacrylate-terminated groups via 3-(trimethoxysilyl)propyl methacrylate. To introduce a large number of reactive amino groups on the particle surface, methacrylate-terminated NaYF 4 :Yb 3+ /Er 3+ @SiO 2 nanospheres were modified with a branched polyethyleneimine (PEI) via Michael addition. Aluminum carboxyphthalocyanine (Al Pc-COOH) was then conjugated to NaYF 4 :Yb 3+ /Er 3+ @SiO 2 -PEI nanospheres via carbodiimide chemistry. The resulting NaYF 4 :Yb 3+ /Er 3+ @SiO 2 -PEI-Pc particles were finally modified with succinimidyl ester of poly(ethylene glycol) (PEG) in order to alleviate their future uptake by the reticuloendothelial system. Upon 980 nm irradiation, the intensive red emission of NaYF 4 :Yb 3+ /Er 3+ @SiO 2 -PEI-Pc-PEG nanoparticles completely vanished, indicating efficient energy transfer from the nanoparticles to Al Pc-COOH, which generates singlet oxygen ( 1 O 2 ). Last but not least, NaYF 4 :Yb 3+ /Er 3+ @SiO 2 -PEI-Pc-PEG nanospheres were intratumorally administered into mammary carcinoma MDA-MB-231 growing subcutaneously in athymic nude mice. Extensive necrosis developed at the tumor site of all mice 24-48 h after irradiation by laser at

  20. Desorption induced by electronic transitions of Na from SiO2: relevance to tenuous planetary atmospheres.

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.; Madey, T. E.

    2000-04-01

    The authors have studied the desorption induced by electronic transitions (DIET) of Na adsorbed on model mineral surfaces, i.e. amorphous, stoichiometric SiO2 films. They find that electron stimulated desorption (ESD) of atomic Na occurs for electron energy thresholds as low as ≡4 eV, that desorption cross-sections are high (≡1×10-19cm2 at 11 eV), and that desorbing atoms are 'hot', with suprathermal velocities. The estimated Na desorption rate from the lunar surface via ESD by solar wind electrons is a small fraction of the rate needed to sustain the Na atmosphere. However, the solar photon flux at energies ≥5 eV exceeds the solar wind electron flux by orders of magnitude; there are sufficient ultraviolet photons incident on the lunar surface to contribute substantially to the lunar Na atmosphere via PSD of Na from the surface.

  1. Microstructural dependence on relevant physical-mechanical properties on SiO2-Na2O-CaO-P2O5 biological glasses.

    PubMed

    Rajendran, V; Begum, A Nishara; Azooz, M A; el Batal, F H

    2002-11-01

    Bioactive glasses of the system SiO2-Na2O-CaO-P2O5 have been prepared by the normal melting and annealing technique. The elastic moduli, attenuation, Vickers hardness, fracture toughness and fracture surface energy have been obtained using the known method at room temperature. The temperature dependence of elastic moduli and attenuation measurements have been extended over a wide range of temperature from 150 to 500 K. The SiO2 content dependence of velocities, attenuation, elastic moduli, and other parameters show an interesting observation at 45 wt% of SiO2 by exhibiting an anomalous behaviour. A linear relation is developed for Tg, which explores the influence of Na2O on SiO2-Na2O-CaO-P2O5 bioactive glasses. The measured hardness, fracture toughness and fracture surface energy show a linear relation with Young's modulus. It is also interesting to note that the observed results are functions of polymerisation and the number of non-bridging oxygens (NBO) prevailing in the network with change in SiO2 content. The temperature dependence of velocities, attenuation and elastic moduli show the existence of softening in the glass network structure as temperature increases.

  2. Capstone Report on the Application, Monitoring, and Performance of Permeable Reactive Barriers for Ground-Water Remediation: Volume 1: Performance Evaluations at Two Sites

    DTIC Science & Technology

    2003-08-01

    sepiolite , Mg 4 (OH) 2 Si 6 O 15 ·H 2 O...EC050801-3-5 EC050801-3-3 EC050801-3-2 EC050801-3-1 In te n si ty degrees 2-theta In te n si ty In te n si ty downgradient edge upgradient edge In te n...400 b ic a rb o n a te , m g /L 0 2 4 6 8 10 12 14 16 si lic a , m g /L Figure 4.12 Average (± 1 s.d.) concentrations of Na, K , Ca,

  3. High-pressure phase relations in the composition of albite NaAlSi3O8 constrained by an ab initio and quasi-harmonic Debye model, and their implications

    NASA Astrophysics Data System (ADS)

    Deng, L.; Liu, X.; Liu, H.; Dong, J.

    2010-12-01

    The high pressure physical-chemical behaviors of feldspar in subducted slab are very important to the geodynamic process in the deep interior of the Earth. Albite (NaAlSi3O8;Ab) is one of the few end members in the feldspar family, and its high-P behavior is obviously a prerequisite to the full understanding of the physical-chemical properties of feldspar at high pressures. So far it has been well accepted that Ab breaks down to the phase assemblage of Jadeite+Stishovite(NaAlSi2O6; Jd, SiO2; St,JS hereafter) at ~9-10 GPa. The JS phase assemblage might be stable up to ~23 GPa, and eventually directly change into the phase assemblage of calcium-ferrite type NaAlSiO4 (Cf) +2St (CS hereafter). However, some independent researches suggest there is an intermediate phase Na-hollandite (Na-Hall; a phase with the composition of NaAlSi3O8 and the structure of hollandite) between JS phase assemblage transition into CS phase assemblage (Liu 1978; Tutti 2007; Sekine and Ahrens, 1992; Beck et al., 2004). Whether Na-Hall is a thermodynamic stable phase under high P-T conditions remains unknown. In this work, phase relations in the composition of albite NaAlSi3O8 at pressures up to 40 GPa were constrained by a theoretical method that combines the ab initio calculation and quasi-harmonic Debyemodel. First, the P-T dependence of the thermodynamic potentials of the individual phase, St, Cf, Jd and the hypothetical Na-Holl were derived. Our results are generally in consistent agreement with available experimental data and previous theoretical predictions. Second, the Gibbs free energy of the hypothetical Na-Holl phase was compared with that of the phase assemblages JS and CS. Our results show that the Na-Holl phase is not a thermodynamically stable phase over the studied P-T conditions of 0-40 GPa and 100-600 K, which rules it out as a possible intermediate phase along the transition path from the JS phase assemblage to CS phase assemblage. Our calculations have predicted that the JS

  4. Comparison of the effect of NaOH and TE buffer on 25 to 100 eV electron induced damage to ΦX174 dsDNA

    NASA Astrophysics Data System (ADS)

    Kumar, S. V. K.; Murali, Megha; Kushwaha, Preksha

    2015-09-01

    In this article we report the usage of (1) ΦX174 dsDNA as a model for electron - DNA interaction studies, (2) semiconductor grade 100 silicon wafer, gold on chrome on glass, and tantalum foil substrates, drying process and effect of temperature, on the DNA film formation and its stability, (3) stability of DNA films formed from DNA suspended in nano pure water and with additives like NaOH and TE buffer, and (4) effect of 0.001 mM NaOH and TE buffer (at pH 7.5) additives on DNA damage induced by 25 to 100 eV electrons. The results show that when tantalum foils are used as a substrate, it results in films, which have DNA distributed fairly uniformly and is also stable against strand breaks affected due to the stress of the drying. Electron irradiation of DNA suspended in TE buffer result in the formation of only relaxed form. When the DNA is suspended in 0.001 mM NaOH and irradiated similarly, linear form and cross links are also formed, in addition to relaxed form. This could be likely due to the secondary electrons interacting with Na+ ions that are bound to the DNA causing a second strand break in the opposite strand. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  5. Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery

    NASA Astrophysics Data System (ADS)

    Law, Markas; Ramar, Vishwanathan; Balaya, Palani

    2017-08-01

    Here we report a polyanion-based cathode material for sodium-ion batteries, Na2MnSiO4, registering impressive sodium storage performances with discharge capacity of 210 mAh g-1 at an average voltage of 3 V at 0.1 C, along with excellent long-term cycling stability (500 cycles at 1 C). Insertion/extraction of ∼1.5 mol of sodium ion per formula unit of the silicate-based compound is reported and the utilisation of Mn2+ ⇋ Mn4+ redox couple is also demonstrated by ex-situ XPS. Besides, this study involves a systematic investigation of influence of the electrolyte additive (with different content) on the sodium storage performance of Na2MnSiO4. The electrolyte additive forms an optimum protective passivation film on the electrode surface, successfully reducing manganese dissolution.

  6. Chalcogenide-based van der Waals epitaxy: Interface conductivity of tellurium on Si(111)

    NASA Astrophysics Data System (ADS)

    Lüpke, Felix; Just, Sven; Bihlmayer, Gustav; Lanius, Martin; Luysberg, Martina; Doležal, Jiří; Neumann, Elmar; Cherepanov, Vasily; Ošt'ádal, Ivan; Mussler, Gregor; Grützmacher, Detlev; Voigtländer, Bert

    2017-07-01

    We present a combined experimental and theoretical analysis of a Te rich interface layer which represents a template for chalcogenide-based van der Waals epitaxy on Si(111). On a clean Si(111)-(1 ×1 ) surface, we find Te to form a Te/Si(111)-(1 ×1 ) reconstruction to saturate the substrate bonds. A problem arising is that such an interface layer can potentially be highly conductive, undermining the applicability of the on-top grown films in electric devices. We perform here a detailed structural analysis of the pristine Te termination and present direct measurements of its electrical conductivity by in situ distance-dependent four-probe measurements. The experimental results are analyzed with respect to density functional theory calculations and the implications of the interface termination with respect to the electrical conductivity of chalcogenide-based topological insulator thin films are discussed. In detail, we find a Te/Si(111)-(1 ×1 ) interface conductivity of σ2D Te=2.6 (5 ) ×10-7S /□ , which is small compared to the typical conductivity of topological surface states.

  7. Low-Cost Lattice Matching Si Based Composite Substrates for HgCdTe

    DTIC Science & Technology

    2013-09-01

    211). ..............................................5 Figure 3. Relationship between calculated alloy compositions based on Se/CdTe BEP ratio and...Se:CdTe beam equivalent pressure ( BEP ) ratios. During CdSeTe growth, Se and Te are in competition for the same nucleation sites. If we assume that all...therefore, x(cal) = ΦSe/ΦCd = 2ΦSe/ΦCdTe, where Φ is the BEP of the material, measured by the nude ion gauge at the substrate position. Figure 3 shows the

  8. Absorption dichroism of monolayer 1T‧-MoTe2 in visible range

    NASA Astrophysics Data System (ADS)

    Han, Gang Hee; Keum, Dong Hoon; Zhao, Jiong; Shin, Bong Gyu; Song, Seunghyun; Bae, Jung Jun; Lee, Jubok; Kim, Jung Ho; Kim, Hyun; Moon, Byoung Hee; Lee, Young Hee

    2016-09-01

    Among various transition metal dichalcogenides, MoTe2 has drawn attention due to its capability of robust phase engineering between semiconducting (2H) and semi-metallic distorted octahedral (1T‧) phase. In particular, 1T‧-MoTe2 has been predicted to have intriguing physics such as quantum spin Hall insulator, large magnetoresistance, and superconductivity. Recent progress showed weak antilocalization behavior in 1T‧-MoTe2 which is the one of representative characteristics in topological insulator. Here, we grow centimeter-scale monolayer 1T‧-MoTe2 on SiO2/Si substrate via chemical vapordeposition and demonstrate dichroism in visible range. Ribbon-like 1T‧-MoTe2 flakes were initially nucleated randomly on SiO2 substrate and at a later stage merged to form a continuous monolayer film over the entire substrate. Each flake revealed one dimensional Mo-Mo dimerization feature and anisotropic absorption behavior in visible range (400-600 nm). This allowed us to detect the grain boundary due to stark contrast difference among flakes in different orientations.

  9. Temperature Driven Topological Switch in 1T'-MoTe2 and Strain Induced Nematicity in NaFeAs

    NASA Astrophysics Data System (ADS)

    Berger, Ayelet Denise Notis

    Quasiparticle interference (QPI) is a powerful technique within Scanning Tunneling Microscopy (STM) that is used to probe the electronic bandstructure of materials. This thesis presents two examples using QPI to measure the bandstructure in materials with exotic electronic states that can be tuned via outside parameters (temperature and strain). In Part I of the thesis, we discuss the temperature dependence of Fermi Arcs in 1T'-MoTe 2, and then in Part II, the strain dependent nematic state in NaFeAs. The recent discovery of Weyl semimetals has introduced a new family of materials with topologically protected electronic properties and potential applications due to their anomalous transport effects. Even more useful is a Weyl semimetal that can be turned "on" and "off," switching between a topological and trivial state. One possible material is MoTe2, which undergoes a phase transition at 240K. This thesis consists of experiments using Scanning Tunneling Microscopy (STM) and Spectroscopy (STS) at different temperatures to visualize changes in the electronic bandstructure of MoTe2 across the topological phase transition. We show that a signature of topologically protected Fermi Arcs is present at low temperatures but disappears at room temperature, in the trivial phase. We include an in-depth discussion of how to account for thermal effects when comparing these two types of measurements. In Part II, we discuss strain induced nematicity in NaFeAs, an iron pnictide. Nematic fluctuations and spin correlations play an important role in the phase diagram of the iron pnictides, a family of unconventional superconductors. Illuminating the mechanism behind this symmetry breaking is key to understanding the superconducting state. Previous work has shown that nematicity in the iron pnictides responds strongly to applied strain [1, 2]. In this thesis, I present results from a new experimental technique, elasto-scanning tunneling microscopy (E-STM), which combines in situ strain

  10. Development of coring procedures applied to Si, CdTe, and CIGS solar panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moutinho, H. R.; Johnston, S.; To, B.

    Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that wemore » developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.« less

  11. Development of coring procedures applied to Si, CdTe, and CIGS solar panels

    DOE PAGES

    Moutinho, H. R.; Johnston, S.; To, B.; ...

    2018-01-04

    Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that wemore » developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.« less

  12. Electrical and photoresponse properties of vacuum deposited Si/Al:ZnSe and Bi:ZnTe/Al:ZnSe photodiodes

    NASA Astrophysics Data System (ADS)

    Rao, Gowrish K.

    2017-04-01

    The paper reports fabrication and characterization of Bi:ZnTe/Al:ZnSe and Si/Al:ZnSe thin film photodiodes. The characteristics of the devices were studied under dark and illuminated conditions. The normalized spectral response, speed of photoresponse and variation of photocurrent with power density were studied in detail. Many vital parameters, such as diode ideality factor, barrier height, the thickness of the depletion region, trap depth, rise and decay times of photocurrent, were determined. Conduction mechanism in the photodiodes is discussed with the help of widely accepted theoretical models.

  13. Fabrication of SiC-Particles-Shielded Al Spheres upon Recycling Al/SiC Composites

    NASA Astrophysics Data System (ADS)

    Madarasz, D.; Budai, I.; Kaptay, G.

    2011-06-01

    Wettability of liquid A359 alloy on SiC particles under molten salt NaCl-KCl-NaF is found at 180 deg, meaning that SiC particles prefer the molten salt phase against the Al phase or the Al/molten salt interface. Thus, this molten salt can be used for recycling, i.e., to separate the phases in the SiC reinforced Al matrix composites. If the separation process is interrupted, Al droplets (submillimeter solidified powder) can be produced, stabilized/surrounded by a monolayer of shielding SiC particles.

  14. Spot-size converter with a SiO(2) spacer layer between tapered Si and SiON waveguides for fiber-to-chip coupling.

    PubMed

    Maegami, Yuriko; Takei, Ryohei; Omoda, Emiko; Amano, Takeru; Okano, Makoto; Mori, Masahiko; Kamei, Toshihiro; Sakakibara, Youichi

    2015-08-10

    We experimentally demonstrate low-loss and polarization-insensitive fiber-to-chip coupling spot-size converters (SSCs) comprised of a three dimensionally tapered Si wire waveguide, a SiON secondary waveguide, and a SiO(2) spacer inserted between them. Fabricated SSCs with the SiO(2) spacer exhibit fiber-to-chip coupling loss of 1.5 dB/facet for both the quasi-TE and TM modes and a small wavelength dependence in the C- and L-band regions. The SiON secondary waveguide is present only around the SSC region, which significantly suppresses the influence of the well-known N-H absorption of plasma-deposited SiON at around 1510 nm.

  15. Na@SiO2-Mediated Addition of Organohalides to Carbonyl Compounds for the Formation of Alcohols and Epoxides

    NASA Astrophysics Data System (ADS)

    Kapoor, Mohit; Hwu, Jih Ru

    2016-11-01

    Alcohols and epoxides were generated by the addition of organohalides to carbonyl compounds in the presence of sodium metal impregnated with silica gel (Na@SiO2) in THF at 25 °C through a radical pathway. Under the same conditions, Schiff bases were also successfully converted to the corresponding amines. Furthermore, the reaction of aldehydes with α-haloesters or 4-(chloromethyl)-coumarin with the aid of Na@SiO2 generated trans epoxides. An unprecedented mechanism is proposed for their formation. The advantages associated with these new reactions include: (1) products are obtained in good-to-excellent yields, (2) reactions are completed at room temperatures in a short period of time (<2.0 h), (3) it is unnecessary to perform the reactions under anhydrous conditions, and (4) the entire process requires only simple manipulations.

  16. Synthesis, characterization and tin/copper-nitrogen substitutional effect on photocatalytic activity of honeycomb ordered P2-Na2Ni2TeO6

    NASA Astrophysics Data System (ADS)

    Kadari, Ramaswamy; Velchuri, Radha; Sreenu, K.; Ravi, Gundeboina; Munirathnam, Nagegownivari R.; Vithal, Muga

    2016-11-01

    We have successfully prepared visible light active tin/copper-nitrogen co-doped honeycomb ordered P2-Na2Ni2TeO6 photocatalysts by solid state/ion exchange methods. Powder XRD, TG analysis, SEM, surface area, O-N-H analysis, ICP-OES, FT-IR and UV-DRS measurements are employed to characterize all the samples. All the doped compositions adopted hexagonal lattice with space group P63/mcm. The photocatalytic activity of all the samples was studied against the degradation of methyl violet (MV) and methylene blue (MB) under visible light irradiation. The variation of the photocatalytic activity due to the substitution of cation, anion and co-doping in Na2Ni2TeO6 is investigated. Co-doped samples have exhibited higher activity compared to rest of the materials. The role of reactive intermediate species in the photocatalytic degradation of dyes is also studied using appropriate scavengers.

  17. Fluoride gastrointestinal absorption from Na2FPO3/CaCO3- and NaF/SiO2-based toothpastes.

    PubMed

    Falcão, A; Tenuta, L M A; Cury, J A

    2013-01-01

    Depending on toothpaste formulation, part of the fluoride is insoluble and would not be totally absorbable in the gastrointestinal tract, thus changing dental fluorosis risk estimation. This hypothesis was tested with formulations with either all fluoride in a soluble form (NaF/SiO2-based toothpaste, 1,100 µg F/g as labeled, 1,129.7 ± 49.4 µg F/g soluble fluoride as analyzed) or with around 20% of insoluble fluoride (Na2FPO3/CaCO3-based toothpaste, 1,450 µg F/g as labeled, 1,122.4 ± 76.4 µg F/g soluble fluoride as analyzed). Toothpastes were evaluated either fresh or after accelerated aging, which increased insoluble fluoride to 40% in the Na2FPO3/CaCO3-based toothpaste. In a blind, crossover clinical trial conducted in five legs, 20 adult volunteers ingested 49.5 µg of total fluoride/kg body weight from each formulation or purified water (control). Whole saliva and urine were collected as bioavailability indicators, and pharmacokinetics parameters calculated showed significantly (p < 0.05) lower fluoride bioavailability for Na2FPO3/CaCO3 toothpaste, which was reduced further after aging. A significant correlation between the amount of soluble fluoride ingested, but not total fluoride, and fluoride bioavailability was found (r = 0.57, p < 0.0001). The findings suggest that the estimated fluorosis risk as a result of ingestion of Na2FPO3/CaCO3-based toothpastes should be calculated based on the toothpaste's soluble rather than total fluoride concentration. Copyright © 2012 S. Karger AG, Basel.

  18. Synthesis and characterization of a NaSICON series with general formula Na 2.8Zr 2-ySi 1.8-4yP 1.2+4yO 12 (0⩽ y⩽0.45)

    NASA Astrophysics Data System (ADS)

    Essoumhi, A.; Favotto, C.; Mansori, M.; Satre, P.

    2004-12-01

    In this work, we present the synthesis and the characterization of ionic conducting ceramics of NaSICON-type (Natrium super ionic conductor). The properties of this ceramic make it suitable for use in electrochemical devices. These solid electrolytes can be used as sensors for application in the manufacturing of potentiometric gas sensors, for the detection of pollutant emissions and for environment control. The family of NaSICON that we studied has as a general formula Na 2.8Zr 2-ySi 1.8-4yP 1.2+4yO 12 with 0⩽ y⩽0.45. The various compositions were synthesized by produced using the sol-gel method. The electric properties of these compositions were carried out by impedance spectroscopy. The results highlight the good conductivity of the Na 2.8Zr 1.775Si 0.9P 2.1O 12 composition.

  19. Bulk and grain-boundary ionic conductivity in sodium zirconophosphosilicate Na3Zr2(SiO4)2PO4 (NASICON)

    NASA Astrophysics Data System (ADS)

    Lunghammer, S.; Ma, Q.; Rettenwander, D.; Hanzu, I.; Tietz, F.; Wilkening, H. M. R.

    2018-06-01

    Sodium zirconophosphosilicates (Na1+x Zr2(P1-x SixO4)3 (0 < x < 3)) currently experience a kind of renaissance as promising ceramic electrolytes for safe all-solid-state Na batteries. Such energy storage systems are an emerging option for next-generation technologies with attractive cost due to the use of abundant elements as sodium. To identify the right candidates their ion transport properties need to be precisely studied. In many cases less is known about the contributions of blocking grain boundaries to the overall charge carrier transport. Here, we took advantage of broadband impedance and conductivity spectroscopy carried out at sufficiently low temperature to make visible these two contributions for polycrystalline Na3Zr2(SiO4)2PO4. It turned out that ion transport across the grain boundaries of a sintered pellet do not greatly hinder long-range ion dynamics. While bulk ion dynamics in Na3Zr2(SiO4)2PO4 is characterized by 1.0 mS cm-1, the grain boundary ionic conductivity is only slightly lower viz. 0.7 mS cm-1. The latter value is of large practical interest as it allows the realization of all-solid-state Na batteries without strong interfering resistances from grain boundaries.

  20. Temperature Dependences of the Product of the Differential Resistance by the Area in MIS-Structures Based on Cd x Hg1- x Te Grown by Molecularbeam Epitaxy on Alternative Si and GaAs Substrates

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Varavin, V. S.; Vasil'ev, V. V.; Dvoretskii, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Sidorov, G. Yu.

    2017-06-01

    In a temperature range of 9-200 K, temperature dependences of the differential resistance of space-charge region in the strong inversion mode are experimentally studied for MIS structures based on CdxHg1-xTe (x = 0.22-0.40) grown by molecular-beam epitaxy. The effect of various parameters of structures: the working layer composition, the type of a substrate, the type of insulator coating, and the presence of a near-surface graded-gap layer on the value of the product of differential resistance by the area is studied. It is shown that the values of the product RSCRA for MIS structures based on n-CdHgTe grown on a Si(013) substrate are smaller than those for structures based on the material grown on a GaAs(013) substrate. The values of the product RSCRA for MIS structures based on p-CdHgTe grown on a Si(013) substrate are comparable with the value of the analogous parameter for MIS structures based on p-CdHgTe grown on a GaAs(013) substrate.

  1. Study of the polarimetric performance of a Si/CdTe semiconductor Compton camera for the Hitomi satellite

    NASA Astrophysics Data System (ADS)

    Katsuta, Junichiro; Edahiro, Ikumi; Watanabe, Shin; Odaka, Hirokazu; Uchida, Yusuke; Uchida, Nagomi; Mizuno, Tsunefumi; Fukazawa, Yasushi; Hayashi, Katsuhiro; Habata, Sho; Ichinohe, Yuto; Kitaguchi, Takao; Ohno, Masanori; Ohta, Masayuki; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Tajima, Hiroyasu; Yuasa, Takayuki; Itou, Masayoshi; SGD Team

    2016-12-01

    Gamma-ray polarization offers a unique probe into the geometry of the γ-ray emission process in celestial objects. The Soft Gamma-ray Detector (SGD) onboard the X-ray observatory Hitomi is a Si/CdTe Compton camera and is expected to be an excellent polarimeter, as well as a highly sensitive spectrometer due to its good angular coverage and resolution for Compton scattering. A beam test of the final-prototype for the SGD Compton camera was conducted to demonstrate its polarimetric capability and to verify and calibrate the Monte Carlo simulation of the instrument. The modulation factor of the SGD prototype camera, evaluated for the inner and outer parts of the CdTe sensors as absorbers, was measured to be 0.649-0.701 (inner part) and 0.637-0.653 (outer part) at 122.2 keV and 0.610-0.651 (inner part) and 0.564-0.592 (outer part) at 194.5 keV at varying polarization angles with respect to the detector. This indicates that the relative systematic uncertainty of the modulation factor is as small as ∼ 3 % .

  2. Efficient Fabrication of Nanoporous Si and Si/Ge Enabled by a Heat Scavenger in Magnesiothermic Reactions

    PubMed Central

    Luo, Wei; Wang, Xingfeng; Meyers, Colin; Wannenmacher, Nick; Sirisaksoontorn, Weekit; Lerner, Michael M.; Ji, Xiulei

    2013-01-01

    Magnesiothermic reduction can directly convert SiO2 into Si nanostructures. Despite intense efforts, efficient fabrication of highly nanoporous silicon by Mg still remains a significant challenge due to the exothermic reaction nature. By employing table salt (NaCl) as a heat scavenger for the magnesiothermic reduction, we demonstrate an effective route to convert diatom (SiO2) and SiO2/GeO2 into nanoporous Si and Si/Ge composite, respectively. Fusion of NaCl during the reaction consumes a large amount of heat that otherwise collapses the nano-porosity of products and agglomerates silicon domains into large crystals. Our methodology is potentially competitive for a practical production of nanoporous Si-based materials. PMID:23860418

  3. Efficient fabrication of nanoporous si and Si/Ge enabled by a heat scavenger in magnesiothermic reactions.

    PubMed

    Luo, Wei; Wang, Xingfeng; Meyers, Colin; Wannenmacher, Nick; Sirisaksoontorn, Weekit; Lerner, Michael M; Ji, Xiulei

    2013-01-01

    Magnesiothermic reduction can directly convert SiO2 into Si nanostructures. Despite intense efforts, efficient fabrication of highly nanoporous silicon by Mg still remains a significant challenge due to the exothermic reaction nature. By employing table salt (NaCl) as a heat scavenger for the magnesiothermic reduction, we demonstrate an effective route to convert diatom (SiO2) and SiO2/GeO2 into nanoporous Si and Si/Ge composite, respectively. Fusion of NaCl during the reaction consumes a large amount of heat that otherwise collapses the nano-porosity of products and agglomerates silicon domains into large crystals. Our methodology is potentially competitive for a practical production of nanoporous Si-based materials.

  4. Ordered CdTe/CdS Arrays for High-Performance Solar Cells

    NASA Astrophysics Data System (ADS)

    Zubía, David; López, Cesar; Rodríguez, Mario; Escobedo, Arev; Oyer, Sandra; Romo, Luis; Rogers, Scott; Quiñónez, Stella; McClure, John

    2007-12-01

    The deposition of uniform arrays of CdTe/CdS heterostructures suitable for solar cells via close-spaced sublimation is presented. The approach used to create the arrays consists of two basic steps: the deposition of a patterned growth mask on CdS, and the selective-area deposition of CdTe. CdTe grains grow selectively on the CdS but not on the SiO2 due to the differential surface mobility between the two surfaces. Furthermore, the CdTe mesas mimic the size and shape of the window opening in the SiO2. Measurements of the current density in the CdTe were high at 28 mA/cm2. To our knowledge, this is the highest reported current density for these devices. This implies that either the quantum efficiency is very high or the electrons generated throughout the CdTe are being concentrated by the patterned structure analogous to solar concentration. The enhancement in crystal uniformity and the relatively unexplored current concentration phenomenon could lead to significant performance improvements.

  5. Thermal equation of state of NaMg0.5Si2.5O6 and new data on the compressibility of clinopyroxenes

    NASA Astrophysics Data System (ADS)

    Dymshits, A. M.; Sharygin, I. S.; Podborodnikov, I. V.; Litasov, K. D.; Shatskiy, A. F.; Otani, E.; Pushcharovskii, D. Yu.

    2015-03-01

    The results of studies of the P-V-T equations of state (EOS) of Na-pyroxene using the multi-anvil technique and synchrotron radiation at pressures up to 15.3 GPa and temperatures up to 1673 K are presented. By fitting the Birch-Murnaghan EOS, the following parameters were determined: V 0 = 407.2 (5) Å3, the space group P2/ n, K T0 = 103 (2) GPa, K T0 = 6.2 (7), ∂ K T /∂ T = -0.018 (7), α = 3.38(13) + 0.65(62) T. Thus, despite the small volume of the cell, Na-pyroxene has a sufficiently high bulk modulus. This can be caused by the appearance of antipathetic bonds in Na-polyhedron, Si-tetrahedra rotation, and the ordering of Mg and Si cations in the M1 position. Thus, it is substantiated that the phase transformations in the minerals accompanied by the presence of Si in octahedral coordination are characterized by a significant change in the physical characteristics, such as density (ρ) and bulk modulus ( K T ). Such transformations occurring in the minerals and deep Earth can lead to significant jumps in the seismic wave velocities. Therefore, the presence of phases with silicon in sixfold coordination, such as Na-Ca majoritic garnet is of fundamental importance for understanding the Earth's upper mantle.

  6. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.

    PubMed

    Amjadi, Mohammad; Jalili, Roghayeh; Manzoori, Jamshid L

    2016-05-01

    A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2 @MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2 @MIP nanoparticles were characterized by fluorescence, UV-vis absorption and FT-IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2 @MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2 @MIP decreased with increasing CAP by a Stern-Volmer type equation in the concentration range of 40-500 µg L(-1). The corresponding detection limit was 5.0 µg L(-1). The intra-day and inter-day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. Copyright © 2015 John Wiley & Sons, Ltd.

  7. MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst

    PubMed Central

    Wang, Pengwei; Zhao, Guofeng; Wang, Yu; Lu, Yong

    2017-01-01

    Oxidative coupling of methane (OCM) is a promising method for the direct conversion of methane to ethene and ethane (C2 products). Among the catalysts reported previously, Mn2O3-Na2WO4/SiO2 showed the highest conversion and selectivity, but only at 800° to 900°C, which represents a substantial challenge for commercialization. We report a TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst by using Ti-MWW zeolite as TiO2 dopant as well as SiO2 support, enabling OCM with 26% conversion and 76% C2-C3 selectivity at 720°C because of MnTiO3 formation. MnTiO3 triggers the low-temperature Mn2+↔Mn3+ cycle for O2 activation while working synergistically with Na2WO4 to selectively convert methane to C2-C3. We also prepared a practical Mn2O3-TiO2-Na2WO4/SiO2 catalyst in a ball mill. This catalyst can be transformed in situ into MnTiO3-Na2WO4/SiO2, yielding 22% conversion and 62% selectivity at 650°C. Our results will stimulate attempts to understand more fully the chemistry of MnTiO3-governed low-temperature activity, which might lead to commercial exploitation of a low-temperature OCM process. PMID:28630917

  8. Low-Cost CdTe/Silicon Tandem Solar Cells

    DOE PAGES

    Tamboli, Adele C.; Bobela, David C.; Kanevce, Ana; ...

    2017-09-06

    Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrainedmore » applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.« less

  9. Low-Cost CdTe/Silicon Tandem Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamboli, Adele C.; Bobela, David C.; Kanevce, Ana

    Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrainedmore » applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.« less

  10. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    PubMed Central

    Sordo, Stefano Del; Abbene, Leonardo; Caroli, Ezio; Mancini, Anna Maria; Zappettini, Andrea; Ubertini, Pietro

    2009-01-01

    Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors. PMID:22412323

  11. Choice of Substrate Material for Epitaxial CdTe Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Tao; Kanevce, Ana; Sites, James R.

    2015-06-14

    Epitaxial CdTe with high quality, low defect density, and high carrier concentration should in principle yield high-efficiency photovoltaic devices. However, insufficient effort has been given to explore the choice of substrate for high-efficiency epitaxial CdTe solar cells. In this paper, we use numerical simulations to investigate three crystalline substrates: silicon (Si), InSb, and CdTe each substrate material are generally discussed.

  12. X2Y2 isomers: tuning structure and relative stability through electronegativity differences (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te).

    PubMed

    El-Hamdi, Majid; Poater, Jordi; Bickelhaupt, F Matthias; Solà, Miquel

    2013-03-04

    We have studied the XYYX and X2YY isomers of the X2Y2 species (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te) using density functional theory at the ZORA-BP86/QZ4P level. Our computations show that, over the entire range of our model systems, the XYYX isomers are more stable than the X2YY forms except for X = F and Y = S and Te, for which the F2SS and F2TeTe isomers are slightly more stable. Our results also point out that the Y-Y bond length can be tuned quite generally through the X-Y electronegativity difference. The mechanism behind this electronic tuning is the population or depopulation of the π* in the YY fragment.

  13. A High Pressure Post-Perovskite Phase Transition in NaMgF3--a MgSiO3 Analog Material

    NASA Astrophysics Data System (ADS)

    Martin, C.; Liu, H.; Crichton, W.; Parise, J. B.

    2005-12-01

    Since Murakami et al. (2004) identified a perovskite (pv, Pbnm) to post-perovskite (ppv, Cmcm) structural phase transition in MgSiO3, the transition has been reported to occur in many oxides at ultra-high pressures (>60 GPa). The layered ppv structure is rapidly shaping a better understanding of seismic anisotropy in the controversial D" region of the lower mantle. While the ppv unit cell may be derived from indexing of the powder pattern, the structure adopted at high pressure is experimentally ill-constrained due to compromised powder diffraction statistics typically obtained from small sample volumes at extreme conditions in the diamond anvil cell. NaMgF3, a structural analog material to MgSiO3 pv, exhibits a large compressibility and presents the possibility of reducing the pv-ppv transition pressure, allowing for improved powder statistics from a larger sample volume. In accordance with our previous theoretical and experimental evidence (Liu et al., 2005; Parise et al., 2004), we have observed a phase transition in NaMgF3 during two recent independent high pressure trials utilizing monochromatic x-ray diffraction and in-situ laser heating in the diamond anvil cell at pressures as low as 30 GPa. From our analysis thus far, we have found the unit cell of the high pressure phase cannot be indexed according to pv (Pbnm) or close permutations of ppv (Cmcm) unit cells predicted for NaMgF3 or unit cells observed for ppv MgSiO3 and MgGeO3. In addition, we have precluded a breakdown to high pressure phases of NaF and MgF3 as an explanation for the observed data. Upon pressure release, we observe diffraction peaks from the high pressure phase in the absence of pv NaMgF3, suggesting the high pressure structure is quenchable to ambient conditions. The results of the work in progress will be presented at the meeting.

  14. Enhancing the photovoltaic performance of CdTe/CdS solar cell via luminescent downshifting using K{sub 2}SiF{sub 6}:Mn{sup 4+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talewar, R. A., E-mail: talewarrupesh@gmail.com; Joshi, C. P.; Moharil, S. V.

    2016-05-23

    The efficiency of CdTe/CdS solar cell can be significantly improved by using luminescent down-shifting material on their front surface. Taking this into account a red emitting phosphor K{sub 2}Si{sub 1-x}F{sub 6}:xMn{sup 4+} (x=10 to 25 mol %) has been synthesized through wet chemical method. The as-synthesized materials were characterized by powder x-ray diffraction (XRD) and photoluminescence (PL) techniques. The photoluminescence studies of K{sub 2}SiF{sub 6}:Mn{sup 4+} revealed enhancement in the emission intensity, when Mn{sup 4+} concentration was increased from 10 mol % to 25 mol %. This red emitting phosphor efficiently absorbs the photons typically in the region 300-500 nmmore » and re-emits in the region where the photovoltaic device exhibits significantly better response. The results show the possibility of enhancing the photovoltaic conversion efficiency of CdTe thin film solar cell by modifying the absorption spectra and utilising the energy in the UV-blue part of the solar spectrum.« less

  15. Investigating the solubility and cytocompatibility of CaO-Na2 O-SiO2 /TiO2 bioactive glasses.

    PubMed

    Wren, Anthony W; Coughlan, Aisling; Smith, Courtney M; Hudson, Sarah P; Laffir, Fathima R; Towler, Mark R

    2015-02-01

    This study aims to investigate the solubility of a series of titanium (TiO2 )-containing bioactive glasses and their subsequent effect on cell viability. Five glasses were synthesized in the composition range SiO2 -Na2 O-CaO with 5 mol % of increments TiO2 substituted for SiO2 . Glass solubility was investigated with respect to (1) exposed surface area, (2) particle size, (3) incubation time, and (4) compositional effects. Ion release profiles showed that sodium (Na(+) ) presented high release rates after 1 day and were unchanged between 7 and 14 days. Calcium (Ca(2+) ) release presented a significant change at each time period and was also composition dependent, where a reduction in Ca(2+) release is observed with an increase in TiO2 concentration. Silica (Si(4+) ) release did not present any clear trends while no titanium (Ti(4+) ) was released. Cell numbers were found to increase up to 44%, compared to the growing control population, with a reduction in particle size and with the inclusion of TiO2 in the glass composition. © 2014 Wiley Periodicals, Inc.

  16. On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.

    1991-01-01

    The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.

  17. Influences of Na2O and K2O Additions on Electrical Conductivity of CaO-MgO-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Zheng, Wei-Wei; Chou, Kuo-Chih

    2017-04-01

    The present study investigated the influences of Na2O and K2O additions on electrical conductivity of blast furnace type CaO-MgO-Al2O3-SiO2 melts by the four-electrode method. Both the single addition of Na2O or K2O and the double additions of Na2O and K2O were studied. It was found that electrical conductivity monotonously increased as the amount of Na2O addition was gradually increased, whereas, when K2O was added, there was a continuous decrease of electrical conductivity. With melts containing both Na2O and K2O, electrical conductivity first decreased but then increased when Na2O was gradually substituted for K2O while keeping the molar fractions of other components constant. In other words, the mixed-alkali effect took place in CaO-Mg-Al2O3-SiO2-ΣR2O melts.

  18. Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots growth in a silicate glass matrix by the fusion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dantas, Noelio Oliveira; Lima Fernandes, Guilherme de; Almeida Silva, Anielle Christine

    2014-09-29

    In this study, we synthesized Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots (USQDs) in SiO{sub 2}-Na{sub 2}CO{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass system using the fusion method. Growth of these Cd{sub 1−x}Mn{sub x}Te USQDs was confirmed by optical absorption, atomic force microscopy (AFM), magnetic force microscopy (MFM), scanning transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) measurements. The blueshift of absorption transition with increasing manganese concentration gives evidence of incorporation of manganese ions (Mn{sup 2+}) in CdTe USQDs. AFM, TEM, and MFM confirmed, respectively, the formation of high quality Cd{sub 1−x}Mn{sub x}Te USQDs with uniformly distributed size and magneticmore » phases. Furthermore, EPR spectra showed six lines associated to the S = 5/2 spin half-filled d-state, characteristic of Mn{sup 2+}, and confirmed that Mn{sup 2+} are located in the sites core and surface of the CdTe USQD. Therefore, synthesis of high quality Cd{sub 1−x}Mn{sub x}Te USQDs may allow the control of optical and magnetic properties.« less

  19. The Albite Fusion Curve Re-examined: New Experiments and the Density and Compressibility of NaAlSi3O8 Liquid With Pressure

    NASA Astrophysics Data System (ADS)

    Tenner, T. J.; Lange, R. A.

    2005-12-01

    Two half-reversals on the melting temperature of high albite (NaAlSi3O8) were determined at 2.3 GPa (1360-1370 °C) and 2.8 GPa (1383-1389 °C) in a piston-cylinder apparatus with NaAlSi3O8 glass as the starting material. A detailed thermal gradient across the sample capsule was mapped, which showed a 3.5 °C gradient across the upper third of the sample capsule and a 30 °C gradient across the lower two-thirds. A calibration against the melting curve of NaCl showed a -5 % pressure correction for the BaCO3/MgO/graphite pressure medium used in these experiments. In addition to the glass-crystal half-reversals, a crystal-glass half-reversal at 2.73 GPa was obtained (1389-1399 °C) using high albite as the starting material. All run products that quenched to a glass were analyzed by Fourier-transform infrared spectroscopy and were found to contain < 0.045 wt% H2O. Our experimental constraints on the albite fusion curve are in excellent agreement with those of Birch and LeComte (1960) and Boyd and England (1963), but deviate from those of Boettcher et al. (1982). Our new data on the albite fusion curve at high pressure are compared with the calculated melting reaction based on the best available thermodynamic data at one bar (Lange, 2003), and various values for the pressure dependence of liquid compressibility (K' = dKT,0/dP, where KT,0 = 1/βT,0) for NaAlSi3O8 liquid, using the 3rd-order Birch-Murnaghan equation of state. Our phase-equilibrium data match the fusion curve calculated with a liquid value of 10.0 ± 1.0. This allows the density of NaAlSi3O8 liquid to be calculated at 1500 °C and 3.0 GPa (2.551 ± 0.01 g/cm3), with an uncertainty that is ~0.3 %. The results of this study show that the density and compressibility of this viscous and fully polymerized liquid can be calculated to high pressure (~3 GPa) with a remarkably high precision. Owing to the absence of any coordination change in NaAlSi3O8 liquid to ~8 GPa, calculations of its density and

  20. Mineral-solution equilibria—III. The system Na 2OAl 2O 3SiO 2H 2OHCl

    NASA Astrophysics Data System (ADS)

    Popp, Robert K.; Frantz, John D.

    1980-07-01

    Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500-700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant ( K) for the reaction NaAlSi 3O 8 + HCl o = NaCl o + 1/2Al 2SiO 5, + 5/2SiO 2 + 1/2H 2O Albite Andalusite Qtz. K = (a NaCl o) /(a H 2O ) 1/2/(a HCl o) can be described by the following equation: log k = -4.437 + 5205.6/ T( K) The data from this study are consistent with experimental results reported by MONTOYA and HEMLEY (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaCl o and HCl o in the range 400-700°C and 1-2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KCl o and HCl o. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.

  1. Delicate Structural Control of Si-SiOx-C Composite via High-Speed Spray Pyrolysis for Li-Ion Battery Anodes.

    PubMed

    Lee, Seung Jong; Kim, Hye Jin; Hwang, Tae Hoon; Choi, Sunghun; Park, Sung Hyeon; Deniz, Erhan; Jung, Dae Soo; Choi, Jang Wook

    2017-03-08

    Despite the high theoretical capacity, silicon (Si) anodes in lithium-ion batteries have difficulty in meeting the commercial standards in various aspects. In particular, the huge volume change of Si makes it very challenging to simultaneously achieve high initial Coulombic efficiency (ICE) and long-term cycle life. Herein, we report spray pyrolysis to prepare Si-SiO x composite using an aqueous precursor solution containing Si nanoparticles, citric acid, and sodium hydroxide (NaOH). In the precursor solution, Si nanoparticles are etched by NaOH with the production of [SiO 4 ] 4- . During the dynamic course of spray pyrolysis, [SiO 4 ] 4- transforms to SiO x matrix and citric acid decomposes to carbon surface layer with the assistance of NaOH that serves as a decomposition catalyst. As a result, a Si-SiO x composite, in which Si nanodomains are homogeneously embedded in the SiO x matrix with carbon surface layer, is generated by a one-pot process with a residence time of only 3.5 s in a flow reactor. The optimal composite structure in terms of Si domain size and Si-to-O ratio exhibited excellent electrochemical performance, such as reversible capacity of 1561.9 mAh g -1 at 0.06C rate and ICE of 80.2% and 87.9% capacity retention after 100 cycles at 1C rate.

  2. Impact of a long term fire retardant (Fire Trol 931) on the leaching of Na, Al, Fe, Mn, Cu and Si from a Mediterranean forest soil: a short-term, lab-scale study.

    PubMed

    Koufopoulou, Sofia; Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Pappa, Athina

    2014-06-01

    Long term fire retardant (LTR) application for forest fire prevention purposes as well as wildland fires can result in chemical leaching from forest soils. Large quantities of sodium (Na), aluminium (Al), iron (Fe), manganese (Mn), copper (Cu) and silicon (Si) in leachates, mainly due to ammonium (one of the major LTR components) soil deposition, could affect the groundwater quality. The leaching of Na, Al, Fe, Mn, Cu and Si due to nitrogen based LTR application (Fire Trol 931) was studied at laboratory scale. The concentrations of Na(+), Al(3+), Fe(3+)/Fe(2+), Mn(2+), Cu(2+) and Si(4+) were measured in the resulting leachates from pots with forest soil and pine trees alone and in combination with fire. The leaching of Na, Fe and Si from treated pots was significantly greater than that from control pots. The leaching of Al, Mn and Cu was extremely low.

  3. Magnetic properties of the honeycomb oxide Na 2 Co 2 TeO 6

    DOE PAGES

    Lefrançois, E.; Songvilay, M.; Robert, J.; ...

    2016-12-14

    We have studied the magnetic properties of Na 2 Co 2 TeO 6 , which features a honeycomb lattice of magnetic Co 2 + ions, through macroscopic characterization and neutron diffraction on a powder sample. We also show that this material orders in a zigzag antiferromagnetic structure. Additionally by allowing a linear magnetoelectric coupling, this magnetic arrangement displays very peculiar spatial magnetic correlations, larger in the honeycomb planes than between the planes, which do not evolve with the temperature. We have investigated this behavior by classical Monte Carlo calculations using the J 1 - J 2 - Jmore » 3 model on a honeycomb lattice with a small interplane interaction. Furthermore, our model reproduces the experimental neutron structure factor, although its absence of temperature evolution must be due to additional ingredients, such as chemical disorder or quantum fluctuations enhanced by the proximity to a phase boundary.« less

  4. Optimization of Monocrystalline MgxCd1-xTe/MgyCd1-yTe Double-Heterostructure Solar Cells

    NASA Astrophysics Data System (ADS)

    Becker, Jacob J.

    Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress has been made in driving the efficiency in these devices ever closer to the record presently held by polycrystalline thin-films. This achievement is primarily due to the utilization of a remote p-n heterojunction in which the heavily doped contact materials, which are so problematic in terms of increasing non-radiative recombination inside the absorber, are moved outside of the CdTe double heterostructure with two MgyCd1-yTe barrier layers to provide confinement and passivation at the CdTe surfaces. Using this design, the pursuit and demonstration of efficiencies beyond 20% in CdTe solar cells is reported through the study and optimization of the structure barriers, contacts layers, and optical design. Further development of a wider bandgap MgxCd1-xTe solar cell based on the same design is included with the intention of applying this knowledge to the development of a tandem solar cell constructed on a silicon subcell. The exploration of different hole-contact materials--ZnTe, CuZnS, and a-Si:H--and their optimization is presented throughout the work. Devices utilizing a-Si:H hole contacts exhibit open-circuit voltages of up to 1.11 V, a maximum total-area efficiency of 18.5% measured under AM1.5G, and an active-area efficiency of 20.3% for CdTe absorber based devices. The achievement of voltages beyond 1.1V while still maintaining relatively high fill factors with no rollover, either before or after open-circuit, is a promising indicator that this approach can result in devices surpassing the 22% record set by polycrystalline

  5. Large scale ZnTe nanostructures on polymer micro patterns via capillary force photolithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florence, S. Sasi, E-mail: sshanmugaraj@jazanu.edu.sa; Can, N.; Adam, H.

    2016-06-10

    A novel approach to prepare micro patterns ZnTe nanostructures on Si (100) substrate using thermal evaporation is proposed by capillary Force Lithography (CFL) technique on a self-assembled sacrificial Polystyrene mask. Polystyrene thin films on Si substrates are used to fabricate surface micro-relief patterns. ZnTe nanoparticles have been deposited by thermal evaporation method. The deposited ZnTe nanoparticles properties were assessed by Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM). SEM studies indicated that the particles are uniform in size and shape, well dispersed and spherical in shape. This study reports the micro-arrays of ZnTe nanoparticles on a self-assembled sacrificial PS maskmore » using a capillary flow photolithography process which showed excellent, morphological properties which can be used in photovoltaic devices for anti-reflection applications.« less

  6. Passivation effect on optical and electrical properties of molecular beam epitaxy-grown HgCdTe/CdTe/Si layers

    NASA Astrophysics Data System (ADS)

    Kiran, Rajni; Mallick, Shubhrangshu; Hahn, Suk-Ryong; Lee, T. S.; Sivananthan, Sivalingam; Ghosh, Siddhartha; Wijewarnasuriya, P. S.

    2006-06-01

    The effects of passivation with two different passivants, ZnS and CdTe, and two different passivation techniques, physical vapor deposition (PVD) and molecular beam epitaxy (MBE), were quantified in terms of the minority carrier lifetime and extracted surface recombination velocity on both MBE-grown medium-wavelength ir (MWIR) and long-wavelength ir HgCdTe samples. A gradual increment of the minority carrier lifetime was reported as the passivation technique was changed from PVD ZnS to PVD CdTe, and finally to MBE CdTe, especially at low temperatures. A corresponding reduction in the extracted surface recombination velocity in the same order was also reported for the first time. Initial data on the 1/ f noise values of as-grown MWIR samples showed a reduction of two orders of noise power after 1200-Å ZnS deposition.

  7. Fracture mode, microstructure and temperature-dependent elastic moduli for thermoelectric composites of PbTe-PbS with SiC nanoparticle additions

    NASA Astrophysics Data System (ADS)

    Ni, Jennifer E.; Case, Eldon D.; Schmidt, Robert D.; Wu, Chun-I.; Hogan, Timothy P.; Trejo, Rosa M.; Lara-Curzio, Edgar; Kanatzidis, Mercouri G.

    2013-12-01

    Twenty-six (Pb0.95Sn0.05Te)0.92(PbS)0.08-0.055% PbI2-SiC nanoparticle (SiCnp) composite thermoelectric specimens were either hot pressed or pulsed electric current sintered (PECS). Bloating (a thermally induced increase in porosity, P, for as-densified specimens) was observed during annealing at temperatures >603 K for hot-pressed specimens and PECS-processed specimens from wet milled powders, but in contrast seven out of seven specimens densified by PECS from dry milled powders showed no observable bloating following annealing at temperatures up to 936 K. In this study, bloating in the specimens was accessed via thermal annealing induced changes in (i) porosity measured by scanning electron microscopy on fractured specimen surfaces, (ii) specimen volume and (iii) elastic moduli. The moduli were measured by resonant ultrasound spectroscopy. SiCnp additions (1-3.5 vol.%) changed the fracture mode from intergranular to transgranular, inhibited grain growth, and limited bloating in the wet milled PECS specimens. Inhibition of bloating likely occurs due to cleaning of contamination from powder particle surfaces via PECS processing which has been reported previously in the literature.

  8. LWIR HgCdTe: Innovative detectors in an incumbent technology

    NASA Technical Reports Server (NTRS)

    Tennant, William E.

    1990-01-01

    HgCdTe is the current material of choice for high performance imagers operating at relatively high temperatures. Its lack of technological maturity compared with silicon and wide-band gap III-V compounds is more than offset by its outstanding IR sensitivity and by the relatively benign effect of its materials defects. This latter property has allowed non-equilibrium growth techniques, metal oxide chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE), to produce device quality long wavelength infrared (LWIR) HgCdTe even on common substrates like GaAs and GaAs/Si. Detector performance in these exotic materials structures is comparable in many ways with devices in equilibrium-grown material. Lifetimes are similar. RoA values at 77K as high as several hundred have been seen in HgCdTe/GaAs/Si with 9.5 micron cut-off wavelength. HgCdTe/GaAs layers with approx. 15 micron cut-off wavelengths have given average 77K RoAs of greater than 2. Hybrid focal plane arrays have been evaluated with excellent operability.

  9. Luminescent Enhancement of Na+ and Sm3+ Co-doping Reddish Orange SrCa3Si2O8 Phosphors

    NASA Astrophysics Data System (ADS)

    Chun, Fengjun; Zhang, Binbin; Li, Wen; Liu, Honggang; Deng, Wen; Chu, Xiang; Osman, Hanan; Zhang, Haitao; Yang, Weiqing

    2018-04-01

    Reddish orange SrCa3Si2O8 phosphors, prepared by the facile solid state reaction method, are a luminescent enhancement of Na+ and Sm3+ co-doping luminescent material. Na+ was designed to compensate the charge imbalance of Sm3+ ion substituting for the Sr2+ ion of orthorhombic SrCa3Si2O8 crystals. The results suggest that Na+ can effectively enhance the luminescent intensity of the reddish orange light peaked at about 562 nm (4 G 5/2 → 6 H 5/2), 600 nm (4 G 5/2 → 6 H 7/2) and 645 nm (4 G 5/2 → 6 H 9/2) excited by the near ultraviolet excited light 404 nm (4 L 13/2 → 6 H 5/2). The energy transfer has been further verified by the florescence lifetime. Additionally, the luminescent lifetime τ of as-grown phosphors was separated into two parts, a rapid lifetime and a slow lifetime. The average lifetime results ranged from 2.098 to 1.329 ms which were influenced by the concentration of Sm3+ doping. The systematic researches of as-grown phosphors have clearly suggested a potential application for white-light-emitting diodes ( w-LEDs).

  10. Critical Surface Parameters for the Oxidative Coupling of Methane over the Mn-Na-W/SiO2 Catalyst.

    PubMed

    Hayek, Naseem S; Lucas, Nishita S; Warwar Damouny, Christine; Gazit, Oz M

    2017-11-22

    The work here presents a thorough evaluation of the effect of Mn-Na-W/SiO 2 catalyst surface parameters on its performance in the oxidative coupling of methane (OCM). To do so, we used microporous dealuminated β-zeolite (Zeo), or mesoporous SBA-15 (SBA), or macroporous fumed silica (Fum) as precursors for catalyst preparation, together with Mn nitrate, Mn acetate and Na 2 WO 4 . Characterizing the catalysts by inductively coupled plasma-optical emission spectroscopy, N 2 physisorption, X-ray diffraction, high-resolution scanning electron microscopy-energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and catalytic testing enabled us to identify critical surface parameters that govern the activity and C 2 selectivity of the Mn-Na-W/SiO 2 catalyst. Although the current paradigm views the phase transition of silica to α-cristobalite as the critical step in obtaining dispersed and stable metal sites, we show that the choice of precursors is equally or even more important with respect to tailoring the right surface properties. Specifically, the SBA-based catalyst, characterized by relatively closed surface porosity, demonstrated low activity and low C 2 selectivity. By contrast, for the same composition, the Zeo-based catalyst showed an open surface pore structure, which translated up to fourfold higher activity and enhanced selectivity. By varying the overall composition of the Zeo catalysts, we show that reducing the overall W concentration reduces the size of the Na 2 WO 4 species and increases the catalytic activity linearly as much as fivefold higher than the SBA catalyst. This linear dependence correlates well to the number of interfaces between the Na 2 WO 4 and Mn 2 O 3 species. Our results combined with prior studies lead us to single out the interface between Na 2 WO 4 and Mn 2 O 3 as the most probable active site for OCM using this catalyst. Synergistic interactions between the various precursors used and the phase transition are discussed in

  11. Na2O-Al2O3 system: Activity of Na2O in (α + β)- and (β + β)-alumina

    NASA Astrophysics Data System (ADS)

    Kale, G. M.

    1992-12-01

    The activity of Na2O in a biphasic mixture of (α + β)-alumina has been measured in the temperature range of 700 to 1100 K using the solid-state galvanic cell: 11663_2007_Article_BF02656462_TeX2GIFE1.gif _{(1:1)}^{Pt,CO_2 + O_2 /Na_2 CO_3 /(α + β ) - alumin a//(Y_2 O_3 )ZrO_2 //In + In_2 O_3 ,Ta,Pt} Similarly, the activity of Na2O in a (β + β’’)-alumina two-phase mixture has been measured between 700 and 1100 K employing the galvanic cell: 11663_2007_Article_BF02656462_TeX2GIFE2.gif _{(1:1)}^{Pt,CO_2 + O_2 /Na_2 CO_3 /(β + β ) - alumin a//(Y_2 O_3 )ZrO_2 //In + In_2 O_3 ,Ta,Pt} The reversible electromotive force (emf ) of both the cells was found to vary linearly with temperature over the entire temperature range of measurement. From the measured reversible emf and auxiliary thermodynamic data for In2O2, Na2O, CO2 and Na2CO3 reported in the literature, the temperature dependence of the logarithm of activity of Na2O in (α + β)-alumina is obtained: 11663_2007_Article_BF02656462_TeX2GIFE3.gif log α _{Na_2 O} (α + β ) = 1.85 - 14,750/T(K)( ± 0.015)(700 ≤slant T ≤slant 1100) For (β + β'’)-alumina, 11663_2007_Article_BF02656462_TeX2GIFE4.gif log α _{Na_2 O} (β + β ) = 3.9 - 13,000/T(K)( ± 0.015)(700 ≤slant T ≤slant 1100)

  12. Local structure of Ge2Sb2Te5 during crystallization under pressure

    NASA Astrophysics Data System (ADS)

    Roscioni, O. M.; Branicio, P. S.; Kalikka, J.; Zhou, X.; Simpson, R. E.

    2018-04-01

    The role of stress on the crystallization process of the phase change data storage material, Ge2Sb2Te5, is studied. When thin Ge2Sb2Te5 films are capped with Si3N4, stress is generated in the Ge2Sb2Te5 layer which causes the crystallization temperature to increase. Si3N4 films of 25 nm thickness increase the crystallization temperature from 446 K to 464 K. We show that stress predominantly destabilizes voids and increases the number of Ge-Sb and homopolar bonds in the vicinity of Ge atoms, and this makes the crystallization less probable, thus resulting in the increase in the measured temperature.

  13. LWIR HgCdTe Detectors Grown on Ge Substrates

    NASA Astrophysics Data System (ADS)

    Vilela, M. F.; Lofgreen, D. D.; Smith, E. P. G.; Newton, M. D.; Venzor, G. M.; Peterson, J. M.; Franklin, J. J.; Reddy, M.; Thai, Y.; Patten, E. A.; Johnson, S. M.; Tidrow, M. Z.

    2008-09-01

    Long-wavelength infrared (LWIR) HgCdTe p-on- n double-layer heterojunctions (DLHJs) for infrared detector applications have been grown on 100 mm Ge (112) substrates by molecular beam epitaxy (MBE). The objective of this current work was to grow our baseline p-on- n DLHJ detector structure (used earlier on Si substrates) on 100 mm Ge substrates in the 10 μm to 11 μm LWIR spectral region, evaluate the material properties, and obtain some preliminary detector performance data. Material characterization techniques included are X-ray rocking curves, etch pit density (EPD) measurements, compositional uniformity determined from Fourier-transform infrared (FTIR) transmission, and doping concentrations determined from secondary-ion mass spectroscopy (SIMS). Detector properties include resistance-area product (RoA), spectral response, and quantum efficiency. Results of LWIR HgCdTe detectors and test structure arrays (TSA) fabricated on both Ge and silicon (Si) substrates are presented and compared. Material properties demonstrated include X-ray full-width of half-maximum (FWHM) as low as 77 arcsec, typical etch pit densities in mid 106 cm-2 and wavelength cutoff maximum/minimum variation <2% across the full wafer. Detector characteristics were found to be nearly identical for HgCdTe grown on either Ge or Si substrates.

  14. Hybrid TE panel test results

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.

    1972-01-01

    Test results are presented for a nine couple (3 x 3 array) thermoelectric panel of hybrid thermocouples. In the hybrid couple, a hollow cylinder of p-type Si-Ge is used to encapsulate a segmented PbTe/Si-Ge n-leg. The hybrid couple is predicted to offer a 10- to 15-percent improvement in performance relative to all Si-Ge couples. The efficiency, output power, and internal resistance of the panel as well as the resistances of the individual hybrid couples are presented as a function of test time covering a period of more than 2600 hours. Initial test results indicated hybrid couple performance consistent with design predictions. Extraneous resistance ranged from 20 to 25% of the hybrid couple thermoelectric resistance.

  15. Sb-rich Si-Sb-Te phase change material for multilevel data storage: The degree of disorder in the crystalline state

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Cheng, Yan; Peng, Cheng; Yao, Dongning; Song, Sannian; Liu, Bo; Feng, Songlin; Chen, Bomy

    2011-07-01

    The phase change memory with monolayer chalcogenide film (Si18Sb52Te30) is investigated for the feasibility of multilevel data storage. During the annealing of the film, a relatively stable intermediate resistance can be obtained at an appropriate heating rate. The transmission electron microscopy in situ analysis reveals a conversion of crystallization mechanism from nucleation to crystal growth, which leads a continuous reduction in the degree of disorder. It is indicated from the electrical properties of the devices that the fall edge of the voltage pulse is the critical factor that determines a reliable triple-level resistance state of the phase change memory cell.

  16. Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine.

    PubMed

    Gao, Feng; Ye, Qingqing; Cui, Peng; Zhang, Lu

    2012-05-09

    We here report an efficient and enhanced fluorescence energy transfer system between confined quantum dots (QDs) by entrapping CdTe into the mesoporous silica shell (CdTe@SiO₂) as donors and gold nanoparticles (AuNPs) as acceptors. At pH 6.50, the CdTe@SiO₂-AuNPs assemblies coalesce to form larger clusters due to charge neutralization, leading to the fluorescence quenching of CdTe@SiO₂ as a result of energy transfer. As compared with the energy transfer system between unconfined CdTe and AuNPs, the maximum fluorescence quenching efficiency of the proposed system is improved by about 27.0%, and the quenching constant, K(sv), is increased by about 2.4-fold. The enhanced quenching effect largely turns off the fluorescence of CdTe@SiO₂ and provides an optimal "off-state" for sensitive "turn-on" assay. In the present study, upon addition of melamine, the weak fluorescence system of CdTe@SiO₂-AuNPs is enhanced due to the strong interactions between the amino group of melamine and the gold nanoparticles via covalent bond, leading to the release of AuNPs from the surfaces of CdTe@SiO₂; thus, its fluorescence is restored. A "turn-on" fluorimetric method for the detection of melamine is proposed based on the restored fluorescence of the system. Under the optimal conditions, the fluorescence enhanced efficiency shows a linear function against the melamine concentrations ranging from 7.5 × 10⁻⁹ to 3.5 × 10⁻⁷ M (i.e., 1.0-44 ppb). The analytical sensitivity is improved by about 50%, and the detection limit is decreased by 5.0-fold, as compared with the analytical results using the CdTe-AuNPs system. Moreover, the proposed method was successfully applied to the determination of melamine in real samples with excellent recoveries in the range from 97.4 to 104.1%. Such a fluorescence energy transfer system between confined QDs and AuNPs may pave a new way for designing chemo/biosensing.

  17. Fluor-ferro-leakeite, NaNa2(FC2+2Fe3+2Li)Si8O22F2, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.

    USGS Publications Warehouse

    Hawthorne, F.C.; Oberti, R.; Ungaretti, L.; Ottolini, L.; Grice, Joel D.; Czamanske, G.K.

    1996-01-01

    Fluor-ferro-leakeite is a new amphibole species from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.; it occurs in association with quartz, alkali feldspar, acmite, ilmenite, and zircon. It forms as anhedral bluish black crystals elongated along c and up to 1 mm long. It is brittle, H = 6, Dmeas = 3.37 g/cm3, Dcalc = 3.34 g/cm3. In plane-polarized light, it is strongly pleochroic, X = very dark indigo blue, Y = gray blue, Z = yellow green; X ??? c = 10?? (in ??obtuse), Y = b, Z ??? a = 4?? (in ?? obtuse), with absorption X > Y > Z. Fluor-ferro-leakeite is biaxial positive, ?? = 1.675(2), ??= 1.683(2), ?? = 1.694(1); 2V = 87(2)??; dispersion is not visible because of the strong absorption. Fluor-ferro-leakeite is monoclinic, space group C2/m, a = 9.792(1), b = 17.938(1), c = 5.3133(4) A??, ??= 103.87(7)??, V = 906.0(1) A??3, Z = 2. The ten strongest X-ray diffraction lines in the powder pattern are [d(I,hkl)]: 2.710(100,151), 2.536(92,202), 3.404(57,131), 4.481(54,040), 8.426(45,110), 2.985(38,241), 2.585(38,061), 3.122(29,310), 2.165(26,261), and 1.586(25,403). Analysis by a combination of electron microprobe, ion microprobe, and crystal-structure refinement (Hawthorne et al. 1993) gives SiO2 51.12, Al2O3 1.13, TiO2 0.68, Fe2O3 16.73, FeO 8.87, MgO 2.02, MnO 4.51, ZnO 0.57, CaO 0.15, Na2O 9.22, K2O 1.19, Li2O 0.99, F 2.87, H2Ocalc 0.60, sum 99.44 wt%. The formula unit, calculated on the basis of 23 O atoms, is (K0.23Na0.76)(Na1.97Ca0.03)(Mg 0.46Fe2+1.4Mn2+0.59Zn0.07Fe3+1.93-Ti 0.08Al0.02Li0.61])(Si7.81Al 0.19)O22(F1.39OH0.61). A previous crystal-structure refinement (Hawthorne et al. 1993) shows Li to be completely ordered at the M3 site. Fluor-ferro-leakeite, ideally NaNa2(Fe2+2Fe3+2Li)Si8O22F2, is related to leakeite, NaNa2(Mg2Fe3+3Li)Si 8O22(OH)2, by the substitutions Fe2+ ??? Mg and F ??? OH.

  18. Synthesis, characterisation and thermoelectric properties of the oxytelluride Bi{sub 2}O{sub 2}Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luu, Son D.N.; Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD; Vaqueiro, Paz, E-mail: p.vaqueiro@reading.ac.uk

    2015-03-15

    Bi{sub 2}O{sub 2}Te was synthesised from a stoichiometric mixture of Bi, Bi{sub 2}O{sub 3} and Te by a solid state reaction. Analysis of powder X-ray diffraction data indicates that this material crystallises in the anti-ThCr{sub 2}Si{sub 2} structure type (space group I4/mmm), with lattice parameters a=3.98025(4) and c=12.70391(16) Å. The electrical and thermal transport properties of Bi{sub 2}O{sub 2}Te were investigated as a function of temperature over the temperature range 300≤T (K)≤665. These measurements indicate that Bi{sub 2}O{sub 2}Te is an n-type semiconductor, with a band gap of 0.23 eV. The thermal conductivity of Bi{sub 2}O{sub 2}Te is remarkably lowmore » for a crystalline material, with a value of only 0.91 W m{sup −1} K{sup −1} at room temperature. - Graphical abstract: Bi{sub 2}O{sub 2}Te, which crystallises in the anti-ThCr{sub 2}Si{sub 2} structure type, is an n-type semiconductor with a remarkably low thermal conductivity. - Highlights: • Bi{sub 2}O{sub 2}Te crystallises in the anti-ThCr{sub 2}Si{sub 2} structure type. • Bi{sub 2}O{sub 2}Te is an n-type semiconductor, with a band gap of 0.23 eV. • The thermal conductivity of Bi{sub 2}O{sub 2}Te approaches values found for amorphous solids. • The thermoelectric figure of merit of undoped Bi{sub 2}O{sub 2}Te reaches 0.13 at 573 K.« less

  19. Low-temperature MOCVD deposition of Bi2Te3 thin films using Et2BiTeEt as single source precursor

    NASA Astrophysics Data System (ADS)

    Bendt, Georg; Gassa, Sanae; Rieger, Felix; Jooss, Christian; Schulz, Stephan

    2018-05-01

    Et2BiTeEt was used as single source precursor for the deposition of Bi2Te3 thin films on Si(1 0 0) substrates by metal organic chemical vapor deposition (MOCVD) at very low substrate temperatures. Stoichiometric and crystalline Bi2Te3 films were grown at 230 °C, which is approximately 100 °C lower compared to conventional MOCVD processes using one metal organic precursors for each element. The Bi2Te3 films were characterized using scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction. The elemental composition of the films, which was determined by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, was found to be strongly dependent of the substrate temperature.

  20. Corrosion pitting of SiC by molten salts

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Smialek, J. L.

    1986-01-01

    The corrosion of SiC by thin films of Na2CO3 and Na2SO4 at 1000 C is characterized by a severe pitting attack of the SiC substrate. A range of different Si and SiC substrates were examined to isolate the factors critical to pitting. Two types of pitting attack are identified: attack at structural discontinuities and a crater-like attack. The crater-like pits are correlated with bubble formation during oxidation of the SiC. It appears that bubbles create unprotected regions, which are susceptible to enhanced attack and, hence, pit formation.

  1. The effect of NaOH concentration on the steam-hydrothermally treated bioactive microarc oxidation coatings containing Ca, P, Si and Na on pure Ti surface.

    PubMed

    Zhou, Rui; Wei, Daqing; Cao, Jianyun; Feng, Wei; Cheng, Su; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2015-04-01

    The microarc oxidation (MAO) coating covered pure Ti plates are steam-hydrothermally treated in autoclaves containing NaOH solutions with different concentrations of 0, 0.001, 0.01, 0.1 and 1mol·L(-1). Due to the composition of Ti, O, Ca, P, Si and Na elements in the MAO coating, anatase and hydroxyapatite (HA) crystals are generated from the previously amorphous MAO coating after the steam-hydrothermal treatment. Meanwhile, it is noticed that the amount of HA crystals increases but showing a decline trend in aspect ratio in morphologies with the increasing of NaOH concentration. Interestingly, the steam-hydrothermally treated MAO coatings exhibit better bonding strength with Ti substrate (up to 43.8±1.1MPa) than that of the untreated one (20.1±3.1MPa). In addition, benefiting from the corrosive attack of the dissolved NaOH in water vapor on the MAO coating, Ti-OH is also formed on the steam-hydrothermally treated MAO coating surface, which can trigger apatite nucleation. Thus, the steam-hydrothermally treated MAO coatings exhibit good apatite-inducing ability. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Characterization and electrochemical properties of Ni(Si)/Ni5Si2 multiphase coatings prepared by HVOF spraying

    NASA Astrophysics Data System (ADS)

    Verdian, M. M.; Raeissi, K.; Salehi, M.

    2012-11-01

    Ni(Si)/Ni5Si2 powders were produced by mechanical alloying (MA) of Ni-25 at.% Si powder mixture. Then, the as-milled powders were sprayed onto copper substrate using high velocity oxy-fuel (HVOF) process. The phase composition and microstructure of the coatings were examined by X-ray diffractometry and scanning electron microscopy. Polarization tests and electrochemical impedance spectroscopy (EIS) measurements were also employed to study corrosion performance of the coatings in 3.5% NaCl solution. The results showed that although single phase Ni3Si was formed during annealing of Ni(Si)/Ni5Si2 powders, but, only Ni(Si) and Ni5Si2 are present in HVOF coatings and no new phase has been formed during spraying. The coatings had microhardness up to 746 HV0.05. Further investigations showed the corrosion performance of multiphase coatings in 3.5% NaCl solution was better than that of copper substrate. The phase transitions during MA, HVOF and annealing processes were discussed in association with Ni-Si phase diagram and nature of each process.

  3. van der Waals epitaxy of CdTe thin film on graphene

    NASA Astrophysics Data System (ADS)

    Mohanty, Dibyajyoti; Xie, Weiyu; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Zhang, Shengbai; Wang, Gwo-Ching; Lu, Toh-Ming; Bhat, Ishwara B.

    2016-10-01

    van der Waals epitaxy (vdWE) facilitates the epitaxial growth of materials having a large lattice mismatch with the substrate. Although vdWE of two-dimensional (2D) materials on 2D materials have been extensively studied, the vdWE for three-dimensional (3D) materials on 2D substrates remains a challenge. It is perceived that a 2D substrate passes little information to dictate the 3D growth. In this article, we demonstrated the vdWE growth of the CdTe(111) thin film on a graphene buffered SiO2/Si substrate using metalorganic chemical vapor deposition technique, despite a 46% large lattice mismatch between CdTe and graphene and a symmetry change from cubic to hexagonal. Our CdTe films produce a very narrow X-ray rocking curve, and the X-ray pole figure analysis showed 12 CdTe (111) peaks at a chi angle of 70°. This was attributed to two sets of parallel epitaxy of CdTe on graphene with a 30° relative orientation giving rise to a 12-fold symmetry in the pole figure. First-principles calculations reveal that, despite the relatively small energy differences, the graphene buffer layer does pass epitaxial information to CdTe as the parallel epitaxy, obtained in the experiment, is energetically favored. The work paves a way for the growth of high quality CdTe film on a large area as well as on the amorphous substrates.

  4. Expanding the remarkable structural diversity of uranyl tellurites: hydrothermal preparation and structures of K[UO(2)Te(2)O(5)(OH)], Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O, beta-Tl(2)[UO(2)(TeO(3))(2)], and Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2).

    PubMed

    Almond, Philip M; Albrecht-Schmitt, Thomas E

    2002-10-21

    The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta

  5. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn]Te detection layers

    NASA Astrophysics Data System (ADS)

    Herrmann, Christoph; Engel, Klaus-Jürgen; Wiegert, Jens

    2010-12-01

    possible choices are, however, quite limited, since only 'mature' materials, which operate at room temperature and can be manufactured reliably should reasonably be considered. Since GaAs is still known to cause reliability problems, the simplest choice is Si, however with the drawback of strong Compton scatter which can cause considerable inter-pixel cross-talk. To investigate the potential and the problems of Si in a multi-layer detector, in this paper the combination of top detector layers made of Si with lower layers made of Cd[Zn]Te is studied by using Monte Carlo simulated detector responses. It is found that the inter-pixel cross-talk due to Compton scatter is indeed very high; however, with an appropriate cross-talk correction scheme, which is also described, the negative effects of cross-talk are shown to be removed to a very large extent.

  6. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn]Te detection layers.

    PubMed

    Herrmann, Christoph; Engel, Klaus-Jürgen; Wiegert, Jens

    2010-12-21

    . The possible choices are, however, quite limited, since only 'mature' materials, which operate at room temperature and can be manufactured reliably should reasonably be considered. Since GaAs is still known to cause reliability problems, the simplest choice is Si, however with the drawback of strong Compton scatter which can cause considerable inter-pixel cross-talk. To investigate the potential and the problems of Si in a multi-layer detector, in this paper the combination of top detector layers made of Si with lower layers made of Cd[Zn]Te is studied by using Monte Carlo simulated detector responses. It is found that the inter-pixel cross-talk due to Compton scatter is indeed very high; however, with an appropriate cross-talk correction scheme, which is also described, the negative effects of cross-talk are shown to be removed to a very large extent.

  7. Direct measurement of the spin gap in a quasi-one-dimensional clinopyroxene: NaTiSi 2 O 6

    DOE PAGES

    Silverstein, Harlyn J.; Smith, Alison E.; Mauws, Cole; ...

    2014-10-13

    True inorganic Spin-Peierls materials are extremely rare, but NaTiSi 2O 6 was at one time considered an ideal candidate due to it having well separated chains of edge-sharing TiO 6 octahedra. At low temperatures, this material undergoes a phase transition from C2/c to Pmore » $$\\bar{1}$$ symmetry, where Ti 3+-Ti 3+ dimers begin to form within the chains. However, it was quickly realized with magnetic susceptibility that simple spin fluctuations do not progress to the point of enabling such a transition. Since then, considerable experimental and theoretical endeavours have been taken to find the true ground state of this system and explain how it manifests. Here, we employ the use of x-ray diffraction, neutron spectroscopy, and magnetic susceptibility to directly and simultaneously measure the symmetry loss, spin singlet-triplet gap, and phonon modes. Lastly, we observed a gap of 53(3) meV, fit to the magnetic susceptibility, and compared to previous theoretical models to unambiguously assign NaTiSi 2O 6 as having an orbital-assisted Peierls ground state.« less

  8. Effect of Guest Atom Composition on the Structural and Vibrational Properties of the Type II Clathrate-Based Materials AxSi136, AxGe136 and AxSn136 (A = Na, K, Rb, Cs; 0 ≤ x ≤ 24).

    PubMed

    Xue, Dong; Myles, Charles W; Higgins, Craig

    2016-08-11

    Type II clathrates are interesting due to their potential thermoelectric applications. Powdered X-ray diffraction (XRD) data and density functional calculations for Na x Si 136 found a lattice contraction as x increases for 0 < x < 8 and an expansion as x increases for x > 8. This is explained by XRD data that shows that as x increases, the Si 28 cages are filled first for x < 8 and the Si 20 cages are then filled for x > 8. Motivated by this work, here we report the results of first-principles calculations of the structural and vibrational properties of the Type II clathrate compounds A x Si 136 , A x Ge 136 , and A x Sn 136 . We present results for the variation of the lattice constants, bulk moduli, and other structural parameters with x. These are contrasted for the Si, Ge, and Sn compounds and for guests A = Na, K, Rb, and Cs. We also present calculated results of phonon dispersion relations for Na₄Si 136 , Na₄Ge 136 , and Na₄Sn 136 and we compare these for the three materials. Finally, we present calculated results for the elastic constants in Na x Si 136 , Na x Ge 136 , and Na x Sn 136 for x = 4 and 8. These are compared for the three hosts, as well as for the two compositions.

  9. Structural, optical, and magnetic properties of Na{sub 8}Eu{sub 2}(Si{sub 2}S{sub 6}){sub 2} and Na{sub 8}Eu{sub 2}(Ge{sub 2}S{sub 6}){sub 2}: Europium(II) quaternary chalcogenides that contain an ethane-like (Si{sub 2}S{sub 6}){sup 6−} or (Ge{sub 2}S{sub 6}){sup 6−} moiety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Amitava, E-mail: choudhurya@mst.edu; Ghosh, Kartik; Grandjean, Fernande

    2015-03-15

    Two isostructural europium(II) quaternary chalcogenides, Na{sub 8}Eu{sub 2}(Si{sub 2}S{sub 6}){sub 2}, 1, and Na{sub 8}Eu{sub 2}(Ge{sub 2}S{sub 6}){sub 2}, 2, containing an ethane-like (Si{sub 2}S{sub 6}){sup 6−} or (Ge{sub 2}S{sub 6}){sup 6−} moiety have been synthesized by employing the polychalcogenide molten flux method. Single-crystal X-ray diffraction reveals that both compounds crystallize in the C2/m space group, and their structures contain layers of ([Na{sub 2}Eu{sub 2}(Si{sub 2}S{sub 6}){sub 2}]{sup 6−}){sub ∞} or ([Na{sub 2}Eu{sub 2}(Ge{sub 2}S{sub 6}){sub 2}]{sup 6−}){sub ∞} anions held together by six interlayer sodium cations to yield (Na{sub 6}[Na{sub 2}Eu{sub 2}(Si{sub 2}S{sub 6}){sub 2}]){sub ∞} and (Na{sub 6}[Na{submore » 2}Eu{sub 2}(Ge{sub 2}S{sub 6}){sub 2}]){sub ∞}. Compound 2 is a semiconductor with an optical band gap of 2.15(2) eV. The temperature dependence of the magnetic susceptibility indicates that compounds 1 and 2 are paramagnetic with μ{sub eff}=7.794(1) μ{sub B} per Eu and g=1.964(1) for 1 and μ{sub eff}=8.016(1) μ{sub B} per Eu and g=2.020(1) for 2, moments that are in good agreement with the europium(II) spin-only moment of 7.94 μ{sub B}. The europium-151 Mössbauer isomer shift of 2 confirms the presence of europium(II) cations with an electronic configuration between [Xe]4f{sup 6.81} and 4f{sup 7}6s{sup 0.32}. - Graphical abstract: TOC figure caption: structure of Na{sub 8}Eu{sub 2}(Si{sub 2}S{sub 6}){sub 2} viewed along the a-axis showing the filling of A–B and B–A types of anion layers with two different types of cations. - Highlights: • Synthesis of quaternary europium chalcogenides containing ethane-like dimer. • Structural characterization employing single-crystal X-ray diffraction. • Mössbauer spectroscopy and magnetic measurements confirm presence of Eu(II)« less

  10. Synthesis of zeolites Na-A and Na-X from tablet compressed and calcinated coal fly ash

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Gao, Wenyan; Liu, Xin; Zhang, Yifu; Meng, Changgong

    2017-10-01

    Zeolites Na-A and Na-X are important synthetic zeolites widely used for separation and adsorption in industry. It is of great significance to develop energy-efficient routines that can synthesize zeolites Na-A and Na-X from low-cost raw materials. Coal fly ash (CFA) is the major residue from the combustion of coal and biomass containing more than 85% SiO2 and Al2O3, which can readily replace the conventionally used sodium silicate and aluminate for zeolite synthesis. We used Na2CO3 to replace the expensive NaOH used for the calcination of CFA and showed that tablet compression can enhance the contact with Na2CO3 for the activation of CFA through calcination for the synthesis of zeolites Na-A and Na-X under mild conditions. We optimized the control variables for zeolite synthesis and showed that phase-pure zeolite Na-A can be synthesized with CFA at reactant molar ratio, hydrothermal reaction temperature and reaction time of 1.3Na2O: 0.6Al2O3: 1SiO2: 38H2O at 80°C for 6 h, respectively, while phase-pure zeolite Na-X can be synthesized at 2.2Na2O: 0.2Al2O3: 1SiO2: 88H2O at 100°C for 8 h, respectively. The composition, morphology, specific surface area, vibration spectrum and thermogravimetry of synthesized Na-A and Na-X were further characterized.

  11. Growth of Lattice-Matched ZnTeSe Alloys on (100) and (211)B GaSb

    NASA Astrophysics Data System (ADS)

    Chai, J.; Lee, K.-K.; Doyle, K.; Dinan, J. H.; Myers, T. H.

    2012-10-01

    A key issue with the current HgCdTe/Si system is the high dislocation density due to the large mismatch between HgCdTe and Si. An alternative system that has superior lattice matching is HgCdSe/GaSb. A buffer layer to mitigate issues with direct nucleation of HgCdSe on GaSb is ZnTe1- x Se x . We have performed preliminary studies into the growth of lattice-matched ZnTe1- x Se x on both (100) and (211)B GaSb. The effects of substrate orientation, substrate temperature, and growth conditions on the morphology and crystallography of ZnTe0.99Se0.01 alloys were investigated. The lattice-matching condition yielded minimum root-mean-square (rms) roughness of 1.1 nm, x-ray rocking curve full-width at half-maximum (FWHM) value of ~29 arcsec, and density of nonradiative defects of mid-105 cm-2 as measured by imaging photoluminescence.

  12. Hybrid dielectric light trapping designs for thin-film CdZnTe/Si tandem cells

    DOE PAGES

    Chung, H.; Zhou, C.; Tee, X. T.; ...

    2016-05-20

    Tandem solar cells consisting of high bandgap cadmium telluride alloys atop crystalline silicon have potential for high efficiencies exceeding the Shockley-Queisser limit. However, experimental results have fallen well below this goal significantly because of non-ideal current matching and light trapping. In this work, we simulate cadmium zinc telluride (CZT) and crystalline silicon (c-Si) tandems as an exemplary system to show the role that a hybrid light trapping and bandgap engineering approach can play in improving performance and lowering materials costs for tandem solar cells incorporating crystalline silicon. This work consists of two steps. First, we optimize absorption in the crystallinemore » silicon layer with front pyramidal texturing and asymmetric dielectric back gratings, which results in 121% absorption enhancement from a planar structure. Then, using this pre-optimized light trapping scheme, we model the dispersion of the Cd xZn 1-xTe alloys, and then adjust the bandgap to realize the best current matching for a range of CZT thicknesses. Using experimental parameters, the corresponding maximum efficiency is predicted to be 16.08 % for a total tandem cell thickness of only 2.2 μm.« less

  13. Thermodynamics, Diffusion, and Structure of Liquid NaAlSi3O8 at Elevated Temperature and Pressure from Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Neilson, R.; Spera, F. J.; Ghiorso, M. S.

    2014-12-01

    Thermodynamic properties of silicate melts at high temperature (T) and pressure (P) are crucial to understanding Earth accretion, magma oceans, petrogenesis, and crustal growth. However, equations of state for silicate liquids at mantle conditions are scarce, due to experimental challenges. Molecular Dynamics (MD) simulations allow investigation of thermodynamic and transport properties of silicate melts at high P and T and enable the correlation of liquid structure with computed properties. Using classical MD, we studied liquid NaAlSi3O8 in the range 0-42 GPa and 3000-5137 K. Density ranged from 2.2 to 3.6 g/cm3, and all simulations were performed in the microcanonical (NEV) ensemble using the potential from Matsui (1998). An equation of state with internal energy E(V,T) was developed using the RT scaling-Vinet formulation (Ghiorso et al., 2009). From thermodynamic relationships, the Grüneisen parameter, isobaric expansivity, isothermal compressibility, heat capacity, and other functions are computed over the P-T range of the MD simulations. Diffusion coefficients (D) range from 1.5×10-9 to 5.9×10-8 m2/s and typically order Na>Al>O>Si at a given state point. Generally, D decreases with P and increases with T except for a low P anomalous region along the 3065 K isotherm. Anomalous diffusion for Al, Si, and O is congruent with laboratory experiments at P<10 GPa (e.g., Shimizu and Kushiro, 1984; Poe et al., 1997; Tinker and Lesher, 2001; Tinker et al., 2003). Activation energy for Na is on the order of -75.3 kJ/mol with activation volume -1.74 cm3/mol. The anomalous peak in diffusivity for Si and O occurs at ~3 GPa, which marks a subtle increase in the average coordination number (CN) for O around O from 9.35 to 10.31. The average CN for O around O generally increases with P, but it systematically drops at 8, 15, and 20 GPa for 3065, 3944, and 5137 K, respectively. The concentrations of AlO5 and SiO5 polyhedra maximize near 16 and 35 GPa, respectively.

  14. Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Battiston, S.; Fiameni, S.; Saleemi, M.; Boldrini, S.; Famengo, A.; Agresti, F.; Stingaciu, M.; Toprak, M. S.; Fabrizio, M.; Barison, S.

    2013-07-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1: x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density >95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600°C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600°C.

  15. Triply degenerate nodal points and topological phase transitions in NaCu3Te2

    NASA Astrophysics Data System (ADS)

    Xia, Yunyouyou; Li, Gang

    2017-12-01

    Quasiparticle excitations of free electrons in condensed-matter physics, characterized by the dimensionality of the band crossing, can find their elementary-particle analogs in high-energy physics, such as Majorana, Weyl, and Dirac fermions, while crystalline symmetry allows more quasiparticle excitations and exotic fermions to emerge. Using symmetry analysis and ab initio calculations, we propose that the three-dimensional honeycomb crystal NaCu3Te2 hosts triply degenerate nodal points (TDNPs) residing at the Fermi level. Furthermore, in this system we find a tunable phase transition between a trivial insulator, a TDNP phase, and a weak topological insulator (TI), triggered by a symmetry-allowed perturbation and the spin-orbital coupling (SOC). Such a topological nontrivial ternary compound not only serves as a perfect candidate for studying three-component fermions, but also provides an excellent playground for understanding the topological phase transitions between TDNPs, TIs, and trivial insulators, which distinguishes this system from other TDNP candidates.

  16. Preparation of xerogel SiO2 from roasted iron sand under various acidic solution

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Wahyuningsih, S.; Ismoyo, Y. A.; Pranata, H. P.; Munawaroh, H.

    2016-11-01

    Xerogel SiO2 had been prepared from roasted iron sand through variation of Na2CO3 addition and sol-gel process under various acidic solution. Roasting treatment was carried out on the compositional variation of iron sand:Na2CO3 = 1:2; 1:1 and 2:1 at 1100 °C. While the sol-gel process was conducted at room temperature and neutralized using HCl 0.1 M and 6 M. The color characteristics of roasted iron sand shown light brown, dark brown and dark gray of the compositional variation of iron sand:Na2CO3 = 1:2; 1:1 and 2:1, respectively. In addition, the levels of thoughness increased by increasing the ratio of sand in the composition of the mixture. The best composition of roasted treatment was at a variety of iron sand:Na2SiO3 = 1:2 with 57.72% had been dissolved in hot water. The addition of Na2CO3 will influence the Na2SiO3 formation, because of the increase of Na2CO3 capable produced the iron sand decomposition product. Na2SiO3 gel had been produced after it was neutralized with certain amount of HCl solution. The neutralization was more effective if using high concentration of HCl because of the formation of gel SiO2 will be easier occurred. The results of SiO2 had been identified by the FTIR spectra, which an absorption spectra of Si-O-Si asymmetric stretching at 1098.51 cm-1, symmetric stretching of Si-O-Si at 804.35 cm-1 and the bending O-Si-O at 469.69 cm'1. The result of SiO2 content by XRF analysis is about 85.15%.

  17. Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation.

    PubMed

    Wang, Xiangfu; Zheng, Jin; Xuan, Yan; Yan, Xiaohong

    2013-09-09

    NaYbF(4):Tm3+@SiO(2) core-shell micro-particles were synthesized by a hydrothermal method and subsequent ultrasonic coating process. Optical temperature sensing has been observed in NaYbF4: Tm(3+)@SiO(2)core-shell micro-particles with a 980 nm infrared laser as excitation source.The fluorescence intensity ratios, optical temperature sensitivity, and temperature dependent population re-distribution ability from the thermally coupled (1)D(2)/(1)G(4) and (3)F(2) /(3)H(4) levels of the Tm(3+) ion have been analyzed as a function of temperature in the range of 100~700 K in order to check its availability as a optical temperature sensor. A better behavior as a lowtemperature sensor has been obtained with a minimum sensitivity of 5.4 × 10(-4) K(-1) at 430 K. It exhibits temperature induced population re-distribution from (1)D(2) /(1)G(4) thermally coupled levels at higher temperature range.

  18. A vibrational spectroscopic study of the silicate mineral lomonosovite Na5Ti2(Si2O7)(PO4)O2

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Theiss, Frederick L.; Graça, Leonardo M.; Scholz, Ricardo

    2015-01-01

    The mineral lomonosovite has been studied using a combination of scanning electron microscopy with energy dispersive X-ray analysis and vibrational spectroscopy. Qualitative chemical analysis gave Si, P, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and Al. The mineral lomonosovite has a formula Na5Ti2(Si2O7)(PO4)O2. Raman bands observed at 909, 925 and 939 cm-1 are associated with phosphate units. Raman bands found at 975, 999, 1070, 1080 and 1084 cm-1 are attributed to siloxane stretching vibrations. The observation of multiple bands in both the phosphate stretching and bending regions supports the concept that the symmetry of the phosphate anion in the structure of lomonosovite is significantly reduced. Infrared spectroscopy identifies bands in the water stretching and bending regions, thus suggesting that water is involved with the structure of lomonosovite either through adsorption on the surface or by bonding to the phosphate units.

  19. Characteristics of Ge-Sb-Te films prepared by cyclic pulsed plasma-enhanced chemical vapor deposition.

    PubMed

    Suk, Kyung-Suk; Jung, Ha-Na; Woo, Hee-Gweon; Park, Don-Hee; Kim, Do-Heyoung

    2010-05-01

    Ge-Sb-Te (GST) thin films were deposited on TiN, SiO2, and Si substrates by cyclic-pulsed plasma-enhanced chemical vapor deposition (PECVD) using Ge{N(CH3)(C2H5)}, Sb(C3H7)3, Te(C3H7)3 as precursors in a vertical flow reactor. Plasma activated H2 was used as the reducing agent. The growth behavior was strongly dependent on the type of substrate. GST grew as a continuous film on TiN regardless of the substrate temperature. However, GST formed only small crystalline aggregates on Si and SiO2 substrates, not a continuous film, at substrate temperatures > or = 200 degrees C. The effects of the deposition temperature on the surface morphology, roughness, resistivity, crystallinity, and composition of the GST films were examined.

  20. Large-Scale Surfactant-Free Synthesis of p-Type SnTe Nanoparticles for Thermoelectric Applications

    PubMed Central

    Han, Guang; Zhang, Ruizhi; Popuri, Srinivas R.; Greer, Heather F.; Reece, Michael J.; Bos, Jan-Willem G.; Zhou, Wuzong; Knox, Andrew R.; Gregory, Duncan H.

    2017-01-01

    A facile one-pot aqueous solution method has been developed for the fast and straightforward synthesis of SnTe nanoparticles in more than ten gram quantities per batch. The synthesis involves boiling an alkaline Na2SnO2 solution and a NaHTe solution for short time scales, in which the NaOH concentration and reaction duration play vital roles in controlling the phase purity and particle size, respectively. Spark plasma sintering of the SnTe nanoparticles produces nanostructured compacts that have a comparable thermoelectric performance to bulk counterparts synthesised by more time- and energy-intensive methods. This approach, combining an energy-efficient, surfactant-free solution synthesis with spark plasma sintering, provides a simple, rapid, and inexpensive route to p-type SnTe nanostructured materials. PMID:28772593

  1. Molten salt corrosion of SiC: Pitting mechanism

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Smialek, J. L.

    1985-01-01

    Thin films of Na2SO4 and Na2CO3 at 1000 C lead to severe pitting of sintered alpha-SiC. These pits are important as they cause a strength reduction in this material. The growth of product layers is related to pit formation for the Na2CO3 case. The early reaction stages involve repeated oxidation and dissolution to form sodium silicate. This results in severe grain boundary attack. After this a porous silica layer forms between the sodium silicate melt and the SiC. The pores in this layer appear to act as paths for the melt to reach the SiC and create larger pits.

  2. Effects of ion irradiation on the mechanical properties of SiNa wO xC yH z sol-gel derived thin films

    NASA Astrophysics Data System (ADS)

    Lucca, D. A.; Qi, Y.; Harriman, T. A.; Prenzel, T.; Wang, Y. Q.; Nastasi, M.; Dong, J.; Mehner, A.

    2010-10-01

    A study of the effects of ion irradiation of hybrid organic/inorganic modified silicate thin films on their mechanical properties is presented. NaOH catalyzed SiNa wO xC yH z thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H + or 250 keV N 2+ at fluences ranging from 1 × 10 14 to 2.5 × 10 16 ions/cm 2. Nanoindentation was used to characterize the films. Changes in hardness and reduced elastic modulus were examined as a function of ion fluence and irradiating species. The resulting increases in hardness and reduced elastic modulus are compared to similarly processed acid catalyzed silicate thin films.

  3. 125Te NMR Probes of Tellurium Oxide Crystals: Shielding-Structure Correlations.

    PubMed

    Garaga, Mounesha N; Werner-Zwanziger, Ulrike; Zwanziger, Josef W

    2018-01-16

    The local environments around tellurium atoms in a series of tellurium oxide crystals were probed by 125 Te solid-state NMR spectroscopy. Crystals with distinct TeO n units (n from 3 to 6), including Na 2 TeO 3 , α-TeO 2 and γ-TeO 2 , Te 2 O(PO 4 ) 2 , K 3 LaTe 2 O 9 , BaZnTe 2 O 7 , and CsYTe 3 O 8 were studied. The latter four were synthesized through a solid-state process. X-ray diffraction was used to confirm the successful syntheses. The 125 Te chemical shift was found to exhibit a strong linear correlation with the Te coordination number. The 125 Te chemical-shift components (δ 11 , δ 22 , and δ 33 ) of the TeO 4 units were further correlated to the O-Te-O-bond angles. With the aid of 125 Te NMR, it is likely that these relations can be used to estimate the coordination states of Te atoms in unknown Te crystals and glasses.

  4. Molten salt corrosion of hot-pressed Si sub 3 N sub 4 /SiC-reinforced composites and effects of molten salt exposure on slow crack growth of hot-pressed Si sub 3 N sub 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, C.H. Jr.; Jones, R.H.

    1989-11-03

    Corrosion and slow crack growth of hot-pressed Si{sub 3}N{sub 4}- based ceramic materials were studied to arrive at an initial determination of the severity of Na{sub 2}SO{sub 4} molten salt environments. Slow crack growth testing revealed that Na{sub 2}SO{sub 4} molten salt exposure accelerated crack growth in hot-pressed Si{sub 3}N{sub 4} compared to crack growth in air at 1300 C. The salt exposure was observed to reduce the time to failure of precracked specimens by factors of two or three. Measured crack velocity was observed to obey a power law, V = AK{sup n}, with n = 5.2 {plus minus}more » 0.2 and A = 7.6 {times} 10{sup {minus}10}. Standard corrosion coupon tests were performed on specimens of Si{sub 3}N{sub 4}/SiC-reinforced composites and hot-pressed Si{sub 3}N{sub 4} monolithic material. Weight change measurements were performed after eight-hour immersion exposures at 950, 975, and 1000 C to Na{sub 2}SO{sub 4}. Hot-pressed Si{sub 3}N{sub 4} + 5% MgO and Si{sub 3}N{sub 4}/SiC whisker-reinforced material exhibited similar surface features after molten salt exposure. A Si{sub 3}N{sub 4}/SiC fiber-reinforced material, however, revealed complete dissolution of SiC chopped fiber reinforcements.« less

  5. Electrical characterizations of MIS structures based on variable-gap n(p)-HgCdTe grown by MBE on Si(0 1 3) substrates

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Varavin, V. S.; Dvoretskii, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Sidorov, G. Yu.

    2017-12-01

    Metal-insulator-semiconductor (MIS) structures based on n(p)-Hg1-xCdxTe (x = 0.22-0.40) with near-surface variable-gap layers were grown by the molecular-beam epitaxy (MBE) technique on the Si (0 1 3) substrates. Electrical properties of MIS structures were investigated experimentally at various temperatures (9-77 K) and directions of voltage sweep. The ;narrow swing; technique was used to determine the spectra of fast surface states with the exception of hysteresis effects. It is established that the density of fast surface states at the MCT/Al2O3 interface at a minimum does not exceed 3 × 1010 eV-1 × cm-2. For MIS structures based on n-MCT/Si(0 1 3), the differential resistance of the space-charge region in strong inversion mode in the temperature range 50-90 K is limited by the Shockley-Read-Hall generation in the space-charge region.

  6. Self induced gratings in ternary SiO2:SnO2:Na2O bulk glasses by UV light seeding.

    PubMed

    Lancry, M; Douay, M; Niay, P; Beclin, F; Menke, Y; Milanese, D; Ferraris, M; Poumellec, B

    2005-09-05

    The diffraction efficiency of gratings written in ternary SnO2:SiO2:Na2O bulk glasses rises dramatically with time after the occultation of the cw 244nm light used to write the thick hologram. This self-induced behavior lasts for several hours and ultimately leads to refractive index changes as high as 3 10-3.

  7. Environment Humidity Effect on the Weight of Carbonized Na-Al-Si Glass Fabrics Recovery after Heating

    NASA Astrophysics Data System (ADS)

    Pentjuss, E.; Lusis, A.; Gabrusenoks, J.; Bajars, G.

    2015-03-01

    Na-Al-Si glass fabrics fibres contain Na+ ions that diffuse to its surface and along with CO2 and H2O from atmosphere create here the shell of carbonate hydrates. The heating of fabric leads to weight loss by evolving these substances. In this work the results of weight recovery study at room relative humidity (20% - 50%) and elevated humidity (near 70%) of fabrics after its heating at different temperatures (70°C - 150°C) are compared. The experiments shoved the different weight recovery kinetics. The initial exponential stages up to 0.3 h - 0.5 h of the both recoveries are associated with water absorption and differ by its levels. In a case of lower environment humidity the later weight increase are restricted by its value, but at an elevated humidity has a maximum and followed weight increase. The reasons of observed differences are discussed.

  8. Monoclinic Sr(1-x)Na(x)SiO(3-0.5x): new superior oxide ion electrolytes.

    PubMed

    Singh, Preetam; Goodenough, John B

    2013-07-10

    Oxide ion electrolytes determine the temperature of operation of solid oxide fuel cells, oxygen separation membranes, and oxygen sensors. There is a strong incentive to lower their operating temperatures, in a solid oxide fuel cell, for example, from Top > 800 °C to Top ≈ 500 °C. The use of low-cost Na(+) rather than K(+) as the dopant in monoclinic SrSiO3 (C12/C1) is shown to provide a larger solid solution range (0 < x ≤ 0.45) in Sr1-xNaxSiO3-0.5x and to achieve an oxide ion conductivity σo ≥ 10(-2) S·cm(-1) by 525 °C as a result of lowering the temperature of a smooth transition to full disorder of the mobile oxide ions. The Sr1-xNaxSiO3-0.5x electrolytes are much less hygroscopic than Sr1-xKxSiO3-0.5x and are stable with a nickel composite anode in 5% H2/Ar as well as with cathodes such as La1-xSrxMnO3-δ and Sr0.7Y0.3CoO3-δ in air, which makes them candidate electrolytes for intermediate-temperature solid oxide fuel cells or for other applications of oxide ion electrolytes.

  9. Effects of Al2O3, B2O3, Li2O, Na2O, and SiO2 on Nepheline Crystallization in Hanford High Level Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, Jared O.; Vienna, John D.; Schweiger, Michael J.

    2016-09-15

    Nepheline (nominally NaAlSiO4) formation during slow cooling of high-alumina (25.4 - 34.5 mass% Al2O3) Hanford high level waste glasses may significantly reduce product durability. To investigate the effects of composition on nepheline crystallization, 29 compositions were formulated by adjusting Al2O3, B2O3, Li2O, Na2O, and SiO2 around a baseline glass that precipitated 12 mass% nepheline. Thirteen of these compositions were generated by adjusting one-component-at-a-time, while two or three components were adjusted to produce the other 16 (with all remaining components staying in the same relative proportions). Quantitative X-ray diffraction was used to determine nepheline concentration in each sample. Twenty two glassesmore » precipitated nepheline, two of which also precipitated eucryptite (nominally LiAlSiO4), and one glass formed only eucryptite upon slow cooling. Increasing Na2O and Li2O had the strongest effect in promoting nepheline formation. Increasing B2O3 inhibited nepheline formation. SiO2 and Al2O3 showed non-linear behavior related to nepheline formation. The composition effects on nepheline formation in these glasses are reported.« less

  10. Tetragonal Almandine, (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12, a New High-Pressure Mineral from the Shergotty Impact on Mars: an Integrated FESEM-EPMA-Synchrotron Diffraction Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.

    2016-12-01

    The combination of FESEM-EDS-EBSD, EPMA, and synchrotron microdiffraction is developing into a powerful tool for identification of micron-scale minerals in rocks such as high-pressure phases in shocked meteorites. During a nanomineralogy investigation of the Shergotty meteorite using this approach, we have identified a new shock-induced high-pressure silicate, majoritic almandine with a tetragonal I41/a structure, in an impact melt pocket. The Shergotty meteorite, which fell in the Gaya district, Bihar, India in 1865, is a Martian basaltic shergottite with shock features. Tetragonal almandine in Shergotty occurs as aggregates of subhedral crystals, 0.8 - 2.5 µm in diameter, along with stishovite in the central region of a shock melt pocket, showing an empirical formula of (Fe1.16Ca0.75Mg0.61Na0.42Mn0.03K0.01)(Al1.16Si0.63Mg0.19Ti0.02)Si3O12. Its general formula is (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12. EBSD indicated this phase has a garnet-related structure. Synchrotron X-ray diffraction revealed that this garnet has actually a tetragonal structure (I41/a) with unit cell dimensions: a = 11.585(9) Å, c = 11.63(4) Å, V = 1561(7) Å3, and Z = 8. Tetragonal almandine is the polymorph of cubic almandine, a new high-pressure garnet mineral, formed by shock metamorphism via the Shergotty impact event on Mars. It apparently crystallized from Fe-rich shock-induced melt under high-pressure and high-temperature conditions.

  11. Effects of Inductively Coupled Plasma Hydrogen on Long-Wavelength Infrared HgCdTe Photodiodes

    NASA Astrophysics Data System (ADS)

    Boieriu, P.; Buurma, C.; Bommena, R.; Blissett, C.; Grein, C.; Sivananthan, S.

    2013-12-01

    Bulk passivation of semiconductors with hydrogen continues to be investigated for its potential to improve device performance. In this work, hydrogen-only inductively coupled plasma (ICP) was used to incorporate hydrogen into long-wavelength infrared HgCdTe photodiodes grown by molecular-beam epitaxy. Fully fabricated devices exposed to ICP showed statistically significant increases in zero-bias impedance values, improved uniformity, and decreased dark currents. HgCdTe photodiodes on Si substrates passivated with amorphous ZnS exhibited reductions in shunt currents, whereas devices on CdZnTe substrates passivated with polycrystalline CdTe exhibited reduced surface leakage, suggesting that hydrogen passivates defects in bulk HgCdTe and in CdTe.

  12. A High Capacity, Good Safety and Low Cost Na2FeSiO4-Based Cathode for Rechargeable Sodium-Ion Battery.

    PubMed

    Guan, Wenhao; Pan, Bin; Zhou, Peng; Mi, Jinxiao; Zhang, Dan; Xu, Jiacheng; Jiang, Yinzhu

    2017-07-12

    Rechargeable sodium-ion batteries (SIBs) are receiving intense interest because the resource abundance of sodium and its lithium-like chemistry make them low cost alternatives to the prevailing lithium-ion batteries in large-scale energy storage devices. Two typical classes of materials including transition metal oxides and polyanion compounds have been under intensive investigation as cathodes for SIBs; however, they are still limited to poor stability or low capacity of the state-of-art. Herein, we report a low cost carbon-coated Na 2 FeSiO 4 with simultaneous high capacity and good stability, owing to the highly pure Na-rich triclinic phase and the carbon-incorporated three-dimensional network morphology. The present carbon-coated Na 2 FeSiO 4 demonstrates the highest reversible capacity of 181.0 mAh g -1 to date with multielectron redox reaction that occurred among various polyanion-based SIBs cathodes, which achieves a close-to-100% initial Coulombic efficiency and a stable cycling with 88% capacity retention up to 100 cycles. In addition, such an electrode shows excellent stability either charged at a high voltage of 4.5 V or heated up to 800 °C. The present work might open up the possibility for developing high capacity, good safety and low cost polyanion-based cathodes for rechargeable SIBs.

  13. Si Thermoelectric Power Generator with an Unconventional Structure

    NASA Astrophysics Data System (ADS)

    Sakamoto, Tatsuya; Iida, Tsutomu; Ohno, Yota; Ishikawa, Masashi; Kogo, Yasuo; Hirayama, Naomi; Arai, Koya; Nakamura, Takashi; Nishio, Keishi; Takanashi, Yoshifumi

    2014-06-01

    We examine the mechanical stability of an unconventional Mg2Si thermoelectric generator (TEG) structure. In this structure, the angle θ between the thermoelectric (TE) chips and the heat sink is less than 90°. We examined the tolerance to an external force of various Mg2Si TEG structures using a finite-element method (FEM) with the ANSYS code. The output power of the TEGs was also measured. First, for the FEM analysis, the mechanical properties of sintered Mg2Si TE chips, such as the bending strength and Young's modulus, were measured. Then, two-dimensional (2D) TEG models with various values of θ (90°, 75°, 60°, 45°, 30°, 15°, and 0°) were constructed in ANSYS. The x and y axes were defined as being in the horizontal and vertical directions of the substrate, respectively. In the analysis, the maximum tensile stress in the chip when a constant load was applied to the TEG model in the x direction was determined. Based on the analytical results, an appropriate structure was selected and a module fabricated. For the TEG fabrication, eight TE chips, each with dimensions of 3 mm × 3 mm × 10 mm and consisting of Sb-doped n-Mg2Si prepared by a plasma-activated sintering process, were assembled such that two chips were connected in parallel, and four pairs of these were connected in series on a footprint of 46 mm × 12 mm. The measured power generation characteristics and temperature distribution with temperature differences between 873 K and 373 K are discussed.

  14. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    PubMed Central

    Yang, Jingbin; Li, Dongxu; Fang, Yuan

    2017-01-01

    C-A-S-H (CaO-Al2O3-SiO2-H2O) and N-A-S-H (Na2O-Al2O3-SiO2-H2O) have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O)/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH)2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH)2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali-activated materials. PMID

  15. Characterization of a small CsI(Na)-WSF-SiPM gamma camera prototype using 99mTc

    NASA Astrophysics Data System (ADS)

    Castro, I. F.; Soares, A. J.; Moutinho, L. M.; Ferreira, M. A.; Ferreira, R.; Combo, A.; Muchacho, F.; Veloso, J. F. C. A.

    2013-03-01

    A small field of view gamma camera is being developed, aiming for applications in scintimammography, sentinel lymph node detection or small animal imaging and research. The proposed wavelength-shifting fibre (WSF) gamma camera consists of two perpendicular sets of WSFs covering both sides of a CsI(Na) crystal, such that the fibres positioned at the bottom of the crystal provide the x coordinate and the ones on top the y coordinate of the gamma photon interaction point. The 2D position is given by highly sensitive photodetectors reading out each WSF and the energy information is provided by PMTs that cover the full detector area. This concept has the advantage of using N+N instead of N × N photodetectors to cover an identical imaging area, and is being applied using for the first time SiPMs. Previous studies carried out with 57Co have proved the feasibility of this concept using SiPM readout. In this work, we present experimental results from true 2D image acquisitions with a 10+10 SiPMs prototype, i.e. 10 × 10 mm2, using a parallel-hole collimator and different samples filled with 99mTc solution. The performance of the small prototype in these conditions is evaluated through the characterization of different gamma camera parameters, such as energy and spatial resolution. Ongoing advances towards a larger prototype of 100+100 SiPMs (10 × 10 cm2) are also presented.

  16. Effect of an external magnetic field on the mass attenuation coefficients of p-Si and n-Si

    NASA Astrophysics Data System (ADS)

    Yılmaz, D.; Önder, P.

    2018-05-01

    In this study, the mass attenuation coefficients of p-Si and n-Si semiconductor samples have been determined in an external magnetic field. The semiconductor samples were located to the external magnetic field of intensities 0.2 T, 0.4 T, 0.6 T and 0.8 T. The samples were bombarded by 59.5 keV, 80.1 keV, 121.8 keV and 244.7 keV gamma-rays emitted from Am241, Ba133 and Eu152 radioactive sources. The transmitted photons were detected by a CdTe detector. It was observed that the mass attenuation coefficients of p-Si and n-Si semiconductor samples decrease with increasing gamma-ray energy. Also, the mass attenuation coefficients of the samples increase with applying magnetic field intensity.

  17. Raman spectroscopic study of synthesized Na-bearing majoritic garnets

    NASA Astrophysics Data System (ADS)

    Okamoto, K.

    2003-12-01

    Majoritic garnets in diamond have been considered as the sample from mantle transition zone (e.g. Moore and Gurney, 1985). For non-destructive, in-situ Raman analysis, Gillet et al. (2002) systematically checked chemistry and Raman peak of various majoritic garnets in diamond. They treated majoritic component as number of excess-silica than 3.0 per formula unit. However, in the basaltic system, majorite garnets also have significant amounts of Na. Na substitution is coupled with Si and Ti as follows; Na +Ti = Ca +Al (Ringwood and Lovering, 1970), Na +Si = Ca + Al (Sobolev and Labrentav, 1971; Ringwood and Major, 1971) or Na + Si = Mg + Al (Gasparik, 1989). Each component in garnet is defined as follows; Mj (majorite) component = ((Si-3)-Na)/2), NaSi (Na2MSi5O12 where M= Ca, Mg, Fe2+) component = (Na-T)/2, and NaTi component = Ti/2. Okamoto and Maruyama (2003) conducted UHP experiments in the MORB + H2O system (KNCFMATSH) at 10-19 GPa. They show that 1) Mj and NaTi component are constant and lower than 0.1 at T = 900 \\deg C, and 2) NaSi component increases drastically above 15 GPa although it is neglibly small at P<15 GPa. Raman spectra was newly analyzed using Okamoto and Maruyama (2003)'s run charges. Above 15 GPa, there is a characteristic sharp peak at 910 cm-1 and broad shoulder between 800 and 900 cm-1 as well as broad band near 960 cm-1. Gillet et at (2002) concluded that the former peak at 910cm-1 is the only reliable signature for the majoritic garnet (Si>3). They also implied that the latter two broad peaks are diagnostic feature for Ti rich garnet (> 1wt% of TiO2) as well as peak at 1030 cm-1. However, in all P range (10-19 GPa) of the present study, TiO2 is higher than 1wt%, and there is a peak at 1030 cm-1. Additional Ti-free experiment at 16 GPa, 1200 \\deg C clearly revealed that Na-bearing majoritic garnet has a significant shoulder at 800-900 cm-1. Ref; Gasparik (1989) CMP, 102,389, Gillet et al. (2002) Am.Min., 87, 312, Moore and Gurney (1985

  18. Effects of boron implantation on silicon dioxide passivated HgCdTe

    NASA Astrophysics Data System (ADS)

    Bowman, R. C., Jr.; Marks, J.; Knudsen, J. F.; Downing, R. G.; To, G. A.

    The influence of boron ion implants on the optical and physical properties of photochemically deposited SiO2 films on Hg(O.7)Cd(O.3)Te and silicon has been investigated. The distributions of the boron atoms between the SiO2 film and substrate have been determined by a non-destructive neutron depth profiling method. The implants produce an apparent densification of the SiO2 films, which is accompanied by an increase in refractive index and changes in the infrared vibrational spectra for these films.

  19. Application of 23Na MRI to Monitor Chemotherapeutic Response in RIF-1 Tumors1

    PubMed Central

    Babsky, Andriy M; Hekmatyar, Shahryar K; Zhang, Hong; Solomon, James L; Bansal, Navin

    2005-01-01

    Abstract Effects of an alkylating anticancer drug, cyclophosphamide (Cp), on 23Na signal intensity (23Na SI) and water apparent diffusion coefficient (ADC) were examined in subcutaneously-implanted radiation-induced fibrosarcoma (RIF-1) tumors by in vivo 23Na and 1H magnetic resonance imaging (MRI). MRI experiments were performed on untreated control (n = 5) and Cp-treated (n = 6) C3H mice, once before Cp injection (300 mg/kg) then daily for 3 days after treatment. Tumor volumes were significantly lower in treated animals 2 and 3 days posttreatment. At the same time points, MRI experiments showed an increase in both 23Na SI and water ADC in treated tumors, whereas control tumors did not show any significant changes. The correlation between 23Na SI and water ADC changes was dramatically increased in the Cp-treated group, suggesting that the observed increases in 23Na SI and water ADC were caused by the same mechanism. Histologic sections showed decreased cell density in the regions of increased 23Na and water ADC SI. Destructive chemical analysis showed that Cp treatment increased the relative extracellular space and tumor [Na+]. We conclude that the changes in water ADC and 23Na SI were largely due to an increase in extracellular space. 23Na MRI and 1H water ADC measurements may provide valuable noninvasive techniques for monitoring chemotherapeutic responses. PMID:16026645

  20. Formation of Different Si3N4 Nanostructures by Salt-Assisted Nitridation.

    PubMed

    Liu, Xiongzhang; Guo, Ran; Zhang, Sengjing; Li, Qingda; Saito, Genki; Yi, Xuemei; Nomura, Takahiro

    2018-04-11

    Silicon nitride (Si 3 N 4 ) products with different nanostructure morphologies and different phases for Si 3 N 4 ceramic with high thermal conductivity were synthesized by a direct nitriding method. NaCl and NH 4 Cl were added to raw Si powders, and the reaction was carried out under a nitrogen gas flow of 100 mL/min. The phase composition and morphologies of the products were systemically characterized by X-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy. At 1450 °C, the NaCl content was 30 wt %, the NH 4 Cl content was 3 wt %, and the maximum α-Si 3 N 4 content was 96 wt %. The process of Si nitridation can be divided into three stages by analyzing the reaction schemes: in the first stage (25-900 °C), NH 4 Cl decomposition and the generation of stacked amorphous Si 3 N 4 occurs; in the second stage (900-1450 °C), NaCl melts and Si 3 N 4 generates; and in the third stage (>1450 °C), α-Si 3 N 4 → β-Si 3 N 4 phase change and the evaporation of NaCl occurs. The products are made of two layers: a thin upper layer of nanowires containing different nanostructures and a lower layer mainly comprising fluffy, blocky, and short needlelike products. The introduction of NaCl and NH 4 Cl facilitated the evaporation of Si powders and the decomposition of Al 2 O 3 from porcelain boat and furnace tube, which resulted in the mixing of N 2 , O 2 , Al 2 O, and Si vapors and generated Al x Si y O z nanowires with rough surfaces and lead to thin Si 3 N 4 nanowires, nanobranches by the vapor-solid (VS), vapor-liquid-solid (VLS), and the double-stage VLS base and VS tip growth mechanisms.

  1. Corrosion Behavior of Bi2Te3-Based Thermoelectric Materials Fabricated by Melting Method

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2017-05-01

    Bi2Te3-based compounds are used practically as thermoelectric cooling materials. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudobinary system compounds are usually applied as p- or n-type material, respectively. Atmospheric water may condense on the surface of thermoelectric materials constituting Peltier modules, depending on their operating environment. Very few studies on the corrosion resistance of Bi2Te3-based compounds have been reported in literature. Moreover, the detailed corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the corrosion behavior of cleavage planes of Bi2Te3-based compounds fabricated by a melting method has been investigated. Bi2Te3, Sb2Te3, and Bi2Se3 were prepared by the vertical Bridgman method, respectively. Their electrochemical properties evaluated at room temperature by cyclic voltammetry in a standard three-electrode cell with naturally aerated 0.6 mass% or 3.0 mass% NaCl solution as working electrolyte. The c-planes of Bi2Te3 and Sb2Te3 exhibited similar corrosion potential. The corrosion potential of c-plane of Bi2Se3 was more cathodic compared with that of the telluride. The passive current density of the Bi2Te3-based compounds was single or double digit lower than that of stainless steel. X-ray photoelectron spectroscopy results for the electrolyte after testing indicated the possibility that a corrosion product diffuses to the environment including NaCl for Sb2Te3 and Bi2Se3.

  2. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials

    PubMed Central

    Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki

    2016-01-01

    The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~1012 cm−2). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092

  3. Enhancement emission intensity of CaMoO4 : Eu3+, Na+ phosphor via Bi co-doping and Si substitution for application to white LEDs

    NASA Astrophysics Data System (ADS)

    Xie, An; Yuan, Ximing; Hai, Shujie; Wang, Juanjuan; Wang, Fengxiang; Li, Liu

    2009-05-01

    Through the use of Bi as a co-activator and Si as a substituting element for the host lattice, red emitting Ca_{0.5}MoO_4\\,:\\,Eu^{3+}_{0.25-x} , Bi^{3+}_{x} , Na^{+}_{0.25} (x = 0, 0.005, 0.01, 0.05, 0.10, 0.15 and 0.20) and Ca_{0.5}Mo_{1-y}Si_yO_4\\,:\\,Eu^{3+}_{0.25} , Na^{+}_{0.25} (y = 0.005, 0.01, 0.02, 0.03, 0.04 and 0.05) phosphors were synthesized by the conventional solid state reaction method, respectively. The photo-luminescent results show all samples can be excited efficiently by UV (396 nm) and blue (467 nm) light and emit red light at 615 nm with line spectra, which are coupled well with the characteristic emission from UVLED and blue LED, respectively. In the Eu3+-Bi3+ co-doped system, both Eu3+ f-f transition and Bi3+ CT transition absorptions are observed in the excitation spectra, the intensities of the main emission line (5D0 → 7F2 transition of Eu3+ at 615 nm) are strengthened because of the energy transition from Bi3+ to Eu3+. The introduction of Si4+ ions did not change the position of the peaks but enhanced the emission intensity of Eu3+ under 396 nm excitations. The results showed that the optimal doping concentration of Bi3+ ions and Si4+ ions was 1 mol%, respectively.

  4. Sintering and crystallization behavior of CaMgSi{sub 2}O{sub 6}-NaFeSi{sub 2}O{sub 6} based glass-ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; Kansal, Ishu; Dipartimento di Ingegneria dei Materiali e dell'Ambiente, Facolta di Ingegneria, Universita di Modena e Reggio Emilia, 41100 Modena

    2009-11-01

    We report on the synthesis, sintering, and crystallization behaviors of a glass with a composition corresponding to 90 mol % CaMgSi{sub 2}O{sub 6}-10 mol % NaFeSi{sub 2}O{sub 6}. The investigated glass composition crystallized superficially immediately after casting of the melt and needs a high cooling rate (rapid quenching) in order to produce an amorphous glass. Differential thermal analysis and hot-stage microscopy were employed to investigate the glass forming ability, sintering behavior, relative nucleation rate, and crystallization behavior of the glass composition. The crystalline phase assemblage in the glass-ceramics was studied under nonisothermal heating conditions in the temperature range of 850-950more » deg. C in both air and N{sub 2} atmosphere. X-ray diffraction studies adjoined with the Rietveld-reference intensity ratio method were employed to quantify the amount of crystalline phases, while electron microscopy was used to shed some light on the microstructure of the resultant glass-ceramics. Well sintered glass-ceramics with diopside as the primary crystalline phase were obtained where the amount of diopside varied with the heating conditions.« less

  5. Wide-band polarization controller for Si photonic integrated circuits.

    PubMed

    Velha, P; Sorianello, V; Preite, M V; De Angelis, G; Cassese, T; Bianchi, A; Testa, F; Romagnoli, M

    2016-12-15

    A circuit for the management of any arbitrary polarization state of light is demonstrated on an integrated silicon (Si) photonics platform. This circuit allows us to adapt any polarization into the standard fundamental TE mode of a Si waveguide and, conversely, to control the polarization and set it to any arbitrary polarization state. In addition, the integrated thermal tuning allows kilohertz speed which can be used to perform a polarization scrambler. The circuit was used in a WDM link and successfully used to adapt four channels into a standard Si photonic integrated circuit.

  6. Tunable white light of a Ce3+,Tb3+,Mn2+ triply doped Na2Ca3Si2O8 phosphor for high colour-rendering white LED applications: tunable luminescence and energy transfer.

    PubMed

    Lü, Wei; Xu, Huawei; Huo, Jiansheng; Shao, Baiqi; Feng, Yang; Zhao, Shuang; You, Hongpeng

    2017-07-18

    A tunable white light emitting Na 2 Ca 3 Si 2 O 8 :Ce 3+ ,Tb 3+ ,Mn 2+ phosphor with a high color rendering index (CRI) has been prepared. Under UV excitation, Na 2 Ca 3 Si 2 O 8 :Ce 3+ phosphors present blue luminescence and exhibit a broad excitation ranging from 250 to 400 nm. When codoping Tb 3+ /Mn 2+ ions into Na 2 Ca 3 Si 2 O 8 , energy transfer from Ce 3+ to Tb 3+ and Ce 3+ to Mn 2+ ions is observed from the spectral overlap between Ce 3+ emission and Tb 3+ /Mn 2+ excitation spectra. The energy-transfer efficiencies and corresponding mechanisms are discussed in detail. The mechanism of energy transfer from Ce 3+ to Tb 3+ is demonstrated to be a dipole-quadrupole mechanism by the Inokuti-Hirayama model. The wavelength-tunable white light can be realized by coupling the emission bands centered at 440, 550 and 590 nm ascribed to the contribution from Ce 3+ , Tb 3+ and Mn 2+ , respectively. The commission on illumination value of color tunable emission can be tuned by controlling the content of Ce 3+ , Tb 3+ and Mn 2+ . Temperature-dependent luminescence spectra proved the good thermal stability of the as-prepared phosphor. White LEDs with CRI = 93.5 are finally fabricated using a 365 nm UV chip and the as-prepared Na 2 Ca 3 Si 2 O 8 :Ce 3+ ,Tb 3+ ,Mn 2+ phosphor. All the results suggest that Na 2 Ca 3 Si 2 O 8 :Ce 3+ ,Tb 3+ ,Mn 2+ can act as potential color-tunable and single-phase white emission phosphors for possible applications in UV based white LEDs.

  7. Effect of pH and added slag on the extractability of Si in two Si-deficient sugarcane soils.

    PubMed

    Haynes, Richard J; Zhou, Ya-Feng

    2018-02-01

    The effects of increasing pH on the adsorption and extractability of Si in two Si-deficient Australian sugarcane soils was investigated and the effects of increasing rates of fertilizer Si (as blast furnace slag) on pH and extractable Si were also examined. Equilibrium studies showed that maximum adsorption of Si by the two soils occurred in the pH range 9-10. When soil pH was increased from 5.0 to 6.5, subsequent adsorption of Si by the two soils, as measured by adsorption isotherms, increased. After incubation with progressive lime additions there was a decline in CaCl 2 - extractable Si due to its increased adsorption and an increase in acid (H 2 SO 4 - and acetic acid)-extractable (mainly adsorbed) Si. The increase in acid extractable Si was greater than the decrease in CaCl 2 - extractable Si suggesting a supply from an additional source. Alkali (Na 2 CO 3 and Tiron)-extractable Si decreased greatly with increasing pH suggesting dissolution of the amorphous (mainly biogenic) pool of silica was occurring with increasing pH. When increasing rates of slag were incubated with the soils, pH, CaCl 2 - and acid- extractable Si were all increased because upon dissolution slags release both silicic acid and OH - ions. There was, therefore, a positive relationship between extractable Si and soil pH. However, Na 2 CO 3 - and Tiron-extractable Si decreased with increasing slag rates (and increasing soil pH) suggesting dissolution of the biogenic pool of soil Si. It was concluded that future research needs to examine the desorption potential of adsorbed Si and the effects of liming on dissolution of the biogenic pool of soil silica under field conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. HgCdTe Surface Study Program

    DTIC Science & Technology

    1982-09-01

    which the virtual crystal approximation breaks down using PES. This is well understood and was confirmed theoretically , working with Arden Sher of SRI...Quasistatic Capacitance of SiC on Hg07 Cd0 Te Treated with HF to Remove Native Oxide, Compared to Theoretical Curve...MIS devices show near ideal behav- ior. Figure I shows capacitance data taken quasistatically and at 1 MHz (dashed curves), compared to a theoretically

  9. Photoluminescence and thermal stability of yellow-emitting Na{sub 2}Ba{sub 2}Si{sub 2}O{sub 7}:Sm{sup 3+} phosphor for light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiayue, E-mail: jiayue_sun@126.com; Di, Qiumei; Cui, Dianpeng

    2014-12-15

    Highlights: • Na{sub 2}Ba{sub 2}Si{sub 2}O{sub 7}:Sm{sup 3+} phosphors are obtained via a solid-state reaction method. • Excitation at 402 nm, the yellow color purity is close to 100%. • The mechanism of concentration quenching is dipole–dipole interaction. • The temperature-dependent luminescence property exceed that of YAG:Ce{sup 3+}. - Abstract: A series of yellow-emitting Na{sub 2}(Ba{sub 2−x}Sm{sub x})Si{sub 2}O{sub 7} phosphors have been prepared via solid-state reaction technique. X-ray diffraction (XRD), photoluminescence (PL) spectra, temperature-dependent luminescence property, concentration quenching mechanism and luminescence lifetime are applied to characterize the obtained samples. Under 402 nm near ultraviolent excitation, the samples emit yellowmore » light and the color purity is close to 100%. The critical quenching concentration of Sm{sup 3+} in the Na{sub 2}Ba{sub 2}Si{sub 2}O{sub 7} host is about 3.6 mol% and corresponding quenching behavior is ascribed to be electric dipole–dipole interaction. Furthermore, the phosphor has good thermal stability property, superior to the commercial yellow Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} phosphor and the activation energy for thermal quenching is calculated as 0.18 eV.« less

  10. Room temperature solvent-free reduction of SiCl4 to nano-Si for high-performance Li-ion batteries.

    PubMed

    Liu, Zhiliang; Chang, Xinghua; Sun, Bingxue; Yang, Sungjin; Zheng, Jie; Li, Xingguo

    2017-06-06

    SiCl 4 can be directly reduced to nano-Si with commercial Na metal under solvent-free conditions by mechanical milling. Crystalline nano-Si with an average size of 25 nm and quite uniform size distribution can be obtained, which shows excellent lithium storage performance, for a high reversible capacity of 1600 mA h g -1 after 500 cycles at 2.1 A g -1 .

  11. Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues, and Applications; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullal, H. S.; von Roedern, B.

    2007-09-01

    We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. Inmore » CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.« less

  12. Structural Analyses of Phase Stability in Amorphous and Partially Crystallized Ge-Rich GeTe Films Prepared by Atomic Layer Deposition.

    PubMed

    Gwon, Taehong; Mohamed, Ahmed Yousef; Yoo, Chanyoung; Park, Eui-Sang; Kim, Sanggyun; Yoo, Sijung; Lee, Han-Koo; Cho, Deok-Yong; Hwang, Cheol Seong

    2017-11-29

    The local bonding structures of Ge x Te 1-x (x = 0.5, 0.6, and 0.7) films prepared through atomic layer deposition (ALD) with Ge(N(Si(CH 3 ) 3 ) 2 ) 2 and ((CH 3 ) 3 Si) 2 Te precursors were investigated using Ge K-edge X-ray absorption spectroscopy (XAS). The results of the X-ray absorption fine structure analyses show that for all of the compositions, the as-grown films were amorphous with a tetrahedral Ge coordination of a mixture of Ge-Te and Ge-Ge bonds but without any signature of Ge-GeTe decomposition. The compositional evolution in the valence band electronic structures probed through X-ray photoelectron spectroscopy suggests a substantial chemical influence of additional Ge on the nonstoichiometric GeTe. This implies that the ALD process can stabilize Ge-abundant bonding networks like -Te-Ge-Ge-Te- in amorphous GeTe. Meanwhile, the XAS results on the Ge-rich films that had undergone post-deposition annealing at 350 °C show that the parts of the crystalline Ge-rich GeTe became separated into Ge crystallites and rhombohedral GeTe in accordance with the bulk phase diagram, whereas the disordered GeTe domains still remained, consistent with the observations of transmission electron microscopy and Raman spectroscopy. Therefore, amorphousness in GeTe may be essential for the nonsegregated Ge-rich phases and the low growth temperature of the ALD enables the achievement of the structurally metastable phases.

  13. Skeletal reactions of n-hexane over Pt-NaY, Pt/SiO{sub 2}, HY, and mixed Pt/SiO{sub 2} + HY catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paal, Z.; Zhan, Z.; Manninger, I.

    The activity and selectivity of three samples of 8% Pt-NaY calcined at 633, 723, and 823 K, respectively, have been probed with n-hexane as the model reactant at 603 K and subatmospheric pressures in a glass closed-loop reactor. These catalysts were compared with 6.3% Pt/SiO{sub 2} (EUROPT-1), HY, and a physical mixture of the latter two. The activity of all Pt-NaY catalysts is superior to EUROPT-1 and they deactivate more slowly. The selectivity pattern of all Pt-NaY samples is closer to that characteristic of monofunctional Pt catalysts, as opposed to the pronounced acidic character of pure HY and the mechanicalmore » mixtures. The sample calcined at 633 K, which has the highest dispersion and probably contains Pt particles anchored to the support as [Pt{sub n} - H{sub x}]{sup x+} entities, shows the highest aromatization selectivity. The sample precalcined at 823 K with the lowest dispersion has a pronouncedly high skeletal isomerization selectivity. The isomerization pathway may be related to the C{sub 5} cyclic route on metal sites that are more abundant on the larger crystallites of this catalyst and are more easily accessible with its partially collapsed zeolite framework. Characteristic differences between samples in the response of their catalytic performance to changes in hydrogen and hydrocarbon pressure are discussed. 37 refs., 5 figs., 4 tabs.« less

  14. Transparent ohmic contacts for solution-processed, ultrathin CdTe solar cells

    DOE PAGES

    Kurley, J. Matthew; Panthani, Matthew G.; Crisp, Ryan W.; ...

    2016-12-19

    Recently, solution-processing became a viable route for depositing CdTe for use in photovoltaics. Ultrathin (~500 nm) solar cells have been made using colloidal CdTe nanocrystals with efficiencies exceeding 12% power conversion efficiency (PCE) demonstrated by using very simple device stacks. Further progress requires an effective method for extracting charge carriers generated during light harvesting. Here, we explored solution-based methods for creating transparent Ohmic contacts to the solution-deposited CdTe absorber layer and demonstrated molecular and nanocrystal approaches to Ohmic hole-extracting contacts at the ITO/CdTe interface. Furthermore, we used scanning Kelvin probe microscopy to further show how the above approaches improved carriermore » collection by reducing the potential drop under reverse bias across the ITO/CdTe interface. Other methods, such as spin-coating CdTe/A 2CdTe 2 (A = Na, K, Cs, N 2H 5), can be used in conjunction with current/light soaking to improve PCE further.« less

  15. Interface properties of MIS structures based on hetero-epitaxial graded-gap Hg1-xCdxTe with CdTe interlayer created in situ during MBE growth

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, Alexander V.; Nesmelov, Sergey N.; Dzyadukh, Stanislav M.; Varavin, Vasily S.; Dvoretsky, Sergey A.; Mikhailov, Nikolay N.; Yakushev, Maksim V.; Sidorov, Georgy Yu.

    2017-11-01

    Heterostructures based on n-Hg1-xCdxTe (x = 0.23-0.40) with near-surface graded-gap layers were grown by molecular beam epitaxy on Si (013) substrates. At 77 K, the admittance of the In/Al2O3/Hg1-xCdxTe metal-insulator-semiconductor (MIS) structures with grown in situ CdTe intermediate layer and without such a layer was investigated. It has been established that MIS structures of In/Al2O3/Hg1-xCdxTe with an interlayer of in situ grown CdTe are characterized by the electrical strength of the dielectric and the qualitative interface. The hysteresis of the capacitive characteristics is practically absent within a small range of variation in the bias voltage. The density of fast surface states at the minimum does not exceed 2.2 × 1010 eV-1 cm-2. MIS structures of In/Al2O3/Hg1-xCdxTe without an intermediate layer of CdTe have significantly higher densities of fast and slow surface states, as well as lower values of the differential resistance of the space-charge region in the regime of strong inversion.

  16. Hot corrosion attack and strength degradation of SiC and Si(sub)3N(sub)4

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Fox, Dennis S.; Jacobson, Nathan S.

    1987-01-01

    Thin films of Na2SO4 and Na2CO3 molten salt deposits were used to corrode sintered SiC and Si3N4 at 1000 C. The resulting attack produced pitting and grain boundary etching resulting in strength decreases ranging from 15 to 50 percent. Corrosion pits were the predominant sources of fracture. The degree of strength decrease was found to be roughly correlated with the depth of the pit, as predicted from fracture toughness considerations. Gas evolution and bubble formation were key aspects of pit formation. Many of the observations of furnace exposures held true in a more realistic burner rig test.

  17. Fabrication of Multilayer-Type Mn-Si Thermoelectric Device

    NASA Astrophysics Data System (ADS)

    Kajitani, T.; Ueno, T.; Miyazaki, Y.; Hayashi, K.; Fujiwara, T.; Ihara, R.; Nakamura, T.; Takakura, M.

    2014-06-01

    This research aims to develop a direct-contact manganese silicon p/ n multilayer-type thermoelectric power generation block. p-type MnSi1.74 and n-type Mn0.7Fe0.3Si1.68 ball-milled powders with diameter of about 10 μm or less were mixed with polyvinyl butyl alcohol diluted with methylbenzene at pigment volume concentration of approximately 70%. The doctor-blade method produced 45- μm-thick p- and n-type pigment plates. The insulator, i.e., powdered glass, was mixed with cellulose to form insulator slurry. Lamination of manganese silicide pigment layers and screen-printed insulator layers was carried out to fabricate multilayer direct-contact thermoelectric devices. Hot pressing and spark plasma sintering were carried out at 450°C and 900°C, respectively. Four to 30 thermoelectric (TE) p/ n pairs were fabricated in a 10 mm × 10 mm × 10 mm sintered TE block. The maximum output was 11.7 mW/cm2 at a temperature difference between 20°C and 700°C, which was about 1/85 of the ideal power generation estimated from the thermoelectric data of the bulk MnSi1.74 and Mn0.7Fe0.3Si1.68 materials. A power generation test using an engine test bench was also carried out.

  18. Pressure induced elastic softening in framework aluminosilicate- albite (NaAlSi 3O 8)

    DOE PAGES

    Mookherjee, Mainak; Mainprice, David; Maheshwari, Ketan; ...

    2016-10-13

    Albite (NaAlSi 3O 8) is an aluminosilicate mineral. Its crystal structure consists of 3-D framework of Al and Si tetrahedral units. We have used Density Functional Theory to investigate the high-pressure behavior of the crystal structure and how it affects the elasticity of albite. Our results indicate elastic softening between 6–8 GPa. This is observed in all the individual elastic stiffness components. Our analysis indicates that the softening is due to the response of the three-dimensional tetrahedral framework, in particular by the pressure dependent changes in the tetrahedral tilts. At pressure <6 GPa, the PAW-GGA can be described by amore » Birch-Murnaghan equation of state with V GGA 0 = 687.4Å 3, K GGA 0 = 51.7 GPa, and G GGA 0 = 4.7. The shear modulus and its pressure derivative are K ⊕GGA 0 = 33.7 GPa, and G ⊕GGA 0 = 2.9. At 1 bar, the azimuthal compressional and shear wave anisotropy AV GGA P = 42.8%, and AV GGA S = 50.1%. We also investigate the densification of albite to a mixture of jadeite and quartz. The transformation is likely to cause a discontinuity in density, compressional, and shear wave velocity across the crust and mantle. Furthermore, this could partially account for the Mohorovicic discontinuity in thickened continental crustal regions.« less

  19. The corrosion behavior of CVI SiC matrix in SiCf/SiC composites under molten fluoride salt environment

    NASA Astrophysics Data System (ADS)

    Wang, Hongda; Feng, Qian; Wang, Zhen; Zhou, Haijun; Kan, Yanmei; Hu, Jianbao; Dong, Shaoming

    2017-04-01

    High temperature corrosion behavior and microstructural evolution of designed chemical-vapor-infiltrated SiC matrix in SiC fiber reinforced SiC ceramic matrix composites in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt at 800 °C for various corrosion time was studied. Worse damage was observed as extending the exposure time, with the mass loss ratio increasing from 0.716 wt. % for 50 h to 5.914 wt. % for 500 h. The mass loss rate showed a trend of first decrease and then increase with the extended corrosion exposure. Compared with the near-stoichiometric SiC matrix layers, the O-contained boundaries between deposited matrix layers and the designed Si-rich SiC matrix layers were much less corrosion resistant and preferentially corroded. Liner relationship between the mass loss ratio and the corrosion time obtained from 50 h to 300 h indicated that the corrosion action was reaction-control process. Further corrosion would lead to matrix layer exfoliation and higher mass loss ratio.

  20. Kinetics and mechanism of corrosion of SiC by molten salts

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.

    1986-01-01

    Corrosion of sintered alpha-SiC under thin films of Na2CO3/CO2, Na2SO4/O2, and Na2SO4/SO3 was investigated at 1000 C. Chemical analysis was used to follow silicate and silica evolution as a function of time. This information coupled with morphology observations leads to a detailed corrosion mechanism. In all cases the corrosion reactions occur primarily in the first few hours. In the Na2CO3/CO2 case, rapid oxidation and dissolution lead to a thick layer of silicate melt in about 0.25 h. After this, silica forms a protective layer on the carbide. In the Na2SO4/O2 case, a similar mechanism occurs. In the Na2SO4/SO3 case, a porous nonprotective layer of SiO2 grows directly on the carbide, and a silicate melt forms above this. In addition, SiO2 and regenerated Na2SO4 form at the melt/gas interface due to reaction of silicate with SO3 and SO2 + O2. The reaction slows when the lower silica layer becomes nonporous.

  1. Status of two-color and large format HgCdTe FPA technology at Raytheon Vision Systems

    NASA Astrophysics Data System (ADS)

    Smith, E. P. G.; Bornfreund, R. E.; Kasai, I.; Pham, L. T.; Patten, E. A.; Peterson, J. M.; Roth, J. A.; Nosho, B. Z.; De Lyon, T. J.; Jensen, J. E.; Bangs, J. W.; Johnson, S. M.; Radford, W. A.

    2006-02-01

    Raytheon Vision Systems (RVS) is developing two-color and large format single color FPAs fabricated from molecular beam epitaxy (MBE) grown HgCdTe triple layer heterojunction (TLHJ) wafers on CdZnTe substrates and double layer heterojunction (DLHJ) wafers on Si substrates, respectively. MBE material growth development has resulted in scaling TLHJ growth on CdZnTe substrates from 10cm2 to 50cm2, long-wavelength infrared (LWIR) DLHJ growth on 4-inch Si substrates and the first demonstration of mid-wavelength infrared (MWIR) DLHJ growth on 6-inch Si substrates with low defect density (<1000cm -2) and excellent uniformity (composition<0.1%, cut-off wavelength Δcenter-edge<0.1μm). Advanced FPA fabrication techniques such as inductively coupled plasma (ICP) etching are being used to achieve high aspect ratio mesa delineation of individual detector elements with benefits to detector performance. Recent two-color detectors with MWIR and LWIR cut-off wavelengths of 5.5μm and 10.5μm, respectively, exhibit significant improvement in 78K LW performance with >70% quantum efficiency, diffusion limited reverse bias dark currents below 300pA and RA products (zero field-of-view, +150mV bias) in excess of 1×103 Ωcm2. Two-color 20μm unit-cell 1280×720 MWIR/LWIR FPAs with pixel response operability approaching 99% have been produced and high quality simultaneous imaging of the spectral bands has been achieved by mating the FPA to a readout integrated circuit (ROIC) with Time Division Multiplexed Integration (TDMI). Large format mega pixel 20μm unit-cell 2048×2048 and 25μm unit-cell 2560×512 FPAs have been demonstrated using DLHJ HgCdTe growth on Si substrates in the short wavelength infrared (SWIR) and MWIR spectral range. Recent imaging of 30μm unit-cell 256×256 LWIR FPAs with 10.0-10.7μm 78K cut-off wavelength and pixel response operability as high as 99.7% show the potential for extending HgCdTe/Si technology to LWIR wavelengths.

  2. Design of epitaxial CdTe solar cells on InSb substrates

    DOE PAGES

    Song, Tao; Kanevce, Ana; Sites, James R.

    2015-11-01

    Epitaxial CdTe has been shown by others to have a radiative recombination rate approaching unity, high carrier concentration, and low defect density. It has, therefore, become an attractive candidate for high-efficiency solar cells, perhaps becoming competitive with GaAs. The choice of substrate is a key design feature for epitaxial CdTe solar cells, and several possibilities (CdTe, Si, GaAs, and InSb) have been investigated by others. All have challenges, and these have generally been addressed through the addition of intermediate layers between the substrate and CdTe absorber. InSb is an attractive substrate choice for CdTe devices, because it has a closemore » lattice match with CdTe, it has low resistivity, and it is easy to contact. However, the valence-band alignment between InSb and p-type CdTe, which can both impede hole current and enhance forward electron current, is not favorable. Three strategies to address the band-offset problem are investigated by numerical simulation: heavy doping of the back part of the CdTe layer, incorporation of an intermediate CdMgTe or CdZnTe layer, and the formation of an InSb tunnel junction. Lastly, wach of these strategies is predicted to be helpful for higher cell performance, but a combination of the first two should be most effective.« less

  3. First Measurements of Time-Dependent Nucleation as a Function of Composition in Na2O.2CaO.3SiO2 Glasses

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Narayan, K. Lakshmi

    1996-01-01

    The first measurements in any system of the composition dependence of the time-dependent nucleation rate are presented Nucleation rates of the stoichiometric crystalline phase, Na2O.2CaO.3SiO2, from quenched glasses made with different SiO2 concentrations were determined as a function of temperature and glass composition. A strong compositional dependence of the nucleation rates and a weak dependence for the induction times are observed. Using measured values of the liquidus temperatures and growth velocities as a function of glass composition, these data are shown to be consistent with predictions from the classical theory of nucleation, assuming a composition-dependent interfacial energy.

  4. Industrial production of 131I by neutron irradiation and melting of sintered TeO2

    NASA Astrophysics Data System (ADS)

    Alanis, Jose; Navarrete, Manuel

    2001-07-01

    Optimal conditions of temperature and reaction rate have been settled to produce high purity TeO2 by the chemical reaction between Te and HNO3. Also, heating and time conditions for sintering this product have been found, in order to create cavities in the crystal inside, where a gaseous element such as iodine can be adsorbed with minimal leaking. In this way it is fabricated a suitable target to be irradiated with thermal neutrons for obtaining 131Te(t1/2=24.8 m) and 131mTe(t1/2=30 h) by (n, γ) nuclear reactions. Irradiation time has been chosen to get 131Te saturation activity (ti=150 m) because much longer irradiation times do not increase significantly total activity. Since parents 131Te and 131mTe have shorter half life than daughter 131I(t1/2=8.05 d) optimal cooling time must permit daughter activity to grow up till a maximum (tc=4d). Then, sintered cylinder shaped radioactive sample is manipulated in a hot cell, transported and put on a quartz tray, keeping Health Physics regulations. The quartz tray is inside a small electric oven enclosed in an airtight box with negative pressure (water 0.5 cm). There, it is gradually heated till melting point (733 °C). From 400 °C on, vapors are pumped out and bubbled in two solutions: one is 0.1 M NaOH, which retains nearly 99.9% of pumped 131I. Other is 0.02 M Na2CO3 (60%) plus 0.0025 M NaHCO3 (40%), which retains the remaining sample residue. Air filtering is accomplished by activated carbon and alumina filters in the inflow, glass wool fiber before bubbling, and activated carbon again in the outflow.

  5. Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4.nH2O (M = H, Na).

    PubMed

    Solbrå, S; Allison, N; Waite, S; Mikhalovsky, S V; Bortun, A I; Bortun, L N; Clearfield, A

    2001-02-01

    The ion exchange properties of the titanium silicate, M2Ti2O3SiO4.nH2O (M = H, Na), toward stable and radioactive 137Cs+ and 89Sr2+, have been examined. By studying the cesium and strontium uptake in the presence of NaNO3, CaCl2, NaOH, and HNO3 (in the range of 0.01-6 M) the sodium titanium silicate was found to be an efficient Cs+ ion exchanger in acid, neutral, and alkaline media and an efficient Sr2+ ion exchanger in neutral and alkaline media, which makes it promising for treatment of contaminated environmental media and biological systems.

  6. Arizona porphyry copper/hydrothermal deposits II: crystal structure of ajoite, (K + Na)3Cu20Al3Si29O76(OH)16*~8H2O.

    PubMed

    Pluth, Joseph J; Smith, Joseph V

    2002-08-20

    A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16* approximately 8H2O; triclinic, P1, a = 13.634(5) A, b = 13.687(7), c = 14.522(7), alpha = 110.83(1) degrees, beta = 107.21(1), gamma = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4.H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite.

  7. Improved HgCdTe detectors with novel antireflection coating

    NASA Astrophysics Data System (ADS)

    Babu, Sachi R.; Hu, Kelley; Manthripragada, Sridhar; Martineau, Robert J.; Kotecki, C. A.; Peters, F. A.; Burgess, A. S.; Krebs, Danny J.; Mott, David B.; Ewin, Audrey J.; Miles, A.; Nguyen, Trang L.; Shu, Peter K.

    1996-10-01

    The composite infrared spctrometer (CIRS) is an important instrument for the upcoming Cassini mission for sensing infrared (IR) radiation from the Saturanian planetary system. We have delivered a linear, ten element, mercury cadmium telluride (HgCdTe) photoconductive detector array for use on focal plane 3 (FP3), which is responsible for detecting radiation from the 9.1 micrometer to 16.6 micrometer wavelength range. Reliable HgCdTe detectors require robust passivation, a low-stress zinc sulfide (ZnS) anti-reflection (AR) coating with good adhesion, and a proper optical cavity design to smooth out the resonance in the detector spectral response. During the development of CIRS flight array, we have demonstrated the potential of using an in-situ interfacial layer, such as SiN(subscript x), between ZnS and the anodic oxide. Such an interfacial layer drastically improves the adhesion between the ZnS and oxide, without degrading the minority carrier lifetime. We have also demonstrated the feasibility of applying a SiN(subscript x) 'rain coat' layer over the ZnS to prevent moisture and other chemicals from attacking the AR coating, thus improving the long term reliability. This also enables device operation in a hazardous environment. The alumina/epoxy/HgCdTe/oxide/ZnS structure is a complicated multi-cavity optical system. We have developed an extensive device simulation, which enables us to make the optimal choice of individual cavity thickness for minimizing the resonance and maximizing the quantum efficiency. We have also used 0.05 micrometer alumina powder loaded epoxy to minimize the reflections at the epoxy/HgCdTe interface, thus minimizing the resonance.

  8. First-principles study of amorphous carbon: a promising candidate for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Kotsis, Konstantinos; Legrain, Fleur; Manzhos, Sergei

    2015-03-01

    The perspective of a widespread use of clean but intermittent sources of electricity (wind and solar) as well as that of hybrid electric vehicles calls for alternatives to Li-ion batteries as Li resources are limited. Na being abundant, cheap, and a relatively light and small atom, Na-ion batteries have attracted a lot of interest the past few years. However, while most of the Na-ion batteries studies focus on the positive electrode, the negative electrode remains little investigated and an efficient anode providing all a good capacity, a high cycle life, and a descent rate of charge/discharge, is still not available. The efficient electrode materials for Li, in particular diamond Si and graphite C, have been shown to not allow the intercalation of Na [1, 2]. Computational studies report positive intercalation energies [3, 4] and therefore suggest that the insertion of Na into the crystalline framework (C and Si) is thermodynamically not favored: Na atoms prefer to gather into Na clusters rather than to intercalate into the crystalline phase. Amorphization of Si was found to be a valid strategy to improve the interaction between Si and Na [3]. We investigate here the effects of amorphization of C on its storage properties vis-à-vis Na (as well as Li for reference).

  9. Pressure driven topological semi metallic phase in SrTe

    NASA Astrophysics Data System (ADS)

    Kunduru, Lavanya; Roshan, S. C. Rakesh; Yedukondalu, N.; Sainath, M.

    2018-05-01

    We have investigated the structural, electronic properties and Fermi surface topology of SrTe under high pressure up to 50 GPa based on density functional theory calculations. We predict that SrTe undergoes a structural phase transition from NaCl (B1) to CsCl (B2)-type structure at 14.7 GPa which is consistent with the experimental observations as well as with previous theoretical studies. The ambient (B1) and high pressure (B2) phases are found to be indirect band gap semiconductors and upon further compression B2 phase turns into a nontrivial topological semimetal. Interestingly, we have observed that B2 phase of SrTe has band inversion at Γ and M symmetry directions which lead to formation of 3D topological nodal line semimetal at high pressure which is analogous to CaTe and Cu3PdN due to nontrivial band topology.

  10. Recrystallization in Si upon ion irradiation at room temperature in Co/Si(111) thin film systems

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Satpati, B.; Dev, B. N.

    2018-04-01

    After several decades of research it was concluded that for a constant flux recrystallization in Si upon ion irradiation is possible only at high temperature. At low temperature or at room temperature only amorphization can take place. However we have observed recrystallization in Si upon ion irradiation at room temperature in a Co/Si thin film system. The Co/Si sample was prepared by deposition of 25 nm Co on clean Si(111) substrate. An oxide layer (˜ 2nm) of cobalt at the top of the film due to air exposure. The ion irradiation was done at room temperature under high vacuum with 1MeV Si+ ion with low beam current < 400 nA. Earlier we have shown similar ion induced recrystallization in Si(100) substrate which had a sandwich Si/Ni/Si structure. This system had an epitaxial buffer Si layer on Si substrate. This study also shows that the phenomenon is independent of substrate orientation and buffer layer. We have used transmission electron microscopy (TEM) to study the recrystallization behavior.

  11. Prediction of Ideal Topological Semimetals with Triply Degenerate Points in the NaCu3 Te2 Family

    NASA Astrophysics Data System (ADS)

    Wang, Jianfeng; Sui, Xuelei; Shi, Wujun; Pan, Jinbo; Zhang, Shengbai; Liu, Feng; Wei, Su-Huai; Yan, Qimin; Huang, Bing

    2017-12-01

    Triply degenerate points (TDPs) in band structure of a crystal can generate novel TDP fermions without high-energy counterparts. Although identifying ideal TDP semimetals, which host clean TDP fermions around the Fermi level (EF) without coexisting with other quasiparticles, is critical to explore the intrinsic properties of this new fermion, it is still a big challenge and has not been achieved up to now. Here, we disclose an effective approach to search for ideal TDP semimetals via selective band crossing between antibonding s and bonding p orbitals along a line in the momentum space with C3 v symmetry. Applying this approach, we have successfully identified the NaCu3 Te2 family of compounds to be ideal TDP semimetals, where two, and only two, pairs of TDPs are located around the EF. Moreover, we demonstrate a fundamental mechanism to modulate energy splitting between a pair of TDPs, and we illustrate the intrinsic features of TDP Fermi arcs in these ideal TDP semimetals.

  12. Oxide-Based Composite Electrolytes Using Na3Zr2Si2PO12/Na3PS4 Interfacial Ion Transfer.

    PubMed

    Noi, Kousuke; Nagata, Yuka; Hakari, Takashi; Suzuki, Kenji; Yubuchi, So; Ito, Yusuke; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2018-05-31

    All-solid-state sodium batteries using Na 3 Zr 2 Si 2 PO 12 (NASICON) solid electrolytes are promising candidates for safe and low-cost advanced rechargeable battery systems. Although NASICON electrolytes have intrinsically high sodium-ion conductivities, their high sintering temperatures interfere with the immediate development of high-performance batteries. In this work, sintering-free NASICON-based composites with Na 3 PS 4 (NPS) glass ceramics were prepared to combine the high grain-bulk conductivity of NASICON and the interfacial formation ability of NPS. Before the composite preparation, the NASICON/NPS interfacial resistance was investigated by modeling the interface between the NASICON sintered ceramic and the NPS glass thin film. The interfacial ion-transfer resistance was very small above room temperature; the area-specific resistances at 25 and 100 °C were 15.8 and 0.40 Ω cm 2 , respectively. On the basis of this smooth ion transfer, NASICON-rich (70-90 wt %) NASICON-NPS composite powders were prepared by ball-milling fine powders of each component. The composite powders were well-densified by pressing at room temperature. Scanning electron microscopy observation showed highly dispersed sub-micrometer NASICON grains in a dense NPS matrix to form closed interfaces between the oxide and sulfide solid electrolytes. The composite green (unfired) compacts with 70 and 80 wt % NASICON exhibited high total conductivities at 100 °C of 1.1 × 10 -3 and 6.8 × 10 -4 S cm -1 , respectively. An all-solid-state Na 15 Sn 4 /TiS 2 cell was constructed using the 70 wt % NASICON composite electrolyte by the uniaxial pressing of the powder materials, and its discharge properties were evaluated at 100 °C. The cell showed the reversible capacities of about 120 mAh g -1 under the current density of 640 μA cm -2 . The prepared oxide-based composite electrolytes were thus successfully applied in all-solid-state sodium rechargeable batteries without sintering.

  13. Recent progress in MBE grown HgCdTe materials and devices at UWA

    NASA Astrophysics Data System (ADS)

    Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.

    2016-05-01

    HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.

  14. Bismuth-Indium-Sodium two-dimensional compounds on Si(111) surface

    NASA Astrophysics Data System (ADS)

    Denisov, N. V.; Alekseev, A. A.; Utas, O. A.; Azatyan, S. G.; Zotov, A. V.; Saranin, A. A.

    2017-12-01

    Using scanning tunneling microscopy (STM) observations, it has been found that room temperature (RT) deposition of Na onto the (Bi,In)/Si(111) surfaces, namely the 2 × 2 and √7 × √7, induces formation of a joint bismuth-indium-sodium structure without changing of the initial periodicity. For the 2 × 2-(Bi,In), Na atoms ;conceal; defects and domain boundaries, while the √7 × √7-(Bi,In) is reconstructed into the new Si(111)√7 × √7-(Bi,In,Na) structure. The first structure is temperature unstable, but the √7 × √7-(Bi,In,Na) is thermostable and can be formed by ordinary codeposition of the metals onto the Si(111)7 × 7 surface followed by annealing at 350-360 °C. Scanning tunneling spectroscopy (STS) has demonstrated that the √7 × √7-(Bi,In,Na) is semiconductor with a ∼0.5 eV energy gap. The structural model of the √7 × √7-(Bi,In,Na) has been proposed on the basis of DFT calculations and comparison of simulated and experimental STM images as well as density of states (DOS) and STS spectra.

  15. Oxidation and hot corrosion of hot-pressed Si3N4 at 1000 deg C

    NASA Technical Reports Server (NTRS)

    Fielder, W. L.

    1985-01-01

    The oxidation and hot corrosion of a commercial, hot-pressed Si3N4 were investigated at 1000 C under an atmosphere of flowing O2. For the hot corrosion studies, thin films of Na2SO4 were airbrushed on the Si3N4 surface. The hot corrosion attack was monitored by the following techniques: continuous weight measurements, SO2 evolution, film morphology, and chemical analyses. Even though the hot corrosion weight changes after 25 hr were relatively small, the formation of SiO2 from oxidation of Si3N4 was an order of magnitude greater in the presence of molten Na2SO4. The formation of a protective SiO2 phase at the Si3N4 surface is minimized by the fluxing action of the molten Na2SO4 thereby allowing the oxidation of the Si3N4 to proceed more rapidly. A simple process is proposed to account for the hot corrosion process.

  16. Syntheses and structural characterization of non-centrosymmetric Na{sub 2}M{sub 2}M'S{sub 6} (M, M′=Ga, In, Si, Ge, Sn, Zn, Cd) sulfides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    Seven new non-centrosymmetric Na{sub 2}M{sub 2}M’S{sub 6} sulfides, namely, Na{sub 2}Sn{sub 2}ZnS{sub 6}(1){sub ,} Na{sub 2}Ga{sub 2}GeS{sub 6}(2), Na{sub 2}Ga{sub 2}SnS{sub 6}(3-α), Na{sub 2}Ga{sub 2}SnS{sub 6}(3-β){sub ,} Na{sub 2}Ge{sub 2}ZnS{sub 6}(4){sub ,} Na{sub 2}Ge{sub 2}CdS{sub 6}(5){sub ,} Na{sub 2}In{sub 2}SiS{sub 6}(6) and Na{sub 2}In{sub 2}GeS{sub 6}(7), were synthesized by high temperature solid state reactions and structurally characterized by single crystal X-ray diffraction. They crystallize in non-centrosymmetric Fdd2 and Cc space groups and their three-dimensional [M{sub 2}M′S{sub 6}]{sup 2-}framework structures consist of MS{sub 4} and M′S{sub 4} tetrahedra corner-connected to one another in either orderly or disordered fashion. Sodium ions residemore » in the tunnels of the anionic framework. Compounds 1, 2 and 3-α have the structure of known Li{sub 2}Ga{sub 2}GeS{sub 6}, whereas compounds 6 and 7 are isostructural with known Li{sub 2}In{sub 2}GeS{sub 6} compound. Isostructural compounds 4 and 5 represent a new structural variant. Compounds 3-α and its new monoclinic structural variant 3-β have disordered structural framework. All of them are wide band gap semiconductors. Na{sub 2}Ga{sub 2}GeS{sub 6}(2), Na{sub 2}Ga{sub 2}SnS{sub 6}(3), Na{sub 2}Ge{sub 2}ZnS{sub 6}(4) and Na{sub 2}In{sub 2}GeS{sub 6}(7) compounds are found to be second-harmonic generation (SHG) active. Compounds 1, 2 and 3-α melt congruently. - Graphical abstract: Na{sub 2}Ga{sub 2}GeS{sub 6}, Na{sub 2}Ga{sub 2}SnS{sub 6}, Na{sub 2}Ge{sub 2}ZnS{sub 6}, Na{sub 2}In{sub 2}GeS{sub 6}, Na{sub 2}Sn{sub 2}ZnS{sub 6}, Na{sub 2}Ge{sub 2}CdS{sub 6} and Na{sub 2}In{sub 2}SiS{sub 6} have non-centrosymmetric structures and the first four compounds are SHG active. Display Omitted - Highlights: • Seven new Na{sub 2}M{sub 2}M′S{sub 6} compounds with non-centrosymmetric structures were synthesized. • They are wide band gap semiconductors. • Na{sub 2}Ga{sub 2}GeS{sub 6

  17. Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2-TiO2-CaO-Na2O/SrO bioactive glass.

    PubMed

    Li, Y; Placek, L M; Coughlan, A; Laffir, F R; Pradhan, D; Mellott, N P; Wren, A W

    2015-02-01

    This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface.

  18. Highly Corrosion Resistant and Sandwich-like Si3N4/Cr-CrNx/Si3N4 Coatings Used for Solar Selective Absorbing Applications.

    PubMed

    Zhang, Ke; Du, Miao; Haoa, Lei; Meng, Jianping; Wang, Jining; Mi, Jing; Liu, Xiaopeng

    2016-12-14

    Highly corrosion resistant, layer-by-layer nanostructured Si 3 N 4 /Cr-CrN x /Si 3 N 4 coatings were deposited on aluminum substrate by DC/RF magnetron sputtering. Corrosion resistance experiments were performed in 0.5, 1.0, 3.0, and 5.0 wt % NaCl salt spray at 35 °C for 168 h. Properties of the coatings were comprehensively investigated in terms of optical property, surface morphology, microstructure, elemental valence state, element distribution, and potentiodynamic polarization. UV-vis-near-IR spectrophotometer and FTIR measurements show that the change process in optical properties of Si 3 N 4 /Cr-CrN x /Si 3 N 4 /Al coatings can be divided into three stages: a rapid active degradation stage, a steady passivation stage, and a transpassivation degradation stage. With the increase in the concentration of NaCl salt spray, solar absorptance and thermal emittance experienced a slight degradation. SEM images reveal that there is an increase in surface defects, such as microcracks and holes and -cracks. XRD and TEM measurements indicate that the phase structure changed partially and the content of CrO x and Al 2 O 3 has increased. Auger electron spectroscopy shows that the elements of Cr, N, and O have undergone a minor diffusion. Electrochemical polarization curves show that the as-deposited Si 3 N 4 /Cr-CrN x /Si 3 N 4 /Al coatings have excellent corrosion resistance of 3633.858 kΩ, while after corroding in 5.0 wt % NaCl salt spray for 168 h the corrosion resistance dropped to 13.759 kΩ. However, these coatings still have an outstanding performance of high solar absorptance of 0.924 and low thermal emittance of 0.090 after corroding in 3.0 wt % NaCl salt spray for 120 h. Thus, the Si 3 N 4 /Cr-CrN x /Si 3 N 4 /Al coating is a good choice for solar absorber coatings applied in the high-saline environment.

  19. Siudaite, Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.

    2018-03-01

    The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish

  20. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin.

    PubMed

    Shan, Yun; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-07-01

    This work reports an aptasensor for ultrasensitive detection of thrombin based on remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from CdS:Mn nanocrystals (NCs) film to CdTe QDs-doped silica nanoparticles (CdTe/SiO(2) NPs). CdTe/SiO(2) NPs were synthesized via the Stöber method and showed black bodies' strong absorption in a wide spectral range without excitonic emission, which made them excellent ECL quenchers. Within the effective distance of energy scavenging, the ECL quenching efficiency was dependent on the number of CdTe QDs doped into the silica NPs. Using ca. 200 CdTe QDs doped silica NPs on average of 40 nm in diameter as ECL quenching labels, attomolar detection of thrombin was successfully realized. The protein detection involves a competition binding event, based on thrombin replacing CdTe/SiO(2) NPs labeled probing DNA which is hybridized with capturing aptamer immobilized on a CdS:Mn NCs film modified glassy carbon electrode surface by specific aptamer-protein affinity interactions. It results in the displacement of ECL quenching labels from CdS:Mn NCs film and concomitant ECL signal recovery. Owing to the high-content CdTe QDs in silica NP, the increment of ECL intensity (ΔI(ECL)) and the concentration of thrombin showed a double logarithmic linear correlation in the range of 5.0 aM∼5.0 fM with a detection limit of 1aM. And, the aptasensor hardly responded to antibody, bovine serum albumin (BSA), haemoglobin (Hb) and lysozyme, showing good detection selectivity for thrombin. This long-distance energy scavenging could have a promising application perspective in the detection of biological recognition events on a molecular level.

  1. Davinciite, Na12K3Ca6Fe{3/2+}Zr3(Si26O73OH)Cl2, a New K,Na-Ordered mineral of the eudialyte group from the Khibiny Alkaline Pluton, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Khomyakov, A. P.; Nechelyustov, G. N.; Rastsvetaeva, R. K.; Rozenberg, K. A.

    2013-12-01

    This paper presents a description of a new zirconosilicate of the eudialyte group, which was named davinciite in honor of Leonardo da Vinci (1452-1519), a famous Italian scientist, painter, sculptor and architect. The new mineral has been found in hyperagpaitic pegmatite at the Rasvumchorr Mountain, Khibiny Pluton, Kola Peninsula, as relict inclusions, up to 1-2 mm in size in a rastsvetaevite matrix. It is associated with nepheline, sodalite, potassium feldspar, delhayelite, aegirine, shcherbakovite, villiaumite, nitrite, nacaphite, rasvumite, and djerfisherite. Davinciite is dark lavender and transparent, with a vitreous luster and white streak. The new mineral is brittle, with conchoidal fracture; the Mohs' hardness is 5. No indications of cleavage or parting were observed. The measured density is 2.82(2) g/cm3 (volumetric method); the calculated density is 2.848 g/cm3. Davinciite is optically uniaxial, positive; ω = 1.603(2), ɛ = 1.605(2). It is nonpleochroic and nonfluorescent in UV light. The new mineral slowly breaks down and gelates in 50% HCl and HNO3. It is trigonal, space group R3m. The unit-cell dimensions are a = 14.2956(2), c = 30.0228(5) Å, V=5313.6(2) Å3. The strongest reflections in the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are as follows: 2.981(100)(315), 2.860(96)(404), 4.309(66)(205), 3.207(63)(208), 6.415(54)(104), 3.162(43)(217). The chemical composition (electron microprobe, H2O calculated from X-ray diffraction data) is as follows, wt %: 12.69 Na2O, 3.53 K2O, 11.02 CaO, 0.98 SrO, 0.15 BaO, 5.33 FeO, 0.37 MnO, 0.07 Al2O3, 51.20 SiO2, 0.39 TiO2, 11.33 ZrO2, 0.21HfO2, 0.09 Nb2O5, 1.89 Cl, 0.93H2O, -O = Cl2 0.43; total is 99.75. The empirical formula calculated on the basis of Si + Al + Zr + Hf + Ti + Nb = 29 ( Z = 3) is (Na1l.75Sr0.29Ba0.03)Σ12.07(K2.28Na0.72)Σ3Ca5.99(Fe2.26Mn0.16)Σ2.42(Zr2.80Ti0.15Hf0.03Nb0.02) Σ3(Si1.96Al0.04)Σ2[Si3O9]2 [Si9O27]2[(OH)1.42O0.58]Σ2[Cl1.62(H2O)0.38]Σ2 · 0.48H2O. The simplified

  2. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe 3

    DOE PAGES

    Zhuang, Houlong L.; Xie, Yu; Kent, P. R. C.; ...

    2015-07-06

    Despite many single-layer materials being reported in the past decade, few of them exhibit magnetism. Here we perform first-principles calculations using accurate hybrid density functional methods (HSE06) to predict that single-layer CrSnTe 3 (CST) is a ferromagnetic semiconductor, with band gaps of 0.9 and 1.2 eV for the majority and minority spin channels, respectively. We determine the Curie temperature as 170 K, significantly higher than that of single-layer CrSiTe 3 (90K) and CrGeTe 3 (130 K). This is due to the enhanced ionicity of the Sn-Te bond, which in turn increases the superexchange coupling between the magnetic Cr atoms. Wemore » further explore the mechanical and dynamical stability and strain response of this single-layer material for possible epitaxial growth. Lastly, our study provides an intuitive approach to understand and design novel single-layer magnetic semiconductors for a wide range of spintronics and energy applications.« less

  3. Radiation hardness studies of CdTe thin films for clinical high-energy photon beam detectors

    NASA Astrophysics Data System (ADS)

    Shvydka, Diana; Parsai, E. I.; Kang, J.

    2008-02-01

    In radiation oncology applications, the need for higher-quality images has been driven by recent advances in radiation delivery systems that require online imaging. The existing electronic imaging devices commonly used to acquire portal images implement amorphous silicon (a-Si) detector, which exhibits poor image quality. Efforts for improvement have mostly been in the areas of noise and scatter reduction through software. This has not been successful due to inherent shortcomings of a-Si material. Cadmium telluride (CdTe) semiconductor has long been recognized as highly suitable for use in X-ray detectors in both spectroscopic and imaging applications. Development of such systems has mostly concentrated on single crystal CdTe. Recent advances in thin-film deposition technology suggest replacement of crystalline material with its polycrystalline counterpart, offering ease of large-area device fabrication and achievement of higher resolution as well as a favorable cost difference. While bulk CdTe material was found to have superior radiation hardness, thin films have not been evaluated from that prospective, in particular under high-energy photon beam typical of radiation treatment applications. We assess the performance of thin-film CdTe devices utilizing 6 MeV photon beam and find no consistent trend for material degradation under doses far exceeding the typical radiation therapy detector lifetime dose.

  4. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.

    PubMed

    Wang, Jing; Meng, Xiangcai; Fan, Xiulin; Zhang, Wenbo; Zhang, Hongyong; Wang, Chunsheng

    2015-06-23

    Microsized nanostructured silicon-carbon composite is a promising anode material for high energy Li-ion batteries. However, large-scale synthesis of high-performance nano-Si materials at a low cost still remains a significant challenge. We report a scalable low cost method to synthesize Al/Na-doped and defect-abundant Si nanorods that have excellent electrochemical performance with high first-cycle Coulombic efficiency (90%). The unique Si nanorods are synthesized by acid etching the refined and rapidly solidified eutectic Al-Si ingot. To maintain the high electronic conductivity, a thin layer of carbon is then coated on the Si nanorods by carbonization of self-polymerized polydopamine (PDA) at 800 °C. The carbon coated Si nanorods (Si@C) electrode at 0.9 mg cm(-2) loading (corresponding to area-specific-capacity of ∼2.0 mAh cm(-2)) exhibits a reversible capacity of ∼2200 mAh g(-1) at 100 mA g(-1) current, and maintains ∼700 mAh g(-1) over 1000 cycles at 1000 mA g(-1) with a capacity decay rate of 0.02% per cycle. High Coulombic efficiencies of 87% in the first cycle and ∼99.7% after 5 cycles are achieved due to the formation of an artificial Al2O3 solid electrolyte interphase (SEI) on the Si surface, and the low surface area (31 m(2) g(-1)), which has never been reported before for nano-Si anodes. The excellent electrochemical performance results from the massive defects (twins, stacking faults, dislocations) and Al/Na doping in Si nanorods induced by rapid solidification and Na salt modifications; this greatly enhances the robustness of Si from the volume changes and alleviates the mechanical stress/strain of the Si nanorods during the lithium insertion/extraction process. Introducing massive defects and Al/Na doping in eutectic Si nanorods for Li-ion battery anodes is unexplored territory. We venture this uncharted territory to commercialize this nanostructured Si anode for the next generation of Li-ion batteries.

  5. High-pressure NaCl-phase of tetrahedral compounds

    NASA Astrophysics Data System (ADS)

    Soma, T.; -Matsuo Kagaya, H.

    1984-04-01

    The phase transition of tetrahedral compounds such as GaP, InP, ZnS, ZnSe, ZnTe and CdTe under pressure is investigated from the electronic theory of solids by using our recently presented binding force, which includes mainly covalent interactions in the pseudopotential formalism and partially ionic interactions. The partially ionic forces give the important contributions to the high-pressure phase and stabilize the NaCl-type structure for the high-pressure phase of these compounds, although not reported for GaP experimentally. Then, the numerical results such as the transition pressure, the volume-discontinuity, the transition heat with respect to the pressure-induced phase transition from the zinc-blende-to the NaCl-type lattice are obtained theoretically.

  6. New tetragonal derivatives of cubic NaZn13-type structure: RNi6Si6 compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd-Yb)

    NASA Astrophysics Data System (ADS)

    Pani, M.; Manfrinetti, P.; Provino, A.; Yuan, Fang; Mozharivskyj, Y.; Morozkin, A. V.; Knotko, A. V.; Garshev, A. V.; Yapaskurt, V. O.; Isnard, O.

    2014-02-01

    Novel RNi6Si6 compounds adopt the new CeNi6Si6-type structure for R=La-Ce (tP52, space group P4/nbm N 125-1) and new YNi6Si6-type structure for R=Y, Sm, Gd-Yb (tP52, space group P4barb2N 117) that are tetragonal derivative of NaZn13-type structure, like LaCo9Si4-type. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi6Si6 does not follow Curie-Weiss law. The DyNi6Si6 shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μB/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K.

  7. Fe3O4/SiO2-g-PSStNa polymer nanocomposite microspheres (PNCMs) from a surface-initiated atom transfer radical polymerization (SI-ATRP) approach for pectinase immobilization.

    PubMed

    Lei, Zhongli; Ren, Na; Li, Yanli; Li, Na; Mu, Bo

    2009-02-25

    Polymer nanocomposite microspheres (PNCMs) as solid supports can improve the efficiency of immobilized enzymes by reducing diffusional limitation as well as by increasing the surface area per mass unit. In this work, pectinase was immobilized on Fe(3)O(4)/SiO2-g-poly(PSStNa) nanocomposite microspheres by covalent attachment. Biochemical studies showed an improved storage stability of the immobilized pectinase as well as enhanced performance at higher temperatures and over a wider pH range. The immobilized enzyme retained >50% of its initial activity over 30 days, and the optimum temperature and pH also increased to the ranges of 50-60 degrees C and 3.0-4.7, respectively. The kinetics of a model reaction catalyzed by the immobilized pectinase was finally investigated by the Michaelis-Menten equation. The PSStNa support presents a very simple, mild, and time-saving process for enzyme immobilization, and this strategy of immobilizing pectinase also makes use of expensive enzymes economically viable, strengthening repeated use of them as catalysts following their rapid and easy separation with a magnet.

  8. New tetragonal derivatives of cubic NaZn{sub 13}-type structure: RNi{sub 6}Si{sub 6} compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd–Yb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pani, M.; Manfrinetti, P.; Provino, A.

    2014-02-15

    Novel RNi{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure for R=La–Ce (tP52, space group P4/nbm N 125-1) and new YNi{sub 6}Si{sub 6}-type structure for R=Y, Sm, Gd–Yb (tP52, space group P4{sup ¯}b2N 117) that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi{sub 6}Si{sub 6} does not follow Curie–Weiss law. The DyNi{sub 6}Si{sub 6}more » shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μ{sub B}/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. - Graphical abstract: Novel (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure and (Y, Sm, Gd–Yb) adopt the new YNi{sub 6}Si{sub 6}-type structure that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. Display Omitted - Highlights: • The new (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure. • The new (Y, Sm, Gd–Yb)Ni{sub 6}Si{sub 6} compounds adopt the new YNi{sub 6}Si{sub 6}-type structure. • Tb

  9. Tautomerism of monochalcogenosilanoic acids CH3Si(=O)XH (X D S, Se, Te) in the gas phase and in the polar and aprotic solution: An ab initio computational investigation

    NASA Astrophysics Data System (ADS)

    Li, Qiang-Gen; Deng, Chao; Ren, Yi; Wong, Ning-Bew; Chu, San-Yan; Wang, Xin

    Computational investigations by an ab initio molecular orbital method (HF and MP2) with the 6-311+G(d,p) and 6-311++G(2df, 2pd) basis sets on the tautomerism of three monochalcogenosilanoic acids CH3Si(=O)XH (X D S, Se, and Te) in the gas phase and a polar and aprotic solution tetrahydrofuran (THF) was undertaken. Calculated results show that the silanol forms CH3Si(=X)OH are much more stable than the silanone forms CH3Si(=O)XH in the gas-phase, which is different from the monochalcogenocarboxylic acids, where the keto forms CH3C(=O)XH are dominant. This situation may be attributed to the fact that the Si=O and O=H single bonds in the silanol forms are stronger than the Si=X and X=H single bonds in the silanone forms, respectively, even though the Si=X (X D S, Se, and Te) double bonds are much weaker than the Si=O double bondE These results indicate that the stability of the monochalcogenosilanoic acid tautomers is not determined by the double bond energies, contrary to the earlier explanation based on the incorrect assumption that the Si=S double bond is stronger than the S=O double bond for the tautomeric equilibrium of RSi(=O)SH (R=H, F, Cl, CH3, OH, NH2) to shift towards the thione forms [RSi(=S)OH]. The binding with CH3OCH3 enhances the preference of the silanol form in the tautomeric equilibrium, and meanwhile significantly lowers the tautomeric barriers by more than 34 kJ/mol in THF solution.0

  10. Arizona porphyry copper/hydrothermal deposits II: Crystal structure of ajoite, (K + Na)3Cu20Al3Si29O76(OH)16⋅∼8H2O

    PubMed Central

    Pluth, Joseph J.; Smith, Joseph V.

    2002-01-01

    A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16⋅∼8H2O; triclinic, P1̄, a = 13.634(5) Å, b = 13.687(7), c = 14.522(7), α = 110.83(1)°, β = 107.21(1), γ = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4⋅H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite. PMID:12177404

  11. The Temperature and Structure Dependence of Surface Tension of CaO-SiO2-Na2O-CaF2 Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Min, Yi; Jiang, Maofa

    2018-06-01

    The surface tension of mold flux is one of the most important properties and varies with the temperature from the top to the bottom of the mold, which influences the adhesion and lubrication between the liquid mold flux and the solidified shell, further influencing the quality of the continuous billet. In the present paper, the effect of temperature on the surface tension of CaO-SiO2-Na2O-CaF2 mold-flux melts with different CaO/SiO2 mass ratios was investigated using the maximum-pull method. Furthermore, the microstructure of mold fluxes was analyzed using FT-IR and Raman spectra to discuss the change mechanism of surface tension. The results indicated that the temperature dependence of surface tension was different with different CaO/SiO2 mass ratios, and agreed with the modification of melt structure. When the CaO/SiO2 mass ratio was 0.67 and 0.85, the change of surface tension with temperature was relatively stable, and the influence of temperature on the structure was small. When the CaO/SiO2 mass ratio was 1.03 and 1.16, with an increase of temperature, the surface tension decreased linearly and the changing amplitude was large; the degree of polymerization of melts and average radii of silicon-oxygen anions also decreased, which intensified the molecular thermal motion and weakened the intermolecular interaction, resulting in a decrease of surface tension of melts.

  12. The Temperature and Structure Dependence of Surface Tension of CaO-SiO2-Na2O-CaF2 Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Min, Yi; Jiang, Maofa

    2018-02-01

    The surface tension of mold flux is one of the most important properties and varies with the temperature from the top to the bottom of the mold, which influences the adhesion and lubrication between the liquid mold flux and the solidified shell, further influencing the quality of the continuous billet. In the present paper, the effect of temperature on the surface tension of CaO-SiO2-Na2O-CaF2 mold-flux melts with different CaO/SiO2 mass ratios was investigated using the maximum-pull method. Furthermore, the microstructure of mold fluxes was analyzed using FT-IR and Raman spectra to discuss the change mechanism of surface tension. The results indicated that the temperature dependence of surface tension was different with different CaO/SiO2 mass ratios, and agreed with the modification of melt structure. When the CaO/SiO2 mass ratio was 0.67 and 0.85, the change of surface tension with temperature was relatively stable, and the influence of temperature on the structure was small. When the CaO/SiO2 mass ratio was 1.03 and 1.16, with an increase of temperature, the surface tension decreased linearly and the changing amplitude was large; the degree of polymerization of melts and average radii of silicon-oxygen anions also decreased, which intensified the molecular thermal motion and weakened the intermolecular interaction, resulting in a decrease of surface tension of melts.

  13. Preparation of a Si/SiO2 -Ordered-Mesoporous-Carbon Nanocomposite as an Anode for High-Performance Lithium-Ion and Sodium-Ion Batteries.

    PubMed

    Zeng, Lingxing; Liu, Renpin; Han, Lei; Luo, Fenqiang; Chen, Xi; Wang, Jianbiao; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng

    2018-04-03

    In this work, an Si/SiO 2 -ordered-mesoporous carbon (Si/SiO 2 -OMC) nanocomposite was initially fabricated through a magnesiothermic reduction strategy by using a two-dimensional bicontinuous mesochannel of SiO 2 -OMC as a precursor, combined with an NaOH etching process, in which crystal Si/amorphous SiO 2 nanoparticles were encapsulated into the OMC matrix. Not only can such unique porous crystal Si/amorphous SiO 2 nanoparticles uniformly dispersed in the OMC matrix mitigate the volume change of active materials during the cycling process, but they can also improve electrical conductivity of Si/SiO 2 and facilitate the Li + /Na + diffusion. When applied as an anode for lithium-ion batteries (LIBs), the Si/SiO 2 -OMC composite displayed superior reversible capacity (958 mA h g -1 at 0.2 A g -1 after 100 cycles) and good cycling life (retaining a capacity of 459 mA h g -1 at 2 A g -1 after 1000 cycles). For sodium-ion batteries (SIBs), the composite maintained a high capacity of 423 mA h g -1 after 100 cycles at 0.05 A g -1 and an extremely stable reversible capacity of 190 mA h g -1 was retained even after 500 cycles at 1 A g -1 . This performance is one of the best long-term cycling properties of Si-based SIB anode materials. The Si/SiO 2 -OMC composites exhibited great potential as an alternative material for both lithium- and sodium-ion battery anodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Homogeneous 2D MoTe2 p-n Junctions and CMOS Inverters formed by Atomic-Layer-Deposition-Induced Doping.

    PubMed

    Lim, June Yeong; Pezeshki, Atiye; Oh, Sehoon; Kim, Jin Sung; Lee, Young Tack; Yu, Sanghyuck; Hwang, Do Kyung; Lee, Gwan-Hyoung; Choi, Hyoung Joon; Im, Seongil

    2017-08-01

    Recently, α-MoTe 2 , a 2D transition-metal dichalcogenide (TMD), has shown outstanding properties, aiming at future electronic devices. Such TMD structures without surface dangling bonds make the 2D α-MoTe 2 a more favorable candidate than conventional 3D Si on the scale of a few nanometers. The bandgap of thin α-MoTe 2 appears close to that of Si and is quite smaller than those of other typical TMD semiconductors. Even though there have been a few attempts to control the charge-carrier polarity of MoTe 2 , functional devices such as p-n junction or complementary metal-oxide-semiconductor (CMOS) inverters have not been reported. Here, we demonstrate a 2D CMOS inverter and p-n junction diode in a single α-MoTe 2 nanosheet by a straightforward selective doping technique. In a single α-MoTe 2 flake, an initially p-doped channel is selectively converted to an n-doped region with high electron mobility of 18 cm 2 V -1 s -1 by atomic-layer-deposition-induced H-doping. The ultrathin CMOS inverter exhibits a high DC voltage gain of 29, an AC gain of 18 at 1 kHz, and a low static power consumption of a few nanowatts. The results show a great potential of α-MoTe 2 for future electronic devices based on 2D semiconducting materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of charge compensator ions (R+ = Li+, Na+ and K+) on Sr2MgSi2O7:Dy3+ phosphors by solid-state reaction method

    NASA Astrophysics Data System (ADS)

    Sahu, Ishwar Prasad

    2016-09-01

    The Sr2MgSi2O7:Dy3+ and Sr2MgSi2O7:Dy3+, R+ (R+ = Li+, Na+ and K+) phosphors were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The prepared phosphors were excited at 350 nm, and their corresponding emission spectrum were recorded at blue (482 nm) and yellow (575 nm) region due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions, respectively, of Dy3+ ions. Commission Internationale de L'Eclairage coordinates have been calculated for each sample and its value exhibited that overall emission is near white light. The possible mechanisms of discussed white light emitting phosphors were also investigated. In order to investigate the suitability of the samples as white color light sources for industrial uses, color purity, correlated color temperature (CCT) and color rendering index (CRI) were calculated. Values of color purity, CCT and CRI were found well within the defined acceptable range. With incorporating (R+ = Li+, Na+ and K+) as charge compensator ions, the emission intensity of Sr2MgSi2O7:Dy3+ can be obviously enhanced. The results indicate that prepared phosphors may be a potential application in display devices.

  16. Microstructure and Corrosion Behavior of CrN and CrSiCN Coatings

    NASA Astrophysics Data System (ADS)

    Cai, Feng; Yang, Qi; Huang, Xiao; Wei, Ronghua

    2010-07-01

    Three CrN-based coatings were deposited on 17-4PH stainless steel substrate using plasma enhanced magnetron sputtering (PEMS) technique. The microstructure and corrosion resistance were evaluated to examine the effect of Si and C in the coatings. The three coating compositions were CrN(Cr0.69N0.31), CrSiCN-1 (Cr0.55Si0.014C0.14N0.3), and CrSiCN-2 (Cr0.43Si0.037C0.24N0.3). The testing results indicated that with the increase of Si concentration, the coating microstructure transformed from B1 structure to B1 + Si3N4 structure. All the three coating systems were subjected to electrochemical tests in 3.5% NaCl solution at room temperature. Potentiodynamic polarization results revealed that the CrSiCN-2 coating had a higher anodic current density and a lower corrosion potential when compared to the CrN and CrSiCN-1 coatings. Extended exposure in 3.5% NaCl caused several localized corrosion to the CrSiCN-2 coating due to the porous coating structure. Electrochemical impedance spectroscopic measurements demonstrated that the CrSiCN-1 has better corrosion resistance than CrN and CrSiCN-2.

  17. Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liu, Yanhua; Shi, Xueting; Yu, Zhengyang; Feng, Libang

    2016-11-01

    Nickel (Ni) catalyst has been widely used in catalytic reducing reactions such as catalytic hydrogenation of organic compounds and catalytic reduction of organic dyes. However, the catalytic efficiency of pure Ni is low. In order to improve the catalytic performance, Ni nanoparticle-loaded microspheres can be developed. In this study, we have prepared Ni nanoparticle-loaded microspheres (SiO2@Ni) and hollow Ni microspheres using two-step method. SiO2@Ni microspheres with raspberry-like morphology and core-shell structure are synthesized successfully using SiO2 microsphere as a template and Ni2+ ions are adsorbed onto SiO2 surfaces via electrostatic interaction and then reduced and deposited on surfaces of SiO2 microspheres. Next, the SiO2 cores are removed by NaOH etching and the hollow Ni microspheres are prepared. The NaOH etching time does no have much influence on the crystal structure, shape, and surface morphology of SiO2@Ni; however, it can change the phase composition evidently. The hollow Ni microspheres are obtained when the NaOH etching time reaches 10 h and above. The as-synthesized SiO2@Ni microspheres exhibit much higher catalytic performance than the hollow Ni microspheres and pure Ni nanoparticles in the catalytic reduction of methylene blue. Meanwhile, the SiO2@Ni catalyst has high stability and hence it can be recycled for reuse.

  18. Fabrication and Luminescence Characterization of a Silica Nanomatrix Embedded with NaYF4:Yb:Er:Tm@NaGdF4/Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Thangaraju, Dheivasigamani; Santhana, Vedi; Matsuda, Satoshi; Hayakawa, Yasuhiro

    2018-05-01

    Hexagonal NaYF4:Yb:Er:Tm@NaGdF4 core-shell nanocrystals were synthesized using a seed mediated hot injection method, and monodispersed Fe3O4 (4 nm) nanoparticles were prepared from iron(II) actylacetonate by a precursor thermal decomposition method. Structural and morphology verified NaYF4:Yb:Er:Tm@NaGdF4 and Fe3O4 nanoparticles were utilized for the preparation of NaYF4:Yb:Er:Tm@NaGdF4/Fe3O4@SiO2 nanocomposite using a micro-emulsion method. Existence of Fe3O4 in NaYF4:Yb:Er:Tm@NaGdF4 in SiO2 nano-spheres were confirmed with transmission electron microscopy. Luminescence measurement revealed that NaYF4:Yb:Er:Tm@NaGdF4 exhibited strong emissions at green and red regions, in addition to a weak blue emission also observed under 980 nm excitation. Up-conversion emission of the nanoparticle-embedded silica nanocomposite showed that the up-conversion emission was not affected by Fe3O4 nanoparticles.

  19. Optical properties of Na2O-TiO2-SiO2 glass films prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Barton, Ivo; Matejec, Vlastimil; Mrazek, Jan; Predoana, Luminita; Zaharescu, Maria

    2017-12-01

    Layers based on TiO2-SiO2 systems fabricated by sol-gel method have been investigated for the preparation of planar waveguides, antireflective coatings, Bragg mirrors, etc. However, at high titania contents such materials exhibit high viscosities and tendency to phase separation. In this paper we present optical properties of films containing TiO2 which are prepared via a novel approach sol-gel on the basis of ternary Na2O-TiO2-SiO2 glasses and which can exhibit lower viscosities. Films of Na2O-TiO2-SiO2 systems were prepared from input sols mixed of silica, titania and sodium oxide sols. The silica sol was prepared from tetraethyl orthosilicate (TEOS), ethanol, hydrochloric acid and water, with a TEOS c= 2 mol/l and water/alkoxide ratio 1.75. The titania sol was mixed from titanium tetraisopropoxide (TiPr), propan-2-ol, nitric acid and water, c= 0.5 mol/l, RW= 0.42. The sodium oxide sols with c= 0.474 mol/l were prepared from sodium ethoxide and ethanol. Input sols were prepared by mixing the silica and titania sols first and then the sodium sol was added. The input sols were aged for one hour. Stable input sols were obtained. The input sols were deposited on glass and silica slides by dip-coating technique at a withdrawing speeds of 200 mm/min. Applied gel layers were thermally treated at temperatures of 450 and 900°C. Layers containing sodium oxide and titania in concentration ranges of 0-20 mol.% and 0-30 mol.% respectively have been fabricated. Optical properties of layers were determined by UV-VIS-NIR transmission and reflection spectrophotometry. Refractive indices of layers were determined by spectral ellipsometry and from transmission spectra. Optical properties were correlated with results of XRD spectroscopy, optical microscopy, and atomic force microscopy. Transparent homogenous films with a maximum refractive index of 1.61 at a wavelength of 600 nm have been obtained.

  20. Synthesis and characterization of AlTiSiN/CrSiN multilayer coatings by cathodic arc ion-plating

    NASA Astrophysics Data System (ADS)

    Yang, B.; Tian, C. X.; Wan, Q.; Yan, S. J.; Liu, H. D.; Wang, R. Y.; Li, Z. G.; Chen, Y. M.; Fu, D. J.

    2014-09-01

    AlTiSiN/CrSiN multilayer coatings were deposited on Si (1 0 0) and cemented carbide substrates using Cr, AlTi cathodes and SiH4 gases by cathodic arc ion plating system. The influences of SiH4 gases flowrate on the structural and mechanical properties of the coatings were investigated, systematically. AlTiSiN/CrSiN coatings exhibit a B1 NaCl-type nano-multilayered structure in which the CrSiN nano-layers alternate with AlTiSiN nano-layers with multiple orientations of crystal planes indicated by XRD patterns and TEM. Si contents of the coatings increase with increasing SiH4 flowrate. The hardness of the coatings increases to the maximum value of 3500 Hv0.05 with increasing SiH4 flowrate from 20 to 40 sccm and then decreases with further addition of SiH4 gases. A higher adhesive force of 73 N is obtained at the flowrate of 48 sccm. The coatings exhibit different tribological performance when the mating materials were varied from Si3N4 to cemented carbide balls and the variation of friction coefficients of the coatings against Si3N4 influenced by SiH4 flowrate are not obvious as against cemented carbide balls.

  1. Elucidating the Impact of Chalcogen Content on the Photovoltaic Properties of Oxychalcogenide Perovkskites: NaMO3-x Qx (M=Nb, Ta; Q=S, Se, Te).

    PubMed

    Park, Heesoo; Alharbi, Fahhad H; Sanvito, Stefano; Tabet, Nouar; El-Mellouhi, Fedwa

    2018-03-19

    In the quest for nontoxic and stable perovskites for solar cells, we have conducted a systematic study of the effect of chalcogen content in oxychalcogenide perovskite by using DFT and quasi-particle perturbation theory. We explored the changes in the electronic structure due to the substitution of O atoms in NaNbO 3 and NaTaO 3 perovskite structures with various chalcogens (S, Se, Te) at different concentrations. Interestingly, the introduction of the chalcogen atoms resulted in a drastic reduction in the electronic band gap, which made some of the compounds fall within the visible range of the solar spectrum. In addition, our analysis of the electronic structure shows that the optical transition becomes direct as a result of the strong hybridization between the orbitals of the transition metal and those of the chalcogen ion, in contrast to the indirect band feature of NaNbO 3 and NaTaO 3 . We identified candidates with a high theoretical solar conversion efficiency that approached the Shockley-Queisser limit, which makes them suitable for thin-film solar cell applications. The present work serves as a guideline for experimental efforts by identifying the chalcogen content that should be targeted during the synthetic route of thermodynamically stable and strongly photoactive absorbers for oxychalcogenide perovskites in thin-film solar cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction.

    PubMed

    Ling, Cuicui; Guo, Tianchao; Lu, Wenbo; Xiong, Ya; Zhu, Lei; Xue, Qingzhong

    2017-06-29

    The SnO 2 /Si heterojunction possesses a large band offset and it is easy to control the transportation of carriers in the SnO 2 /Si heterojunction to realize high-response broadband detection. Therefore, we investigated the potential of the SnO 2 nanoparticle thin film/SiO 2 /p-Si heterojunction for photodetectors. It is demonstrated that this heterojunction shows a stable, repeatable and broadband photoresponse from 365 nm to 980 nm. Meanwhile, the responsivity of the device approaches a high value in the range of 0.285-0.355 A W -1 with the outstanding detectivity of ∼2.66 × 10 12 cm H 1/2 W -1 and excellent sensitivity of ∼1.8 × 10 6 cm 2 W -1 , and its response and recovery times are extremely short (<0.1 s). This performance makes the device stand out among previously reported oxide or oxide/Si based photodetectors. In fact, the photosensitivity and detectivity of this heterojunction are an order of magnitude higher than that of 2D material based heterojunctions such as (Bi 2 Te 3 )/Si and MoS 2 /graphene (photosensitivity of 7.5 × 10 5 cm 2 W -1 and detectivity of ∼2.5 × 10 11 cm H 1/2 W -1 ). The excellent device performance is attributed to the large Fermi energy difference between the SnO 2 nanoparticle thin film and Si, SnO 2 nanostructure, oxygen vacancy defects and thin SiO 2 layer. Consequently, practical highly-responsive broadband PDs may be actualized in the future.

  3. An efficient microwave-assisted synthesis method for the production of water soluble amine-terminated Si nanoparticles.

    PubMed

    Atkins, Tonya M; Louie, Angelique Y; Kauzlarich, Susan M

    2012-07-27

    Silicon nanoparticles can be considered a green material, especially when prepared via a microwave-assisted method without the use of highly reactive reducing agents or hydrofluoric acid. A simple solution synthesis of hydrogen-terminated Si- and Mn-doped Si nanoparticles via microwave-assisted synthesis is demonstrated. The reaction of the Zintl salt, Na(4)Si(4), or Mn-doped Na(4)Si(4), Na(4)Si(4(Mn)), with ammonium bromide, NH(4)Br, produces small dispersible nanoparticles along with larger particles that precipitate. Allylamine and 1-amino-10-undecene were reacted with the hydrogen-terminated Si nanoparticles to provide water solubility and stability. A one-pot, single-reaction process and a one-pot, two-step reaction process were investigated. Details of the microwave-assisted process are provided, with the optimal synthesis being the one-pot, two-step reaction procedure and a total time of about 15 min. The nanoparticles were characterized by transmission electron microscopy (TEM), x-ray diffraction, and fluorescence spectroscopies. The microwave-assisted method reliably produces a narrow size distribution of Si nanoparticles in solution.

  4. Comprehensive investigation of HgCdTe metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Raupp, Gregory B.

    1993-01-01

    The principal objective of this experimental and theoretical research program was to explore the possibility of depositing high quality epitaxial CdTe and HgCdTe at very low pressures through metalorganic chemical vapor deposition (MOCVD). We explored two important aspects of this potential process: (1) the interaction of molecular flow transport and deposition in an MOCVD reactor with a commercial configuration, and (2) the kinetics of metal alkyl source gas adsorption, decomposition and desorption from the growing film surface using ultra high vacuum surface science reaction techniques. To explore the transport-reaction issue, we have developed a reaction engineering analysis of a multiple wafer-in-tube ultrahigh vacuum chemical vapor deposition (UHV/CVD) reactor which allows an estimate of wafer or substrate throughput for a reactor of fixed geometry and a given deposition chemistry with specified film thickness uniformity constraints. The model employs a description of ballistic transport and reaction based on the pseudo-steady approximation to the Boltzmann equation in the limit of pure molecular flow. The model representation takes the form of an integral equation for the flux of each reactant or intermediate species to the wafer surfaces. Expressions for the reactive sticking coefficients (RSC) for each species must be incorporated in the term which represents reemission from a wafer surface. The interactions of MOCVD precursors with Si and CdTe were investigated using temperature programmed desorption (TPD) in ultra high vacuum combined with Auger electron spectroscopy (AES). These studies revealed that diethyltellurium (DETe) and dimethylcadmium (DMCd) adsorb weakly on clean Si(100) and desorb upon heating without decomposing. These precursors adsorb both weakly and strongly on CdTe(111)A, with DMCd exhibiting the stronger interaction with the surface than DETe.

  5. Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Wang, Jiahong; Nan, Fan; Bu, Chenghao; Yu, Zhenhua; Liu, Wei; Guo, Shishang; Hu, Hao; Zhao, Xing-Zhong

    2014-01-01

    Upconversion materials have been employed as energy relay materials in dye sensitized solar cells (DSCs) to broaden the range of light absorption. However, the origin of the enhancements can be induced by both upconversion and size-dependent light scattering effects. To clarify the role of the upconversion material in the photoelectrode of DSCs, an upconversion induced device was realized here, which has the size-dependent light scattering effect eliminated via the application of NaYF4:Er3+, Yb3+@SiO2 upconversion nanoparticles (β-NYEY@SiO2 UCNPs). An enhancement of 6% in efficiency was observed for the device. This demonstration provided an insight into the possible further employment of upconversion in DSCs.Upconversion materials have been employed as energy relay materials in dye sensitized solar cells (DSCs) to broaden the range of light absorption. However, the origin of the enhancements can be induced by both upconversion and size-dependent light scattering effects. To clarify the role of the upconversion material in the photoelectrode of DSCs, an upconversion induced device was realized here, which has the size-dependent light scattering effect eliminated via the application of NaYF4:Er3+, Yb3+@SiO2 upconversion nanoparticles (β-NYEY@SiO2 UCNPs). An enhancement of 6% in efficiency was observed for the device. This demonstration provided an insight into the possible further employment of upconversion in DSCs. Electronic supplementary information (ESI) available: Details of preparations and characterizations; the TEM images, EDX measurements, XRD measurements and upconversion emission spectrum of bared β-NYEY nanocrystals; SEM and AFM images of the photoelectrode with different concentrations of β-NYEY nanocrystals; J-V characteristics, EIS measurements and fitted EIS parameters of the DSCs based on five different photoelectrodes. See DOI: 10.1039/c3nr04315k

  6. Electrical Conductivity of Cancrinite-Type Na8 - 2 x Ca x [Al6Si6O24][CO3] · 2H2O ( x ≤ 0.03) Crystals

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2018-05-01

    The electrical conductivity of crystals of artificial cancrinite Na8 - 2 x Ca x [Al6Si6O24][CO3] · 2H2O ( x ≤ 0.03) has been studied in the temperature range of 498-604 K. These crystals were grown by hydrothermal synthesis on a seed in the Na2O-Al2O3-SiO2-H2O system ( t = 380-420°C, P = 3 × 107-9 × 107 Pa). The ionic conductivity of a single-crystal sample (sp. gr. P63), measured along the crystallographic axis c, is low: σ = 8 × 10-7 S/cm at 300°C. The electric transport activation energy is E a = 0.81 ± 0.05 eV. The relationship between the ionic conductivity and specific features of the atomic structure of cancrinites is discussed.

  7. Extended short wavelength infrared HgCdTe detectors on silicon substrates

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Hansel, D.; Mukhortova, A.; Chang, Y.; Kodama, R.; Zhao, J.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report high-quality n-type extended short wavelength infrared (eSWIR) HgCdTe (cutoff wavelength 2.59 μm at 77 K) layers grown on three-inch diameter CdTe/Si substrates by molecular beam epitaxy (MBE). This material is used to fabricate test diodes and arrays with a planar device architecture using arsenic implantation to achieve p-type doping. We use different variations of a test structure with a guarded design to compensate for the lateral leakage current of traditional test diodes. These test diodes with guarded arrays characterize the electrical performance of the active 640 × 512 format, 15 μm pitch detector array.

  8. Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-03-01

    The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.

  9. Current status of EVA degradation in Si modules and interface stability in CdTe/CdS modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czanderna, A.W.

    1994-06-30

    The goals, objectives, background, technical approach, status, and accomplishments on the PV Module Reliability Research Task are summarized for FY 1993. The accomplishments are reported in two elements, ethylene vinyl acetate (EVA) degradation and stability in CdTe/CdS modules. The EVA results are presented under the headings modified EVA and potential EVA replacements, degradation mechanisms, efficiency losses from yellowed EVA, and equipment acquisitions. The results on CdTe/CdS modules are presented under subheadings of stability of the SnO[sub 2]/CdS interface and degradation at the CdTe/CdS interface.

  10. Enhancement of Thermoelectric Properties in SnTe with (Ag, In) Co-Doping

    NASA Astrophysics Data System (ADS)

    Li, J. Q.; Yang, N.; Li, S. M.; Li, Y.; Liu, F. S.; Ao, W. Q.

    2018-01-01

    A lead-free SnTe compound shows good electrical property but high thermal conductivity, resulting in a low figure-of-merit ZT. We present a significant enhancement of the thermoelectric properties of p-type SnTe with (Ag, In) co-doping. The Ag and In co-doped Sn1-2 x Ag x In x Te ( x = 0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) are prepared by melting, quenching and spark plasma sintering. A homogeneous NaCl-type SnTe-based solid solution forms in the alloys at low Ag and In content ( x ≤ 0.02), while a AgInTe2 minor secondary phase precipitates for higher x. Similar to In doping, the introduction of Ag and In at Sn sites in SnTe considerably increases the Seebeck coefficient and power factor by creating resonant levels near the Fermi energy. In addition, the Ag and In solute atoms in the SnTe-based solid solution and the minor secondary phase AgInTe2 enhance phonon scattering and thus significantly reduce the carrier and lattice thermal conductivity. Ag and In co-doping shows a collective advantage on the overall thermoelectric performance of SnTe or In-doped SnTe. A maximum ZT of 1.23 at 873 K and average ZT of 0.58 can be obtained in the alloy Sn1-2 x Ag x In x Te with x = 0.03.

  11. Military Off-the-Shelf: A Discussion on Combat Ship Acquisition

    DTIC Science & Technology

    2014-08-01

    Layton ...S+ + ‘C le an S he et ’ In te rio r/ e xt er io r d es ig n id en tic al N ea r- id en tic al d es ig n / m in or m od s Si m...ila rit y in d es ig n bu t w ith U ni qu e de si gn a nd to le ad sh ip a to e xt er na l s tru ct ur e , in te rn al sy

  12. Electrical properties of NiAs-type MnTe films with preferred crystallographic plane of (110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, L.; Wang, Z. H., E-mail: zhwang@imr.ac.cn; Zhang, Z. D.

    2016-01-28

    NiAs-type manganese telluride (MnTe) films with preferred crystallographic plane of (110) were prepared on Si/SiO{sub 2} substrates by pulsed laser deposition. X-ray diffraction (XRD) of the films was studied at different temperatures. The XRD peak of MnTe (110) films shifts to higher angle with decreasing temperature, showing the decrease of the lattice parameter. Resistivity of the films was studied in the temperature range of 2–350 K. The bump between 150 and 250 K was observed in the films, which may be related to the special s-d and p-d overlaps induced by the compressed lattice. The magnon drag effect near its Néel temperaturemore » T{sub N} and enlarged magnetic-elastic coupling below 100 K were observed and analyzed in details.« less

  13. Polarizability, optical basicity and optical properties of SiO2B2O3Bi2O3TeO2 glass system

    NASA Astrophysics Data System (ADS)

    Kashif, I.; Ratep, A.; Adel, Gh.

    2018-07-01

    Glasses having a composition xSiO2 xB2O3 (95-2 x) Bi2O35TeO2 where x = (5, 10, 15, 20, 25) prepared by the melt-quenching technique. Thermal stability, density, optical transmittance, and the refractive index of these glasses investigated. Glass samples were transparent in the visible to near-infrared (NIR) region and had a high refractive index. A number of glass samples have high glass-forming ability. This indicates that the quarterly glasses are suitable for optical applications in the visible to the NIR region. Bi2O3 substituted by B2O3 and SiO2 on optical properties discussed. It suggested that the substitution of Bi2O3 increased the density, molar volume, the molar polarizability, optical basicity and refractive index in addition to, the oxygen packing density, the optical energy gap, and metallization decrease. These results are helpful for designing new optical glasses controlled to have a higher refractive index. All studied glass presented high nonlinearities, and the addition of network modifiers made a little contribution. Results clarified the bandgap energy reduction, which associated with the growth within the non-bridging oxygen content with the addition of the network modifier. An increase in the refractive index nonlinearity explained by the optical basicity and the high electronic polarizability of the modifier ions.

  14. FeSi4P4: A novel negative electrode with atypical electrochemical mechanism for Li and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Coquil, Gaël; Fullenwarth, Julien; Grinbom, Gal; Sougrati, Moulay Tahar; Stievano, Lorenzo; Zitoun, David; Monconduit, Laure

    2017-12-01

    The electrochemical mechanism and performance of FeSi4P4, vs. Na and Li were studied using a combination of operando X-ray diffraction, 57Fe Mössbauer spectroscopy, and SQUID magnetometry. This silicon- and phosphorous-rich material exhibits a high capacity of 1750 mAh/g, retaining 1120 mAh/g after 40 cycles, and reacts through an original reversible mechanism surprisingly involving only slight changes in the chemical environment of the iron. Magnetic measurements and 57Fe Mössbauer spectroscopy at low temperature reveal the reversible but incomplete change of the magnetic moment upon charge and discharge. Such a mild reversible process without drastic phase transition (with the exception of the crystalline to amorphous transition during the first lithiation) can explain the satisfying capacity retention. The electrochemical mechanism appears thus to be significantly different from the classical conversion or alloying/dealloying mechanisms usually observed in Lithium ion batteries for p-group element based materials. The same iron silicon phosphide electrode shows also interesting but significantly lower performance vs. Na, with a limited capacity retention 350 mAh/g.

  15. Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge.

    PubMed

    Anuwattana, Rewadee; Khummongkol, Pojanie

    2009-07-15

    Na-A type zeolites were prepared from two industrial wastes: the solid by-product of cupola slag and aluminum sludge from an aluminum plating plant. Two preparation methods using the same starting material compositions were carried out. In the first method, alkaline fusion was introduced, followed by the hydrothermal treatment to obtain sodium aluminosilicate which was then crystallized in NaOH solution under the condition of 90+/-3 degrees C for 1-9h with different H(2)O/SiO2 ratios. The result shows that higher H(2)O/SiO2 ratio increases the rate of crystallization. The largest amount of crystallinity for Na-A was found at 3h. In the second method, alkaline hydrothermal treatment without fusion was carried out in the same condition as the first method. No Na-A zeolite was obtained by this method. The changes of the dissolved amounts of Si(4+) and Al(3+) in 3M NaOH were investigated during the hydrothermal reaction.

  16. Photoluminescence Analysis of White-Light-Emitting Si Nanoparticles Using Effective Mass Approximation Method

    NASA Astrophysics Data System (ADS)

    Lee, Soojin; Cho, Woon Jo; Kim, Yang Do; Kim, Eun Kyu; Park, Jae Gwan

    2005-07-01

    White-light-emitting Si nanoparticles were prepared from the sodium silicide (NaSi) precursor. The photoluminescence of colloidal Si nanoparticles has been fitted by effective mass approximation (EMA). We analyzed the correlation between experimental photoluminescence and simulated fitting curves. Both the mean diameter and the size dispersion of the white-light-emitting Si nanoparticles were estimated.

  17. Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe

    DOE PAGES

    Burst, James M.; Farrell, Stuart B.; Albin, David S.; ...

    2016-11-01

    CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 10 16 cm -3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 10 16 cm -3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl 2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. In conclusion, this combination of long lifetime, high carrier concentration, and improved stability canmore » help overcome historic barriers for CdTe solar cell development.« less

  18. Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burst, James M.; Farrell, Stuart B.; Albin, David S.

    CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 10 16 cm -3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 10 16 cm -3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl 2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. In conclusion, this combination of long lifetime, high carrier concentration, and improved stability canmore » help overcome historic barriers for CdTe solar cell development.« less

  19. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films

    PubMed Central

    Bouška, M.; Pechev, S.; Simon, Q.; Boidin, R.; Nazabal, V.; Gutwirth, J.; Baudet, E.; Němec, P.

    2016-01-01

    Pulsed laser deposition technique was used for the fabrication of Ge-Te rich GeTe-Sb2Te3 (Ge6Sb2Te9, Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15) amorphous thin films. To evaluate the influence of GeTe content in the deposited films on physico-chemical properties of the GST materials, scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction and reflectometry, atomic force microscopy, Raman scattering spectroscopy, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (crystalline) layers. Upon crystallization, optical functions and electrical resistance of the films change drastically, leading to large optical and electrical contrast between amorphous and crystalline phases. Large changes of optical/electrical properties are accompanied by the variations of thickness, density, and roughness of the films due to crystallization. Reflectivity contrast as high as ~0.21 at 405 nm was calculated for Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15 layers. PMID:27199107

  20. Large-scale synthesis and growth habit of 3-D flower-like crystal of PbTe

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Chen, Gang; Yang, Xi; Zhang, Xiaosong

    2012-02-01

    In this paper, 3-D flower-like crystal of PbTe was successfully synthesized using Pb(CH3COO)2·3H2O and Na2TeO3 as precursors under hydrothermal conditions, and characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction pattern (XRD). The reaction parameters that influenced the evolution of PbTe synthesis and morphology were investigated. It was shown that the flower-like crystal of PbTe was composed of a nucleus with eight pods. A possible growth mechanism was proposed based on the calculation of the surface energies of PbTe and the SEM observation. Furthermore, the temperature-dependent transport properties of 3-D flower-like crystal of PbTe specimen have been evaluated with an average thermoelectric power of 120 S cm-1 and electrical conductivity of 220 μV K-1 at 740 K.

  1. Electronic tuning of the transport properties of off-stoichiometric Pb{sub x}Sn{sub 1−x}Te thermoelectric alloys by Bi{sub 2}Te{sub 3} doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttmann, Gilad M.; Dadon, David; Gelbstein, Yaniv

    2015-08-14

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p-type Pb{sub x}Sn{sub 1−x}Te alloys by tuning of Bi{sub 2}Te{sub 3} doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shownmore » that upon such doping/alloying, higher ZTs, compared to those of previously reported undoped Pb{sub 0.5}Sn{sub 0.5}Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∼38%, compared to that of an undoped material, is expected.« less

  2. Blinking suppression of CdTe quantum dots on epitaxial graphene and the analysis with Marcus electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, Takuya; Tamai, Naoto, E-mail: tamai@kwansei.ac.jp; Kutsuma, Yasunori

    We have prepared epitaxial graphene by a Si sublimation method from 4H-SiC. Single-particle spectroscopy of CdTe quantum dots (QDs) on epitaxial graphene covered with polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG) showed the suppression of luminescence blinking and ∼10 times decreased luminescence intensity as compared with those on a glass. The electronic coupling constant, H{sub 01}, between CdTe QDs and graphene was calculated to be (3.3 ± 0.4) × 10{sup 2 }cm{sup −1} in PVP and (3.7 ± 0.8) × 10{sup 2 }cm{sup −1} in PEG based on Marcus theory of electron transfer and Tang-Marcus model of blinking with statistical distribution.

  3. Electrodeposited CuGa(Se,Te)2 thin-film prepared from sulfate bath

    NASA Astrophysics Data System (ADS)

    Oda, Yusuke; Minemoto, Takashi; Takakura, Hideyuki; Hamakawa, Yoshihiro

    2006-09-01

    CuGa(Se,Te)2 (CGST) thin films were prepared on a soda-lime glass substrate sputter coated with molybdenum by electrodeposition. The aqueous solution which contained CuSO4-5H2O, Ga2(SO4)3-19.3H2O, H2SeO3, H6TeO6, Li2SO4 and gelatin was adjusted to pH 2.6 with dilute H2SO4 and NaOH. It has been observed that (i) a crack-less and smooth CGST film with a composition close to the stoichiometric ratio was deposited at -600 mV (vs. Ag/AgCl) when Te was hardly included in the film and (ii) cracks and products on the surface increased with increasing Te content in the film. Annealing at 600 °C for 10 min improved the crystallinity of the as-deposited films.

  4. Room Temperature Ferroelectricity in Ultrathin SnTe Films

    NASA Astrophysics Data System (ADS)

    Chang, Kai; Liu, Junwei; Lin, Haicheng; Zhao, Kun; Zhong, Yong; Ji, Shuai-Hua; He, Ke; Wang, Lili; Ma, Xucun; Fu, Liang; Chen, Xi; Xue, Qi-Kun

    2015-03-01

    The ultrathin SnTe films with several unit cell thickness grown on graphitized SiC(0001) surface have been studied by the scanning tunneling microscopy and spectroscopy (STM/S). The domain structures, local lattice distortion and the electronic band bending at film edges induced by the in-plane spontaneous polarization along < 110 > have been revealed at atomic scale. The experiments at variant temperature show that the Curie temperature Tc of the one unit cell thick (two atomic layers) SnTe film is as high as 280K, much higher than that of the bulk counterpart (~100K) and the 2-4 unit cell thick films even indicate robust ferroelectricity at room temperature. This Tc enhancement is attributed to the stress-free interface, larger electronic band gap and greatly reduced Sn vacancy concentration in the ultrathin films. The lateral domain size varies from several tens to several hundreds of nanometers, and the spontaneous polarization direction could be modified by STM tip. Those properties of ultrathin SnTe films show the potential application on ferroelectric devices. The work was financially supported by Ministry of Science and Technology of China, National Science Foundation and Ministry of Education of China.

  5. Low temperature heat capacity and thermodynamic functions of anion bearing sodalites Na 8Al 6Si 6O 24X 2 (X = SO 4, ReO 4, Cl, I)

    DOE PAGES

    Schliesser, Jacob; Lilova, Kristina; Pierce, Eric M.; ...

    2017-06-01

    Heat capacities of sulfate, perrhenate, chloride, and iodide sodalites with the ideal formula Na 8Al 6Si 6O 24X 2 (X = SO 4, ReO 4, Cl, I) were measured from 2 K to 300 K using a Quantum Design Physical Property Measurement System (PPMS). From the heat capacity data, the standard thermodynamic functions were determined. All four sodalites undergo a phase transition below room temperature for which thermodynamic parameters were determined. Additionally, the heat capacity of one of the constituent compounds (NaReO 4) was measured.

  6. Solar cells based on electrodeposited thin films of ZnS, CdS, CdSSe and CdTe

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Ajith R.

    The motivations of this research were to produce increased efficiency and low-cost solar cells. The production efficiency of Si solar cells has almost reached their theoretical limit, and reducing the manufacturing cost of Si solar cells is difficult to achieve due to the high-energy usage in material purifying and processing stages. Due to the low usage of materials and input energy, thin film solar cells have the potential to reduce the costs. CdS/CdTe thin film solar cells are already the cheapest on $/W basis. The cost of CdTe solar cells can be further reduced if all the semiconducting layers are fabricated using the electrodeposition (ED) method. ED method is scalable, low in the usage of energy and raw materials. These benefits lead to the cost effective production of semiconductors. The conventional method of fabricating CdS layers produces Cd containing waste solutions routinely, which adds to the cost of solar cells.ZnS, CdS and CdS(i-X)Sex buffer and window layers and CdTe absorber layers have been successfully electrodeposited and explored under this research investigation. These layers were fully characterised using complementary techniques to evaluate the material properties. Photoelectrochemical (PEC) studies, optical absorption, X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, atomic force microscopy (AFM) and Raman spectroscopy were utilised to evaluate the material properties of these solid thin film layers. ZnS and CdS thin film layers were electrodeposited from Na-free chemical precursors to avoid the group I element (Na) to reduce deterioration of CdTe devices. Deposition parameters such as, growth substrates, temperature, pH, growth cathodic voltage, stirring rate, time and chemical concentrations were identified to fabricate the above semiconductors. To further optimise these layers, a heat treatment process specific to the material was developed. In addition

  7. Flexibility in Management of Modernization in Construction - Electrical Works/ Elastyczność W Zarządzaniu Modernizacją Obiektów Budowlanych Na Przykładzie Robót Elektrycznych

    NASA Astrophysics Data System (ADS)

    Nowotarski, Piotr; Pasławski, Jerzy

    2015-06-01

    The article presents the general principles of flexible approach, illustrated with case study regarding flexibility in modernization. Flexibility is understood in the present case as a skilful adaptation to changes in the dynamically changing environment. The essence of flexibility approach is being staged to make decisions based on environmental and process monitoring in progress. Presented case study of upgrading the electrical system in the multi-family housing in the common area is based on step by step procedure responding to damage state of this system. Simple analysis is based on cost comparison but there are other criteria (environmental, social etc.) and conflict solving situations taken into account in presented paper. Artykuł prezentuje możliwość zastosowania elastyczności w modernizacjach istniejących obiektów budowlanych na przykładzie instalacji oświetleniowej. Elastyczność jest rozumiana w tym przypadku jako umiejętne dostosowanie się do zmian w dynamicznie zmieniającym się środowisku. Istotą podejścia elastycznego jest podejmowanie odpowiednich decyzji w odpowiednim czasie opartych na monitoringu środowiska i procesu w toku. Prezentowane studium przypadku modernizacji instalacji elektrycznej w budownictwie wielorodzinnym w częściach wspólnych obiektu (korytarze, klatki schodowe, hala garażowa) opiera się na wymianie i modernizacji tylko tych punktów, które w danym momencie ulegają awarii. Prosta analiza oby typów modernizacji opiera się na porównaniu kosztów, natomiast trzeba zaznaczyć, że możliwe są także inne kryteria (środowiskowe, konfliktu społecznego, itp.), które będą przedmiotem kolejnych publikacji. Zastąpienie tradycyjnych żarówek rozwiązaniami opartymi na technologii LED z zastosowaniem czujników ruchu może prowadzić do znacznych oszczędności, ale może też oznaczać obniżenie komfortu dla użytkowników (np. dla osób starszych, którym jeden cykl działania oświetlenia nie jest

  8. Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.

  9. High photon-to-heat conversion efficiency in the wavelength region of 250–1200 nm based on a thermoelectric Bi2Te3 film structure

    PubMed Central

    Hu, Er-Tao; Yao, Yuan; Zang, Kai-Yan; Liu, Xin-Xing; Jiang, An-Qing; Zheng, Jia-Jin; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Zhang, Rong-Jun; Wang, Song-You; Zhao, Hai-Bin; Yoshie, Osamu; Lee, Young-Pak; Wang, Cai-Zhuang; Lynch, David W.; Guo, Jun-Peng; Chen, Liang-Yao

    2017-01-01

    In this work, 4-layered SiO2/Bi2Te3/SiO2/Cu film structures were designed and fabricated and the optical properties investigated in the wavelength region of 250–1200 nm for their promising applications for direct solar-thermal-electric conversion. A typical 4-layered film sample with the structure SiO2 (66.6 nm)/Bi2Te3 (7.0 nm)/SiO2 (67.0 nm)/Cu (>100.0 nm) was deposited on a Si or K9-glass substrate by magnetron sputtering. The experimental results agree well with the simulated ones showing an average optical absorption of 96.5%, except in the shorter wavelength region, 250–500 nm, which demonstrates the superior absorption property of the 4-layered film due to the randomly rough surface of the Cu layer resulting from the higher deposition power. The high reflectance of the film structure in the long wavelength region of 2–20 μm will result in a low thermal emittance, 0.064 at 600 K. The simpler 4-layered structure with the thermoelectric Bi2Te3 used as the absorption layer may provide a straightforward way to obtain solar-thermal-electric conversion more efficiently through future study. PMID:28300178

  10. Crystallographic site swapping of La3+ ion in BaA'LaTeO6 (A' = Na, K, Rb) double perovskite type compounds: diffraction and photoluminescence evidence for the site swapping.

    PubMed

    Phatak, R; Gupta, S K; Krishnan, K; Sali, S K; Godbole, S V; Das, A

    2014-02-28

    Double perovskite type compounds of the formula BaA'LaTeO6 (A' = Na, K, Rb) were synthesized by solid state route and their crystal structures were determined by Rietveld analysis using powder X-ray diffraction and neutron diffraction data. Na compound crystallizes in the monoclinic system with P2₁/n space group whereas, K and Rb compounds crystallize in Fm3m space group. All the three compounds show rock salt type ordering at B site. Crystal structure analysis shows that La ion occupies A site in Na compound whereas, it occupies B site in K and Rb compounds according to the general formula of AA'BB'O6 for a double perovskite type compound. Effect of this crystallographic site swapping of the La ion was also observed in the photoluminescence study by doping Eu(3+) in La(3+) site. The large decrease in the intensity of the electric dipole ((5)D0-(7)F2) transition in the Rb compound compared to the Na compound indicates that Eu(3+) ion resides in the centrosymmetric octahedral environment in the Rb compound.

  11. Scaling effects in sodium zirconium silicate phosphate (Na 1+ xZr 2Si xP 3- xO 12) ion-conducting thin films

    DOE PAGES

    Ihlefeld, Jon F.; Gurniak, Emily; Jones, Brad H.; ...

    2016-05-04

    Preparation of sodium zirconium silicate phosphate (NaSICon), Na 1+xZr 2Si xP 3–xO 12 (0.25 ≤ x ≤ 1.0), thin films has been investigated via a chemical solution approach on platinized silicon substrates. Increasing the silicon content resulted in a reduction in the crystallite size and a reduction in the measured ionic conductivity. Processing temperature was also found to affect microstructure and ionic conductivity with higher processing temperatures resulting in larger crystallite sizes and higher ionic conductivities. The highest room temperature sodium ion conductivity was measured for an x = 0.25 composition at 2.3 × 10 –5 S/cm. In conclusion, themore » decreasing ionic conductivity trends with increasing silicon content and decreasing processing temperature are consistent with grain boundary and defect scattering of conducting ions.« less

  12. Ultralow power switching in a silicon-rich SiNy/SiNx double-layer resistive memory device.

    PubMed

    Kim, Sungjun; Chang, Yao-Feng; Kim, Min-Hwi; Bang, Suhyun; Kim, Tae-Hyeon; Chen, Ying-Chen; Lee, Jong-Ho; Park, Byung-Gook

    2017-07-26

    Here we demonstrate low-power resistive switching in a Ni/SiN y /SiN x /p ++ -Si device by proposing a double-layered structure (SiN y /SiN x ), where the two SiN layers have different trap densities. The LRS was measured to be as low as 1 nA at a voltage of 1 V, because the SiN x layer maintains insulating properties for the LRS. The single-layered device suffers from uncontrollability of the conducting path, accompanied by the inherent randomness of switching parameters, weak immunity to breakdown during the reset process, and a high operating current. On the other hand, for a double-layered device, the effective conducting path in each layer, which can determine the operating current, can be well controlled by the I CC during the initial forming and set processes. A one-step forming and progressive reset process is observed for a low-power mode, which differs from the high-power switching mode that shows a two-step forming and reset process. Moreover, nonlinear behavior in the LRS, whose origin can be attributed to the P-F conduction and F-N tunneling driven by abundant traps in the silicon-rich SiN x layer, would be beneficial for next-generation nonvolatile memory applications by using a conventional passive SiN x layer as an active dielectric.

  13. 3. Côte D'Ivoire

    NASA Astrophysics Data System (ADS)

    Cisse, M'badiala

    1996-01-01

    Entreprendre une recherche sur la politique et la législation en matière d'éducation des adultes, qui couvre plusieurs secteurs, paraît une gageure pour plusieurs raisons: difficultés dans la constitution de plusieurs équipes de recherche avec plusieurs spécialistes ou personnes ressources, difficultés dans la collecte des données, étendue et complexité des domaines à explorer et des points à prendre en compte dans la rédaction, etc. En dépit de ces difficultés majeures, l'essentiel du travail a été accompli dans le souci de respecter les exigences imposées. A l'analyse, nous constatons que plusieurs partenaires interviennent dans la formation, l'éducation et l'encadrement des adultes, et que dans le secteur public, les structures ne sont pas "logées à la même enseigne": Si la formation professionnelle a bénéficié de conditions réellement favorables pour son expansion et son développement, les autres secteurs, sans avoir été négligés, n'ont pas connu les mêmes faveurs. Ainsi plusieurs lois et mesures importantes ont été votées et prises en vue de la dynamisation de la formation professionnelle, alors que le secteur de l'agriculture, qui est la base de succès du développement du pays et occupe 55% de la population, n'a pas bénéficié d'une véritable politique éducative en faveur des agriculteurs. Il en est de même pour l'alphabétisation. On déplore constamment l'absence de politique élaborée et appliquée à l'échelle nationale. Aucune mesure politique n'a été votée par l'Assemblée nationale, alors que l'alphabétisation devrait constituer le levier du développement de l'éducation des adultes en Côte d'lvoire.

  14. From thermoelectric bulk to nanomaterials: Current progress for Bi 2 Te 3 and CoSb 3: From thermoelectric bulk to nanomaterials

    DOE PAGES

    Peranio, N.; Eibl, O.; Bäßler, S.; ...

    2015-10-29

    We synthesized Bi 2Te 3 and CoSb 3 based nanomaterials and their thermoelectric, structural, and vibrational properties analyzed to assess and reduce ZT-limiting mechanisms. The same preparation and/or characterization methods were applied in the different materials systems. Single-crystalline, ternary p-type Bi 15Sb 29Te 56, and n-type Bi 38Te 55Se 7 nanowires with power factors comparable to nanostructured bulkmaterialswere prepared by potential-pulsed electrochemical deposition in a nanostructured Al 2O 3 matrix. p-type Sb 2Te 3, n-type Bi 2Te 3, and n-type CoSb 3 thin films were grown at room temperature using molecular beam epitaxy and were subsequently annealed at elevated temperatures.more » It yielded polycrystalline, single phase thin films with optimized charge carrier densities. In CoSb 3 thin films the speed of sound could be reduced by filling the cage structure with Yb and alloying with Fe yielded p-type material. Bi 2(Te 0.91Se 0.09) 3/SiC and (Bi 0.26Sb 0.74) 2Te 3/SiC nanocomposites with low thermal conductivities and ZT values larger than 1 were prepared by spark plasma sintering. Nanostructure, texture, chemical composition, as well as electronic and phononic excitations were investigated by X-ray diffraction, nuclear resonance scattering, inelastic neutron scattering, M ossbauer spectroscopy, and transmission electron microscopy. Furthermore, for Bi 2Te 3 materials, ab-initio calculations together with equilibrium and non-equilibrium molecular dynamics simulations for point defects yielded their formation energies and their effect on lattice thermal conductivity, respectively. Current advances in thermoelectric Bi 2Te 3 and CoSb 3 based nanomaterials are summarized. Advanced synthesis and characterization methods and theoreticalmodelingwere combined to assess and reduce ZT-limiting mechanisms in these materials.« less

  15. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE PAGES

    Wu, Yiren; Su, Dong; Qin, Dong

    2017-02-22

    Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less

  16. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yiren; Su, Dong; Qin, Dong

    Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less

  17. Crystal structure of the mineral (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4: a triclinic representative of the amphibole family

    NASA Astrophysics Data System (ADS)

    Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-05-01

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Å, b = 18.0457(3) Å; c = 9.8684(2) Å, α = 90.016(2)°, β = 105.543(4)°, γ = 89.985(2)°. The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with | F| > 3σ( F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4 has some symmetry and structural features that distinguish it from other minerals of this family.

  18. Growth And Characterization Of LPE CdHgTe/CdZnTe/CdZnTe Structure

    NASA Astrophysics Data System (ADS)

    Pelliciari, B.; Chamonal, J. P.; Destefanis, G. L.; Dicioccio, L.

    1988-05-01

    The liquid phase epitaxial technique is used to grow Hgl_x Cdx Te (x = .23) from a Te - rich solution onto a Cdl_y ZnyTe (y = .04) buffer layer grown from a Te-rich solution onto a Cdi_yZnyTe bulk substrate in an open tube multibin horizontal slider apparatus.Growth conditions and physical characterizations of both the buffer layer and the CdHgTe layer are given ; electrical properties of the CdHgTe layer are also presen-ted. PV detectors were successfully obtained on such a structure using an ion-implanted technology and their characteristics at 77 K for a 10.1 ,um cut-off wavelength are given.

  19. Application of hybrid SiO2-coated CdTe nanocrystals for sensitive sensing of Cu2+ and Ag+ ions.

    PubMed

    Cao, Yongqiang; Zhang, Aiyu; Ma, Qian; Liu, Ning; Yang, Ping

    2013-01-01

    A new ion sensor based on hybrid SiO2 -coated CdTe nanocrystals (NCs) was prepared and applied for sensitive sensing of Cu(2+) and Ag(+) for the selective quenching of photoluminescence (PL) of NCs in the presence of ions. As shown by ion detection experiments conducted in pure water rather than buffer solution, PL responses of NCs were linearly proportional to concentrations of Cu(2+) and Ag(+) ions < 3 and 7 uM, respectively. Much lower detection limits of 42.37 nM for Cu(2+) and 39.40 nM for Ag(+) were also observed. In addition, the NC quenching mechanism was discussed in terms of the characterization of static and transient optical spectra. The transfer and trapping of photoinduced charges in NCs by surface energy levels of CuS and Ag2 S clusters as well as surface defects generated by the exchange of Cu(2+) and Ag(+) ions with Cd(2+) ion in NCs, resulted in PL quenching and other optical spectra changes, including steady-state absorption and transient PL spectra. It is our hope that these results will be helpful in the future preparation of new ion sensors. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Mass Spectrometric Investigation of Silicon Extremely Enriched in (28)Si: From (28)SiF4 (Gas Phase IRMS) to (28)Si Crystals (MC-ICP-MS).

    PubMed

    Pramann, Axel; Rienitz, Olaf

    2016-06-07

    A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) < 1 × 10(-9). This study presents a clear dependence of the uncertainty urel(M(Si)) on the degree of enrichment in (28)Si. This leads to a reduction of urel(M(Si)) during the past decade by almost 3 orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram.

  1. 125Te NMR chemical-shift trends in PbTe–GeTe and PbTe–SnTe alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njegic, Bosiljka; Levin, Evgenii M.; Schmidt-Rohr, Klaus

    2013-10-08

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in 125Te NMR chemical shift due to bonding to dopant or “solute” atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the 125Te NMR chemical shifts in PbTe-based alloys, Pb 1-xGe xTe and Pb 1-xSn xTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS 125Te NMR spectra. A simple linear trend in chemical shifts with the number of Pbmore » neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the 125Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.« less

  2. Quantum oscillation evidence for a topological semimetal phase in ZrSnTe

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Zhu, Yanglin; Gui, Xin; Graf, David; Tang, Zhijie; Xie, Weiwei; Mao, Zhiqiang

    2018-04-01

    The layered WHM-type (W =Zr /Hf /La , H =Si /Ge /Sn /Sb , M =S /Se /Te ) materials represent a large family of topological semimetals, which provides an excellent platform to study the evolution of topological semimetal state with the fine tuning of spin-orbit coupling and structural dimensionality for various combinations of W , H , and M elements. In this work, through high field de Haas-van Alphen (dHvA) quantum oscillation studies, we have found evidence for the predicted topological nontrivial bands in ZrSnTe. Furthermore, from the angular dependence of quantum oscillation frequency, we have revealed the three-dimensional Fermi surface topologies of this layered material owing to strong interlayer coupling.

  3. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaokai; Jood, Priyanka; Ohta, Michihiro

    2016-01-01

    In this work, we demonstrate the use of high performance nanostructured PbTe-based materials in high conversion efficiency thermoelectric modules. We fabricated the samples of PbTe-2% MgTe doped with 4% Na and PbTe doped with 0.2% PbI2 with high thermoelectric figure of merit (ZT) and sintered them with Co-Fe diffusion barriers for use as p- and n-type thermoelectric legs, respectively. Transmission electron microscopy of the PbTe legs reveals two shapes of nanostructures, disk-like and spherical. The reduction in lattice thermal conductivity through nanostructuring gives a ZT of similar to 1.8 at 810 K for p-type PbTe and similar to 1.4 atmore » 750 K for n-type PbTe. Nanostructured PbTe-based module and segmented-leg module using Bi2Te3 and nanostructured PbTe were fabricated and tested with hot-side temperatures up to 873 K in a vacuum. The maximum conversion efficiency of similar to 8.8% for a temperature difference (Delta T) of 570 K and B11% for a Delta T of 590 K have been demonstrated in the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module, respectively. Three-dimensional finite-element simulations predict that the maximum conversion efficiency of the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module reaches 12.2% for a Delta T of 570 K and 15.6% for a Delta T of 590 K respectively, which could be achieved if the electrical and thermal contact between the nanostructured PbTe legs and Cu interconnecting electrodes is further improved.« less

  4. Synthesis and transport characterization of electrochemically deposited CdTe nanowires

    NASA Astrophysics Data System (ADS)

    Kaur, Jaskiran; Kaur, Harmanmeet; Singh, R. C.

    2018-04-01

    This paper reports the synthesis and characterization of CdTe nanowires. A thin polymeric films were irradiated with 80MeV Ag ions at a fluence of 8E7 ions/cm2, followed by UV irradiation and chemically etching in aqueous NaOH. Nanosizes go-through pores so formed were filled using a specially designed cell via electrodeposition. Nanowires so formed were further studied using SEM, I-V, UV and XRD analysis. SEM images show very smooth and uniform CdTe nanowires freely standing on the substrate. The in-situ I-V characteristics of nano-/micro structures was carried out at room temperature by leaving the structures embedded in the insulating template membrane itself.

  5. Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating

    NASA Astrophysics Data System (ADS)

    Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong

    2017-03-01

    The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating < the stainless steel with Al-Si coating < the stainless steel without any coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.

  6. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    NASA Astrophysics Data System (ADS)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-10-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  7. High-resolution CdTe detectors with application to various fields (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Takeda, Shin'ichiro; Orita, Tadashi; Arai, Yasuo; Sugawara, Hirotaka; Tomaru, Ryota; Katsuragawa, Miho; Sato, Goro; Watanabe, Shin; Ikeda, Hirokazu; Takahashi, Tadayuki; Furenlid, Lars R.; Barber, H. Bradford

    2016-10-01

    High-quality CdTe semiconductor detectors with both fine position resolution and high energy resolution hold great promise to improve measurement in various hard X-ray and gamma-ray imaging fields. ISAS/JAXA has been developing CdTe imaging detectors to meet scientific demands in latest celestial observation and severe environmental limitation (power consumption, vibration, radiation) in space for over 15 years. The energy resolution of imaging detectors with a CdTe Schottky diode of In/CdTe/Pt or Al/CdTe/Pt contact is a highlight of our development. We can extremely reduce a leakage current of devises, meaning it allows us to supply higher bias voltage to collect charges. The 3.2cm-wide and 0.75mm-thick CdTe double-sided strip detector with a strip pitch of 250 µm has been successfully established and was mounted in the latest Japanese X-ray satellite. The energy resolution measured in the test on ground was 2.1 keV (FWHM) at 59.5 keV. The detector with much finer resolution of 60 µm is ready, and it was actually used in the FOXSI rocket mission to observe hard X-ray from the sun. In this talk, we will focus on our research activities to apply space sensor technologies to such various imaging fields as medical imaging. Recent development of CdTe detectors, imaging module with pinhole and coded-mask collimators, and experimental study of response to hard X-rays and gamma-rays are presented. The talk also includes research of the Compton camera which has a configuration of accumulated Si and CdTe imaging detectors.

  8. Reduction Mechanisms of Cu2+-Doped Na2O-Al2O3-SiO2 Glasses during Heating in H2 Gas.

    PubMed

    Nogami, Masayuki; Quang, Vu Xuan; Ohki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2018-01-25

    Controlling valence state of metal ions that are doped in materials has been widely applied for turning optical properties. Even though hydrogen has been proven effective to reduce metal ions because of its strong reducing capability, few comprehensive studies focus on practical applications because of the low diffusion rate of hydrogen in solids and the limited reaction near sample surfaces. Here, we investigated the reactions of hydrogen with Cu 2+ -doped Na 2 O-Al 2 O 3 -SiO 2 glass and found that a completely different reduction from results reported so far occurs, which is dominated by the Al/Na concentration ratio. For Al/Na < 1, Cu 2+ ions were reduced via hydrogen to metallic Cu, distributing in glass body. For Al/Na > 1, on the other hand, the reduction of Cu 2+ ions occurred simultaneously with the formation of OH bonds, whereas the reduced Cu metal moved outward and formed a metallic film on glass surface. The NMR and Fourier transform infrared results indicated that the Cu 2+ ions were surrounded by Al 3+ ions that formed AlO 4 , distorted AlO 4 , and AlO 5 units. The diffused H 2 gas reacted with the Al-O - ···Cu + units, forming Al-OH and metallic Cu, the latter of which moved freely toward glass surface and in return enhanced H 2 diffusion.

  9. Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations.

    PubMed

    Mathew, Renny; Stevensson, Baltzar; Edén, Mattias

    2015-04-30

    We characterize the intermixing of network-modifying Na(+)/Ca(2+) ions around the silicate (QSi(n)) and phosphate (QP(n)) tetrahedra in a series of 16 Na2O–CaO–SiO2–P2O5 glasses, whose P content and silicate network connectivity were varied independently. The set includes both bioactive and bioinactive compositions and also encompasses two soda-lime-silicate members devoid of P, as well as two CaO–SiO2 glasses and one Na2O–SiO2–P2O5 glass. The various Si/P↔Na/Ca contacts were probed by molecular dynamics (MD) simulations together with heteronuclear magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experimentation utilizing (23)Na{(31)P} and (23)Na{(29)Si} REDOR, as well as (31)P{ (23)Na} and (29)Si{(23)Na} REAPDOR. We introduce an approach for quantifying the extent of Na(+)/Ca(2+) ordering around a given QP(n) or QSi(n) group, encoded by the preference factor 0⩽ PM ⩽ 1 conveying the relative weights of a random cation intermixing (PM = 0) and complete preference/ordering (PM = 1) for one of the species M, which represents either Na(+) or Ca(2+). The MD-derived preference factors reveal phosphate and silicate species surrounded by Na(+)/Ca(2+) ions intermixed nearly randomly (PM ≲ 0.15), except for the QSi(4) and QSi(1) groups, which manifest more significant cation ordering with preference for Na+ and Ca2+, respectively. The overall weak preferences are essentially independent of the Si and P contents of the glass, whereas PM primarily correlates with the total amount of network modifiers: as the latter is increased, the Na/Ca distribution around the {QP(0), QSi(1), QSi(2)} groups with preference for Ca2(+ )tend to randomize (i.e., PCa decreases), while the PNa-values grow slightly for the {QP(1), QSi(3), QSi(4)} species already preferring coordination of Na. The set of experimental preference factors {PCa} for the orthophosphate (QP(0)) groups extracted from (31)P{(23)Na} REAPDOR NMR-derived M2(P–Na) dipolar second moments agrees

  10. Effect of Dielectric Material Films on Crystallization Characteristics of Ge2Sb2Te5 Phase-Change Memory Film

    NASA Astrophysics Data System (ADS)

    Nishiuchi, Kenichi; Yamada, Noboru; Kawahara, Katsumi; Kojima, Rie

    2007-11-01

    Reduction of the film thickness of phase-change film and the adoption of GeN- or ZrO2-based dielectric films are both effective in achieving good thermal stability in phase-change optical disks. It was experimentally confirmed that, at a heating rate of 10 °C/min, the crystallization temperature Tx of the Ge2Sb2Te5 amorphous film when sandwiched by ZnS-SiO2 films markedly increases from 162 to 197 °C, while the thickness of the Ge2Sb2Te5 film decreases from 10 to 3 nm. Tx also slightly increases when ZnS-SiO2 films are substituted for GeN-based films (from 162 to 165 °C) and ZrO2-based films (from 162 to 167 °C). At the same time, the activation energy of crystallization is 2.4 eV for both GeN- and ZrO2-based films, and is higher than 2.2 eV for ZnS-SiO2 films.

  11. Te/C nanocomposites for Li-Te Secondary Batteries

    NASA Astrophysics Data System (ADS)

    Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min

    2015-01-01

    New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li+/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm-3), excellent cyclability (ca. 705 mA h cm-3 over 100 cycles), and fast rate capability (ca. 550 mA h cm-3 at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems.

  12. The influence of coadsorbed sodium atoms on the chemisorption of benzoic acid on Si(100)-2×1

    NASA Astrophysics Data System (ADS)

    Bitzer, T.; Richardson, N. V.

    1999-06-01

    The adsorption of benzoic acid on Na-Si(100)-2×1 ( ΘNa=0.5) at room temperature leads to benzoate in a bidentate coordination. High-resolution electron energy loss spectroscopy spectra show an intense ν s(OCO) stretching vibration, which is characteristic for benzoate aligned perpendicular to the substrate surface. In contrast, we observe monodentate benzoate species following the exposure of Si(100)-2×1 to benzoic acid at room temperature. On both surfaces, the dissociated hydrogen atom bonds to one of the silicon surface atoms. Removal of benzoate from Na-Si(100)-2×1 is observed after heating the silicon substrate to 300°C for 1 min.

  13. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  14. Electrostatic modulation of the electronic properties of Dirac semimetal Na3Bi thin films

    NASA Astrophysics Data System (ADS)

    Hellerstedt, Jack; Yudhistira, Indra; Edmonds, Mark T.; Liu, Chang; Collins, James; Adam, Shaffique; Fuhrer, Michael S.

    2017-10-01

    Large-area thin films of topological Dirac semimetal Na3Bi are grown on amorphous SiO2:Si substrates to realize a field-effect transistor with the doped Si acting as a back gate. As-grown films show charge carrier mobilities exceeding 7 000 cm2/V s and carrier densities below 3 ×1018cm-3 , comparable to the best thin-film Na3Bi . An ambipolar field effect and minimum conductivity are observed, characteristic of Dirac electronic systems. The results are quantitatively understood within a model of disorder-induced charge inhomogeneity in topological Dirac semimetals. The hole mobility is significantly larger than the electron mobility in Na3Bi which we ascribe to the inverted band structure. When present, these holes dominate the transport properties.

  15. Gels and gel-derived glasses in the system Na2O-B2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1983-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the system Na2O-B2O3-SiO2 are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures was found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel monoliths to transparent 'glass' without melting are described.

  16. Near-infrared emission bands of TeH and TeD

    NASA Astrophysics Data System (ADS)

    Fink, E. H.; Setzer, K. D.; Ramsay, D. A.; Vervloet, M.

    1989-11-01

    High-resolution emission spectra of TeH and TeD have been obtained in the region 4200 to 3600 cm -1 using a Bomem DA3.002 Fourier transform spectrometer. Analyses are given for the 0-0 and 1-1 bands of the X 22Π{1}/{2}-X 12Π{3}/{2} system of TeH and for the 0-0 band of TeD. In addition the 2-0 vibrational overtone bands of 130TeH, 128TeH, and 126TeH are observed and analyzed. Accurate molecular constants are given for the first time.

  17. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties

    PubMed Central

    Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee

    2016-01-01

    GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5–11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm3 g−1 (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g−1) and P7 (1388.8 mg g−1) samples reveal that these two particular samples can absorb even more water than their own weights. PMID:26964638

  18. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties.

    PubMed

    Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee

    2016-03-11

    GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5-11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm(3) g(-1) (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g(-1)) and P7 (1388.8 mg g(-1)) samples reveal that these two particular samples can absorb even more water than their own weights.

  19. Structural Evaluation of 5,5'-Bis(naphth-2-yl)-2,2'-bithiophene in Organic Field-Effect Transistors with n-Octadecyltrichlorosilane Coated SiO2 Gate Dielectric.

    PubMed

    Lauritzen, Andreas E; Torkkeli, Mika; Bikondoa, Oier; Linnet, Jes; Tavares, Luciana; Kjelstrup-Hansen, Jakob; Knaapila, Matti

    2018-05-25

    We report on the structure and morphology of 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2) films in bottom-contact organic field-effect transistors (OFETs) with octadecyltrichlorosilane (OTS) coated SiO 2 gate dielectric, characterized by atomic force microscopy (AFM), grazing-incidence X-ray diffraction (GIXRD), and electrical transport measurements. Three types of devices were investigated with the NaT2 thin-film deposited either on (1) pristine SiO 2 (corresponding to higher surface energy, 47 mJ/m 2 ) or on OTS deposited on SiO 2 under (2) anhydrous or (3) humid conditions (corresponding to lower surface energies, 20-25 mJ/m 2 ). NaT2 films grown on pristine SiO 2 form nearly featureless three-dimensional islands. NaT2 films grown on OTS/SiO 2 deposited under anhydrous conditions form staggered pyramid islands where the interlayer spacing corresponds to the size of the NaT2 unit cell. At the same time, the grain size measured by AFM increases from hundreds of nanometers to micrometers and the crystal size measured by GIXRD from 30 nm to more than 100 nm. NaT2 on OTS/SiO 2 deposited under humid conditions also promotes staggered pyramids but with smaller crystals 30-80 nm. The NaT2 unit cell parameters in OFETs differ 1-2% from those in bulk. Carrier mobilities tend to be higher for NaT2 layers on SiO 2 (2-3 × 10 -4 cm 2 /(V s)) compared to NaT2 on OTS (2 × 10 -5 -1 × 10 -4 cm 2 /(V s)). An applied voltage does not influence the unit cell parameters when probed by GIXRD in operando.

  20. 125Te NMR and Seebeck Effect in Bi 2Te 3 Synthesized from Stoichiometric and Te-Rich Melts

    DOE PAGES

    Levin, E. M.; Iowa State Univ., Ames, IA; Riedemann, T. M.; ...

    2016-10-14

    Bi 2Te 3 is a well-known thermoelectric material and, as a new form of quantum matter, a topological insulator. Variation of local chemical composition in Bi2Te3 results in formation of several types of atomic defects, including Bi and Te vacancies and Bi and Te antisite defects; these defects can strongly affect material functionality via generation of free electrons and/or holes. Nonuniform distribution of atomic defects produces electronic inhomogeneity, which can be detected by 125Te nuclear magnetic resonance (NMR). Here we report on 125Te NMR and Seebeck effect (heat to electrical energy conversion) for two single crystalline samples: (#1) grown frommore » stoichiometric composition by Bridgman technique and (#2) grown out of Te-rich, high temperature flux. The Seebeck coefficients of these samples show p- and n-type conductivity, respectively, arising from different atomic defects. 125Te NMR spectra and spin–lattice relaxation measurements demonstrate that both Bi 2Te 3 samples are electronically inhomogeneous at the atomic scale, which can be attributed to a different Te environment due to spatial variation of the Bi/Te ratio and formation of atomic defects. In conclusion, correlations between 125Te NMR spectra, spin–lattice relaxation times, the Seebeck coefficients, carrier concentrations, and atomic defects are discussed. Our data demonstrate that 125Te NMR is an effective probe to study antisite defects in Bi 2Te 3.« less

  1. 125Te NMR and Seebeck Effect in Bi 2Te 3 Synthesized from Stoichiometric and Te-Rich Melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, E. M.; Iowa State Univ., Ames, IA; Riedemann, T. M.

    Bi 2Te 3 is a well-known thermoelectric material and, as a new form of quantum matter, a topological insulator. Variation of local chemical composition in Bi2Te3 results in formation of several types of atomic defects, including Bi and Te vacancies and Bi and Te antisite defects; these defects can strongly affect material functionality via generation of free electrons and/or holes. Nonuniform distribution of atomic defects produces electronic inhomogeneity, which can be detected by 125Te nuclear magnetic resonance (NMR). Here we report on 125Te NMR and Seebeck effect (heat to electrical energy conversion) for two single crystalline samples: (#1) grown frommore » stoichiometric composition by Bridgman technique and (#2) grown out of Te-rich, high temperature flux. The Seebeck coefficients of these samples show p- and n-type conductivity, respectively, arising from different atomic defects. 125Te NMR spectra and spin–lattice relaxation measurements demonstrate that both Bi 2Te 3 samples are electronically inhomogeneous at the atomic scale, which can be attributed to a different Te environment due to spatial variation of the Bi/Te ratio and formation of atomic defects. In conclusion, correlations between 125Te NMR spectra, spin–lattice relaxation times, the Seebeck coefficients, carrier concentrations, and atomic defects are discussed. Our data demonstrate that 125Te NMR is an effective probe to study antisite defects in Bi 2Te 3.« less

  2. Novel Contact Materials for Improved Performance CdTe Solar Cells Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockett, Angus; Marsillac, Sylvain; Collins, Robert

    This program has explored a number of novel materials for contacts to CdTe solar cells in order to reduce the back contact Schottky barrier to zero and produce an ohmic contact. The project tested a wide range of potential contact materials including TiN, ZrN, CuInSe 2:N, a-Si:H and alloys with C, and FeS2. Improved contacts were achieved with FeS 2. As part of understanding the operation of the devices and controlling the deposition processes, a number of other important results were obtained. In the process of this project and following its conclusion it led to research that resulted in sevenmore » journal articles, nine conference publications, 13 talks presented at conferences, and training of eight graduate students. The seven journal articles were published in 2015, 2016, and 2017 and have been cited, as of March 2018, 52 times (one cited 19 times and two cited 11 times). We demonstrated high levels of doping of CIS with N but electrical activity of the resulting N was not high and the results were difficult to reproduce. Furthermore, even with high doping the contacts were not good. Annealing did not improve the contacts. A-Si:H was found to produce acceptable but unstable contacts, degrading even over a day or two, apparently due to H incorporation into the CdTe. Alloying with C did not improve the contacts or stability. The transition metal nitrides produced Schottky type contacts for all materials tested. While these contacts were found to be unsatisfactory, we investigated FeS 2 and found this material to be effective and comparable to the best contacts currently available. The contacts were found to be chemically stable under heat treatment and preferable to Cu doped contacts. Thus, we demonstrated an improved contact material in the course of this project. In addition, we developed new ways of controlling the deposition of CdTe and other materials, demonstrated the nature of defects in CdTe, and studied the distribution of conductivity and carrier

  3. Incorporation of high amounts of Na in ringwoodite: Possible implications for transport of alkali into lower mantle

    DOE PAGES

    Bindi, Luca; Tamarova, Anastasia; Bobrov, Andrey V.; ...

    2016-02-02

    In this study, we report on the coexistence between Na-rich ringwoodite and bridgmanite in the system MgSiO 3-Na 2CO 3-Al 2O 3 at 24 GPa and 1700 °C. In our experiments ringwoodite incorporates up to 4.4 wt% Na 2O, with Na entering the octahedral site together with Si, according to the mechanism: Mg 2+ → 2/3Na + + 1/3Si 4+. The volume of the unit cell increases along with the Na content. A similar behavior is observed for the unit-cell volume of Na-bearing bridgmanite, although the mechanism of Na incorporation into this structure remains unknown because of the lack ofmore » sufficient crystallographic data. Na 2O is compatible in ringwoodite relative to bridgmanite with a partition coefficient (D) of 5 (+5/-4), but is incompatible in ringwoodite relative to carbonate-rich melt/fluid, with the D value ranging between 0.5 and 0.1. Al is highly enriched in bridgmanite relative to the other coexisting phases. Carbonatitic melt metasomatism in the deep transition zone may lead to local Na-enrichment, and ringwoodite may be an important host for Na in the deep transition zone. Subsequent convection or subduction of metasomatized mantle may lead to enrichment of alkaline elements in the upper and lower mantle.« less

  4. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    PubMed

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  5. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    PubMed Central

    Karthikeya Sharma, T.

    2014-01-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918

  6. SiASR4, the Target Gene of SiARDP from Setaria italica, Improves Abiotic Stress Adaption in Plants.

    PubMed

    Li, Jianrui; Dong, Yang; Li, Cong; Pan, Yanlin; Yu, Jingjuan

    2016-01-01

    Drought and other types of abiotic stresses negatively affect plant growth and crop yields. The abscisic acid-, stress-, and ripening-induced (ASR) proteins play important roles in the protection of plants against abiotic stress. However, the regulatory pathway of the gene encoding this protein remains to be elucidated. In this study, the foxtail millet ( Setaria italica ) ASR gene, SiASR4 , was cloned and characterized. SiASR4 localized to the cell nucleus, cytoplasm and cytomembrane, and the protein contained 102 amino acids, including an ABA/WDS (abscisic acid/water-deficit stress) domain, with a molecular mass of 11.5 kDa. The abundance of SiASR4 transcripts increased after treatment with ABA, NaCl, and PEG in foxtail millet seedlings. It has been reported that the S. italica ABA-responsive DRE-binding protein (SiARDP) binds to a DNA sequence with a CCGAC core and that there are five dehydration-responsive element (DRE) motifs within the SiASR4 promoter. Our analyses demonstrated that the SiARDP protein could bind to the SiASR4 promoter in vitro and in vivo . The expression of SiASR4 increased in SiARDP -overexpressing plants. SiASR4 -transgenic Arabidopsis and SiASR4 -overexpressing foxtail millet exhibited enhanced tolerance to drought and salt stress. Furthermore, the transcription of stress-responsive and reactive oxygen species (ROS) scavenger-associated genes was activated in SiASR4 transgenic plants. Together, these findings show that SiASR4 functions in the adaption to drought and salt stress and is regulated by SiARDP via an ABA-dependent pathway.

  7. Nanocomposite dielectrics in PbO-BaO-Na2O-Nb2O5-SiO2 system with high breakdown strength for high voltage capacitor applications.

    PubMed

    Zhang, Qingmeng; Luo, Jun; Tang, Qun; Han, Dongfang; Zhou, Yi; Du, Jun

    2012-11-01

    Nanocomposite dielectrics in 6PbO-4BaO-20Na2O-40Nb2O5-30SiO2 system were prepared via melt-quenching followed by controlled crystallization. X-ray diffraction studies reveal that Pb2Nb2O7, Ba,NaNb5O15, NaNbO3 and PbNb2O6 phases are formed from the as-quenched glass annealed in temperature range from 700 degrees C to 850 degrees C. Ba2NaNb5O15, Pb2Nb2O7 crystallizes at 700 degrees C and then Pb2Nb2O7 disappears at 850 degrees C, while PbNb2O6 and NaNbO3 are formed at 850 degrees C. Microstructural observation shows that the crystallized particles are nanometer-sized and randomly distributed with glass matrix being often found at grain boundaries. The dielectric constant of the nanocomposites formed at different crystallization temperatures shows good frequency and electric field stability. The breakdown strength is slightly decreased when the glass-ceramics thickness is varied from 1 mm to 4 mm. The corresponding energy density could reach 2.96 J/cm3 with a breakdown strength of 58 kV/mm for thickness of 1 mm.

  8. Structural, Electronic and Vibrational Properties of Nax Si 136(0 < x < 24) Clathrates

    NASA Astrophysics Data System (ADS)

    Higgins, Craig; Nenghabi, Emmanuel; Myles, Charles; Biswas, Koushik; Beekman, Matt; Nolas, George

    2011-03-01

    CRAIG HIGGINS, EMMANUEL NENGHA BI† , CHARLES W. MYLES, Texas Tech U.; KOUSHIK BISWAS, Oak Ridge National Lab; MATT BEEKMAN, U. of Oregon; GEORGE S. NOLAS, U. of South Florida - Na x Si 136 is a Type II clathrate with important thermoelectric properties. It's face-centered cubic lattice contains polyhedral ``cages'' of silicon atoms with Na atom ``guests'' in the cages. This material is very interesting because powder X-ray diffraction experiments 1 for differing Na content x have shown that, for increasing x in the range 0 Si 28 cages in the unit cell are filled (x = 8) and x is increased further, causing a filling of the Si20 cages, a contrasting lattice expansion results. Using the local density approximation, we have calculated the x dependences of the structural, electronic and vibrational properties of NaxSi136 . Results are presented for the x dependences of the lattice constant, electronic bands, and vibrational modes. Our results for the x dependence of the lattice constant are in agreement with our X-ray data 1 . † Deceased. 1 M. Beekman, E.N. Nenghabi, K. Biswas, C.W. Myles, M. Baitinger, Y. Grin, G.S. Nolas, Inorg. Chem. 49, 5338--5340 (2010).

  9. Theory versus experiment for a family of single-layer compounds with a similar atomic arrangement: (Tl,X )/Si(111 )√{3 }×√{3 }(X =Pb,Sn,Bi,Sb,Te,Se)

    NASA Astrophysics Data System (ADS)

    Matetskiy, A. V.; Kibirev, I. A.; Mihalyuk, A. N.; Eremeev, S. V.; Gruznev, D. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Zotov, A. V.; Saranin, A. A.

    2017-08-01

    Two-dimensional compounds made of one monolayer of Tl and one-third monolayer of Pb, Bi, Te, or Se (but not of Sn or Sb) on Si(111) have been found to have a similar atomic arrangement which can be visualized as a √{3 }×√{3 } -periodic honeycomb network of chained Tl trimers with atoms of the second adsorbate occupying the centers of the honeycomb units. Structural and electronic properties of the compounds have been examined in detail theoretically using density functional theory (DFT) calculations and experimentally using low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and angle-resolved photoelectron spectroscopy (ARPES) observations. It has been found that though structural parameters of the compounds are very similar for all species, the only common feature of their band structure is a considerable spin-splitting of the surface-state bands, while other basic electronic properties vary greatly with a change of species. The Tl-Pb compound is strongly metallic with two metallic surface-state bands; the Tl-Bi compound is also metallic but with a single metallic band; the Tl-Te and Tl-Se compounds appear to be insulators.

  10. Tunable Resistance or Magnetoresistance Cusp and Extremely Large Magnetoresistance in Defect-Engineered HfTe5 -δ Single Crystals

    NASA Astrophysics Data System (ADS)

    Lv, Yang-Yang; Li, Xiao; Cao, Lin; Lin, Dajun; Yao, Shu-Hua; Chen, Si-Si; Dong, Song-Tao; Zhou, Jian; Chen, Y. B.; Chen, Yan-Feng

    2018-05-01

    The electrical transport behaviors of novel materials under the external magnetic field B , especially the large or tunable magnetoresistance (MR) effect, are of broad importance in both fundamental science and applications. Here three kinds of HfTe5 crystals with varied Te-deficiency concentrations are synthesized under different growth conditions, and they demonstrate distinct electrical and magnetotransport properties. The temperatures of the resistivity cusp or MR cusp of the as-grown HfTe5 -δ (δ =0.02 , 0.08, 0.13) crystals are tuned from 25 to 90 K. The maximum MR of these three HfTe5 -δ crystals, under 2 K and 9 T B , are 1.52 ×103% , 2.63 ×104% , and 6.91 ×103% for sample SI (HfTe4.98 ), SII (HfTe4.92 ), and SIII (HfTe4.87 ), respectively. The fitting of Hall data by the two-carrier model suggests that the extremely large MR effect of sample HfTe4.92 measured at 2 K is attributed to the cooperative action of the high mobility and the coexistence of the electron and hole carriers. Our work provides a viable route to tune superior MR properties in similar compounds through defect engineering, which may be promising to develop magnetic memory sensor devices.

  11. Absolute Calibration of Si iRMs used for Measurements of Si Paleo-nutrient proxies

    NASA Astrophysics Data System (ADS)

    Vocke, R. D., Jr.; Rabb, S. A.

    2016-12-01

    Silicon isotope variations (reported as δ30Si and δ29Si, relative to NBS28) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The resolution and comparability of such measurements depend on the quality of the isotopic Reference Materials (iRMs) defining the delta scale. We report new absolute Si isotopic measurements on the iRMs NBS28 (RM 8546 - Silica Sand), Diatomite, and Big Batch using the Avogadro measurement approach and comparing them with prior assessments of these iRMs. The Avogadro Si measurement technique was developed by the German Physikalish-Technische Bundesanstalt (PTB) to provide a precise and highly accurate method to measure absolute isotopic ratios in highly enriched 28Si (99.996%) material. These measurements are part of an international effort to redefine the kg and mole based on the Planck constant h and the Avogadro constant NA, respectively (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach produces absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement calibration. This is illustrated in Fig. 1 where absolute Si isotopic measurements on SRM 990, separated by 40+ years of advances in instrumentation, are compared. The availability of this new technique does not say that absolute Si isotopic ratios are or ever will be better for normal Si isotopic measurements when seeking isotopic variations in nature, because they are not. However, by determining the absolute isotopic ratios of all the Si iRM scale artifacts, such iRMs become traceable to the metric system (SI); thereby automatically conferring on all the artifact-based δ30Si and δ29Si measurements traceability to the base SI unit, the mole. Such traceability should help reduce the potential of bias between different iRMs and facilitate the replacement of delta

  12. Optic phonon bandwidth and lattice thermal conductivity: The case of L i2X (X =O , S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-01

    We examine the lattice thermal conductivities (κl) of L i2X (X =O ,S ,Se ,Te ) using a first-principles Peierls-Boltzmann transport methodology. We find low κl values ranging between 12 and 30 W m-1K-1 despite light Li atoms, a large mass difference between constituent atoms, and tightly bunched acoustic branches, all features that give high κl in other materials including BeSe (630 W m-1K-1 ), BeTe (370 W m-1K-1 ), and cubic BAs (3170 W m-1K-1 ). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict κl. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in L i2Se and L i2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in L i2X materials. These considerations are important for the discovery and design of new materials for thermal management applications and give a more comprehensive understanding of thermal transport in crystalline solids.

  13. Optic phonon bandwidth and lattice thermal conductivity: The case of L i 2 X ( X = O , S, Se, Te)

    DOE PAGES

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-07

    Here, we examine the lattice thermal conductivities ( l) of Li 2X (X=O, S, Se, Te) using a first-principles Peierls-Boltzmann transport methodology. We find low l values ranging between 12 and 30 W/m-K despite light Li atoms, a large mass difference between constituent atoms and tightly bunched acoustic branches, all features that give high l in other materials including BeSe (630 W/m -1K -1), BeTe (370 W/m -1K -1) and cubic BAs (3150 W/m -1K -1). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict l. Unlike typical simple systems (e.g., Si,more » GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in Li 2Se and Li 2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in Li 2X materials. Finally, these considerations are important for the discovery and design of new materials for thermal management applications, and give a more comprehensive understanding of thermal transport in crystalline solids.« less

  14. Fluorine sites in glasses and transparent glass-ceramics of the system Na{sub 2}O/K{sub 2}O/Al{sub 2}O{sub 3}/SiO{sub 2}/BaF{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocker, Christian, E-mail: christian.bocker@uni-jena.d; Munoz, Francisco; Duran, Alicia

    2011-02-15

    The transparent glass-ceramics obtained in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} show homogeneously dispersed BaF{sub 2} nano crystals with a narrow size distribution. The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses and the respective glass-ceramics in order to clarify the crystallization mechanism and the role of fluorine during crystallization. With an increasing annealing time, the concentration and also the number of crystals remain approximately constant. With an increasing annealing temperature, the crystalline fraction increases until a saturation limit is reached, while the number of crystals decreases and the size of the crystals increases.more » Fluoride in the glassy network occurs as Al-F-Ba, Al-F-Na and also as Ba-F structures. The latter are transformed into crystalline BaF{sub 2} and fluoride is removed from the Al-F-Ba/Na bonds. However, some fluorine is still present in the glassy phase after the crystallization. -- Graphical abstract: The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} and the respective glass-ceramics with BaF{sub 2} nano crystals in order to clarify the crystallization mechanism and the role of fluorine during crystallization. Display Omitted Research highlights: {yields} BaF{sub 2} nano crystals are precipitated from a silicate glass system. {yields} Ostwald ripening during the late stage of crystallization does not occur. {yields} Fluorine in the glass is coordinated with Ba as well as Al together with Ba or Na.{yields} In the glass-ceramics, the residual fluorine is coordinated as Al-F-Ba/Na.« less

  15. The inverse sandwich complex [(K(18-crown-6))2Cp][CpFe(CO)2]--unpredictable redox reactions of [CpFe(CO)2]I with the silanides Na[SiRtBu2] (R = Me, tBu) and the isoelectronic phosphanyl borohydride K[PtBu2BH3].

    PubMed

    Sänger, Inge; Kückmann, Theresa I; Dornhaus, Franz; Bolte, Michael; Wagner, Matthias; Lerner, Hans-Wolfram

    2012-06-14

    The dimeric iron carbonyl [CpFe(CO)(2)](2) and the iodosilanes tBu(2)RSiI were obtained from the reaction of [CpFe(CO)(2)]I with the silanides Na[SiRtBu(2)] (R = Me, tBu) in THF. By the reactions of [CpFe(CO)(2)]I and Na[SiRtBu(2)] (R = Me, tBu) the disilanes tBu(2)RSiSiRtBu(2) (R = Me, tBu) were additionally formed using more than one equivalent of the silanide. In this context it should be noted that reduction of [CpFe(CO)(2)](2) with Na[SitBu(3)] gives the disilanes tBu(3)SiSitBu(3) along with the sodium ferrate [(Na(18-crown-6))(2)Cp][CpFe(CO)(2)]. The potassium analogue [(K(18-crown-6))(2)Cp][CpFe(CO)(2)] (orthorhombic, space group Pmc2(1)), however, could be isolated as a minor product from the reaction of [CpFe(CO)(2)]I with [K(18-crown-6)][PtBu(2)BH(3)]. The reaction of [CpFe(CO)(2)](2) with the potassium benzophenone ketyl radical and subsequent treatment with 18-crown-6 yielded the ferrate [K(18-crown-6)][CpFe(CO)(2)] in THF at room temperature. The crown ether complex [K(18-crown-6)][CpFe(CO)(2)] was analyzed using X-ray crystallography (orthorhombic, space group Pna2(1)) and its thermal behaviour was investigated.

  16. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  17. A surface-mediated siRNA delivery system developed with chitosan/hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly

    NASA Astrophysics Data System (ADS)

    Wu, Lijuan; Wu, Changlin; Liu, Guangwan; Liao, Nannan; Zhao, Fang; Yang, Xuxia; Qu, Hongyuan; Peng, Bo; Chen, Li; Yang, Guang

    2016-12-01

    siRNA delivery remains highly challenging because of its hydrophilic and anionic nature and its sensitivity to nuclease degradation. Effective siRNA loading and improved transfection efficiency into cells represents a key problem. In our study, we prepared Chitosan/Hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly, in which siRNAs can be effectively loaded and protected. The construction process was characterized by FTIR, 13C NMR (CP/MAS), UV-vis spectroscopy, and atomic force microscopy (AFM). We presented the controlled-release performance of the films during incubation in 1 M NaCl solution for several days through UV-vis spectroscopy and polyacrylamide gel electrophoresis (PAGE). Additionally, we verified the stability and integrity of the siRNA loaded on multilayer films. Finally, the biological efficacy of the siRNA delivery system was evaluated via cells adhesion and gene silencing analyses in eGFP-HEK 293T cells. This new type of surface-mediated non-viral multilayer films may have considerable potential in the localized and controlled-release delivery of siRNA in mucosal tissues, and tissue engineering application.

  18. Framework Stabilization of Si-Rich LTA Zeolite Prepared in Organic-Free Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conato, Marlon T.; Oleksiak, Matthew D.; McGrail, B. Peter

    2014-10-16

    Zeolite HOU-2 (LTA type) is prepared with the highest silica content (Si/Al = 2.1) reported for Na-LTA zeolites without the use of an organic structure-directing agent. The rational design of Si-rich zeolites has the potential to improve their thermal stability for applications in catalysis, gas storage, and selective separations.

  19. Infrared and near infrared emission spectra of TeH and TeD

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Shayesteh, Alireza; Fu, Dejian; Bernath, Peter F.

    2005-04-01

    The vibration-rotation emission spectra for the X2Π ground state and the near infrared emission spectra of the X2Π 1/2- X2Π 3/2 system of the TeH and TeD free radicals have been measured at high resolution using a Fourier transform spectrometer. TeH and TeD were generated in a tube furnace with a DC discharge of a flowing mixture of argon, hydrogen (or deuterium), and tellurium vapor. In the infrared region, for the X2Π 3/2 spin component we observed the 1-0, 2-1, and 3-2 vibrational bands for most of the eight isotopologues of TeH and the 1-0 and 2-1 bands for three isotopologues of TeD. For the X2Π 1/2- X2Π 3/2 transition, we observed the 0-0 and 1-1 bands for TeH and the 0-0, 1-1, and 2-2 bands for TeD. Except for a few lines, the tellurium isotopic shift was not resolved for the X2Π 1/2- X2Π 3/2 transitions of TeH and TeD. Local perturbations with Δ v = 2 between the two spin components of the X2Π state of TeH were found: X2Π 1/2, v = 0 with X2Π 3/2, v = 2; X2Π 1/2, v = 1 with X2Π 3/2, v = 3. The new data were combined with the previous data from the literature and two kinds of fits (Hund's case (a) and Hund's case (c)) were carried out for each of the 10 observed isotopologues: 130TeD, 128TeD, 126TeD, 130TeH, 128TeH, 126TeH, 125TeH, 124TeH, 123TeH, and 122TeH.

  20. Fast Li-Ion Transport in Amorphous Li 2Si 2O 5: An Ab Initio Molecular Dynamics Simulation

    DOE PAGES

    Lei, Xueling; Wang, Jie; Huang, Kevin

    2016-05-03

    The present study reports an ab-initio molecular dynamics (AIMD) simulation of ionic diffusion in the amorphous Li 2Si 2O 5 in a temperature range of 573–823 K. The results show that the amorphous Li 2Si 2O 5 is primarily a Li + conductor with negligible O 2- and Si 4+ contributions. The obtained activation energy of 0.47 eV for Li + diffusion is higher than Na + in the analogue amorphous Na 2Si 2O 5, but close to other types of Li + conductors. The predicted Li + conductivity is on the order of 10 -2 S·cm -1 at 623–823more » K. Our simulations also reveal that Li + in the amorphous Li 2Si 2O 5 diffuses via a hopping mechanism between the nearest sites in the channels formed by two adjacent SiO 4 layers.« less

  1. Band gap engineering for graphene by using Na{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, S. J.; Lee, P. R.; Kim, J. G.

    2014-08-25

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the π* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}.more » The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}≥0.70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.« less

  2. Fabrication of SiC membrane HCG blue reflector using nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Lai, Ying-Yu; Matsutani, Akihiro; Lu, Tien-Chang; Wang, Shing-Chung; Koyama, Fumio

    2015-02-01

    We designed and fabricated a suspended SiC-based membrane high contrast grating (HCG) reflectors. The rigorous coupled-wave analysis (RCWA) was employed to verify the structural parameters including grating periods, grating height, filling factors and air-gap height. From the optimized simulation results, the designed SiC-based membrane HCG has a wide reflection stopband (reflectivity (R) <90%) of 135 nm for the TE polarization, which centered at 480 nm. The suspended SiC-based membrane HCG reflectors were fabricated by nanoimprint lithography and two-step etching technique. The corresponding reflectivity was measured by using a micro-reflectivity spectrometer. The experimental results show a high reflectivity (R<90%), which is in good agreement with simulation results. This achievement should have an impact on numerous III-N based photonic devices operating in the blue wavelength or even ultraviolet region.

  3. Tellurium(0) as a ligand: synthesis and characterization of 2-pyridyltellurolates of platinum(II) and structures of [Pt{2-Te-3-(R)C5H3N}2Te(PR'3)] (R = H or Me).

    PubMed

    Chauhan, Rohit Singh; Kedarnath, G; Wadawale, Amey; Muñoz-Castro, Alvaro; Arratia-Perez, Ramiro; Jain, Vimal K; Kaim, Wolfgang

    2010-05-03

    Treatment of toluene solutions of the ditellurides [Te(2){C(5)H(3)N(R)-3}(2)] (R = H or Me) with [Pt(PPh(3))(4)] yielded two types of complexes, [Pt{2-Te-3-(R)C(5)H(3)N}(2)(PPh(3))(2)] (1a-d) as the major products and [Pt{2-Te-3-(R)C(5)H(3)N}(2)Te(PPh(3))] (2a-d) as minor products. The above complexes can also be obtained by the reaction of [PtCl(2)(PR'(3))(2)] (PR'(3) = PPh(3) or PPh(2)(2-C(5)H(4)N)) with 2 equiv of Na(2-Te-C(5)H(3)R). The complexes were characterized by elemental analyses and UV-vis, NMR ((1)H and (31)P), and (in part) XPS spectroscopy. The molecular structures of [Pt(2-Te-C(5)H(4)N)(2)Te(PPh(3))] (2a) and [Pt{2-Te-C(5)H(3)(Me)N}(2)Te(PPh(3))] (2b) were established by single crystal X-ray diffraction. Both complexes exhibit a distorted square-planar configuration at the platinum(II) centers. The two mutually trans positioned 2-pyridinetellurolate ligands [2-Te-C(5)H(3)(R)N] coordinate to the central platinum atom in a monodentate fashion through the tellurium atoms. The tellurium(0) atom adopts a "bent T" configuration as it is bridging the 2-Te- C(5)H(3)(R)N molecules via N-Te-N bonds (166 degrees angle) and coordinates to Pt(II) in the trans position to PPh(3). The novel bis(pyridine)tellurium(0) arrangement resembles the bis(pyridine)iodonium structure. The calculated NICS indices and ELF functions clearly show that the compounds 2a and 2b are aromatic in the region defined by the Te-C-N-Te-Pt five-membered rings.

  4. Reactivity of a dearomatised pincer CoIIBr complex with PNCNHC donors: alkylation and Si-H bond activation via metal-ligand cooperation.

    PubMed

    Simler, Thomas; Choua, Sylvie; Danopoulos, Andreas A; Braunstein, Pierre

    2018-05-18

    The double aminolysis reaction of [Co{N(SiMe3)2}2] by the salt 1-(6-((dicyclohexylphosphaneyl)methyl)pyridin-2-yl)-3-(2,6-diisopropylphenyl)-1H-imidazol-3-ium bromide, which contains one phosphane, one pyridine and one imidazolium groups, of formula [o-Cy2PCH2(C5H3N)(o-C3H3N2DiPP)]Br and abbreviated as (CyPNpyrCim)Br, was previously shown to afford the Co(ii) complex [Co(CyP*NaCNHC)Br] (1) containing a dearomatised picolyl moiety in the tridentate, anionic donor ligand CyP*NaCNHC (Na = anionic amido, P* = vinylic P donor). We now report that formation of 1 is preceded by an intermediate tentatively assignable to the 5-coordinate Co(ii) complex [Co(CyPNpyrCNHC){N(SiMe3)2}Br] (2). The reaction of 1 with LiCH2SiMe3 afforded the dark purple, paramagnetic [Co(CyP*NaCNHC)CH2SiMe3] (3) with a low spin d7 CoII; the electronic configurations of 1 and 3 were corroborated by EPR spectroscopy. Addition of excess (≥4 equiv.) H2SiPh2 to a solution of 1 gave the diamagnetic [Co(CyP(SiHPh2)NCNHC)Br] (4) following Si-H activation and silylation of the ligand backbone at the α-CHP. Reduction of CoII to CoI by silanes is uncommon.

  5. Laser-diode-excited blue upconversion in Tm3+/Yb3+ -codoped TeO2-Ga2O3-R2O (R=Li, Na, K) glasses.

    PubMed

    Zhao, Chun; Zhang, Qinyuan; Yang, Gangfeng; Jiang, Zhonghong

    2008-01-01

    This paper reports on intense blue upconversion in Tm(3+)/Yb(3+) codoped TeO(2)-Ga(2)O(3)-R(2)O(R=Li, Na, K) glasses upon excitation with commercial available laser diode (LD). Effects of alkali ions on the Raman spectra, thermal stability and spectroscopic properties of the tellurite-gallium glasses have also been investigated. Energy transfer and the involved upconversion mechanisms have been discussed. Intense blue upconversion emission centered at 476 nm along with a weak red emission at 650 nm has been observed upon excitation of 977 nm LD, assigned to the transitions of 1G4-->3H6, and 1G4-->3H4 and/or 3F(2,3)-->3H6 of Tm(3+), respectively. The blue upconversion intensity has a cubelike dependence on incident pump laser power, indicating a three-photon process. However, a quadratic dependence of the 476 nm upconversion intensity on the incident pump laser power has been observed when samples under excitation of 808 nm LD due to a two-photon absorption process. Enhanced upconversion luminescence have been observed with replacing K(+) for Na(+) and Li(+).

  6. Reconfigurable terahertz grating with enhanced transmission of TE polarized light

    NASA Astrophysics Data System (ADS)

    He, J. W.; Wang, X. K.; Xie, Z. W.; Xue, Y. Z.; Wang, S.; Zhang, Y.

    2017-07-01

    We demonstrate an optically reconfigurable grating with enhanced transmission of TE-polarized waves in the terahertz (THz) waveband. This kind of grating is realized by projecting a grating image onto a thin Si wafer with a digital micromirror device (DMD). The enhanced transmission is caused by a resonance of the electromagnetic fields between the photoexcited strips. The position of the transmission peak shifts with the variation of the period and duty cycle of the photoinduced grating, which can be readily controlled by the DMD. Furthermore, a flattened Gaussian model was applied to describe the distribution of the photoexcited free carriers in the Si wafer, and the simulated transmittance spectra are shown to be in good agreement with the experimental results. In future, the photoexcited carriers could also be used to produce THz diffractive elements with reconfigurable functionality.

  7. [Preparation, characterization and upconversion fluorescence of NaYF4 : Yb, Er /graphene oxide nanocomposites].

    PubMed

    Ji, Tian-Hao; Qie, Nan; Wang, Ji-Mei; Hua, Yong-Yong; Ji, Zhi-Jiang

    2013-03-01

    NaYF4 : Yb, Er/rGO and SiO2-coated NaYF4 : Yb, Er/rGO nanocomposites can be prepared through "one-pot" and directly mixing preparation routes. Various measurement results show that the NaYF4 : Yb, Er in the nanocomposites exhibits a cubic a-type structure and nanoparticle-like morphology with a diameter range of 30-70 nm; the rGO layers are well-dispersed in the nanocomposites, and whereas the rGO obtained from "one-pot" preparation renders relatively better dispersion. Raman spectra demonstrate that there exists a surface coupling action between the two kinds of nanomaterials, and with the increase in the relative rGO content, such action becomes stronger. UC fluorescence measurement results reveal that the rGO has significantly quenching effect and optical-limiting performance on the UC fluorescence, particularly on the red-emission of the NaYFa : Yb, Er or SiO2-coated NaYF4 : Yb, Er nanoparticles. The red-emission intensity gradually decreases with an increase in the rGO content, but the green-emission shows less change. It should be stressed that, in comparison with NaYF4 : Yb, Er/rGO, with a similar rGO content, the red-emission intensity of SiO2-coated NaYF4 : Yb, Er/rGO decreases much obviously due to a stronger light-absorption caused by part rGO aggregation.

  8. Electrical properties and transport mechanisms of p-znte/n-si heterojunctions

    NASA Astrophysics Data System (ADS)

    Seyam, M. A. M.; El-Shair, H. T.; Salem, G. F.

    2008-03-01

    Zinc telluride thin films have been deposited on glass and silicon wafers substrates at room temperature by thermal evaporation technique in a vacuum of 10-5 Torr. The thickness dependence of both the dc electrical resistivity and thermoelectric power of ZnTe were carried out at room temperature and after being annealed over a thickness range from 22 nm to 170 nm. The type of conduction, the carriers concentration and the conduction mechanisms were revealed. The average thermal activation energy Δ E equals to 0.324 eV for the as deposited films and 0.306 eV for annealed films, it is found to correspond with the ionization energy reported for intrinsic defect levels in ZnTe. Seebeck coefficient measurements showed that ZnTe thin films behave as p-type semiconductor and the average value of the free charge carrier concentration is found to be 1.6×1019 cm-3. The built-in voltage, the width of the depletion region, the diode quality factor and the operating conduction mechanisms have been determined from dark current-voltage (I-V) and capacitance-voltage (C-V) characteristics of p-ZnTe/ n-Si heterojunctions.

  9. Electrical properties of MIS devices on CdZnTe/HgCdTe

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Seok; Jeoung, Y. T.; Kim, Hyun Kyu; Kim, Jae Mook; Song, Jinhan; Ann, S. Y.; Lee, Ji Y.; Kim, Young Hun; Kim, Sun-Ung; Park, Mann-Jang; Lee, S. D.; Suh, Sang-Hee

    1998-10-01

    In this paper, we report the capacitance-voltage (C-V) properties of metal-insulator-semiconductor (MIS) devices on CdTe/HgCdTe by the metalorganic chemical vapor deposition (MOCVD) and CdZnTe/HgCdTe by thermal evaporation. In MOCVD, CdTe layers are directly grown on HgCdTe using the metal organic sources of DMCd and DiPTe. HgCdTe layers are converted to n-type and the carrier concentration, ND is low 1015 cm-3 after Hg-vacancy annealing at 260 degrees Celsius. In thermal evaporation, CdZnTe passivation layers were deposited on HgCdTe surfaces after the surfaces were etched with 0.5 - 2.0% bromine in methanol solution. To investigate the electrical properties of the MIS devices, the C-V measurement is conducted at 80 K and 1 MHz. C-V curve of MIS devices on CdTe/HgCdTe by MOCVD has shown nearly flat band condition and large hysteresis, which is inferred to result from many defects in CdTe layer induced during Hg-vacancy annealing process. A negative flat band voltage (VFB approximately equals -2 V) and a small hysteresis have been observed for MIS devices on CdZnTe/HgCdTe by thermal evaporation. It is inferred that the negative flat band voltage results from residual Te4+ on the surface after etching with bromine in methanol solution.

  10. Polysilicic acid gel method derived V2O5/SiO2 composite materials: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Zhou, Linzong; Feng, Xiaofei; Zhao, Ning; Yang, Bin

    2017-01-01

    The V2O5/SiO2 composite was prepared by a sol-gel method followed a sintering procedure. The low-cost Na2SiO3•9H2O was used as silicon source, while NH4VO3 was used as vanadium source. By adding NH4VO3 to Na2SiO3 solution and adjusting the mixture's pH with saturated (NH4)2SO4 solution the polysilicic acid gel was formed to give a homogeneous gel composite with VO3-well-distributed in it. The gel composite was dried at 100 °C to give the xerogel, then the xerogel was calcined in air to obtain the V2O5/SiO2 composite. The V2O5/SiO2 composites were characterized by SEM analysis, FT-IR spectroscopy and powder X-ray diffractions.

  11. Structural study of Na2O-B2O3-SiO2 glasses from molecular simulations using a polarizable force field.

    PubMed

    Pacaud, Fabien; Delaye, Jean-Marc; Charpentier, Thibault; Cormier, Laurent; Salanne, Mathieu

    2017-10-28

    Sodium borosilicate glasses Na 2 O-B 2 O 3 -SiO 2 (NBS) are complex systems from a structural point of view. Three main building units are present: tetrahedral SiO 4 and BO 4 (B IV ) and triangular BO 3 (B III ). One of the salient features of these compounds is the change of the B III /B IV ratio with the alkali concentration, which is very difficult to capture in force fields-based molecular dynamics simulations. In this work, we develop a polarizable force field that is able to reproduce the boron coordination and more generally the structure of several NBS systems in the glass and in the melt. The parameters of the potential are fitted from density functional theory calculations only, in contrast with the existing empirical potentials for NBS systems. This ensures a strong improvement on the transferability of the parameters from one composition to another. Using this new force field, the structure of NBS systems is validated against neutron diffraction and nuclear magnetic resonance experiments. A special focus is given to the distribution of B III /B IV with respect to the composition and the temperature.

  12. Superstructures at Te/Au(111) interface evolving upon increasing Te coverage

    NASA Astrophysics Data System (ADS)

    Guan, Jiaqi; Huang, Xiaochun; Xu, Xiaofeng; Zhang, Shuyuan; Jia, Xun; Zhu, Xuetao; Wang, Weihua; Guo, Jiandong

    2018-03-01

    By in-situ low temperature scanning tunneling microscopy, we systematically investigated the superstructure evolution at Te/Au(111) interface upon increasing Te coverage. Te atoms form one-dimensional √{ 3} R30∘ chains at ∼0.10 monolayer (ML) coverage. Two two-dimensional chiral superstructures, (√{ 111} ×√{ 111}) R 4 .7∘ and (3√{ 21} × 3√{ 21}) R 10 .9∘ , are selectively formed with the Te coverage below and above 1/3 ML, respectively. The two chiral superstructures can be converted to each other reversibly by adding Te atoms or moderately annealing. A honeycomb-like superstructure, decorated with adatoms that are distributed in quasi-one-dimensional chains, is observed by further increasing the Te coverage to 4/9 ML. At the Te/Au(111) interface, an interfacial state at -0.65 eV to -0.55 eV below the Fermi level is also resolved by scanning tunneling spectroscopy. The formation of these Te-induced high-order superstructures is accompanied by relaxation of gold atoms in the surface layer, indicating a strong Te-Au interaction. Our work demonstrates a reliable method to fabricate Te nanostructures on noble metals in a controlled way.

  13. Batisite, Na2BaTi2(Si4O12)O2, from Inagli massif, Aldan, Russia: crystal-structure refinement and high-temperature X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Zolotarev, Andrey A.; Zhitova, Elena S.; Gabdrakhmanova, Faina A.; Krzhizhanovskaya, Maria G.; Zolotarev, Anatoly A.; Krivovichev, Sergey V.

    2017-12-01

    The crystal structure of batisite, Na2BaTi2 (Si4O12)O2, from the Inagli massif (Aldan, Yakutia, Russia) was refined to R 1 = 0.032 for 1449 unique observed reflections. The mineral is orthorhombic, Imma, a = 8.0921(5), b = 10.4751(7), c = 13.9054(9) Å, V = 1178.70(13) Å3. The mineral is based upon three-dimensional titanosilicate framework consisting of chains of corner-sharing MO6 octahedra ( M = Ti, Nb, Fe and Zr) and vierer chains of corner-sharing SiO4 tetrahedra. Both chains are parallel to the a axis and are linked by sharing peripheral O atoms. The octahedral chains display disorder of M atoms and bridging O sites related to the out-of-center distortion of octahedral geometry around Ti4+ cations. Electron microprobe analysis gives SiO2 39.46, TiO2 24.66, BaO 21.64, Na2O 7.56, K2O 4.38, Fe2O3 0.90, ZrO2 0.66, Nb2O5 0.36, (H2O)calc 0.58, sum 99.76 wt%. The seven strongest X-ray powder-diffraction lines [listed as d in Å (I) hkl] are: 8.39 (94) 011, 3.386 (56) 031, 3.191 (36) 123, 2.910 (46) 222, 2.896 (100) 024, 2.175 (45) 035, 1.673 (57) 055. The thermal behaviour of batisite in the temperature range from 25 to 950 °C was studied using high-temperature powder X-ray diffraction. The thermal expansion coefficients along the principal crystallographic axes are: α a = 14.4 × 10-6, α b = 8.7 × 10-6, α c = 8.4 × 10-6, α V = 31.5 °C-1 for the temperature range 25-500 °C and α a = 19.6 × 10-6, α b = 9.1 × 10-6, α c = 8.8 × 10-6, α V = 37.6 °C-1 for the temperature range 500-900 °C. The direction of maximal thermal expansion is parallel to the chains of both MO6 octahedra and SiO4 tetrahedra, which can be explained by the stretching of silicate chains due to the increasing thermal vibrations of the Ba2+ cations. At 1000 °C, the titanosilicate framework in batisite collapses with the formation of fresnoite, Ba2TiSi2O7O.

  14. Hydrothermal synthesis, characterization, and thermal properties of alumino silicate azide sodalite, Na8[AlSiO4]6(N3)2

    NASA Astrophysics Data System (ADS)

    Borhade, A. V.; Wakchaure, S. G.; Dholi, A. G.; Kshirsagar, T. A.

    2017-07-01

    First time we report the synthesis, structural characterization and thermal behavior of an unusual N3 - containing alumino-silicate sodalite mineral. Azide sodalite, Na8[AlSiO4]6(N3)2 has been synthesized under hydrothermal conditions at 433 K in steel lined Teflon autoclave. The structural and microstructural properties of azide sodalite mineral was characterized by various methods including FT-IR, XRD, SEM, TGA, and MAS NMR. Crystal structure have been refined by Rietveld method in P\\bar 43n space group, indicating that the N3 - sodalite has cubic in lattice. High temperature study was carried out to see the effect of thermal expansion on cell dimension ( a o) of azide sodalite. Thermal behavior of sodalite was also assessed by thermogravimetric method.

  15. Ionic ASi{sub 2}N{sub 3} (A=Li, Na, K and Rb) stabilized by the covalent Si–N bonding: First-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Huijun; Ren, Jiadong, E-mail: jdren@ysu.edu.cn; Wu, Lailei

    The structural, elastic and electronic properties of LiSi{sub 2}N{sub 3} and its substitutions by Na, K and Rb were investigated through first-principles computations. The expansion of lattice parameters of ASi{sub 2}N{sub 3} from Li, Na, K to Rb is found to be determined by the bond angle of Si–N1–Si, which suggests a possible way to improve the lithium ionic conductivity by substitutions. ASi{sub 2}N{sub 3} (A=Li, Na, K and Rb) shows the similar elastic behaviors, while the electronic band gap gradually decreases from 5.1 to 3.4 eV from LiSi{sub 2}N{sub 3} to RbSi{sub 2}N{sub 3}. Interestingly, the analysis of electronicmore » structure, crystal orbital Hamiltonian populations and Bader charges shows that the covalence of Si–N bonding is critical for the stability of ASi{sub 2}N{sub 3} phase. Among ASi{sub 2}N{sub 3} phases, there is a relatively high ionicity in NaSi{sub 2}N{sub 3}; the Si–N bond strength in [Si{sub 2}N{sub 3}]{sup −} net for KSi{sub 2}N{sub 3} and RbSi{sub 2}N{sub 3} is comparable to LiSi{sub 2}N{sub 3}, but stronger than NaSi{sub 2}N{sub 3}. - Graphic abstract: Universal trend of structural and electronic properties in alkaline metal silicon nitrides, ASi{sub 2}N{sub 3}, A=Li, Na, K and Rb. - Highlights: • Trend in structure, electronic and mechanical properties of ASi{sub 2}N{sub 3} (A=Li-Rb) were predicted. • Lattice expansion of ASi{sub 2}N{sub 3} induced by the bond angle of Si–N1–Si was found. • Calculated band gap decreases from 5.1 to 3.4 eV from LiSi{sub 2}N{sub 3} to RbSi{sub 2}N{sub 3}. • Covalent Si–N bonding is critical for the stability of ASi{sub 2}N{sub 3}.« less

  16. New manufacturing method for Fe-Si magnetic powders using modified pack-cementation process

    NASA Astrophysics Data System (ADS)

    Byun, Ji Young; Kim, Jang Won; Han, Jeong Whan; Jang, Pyungwoo

    2013-03-01

    This paper describes a new method for making Fe-Si magnetic powders using a pack-cementation process. It was found that Fe-Si alloy powders were formed by a reaction of the pack mixture of Fe, Si, NaF, and Al2O3 powders at 900 °C for 24 h under a hydrogen atmosphere. Separation of the Fe-Si alloy powders was dependent on the particle size of the Fe powders in the pack. For small Fe powders, magnetic separation in a medium of strong alkali solution was recommended. But, for relatively larger Fe powders, the Fe-Si alloy powders were easily separated from Al2O3 powders using a magnet in air atmosphere. The Si content in the Fe-Si magnetic powders were easily controlled by changing the weight ratio of Si to (Si+Fe) in the pack.

  17. Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes.

    PubMed

    Ali, Fayaz; Khan, Sher Bahadar; Kamal, Tahseen; Alamry, Khalid A; Bakhsh, Esraa M; Asiri, Abdullah M; Sobahi, Tariq R A

    2018-07-15

    Different metal nanoparticles (MNPs) templated on chitosan-silica (CH-SiO 2 ) nanocomposite fiber were prepared via simple and fast method of the metal ions uptake by fiber and their subseqent reduction using strong reducing agent. The performance difference of CH-SiO 2 templated with Cu, Co, Ag and Ni nanoparticles for both reduction of 4-nitroaniline (4-NA) and decolorization of congo red (CR) was investigated. The Cu nanoparticles loaded CH-SiO 2 (Cu/CH-SiO 2 ), showed high catalytic efficiencies in the reduction of 4-NA and CR, as compared to other loaded MNP fibers. The apparent rate constants of 6.17 × 10 -3  s -1 and 1.68 × 10 -2  s -1 and turnover frequencies (TOF) of 4.693 h -1 and 3.965 h -1 were observed for the reduction of 4-NA and CR, respectively. In addition, the catalytic activity of Cu/CH-SiO 2 catalyst was also examined and found efficient in the reduction of nitrophenols (2-NP, 3-NP and 4-NP), and other dyes. Thus, Cu/CH-SiO 2 with excellent catalytic activity can also be employed for other applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Thermodynamic characterization of Ni3TeO6, Ni2Te3O8 and NiTe2O5

    NASA Astrophysics Data System (ADS)

    Dawar, Rimpi; Babu, R.; Ananthasivan, K.; Anthonysamy, S.

    2017-09-01

    Measurement of vapour pressure of TeO2(g) over the biphasic mixture Ni3TeO6 (s) + NiO(s) in the temperature range 1143-1272 K was carried out using transpiration-thermogravimetric technique (TTG). Gibbs energy of formation of Ni3TeO6 was obtained from the temperature dependence of vapour pressure of TeO2 (g) generated by the incongruent vapourisation reaction, Ni3TeO6 (s) → NiO(s) + TeO2 (g) + 1/2 O2 in the temperature range 1143-1272 K. An isoperibol type drop calorimeter was used to measure the enthalpy increments of Ni3TeO6, Ni2Te3O8 and NiTe2O5. Thermodynamic functions viz., heat capacity, entropy and Gibbs energy functions of these compounds were derived from the experimentally measured enthalpy increment values. Third-law analysis was carried out to ascertain absence of temperature dependent systematic errors in the measurement of vapour pressure of TeO2 (g). A value of -1265.1 ± 1.5 kJ mol-1 was obtained for Δ Hf,298K o (Ni3TeO6) using third-law analysis.

  19. Raman characterization of a new Te-rich binary compound: CdTe2.

    PubMed

    Rousset, Jean; Rzepka, Edouard; Lincot, Daniel

    2009-04-02

    Structural characterization by Raman spectroscopy of CdTe thin films electrodeposited in acidic conditions is considered in this work. This study focuses on the evolution of material properties as a function of the applied potential and the film thickness, demonstrating the possibility to obtain a new Te-rich compound with a II/VI ratio of 1/2 under specific bath conditions. Raman measurements carried out on etched samples first allow the elimination of the assumption of a mixture of phases CdTe + Te and tend to confirm the formation of the CdTe(2) binary compound. The signature of this phase on the Raman spectrum is the increase of the LO band intensity compared to that obtained for the CdTe. The influence of the laser power is also considered. While no effect is observed on CdTe films, the increase of the incident irradiation power leads to the decomposition of the CdTe(2) compound into two more stable phases namely CdTe and Te.

  20. Effect of substrate and post-deposition annealing on nanostructure and optical properties of CdTe thin films

    NASA Astrophysics Data System (ADS)

    Hasani, Ebrahim; Raoufi, Davood

    2018-04-01

    Thermal evaporation is one of the promising methods for depositing CdTe thin films, which can obtain the thin films with the small thickness. In this work, CdTe nanoparticles have deposited on SiO2 substrates such as quartz (crystal) and glass (amorphous) at a temperature (Ts) of 150 °C under a vacuum pressure of 2 × 10‑5 mbar. The thickness of CdTe thin films prepared under vacuum pressure is 100 nm. X-ray diffraction analysis (XRD) results showed the formation of CdTe cubic phase with a strong preferential orientation of (111) crystalline plane on both substrates. The grain size (D) in this orientation obtained about 7.41 and 5.48 nm for quartz and glass respectively. Ultraviolet-visible spectroscopy (UV–vis) measurements indicated the optical band gap about 1.5 and 1.52 eV for CdTe thin films deposited on quartz and glass respectively. Furthermore, to show the effect of annealing temperature on structure and optical properties of CdTe thin films on quartz and glass substrates, the thin films have been annealed at temperatures 50 and 70 °C for one hour. The results of this work indicate that the structure’s parameters and optical properties of CdTe thin films change due to increase in annealing temperature.

  1. Crystallization Behavior and Heat Transfer of Fluorine-Free Mold Fluxes with Different Na2O Concentration

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang; Kashiwaya, Yoshiaki

    2016-08-01

    In this study, the crystallization behavior and heat transfer of CaO-SiO2-Na2O-B2O3-TiO2-Al2O3-MgO-Li2O fluorine-free mold fluxes with different Na2O contents (5 to 11 mass pct) were studied using single/double hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams constructed using SHTT showed that crystallization temperature increased and incubation time shortened with the increase of Na2O concentration, indicating an enhanced crystallization tendency. The crystallization process of mold fluxes in the temperature field simulating the casting condition was also investigated using DHTT. X-ray diffraction (XRD) analysis of the quenched mold fluxes showed that the dominant phase changed from CaSiO3 to Ca11Si4B2O22 with the increasing concentration of Na2O. The heat transfer examined by IET showed that the increase of Na2O concentration reduced the responding heat flux when Na2O was lower than 9 mass pct but the further increase of Na2O to 11 mass pct enhanced the heat flux. The correlation between crystallinity and heat transfer was discussed in terms of crystallization tendency and crystal morphology.

  2. Designing Diameter-Modulated Heterostructure Nanowires of PbTe/Te by Controlled Dewetting.

    PubMed

    Kumar, Abinash; Kundu, Subhajit; Samantaray, Debadarshini; Kundu, Paromita; Zanaga, Daniele; Bals, Sara; Ravishankar, N

    2017-12-13

    Heterostructures consisting of semiconductors with controlled morphology and interfaces find applications in many fields. A range of axial, radial, and diameter-modulated nanostructures have been synthesized primarily using vapor phase methods. Here, we present a simple wet chemical routine to synthesize heterostructures of PbTe/Te using Te nanowires as templates. A morphology evolution study for the formation of these heterostructures has been performed. On the basis of these control experiments, a pathway for the formation of these nanostructures is proposed. Reduction of a Pb precursor to Pb on Te nanowire templates followed by interdiffusion of Pb/Te leads to the formation of a thin shell of PbTe on the Te wires. Controlled dewetting of the thin shell leads to the formation of cube-shaped PbTe that is periodically arranged on the Te wires. Using control experiments, we show that different reactions parameters like rate of addition of the reducing agent, concentration of Pb precursor and thickness of initial Te nanowire play a critical role in controlling the spacing between the PbTe cubes on the Te wires. Using simple surface energy arguments, we propose a mechanism for the formation of the hybrid. The principles presented are general and can be exploited for the synthesis of other nanoscale heterostructures.

  3. BOREAS TE-4 Gas Exchange Data from Boreal Tree Species

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Collatz, G. James; Berry, Joseph A.; Gamon, John; Fredeen, Art; Fu, Wei

    2000-01-01

    The BOREAS TE-4 team collected steady-state gas exchange and reflectance data from several species in the BOREAS SSA during 1994 and in the NSA during 1996. Measurements of light, CO2, temperature, and humidity response curves were made by the BOREAS TE-4 team during the summers of 1994 and 1996 using intact attached leaves of boreal forest species located in the BOREAS SSA and NSA. These measurements were conducted to calibrate models used to predict photosynthesis, stomatal conductance, and leaf respiration. The 1994 and 1996 data can be used to construct plots of response functions or for parameterizing models. Parameter values are suitable for application in SiB2 (Sellers et al., 1996) or the leaf model of Collatz et al. (1991), and programs can be obtained from the investigators. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  4. Sound velocities of Na0.4Mg0.6Al1.6Si0.4O4 NAL and CF phases to 73 GPa determined by Brillouin scattering method

    NASA Astrophysics Data System (ADS)

    Dai, Lidong; Kudo, Yuki; Hirose, Kei; Murakami, Motohiko; Asahara, Yuki; Ozawa, Haruka; Ohishi, Yasuo; Hirao, Naohisa

    2013-03-01

    The sound velocities of two aluminum-rich phases in the lower mantle, hexagonal new Al-rich phase (NAL) and its corresponding high-pressure polymorph orthorhombic Ca-ferrite-type phase (CF), were determined with the Brillouin scattering method in a pressure range from 9 to 73 GPa at room temperature. Both NAL and CF samples have identical chemical composition of Na0.4Mg0.6Al1.6Si0.4O4 (40 % NaAlSiO4-60 % MgAl2O4). Infrared laser annealing in the diamond anvil cell was performed to minimize the stress state of the sample and obtain the high-quality Brillouin spectra. The results show shear modulus at zero pressure G 0 = 121.960 ± 0.087 GPa and its pressure derivative G' = 1.961 ± 0.009 for the NAL phase, and G 0 = 129.653 ± 0.059 GPa and G' = 2.340 ± 0.004 for the CF phase. The zero-pressure shear velocities of the NAL and CF phases are obtained to be 5.601 ± 0.005 km/sec and 5.741 ± 0.001 km/sec, respectively. We also found that shear velocity increases by 2.5 % upon phase transition from NAL to CF at around 40 GPa.

  5. Upregulation of the sodium channel NaVβ4 subunit and its contributions to mechanical hypersensitivity and neuronal hyperexcitability in a rat model of radicular pain induced by local DRG inflammation

    PubMed Central

    Xie, Wenrui; Tan, Zhi-Yong; Barbosa, Cindy; Strong, Judith A.; Cummins, Theodore R.; Zhang, Jun-Ming

    2016-01-01

    High frequency spontaneous firing in myelinated sensory neurons plays a key role in initiating pain behaviors in several different models, including the radicular pain model in which the rat lumbar dorsal root ganglia (DRG) are locally inflamed. The sodium channel isoform NaV1.6 contributes to pain behaviors and spontaneous activity in this model. Among all the isoforms in adult DRG, NaV1.6 is the main carrier of TTX-sensitive resurgent Na currents that allow high-frequency firing. Resurgent currents flow after a depolarization or action potential, as a blocking particle exits the pore. In most neurons the regulatory β4 subunit is potentially the endogenous blocker. We used in vivo siRNA mediated knockdown of NaVβ4 to examine its role in the DRG inflammation model. NaVβ4 but not control siRNA almost completely blocked mechanical hypersensitivity induced by DRG inflammation. Microelectrode recordings in isolated whole DRGs showed that NaVβ4 siRNA blocked the inflammation-induced increase in spontaneous activity of Aβ neurons, and reduced repetitive firing and other measures of excitability. NaVβ4 was preferentially expressed in larger diameter cells; DRG inflammation increased its expression and this was reversed by NaVβ4 siRNA, based on immunohistochemistry and Western blotting. NaVβ4 siRNA also reduced immunohistochemical NaV1.6 expression. Patch clamp recordings of TTX-sensitive Na currents in acutely cultured medium diameter DRG neurons showed that DRG inflammation increased transient and especially resurgent current; effects blocked by NaVβ4 siRNA. NaVβ4 may represent a more specific target for pain conditions that depend on myelinated neurons expressing NaV1.6. PMID:26785322

  6. Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes.

    PubMed

    Hu, Xiaofei; Li, Zifan; Zhao, Yaran; Sun, Jianchao; Zhao, Qing; Wang, Jianbin; Tao, Zhanliang; Chen, Jun

    2017-02-01

    Na-CO 2 batteries using earth-abundant Na and greenhouse gas CO 2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO 2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi-solid state Na-CO 2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride- co -hexafluoropropylene)]-4% SiO 2 /NaClO 4 -TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm -1 ), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na + plating/stripping (5.7 to 16.5 mA cm -2 ). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO 2 batteries to successfully cycle in wide CO 2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g -1 with a fixed capacity of 1000 mA·hour g -1 in pure CO 2 . Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg -1 ). This study makes quasi-solid state Na-CO 2 batteries an attractive prospect.

  7. Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes

    PubMed Central

    Hu, Xiaofei; Li, Zifan; Zhao, Yaran; Sun, Jianchao; Zhao, Qing; Wang, Jianbin; Tao, Zhanliang; Chen, Jun

    2017-01-01

    Na-CO2 batteries using earth-abundant Na and greenhouse gas CO2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi–solid state Na-CO2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride-co-hexafluoropropylene)]–4% SiO2/NaClO4–TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm−1), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na+ plating/stripping (5.7 to 16.5 mA cm−2). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO2 batteries to successfully cycle in wide CO2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g−1 with a fixed capacity of 1000 mA·hour g−1 in pure CO2. Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg−1). This study makes quasi–solid state Na-CO2 batteries an attractive prospect. PMID:28164158

  8. The structure of {sup 117}Te and {sup 118}Te and collectivity in {sup 118}Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duyar, C.; Draper, J.E.; Rubel, E.C.

    1993-10-01

    The reactions {sup 82}Se({sup 40}Ar,5n) and {sup 76}Ge({sup 48}Ca, 6 n) (beam energies 180MeV and 190MeV, respectively) were used to populate high spins states of {sup 117}Te and {sup 118}Te, respectively. {gamma} - {gamma} coincidences, E{sub gamma}, and coincidence I{sub gamma} have been measured. Angular correlation/distribution analysis has been made. {sup 117}Te has been extended to spin {approximately} 51/2. Our results do not support the two isolated bands found by Sharma et al. {sup 118}Te has been also extended to spin {approximately}22. A rotational band was found in {sup 118}Te with an average J {approximately}42h{sup 2}/MeV, corresponding to a {Beta}more » {approximately} 0.2.« less

  9. Ehimeite, NaCa2Mg4CrSi6Al2O22(OH)2: The first Cr-dominant amphibole from the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Nishio-Hamane, Daisuke; Ohnishi, Masayuki; Minakawa, Tetsuo; Yamaura, Jun-Ichi; Saito, Shohei; Kadota, Ryo

    The first Cr-dominant amphibole, ehimeite, ideally NaCa2Mg4CrSi6Al2O22(OH)2, has been found in a chromitite deposit in the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan. Ehimeite occurs as prismatic crystals of up to 1.5 cm in length and 0.5 cm in width and is found in association with chromite, kämmererite (Cr-rich clinochlore), Cr-poor clinochlore, phlogopite, and uvarovite. It is transparent, emerald green to pale green in color with pale green streaks, and has a vitreous luster. Optically, it is biaxial positive with α = 1.644(2), β = 1.647(2), γ = 1.659(2), and 2Vcalc. = 53°. It has a Mohs’ hardness of 6 and densities of 3.08(3) g/cm3 (measured using heavy liquids) and 3.121 g/cm3 (calculated from powder diffraction data and the empirical formula). The empirical formula is (Na0.88K0.07)Σ0.95(Ca1.89Na0.02Mg0.09)Σ2.00(Mg4.03Cr0.62Al0.19Fe3+0.07Fe2+0.07Ti0.03)Σ5.00(Si6.14Al1.86)Σ8.00O22(OH)2 on the basis of O = 22 and OH = 2, and ehimeite mainly forms a solid solution, NaCa2Mg4(Cr, Al)Si6Al2O22(OH)2, with pargasite. It has a monoclinic unit cell with a = 9.9176(14) Å, b = 18.0009(12) Å, c = 5.2850(7) Å, β = 105.400(7)°, V = 909.6 (17) Å3, and Z = 2, and it belongs to the space group C2/m, as refined from powder XRD data. The eight strongest lines in the powder XRD pattern [d (Å), I/I0, hkl] are (3.370, 58, 150), (2.932, 43, 221), (2.697, 81, 151), (2.585, 50, 061), (2.546, 100, 202), (2.346, 42, 351), (2.156, 35, 261), and (1.514, 55, 263). The crystal structure has been refined to R1 = 0.0488 using single-crystal XRD data. It has been concluded that ehimeite in the Akaishi Mine was formed by the reaction of chromitite and the metamorphic fluid in the retrograde stage of serpentinization during the Sanbagawa metamorphism.

  10. Valence Band Structure of Highly Efficient p-type Thermoelectric PbTe-PbS Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaworski, C. M.; Nielsen, Mechele; Wang, Hsin

    New experimental evidence is given relevant to the temperature-dependence of valence band structure of PbTe and PbTe1-xSx alloys (0.04 x 0.12), and its effect on the thermoelectric figure of merit zT. The x = 0.08 sample has zT ~ 1.55 at 773K. The magnetic field dependence of the high-temperature Hall resistivity of heavily p-type (> 1019 cm-3) Na-doped PbTe1-xSx reveals the presence of high-mobility electrons. This put in question prior analyses of the Hall coefficient and the conclusion that PbTe would be an indirect gap semiconductor at temperatures where its zT is optimal. Possible origins for these electrons are discussed:more » they can be induced by photoconductivity, or by the topology of the Fermi surface when the L and -bands merge. Negative values for the low-temperature thermopower are also observed. Our data show that PbTe continues to be a direct gap semiconductor at temperatures where the zT and S2 of p-type PbTe are optimal e.g. 700-900K. The previously suggested temperature induced rapid rise in energy of the heavy hole LVB relative to the light hole UVB is not supported by the experimental data.« less

  11. Modifier cation effects on 29Si nuclear shielding anisotropies in silicate glasses

    NASA Astrophysics Data System (ADS)

    Baltisberger, Jay H.; Florian, Pierre; Keeler, Eric G.; Phyo, Pyae A.; Sanders, Kevin J.; Grandinetti, Philip J.

    2016-07-01

    We have examined variations in the 29Si nuclear shielding tensor parameters of SiO4 tetrahedra in a series of seven alkali and alkaline earth silicate glass compositions, Cs2O · 4.81 SiO2, Rb2O · 3.96 SiO2, Rb2O · 2.25 SiO2, K2O · 4.48 SiO2, Na2O · 4.74 SiO2, BaO · 2.64 SiO2, and SrO · 2.36 SiO2, using natural abundance 29Si two-dimensional magic-angle flipping (MAF) experiments. Our analyses of these 2D spectra reveal a linear dependence of the 29Si nuclear shielding anisotropy of Q(3) sites on the Si-non-bridging oxygen bond length, which in turn depends on the cation potential and coordination of modifier cations to the non-bridging oxygen. We also demonstrate how a combination of Cu2+ as a paramagnetic dopant combined with echo train acquisition can reduce the total experiment time of 29Si 2D NMR measurements by two orders of magnitude, enabling higher throughput 2D NMR studies of glass structure.

  12. Modifier cation effects on (29)Si nuclear shielding anisotropies in silicate glasses.

    PubMed

    Baltisberger, Jay H; Florian, Pierre; Keeler, Eric G; Phyo, Pyae A; Sanders, Kevin J; Grandinetti, Philip J

    2016-07-01

    We have examined variations in the (29)Si nuclear shielding tensor parameters of SiO4 tetrahedra in a series of seven alkali and alkaline earth silicate glass compositions, Cs2O·4.81 SiO2, Rb2O·3.96 SiO2, Rb2O·2.25 SiO2, K2O·4.48 SiO2, Na2O·4.74 SiO2, BaO·2.64 SiO2, and SrO·2.36 SiO2, using natural abundance (29)Si two-dimensional magic-angle flipping (MAF) experiments. Our analyses of these 2D spectra reveal a linear dependence of the (29)Si nuclear shielding anisotropy of Q((3)) sites on the Si-non-bridging oxygen bond length, which in turn depends on the cation potential and coordination of modifier cations to the non-bridging oxygen. We also demonstrate how a combination of Cu(2+) as a paramagnetic dopant combined with echo train acquisition can reduce the total experiment time of (29)Si 2D NMR measurements by two orders of magnitude, enabling higher throughput 2D NMR studies of glass structure. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe1.07Te

    NASA Astrophysics Data System (ADS)

    Song, Yu; Lu, Xingye; Regnault, L.-P.; Su, Yixi; Lai, Hsin-Hua; Hu, Wen-Jun; Si, Qimiao; Dai, Pengcheng

    2018-02-01

    Unconventional superconductivity typically emerges in the presence of quasidegenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe1.07Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe1 -xSex superconductors. We confirm that the low-energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the a b plane in Fe1.07Te , it takes less energy for them to fluctuate out of plane, similar to BaFe2As2 and NaFeAs. At energies above E ≳20 meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range-ordered local-moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe1.07Te being quasidegenerate with plaquette magnetic order.

  14. Progress on FIR interferometry and Thomson Scattering measurements on HIT-SI3

    NASA Astrophysics Data System (ADS)

    Everson, Christopher; Jarboe, Thomas; Morgan, Kyle

    2017-10-01

    Spatially resolved measurements of the electron temperature (Te) and density (ne) will be fundamental in assessing the degree to which HIT-SI3 demonstrates closed magnetic flux and energy confinement. Further, electron temperature measurements have not yet been made on an inductively-driven spheromak. Far infrared (FIR) interferometer and Thomson Scattering (TS) systems have been installed on the HIT-SI3 spheromak. The TS system currently implemented on HIT-SI3 was originally designed for other magnetic confinement experiments, and progress continues toward modifying and optimizing for HIT-SI3 plasmas. Initial results suggest that the electron temperature is of order 10 eV. Plans to modify the TS system to provide more sensitivity and accuracy at low temperatures are presented. The line-integrated ne is measured on one chord by the FIR interferometer, with densities near 5x1019 m-3. Four cylindrical volumes have been added to the HIT-SI3 apparatus to enhance passive pumping. It is hoped that this will allow for more control of the density during the 2 ms discharges. Density measurements from before and after the installation of the passive pumping volumes are presented for comparison.

  15. A novel ascorbic acid sensor based on the Fe3+/Fe2+ modulated photoluminescence of CdTe quantum dots@SiO2 nanobeads.

    PubMed

    Ma, Qiang; Li, Yang; Lin, Zi-Han; Tang, Guangchao; Su, Xing-Guang

    2013-10-21

    In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe(2+) and Fe(3+) on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe(3+). Although both Fe(2+) and Fe(3+) could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe(2+) and Fe(3+). The PL intensity of the CdTe QD@silica nanobeads can be quenched by about 15% after the addition of Fe(3+) (60 μmol L(-1)), while the PL intensity of the CdTe QD@silica nanobeads can be quenched about 49% after the addition of Fe(2+) (60 μmol L(-1)). Therefore, the PL intensity of the CdTe QD@silica nanobeads decreased significantly when Fe(3+) was reduced to Fe(2+) by ascorbic acid. To confirm the strategy of PL modulation in this sensing system, trace H2O2 was introduced to oxidize Fe(2+) to Fe(3+). As a result, the PL intensity of the CdTe QD@silica nanobeads was partly recovered. The proposed sensor could be used for ascorbic acid sensing in the concentration range of 3.33-400 μmol L(-1), with a detection limit (3σ) of 1.25 μmol L(-1) The feasibility of the proposed sensor for ascorbic acid determination in tablet samples was also studied, and satisfactory results were obtained.

  16. Experience melting through the Earth's lower mantle via LH-DAC experiments on MgO-SiO2 and CaO-MgO-SiO2 systems

    NASA Astrophysics Data System (ADS)

    Baron, Marzena A.; Lord, Oliver T.; Walter, Michael J.; Trønnes, Reidar G.

    2015-04-01

    system CaO-MgO-SiO2 (CMS). The eutectic melting temperatures (Te) were determined by multi-chamber DAC-experiments on near-eutectic compositions [3,9]. Ultra-fine W-powder mixed into the samples absorbed the laser energy. The samples were heated at a rate of 500-1500 K/min by increasing the laser power. More than 75-90% eutectic melt is produced at the the solidus, resulting in rapid aggregation of the W-powder and inefficient laser energy absorption. The resulting plateau in the temperature versus power curve is interpreted as Te. Our preliminary results show an expected positive p-Te correlation, with lower Te for the CMS-system. The dTe/dp slope for the bm-silica eutectic is lower than for the bm-pc eutectic in the MS-system. The experimental results agree with the DFT-studies and thermodynamic models. We have also developed a novel technique for micro-fabrication of metal-encapsulated samples (Re, W, Mo), to investigate more precisely the melting phase relations in the lower mantle pressure range. The metal-covered, 20 μm thick sample disc, placed between thermal insulation layers in the DAC, will be laser-heated at the two flat surfaces, providing low thermal gradients and preventing reaction between the sample and the pressure medium. [1] Lay and Garnero (2007, AGU Monograph); [2] Labrosse et al (2007, Nature); [3] Liebske and Frost (2012, EPSL); [4] Elkins-Tanton (2012, Ann Rev Earth Planet Sci); [5] Hirose et al (1999, Nature); [6] Fiquet et al (2010, Science); [7] Andrault et al (2011, EPSL); [8] Andrault et al (2014, Science); [9] de Koker et al (2013, EPSL); [10] de Koker and Strixrude (2009, Geophys J Int).

  17. Oxygen adsorption on a Si(1 0 0) substrate: effects on secondary emission properties

    NASA Astrophysics Data System (ADS)

    Vogan, W. S.; Champion, R. L.

    2001-10-01

    Secondary anion and electron yields resulting from low-energy (50-500 eV) Na + bombardment of an oxygen-adsorbed Si(1 0 0) substrate have been measured as a function of oxygen exposure and of Na + impact energy. Adsorbate coverage ranges from none to over half a monolayer. The dominant sputtered anion was found to be O - with SiO 2- being a minor constituent. Kinetic energy distributions of the secondary anions and electrons were also measured. The presence of an adsorbate was observed to enhance secondary anion emission to a significant degree whereas secondary electron emission was minor, in sharp contrast to what has been observed for metallic substrates. The mechanism for secondary emission appears to involve electronic excitation of Si xO -; it is suggested that electron emission is governed by a process similar to Penning ionization, in which a vacancy created by the excitation of Si xO - may be filled by an electron from the valence band. The variation in the work function as oxygen accumulated on the surface was observed to be small.

  18. Growth of ZnMgTe/ZnTe waveguide structures on ZnTe (0 0 1) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kumagai, Y.; Imada, S.; Baba, T.; Kobayashi, M.

    2011-05-01

    ZnMgTe/ZnTe/ZnMgTe layered structures were grown on (0 0 1) ZnTe substrates by molecular beam epitaxy. This structure was designed to apply to waveguides in various optoelectronic devices to reduce light loss. Since the lattice mismatch between ZnTe and ZnMgTe was not negligible, the critical layer thickness (CLT) was theoretically derived. Structures with varying Mg composition and layer thickness of ZnMgTe cladding layer were grown and examined for crystal quality with respect to theoretical data. The crystal quality was investigated by means of cross sectional transmission electron microscopy (TEM) and reciprocal space mapping (RSM). Optical confinements were observed by irradiating a laser beam from one end of the sample and monitoring the transmitted light from the other end.

  19. Electron Microprobe Measurements of Nitrogen in SiC

    NASA Astrophysics Data System (ADS)

    Ross, K.

    2007-12-01

    Methods have been developed for the measurement of low abundances of nitrogen in SiC films. These techniques were developed for measurements of synthetic thin-film samples prepared by materials scientists but the technique can also be applied to natural SiC grains in meteorites. One problem associated with measuring nitrogen at low abundance levels is the low count rates due to strong absorption of the nitrogen signal in the matrix material. In thin film samples, (SiC deposited on elemental Si) it is preferable to limit x-ray production and emission to the overlayer. This eliminates the need for data reduction using thin-film methods. Thin film data reduction is inevitably less accurate than bulk material data reduction methods. In order to limit x-ray emission to the film layer, data has been collected at 5 kV and 3.5 kV accelerating voltage (depending on film thickness estimates provided by scientists who prepared these samples). These low beam energies also promote production of x-rays in the shallow region of the samples, and this minimizes strong absorption, leading to more abundant nitrogen x-ray detection, which improves counting statistics and overall precision. The CASINO monte carlo modeling program was used to model electron penetration and x-ray production as a function of beam energy and depth in the sample in order to ensure that the excited volume is limited to the film. The beam was set to 200 nA beam current. This high beam current also improves counting statistics by providing more abundant count rates. One drawback of these beam conditions is the limited spatial resolution provided. In our Cameca probe, a 5 kV, 200 nA beam is approximately 10 microns in diameter. SiC samples and standard were not carbon coated (they are conducting). AlN was used as the nitrogen standard. These films contained 0.3 to 0.7 wt. per cent nitrogen, with analytical uncertainties in the range of 10-20 per cent relative errors. The Si:C ratios were very near 1

  20. Staffing Cyber Operations (Briefing Charts)

    DTIC Science & Technology

    2015-05-01

    Ti tle 1 0 m is si on s  N o tim e to b ui ld th is re qu ire m en t i n th e P O M – R eq ui re m...o r f ro m a co or di na te d m ili ta ry o pe ra tio n of w hi ch th at a ct c on st itu te s an in te gr al p ar t  B el lig er en t...U se d C A P E F C oM To ol ; a dj us te d so m e fa ct or s  S ub st itu

  1. Study of Te Inclusion and Related Point Defects in THM-Growth CdMnTe Crystal

    NASA Astrophysics Data System (ADS)

    Mao, Yifei; Zhang, Jijun; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Ling, Liwen; Li, Ming; Zhang, Ying; Wang, Linjun

    2018-02-01

    This study establishes a model for describing the interaction between Te inclusions, dislocations and point defects in CdMnTe crystals. The role of the complex environment surrounding the formation of Te inclusions was analyzed. Images of Te inclusions captured by scanning electron microscope and infrared microscope were used to observe the morphology of Te inclusions. The morphology of Te inclusions is discussed in light of crystallography, from the crystal growth temperature at 900°C to the melting temperature of Te inclusions using the traveling heater method. The dislocation nets around Te inclusions were calculated by counting lattice mismatches between the Te inclusions and the bulk CdMnTe at 470°C. The point defects of Te antisites were found to be gathered around Te inclusions, with dislocation climb during the cooling phase of crystal growth from 470°C to room temperature. The Te inclusions, dislocation nets and surrounding point defects are considered to be an entirety for evaluating the effect of Te inclusions on CdMnTe detector performance, and an effective mobility-lifetime product (μτ) was obtained.

  2. Pulsar TeV Halos Explain the Diffuse TeV Excess Observed by Milagro.

    PubMed

    Linden, Tim; Buckman, Benjamin J

    2018-03-23

    Milagro observations have found bright, diffuse TeV emission concentrated along the galactic plane of the Milky Way. The intensity and spectrum of this emission is difficult to explain with current models of hadronic γ-ray production, and has been named the "TeV excess." We show that TeV emission from pulsars naturally explains this excess. Recent observations have detected "TeV halos" surrounding pulsars that are either nearby or particularly luminous. Extrapolating this emission to the full population of Milky Way pulsars indicates that the ensemble of "subthreshold" sources necessarily produces bright TeV emission diffusively along the Milky Way plane. Models indicate that the TeV halo γ-ray flux exceeds that from hadronic γ rays above an energy of ∼500  GeV. Moreover, the spectrum and intensity of TeV halo emission naturally matches the TeV excess. Finally, we show that upcoming HAWC observations will resolve a significant fraction of the TeV excess into individual TeV halos, conclusively confirming, or ruling out, this model.

  3. Impurity-doped Si10 cluster: Understanding the structural and electronic properties from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Majumder, Chiranjib; Kulshreshtha, S. K.

    2004-12-01

    Structural and electronic properties of metal-doped silicon clusters ( MSi10 , M=Li , Be, B, C, Na, Mg, Al, and Si) have been investigated via ab initio molecular dynamics simulation under the formalism of the density functional theory. The exchange-correlation energy has been calculated using the generalized gradient approximation method. Several stable isomers of MSi10 clusters have been identified based on different initial configurations and their relative stabilities have been analyzed. From the results it is revealed that the location of the impurity atom depends on the nature of interaction between the impurity atom and the host cluster and the size of the impurty atom. Whereas Be and B atoms form stable isomers, the impurity atom being placed at the center of the bicapped tetragonal antiprism structure of the Si10 cluster, all other elements diffuse outside the cage of Si10 cluster. Further, to understand the stability and the chemical bonding, the LCAO-MO based all electron calculations have been carried out for the lowest energy isomers using the hybrid B3LYP energy functional. Based on the interaction energy of the M atoms with Si10 clusters it is found that p-p interaction dominates over the s-p interaction and smaller size atoms interact more strongly. Based on the binding energy, the relative stability of MSi10 clusters is found to follow the order of CSi10>BSi10>BeSi10>Si11>AlSi10>LiSi10>NaSi10>MgSi10 , leading one to infer that while the substitution of C, B and Be enhances the stability of the Si11 cluster, others have an opposite effect. The extra stability of the BeSi10 clusters is due to its encapsulated close packed structure and large energy gap between the HOMO and LUMO energy levels.

  4. Atomic-scale models of early-stage alkali depletion and SiO2-rich gel formation in bioactive glasses.

    PubMed

    Tilocca, Antonio

    2015-01-28

    Molecular dynamics simulations of Na(+)/H(+)-exchanged 45S5 Bioglass® models reveal that a large fraction of the hydroxyl groups introduced into the proton-exchanged, hydrated glass structure do not initially form covalent bonds with Si and P network formers but remain free and stabilised by the modifier metal cations, whereas substantial Si-OH and P-OH bonding is observed only at higher Na(+)/H(+) exchange levels. The strong affinity between free OH groups and modifier cations in the highly fragmented 45S5 glass structure appears to represent the main driving force for this effect. This suggests an alternative direct route for the formation of a repolymerised silica-rich gel in the early stages of the bioactive mechanism, not considered before, which does not require sequential repeated breakings of Si-O-Si bonds and silanol condensations.

  5. Thermal conductivity studies of CdZnTe with varying Te excess

    DOE PAGES

    Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin; ...

    2016-08-28

    Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated bymore » modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Lastly, the thermal conductivity decreased with increasing Te concentration.« less

  6. Thermal conductivity studies of CdZnTe with varying Te excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin

    Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated bymore » modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Lastly, the thermal conductivity decreased with increasing Te concentration.« less

  7. Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films

    NASA Astrophysics Data System (ADS)

    Shen, Haishan; Lee, Suhyeon; Kang, Jun-gu; Eom, Tae-Yil; Lee, Hoojeong; Han, Seungwoo

    2018-01-01

    P-type antimony telluride (Sb2Te3) films of various thicknesses (1-, 6-, 10-, and 16-μm) were deposited on an oxidized Si (100) substrate at 250 °C by effusion cell co-evaporation. Microstructural analysis using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy revealed that the grains of the films grew in a mode in which recrystallization was prevalent and grain growth subdued, in contrast to typical film growth, which is often characterized by grain growth. The resultant microstructure exhibited narrow columnar grains, the preferred orientation of which changed with film growth thickness from (1010) with the 1-μm films to (015) for the 6- and 10-μm films, and finally (110) for the 16-μm films. Carrier mobility and the overall thermoelectric properties of the Sb2Te3 films were affected significantly by changes in the film microstructure; this was attributed to the strong anisotropy of Sb2Te3 regarding electrical conductivity. The highest power factor of 3.3 mW/mK2 was observed for the 1-μm-thick Sb2Te3 film.

  8. Water-Soluble Epitaxial NaCl Thin Film for Fabrication of Flexible Devices.

    PubMed

    Lee, Dong Kyu; Kim, Sungjoo; Oh, Sein; Choi, Jae-Young; Lee, Jong-Lam; Yu, Hak Ki

    2017-08-18

    We studied growth mechanisms of water-soluble NaCl thin films on single crystal substrates. Epitaxial growth of NaCl(100) on Si(100) and domain-matched growth of NaCl(111) on c-sapphire were obtained at thicknesses below 100 nm even at room temperature from low lattice mismatches in both cases. NaCl thin film, which demonstrates high solubility selectivity for water, was successfully applied as a water-soluble sacrificial layer for fabrication of several functional materials, such as WO 3 nano-helix and Sn doped In 2 O 3 nano-branches.

  9. Sodium-induced ordering of the benzoate species on Si(100)-2×1: a combined HREELS, XPS and NEXAFS study

    NASA Astrophysics Data System (ADS)

    Bitzer, T.; Richardson, N. V.; Reiss, S.; Wühn, M.; Wöll, Ch.

    2000-06-01

    The structure of benzoate on Na/Si(100)-2×1 has been studied by high resolution electron energy loss spectroscopy, X-ray photoelectron spectroscopy and near edge X-ray adsorption fine structure spectroscopy. At room temperature, benzoic acid (C 6H 5COOH) chemisorbs on Na/Si(100)-2×1 through a cleavage of the OH bond in the carboxylic group. The benzoate molecules formed are bonded exclusively to the sodium atoms in a bidentate coordination, in which the oxygen atoms are equivalent. At room temperature, benzoate saturation on Na/Si(100)-2×1 is reached at a coverage of one benzoate species for each Na atom or silicon dimer. At this coverage, the molecules are tilted in polar direction by 62°±4° to the surface plane and azimuthally rotated by 41°±4° with respect to the [01 1] surface azimuth. We propose an adsorbate structure, in which the benzoate molecules are oriented parallel to each other in densely packed rows.

  10. Kinetic limitation of chemical ordering in Bi2Te3-x Se x layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schreyeck, S.; Brunner, K.; Kirchner, A.; Bass, U.; Grauer, S.; Schumacher, C.; Gould, C.; Karczewski, G.; Geurts, J.; Molenkamp, L. W.

    2016-04-01

    We study the chemical ordering in Bi2Te3-x Se x grown by molecular beam epitaxy on Si substrates. We produce films in the full composition range from x  =  0 to 3, and determine their material properties using energy dispersive x-ray spectroscopy, x-ray diffraction and Raman spectroscopy. By fitting the parameters of a kinetic growth model to these results, we obtain a consistent description of growth at a microscopic level. Our main finding is that despite the incorporation of Se in the central layer being much more probable than that of Te, the formation of a fully ordered Te-Bi-Se-Bi-Te layer is prevented by kinetic of the growth process. Indeed, the Se concentration in the central layer of Bi2Te2Se1 reaches a maximum of only  ≈75% even under ideal growth conditions. A second finding of our work is that the intensity ratio of the 0 0 12 and 0 0 6 x-ray reflections serves as an experimentally accessible quantitative measure of the degree of ordering in these films.

  11. Influence of Element Substitution on Corrosion Behavior of Bi2Te3-Based Compounds

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2018-02-01

    Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a

  12. Influence of Element Substitution on Corrosion Behavior of Bi2Te3-Based Compounds

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2018-06-01

    Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a

  13. MoTe2, A novel anode material for sodium ion battery

    NASA Astrophysics Data System (ADS)

    Panda, Manas Ranjan; Anish Raj, K.; Bao, Qiaoliang; Mitra, Sagar

    2018-04-01

    2D layered transition metal dichalcogenides are considered as a potential anode for sodium-ion batteries due to their high specific capacity, structural stability and its well-developed two-dimensional layers. 2D layered structure Molybdenum ditelluride (MoTe2) provides a superior Na-ion storage properties in sodium ion battery due to its comparative more interlayer spacing (0.699 nm). In the current study MoTe2 polycrystalline powder sample has been prepared by solid state reaction process, the structural and morphological studies have been carried out by XRD, FE-SEM and EDS etc. XRD study revealsthe well crystalline structure of the material having hexagonal structure. FE-SEM and EDS studies depict the uniformflakes like structure of the material. When it is tested as sodium-ion battery anode by applying a potential window 0.1-2.5 V, the material demonstrates a high capacity and high power performances. The as prepared MoTe2 shows an initial discharge capacity of 376 mA h g-1 and a corresponding discharge capacity of 303 mA h g-1 after the 50th cycle at a current density of 500 mA g-1.

  14. Electrical properties of epitaxial 3C- and 6H-SiC p-n junction diodes produced side-by-side on 6H-SiC substrates

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Larkin, David J.; Starr, Jonathan E.; Powell, J. Anthony; Salupo, Carl S.; Matus, Lawrence G.

    1994-01-01

    3C-SiC (beta-SiC) and 6H-SiC p-n junction diodes have been fabricated in regions of both 3C-SiC and 6H-SiC epitaxial layers which were grown side-by-side on low-tilt-angle 6H-SiC substrates via a chemical vapor deposition (CVD) process. Several runs of diodes exhibiting state-of-the-art electrical characteristics were produced, and performance characteristics were measured and compared as a function of doping, temperature, and polytype. The first 3C-SiC diodes which rectify to reverse voltages in excess of 300 V were characterized, representing a six-fold blocking voltage improvement over experimental 3C-SiC diodes produced by previous techniques. When placed under sufficient forward bias, the 3C-SiC diodes emit significantly bright green-yellow light while the 6H-SiC diodes emit in the blue-violet. The 6H-SiC p-n junction diodes represent the first reported high-quality 6H-SiC devices to be grown by CVD on very low-tilt-angle (less than 0.5 deg off the (0001) silicon face) 6H substrates. The reverse leakage current of a 200 micron diameter circular device at 1100 V reverse bias was less than 20 nA at room temperature, and excellent rectification characteristics were demonstrated at the peak characterization temperature of 400 C.

  15. Enhanced stability of Bi-doped Ge2Sb2Te5 amorphous films

    NASA Astrophysics Data System (ADS)

    Dyussembayev, S.; Prikhodko, O.; Tsendin, K.; Timoshenkov, S.; Korobova, N.

    2014-09-01

    Although, several reviews have appeared on various physical properties and applications of chalcogenide glasses, there is no thorough study of local atomic structure and its modification for eutectic Ge-Sb-Te alloys doped with Bi. Ge2Sb2Te5 pure and Bi-doped films were deposited by ion-plasma sputtering method of synthesized GTS material on Si (100) and glass substrates coated with a conductive Al layer which was used as a bottom electrode. Current-voltage characteristics of different points of the same samples have been measured. Random distribution of inclusions within the sample made it possible to investigate the dependence of switching and memory effects on the phase composition at a constant value of other parameters. Measurements in the current controlled mode clearly showed that the memory state formation voltage does not depend on current in a wide range. Results indicate that the development of imaging technologies phase memory cells need to pay special attention to the conditions of Ge-Sb-Te film preparation. To increase the number of cycles "write - erase" should be additional prolonged annealing of the synthesized films.

  16. Following electron impact excitation of single (N, O, F, Ne, Na, Mg, Al, Si) atom L subshells ionization cross section calculations by using Lotz's equation

    NASA Astrophysics Data System (ADS)

    Aydinol, Mahmut

    2017-02-01

    L shell and L subshells ionization cross sections σL and σLi (i = 1, 2, 3) following electron impact on (N,O, F, Ne, Na, Mg, Al, Si) atoms calculated. By using Lotz' equation for nonrelativistic cases in Matlab σL and σLi cross section values obtained for ten electron impact(Eo) values in the range of ELiNa 8ELi) for each atom. Starting from Eo=ELi(each subshell ionization threshold energy), σL and σLi are increasing rapidly with Eo. For a fixed Eo value(≈3.ELi), while Z value increases from 7≤Z≤14 σL and σLi decrease. Results show that for smaller values of Eo(close to ELi), x-ray yields formation of Li(i=1,2,3) subshells decreases while competing other yields are increase. Results may help to understand similar findings which obtained from other electron impact excitation of L shell σL and subshells σLi studies for single atoms.

  17. Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics

    DOE PAGES

    Li, C. W.; Ma, J.; Cao, H. B.; ...

    2014-12-29

    The structure and lattice dynamics of rock-salt thermoelectric materials SnTe and PbTe are investigated with single crystal and powder neutron diffraction, inelastic neutron scattering (INS), and first-principles simulations. Our first-principles calculations of the radial distribution function (RDF) in both SnTe and PbTe show a clear asymmetry in the first nearest-neighbor (1NN) peak, which increases with temperature, in agreement with experimental reports (Ref. 1,2). We show that this peak asymmetry for the 1NN Sn–Te or Pb–Te bond results from large-amplitude anharmonic vibrations (phonons). No atomic off-centering is found in our simulations. In addition, the atomic mean square displacements derived from ourmore » diffraction data reveal stiffer bonding at the anion site, in good agreement with the partial phonon densities of states from INS, and first-principles calculations. In conclusion, these results provide clear evidence for large-amplitude anharmonic phonons associated with the resonant bonding leading to the ferroelectric instability.« less

  18. S–Te Interdiffusion within Grains and Grain Boundaries in CdTe Solar Cells

    DOE PAGES

    Li, C.; Poplawsky, J.; Paudel, N.; ...

    2014-09-19

    At the CdTe/CdS interface, a significant Te-S interdiffusion has been found a few nanometers into the grain interiors with scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). S substitution at Te sites has been directly resolved in CdTe with STEM Z-contrast images. Moreover, when enough S substitutes for Te, a structural transformation from zinc-blende to wurtzite has been observed. Cl segregation has also been found at the interface. STEM electron-beam-induced current (EBIC) shows that the p-n junction occurs a few nm into the CdTe grains, which is consistent with the S diffusion range we observe. The shiftmore » of the p-n junction suggests a buried homo-junction which would help reduce non-radiative recombination at the junction. Meanwhile, long-range S diffusion in CdTe grain boundaries (GBs) has been detected, as well as Te and Cl diffusion in CdS GBs.« less

  19. SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.

    PubMed

    Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M

    2018-07-06

    In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.

  20. Effect of periodic number of [Si/Sb80Te20]x multilayer film on its laser-induced crystallization studied by coherent phonon spectroscopy

    PubMed Central

    2012-01-01

    The periodic number dependence of the femtosecond laser-induced crystallization threshold of [Si(5nm)/Sb80Te20(5nm)]x nanocomposite multilayer films has been investigated by coherent phonon spectroscopy. Coherent optical phonon spectra show that femtosecond laser-irradiated crystallization threshold of the multilayer films relies obviously on the periodic number of the multilayer films and decreases with the increasing periodic number. The mechanism of the periodic number dependence is also studied. Possible mechanisms of reflectivity and thermal conductivity losses as well as the effect of the glass substrate are ruled out, while the remaining superlattice structure effect is ascribed to be responsible for the periodic number dependence. The sheet resistance of multilayer films versus a lattice temperature is measured and shows a similar periodic number dependence with one of the laser irradiation crystallization power threshold. In addition, the periodic number dependence of the crystallization temperature can be fitted well with an experiential formula obtained by considering coupling exchange interactions between adjacent layers in a superlattice. Those results provide us with the evidence to support our viewpoint. Our results show that the periodic number of multilayer films may become another controllable parameter in the design and parameter optimization of multilayer phase change films. PMID:23173850

  1. Thermal conductivity of bulk and nanowire Mg₂Si xSn 1–x alloys from first principles

    DOE PAGES

    Li, Wu; Lindsay, L.; Broido, D. A.; ...

    2012-11-29

    The lattice thermal conductivity (κ) of the thermoelectric materials, Mg₂Si, Mg₂Sn, and their alloys, are calculated for bulk and nanowires, without adjustable parameters. We find good agreement with bulk experimental results. For large nanowire diameters, size effects are stronger for the alloy than for the pure compounds. For example, in 200 nm diameter nanowires κ is lower than its bulk value by 30%, 20%, and 20% for Mg₂Si₀.₆Sn₀.₄, Mg₂Si, and Mg₂Sn, respectively. For nanowires less than 20 nm thick, the relative decrease surpasses 50%, and it becomes larger in the pure compounds than in the alloy. At room temperature, κmore » of Mg₂Si xSn 1–x is less sensitive to nanostructuring size effects than Si xGe 1–x, but more sensitive than PbTe xSe 1–x. This suggests that further improvement of Mg₂Si xSn 1–x as a nontoxic thermoelectric may be possible.« less

  2. Few-layer nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with highly tunable chemical potential.

    PubMed

    Kong, Desheng; Dang, Wenhui; Cha, Judy J; Li, Hui; Meister, Stefan; Peng, Hailin; Liu, Zhongfan; Cui, Yi

    2010-06-09

    A topological insulator (TI) represents an unconventional quantum phase of matter with insulating bulk band gap and metallic surface states. Recent theoretical calculations and photoemission spectroscopy measurements show that group V-VI materials Bi(2)Se(3), Bi(2)Te(3), and Sb(2)Te(3) are TIs with a single Dirac cone on the surface. These materials have anisotropic, layered structures, in which five atomic layers are covalently bonded to form a quintuple layer, and quintuple layers interact weakly through van der Waals interaction to form the crystal. A few quintuple layers of these materials are predicted to exhibit interesting surface properties. Different from our previous nanoribbon study, here we report the synthesis and characterizations of ultrathin Bi(2)Te(3) and Bi(2)Se(3) nanoplates with thickness down to 3 nm (3 quintuple layers), via catalyst-free vapor-solid (VS) growth mechanism. Optical images reveal thickness-dependent color and contrast for nanoplates grown on oxidized silicon (300 nm SiO(2)/Si). As a new member of TI nanomaterials, ultrathin TI nanoplates have an extremely large surface-to-volume ratio and can be electrically gated more effectively than the bulk form, potentially enhancing surface state effects in transport measurements. Low-temperature transport measurements of a single nanoplate device, with a high-k dielectric top gate, show decrease in carrier concentration by several times and large tuning of chemical potential.

  3. Photoluminescence of ZnTe/ZnMgTe multiple quantum well structures grown on ZnTe substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tanaka, Tooru; Ohshita, Hiroshi; Saito, Katsuhiko; Guo, Qixin

    2018-02-01

    Photoluminescence (PL) properties of ZnTe/ZnMgTe quantum well (QW) structures grown by molecular beam epitaxy (MBE) were investigated systematically with respect to well widths and Mg contents. Observed PL peak energies were consistent well with the calculated emission energies of the QWs considering a lattice distortion in the ZnTe well. From the temperature dependence of PL intensity, it was found that a suppression of a carrier escape from QW is crucial to obtain a PL at higher temperature in the ZnTe/ZnMgTe QW. Based on the results, multiple quantum well structures were designed and fabricated, which exhibited a green PL at room temperature.

  4. Synthesis and characterization of P-doped amorphous and nanocrystalline Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jialing; Ganguly, Shreyashi; Sen, Sabyasachi

    Intentional impurity doping lies at the heart of the silicon technology. The dopants provide electrons or holes as necessary carriers of the electron current and can significantly modify the electric, optical and magnetic properties of the semiconductors. P-doped amorphous Si (a-Si) was prepared by a solid state and solution metathesis reaction of a P-doped Zintl phase precursor, NaSi 0.99P 0.01, with an excess of NH 4X (X = Br, I). After the salt byproduct was removed from the solid state reaction, the a-Si material was annealed at 600 °C under vacuum for 2 h, resulting in P-doped nanocrystalline Si (nc-Si)more » material embedded in a-Si matrix. The product from the solution reaction also shows a combination of nc-Si embedded in a-Si; however, it was fully converted to nc-Si after annealing under argon at 650 °C for 30 min. Powder X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) show the amorphous nature of the P-doped Si material before the annealing and the nanocrystallinity after the annealing. Fourier Transform Infrared (FTIR) spectroscopy shows that the P-doped Si material surface is partially capped by H and O or with solvent. Finally, electron microprobe wavelength dispersive spectroscopy (WDS) as well as energy dispersive spectroscopy (EDS) confirm the presence of P in the Si material. 29Si and 31P solid state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy data provide the evidence of P doping into the Si structure with the P concentration of approximately 0.07 at.%.« less

  5. Synthesis and thermoelectric properties of the (GeTe) 1-x(PbTe) x alloys

    NASA Astrophysics Data System (ADS)

    Li, S. P.; Li, J. Q.; Wang, Q. B.; Wang, L.; Liu, F. S.; Ao, W. Q.

    2011-02-01

    The Ge-rich (GeTe) 1-x(PbTe) x alloys with x = 0.10, 0.14, 0.18 and 0.22 were prepared by induction melting, ball milling and spark plasma sintering techniques. The thermoelectric properties of the samples were investigated. The experimental results show that all samples consist of the solid solutions of the two phases GeTe and PbTe. The samples are of p-type semiconductors. The existence of PbTe solution in GeTe increases its resistivity and Seebeck coefficient slightly, but reduces its thermal conductivity significantly. As result, the figures of merit for the materials can be enhanced. The maximum figure of merit ZT value of 0.81 was obtained in the sample (GeTe) 0.82(PbTe) 0.18 at 673K.

  6. Spectroscopic properties of Sm3+ and V4+ ions in Na2O-SiO2-ZrO2 glasses

    NASA Astrophysics Data System (ADS)

    Neeraja, K.; Rao, T. G. V. M.; Kumar, A. Rupesh; Uma Lakshmi, V.; Veeraiah, N.; Rami Reddy, M.

    2013-12-01

    Na2O-SiO2-ZrO2 glasses of Sm3+ ions with and without V2O5 are characterized by spectroscopic and optical properties. The XRD and EDS spectra of the glass samples reveal an amorphous nature with different compositions within the glass matrix. The Infrared and Raman spectral studies are carried out and the existence of conventional structural units are analyzed in the glass network. The ESR spectra of the glass samples have indicating that a considerable proportion of vanadium ion exists in V4+ state. The optical absorption spectra of these glasses are recorded at room temperature, from the measured intensities of various absorption bands the Judd-Ofelt parameters Ω2, Ω4 and Ω6 are calculated. The photo-luminescence spectra recorded with excited wavelength 400 nm, five emission bands are observed; in this the energy transfer probability takes place between Sm3+ and V4+ ions.

  7. Magnetoresistances and magnetic entropy changes associated with negative lattice expansions in NaZn13-type compounds LaFeCoSi

    NASA Astrophysics Data System (ADS)

    Hu, Feng-Xia; Qian, Xiao-Ling; Wang, Guang-Jun; Sun, Ji-Rong; Shen, Bao-Gen; Cheng, Zhao-Hua; Gao, Ju

    2005-11-01

    Magnetoresistances and magnetic entropy changes in NaZn13-type compounds La(Fe1-xCox)11.9Si1.1 (x=0.04, 0.06 and 0.08) with Curie temperatures of 243 K, 274 K and 301 K, respectively, are studied. The ferromagnetic ordering is accompanied by a negative lattice expansion. Large magnetic entropy changes in a wide temperature range from ~230 K to ~320 K are achieved. Raising Co content increases the Curie temperature but weakens the magnetovolume effect, thereby causing a decrease in magnetic entropy change. These materials exhibit a metallic character below TC, whereas the electrical resistance decreases abruptly and then recovers the metal-like behaviour above TC. Application of a magnetic field retains the transitions via increasing the ferromagnetic ordering temperature. An isothermal increase in magnetic field leads to an increase in electrical resistance at temperatures near but above TC, which is a consequence of the field-induced metamagnetic transition from a paramagnetic state to a ferromagnetic state.

  8. Effect of Annealing on the Density of Defects in Epitaxial CdTe (211)/GaAs

    NASA Astrophysics Data System (ADS)

    Bakali, Emine; Selamet, Yusuf; Tarhan, Enver

    2018-05-01

    CdTe thin films were grown on GaAs (211) wafers by molecular beam epitaxy as the buffer layer for HgCdTe infrared detector applications. We studied the effect of annealing on the density of dislocation of these CdTe thin films under varying annealing parameters such as annealing temperature, annealing duration, and number of cycles. Annealings were carried out using a homemade annealing reactor possessing a special heater element made of a Si wafer for rapid heating. The density of dislocations, which were made observable with a scanning electron microscope after etching with an Everson solution, were calculated by counting the number of dislocations per unit surface area, hence the term etch pit density (EPD). We were able to decrease EPD values by one order of magnitude after annealing. For example, the best EPD value after a 20-min annealing at 400°C was ˜ 2 × 107 cm-2 for a 1.63-μm CdTe thin film which was about 9.5 × 107 cm-2 before annealing. We also employed Raman scattering measurements to see the changes in the structural quality of the samples. From the Raman measurements, we were able to see improvements in the quality of our samples from the annealing by studying the ratio of 2LO/LO phonon mode Raman intensities. We also observed a clear decrease in the intensity of Te precipitations-related modes, indicating a decrease in the size and number of these precipitations.

  9. Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging

    PubMed Central

    Atkins, Tonya M.; Cassidy, Maja C.; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M.; Kauzlarich, Susan M.

    2013-01-01

    We describe the synthesis, materials characterization and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na4Si4) and silicon tetrachloride (SiCl4) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted 29Si spin lattice relaxation (T1) times (> 600 s), which are retained after hyperpolarization by low temperature DNP. PMID:23350651

  10. Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.

    PubMed

    Peitl, Oscar; Zanotto, Edgar D; Serbena, Francisco C; Hench, Larry L

    2012-01-01

    Bioactive glasses having chemical compositions between 1Na(2)O-2CaO-3SiO(2) (1N2C3S) and 1.5Na(2)O-1.5CaO-3SiO(2) (1N1C2S) containing 0, 4 and 6 wt.% P(2)O(5) were crystallized through two stage thermal treatments. By carefully controlling these treatments we separately studied the effects on the mechanical properties of two important microstructural features not studied before, crystallized volume fraction and crystal size. Fracture strength, elastic modulus and indentation fracture toughness were measured as a function of crystallized volume fraction for a constant crystal size. Glass-ceramics with a crystalline volume fraction between 34% and 60% exhibited a three-fold improvement in fracture strength and an increase of 40% in indentation fracture toughness compared with the parent glass. For the optimal crystalline concentration (34% and 60%) these mechanical properties were then measured for different grain sizes, from 5 to 21 μm. The glass-ceramic with the highest fracture strength and indentation fracture toughness was that with 34% crystallized volume fracture and 13 μm crystals. Compared with the parent glass, the average fracture strength of this glass-ceramic was increased from 80 to 210 MPa, and the fracture toughness from 0.60 to 0.95 MPa.m(1/2). The increase in indentation fracture toughness was analyzed using different theoretical models, which demonstrated that it is due to crack deflection. Fortunately, the elastic modulus E increased only slightly; from 60 to 70 GPa (the elastic modulus of biomaterials should be as close as possible to that of cortical bone). In summary, the flexural strength of our best material (215 MPa) is significantly greater than that of cortical bone and comparable with that of apatite-wollastonite (A/W) bioglass ceramics, with the advantage that it shows a much lower elastic modulus. These results thus provide a relevant guide for the design of bioactive glass-ceramics with improved microstructure. Copyright © 2011 Acta

  11. Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.

    The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.

  12. Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures

    DOE PAGES

    LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.; ...

    2017-06-05

    The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.

  13. Electrodeposition of r-GO/SiC nano-composites on Magnesium and its Corrosion Behavior in Aqueous Electrolyte

    NASA Astrophysics Data System (ADS)

    Kavimani, V.; K, Soorya Prakash; R, Rajesh; Rammasamy, Devaraj; Selvaraj, Nivas Babu; Yang, Tao; Prabakaran, Balasubramanian; Jothi, Sathiskumar

    2017-12-01

    In this paper a detailed investigation for corrosion behavior of magnesium substrate electrodeposited differently by nanoparticles like Reduced Graphene Oxide (r-GO synthesized through Modified Hummer's Method), Silicon Carbide (SiCsbnd mechanically alloyed) and also r-GO/SiC nanocomposites (dispersed through ultrasonication process) as coating materials for varying time period was done. Synthesized nanocomposite was characterized through various physio-chemical techniques and confirmation of the same was carried out. Surface morphology of the developed set of specimens was scrutinized through SEM and EDAX which establishes a clean surface coating with minimal defects attainment through electro deposition technique. Electrochemical corrosion behavior for the magnesium substrates coated with r-GO, SiC, r-GO/SiC for 5 and 10 min coating time period was conceded over in 0.1 M of NaCl and Na2SO4 aqueous solution using Tafel polarization and then compared with a pure magnesium substrate. r-GO/SiC nanocomposite coated magnesium substrate showcased a drastic breakthrough in corrosion resistance when compared with other set of specimens in aqueous medium. Delamination behavior for the same set of specimens was carried and the r-GO/SiC nanocomposite coated magnesium exposed a minimum delamination area accounting to the hydrophobic property of graphene and the binding effect of SiC nano particles.

  14. Modification of thermal and electronic properties of bilayer graphene by using slow Na+ ions

    NASA Astrophysics Data System (ADS)

    Ryu, Mintae; Lee, Paengro; Kim, Jingul; Park, Heemin; Chung, Jinwook

    2016-12-01

    Bilayer graphene (BLG) has an extensive list of industrial applications in graphene-based nanodevices such as energy storage devices, flexible displays, and thermoelectric devices. By doping slow Na+ ions on Li-intercalated BLG, we find significantly improved thermal and electronic properties of BLG by using angle-resolved photoemission and high-resolution core level spectroscopy (HRCLS) with synchrotron photons. Our HRCLS data reveal that the adsorbed Na+ ions on a BLG produced by Li-intercalation through single layer graphene (SLG) spontaneously intercalate below the BLG, and substitute Li atoms to form Na-Si bonds at the SiC interface while preserving the same phase of BLG. This is in sharp contrast with no intercalation of Na+ ions on SLG though neutral Na atoms intercalate. The Na+-induced BLG is found to be stable upon heating up to T = 400 °C, but returns to SLG when heated at T d = 500 °C. The evolution of the π-bands upon doping the Na+ ions followed by thermal annealing shows that the carrier concentration of the π-band may be artificially controlled without damaging the Dirac nature of the π-electrons. The doubled desorption temperature from that (T d = 250 °C) of the Na-intercalated SLG together with the electronic stability of the Na+-intercalated BLG may find more practical and effective applications in advancing graphene-based thermoelectric devices and anode materials for rechargeable batteries.

  15. Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb)2(Te,Se)3

    NASA Astrophysics Data System (ADS)

    Jeffries, Jason; Butch, N. P.; Vohra, Y. K.; Weir, S. T.

    2014-03-01

    The group V-VI compounds--like Bi2Se3, Sb2Te3, or Bi2Te3--have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and compare that behavior with other binary V-VI compounds under pressure. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  16. Sensitivity differences between microporous NaY and hierarchical ZSM-5 modified electrodes as ammonia gas sensor

    NASA Astrophysics Data System (ADS)

    Lisnawati, E.; Agustin, I.; Krisnandi, Y. K.; Triyono, D.

    2017-07-01

    The hierarchical ZSM-5 had been successfully synthesized with double template using a hydrotermal method and microporous NaY zeolite had been successfully synthesized using a sol-gel method. XRD pattern confirmed hat the as-synthesized materials were ZSM-5 and NaY zeolites. SEM images of ZSM-5 showed that it has a hexagonal shape, which can be called coffin type,and rough surface. The EDS elemental analysis gives Si/Al molar ratio of 24.2. On the other hand, NaY crystals were intergrown in cuboid shapes with Si/Al molar ratio of 2. ZSM-5 and NaY were coated onto the surface of Interdigitated Capacitor (IDC) pattern made of gold/silver/quartz through spin coating method. IDC, ZSM-5/IDC and NaY/IDC were tested using Electrochemical Impedance Spectroscopy (EIS) method. The composite has different sensitivity in range concentration of ammonia 20-300 ppm. IDC has no significant effect of the presence of various concentrations, NaY/IDC and ZSM-5/IDC composite have frequency 100 Hz with R2 = 0.8312 and R2 = 0.8037. The NaY/IDC has higher sensitivity compared toZSM-5/IDC, this could be caused by the higher polarity of NaY compared to ZSM-5 to attract ammonia.

  17. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Volcanic Rock in Cryolite Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2016-06-01

    Volcanic rock found in the Longgang Volcano Group in Jilin Province of China has properties essentially similar to Apollo lunar soils and previously prepared lunar soil simulants, such as Johnson Space Center Lunar simulant and Minnesota Lunar simulant. In this study, an electrochemical method of preparation of Al-Si master alloy was investigated in 52.7 wt.%NaF-47.3 wt.%AlF3 melt adding 5 wt.% volcanic rock at 1233 K. The cathodic electrochemical process was studied by cyclic voltammetry, and the results showed that the cathodic reduction of Si(IV) is a two-step reversible diffusion-controlled reaction. Si(IV) is reduced to Si(II) by two electron transfers at -1.05 V versus platinum quasi-reference electrode in 52.7 wt.%NaF-47.3 wt.%AlF3 molten salt adding 5 wt.% volcanic rock, while the reduction peak at -1.18 V was the co-deposition of aluminum and silicon. In addition, the cathodic product obtained by galvanostatic electrolysis for 4 h was analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy and energy dispersive spectrometry. The results showed that the phase compositions of the products are Al, Si, Al5FeSi, and Al3.21Si0.47, while the components are 90.5 wt.% aluminum, 4.4 wt.% silicon, 1.9 wt.% iron, and 0.2 wt.% titanium.

  18. A gamma and neutron phoswich read out with SiPM for SPRD

    NASA Astrophysics Data System (ADS)

    Huang, Tuchen; Fu, Qibin; Yuan, Cenxi; Lin, Shaopeng

    2018-02-01

    A gamma and neutron phoswich was developed for spectroscopic personal radiation detectors (SPRDs). It consisted of a Φ25 × 25 mm NaI(Tl) crystal for gamma detection and a Φ25 × 3 mm LiI(Eu) crystal for neutron detection. The phoswich was read out by 8 × 8 ch SiPM array (24 × 24 mm2). Radiations in NaI(Tl) and LiI(Eu) were discriminated by pulse shape, while gammas and neutrons in LiI(Eu) were separated by pulse amplitude. For the LiI(Eu), the gamma equivalent energy for thermal neutrons was measured as 3.6 ± 0.1 MeV, providing satisfactory gamma rejection. For NaI(Tl), the response of SiPM array was well linear in the energy range up to 1408 keV, at which a deviation less than 2% was measured. Digital pulse shape discrimination (PSD) was implemented with an 8-bit digitizer running at 50 MSPS sampling rate and offline analysis. The signal pulses from NaI(Tl) and LiI(Eu) showed significant difference in falling edge allowing effective PSD. The best figure of merit (FOM) was measured as 4.4 ± 0.2 with optimized parameters, providing excellent PSD performance. The energy resolutions for 661.6 keV gamma rays in NaI(Tl) and thermal neutrons in LiI(Eu) were measured as 7.0 ± 0.2% and 11.2 ± 0.2% respectively, with selected PSD threshold.

  19. Interaction of Corundum, Wollastonite and Quartz With H2O-NaCl Solutions at 800 C and 10 Kbar

    NASA Astrophysics Data System (ADS)

    Newton, R. C.; Manning, C. E.

    2005-12-01

    Aqueous fluids are potentially important transport agents in subduction zones and other high-P metamorphic environments. Recent studies indicate that at high P and T, the solubilities of major rock-forming elements are strongly enhanced by the formation of metal-chloride complexes, metal-hydroxide complexes and polynuclear metal-hydroxide clusters. However, the relative abundances of these species and the energetics of their interactions in high-pressure environments remains largely unknown. We measured the solubilities of corundum (Al2O3) and wollastonite (CaSiO3) at 800 °C and 10 kbar in H2O-NaCl solutions to halite saturation (XNaCl = 0.6) . Both minerals show marked enhancement of solubility with increasing salinity. Al2O3 mol fraction rises rapidly to XNaCl = 0.1, and then declines slowly towards halite saturation. Quenched experimental fluids have neutral pH. Modeling based on ideal solution of ions and molecules leads to a simple dissolution reaction and corresponding molality (m=mol/kg H2O) expression: Al2O3(cor) + Na+ + 3H2O = NaAl(OH)4 + Al(OH)2+ and mAl2O3 = [0.0232(aNaCl)1/4(aH2O)3/2+0.00123][1+2XNaCl/(1-XNaCl)] where H2O and NaCl activities are given by aH2O = (2-XNaCl)/(2+XNaCl) and aNaCl = 4(XNaCl)2/(1 + XNaCl)2. Wollastonite solubility in NaCl solutions is accurately described by: mCaSiO3 = 0.6734XNaCl + 0.1183(XNaCl)1/2 + 0.0204. There is a roughly 50-fold enhancement of dissolved wollastonite at halite saturation. Quenched experimental fluids are strongly basic (pH=11). A consistent dissolution reaction must therefore be similar to: CaSiO3(wo) + Na+ + Cl- = CaCl+ + OH- + HNaSiO3 Quartz solubility declines monotonically from mSiO2 = 1.248 in pure H2O to 0.20 at halite saturation. Quenched fluids are neutral, indicating that quartz does not react with solvent NaCl. The only salinity control on solubility is decrease of H2O activity. The simple dissolution behaviors to be deduced from measurements on these minerals suggest that fluid

  20. Iodine Doping of CdTe and CdMgTe for Photovoltaic Applications

    DOE PAGES

    Ogedengbe, O. S.; Swartz, C. H.; Jayathilaka, P. A. R. D.; ...

    2017-06-06

    Here, iodine-doped CdTe and Cd 1-xMg xTe layers were grown by molecular beam epitaxy. Secondary ion mass spectrometry characterization was used to measure dopant concentration, while Hall measurement was used for determining carrier concentration. Photoluminescence intensity and time-resolved photoluminescence techniques were used for optical characterization. Maximum n-type carrier concentrations of 7.4 x 10 18 cm -3 for CdTe and 3 x 10 17 cm -3 for Cd 0.65Mg 0.35Te were achieved. Studies suggest that electrically active doping with iodine is limited with dopant concentration much above these values. Dopant activation of about 80% was observed in most of the CdTemore » samples. The estimated activation energy is about 6 meV for CdTe and the value for Cd 0.65Mg 0.35Te is about 58 meV. Iodine-doped samples exhibit long lifetimes with no evidence of photoluminescence degradation with doping as high as 2 x 10 18 cm -3, while indium shows substantial non-radiative recombination at carrier concentrations above 5 x 10 16 cm -3. Iodine was shown to be thermally stable in CdTe at temperatures up to 600 °C. Results suggest iodine may be a preferred n-type dopant compared to indium in achieving heavily doped n-type CdTe.« less

  1. A new sol-gel process for producing Na(2)O-containing bioactive glass ceramics.

    PubMed

    Chen, Qi-Zhi; Li, Yuan; Jin, Li-Yu; Quinn, Julian M W; Komesaroff, Paul A

    2010-10-01

    The sol-gel process of producing SiO(2)-CaO bioactive glasses is well established, but problems remain with the poor mechanical properties of the amorphous form and the bioinertness of its crystalline counterpart. These properties may be improved by incorporating Na(2)O into bioactive glasses, which can result in the formation of a hard yet biodegradable crystalline phase from bioactive glasses when sintered. However, production of Na(2)O-containing bioactive glasses by sol-gel methods has proved to be difficult. This work reports a new sol-gel process for the production of Na(2)O-containing bioactive glass ceramics, potentially enabling their use as medical implantation materials. Fine powders of 45S5 (a Na(2)O-containing composition) glass ceramic have for the first time been successfully synthesized using the sol-gel technique in aqueous solution under ambient conditions, with the mean particle size being approximately 5 microm. A comparative study of sol-gel derived S70C30 (a Na(2)O-free composition) and 45S5 glass ceramic materials revealed that the latter possesses a number of features desirable in biomaterials used for bone tissue engineering, including (i) the crystalline phase Na(2)Ca(2)Si(3)O(9) that couples good mechanical strength with satisfactory biodegradability, (ii) formation of hydroxyapatite, which may promote good bone bonding and (iii) cytocompatibility. In contrast, the sol-gel derived S70C30 glass ceramic consisted of a virtually inert crystalline phase CaSiO(3). Moreover, amorphous S70C30 largely transited to CaCO(3) with minor hydroxyapatite when immersed in simulated body fluid under standard tissue culture conditions. In conclusion, sol-gel derived Na(2)O-containing glass ceramics have significant advantages over related Na(2)O-free materials, having a greatly improved combination of mechanical capability and biological absorbability. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. BOREAS TE-4 Branch Bag Data From Boreal Tree Species

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Berry, Joseph A.; Fu, Wei; Fredeen, Art; Gamon, John

    2000-01-01

    The BOREAS TE-4 team collected continuous records of gas exchange under ambient conditions from intact boreal forest trees in the BOREAS NSA from 23-Jul-1996 until 14-Aug-1996. These measurements can be used to test models of photosynthesis, stomatal conductance, and leaf respiration, such as SiB2 (Sellers et al., 1996) or the leaf model (Collatz et al., 1991), and programs can be obtained from the investigators. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. Gels and gel-derived glasses in the Na2O-B2O3-SiO2 system. [containerless melting in space

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1982-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel-monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the Na2O-B2O3-SiO2 system are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures were found to be significantly different. IR absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel-monoliths to transparent 'glass' without melting are described.

  4. Silicon Framework Allotropes for Li-ion and Na-ion Batteries: New Insight for a Reversible Capacity.

    NASA Astrophysics Data System (ADS)

    Marzouk, Asma; Soto, Fernando; Burgos, Juan; Balbuena, Perla; El-Mellouhi, Fadwa

    Silicon has the capacity to host a large amount of Li which makes it an attractive anode material despite suffering from swelling problem leading to irreversible capacity loss. The possibility of an easy extraction of Na atoms from Si24Na4 inspired us to adopt the Si24 as an anode material for Lithium-ion and sodium-ion Batteries. Using DFT, we evaluate the specific capacity and the intercalation potential of Si24 allotrope. Enhanced capacities are sought by designing a new silicon allotrope. We demonstrated that these Si24 allotropes show a negligible volume expansion and conserve their periodic structures after the maximum insertion/disinsertion of the ions which is crucial to prevent the capacity loss during cycling. DFT and ab-initio molecular dynamics (AIMD) studies give insights on the most probable surface adsorption and reaction sites, lithiation and sodiation, as well as initial stages of SEI formation and ionic diffusion. Qatar National Research Fund (QNRF) (NPRP 7-162-2-077).

  5. Pressure dependence of the charge-density-wave and superconducting states in GdTe 3 ,   TbTe 3 , and DyTe 3

    DOE PAGES

    Zocco, D. A.; Hamlin, J. J.; Grube, K.; ...

    2015-05-14

    Here, we present electrical resistivity and ac-susceptibility measurements of GdTe 3, TbTe 3 and DyTe 3 performed under pressure. An upper charge-density-wave (CDW) is suppressed at a rate of dT CW,1/dP~ –85K/GPa. For TbTe 3 and DyTe 3, a second CDW below T CDW,2 increases with pressure until it reaches the T CDW,1(P) line. For GdTe 3, the lower CDW emerges as pressure is increased above ~1GPa. As these two CDW states are suppressed with pressure, superconductivity (SC) appears in the three compounds at lower temperatures. Ac-susceptibility experiments performed on TbTe 3 provide compelling evidence for bulk SC in themore » low-pressure region of the phase diagram. We provide measurements of superconducting critical fields and discuss the origin of a high-pressure superconducting phase occurring above 5 GPa.« less

  6. EFFECTS OF TiOx INTERLAYER ON RESISTANCE SWITCHING OF Pt/TiOx/ZnO/n+-Si STRUCTURES

    NASA Astrophysics Data System (ADS)

    Li, Hongxia; Lv, Xiaojun; Xi, Junhua; Wu, Xin; Mao, Qinan; Liu, Qingmin; Ji, Zhenguo

    2014-08-01

    In this paper, we fabricated Pt/TiOx/ZnO/n+-Si structures by inserting TiOx interlayer between Pt top electrode (TE) and ZnO thin film for non-volatile resistive random access memory (ReRAM) applications. Effects of TiOx interlayer with different thickness on the resistance switching of Pt/TiOx/ZnO/n+-Si structures were investigated. Conduction behaviors in high and low resistance state (HRS and LRS) fit well with the trap-controlled space-charge-limited conduction (SCLC) and Ohmic behavior, respectively. Variations of set and reset voltages and HRS and LRS resistances of Pt/TiOx/ZnO/n+-Si structures were investigated as a function of TiOx thickness. Switching cycling tests were attempted to evaluate the endurance reliability of Pt/TiOx/ZnO/n+-Si structures. Additionally, the switching mechanism was analyzed by the filament model.

  7. Influence of Surrounding Dielectrics on the Data Retention Time of Doped Sb2Te Phase Change Material

    NASA Astrophysics Data System (ADS)

    Jedema, Friso; in `t Zandt, Micha; Wolters, Rob; Gravesteijn, Dirk

    2011-02-01

    The crystallization properties of as-deposited and laser written amorphous marks of doped Sb2Te phase change material are found to be only dependent on the top dielectric layer. A ZnS:SiO2 top dielectric layer yields a higher crystallization temperature and a larger crystal growth activation energy as compared to a SiO2 top dielectric layer, leading to superior data retention times at ambient temperatures. The observed correlation between the larger crystallization temperatures and larger crystal growth activation energies indicates that the viscosity of the phase change material in the amorphous state is dependent on the interfacial energy between the phase change material and the top dielectric layer.

  8. Performance and Metastability of CdTe Solar Cells with a Te Back-Contact Buffer Layer

    NASA Astrophysics Data System (ADS)

    Moore, Andrew

    Thin-film CdTe photovoltaics are quickly maturing into a viable clean-energy solution through demonstration of competitive costs and performance stability with existing energy sources. Over the last half decade, CdTe solar technology has achieved major gains in performance; however, there are still aspects that can be improved to progress toward their theoretical maximum efficiency. Perhaps equally valuable as high photovoltaic efficiency and a low levelized cost of energy, is device reliability. Understanding the root causes for changes in performance is essential for accomplishing long-term stability. One area for potential performance enhancement is the back contact of the CdTe device. This research incorporated a thin-film Te-buffer layer into the contact structure, between the CdTe and contact metal. The device performance and characteristics of many different back contact configurations were rigorously studied. CdTe solar cells fabricated with the Te-buffer contact showed short-circuit current densities and open-circuit voltages that were on par with the traditional back-contacts used at CSU. However, the Te-buffer contact typically produced 2% larger fill-factors on average, leading to greater conversation efficiency. Furthermore, using the Te buffer allowed for incorporation of 50% less Cu, which is used for p-type doping but is also known to decrease lifetime and stability. This resulted in an additional 3% fill-factor gain with no change in other parameters compared to the standard-Cu treated device. In order to better understand the physical mechanisms of the Te-buffer contact, electrical and material properties of the Te layer were extracted and used to construct a simple energy band diagram. The Te layer was found to be highly p-type (>1018 cm-3) and possess a positive valence-band offset of 0.35-0.40 eV with CdTe. An existing simulation model incorporating the Te-layer properties was implemented and validated by comparing simulated results of CdTe

  9. Crystal structure of the mineral (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4}: a triclinic representative of the amphibole family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Aksenov, S. M.

    2012-05-15

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Angstrom-Sign , b = 18.0457(3) Angstrom-Sign ; c = 9.8684(2) Angstrom-Sign , {alpha} = 90.016(2) Degree-Sign , {beta} = 105.543(4) Degree-Sign , {gamma} = 89.985(2) Degree-Sign . The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with |F| > 3{sigma}(F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{submore » 44}](F,O){sub 4} has some symmetry and structural features that distinguish it from other minerals of this family.« less

  10. Recycling of iron and silicon from drinking water treatment sludge for synthesis of magnetic iron oxide@SiO₂ composites.

    PubMed

    Meng, Lingyou; Chan, Yingzi; Wang, Han; Dai, Ying; Wang, Xue; Zou, Jinlong

    2016-03-01

    More attention has been paid to the deterioration of water bodies polluted by drinking water treatment sludge (DWTS) in recent years. It is important to develop methods to effectively treat DWTS by avoiding secondary pollution. We report herein a novel investigation for recovery of Si and Fe from DWTS, which are used for the synthesis of two iron oxide@SiO2 composites for adsorption of reactive red X-3B (RRX-3B) and NaNO2. The results show that Fe(3+) (acid-leaching) and Si(4+) (basic-leaching) can be successfully recovered from roasted DWTS. Whether to dissolve Fe(OH)3 precipitation is the key point for obtaining Fe3O4 or γ-Fe2O3 particles using the solvothermal method. The magnetic characteristics of Fe3O4@SiO2 (390.0 m(2) g(-1)) or Fe2O3@SiO2 (220.9 m(2) g(-1)) are slightly influenced by the coated porous SiO2 layer. Peaks of Fe-O stretching vibration (580 cm(-1)) and asymmetric Si-O-Si stretching vibrations (1080 cm(-1)) of Fe3O4@SiO2 indicate the successful coating of a thin silica layer (20-150 nm). The adsorption capacity of RRX-3B and NaNO2 by Fe3O4@SiO2 is better than that of Fe2O3@SiO2, and both composites can be recycled through an external magnetic field. This method is an efficient and environmentally friendly method for recycling DWTS.

  11. Effects of sodium hydroxide (NaOH) solution concentration on fly ash-based lightweight geopolymer

    NASA Astrophysics Data System (ADS)

    Ibrahim, W. M. W.; Hussin, K.; Abdullah, M. M. A.; Kadir, A. A.; Deraman, L. M.

    2017-09-01

    In this study, the effects of NaOH concentration on properties of fly ash-based lightweight geopolymer were investigated. Lightweight geopolymer was produced using fly ash as source materials and synthetic foaming agents as air entraining agent. The alkaline solutions used in this study are combination of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solution. Different molarities of NaOH solution (6M, 8M, 10M, 12M, and 14M) are taken for preparation of 50 x 50 x 50 mm cubes of lightweight geopolymer. The ratio of fly ash/alkaline solution, Na2SiO3/NaOH solution, foaming agent/water and foam/geopolymer paste were kept constant at 2.0, 2.5, 1:10 and 1:1 respectively. The samples were cured at 80°C for 24 hours and left at room temperature for tested at 7 days of ageing. Physical and mechanical properties such as density, water absorption, compressive strength and microstructure property were determined from the cube dried samples. The results show that the NaOH molarity had effects on the properties of lightweight geopolymer with the optimum NaOH molarity found is 12M due to the high strength of 15.6 MPa, lower water absorption (7.3%) and low density (1440 kg/m3). Microstructure analysis shows that the lightweight geopolymer contain some porous structure and unreacted fly ash particles remains.

  12. Analysis of Te and TeO 2 on CdZnTe Nuclear Detectors Treated with Hydrogen Bromide and Ammonium-Based Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drabo, Mebougna L.; Egarievwe, Stephen U.; Okwechime, Ifechukwude O.

    Surface defects caused during cutting and polishing in the fabrication of cadmium zinc telluride (CdZnTe) nuclear detectors limit their spectral performance. Chemical treatments are often used to remove surface damages and defects. In this paper, we present the analysis of Te and TeO 2 species on the surfaces of CdZnTe nuclear detectors treated with hydrogen bromide and ammonium-based solutions. The CdZnTe wafers were chemo-mechanically polished in a mixture of hydrogen bromide in hydrogen peroxide and ethylene glycol, followed by a chemical passivation in a mixture of ammonium fluoride and hydrogen peroxide solution. X-ray photoelectron spectroscopy showed significant conversion of Temore » to TeO 2, thus producing a more chemically stable surface. The resistivity of the CdZnTe samples is in the order of 1010 ohms-cm. The current for a given applied voltage increased following the passivation and decreased after a 3-hour period. Results from spectral response measurements showed that the 59.5-keV gamma-peak of Am-241 was stable under the same channel for the surface treatment processes.« less

  13. Analysis of Te and TeO 2 on CdZnTe Nuclear Detectors Treated with Hydrogen Bromide and Ammonium-Based Solutions

    DOE PAGES

    Drabo, Mebougna L.; Egarievwe, Stephen U.; Okwechime, Ifechukwude O.; ...

    2017-04-30

    Surface defects caused during cutting and polishing in the fabrication of cadmium zinc telluride (CdZnTe) nuclear detectors limit their spectral performance. Chemical treatments are often used to remove surface damages and defects. In this paper, we present the analysis of Te and TeO 2 species on the surfaces of CdZnTe nuclear detectors treated with hydrogen bromide and ammonium-based solutions. The CdZnTe wafers were chemo-mechanically polished in a mixture of hydrogen bromide in hydrogen peroxide and ethylene glycol, followed by a chemical passivation in a mixture of ammonium fluoride and hydrogen peroxide solution. X-ray photoelectron spectroscopy showed significant conversion of Temore » to TeO 2, thus producing a more chemically stable surface. The resistivity of the CdZnTe samples is in the order of 1010 ohms-cm. The current for a given applied voltage increased following the passivation and decreased after a 3-hour period. Results from spectral response measurements showed that the 59.5-keV gamma-peak of Am-241 was stable under the same channel for the surface treatment processes.« less

  14. Refractive index and compressibility of LiAlSi{sub 3}O{sub 8} glass in the pressure range up to 6.0 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuryaeva, R.G., E-mail: rufina@igm.nsc.ru; Dmitrieva, N.V.; Surkov, N.V.

    2016-02-15

    Highlights: • Refractive index and the compressibility of LiAlSi{sub 3}O{sub 8} glass are obtained. • Among Li(Na,K)AlSi{sub 3}O{sub 8} glasses LiAlSi{sub 3}O{sub 8} glass has the lowest compressibility. • Degree of depolymerization (NBO/T = 0.31) for LiAlSi{sub 3}O{sub 8} glass was calculated. • NBO/T = 0.31 indicates a high content of NBOs atoms and Al in LiAlSi{sub 3}O{sub 8} glass. • Proposed reaction corresponds to the condition of the existence of ∼9% Al. - Abstract: The refractive index and the relative changes in the density for LiAlSi{sub 3}O{sub 8} glass in the pressure range up to 6.0 GPa were obtainedmore » using a polarization-interference microscope and an apparatus with diamond anvils. The results were compared with the previous data for the NaAlSi{sub 3}O{sub 8} and KAlSi{sub 3}O{sub 8} glasses. The compressibility of glasses increases in a series of alkali metal cations Li{sup +}, Na{sup +}, K{sup +}. From the previously found dependence of the compressibility (at P = 4.0 GPa) on the degree of depolymerization the value of NBO/T = 0.31 for LiAlSi{sub 3}O{sub 8} glass was calculated. A high degree of depolymerization of the LiAlSi{sub 3}O{sub 8} glass indicates not only a high content of NBOs atoms in the structural network, but also the presence of highly coordinated aluminum (according to the literature data ∼9%). The proposed schematic reaction for the formation of different structural groups corresponds to the condition of the existence of 9% highly coordinated aluminum.« less

  15. Improving the characteristics of foundry alloys AlSiCuMg during manufacturing

    NASA Astrophysics Data System (ADS)

    Fragoso, Bruno Filipe Marques

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de

  16. Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields

    PubMed Central

    2012-01-01

    Cyclotron resonance study of HgTe/CdTe-based quantum wells with both inverted and normal band structures in quantizing magnetic fields was performed. In semimetallic HgTe quantum wells with inverted band structure, a hole cyclotron resonance line was observed for the first time. In the samples with normal band structure, interband transitions were observed with wide line width due to quantum well width fluctuations. In all samples, impurity-related magnetoabsorption lines were revealed. The obtained results were interpreted within the Kane 8·8 model, the valence band offset of CdTe and HgTe, and the Kane parameter EP being adjusted. PMID:23013642

  17. Ce{sub 2}AgYb{sub 5/3}Se{sub 6}, La{sub 2}CuErTe{sub 5}, and Ce{sub 2}CuTmTe{sub 5}: Three new quaternary interlanthanide chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E., E-mail: talbrec1@nd.edu

    2013-01-15

    Three new ordered quaternary interlanthanide chalcogenides, Ce{sub 2}AgYb{sub 5/3}Se{sub 6}, La{sub 2}CuErTe{sub 5}, and Ce{sub 2}CuTmTe{sub 5}, have been prepared by direct reaction of the elements in molten NaBr at 900 Degree-Sign C. Each compound forms a new structure-type. The Ce{sub 2}AgYb{sub 5/3}Se{sub 6} structure consists of {infinity}{sup 2}{l_brace} [AgYb{sub 5/6}Se{sub 6}]{sup 6-}{r_brace} layers intercalated by Ce{sup 3+} cations. These layers are composed of {infinity}{sup 1}{l_brace} [Yb{sub 5/3}Se{sub 6}]{sup 7-}{r_brace} quadruplet ribbons of [YbSe{sub 6}]{sup 9-} octahedra and infinite {infinity}{sup 1}{l_brace} [AgSe{sub 6}]{sup 11-}{r_brace} double chains of [AgSe{sub 5}]{sup 9-}. The La{sub 2}CuErTe{sub 5} structure is made of one-dimensional {infinity}{supmore » 1}{l_brace} [CuErTe{sub 5}]{sup 6-}{r_brace} ribbons separated by La{sup 3+} cations. These ribbons are formed by cis-edge sharing {infinity}{sup 1}{l_brace} [CuTe{sub 2}]{sup 3-}{r_brace} tetrahedral chains and trans-edge sharing {infinity}{sup 1}{l_brace} [ErTe{sub 4}]{sup 5-}{r_brace} chains. While La{sub 2}CuErTe{sub 5} crystallizes in the orthorhombic space group Pnma, Ce{sub 2}CuTmTe{sub 5} crystallizes in the monoclinic space group C2/m. The latter crystal structure is assembled from {infinity}{sup 2}{l_brace} [CuTmTe{sub 5}]{sup 6-}{r_brace} layers intercalated by Ce{sup 3+} cations. These layers consist of single {infinity}{sup 1}{l_brace} [TmTe{sub 4}]{sup 5-}{r_brace} chains connected to each other through dimers or pseudo-double chains. - Graphical abstract: [CuTe{sub 4}]{sup 7-} tetrahedra sharing cis-edges to yield chains in the La{sub 2}CuErTe{sub 5}. Highlights: Black-Right-Pointing-Pointer New ordered interlanthanide tellurides. Black-Right-Pointing-Pointer New quaternary chalcogenides. Black-Right-Pointing-Pointer Low-dimensional lanthanide chalcogenide substructures. Black-Right-Pointing-Pointer Flux synthesis of new chalcogenides.« less

  18. Evaluation of Tp-Te Interval and Tp-Te/QT Ratio in Patients with Coronary Slow Flow Tp-Te/QT Ratio and Coronary Slow Flow.

    PubMed

    Tenekecioglu, Erhan; Karaagac, Kemal; Yontar, Osman Can; Agca, Fahriye Vatansever; Ozluk, Ozlem Arican; Tutuncu, Ahmet; Arslan, Burhan; Yilmaz, Mustafa

    2015-06-01

    Coronary slow flow (CSF) phenomenon is described by angiographically normal coronary arteries with delayed opacification of the distal vasculature. Several studies have suggested that the interval from the peak to the end of the electrocardiographic T wave (Tp-Te) may correspond to the transmural dispersion of the repolarization and that increased Tp-Te interval and Tp-Te/QT ratio are associated with malignant ventricular arrhythmias. The aim of this study was to evaluate the ventricular repolarization by using Tp-Te interval and Tp-Te/QT ratio in patients with CSF. This study included 50 CSF patients (40 male, mean age 48.6±12.5 years) and 40 control individuals (23 male, mean age 47.8±12.5 years). Tp-Te interval and Tp-Te/QT ratio were measured from the 12-lead electrocardiogram. These parameters were compared in groups. Baseline characteristics of the study groups were comparable. In electrocardiographic parameters analysis, QT and corrected QT were similar in CSF patients compared to the controls (357±35.2 vs 362±38.0 milliseconds and 419±25.8 vs 430±44.2 milliseconds, all p value >0.05). Tp-Te interval, Tp-Te/QT and Tp-Te/QTc ratio were significantly higher in CSF patients (85±13.7 vs 74±9.9 milliseconds and 0.24±0.03 vs 0.20±0.02 and 0.20±0.03 vs 0.17±0.02 all p value <0.001). Our study revealed that QTd, Tp-Te interval and Tp-Te/QT ratio are prolonged in patients with CSF.

  19. Near-infrared emitting AgInTe2 and Zn-Ag-In-Te colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Langevin, Marc-Antoine; Pons, Thomas; Ritcey, Anna M.; Nì. Allen, Claudine

    2015-06-01

    The synthesis of AgInTe2 nanocrystals emitting between 1095 nm and 1160 nm is presented. Evolution of the Ag:In:Te ratio shows progressive incorporation of In3+ in Ag2Te, leading to the formation of orthorhombic AgInTe2. When zinc is added to the synthesis, the photoluminescence quantum yield reaches 3.4 %.

  20. Design and development of SiGe based near-infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Zeller, John W.; Puri, Yash R.; Sood, Ashok K.; McMahon, Shane; Efsthadiatis, Harry; Haldar, Pradeep; Dhar, Nibir K.

    2014-10-01

    Near-infrared (NIR) sensors operating at room temperatures are critical for a variety of commercial and military applications including detecting mortar fire and muzzle flashes. SiGe technology offers a low-cost alternative to conventional IR sensor technologies such as InGaAs, InSb, and HgCdTe for developing NIR micro-sensors that will not require any cooling and can operate with high bandwidths and comparatively low dark currents. Since Ge has a larger thermal expansion coefficient than Si, tensile strain may be incorporated into detector devices during the growth process, enabling an extended operating wavelength range above 1600 nm. SiGe based pin photodetectors have advantages of high stability, low noise, and high responsivity compared to metal-semiconductor-metal (MSM) devices. We have developed a process flow and are fabricating SiGe detector devices on 12" (300 mm) silicon wafers in order to take advantage of high throughput, large-area leading-edge silicon based CMOS technology that provides small feature sizes with associated device cost/density scaling advantages. The fabrication of the detector devices is facilitated by a two-step growth process incorporating initial low temperature growth of Ge/SiGe to form a thin strain-relaxed layer, followed by high temperature growth to deposit a thicker absorbing film, and subsequent high temperature anneal. This growth process is designed to effectively reduce dark current and enhance detector performance by reducing the number of defects and threading dislocations which form recombination centers during the growth process. Various characterization techniques have been employed to determine the properties of the epitaxially deposited Ge/SiGe layers, and the corresponding results are discussed.

  1. A new oxytelluride: Perovskite and CsCl intergrowth in Ba 3Yb 2O 5Te

    DOE PAGES

    Whalen, J. B.; Besara, T.; Vasquez, R.; ...

    2013-04-27

    The new oxytelluride Ba 3Yb 2O 5Te was obtained from an alkaline earth flux. Ba3Yb2O5Te crystallizes in the tetragonal space group P4/ mmm (#123), with a=4.3615(3) Å and c=11.7596(11) angstrom, Z=1. The structure combines two distinct building blocks, a Ba 2Yb 2O 5 perovskite-like double layer with square bipyramidal coordination of the ytterbium ions, and a CsCl-type BaTe layer. Short range magnetic order is apparent at below 5 K, with the magnetic behavior above this temperature dominated by crystal field effects. The structure may be considered as an analog to the Ruddlesden-Popper phases, where the NaCl-type layer has been replacedmore » by the CsCl-type layer. Finally, the two-dimensional magnetic behavior is expected based on the highly anisotropic nature of the structure.« less

  2. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity.

    PubMed

    Sola, A; Bellucci, D; Raucci, M G; Zeppetelli, S; Ambrosio, L; Cannillo, V

    2012-02-01

    Because of their excellent bioactivity, bioactive glasses are increasingly diffused to produce biomedical devices for bone prostheses, to face the dysfunctions that may be caused by traumatic events, diseases, or even natural aging. However, several processing routes, such as the production of scaffolds or the deposition of coatings, include a thermal treatment to apply or sinter the glass. The exposure to high temperature may induce a devetrification phenomenon, altering the properties and, in particular, the bioactivity of the glass. The present contribution offers an overview of the thermal behavior and properties of two glasses belonging to the Na2O-CaO-P2O5-SiO2 system, to be compared to the standard 45S5 Bioglass(®). The basic goal is to understand the effect of both the original composition and the thermal treatment on the performance of the sintered glasses. The new glasses, the one (BG_Na) with a high content of Na2O, the other (BG_Ca) with a high content of CaO, were fully characterized and sintering tests were performed to define the most interesting firing cycles. The sintered samples, treated at 880°C and 800°C respectively, were investigated from a microstructural point of view and their mechanical properties were compared to those of the bulk (not sintered) glass counterparts. The effect of sintering was especially striking on the BG_Ca material, whose Vickers hardness increased from 598.9 ± 46.7 HV to 1053.4 ± 35.0 HV. The in vitro tests confirmed the ability of the glasses, both in bulk and sintered form, of generating a hydroxyapatite surface layer when immersed in a simulated body fluid. More accurate biological tests performed on the sintered glasses proved the high bioactivity of the CaO-rich composition even after a heat treatment. Copyright © 2011 Wiley Periodicals, Inc.

  3. Development of Load Exerted on the Lining of the Shaft After its Liquidation / Kształtowanie Się Obciążeń Obudowy Szybu Po Jego Likwidacji

    NASA Astrophysics Data System (ADS)

    Konior, Janusz

    2015-03-01

    This article applies to forecasting of the shaft stability after its liquidation on the basis of the probable, current load of its lining. The stability of the shaft after its liquidation is affected by many factors: that have occurred in the past, during its operation, e.g.: the degree of technical wear and liquidation method, that presently exist such as: changes in the parameters of backfill and the level of shaft backfilling, or may occur in the future: changes of hydrogeological conditions, the influences of present mining extraction, the effect of vibrations, etc. The variability of these conditions over time may consequently lead to arising of discontinuous deformations in the area surrounding the shaft and, as an consequence, to construction disaster. Likwidacja szybu górniczego w sposób trwały poprzez wypełnienie go za pomocą materiałów sypkich winna zapewniać jego stateczność w okresie czasu mierzonym setkami lat, szczególnie w obszarach nie w pełni wykorzystanego złoża. Bowiem te szyby mogą być w przyszłości wykorzystane przy przywracaniu do dalszej eksploatacji przedmiotowego złoża. W sytuacji koniunktury na węgiel czy inne surowce mineralne stateczność szybów zlokalizowanych w terenie zurbanizowanym ma także zapobiec katastrofom budowlanym. Autorowi niniejszego artykułu znane są przypadki świadczące o braku kontroli zachowania się podsadzki w zlikwidowanym szybie oraz projektowaniu i realizacji nowych obiektów w strefie ochronnej wyznaczonej wokół zlikwidowanego szybu. W pracy w oparciu o założenia metody Janssena dla schematu obliczeniowego (Rys. 1) przedstawiono wyprowadzenie wzorów na wielkość pionowego i poziomego obciążenia działającego wewnątrz zlikwidowanego szybu. Z analizy wzorów (10) i (11) jednoznacznie wynika, że wielkości te wraz ze zmianą głębokości dążą do maksimum określonego asymptotami Discovery of Ahrensite γ-Fe2SiO4 and Tissintite (Ca,Na,[])AlSi2O6, Two New Shock-induced Minerals from the Tissint Martian Meteorite: a Nanomineralogy Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.; Liu, Y.; Sinogeikin, S. V.; Zhuravlev, K. K.; Prakapenka, V.; Dera, P. K.; Taylor, L. A.

    2013-12-01

    The recent Martian meteorite fall, Tissint, is a fresh olivine-phyric shergottite, with strong shock features. During our nano-mineralogy investigation of the Tissint meteorite with a combined analytical scanning electron microscope and synchrotron diffraction approach, two new shock-induced minerals have been discovered; these provide new insights into understanding shock conditions and impact processes on Mars. Ahrensite (IMA 2013-028), the Fe-analogue (γ-Fe2SiO4) of ringwoodite, is a new high-pressure mineral identified in Tissint. Both ahrensite and ringwoodite occur in Tissint as fine-grained polycrystalline aggregates in the rims of olivines around some shock-melt pockets. The morphology and texture of these silicate-spinels suggest formation by a solid-state transformation from Fe-rich olivine. Associated with the ahrensite and ringwoodite, inside melt pockets, often resides a thin layer of vitrified silicate-perovskite and magnesio-wüstite or wüstite. Such transitions represent a unique pressure and temperature gradient. Tissintite (IMA 2013-027), (Ca,Na,[])AlSi2O6 with the C2/c clinopyroxene structure, is a new jadeite-like mineral in Tissint. It appears as fine-grained aggregates within plagioclase glass, inside many shock-melt pockets. Both ahrensite and tissintite are high-pressure minerals formed by shock during the impact event(s) on Mars that excavated and ejected the rock off Mars. We will discuss the path of structure analysis for both new-mineral cases. Such novel methodology be utilized for many cases of mineralogical phase identification or structure analysis; this demonstrates how nano-mineralogy can be addressed and how it may play a unique role in meteorite and Mars rock research, in general.

  4. Semi-volatiles at Mercury: Sodium (Na) and potassium (K)

    NASA Technical Reports Server (NTRS)

    Sprague, A.

    1994-01-01

    Several lines of evidence now suggest that Mercury is a planet rich in moderately-volatile elements such as Na and K. Recent mid-infrared spectral observations of Mercury's equatorial and mid-latitude region near 120 degrees mercurian longitude indicate the presence of plagioclase feldspar. Spectra of Mercury's surface exhibit spectral activity similar to labradorite (plagioclase feldspar with NaAlSi3O8: 30-50 percent) and bytownite (NaAlSi3O8: 10-30 percent). These surface studies were stimulated by the relatively large abundance of Na and K observed in Mercury's atmosphere. An enhanced column of K is observed at the longitudes of Caloris Basin and of the antipodal terrain. Extreme heating at these 'hot' longitudes and severe fracturing suffered from the large impact event could lead to enhanced outgassing from surface or subsurface materials. Alternatively, sputtering from a surface enriched in K could be the source of the observed enhancement. Recent microwave measurements of Mercury also give indirect evidence of a mercurian regolith less FeO-rich than the Moon. An anomalously high index of refraction derived from the whole-disk integrated phase curve of Danjon may also be indicative of surface sulfides contributing to a regolith that is moderately volatile-rich. The recent exciting observations of radar-bright spots at high latitudes also indicate that a substance of high volume scattering, like ice, is present in shadowed regions. Other radar-bright spots have been seen at locations of Na enhancements on the atmosphere. All combined, these pieces of evidence point to a planet that is not severely depleted in volatiles or semi-volatiles.

  5. Effect of Te inclusions in CdZnTe crystals at different temperatures

    NASA Astrophysics Data System (ADS)

    Hossain, A.; Bolotnikov, A. E.; Camarda, G. S.; Gul, R.; Kim, K.-H.; Cui, Y.; Yang, G.; Xu, L.; James, R. B.

    2011-02-01

    CdZnTe crystals often exhibit nonuniformities due to the presence of Te inclusions and dislocations. High concentrations of such defects in these crystals generally entail severe charge-trapping, a major problem in ensuring the device's satisfactory performance. In this study, we employed a high-intensity, high-spatial-resolution synchrotron x-ray beam as the ideal tool to generate charges by focusing it over the large Te inclusions, and then observing the carrier's response at room- and at low-temperatures. A high spatial 5-μm resolution raster scan revealed the fine details of the presence of extended defects, like Te inclusions and dislocations in the CdZnTe crystals. A noticeable change was observed in the efficiency of electron charge collection at low temperature (1 °C), but it was hardly altered at room-temperature.

  6. Production of Solar-Grade Silicon by the SiF4 and Mg Reaction

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobing; Bao, Jianer; Sanjurjo, Angel

    2016-12-01

    Over 90 pct of the solar cells currently produced and installed are Si based, and this industrial dominance is expected to persist for the foreseeable future. The crystalline Si substrate accounts for a significant portion of the total cost of solar cells. In order to further reduce the cost of solar panels, there has been significant effort in producing inexpensive solar-grade Si, mainly through three paths: (1) modification of the Siemens process to lower production costs, (2) upgrading metallurgical-grade Si to reach solar-grade purity, and (3) by means of new metallurgical processes such as the reduction of a silicon halide, e.g., SiF4 or SiCl4, by a reactive metal such as Na or Zn. In this paper, we describe an alternative path that uses Mg to react with SiF4 to produce low-cost solar grade Si. Experimental conditions for complete reaction and separation of the products, Si and MgF2, as well as aspects of the reaction mechanism are described. The reaction involves both a heterogeneous liquid-gas phase reaction and a homogeneous gas-gas phase reaction. When pure Mg was used, the Si product obtained had sub-ppm levels of B and P impurities and is expected to be suitable for solar cell applications.

  7. The effects of different heat treatment annealing on structural properties of LaFe11.5Si1.5 compound

    NASA Astrophysics Data System (ADS)

    Norizan, Yang Nurhidayah Asnida; Din, Muhammad Faiz Md; Zamri, Wan Fathul Hakim W.; Hashim, Fakroul Ridzuan; Jusoh, Mohd Taufik; Rahman, Mohd Rashid Abdul

    2018-02-01

    The cubic NaZn13-type LaFe13-xSix based compounds have been studied systematically and has become one of the most interesting systems for exploring large MCE. Its magnetic properties are strongly doping dependent and provides many of advantage compare to other as magnetic materials for magnetic refrigerator application. In other to produce high quality of cubic NaZn13-type structure, the structural properties of LaFe11.5Si1.5 compounds annealed at different temperature have been investigated. The LaFe11.5Si1.5 compounds was prepared by arc melting and annealed at two different heat treatment which are 1323 K for 14 days and 1523 K for 4 hour. The powder X-ray diffraction (XRD) shows that a short time and high temperature annealing process has benefits for the formation of the NaZn13-type phase compared to a long time and low temperature annealing process. This is shown by the weight fraction of cubic NaZn13- type structure increases from 80% for low temperature annealing to 83% for high temperature annealing. At the same time, high temperature annealing increase the main structure and decrease the impurity (α-Fe and LaFeSi). Furthermore, it can be clearly seen in the Rietveld refinement results that the lattice parameter is increase at the high temperature annealing because of more cubic NaZn13 is formed at higher temperature.

  8. Fluorcanasite, K3Na3Ca5Si12O30(F,OH)4 · H2O, a new mineral species from the Khibiny alkaline pluton, Kola Peninsula, Russia, and new data on canasite

    NASA Astrophysics Data System (ADS)

    Khomyakov, A. P.; Nechelyustov, G. N.; Krivokoneva, G. K.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Rozhdestvenskaya, I. V.

    2009-12-01

    Fluorcanasite is described, a new mineral species found in dumps of the Kirovsk apatite mine, Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. The new mineral is associated with microcline, nepheline, aegirine, scherbakovite, lamprophyllite, pectolite, mosandrite, villiaumite, rasvumite, and molybdenite. It occurs as prismatic crystals up to 0.2-0.3 × 1-2 mm in size extending along [010]. Fluorcanasite is purple, transparent, with white streak and vitreous luster. The fracture is hackly along the extension and stepped in other directions. The mineral is brittle. The cleavage is eminent parallel to {100} and {201} and perfect parallel to {001}. D(meas) = 2.68(2) g/cm3 (volumetric method); D(calc) = 2.69 g/cm3. Fluorcanasite is biaxial, negative, n α = 1.538(1), n β = 1.546(1), n γ = 1.549(1), 2 V(meas) = 60(2)°, 2 V(calc) = 63°. Dispersion r > v. The new mineral is pleochroic according to the scheme N β > N γ > N α; N β is purple, N γ is lilac, and N α is amber-yellow. Orientation is as follows: b = N β, a∧ N γ = 3°, c∧ N α = 19°. Fluorcanasite is not luminescent in UV light and slowly decomposes in acid. The new mineral is monoclinic, space group Cm, a = 18.846(4), b = 7.242(1), c = 12.650(2) Å, β = 111.84(2)°, V = 1602.6(4) Å3, Z = 2. The strongest reflections [ d, Å( I)] in the X-ray powder pattern of a grainoriented sample are 2.915(100), 4.204(40), 5.872(36), 4.712(36), 2.358(32), 3.012(24), 2.310(24), 3.082(24) and the same reflections in a randomly oriented sample are 3.082(100), 2.915(85), 4.712(46), 4.204(41), 3.340(35), 5.872(33), 2.658(30). The chemical composition, determined with an electron microprobe, is as follows, wt %: 7.19 Na2O, 10.91 K2O, 19.55 CaO, 0.27 FeO, 2.08 MnO, 55.84 SiO2, 4.10 F, 2.22 H2O (determined on the basis of structural data), 1.73-O = F2; the total is 100.43. The empirical formula, calculated on the basis of Si = 12, is K2.99Na3.00(Ca4.50Mn0.38·Fe{0.05/2+})Σ4.93Si12O29.93(F2.79OH1

  9. AsTeRICS.

    PubMed

    Drajsajtl, Tomáš; Struk, Petr; Bednárová, Alice

    2013-01-01

    AsTeRICS - "The Assistive Technology Rapid Integration & Construction Set" is a construction set for assistive technologies which can be adapted to the motor abilities of end-users. AsTeRICS allows access to different devices such as PCs, cell phones and smart home devices, with all of them integrated in a platform adapted as much as possible to each user. People with motor disabilities in the upper limbs, with no cognitive impairment, no perceptual limitations (neither visual nor auditory) and with basic skills in using technologies such as PCs, cell phones, electronic agendas, etc. have available a flexible and adaptable technology which enables them to access the Human-Machine-Interfaces (HMI) on the standard desktop and beyond. AsTeRICS provides graphical model design tools, a middleware and hardware support for the creation of tailored AT-solutions involving bioelectric signal acquisition, Brain-/Neural Computer Interfaces, Computer-Vision techniques and standardized actuator and device controls and allows combining several off-the-shelf AT-devices in every desired combination. Novel, end-user ready solutions can be created and adapted via a graphical editor without additional programming efforts. The AsTeRICS open-source framework provides resources for utilization and extension of the system to developers and researches. AsTeRICS was developed by the AsTeRICS project and was partially funded by EC.

  10. Phase equilibria in the NaF-CdO-NaPO3 system at 873 K and crystal structure and physico-chemical characterizations of the new Na2CdPO4F fluorophosphate

    NASA Astrophysics Data System (ADS)

    Aboussatar, Mohamed; Mbarek, Aïcha; Naili, Houcine; El-Ghozzi, Malika; Chadeyron, Geneviève; Avignant, Daniel; Zambon, Daniel

    2017-04-01

    Isothermal sections of the diagram representing phase relationships in the NaF-CdO-NaPO3 system have been investigated by solid state reactions and powder X-ray diffraction. This phase diagram investigation confirms the polymorphism of the NaCdPO4 side component and the structure of the ß high temperature polymorph (orthorhombic, space group Pnma and unit cell parameters a=9.3118(2), b=7.0459(1), c=5.1849(1) Å has been refined. A new fluorophosphate, Na2CdPO4F, has been discovered and its crystal structure determined and refined from powder X-ray diffraction data. It exhibits a new 3D structure with orthorhombic symmetry, space group Pnma and unit cell parameters a=5.3731(1), b=6.8530(1), c=12.2691(2) Å. The structure is closely related to those of the high temperature polymorph of the nacaphite Na2CaPO4F and the fluorosilicate Ca2NaSiO4F but differs essentially in the cationic repartition since the structure is fully ordered with one Na site (8d) and one Cd site (4c). Relationships with other Na2MIIPO4F (MII=Mg, Ca, Mn, Fe, Co, Ni) have been examined and the crystal-chemical and topographical analysis of these fluorophosphates is briefly reviewed. IR, Raman, optical and 19F, 23Na, 31P MAS NMR characterizations of Na2CdPO4F have been investigated.

  11. Preparation and Characterization of PbO-SrO-Na2O-Nb2O5-SiO2 Glass Ceramics Thin Film for High-Energy Storage Application

    NASA Astrophysics Data System (ADS)

    Tan, Feihu; Zhang, Qingmeng; Zhao, Hongbin; Wei, Feng; Du, Jun

    2018-03-01

    PbO-SrO-Na2O-Nb2O5-SiO2 (PSNNS) glass ceramic thin films were prepared by pulsed laser deposition technology on heavily doped silicon substrates. The influence of annealing temperatures on microstructures, dielectric properties and energy storage performances of the as-prepared films were investigated in detail. X-ray diffraction studies indicate that Pb2Nb2O7 crystallizes at 800°C and disappears at 900°C, while NaNbO3 and PbNb2O6 are formed at the higher temperature of 900°C. The dielectric properties of the glass ceramics thin films have a strong dependence on the phase assemblages that are developed during heat treatment. The maximum dielectric constant value of 171 was obtained for the film annealed at 800°C, owing to the high electric breakdown field strength, The energy storage densities of the PSNNS films annealed at 800°C were as large as 36.9 J/cm3, These results suggest that PSNNS thin films are promising for energy storage applications.

  12. Structural studies on a high-pressure polymorph of NaYSi 2O 6

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Konzett, Jürgen; Kaindl, Reinhard

    2007-06-01

    High-pressure synthesis experiments in the system Na 2O-Y 2O 3-SiO 2 revealed the existence of a previously unknown polymorph of NaYSi 2O 6 or Na 3Y 3[Si 3O 9] 2 which was quenched from 3.0 GPa and 1000 °C. Structural investigations on this modification have been performed using single-crystal X-ray diffraction data collected at ambient conditions. Furthermore, unpolarized micro-Raman spectra have been obtained from single-crystal material. The high-P modification of NaYSi 2O 6 crystallizes in the centrosymmetric space group C2/ c with 12 formula units per cell ( a=8.2131(9) Å, b=10.3983(14) Å, c=17.6542(21) Å, β=100.804(9)°, V=1481.0(3) Å 3, R(| F|)=0.033 for 1142 independent observed reflections) and belongs to the group of cyclo-silicates. Basic building units are isolated three-membered [Si 3O 9] rings located in layers parallel to (010). Within a single layer the rings are concentrated in strings parallel to [100]. The sequence of directedness of up ( U) or down ( D) pointing tetrahedra of a single ring is UUU or DDD, respectively. Stacking of the layers parallel to b results in the formation of a three-dimensional structure in which yttrium and sodium cations are incorporated for charge compensation. In more detail, four non-tetrahedral cation positions can be differentiated which are coordinated by 6 and 8 oxygen ligands. Refinements of the site occupancies did not reveal any indication for mixed Na-Y populations on these positions. Finally, several geometrical parameters of rings occurring in cyclo-trisilicate structures have been compiled and are discussed.

  13. Calorimetric measurements on Li4C60 and Na4C60

    NASA Astrophysics Data System (ADS)

    Inaba, Akira; Miyazaki, Yuji; Michałowski, Paweł P.; Gracia-Espino, Eduardo; Sundqvist, Bertil; Wâgberg, Thomas

    2015-04-01

    We show specific heat data for Na4C60 and Li4C60 in the range 0.4-350 K for samples characterized by Raman spectroscopy and X-ray diffraction. At high temperatures, the two different polymer structures have very similar specific heats both in absolute values and in general trend. The specific heat data are compared with data for undoped polymeric and pristine C60. At high temperatures, a difference in specific heat between the intercalated and undoped C60 polymers of 100 J K-1 mol-1 is observed, in agreement with the Dulong-Petit law. At low temperatures, the specific heat data for Li4C60 and Na4C60 are modified by the stiffening of vibrational and librational molecular motion induced by the polymer bonds. The covalent twin bonds in Li4C60 affect these motions to a somewhat higher degree than the single intermolecular bonds in Na4C60. Below 1 K, the specific heats of both materials become linear in temperature, as expected from the effective dimensionality of the structure. The contribution to the total specific heat from the inserted metal ions can be well described by Einstein functions with TE = 386 K for Li4C60 and TE = 120 K for Na4C60, but for both materials we also observe a Schottky-type contribution corresponding to a first approximation to a two-level system with ΔE = 9.3 meV for Li4C60 and 3.1 meV for Na4C60, probably associated with jumps between closely spaced energy levels inside "octahedral-type" ionic sites. Static magnetic fields up to 9 T had very small effects on the specific heat below 10 K.

  14. PharmTeX: a LaTeX-Based Open-Source Platform for Automated Reporting Workflow.

    PubMed

    Rasmussen, Christian Hove; Smith, Mike K; Ito, Kaori; Sundararajan, Vijayakumar; Magnusson, Mats O; Niclas Jonsson, E; Fostvedt, Luke; Burger, Paula; McFadyen, Lynn; Tensfeldt, Thomas G; Nicholas, Timothy

    2018-03-16

    Every year, the pharmaceutical industry generates a large number of scientific reports related to drug research, development, and regulatory submissions. Many of these reports are created using text processing tools such as Microsoft Word. Given the large number of figures, tables, references, and other elements, this is often a tedious task involving hours of copying and pasting and substantial efforts in quality control (QC). In the present article, we present the LaTeX-based open-source reporting platform, PharmTeX, a community-based effort to make reporting simple, reproducible, and user-friendly. The PharmTeX creators put a substantial effort into simplifying the sometimes complex elements of LaTeX into user-friendly functions that rely on advanced LaTeX and Perl code running in the background. Using this setup makes LaTeX much more accessible for users with no prior LaTeX experience. A software collection was compiled for users not wanting to manually install the required software components. The PharmTeX templates allow for inclusion of tables directly from mathematical software output as well and figures from several formats. Code listings can be included directly from source. No previous experience and only a few hours of training are required to start writing reports using PharmTeX. PharmTeX significantly reduces the time required for creating a scientific report fully compliant with regulatory and industry expectations. QC is made much simpler, since there is a direct link between analysis output and report input. PharmTeX makes available to report authors the strengths of LaTeX document processing without the need for extensive training. Graphical Abstract ᅟ.

  15. Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize.

    PubMed

    Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Motta, Mariana Romeiro; Vieira, Tauan; Regulski, Michael; Martienssen, Robert A; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G

    2014-09-06

    Small RNA (sRNA) has been described as a regulator of gene expression. In order to understand the role of maize sRNA (Zea mays-hybrid UENF 506-8) during association with endophytic nitrogen-fixing bacteria, we analyzed the sRNA regulated by its association with two diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. Deep sequencing analysis was done with RNA extracted from plants inoculated with H. seropedicae, allowing the identification of miRNA and siRNA. A total of 25 conserved miRNA families and 15 novel miRNAs were identified. A dynamic regulation in response to inoculation was also observed. A hypothetical model involving copper-miRNA is proposed, emphasizing the fact that the up-regulation of miR397, miR398, miR408 and miR528, which is followed by inhibition of their targets, can facilitate association with diazotrophic bacteria. Similar expression patterns were observed in samples inoculated with A. brasilense. Moreover, novel miRNA and siRNA were classified in the Transposable Elements (TE) database, and an enrichment of siRNA aligned with TE was observed in the inoculated samples. In addition, an increase in 24-nt siRNA mapping to genes was observed, which was correlated with an increase in methylation of the coding regions and a subsequent reduction in transcription. Our results show that maize has RNA-based silencing mechanisms that can trigger specific responses when plants interact with beneficial endophytic diazotrophic bacteria. Our findings suggest important roles for sRNA regulation in maize, and probably in other plants, during association with diazotrophic bacteria, emphasizing the up-regulation of Cu-miRNA.

  16. High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies

    NASA Astrophysics Data System (ADS)

    Lindström, A.; Mirbt, S.; Sanyal, B.; Klintenberg, M.

    2016-01-01

    In this paper, we focus on the high resistivity of intentionally undoped CdTe, where the most prevalent defects are Cd vacancies and Te antisites. Our calculated formation energies lead to the conclusion that the Fermi energy of undoped CdTe is at midgap due to carrier compensation of Te antisites and Cd vacancies, which explains the experimentally observed high resistivity. We use density functional theory with the hybrid functional of Heyd, Scuseria and Ernzerhof (HSE06) and show that the proper description of the native defects in general fails using the local density approximation (LDA) instead of HSE06. We conclude that LDA is insufficient to understand the high resistivity of undoped CdTe. We calculate the neutral and double acceptor state of the Te antisite to be intrinsic DX-centers.

  17. Behaviour at high pressure of Rb7NaGa8Si12O40·3H2O (a zeolite with EDI topology): a combined experimental-computational study

    NASA Astrophysics Data System (ADS)

    Gatta, G. D.; Tabacchi, G.; Fois, E.; Lee, Y.

    2016-03-01

    The high-pressure behaviour and the P-induced structural evolution of a synthetic zeolite Rb7NaGa8Si12O40·3H2O (with edingtonite-type structure) were investigated both by in situ synchrotron powder diffraction (with a diamond anvil cell and the methanol:ethanol:water = 16:3:1 mixture as pressure-transmitting fluid) up to 3.27 GPa and by ab initio first-principles computational modelling. No evidence of phase transition or penetration of P-fluid molecules was observed within the P-range investigated. The isothermal equation of state was determined; V 0 and K T0 refined with a second-order Birch-Murnaghan equation of state are V 0 = 1311.3(2) Å3 and K T0 = 29.8(7) GPa. The main deformation mechanism (at the atomic scale) in response to the applied pressure is represented by the cooperative rotation of the secondary building units (SBU) about their chain axis (i.e. [001]). The direct consequence of SBU anti-rotation on the zeolitic channels parallel to [001] is the increase in pore ellipticity with pressure, in response to the extension of the major axis and to the contraction of the minor axis of the elliptical channel parallel to [001]. The effect of the applied pressure on the bonding configuration of the extra-framework content is only secondary. A comparison between the P-induced main deformation mechanisms observed in Rb7NaGa8Si12O40·3H2O and those previously found in natural fibrous zeolites is made.

  18. Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2.

    PubMed

    Brink, M; Turunen, T; Happonen, R P; Yli-Urpo, A

    1997-10-01

    The bioactivity, i.e., bone-bonding ability, of 26 glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2 was studied in vivo. This investigation of bioactivity was performed to establish the compositional dependence of bioactivity, and enabled a model to be developed that describes the relation between reactions in vivo and glass composition. Reactions in vivo were investigated by inserting glass implants into rabbit tibia for 8 weeks. The glasses and the surrounding tissue were examined using scanning electron microscopy (SEM), light microscopy, and energy-dispersive X-ray analysis (EDXA). For most of the glasses containing < 59 mol % SiO2, SEM and EDXA showed two distinct layers at the glass surface after implantation, one silica-rich and another containing calcium phosphate. The build-up of these layers in vivo was taken as a sign of bioactivity. The in vivo experiments showed that glasses in the investigated system are bioactive when they contain 14-30 mol % alkali oxides, 14-30 mol % alkaline earth oxides, and < 59 mol % SiO2. Glasses containing potassium and magnesium bonded to bone in a similar way as bioactive glasses developed so far.

  19. Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging.

    PubMed

    Yuan, Peiyan; Lee, Yih Hong; Gnanasammandhan, Muthu Kumara; Guan, Zhenping; Zhang, Yong; Xu, Qing-Hua

    2012-08-21

    NaYF(4):Yb,Er@SiO(2)@Ag core-shell nanocomposites were prepared to investigate metal-enhanced upconversion luminescence. Two sizes (15 and 30 nm) of Ag nanoparticles were used. The emission intensity of the upconversion nanocrystals was found to be strongly modulated by the presence of Ag nanoparticles (NPs) on the outer shell layer of the nanocomposites. The extent of modulation depended on the separation distance between Ag NPs and upconversion nanocrystals. The optimum upconversion luminescence enhancement was observed at a separation distance of 10 nm for Ag NPs with two different sizes (15 and 30 nm). A maximum upconversion luminescence enhancement of 14.4-fold was observed when 15 nm Ag nanoparticles were used and 10.8-fold was observed when 30 nm Ag NPs were used. The separation distance dependent emission intensity is ascribed to the competition between energy transfer and enhanced radiative decay rates. The biocompatibility of the nanocomposites was significantly improved by surface modification with DNA. The biological imaging capabilities of these nanocomposites were demonstrated using B16F0 cells.