Science.gov

Sample records for na2o cao k2o

  1. Effects of Substitution of K2O for Na2O on the Bioactivity of CaO-Na2O-SiO2-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Kim, Taehee; Hwang, Chawon; Gwoo, Donggun; Park, Hoyyul; Ryu, Bong-Ki

    2012-10-01

    The compositional dependences of bioactivity, thermal properties, atomic structure, and surface morphology have been investigated in the CaO-Na2O-SiO2-P2O5 system; this system is known as a bioglass. 45S5 Bioglass® is known to be a general and highly bioactive material. However, the bioactivity of this glassy material is expected to be improved by modifying the alkali-metal composition. Thermal properties, density, and molar volume were measured to investigate the structural packing. FT-IR spectra and X-ray diffraction were used to confirm the structures of these glasses. The morphology was examined using field emission electron microscopy, and the formation of a Ca-P layer was studied using an energy-dispersive system. This study shows that the tendency to form a calcium phosphate layer is increased with the substitution of K2O for Na2O.

  2. The effect of SiO2/Al2O3 ratio on the structure and microstructure of the glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system

    NASA Astrophysics Data System (ADS)

    Partyka, Janusz; Sitarz, Maciej; Leśniak, Magdalena; Gasek, Katarzyna; Jeleń, Piotr

    2015-01-01

    Ceramic glazes are commonly used to covering of the facing surface of ceramics ware. A well-chosen oxide composition and firing conditions of glazes causes significant improvement of technical parameters of ceramic products. Modern glazes are classified as glass-ceramic composites with different crystalline phases arising during firing. The presence of crystals in the glass matrix is influenced by many factors, especially by oxides molar composition. A crucial role is played by the molar ratio of SiO2/Al2O3. In this work the six composition of glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system were examined. The only variable is the ratio of the silicon oxideto alumina at a constant content of other components: MgO, CaO, K2O, Na2O, ZnO. In order to determine the real phase composition of the obtained glazes research on fluorescence spectrometer (XRF) were done. For structural studies X-ray diffraction (XRD) and spectroscopic in the middle infrared (MIR) were performed. In order to determine the state of the surface (microstructure) research on the scanning electron microscope (SEM) with EDX. The research allowed to determine the influence of SiO2/Al2O3 ratio on the structure and phase composition of glazes and the nature, and type of formed crystalline phases.

  3. Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2.

    PubMed

    Brink, M; Turunen, T; Happonen, R P; Yli-Urpo, A

    1997-10-01

    The bioactivity, i.e., bone-bonding ability, of 26 glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2 was studied in vivo. This investigation of bioactivity was performed to establish the compositional dependence of bioactivity, and enabled a model to be developed that describes the relation between reactions in vivo and glass composition. Reactions in vivo were investigated by inserting glass implants into rabbit tibia for 8 weeks. The glasses and the surrounding tissue were examined using scanning electron microscopy (SEM), light microscopy, and energy-dispersive X-ray analysis (EDXA). For most of the glasses containing < 59 mol % SiO2, SEM and EDXA showed two distinct layers at the glass surface after implantation, one silica-rich and another containing calcium phosphate. The build-up of these layers in vivo was taken as a sign of bioactivity. The in vivo experiments showed that glasses in the investigated system are bioactive when they contain 14-30 mol % alkali oxides, 14-30 mol % alkaline earth oxides, and < 59 mol % SiO2. Glasses containing potassium and magnesium bonded to bone in a similar way as bioactive glasses developed so far.

  4. Orange Peel Oxidative Gasification on Ni Catalysts Promoted with CaO, CeO2 or K2O.

    PubMed

    Vargas, G; Zapata, B; Valenzuela, M A; Alfaro, S

    2015-09-01

    Orange peel can be considered as an attractive raw material to be gasified for hydrogen or syngas production. In this work, the catalytic evaluation of several silica-supported nickel catalysts in the oxidative degradation of waste orange peel is reported. It was found that the catalytic gasification with the K2O-Ni/silica catalyst produces more hydrogen than the non-catalytic route at 600 degrees C. Surprisingly, a significant amount of ethene was obtained with the CeO2-Ni/silica catalyst, which was explained in terms of an oxidative dehydrogenation reaction of ethane formed during biomass or tar decomposition. PMID:26716225

  5. First Measurements of Time-Dependent Nucleation as a Function of Composition in Na2O.2CaO.3SiO2 Glasses

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Narayan, K. Lakshmi

    1996-01-01

    The first measurements in any system of the composition dependence of the time-dependent nucleation rate are presented Nucleation rates of the stoichiometric crystalline phase, Na2O.2CaO.3SiO2, from quenched glasses made with different SiO2 concentrations were determined as a function of temperature and glass composition. A strong compositional dependence of the nucleation rates and a weak dependence for the induction times are observed. Using measured values of the liquidus temperatures and growth velocities as a function of glass composition, these data are shown to be consistent with predictions from the classical theory of nucleation, assuming a composition-dependent interfacial energy.

  6. Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials from SiO2-Al2O3-Na2O-K2O-CaO system modified by variable molar ratio of SiO2/Al2O3.

    PubMed

    Partyka, Janusz; Leśniak, Magdalena

    2016-01-01

    This paper is focused on the effect of the molar ratio of SiO2/Al2O3 on the microstructure and structure of the internal aluminium-silicon-oxide lattice of the glass-ceramic materials from the SiO2-Al2O3-Na2O-K2O-CaO system. In order to examine the real composition of the obtained samples, a chemical analysis was performed. Following the heat-treatment procedure, pseudowollastonite, anorthite and the vitreous phase were identified. In order to determine the microstructure, research using the scanning electron microscope (SEM) with EDS was done. For the inner structural study, X-ray diffraction (XRD), Raman spectroscopy as well as MIR and FIR spectroscopy were performed.

  7. Development and bioactivity evaluation of bioglasses with low Na2O content based on the system Na 2O-CaO-MgO-P 2O 5-SiO 2.

    PubMed

    El-Meliegy, Emad; Hamzawy, Esmat M A; El-Kady, Abeer M; Salama, Aida; El-Rashedi, Ahalam

    2012-09-01

    Osteoconductive bioglasses, free of K(2)O and Al(2)O(3) and with content of Na(2)O lower than 10 mol%, were designed based on the ratio (SiO(2) + MgO)/(P(2)O(5) + CaO + Na(2)O) in the system Na(2)O-CaO-MgO-P(2)O(5)-SiO(2). The developed glasses have shown a strong potential for the formation of hydroxycarbonated apatite (HCA) in vitro. The particles of HCA aggregates tend to be of finer size with increasing the ratio of (SiO(2) + MgO)/(CaO + P(2)O(5) + Na(2)O) in the glass chemical composition indicating significant bioactivity. Critical size bone defects created in the femurs of albino adult female rats, and grafted with the glass particles for 12 weeks post implantation, were completely healed by filling with mineralized bone matrix without infection showing a strong potential for new bone formation in vivo. Osteoblasts and osteocytes were observed close to the surface of the granular implants with active areas of bone deposition, resorption and remodelling. The bioglass with lowest (SiO(2) + MgO)/(CaO + P(2)O(5) + Na(2)O) ratio has shown the highest bioactivity while the bioglass with the highest (SiO(2) + MgO)/(CaO + P(2)O(5) + Na(2)O) has shown the lowest bioactivity. The newly formed bone in vivo has shown a similar structure to that of the original bone as indicated by the histology and microstructural results. In addition, Ca/P molar ratio of the newly formed bone was found to be (~1.67), which is similar to that of the original bone.

  8. Development and bioactivity evaluation of bioglasses with low Na2O content based on the system Na 2O-CaO-MgO-P 2O 5-SiO 2.

    PubMed

    El-Meliegy, Emad; Hamzawy, Esmat M A; El-Kady, Abeer M; Salama, Aida; El-Rashedi, Ahalam

    2012-09-01

    Osteoconductive bioglasses, free of K(2)O and Al(2)O(3) and with content of Na(2)O lower than 10 mol%, were designed based on the ratio (SiO(2) + MgO)/(P(2)O(5) + CaO + Na(2)O) in the system Na(2)O-CaO-MgO-P(2)O(5)-SiO(2). The developed glasses have shown a strong potential for the formation of hydroxycarbonated apatite (HCA) in vitro. The particles of HCA aggregates tend to be of finer size with increasing the ratio of (SiO(2) + MgO)/(CaO + P(2)O(5) + Na(2)O) in the glass chemical composition indicating significant bioactivity. Critical size bone defects created in the femurs of albino adult female rats, and grafted with the glass particles for 12 weeks post implantation, were completely healed by filling with mineralized bone matrix without infection showing a strong potential for new bone formation in vivo. Osteoblasts and osteocytes were observed close to the surface of the granular implants with active areas of bone deposition, resorption and remodelling. The bioglass with lowest (SiO(2) + MgO)/(CaO + P(2)O(5) + Na(2)O) ratio has shown the highest bioactivity while the bioglass with the highest (SiO(2) + MgO)/(CaO + P(2)O(5) + Na(2)O) has shown the lowest bioactivity. The newly formed bone in vivo has shown a similar structure to that of the original bone as indicated by the histology and microstructural results. In addition, Ca/P molar ratio of the newly formed bone was found to be (~1.67), which is similar to that of the original bone. PMID:22648420

  9. Sol-gel Synthesis and Electrospraying of Biodegradable (P2O5)55-(CaO)30-(Na2O)15 Glass Nanospheres as a Transient Contrast Agent for Ultrasound Stem Cell Imaging

    PubMed Central

    Gambhir, Sanjiv S.; Vermesh, Ophir; Kim, Hae-Won; Knowles, Jonathan C.

    2015-01-01

    Ultrasound imaging is a powerful tool in medicine because of the millisecond temporal resolution and sub-millimeter spatial resolution of acoustic imaging. However, the current generation of acoustic contrast agents is primarily limited to vascular targets due to their large size. Nano-size particles have the potential to be used as a contrast agent for ultrasound molecular imaging. Silica-based nanoparticles have shown promise here, however their slow degradation rate may limit their applications as a contrast agent. Phosphate-based glasses are an attractive alternative with controllable degradation rate and easily metabolized degradation components in the body. In this study, biodegradable P2O5-CaO-Na2O phosphate-based glass nanospheres (PGNs) were synthesized and characterized as contrast agents for ultrasound imaging. The structure of the PGNs was characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), 31P nuclear magnetic resonance (31P MAS-NMR), and Fourier transform infrared (FTIR) spectroscopy. The SEM images indicated a spherical shape with a diameter size range of 200-500 nm. The XRD, 31P NMR and FTIR results revealed the amorphous and glassy nature of PGNs that consisted of mainly Q1 and Q2 phosphate units. We used this contrast to label mesenchymal stem cells and determined in vitro and in vivo detection limits of 5 and 9 μg/mL, respectively. Cell counts down to 4000 could be measured with ultrasound imaging with no cytoxicity at doses needed for imaging. Importantly, ion release studies confirmed these PGNs biodegrade into aqueous media with degradation products that can be easily metabolized in the body. PMID:25625373

  10. The Meaning of High K2O Volcanism In the U.S. Cordillera

    NASA Astrophysics Data System (ADS)

    Putirka, K. D.; Busby, C.

    2010-12-01

    K2O contents provide a highly effective discriminant between volcanic rocks erupted in the Cascades and Basin-and Range-provinces, with Cascades volcanics having lower K2O contents at a given SiO2. To differentiate these suites, we use a K-index, where K-index = K2Oobserved - 0.12[SiO2] + 5.1 (oxides in wt. %). In the Sierra Nevada, regional K2O contents are not controlled by wall-rock assimilation. In addition, none are candidates for K-metasomatism, and none are likely to be derived by partial melting of a K-metasomatized source. As to the latter issue, even volcanic rocks with the highest K2O in the Sierra Nevada have K2O/Na2O <5, and most such ratios are <3. In contrast, K-metasomatized rocks have K2O/Na2O >5, and as high as 30-40 (Brooks and Snee (1996). Also, Sierra-wide K2O variations are not connected to indices of subduction-related mantle enrichments (such as La/Nb, Ba/Nb or Sr/P2O5), and so K2O is unconnected to regional variations in source composition. K2O contents are instead controlled by the degree of partial melting (F) in the mantle source and fractional crystallization. Putirka and Busby (2007) show that maximum K2O in the Sierra increases with increasing crust thickness, and this relationship also holds across the U.S. the Cordillera (at 39oN latitude). This relationship implies that low F magmas more easily transit thick, low-density upper crust (Putirka and Busby, 2007), which is a consequence of the fact that low F melts are enriched not just in K2O, but also in H2O, which greatly lowers magma density (Ochs and Lange, 1999). This model can explain the contrast in Cascade and Basin-and-Range K2O contents: the modern Cascades are built on the thinner crust of accreted terranes, while typical Basin-and-Range volcanics are erupted on older, and thicker, cratonized crust. Mean crust density, however, cannot be the only explanation of high K2O. In the central Sierra Nevada, the Colorado River Extensional Corridor, and at the Lunar Crater

  11. Distribution of anomalously high K2O volcanic rocks in Arizona: Metasomatism at the Picacho Peak detachment fault

    NASA Astrophysics Data System (ADS)

    Brooks, William E.

    1986-04-01

    Metasomatized Tertiary lavas with anomalously high K2O and low Na2O content are distributed within the northwest-trending Miocene extensional terrane of southwestern Arizona. These rocks are common near core-complex related detachment faults at Picacho Peak and the Harcuvar Mountains and in listric-faulted terrane at the Vulture Mountains. In addition to systematic changes in K2O and Na2O, the rocks have been enriched in Zr and depleted in MgO. Secondary, introduced minerals include orthoclase, quartz, and calcite. Fine-grained, euhedral orthoclase (var. adularia), from 2 to 10 μm, is the dominant potassium mineral. Metasomatic changes at Picacho Peak are spatially associated with a major detachment fault. Thus, it is interpreted that detachment provided a conduit for hydrothermal fluids that altered the initial chemical composition of the Tertiary volcanics by potassium metasomatism and charged the upper-plate rocks with mineralizing fluids that carried Zr and Ba, along with Au, Ag, and Cu, during detachment 17 18 Ma.

  12. Effects of sodium and potassium ions on a novel SeO2-B2O3-SiO2-P2O5-CaO bioactive system

    NASA Astrophysics Data System (ADS)

    Trandafir, D. L.; Ponta, O.; Ciceo-Lucacel, R.; Simon, V.

    2015-01-01

    The study is focused on Na2O and/or K2O influence on a new sol-gel derived SeO2-B2O3-SiO2-P2O5-CaO bioactive system. The structural changes induced by Na2O and/or K2O addition were correlated with the samples behavior in simulated biological media. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the structure and the type of the chemical bonds. The morphology of the samples was characterized through scanning electron microscopy (SEM). XRD results pointed out a prevalent vitreous structure with an incipient hydroxyapatite (HA) crystalline phase. FTIR results revealed a complex network consisting of silicate, phosphate and borate units, as well as the development of both A- and B-type of carbonate-substituted HA. The bioactivity of the samples was tested in vitro following the evolution of the apatite layers self-assembled on the samples surface in simulated body fluid. Their biocompatibility was investigated after samples surface functionalization with protein. The results indicate that sodium and potassium addition improves the biocompatibility by enhancement of protein adherence on samples surface and without to prevent the samples bioactivity.

  13. The sulfur partition ratio with Fe-CSAT melts and the sulfide capacity of CaO-SiO2-Na2O- (Ai2O3) slags

    NASA Astrophysics Data System (ADS)

    Chan, A. H.; Fruehan, R. J.

    1989-02-01

    The sulfur partition ratio between slag and carbon saturated iron and the sulfide capacity of CaO-Na2O-SiO2 slags and a 48 pet CaO-45 pet Al2O3-7 pet SiO2-(Na2O) slag have been mea-sured at 1400 °C. The addition of Na2O to a CaO-SiO2 slag increases the sulfur partition ratio and the sulfide capacity; however, Na2O at low concentrations has no measurable effect on the sulfide capacity of a CaO-Al2O3-SiO2 slag. To convert the sulfur partition ratio to the sulfide capacity, the oxygen potential was calculated assuming equilibrium between iron in the alloy and FeO in the slag with the activity of FeO calculated via a regular solution model. The optical basicity may be used to correlate the data, but at high Na2O contents the data do not adhere to the correlation previously developed for CaO-based slags.

  14. Distribution of anomalously high K2O volcanic rocks in Arizona: metasomatism at the Picacho Peak detachment fault.

    USGS Publications Warehouse

    Brooks, W.E.

    1986-01-01

    Metasomatized Tertiary lavas with anomalously high K2O and lower Na2O content are distributed within the NW-trending extensional terrain of SW Arizona. These rocks are common near core-complex-related detachment faults at Picacho Peak and the Harcuvar Mountains and in listric-faulted terrain at the Vulture Mountains. These rocks are also enriched in Zr but depleted in MgO. Fine-grained, euhedral orthoclase (adularia) is the dominant K-mineral; other secondary introduced minerals are quartz and calcite. Spatial association of metasomatism with the detachment faults suggests that detachment provided a conduit for hydrothermal fluids that altered the initial chemistry of the Tertiary volcanics and charged the upper plate rocks with mineralizing fluids that carried Zr and Ba, along with Au, Ag and Cu during detachment 17-18 m.y. ago.-L.C.H.

  15. Structure, dielectric and bioactivity of P2O5-CaO-Na2O-B2O3 bioactive glass

    NASA Astrophysics Data System (ADS)

    Maheswaran, A.; Hirankumar, G.; Heller, Nithya; Karthickprabhu, S.; Kawamura, Junichi

    2014-06-01

    Bioactive phosphate glasses have been widely investigated for bone repair. Phosphate glass system of 47P2O5-30.5CaO-(22.5-x)Na2O-xB2O3 has been prepared by melt quenching technique. From the Raman analysis, it is confirmed that phosphate network form metaphosphate structure. Bioactivity of the glass is studied by immersing the prepared glass in simulated body fluid (SBF). All the glasses exhibited bioactivity after soaking in SBF. Addition of B2O3 to the glass by replacing the Na2O produces considerable effect on the dielectric and bioactivity of the glass. Ion dynamics are also analyzed through imaginary modulus and imaginary dielectric permittivity.

  16. CaO--P2O5--Na2O-based sintering additives for hydroxyapatite (HAp) ceramics.

    PubMed

    Kalita, S J; Bose, S; Hosick, H L; Bandyopadhyay, A

    2004-05-01

    We have assessed the effect of CaO--P2O5--Na2O-based sintering additives on mechanical and biological properties of hydroxyapatite (HAp) ceramics. Five different compositions of sintering additives were selected and prepared by mixing of CaO, P2O5, and Na2CO3 powders. 2.5 wt% of each additive was combined with commercial HAp powder, separately, followed by ball milling, and sintering at 1250 degrees C and 1300 degrees C in a muffle furnace. Green and sintered densities of the compacts were analyzed for the influence of additives on densification of HAp. Phase analyses were carried out using an X-ray diffractometer. Vickers microhardness testing was used to evaluate hardness of sintered compacts of different compositions. A maximum microhardness of 4.6 (+/- 0.28) GPa was attained for a composition with 2.5 wt% addition of CaO:P2O5:Na2O in the ratio of 3:3:4. Results from mechanical property evaluation showed that some of these sintering additives improved failure strength of HAp under compressive loading. Maximum compressive strength was observed for samples with 2.5 wt% addition of CaO. Average failure strength for this set of samples was calculated to be 220 (+/- 50) MPa. Cytotoxicity, and cell attachment studies were carried out using a modified human osteoblast cell line called OPC-1. In vitro results showed that these compositions were non-toxic. Some sintering aids enhanced cell attachment and proliferation, which was revealed from SEM examination of the scaffolds seeded with OPC-1 cells. PMID:14741598

  17. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-07-01

    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  18. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-10-01

    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  19. In vitro evaluation of bioactivity of CaO-SiO 2-P 2O 5-Na 2O-Fe 2O 3 glasses

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra Kumar; Kothiyal, G. P.; Srinivasan, A.

    2009-05-01

    Glasses with compositions 41CaO(52 - x)SiO 24P 2O 5· xFe 2O 33Na 2O (2 ≤ x ≤ 10 mol.%) were prepared by melt quenching method. Bioactivity of the different glass compositions was studied in vitro by treating them with simulated body fluid (SBF). The glasses treated for various time periods in SBF were evaluated by examining apatite formation on their surface using grazing incidence X-ray diffraction, Fourier transform infrared reflection spectroscopy, scanning electron microscopy and energy dispersive spectroscopy techniques. Increase in bioactivity with increasing iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass composition.

  20. Response of human bone marrow stromal cells to a resorbable P(2)O(5)-SiO(2)-CaO-MgO-Na(2)O-K(2)O phosphate glass ceramic for tissue engineering applications.

    PubMed

    Leonardi, E; Ciapetti, G; Baldini, N; Novajra, G; Verné, E; Baino, F; Vitale-Brovarone, C

    2010-02-01

    This work focuses on the synthesis and characterization of a novel bioresorbable glass ceramic phosphate-based material (GC-ICEL). More specifically, its solubility in different aqueous media (water, Tris-HCl and acellular simulated body fluid) and the response of human stromal cells cultured on it were investigated. X-ray diffraction analysis showed the presence of two crystalline phases identified as Na(2)Mg(PO(4))(3) and Ca(2)P(2)O(7) and dissolution tests highlighted a preferential dissolution of the Na(2)Mg(PO(4))(3) phase and of the residual amorphous phase in all the chosen media. Soaking tests in simulated body fluid showed precipitation of a hydroxyapatite layer, demonstrating the bioactivity of GC-ICEL, which is partially due to the reported bioactivity of Ca(2)P(2)O(7). The effect of GC-ICEL on adhesion, proliferation and osteoblastic gene expression of human bone marrow-derived stromal cells was also studied. Combining molecular and biochemical analyses, it was found that bone marrow cell differentiation was stimulated over proliferation on GC-ICEL. Moreover, the expression of bone-related genes in cells cultured on GC-ICEL confirmed the bioactivity of this phosphate-based glass ceramic, which might have a stimulatory effect on osteogenesis.

  1. In vitro reactivity of Na2O MgO SiO2 glasses

    NASA Astrophysics Data System (ADS)

    Roy, Debdas

    2007-12-01

    A variety of bioactive glasses have been investigated over the last two decades as substitute material for diseased or damaged tissues in a human body. In this investigation, three different melt derived bioactive glasses, each having 55% by mole SiO2 and ratio of MgO to Na2O varying from 1:8 to 8:1, were prepared by melting various oxides at temperature >1250 °C. After microstructure evolution, vitro reactivity of these glasses was examined by keeping them in simulated body fluid (trans buffered pH 7.25 at 25 cc). The surface reactivity of these glasses gradually increased with increasing Na2O/MgO ratio.

  2. Flower-like Na2O nanotip synthesis via femtosecond laser ablation of glass

    PubMed Central

    2012-01-01

    The current state-of-the-art in nanotip synthesis relies on techniques that utilize elaborate precursor chemicals, catalysts, or vacuum conditions, and any combination thereof. To realize their ultimate potential, synthesized nanotips require simpler fabrication techniques that allow for control over their final nano-morphology. We present a unique, dry, catalyst-free, and ambient condition method for creating densely clustered, flower-like, sodium oxide (Na2O) nanotips with controllable tip widths. Femtosecond laser ablation of a soda-lime glass substrate at a megahertz repetition rate, with nitrogen flow, was employed to generate nanotips with base and head widths as small as 100 and 20 nm respectively, and lengths as long as 10 μm. Control of the nanotip widths was demonstrated via laser dwell time with longer dwell times producing denser clusters of thinner nanotips. Energy dispersive X-ray analysis reveals that nanotip composition is Na2O. A new formation mechanism is proposed, involving an electrostatic effect between ionized nitrogen and polar Na2O. The synthesized nanotips may potentially be used in antibacterial and hydrogen storage applications. PMID:22809176

  3. Flower-like Na2O nanotip synthesis via femtosecond laser ablation of glass

    NASA Astrophysics Data System (ADS)

    Samarasekera, Champika; Tan, Bo; Venkatakrishnan, Krishnan

    2012-07-01

    The current state-of-the-art in nanotip synthesis relies on techniques that utilize elaborate precursor chemicals, catalysts, or vacuum conditions, and any combination thereof. To realize their ultimate potential, synthesized nanotips require simpler fabrication techniques that allow for control over their final nano-morphology. We present a unique, dry, catalyst-free, and ambient condition method for creating densely clustered, flower-like, sodium oxide (Na2O) nanotips with controllable tip widths. Femtosecond laser ablation of a soda-lime glass substrate at a megahertz repetition rate, with nitrogen flow, was employed to generate nanotips with base and head widths as small as 100 and 20 nm respectively, and lengths as long as 10 μm. Control of the nanotip widths was demonstrated via laser dwell time with longer dwell times producing denser clusters of thinner nanotips. Energy dispersive X-ray analysis reveals that nanotip composition is Na2O. A new formation mechanism is proposed, involving an electrostatic effect between ionized nitrogen and polar Na2O. The synthesized nanotips may potentially be used in antibacterial and hydrogen storage applications.

  4. Crystallization Behavior and Heat Transfer of Fluorine-Free Mold Fluxes with Different Na2O Concentration

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang; Kashiwaya, Yoshiaki

    2016-08-01

    In this study, the crystallization behavior and heat transfer of CaO-SiO2-Na2O-B2O3-TiO2-Al2O3-MgO-Li2O fluorine-free mold fluxes with different Na2O contents (5 to 11 mass pct) were studied using single/double hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams constructed using SHTT showed that crystallization temperature increased and incubation time shortened with the increase of Na2O concentration, indicating an enhanced crystallization tendency. The crystallization process of mold fluxes in the temperature field simulating the casting condition was also investigated using DHTT. X-ray diffraction (XRD) analysis of the quenched mold fluxes showed that the dominant phase changed from CaSiO3 to Ca11Si4B2O22 with the increasing concentration of Na2O. The heat transfer examined by IET showed that the increase of Na2O concentration reduced the responding heat flux when Na2O was lower than 9 mass pct but the further increase of Na2O to 11 mass pct enhanced the heat flux. The correlation between crystallinity and heat transfer was discussed in terms of crystallization tendency and crystal morphology.

  5. Dielectric Properties of Niobate Glass Ceramics of PbO-SrO-Na2O-Nb2O5-SiO2 System with Partial Substitution of K+ for Na+

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Zhang, Qingmeng; Tang, Qun; Cui, Hang; Xu, Yaohua; Lin, Chenguang; Du, Jun

    2016-06-01

    Substitution of K2O for Na2O content was performed for ferroelectric glass ceramics in the PbO-SrO-Na2O-Nb2O5-SiO2 system, in which a conventional melt quenching method was adopted for the parent glass production in order to investigate its effect on the crystallization process and associated dielectric properties. Phase identification combined with differential thermal analysis results show that the crystalline phase was compressed by the substitution of potassium ions. The hysteresis loop results demonstrate that by increasing the substitution of K+ for Na+, the maximal polarization was decreased while both the remanent polarization and coercive electric field increase. It is also noted that increasing the content of K+ could also reduce the dielectric constant of the glass ceramic system; the dielectric constant demonstrated a decrease from 775 to 299, meanwhile, the dielectric loss increased from 0.013 to 0.021 when 50 mol.% Na+ was replaced by K+. Additionally, leakage current results show that as more sodium ions are replaced by potassium ions, the leakage current increased and the resistivity decreased.

  6. Sulfide capacities of Na2O-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Reddy, R. G.; Zhao, W.

    1995-10-01

    Sulfide capacities of Na2O-SiO2 melts at 1473, 1523, 1573, 1623, and 1673 K were calculated a priori using the revised Reddy Blander model. An expression for C S in the composition range of 0≤ X SiO 2<1.0 was derived. Our predictions of C S values are in very good agreement with the experimental data available in the range of 0< X SiO 2<0.8. The sulfide capacities of slags are found to be directly related to two independent quantities: the equilibrium constant K and the activity of the base oxide.

  7. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity.

    PubMed

    Sola, A; Bellucci, D; Raucci, M G; Zeppetelli, S; Ambrosio, L; Cannillo, V

    2012-02-01

    Because of their excellent bioactivity, bioactive glasses are increasingly diffused to produce biomedical devices for bone prostheses, to face the dysfunctions that may be caused by traumatic events, diseases, or even natural aging. However, several processing routes, such as the production of scaffolds or the deposition of coatings, include a thermal treatment to apply or sinter the glass. The exposure to high temperature may induce a devetrification phenomenon, altering the properties and, in particular, the bioactivity of the glass. The present contribution offers an overview of the thermal behavior and properties of two glasses belonging to the Na2O-CaO-P2O5-SiO2 system, to be compared to the standard 45S5 Bioglass(®). The basic goal is to understand the effect of both the original composition and the thermal treatment on the performance of the sintered glasses. The new glasses, the one (BG_Na) with a high content of Na2O, the other (BG_Ca) with a high content of CaO, were fully characterized and sintering tests were performed to define the most interesting firing cycles. The sintered samples, treated at 880°C and 800°C respectively, were investigated from a microstructural point of view and their mechanical properties were compared to those of the bulk (not sintered) glass counterparts. The effect of sintering was especially striking on the BG_Ca material, whose Vickers hardness increased from 598.9 ± 46.7 HV to 1053.4 ± 35.0 HV. The in vitro tests confirmed the ability of the glasses, both in bulk and sintered form, of generating a hydroxyapatite surface layer when immersed in a simulated body fluid. More accurate biological tests performed on the sintered glasses proved the high bioactivity of the CaO-rich composition even after a heat treatment.

  8. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity.

    PubMed

    Sola, A; Bellucci, D; Raucci, M G; Zeppetelli, S; Ambrosio, L; Cannillo, V

    2012-02-01

    Because of their excellent bioactivity, bioactive glasses are increasingly diffused to produce biomedical devices for bone prostheses, to face the dysfunctions that may be caused by traumatic events, diseases, or even natural aging. However, several processing routes, such as the production of scaffolds or the deposition of coatings, include a thermal treatment to apply or sinter the glass. The exposure to high temperature may induce a devetrification phenomenon, altering the properties and, in particular, the bioactivity of the glass. The present contribution offers an overview of the thermal behavior and properties of two glasses belonging to the Na2O-CaO-P2O5-SiO2 system, to be compared to the standard 45S5 Bioglass(®). The basic goal is to understand the effect of both the original composition and the thermal treatment on the performance of the sintered glasses. The new glasses, the one (BG_Na) with a high content of Na2O, the other (BG_Ca) with a high content of CaO, were fully characterized and sintering tests were performed to define the most interesting firing cycles. The sintered samples, treated at 880°C and 800°C respectively, were investigated from a microstructural point of view and their mechanical properties were compared to those of the bulk (not sintered) glass counterparts. The effect of sintering was especially striking on the BG_Ca material, whose Vickers hardness increased from 598.9 ± 46.7 HV to 1053.4 ± 35.0 HV. The in vitro tests confirmed the ability of the glasses, both in bulk and sintered form, of generating a hydroxyapatite surface layer when immersed in a simulated body fluid. More accurate biological tests performed on the sintered glasses proved the high bioactivity of the CaO-rich composition even after a heat treatment. PMID:22052581

  9. Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.

    2015-08-01

    Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.

  10. Determination of Na(2)O from sodium aluminate NaAlO(2).

    PubMed

    Näykki, T; Raimo, A; Paavo, P; Antero, K; Päivi, N

    2000-07-31

    The aim of the work was to find a suitable method and conditions for determining Na(2)O wt.% from NaAlO(2). Problems were encountered while titrating NaAlO(2) with hydrochloric acid. The problematic area was the pH range 4-10 where aluminum precipitates as hydroxides. The different species of the aluminate solution were determined using potentiometric and complexometric titrations. The equivalent point of the potentiometric titration was detected using Gran's plotting method. Precipitation of aluminum hydroxides did not interfere with titrations, because in potentiometric titrations the pH value was over 10 and in complexometric titrations the pH was 4. The results were accurate and determinations were easy to carry out. Sodium was also determined by DCP-AES.

  11. Hydrothermal transformation of magadiite into ferrierite in Al 2O 3-Na 2O-ethylenediamine-H 2O system

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Yang, Yang; Cui, Miao; Sun, Jiangbo; Qi, Lin; Ji, Shouhua; Meng, Changgong

    2011-12-01

    This study investigated the transformation of magadiite into ferrierite in Al 2O 3-Na 2O-ethylenediamine (EDA)-H 2O system. The influence of various parameters such as reaction temperature, time, alkalinity, the reactant Na 2O/SiO 2 ratio and EDA/SiO 2 ratio were examined. Thermal and acid stability of the synthetic ferrierite are presented. Highly crystallized and pure ferrierite could be obtained from dispersion with the molar composition: 0.01 Na 2O: 0.005 Al 2O 3: SiO 2: 30 H 2O: 20 EDA by heating at 433 K for 48 h. The structure of ferrierite was destroyed when the temperature rose above 873 K and the framework of the sample, stirred in 5 mol/L HCl for 3 h, is consistent with the untreated ferrierite.

  12. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.

  13. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  14. Effects of CaO/SiO2 Ratio and Na2O Content on Melting Properties and Viscosity of SiO2-CaO-Al2O3-B2O3-Na2O Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Zhang, Chen; Cai, Dexiang; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg

    2016-09-01

    This paper investigated the effects of CaO/SiO2 ratio (0.8 to 1.5) and Na2O concentration (6 to 9 wt pct) on melting properties and viscosity of SiO2-CaO-Al2O3-B2O3-Na2O mold fluxes with a fixed B2O3 content. Melting properties of fluxes (softening temperature T s, hemispherical temperature T h, and fluidity temperature T f) were determined by the hot-stage microscopy method. Viscosity was measured using rotating cylindrical viscometer, and structure of quenched fluxes was studied using Raman spectroscopy. Equilibrium phases in the SiO2-CaO-Al2O3-B2O3-Na2O system were calculated using FactSage. It was found that T h decreased with increasing CaO/SiO2 ratio from 0.8 to 1.0 and increased with a further increase in the CaO/SiO2 ratio to 1.5. The effect of Na2O content in the range of 6 to 9 wt pct on T h of the flux with a fixed CaO/SiO2 ratio at 1.3 was marginal. Increasing CaO/SiO2 ratio and Na2O content increased the break temperature and reduced the value of viscosity at 1673 K (1400 °C). Viscosity of liquid fluxes was discussed in the relationship with the flux structure. Melting properties and viscosity of boracic fluxes were compared with those of industrial fluorine-containing mold fluxes.

  15. Investigation of SiO2:Na2O ratio as a corrosion inhibitor for metal alloys

    NASA Astrophysics Data System (ADS)

    Mohamad, N.; Othman, N. K.; Jalar, A.

    2013-11-01

    The silicate is one of the potential compounds used as a corrosion inhibitor for metal alloys. The mixture between silica and sodium hydroxide (NaOH) succeeded to produce the silicate product. The formulation of a silicate product normally variable depended by the different ratio of SiO2:Na2O. This research utilized the agriculture waste product of paddy using its rice husk. In this study, the amorphous silica content in rice husk ash was used after rice husk burnt in a muffle furnace at a certain temperature. The X-ray diffraction (XRD) analysis was done to determine the existence of amorphous phase of silica in the rice husk ash. There are several studies that recognized rice husk as an alternative source that obtained high silica content. The X-ray fluorescence (XRF) analysis was carried out to clarify the percentage amount of Si and O elements, which referred the silica compound in rice husk ash. The preparation of sodium silicate formulation were differ based on the SiO2:Na2O ratio (SiO2:Na2O ratio = 1.00, 2.00 and 3.00). These silicate based corrosion inhibitors were tested on several testing samples, which were copper (99.9%), aluminum alloy (AA 6061) and carbon steel (SAE 1045). The purpose of this study is to determine the appropriate SiO2:Na2O ratio and understand how this SiO2:Na2O ratio can affect the corrosion rate of each metal alloys immersed in acidic medium. In order to investigate this study, weight loss test was conducted in 0.5 M hydrochloric acid (HCl) for 24 hours at room temperature.

  16. Evaluation of CaO-SiO2-P2O5-Na2O-Fe2O3 bioglass-ceramics for hyperthermia application.

    PubMed

    Singh, Rajendra Kumar; Srinivasan, A; Kothiyal, G P

    2009-12-01

    Magnetic bioglass ceramics (MBC) are being considered for use as thermoseeds in hyperthermia treatment of cancer. While the bioactivity in MBCs is attributed to the formation of the bone minerals such as crystalline apatite, wollastonite, etc. in a physiological environment, the magnetic property arises from the magnetite [Fe3O4] present in these implant materials. A new set of bioglasses with compositions 41CaO x (52-x)SiO2 x 4P2O5 x xFe2O3 x 3Na2O (2 < or = x < or = 10 mol% Fe2O3) have been prepared by melt quenching method. The as-quenched glasses were then heat treated at 1050 degrees C for 3 h to obtain the glass-ceramics. The structure and microstructure of the samples were characterized using X-ray diffraction and microscopy techniques. X-ray diffraction data revealed the presence of magnetite in the heat treated samples with x > or = 2 mol% Fe2O3. Room temperature magnetic property of the heat treated samples was investigated using a Vibrating Sample Magnetometer. Field scans up to 20 kOe revealed that the glass ceramic samples had a high saturation magnetization and low coercivity. Room temperature hysteresis cycles were also recorded at 500 Oe to ascertain the magnetic properties at clinically amenable field strengths. The area under the magnetic hysteresis loop is a measure of the heat generated by the MBC. The coercivity of the samples is another important factor for hyperthermia applications. The area under the loop increases with an increase in Fe2O3 molar concentration and the. coercivity decreases with an increase in Fe2O3 molar concentration The evolution of magnetic properties in these MBCs as a function of Fe2O3 molar concentration is discussed and correlated with the amount of magnetite present in them. PMID:18560766

  17. Influence of modification of Na2O in a glass matrix on the strength of leucite-containing porcelains.

    PubMed

    Lee, H H; Kon, M; Asaoka, K

    1997-12-01

    The desirable thermal properties of matrix glass to the strength of feldspar porcelain with leucite crystal were investigated. Five kinds of feldspar glasses, each with different a content of Na2O, were prepared for the matrix glasses of the leucite-containing porcelains. The specimens were arranged by mixing each glass powder with high-purity natural leucite crystals (0, 20 and 40%) followed by firing. The thermal properties of the glass and the transformation temperature of the leucite were measured. A three-point bending test was performed to measure the flexural strength of the porcelains. The glass transition temperature and deformation temperature of the glass-only porcelains were decreased as the Na2O content increased. The Na2O-modified glasses were substantially strengthened by the leucite dispersion. However, the strength of the porcelains was affected by the relation between the transformation temperature of the leucite and the thermal properties of the glass matrix. It was concluded that control of the residual stress in the composite porcelain is an important factor in developing high strength porcelain containing leucite. PMID:9555252

  18. The sulfur partition ratio and the sulfide capacity of Na2O-SiO2 slags at 1200 °C

    NASA Astrophysics Data System (ADS)

    Chan, Allen H.; Fruehan, R. J.

    1986-09-01

    The sulfur partition ratio between carbon-saturated iron and Na2O-SiO2 slags and the sulfide capacity of these slags have been measured at 1200 °C. The two measurements are consistent with each other and the results are compared with other investigations. These slags have higher sulfide capacities and partition ratios than equivalent CaO-based slags and are thus attractive desulfurizers. Both the sulfide capacity and the partition ratio increase with increasing Na2O. The activity coefficient of Na2S has been calculated; it also increases with increasing Na2O. The solubility of sulfur in a slag of 0.4 mole fraction Na2O is estimated to be 5 pct.

  19. Non-Potassic Melts In CMAS-CO2-H2O-K2O Model Peridotite

    NASA Astrophysics Data System (ADS)

    Buisman, I.; Walter, M. J.; Keshav, S.

    2009-12-01

    Volatile mediated model systems have been fundamental in shaping our knowledge about the way we view melting phase relations of peridotite at various depths in the Earth. Volatiles not only affect the melting temperatures, but the resulting liquids are, in some case, dramatically different than those witnessed in melting of dry peridotite. For example, the influence of CO2 and H2O on the melting phase relations of model peridotite shows a remarkable decrease in the solidus temperatures when compared to the dry peridotite (Gudfinnsson and Presnall, 2005). These model systems illustrate a gradational change above the solidus from carbonatites to kimberlites over several hundreds of degrees. Group-II kimberlites are ultrapotassic rocks with high water content where the mineral phlogopite is abundant. To get a better understanding of the melting phase relations related to carbonatitic and kimberlitic magmas, K2O was added to the system CMAS-CO2-H2O. In these systems, fluid and melt can co-exist in P-T space. However, from past studies, it is also known that in hydrous systems, both the fluid and melt will become indistinguishable from one another creating a singularity (second critical endpoint). Starting from the solidus located in six components (Keshav and Gudfinnsson, AGU abstract, 2009), with seven phases, melting phase relations in CMAS-CO2-H2O-K2O involving, fo-opx-cpx-garnet-carbonate-melt-fluid, are divariant. Fluid was recognized with the observation of large cavities seen in exposed capsules. Moreover, the presence of bright, needle-like grains found in large cavities in backscattered images implies the presence of solute in the fluid phase. Significantly, liquids on this divariant region have about 1000 ppm K2O, and so is the case with accompanying cpx. Hence, with this non-interesting amount of K2O in the mentioned phases, fluid must have all the potassium. At 30 kbar/1100C, with fo-opx-cpx-garnet-carbonate-phlogopite-melt-fluid, the melting phase

  20. Thermal and fragility studies on microwave synthesized K2O-B2O3-V2O5 glasses

    NASA Astrophysics Data System (ADS)

    Harikamalasree, Reddy, M. Sudhakara; Viswanatha, R.; Reddy, C. Narayana

    2016-05-01

    Glasses with composition xK2O-60B2O3-(40-x) V2O5 (15 ≤ x ≤ 39 mol %) was prepared by an energy efficient microwave method. The heat capacity change (ΔCp) at glass transition (Tg), width of glass transition (ΔTg), heat capacities in the glassy (Cpg) and liquid (Cpl) state for the investigated glasses were extracted from Modulated Differential Scanning Calorimetry (MDSC) thermograms. The width of glass transition is less than 30°C, indicating that these glasses belongs to fragile category. Fragility functions [NBO]/(Vm3Tg) and (ΔCp/Cpl)increases with increasing modifier oxide concentration. Increase in fragility is attributed to the increasing coordination of boron. Further, addition of K2O creates NBOs and the flow mechanism involves bond switching between BOs and NBOs. Physical properties exhibit compositional dependence and these properties increase with increasing K2O concentration. The observed variations are qualitatively analyzed.

  1. FT-IR and thermoluminescence investigation of P2O5-BaO-K2O glass system

    NASA Astrophysics Data System (ADS)

    Ivascu, C.; Timar-Gabor, A.; Cozar, O.

    2013-11-01

    The 0.5P2O5ṡxBaOṡ(0.5-x)K2O glass system (0≤x≤0.5mol%) is investigated by FT-IR and thermoluminescence as a possible dosimetic material. FT-IR spectra show structural network modifications with the composition variations of the studied glasses. The predominant absorption bands are characterized by two broad peaks near 500 cm-1, two weak peaks around 740 cm-1 and three peaks in the 900-1270 cm-1 region. The shift in the position of the band assigned to asymmetric stretching of PO2- group, υas(PO2-) modes from ˜1100 cm-1 to 1085 cm-1 and the decrease in its relative intensity with the increasing of K2O content shows a network modifier role of this oxide.. Luminescence investigations show that by adding modifier oxides in the phosphate glass a dose dependent TL signals result upon irradiation. Thus P2O5-BaO-K2O glass system is a possible candidate material for dosimetry in the dose 0 - 50 Gy range.

  2. The Influence of Na2O on the Solidification and Crystallization Behavior of CaO-SiO2-Al2O3-Based Mold Flux

    NASA Astrophysics Data System (ADS)

    Gao, Jinxing; Wen, Guanghua; Sun, Qihao; Tang, Ping; Liu, Qiang

    2015-08-01

    The reaction between [Al] and SiO2 sharply increased the Al2O3 and decreased SiO2 contents in mold flux during the continuous casting of high-Al steels. These changes converted original CaO-SiO2-based flux into CaO-SiO2-Al2O3-based flux, promoting the crystallization and deteriorating the mold lubrication. Therefore, study on the solidification and crystallization behavior of CaO-SiO2-Al2O3-based mold flux, with the applicable fluidizers, is of importance. The effect of Na2O, predominantly used as the fluidizer in mold flux, on the solidification and crystallization behavior of CaO-SiO2-Al2O3-based mold flux needs to be investigated. In this study, a CaO-SiO2-Al2O3-based mold flux containing 6.5 wt pct Li2O was designed; the effect of Na2O on the solidification and crystallization behavior of these mold fluxes was investigated using the single hot thermocouple technique (SHTT) and the double hot thermocouple technique (DHTT). Moreover, the slag film obtained by a heat flux simulator was analyzed using X-ray diffraction (XRD). The results indicate that the solid fraction of molten slag (Fs) and the crystalline fraction of solid slag (Fc) in the mold slag films decrease with increasing Na2O content from 0 to 2 wt pct. However, Fs and Fc increased when the Na2O content increased from 2 to 6 wt pct. The critical cooling rates initially decreases and then increases with increasing Na2O content. The XRD analysis results show that LiAlO2 and CaF2 were the basic crystals for all the mold fluxes. Increasing the Na2O content both inhibits the Ca2Al2SiO7 formation and promotes the production of Ca12Al14O33, indicating that the mold lubrication deteriorated because of the high melting-point phase formation of Ca2Al2SiO7 in the CaO-SiO2-Al2O3-based mold flux containing 6.5 wt pct Li2O, without Na2O. The strong crystallization tendency also deteriorated the mold lubrication for the mold flux with a higher Na2O content. Therefore, the addition of Na2O was less than 2 wt pct in

  3. Understanding the magnetic behavior of heat treated CaO-P2O5-Na2O-Fe2O3-SiO2 bioactive glass using electron paramagnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2014-09-01

    Bioactive glass of composition 41CaO-44SiO2-4P2O5-8Fe2O3-3Na2O has been heat treated in the temperature (TA) range of 750-1150 °C for time periods (tA) ranging from 1 h to 3 h to yield magnetic bioactive glass ceramics (MBCs). X-ray diffraction studies indicate the presence of bone mineral (hydroxyapatite and wollastonite) and magnetic (magnetite and α-hematite) phases in nanocrystalline form in the MBCs. Electron paramagnetic resonance (EPR) study was carried out to understand the variation in saturation magnetization and coercivity of the MBCs with TA and tA. These studies reveal the nature and amount of iron ions present in the MBCs and their interaction in the glassy oxide matrix as a function of annealing parameters. The deterioration in the magnetic properties of the glass heat treated above 1050 °C is attributed to the crystallization of the non-magnetic α-hematite phase. These results are expected to be useful in the application of these MBCs as thermoseeds in hyperthermia treatment of cancer.

  4. Studies on influence of aluminium ions on the bioactivity of B2O3-SiO2-P2O5-Na2O-CaO glass system by means of spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Mohini, G. Jagan; Krishnamacharyulu, N.; Sahaya Baskaran, G.; Rao, P. Venkateswara; Veeraiah, N.

    2013-12-01

    Bioactive multi component glasses of the composition of 27.4 B2O3-6.4 SiO2-2.5 P2O5-25.5 Na2O-(38.2 - x) CaO: x Al2O3 (x between 0 and 3.2) were synthesized, by melt quenching technique and their bioactivity was investigated as a function of Al2O3 concentration. Initially, optical absorption and infrared spectra were recorded and analyzed in order to have some pre-understanding over structural aspects of the glasses. For understanding the bioactivity, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (∼30 days) and the weight loss measurements were carried out. The spectroscopic studies were repeated on the post immersed samples. From the comparison of the analysis of the spectroscopic data of both pre-immersed and post-immersed samples together with the information on variation of pH value of residual solution as a function of immersion time, it is concluded that the participation of aluminium ions in tetrahedral positions is hindrance for the formation of HA layer and for the bioactivity of the samples.

  5. Lateral variation of H2O/K2O ratios in Quaternary Magma of the Northeastern Japan arc

    NASA Astrophysics Data System (ADS)

    Miyagi, I.

    2012-12-01

    Water plays a fundamental role in the magma genesis beneath subduction zones. In order to estimate a spatial distribution of the density of water flux in the wedge mantle of the Northeastern Japan arc, this study examines a lateral variation of pre-eruptive bulk rock H2O/K2O contents among volcanoes located both in the frontal and in back arc settings. The analytical targets are the frontal volcanoes Nigorikawa (N42.12 E140.45), Zenikame (N41.74 E140.85), Adachi (N38.22 E140.65), and Nanashigure (N40.07 E141.11), and the back arc ones Hijiori (N38.61 E140.17) and Kanpu (N39.93 E139.88). The bulk magmatic H2O content (TH2O) is calculated from a mass balance of hydrogen isotopic ratios among three phases in a batch of magma; dissolved water in melt, excess H2O vapor, and hydrous phenocrysts such as amphiboles (Miyagi and Matsubaya, 2003). Since the amount of H2O in hydrous phenocryst is negligible, the bulk magmatic H2O content can be written as TH2O = (30 XD CD) / (15 - dT + dMW), where dMW is the measured hydrogen isotopic ratio of hydrous phenocrysts, XD is a melt fraction of magma, CD is a water concentration of the melt, and dT is hydrogen isotopic ratios of a bulk magma (assumed to be -50 per-mil). Both XD and CD are estimated from bulk rock chemistry of the sample using the MELTS program (Ghiorso and Sack, 1995). Hydrogen isotopic fractionation factors are assumed to be -15 and -30 per-mil for vapor and hydrous mineral, and vapor and silicate melt, respectively. There observed a clear difference among the H2O/K2O ratios of bulk magmas from the frontal and back arc volcanoes. For instance higher H2O/K2O wt ratios was observed in the frontal volcanoes (Nigorikawa 5.3, Zenikame 11-12, Adachi 8-10, and Nanashigure 4-18), while lower H2O/K2O wt ratios was observed in the back arc ones (Kanpu 0-2.5 and Hijiori 1.4). The lateral variation of H2O/K2O ratios infer the higher water flux through the frontal side of wedge mantle, which can be a potential cause of the

  6. Modification of the Structure of Ti-Bearing Mold Flux by the Simultaneous Addition of B2O3 and Na2O

    NASA Astrophysics Data System (ADS)

    Li, Zhongmin; Sun, Yongqi; Liu, Lili; Zhang, Zuotai

    2016-03-01

    The present paper mainly focused on how B2O3 and Na2O additions influenced the structure of the Ti-bearing fluoride-free mold flux and investigated how the boron-related units were affected by Na2O. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, 11B magic angle spinning-nuclear magnetic resonance (MAS-NMR), and X-ray photoelectron spectroscopy (XPS) were utilized to identify different structural units and to analyze the overall modification of the network by additives. It was found that BO3 was more abundant than BO4 in the flux. In addition, the addition of B2O3 and Na2O was proved to promote conversion from non-ring BO3 to tetrahedral BO4, and this was confirmed by FTIR and 11B MAS NMR analysis. BO3 was a two-dimensional structure unit and contributed to construct a less stable network. With increasing B2O3 content, degree of polymerization of the flux was increased as confirmed by increased fraction of Q 3 in Raman spectra and non-bridging oxygen in XPS. By contrast, the addition of Na2O, which is a strong network breaker, brought about more non-bridging oxygen by breaking the Si-O-Si linkage which was verified by XPS results. Consequently, a less polymerized network was observed by decreasing content of Q 3 from Raman spectra.

  7. A semi-empirical thermodynamic formalism for high-pressure aqueous silicate solutions in the model system K2O-Na2O-CaO-MgO-Al2O3-SiO2-H2O-CO2, a first approach

    NASA Astrophysics Data System (ADS)

    Schertl, H.; Burchard, M.; Hertwig, A.; Maresch, W. V.

    2012-12-01

    The results of experimental solubility determinations in aqueous solutions at high pressures up to 5 GPa are often difficult to gauge with respect to precision and accuracy, because of the potential uncertainties inherent in the available experimental approaches. Existing models of aqueous silicate solutions at low pressures are either unsuitable for extrapolation beyond 0.5 to 1.0 GPa or involve polynomial fits in which the fit parameters lack direct physical meaning. An approach described by Gerya et al. [1,2], based on statistical thermodynamics, allows aqueous silicate solutions to be described as mixtures of fictive oxide "components" together with water molecules in both clustered and "gas-like", i.e. unassociated, states. Burchard et al. [3] presented a first data set for fluids in the system CaO-SiO2-H2O, using the statistical thermodynamic formulation of Gerya et al [1,2] and extending it to include charged fluid species such as Ca2+, Ca(OH)+, Ca(OH)2, OH- and H+. We have now further developed the data set of Burchard et al. [3] by including carbonic fluid species and extending the model system to include MgO and Al2O3. In addition, initial progress has been made in including potassium and sodium model species. Solid phase data were obtained by mathematical conversion of existing thermodynamic mineral data into the semi-empirical form. With this semi-empirical data set calculations for simple, "wet" silicate rocks are now possible. We present applications to suites of jadeitites and jadeite-lawsonite-quartz rocks from the Rio San Juan serpentinite mélanges of the northern Dominican Republic. These rocks have crystallized from high-pressure aqueous fluids in a long-lived intra-oceanic subduction-zone environment at various times and at different P-T conditions (Schertl et al. [4]). The fluid-rock interactions leading to these spectacular rocks are still poorly understood. [1] Gerya et al. (2004) Phys. Chem. Minerals 31, 429-455; [2] Gerya et al. (2005) Eur. J. Mineral. 17, 269-283; [3] Burchard et al. (2011) Eur. J. Mineral. 23, 409-424; Schertl et al. (2012) Eur. J. Mineral. 24, 199-216.

  8. Metamorphic evolution of eclogites at Qinglongshan: modeling in system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3

    NASA Astrophysics Data System (ADS)

    Yan, R.; Yang, J.; Zhang, Z.

    2011-12-01

    Eclogite at Qinglongshan in NE Jiangsu province is one of the research objects which are investigated frequently and products are remarkable in ultra-high pressure (UHP) metamorphic petrology and geochemistry nearly twenty years. Though scholars in China and abroad have made abundant petrological work, there are opposite perspectives to some important petrological questions such as peak assemblage, crystalization time and condition of epidote porphyroblasts which contain coesite, peak assemblage contains talc or not, lawsonite has occurred in the rock or not. This paper choose eclogites in Qinglongshan. Besides traditional petrological work, we applied phase diagram modeling to mineral assemblage and chemical composition, quantitatively investigating the change with temperature and pressure. With the help of petrographic observation the petrological questiones can be solved. Eclogites in Qinglongshan can be divided into three categories: porphyroblastic foliated eclogites, granular massive eclogites and banded eclogites. The peak assemblage in three kinds of eclogites is garnet + omphacite + phengite + kyanite +rutile + coesite. The minerals in the peak assemblage show shape preferred orientation defining the rock foliation in porphyroblastic eclogites. The peak assemblage defined by garnet compositional isopleths in the calculated phase diagram is garnet +omphacite + phengite + kyanite + rutile + coesite + lawsonite + talc in porphyroblastic eclogites, and is garnet + omphacite + phengite + kyanite + rutile +coesite + lawsonite in banded eclogites, both inconsistent with the petrographic observation. This discrepancy probably resulted from the assumption of pure water as the ultrahigh-pressure (UHP) fluid phase. Three stages of metamorphism are established for Qinglongshan eclogites. Prograde inclusions such as amphibole, epidote, plagioclase, chlorite, muscovite, paragonite and albite coexist in the area of < 0.8GPa and < 575. It can infer from mineral assemblage that peak temperature and pressure are higher than 710 and 2.9GPa in porphyroblastic eclogites and >620 and 2.9GPa in banded eclogites. Both petrography and phase diagram modelling demonstrate a crystallization sequence of kyanite-epidote-talc, with the first two having begun to crystallize at UHP condition and hence including coesite. The mode of epidote increases dramatically at < 2 GPa resulting in the formation of large porphyroblasts. The randomly oriented porphyroblasts overprint the rock foliation, implying that they crystallized later than the peak assemblage under a weak shear stress field. Kyanite begun to crystallize at early retrogression in banded eclogites. Epidote begun to develop at low pressure, so there is no coesite in banded eclogites. Symplectite is the product of late retrograde metamorphism. The P-T paths of porphyroblastic eclogites and banded eclogites defined by the mineral assemblages are both typically the hair-pin type. The amounts of hydrous minerals increased during retrogression, implying continuous ingress of fluids into the rock.

  9. Structural characterization and physical properties of P2O5-CaO-Na2O-TiO2 glasses by Fourier transform infrared, Raman and solid-state magic angle spinning nuclear magnetic resonance spectroscopies.

    PubMed

    Kiani, Azadeh; Hanna, John V; King, Scott P; Rees, Gregory J; Smith, Mark E; Roohpour, Nima; Salih, Vehid; Knowles, Jonathan C

    2012-01-01

    Phosphate-based glasses have been investigated for tissue engineering applications. This study details the properties and structural characterization of titanium ultra-phosphate glasses in the 55(P(2)O(5))-30(CaO)-(25-x)(Na(2)O)-x(TiO(2)) (0≤x≤5) system, which have been prepared via melt-quenching techniques. Structural characterization was achieved by a combination of X-ray diffraction (XRD), and solid-state nuclear magnetic resonance, Raman and Fourier transform infrared spectroscopies. Physical properties were also investigated using density, degradation and ion release studies; additionally, differential thermal analysis was used for thermal analysis of these glasses. The results show that with the addition of TiO(2) the density and glass transition temperature increased whereas the degradation and ion release properties are decreased. From XRD data, TiP(2)O(7) and CaP(2)O(6) were detected in 3 and 5 mol.% TiO(2)-containing glasses. Magic angle spinning nuclear magnetic resonance results confirmed that as TiO(2) is incorporated into the glass; the amount of Q(3) increases as the amount of Q(2) consequently decreases, indicating increasing polymerization of the phosphate network. Spectroscopy results also showed that the local structure of glasses changes with increasing TiO(2) content. As TiO(2) is incorporated into the glass, the phosphate connectivity increases, indicating that the addition of TiO(2) content correlates unequivocally with an increase in glass stability.

  10. Electrosynthesis, structural transitions and characterization of the new 10H-Ba 5Ru 3Na 2O 14

    NASA Astrophysics Data System (ADS)

    Quarez, Eric; Mentré, Olivier

    2003-08-01

    The electrosynthesis in molten NaOH was successfully used in the BaRuNaO system, leading to the preparation of the new Ba 5Ru 3Na 2O 14 oxide. This compound contains both isolated Ru 6+ and dimers of Ru 5+ cations. Because of anions deficient layers and vacancies ordering versus the temperature, the crystal structure was refined at three strategic temperatures from single crystal data. It adopts a 10H-perovskite related structure in which the central cubic block reorganizes itself with the temperature modifying Na + and Ru 6+ environments. At 100 K, the crystal symmetry is orthorhombic (pseudo-hexagonal), a=5.845(1) Å, b=10.145(2) Å, c=24.163(5) Å, space group C222 1, R1=4.45% and wR2=9.31%. The stacking sequence is (c'chcc') 2 where c and h stand for cubic and hexagonal BaO 3 layers, respectively, and c' stands for BaO 2.5□ 0.5 layers. At 298 K, a=5.8146(4) Å, b=10.2812(7) Å, c=24.173(2) Å, the space group is Cmc2 1, and the stacking sequence is (cchcc″) 2 where c″ stands for cubic BaO 2□, R1=4.18% and wR2=11.08%. Two anomalies measured on χAC versus T at 265 and 214 K, respectively, suggest that the C222 1→ Cmc2 1 transition would occur at one of these two temperatures. An order/disorder transition is then observed by XRD at 723 K assorted with an orthorhombic to hexagonal symmetry increasing. The 823 K crystal structure has been refined in the P 6¯2c space group and the sequence is (c‴chcc‴) 2 where c‴ stands for cubic Ba(O 5/6□ 1/6) 3, a=5.9261(8) Å, c=24.400(5) Å, R1=6.45%, wR2=13.40%. Ru 5+2O 9 dimers are likely antiferromagnetically coupled from room temperature and the strong phenomenon observed at 29 K on χAC= f( T) is possibly related to Ru 6+Ru 5+2O 9 indirect magnetic exchanges. It is accompanied by a brutal increase of the resistivity.

  11. Phase equilibria in the oxide system Nd 2O 3-K 2O-P 2O 5

    NASA Astrophysics Data System (ADS)

    Szczygieł, Irena; Znamierowska, Teresa; Mizer, Dagmara

    2010-07-01

    A phase equilibria diagram of the partial system NdPO 4-K 3PO 4-KPO 3 has been developed as part of the research aimed at determining the phase equilibrium relationships in the oxide system Nd 2O 3-K 2O-P 2O 5. The investigations were conducted using thermoanalytical techniques, X-ray powder diffraction analysis and reflected-light microscopy. Three isopleths existing between: K 3Nd(PO 4) 2-K 4P 2O 7, NdPO 4-K 5P 3O 10 and NdPO 4-K 4P 2O 7 have been identified in the partial NdPO 4-K 3PO 4-KPO 3 system. Previously unknown potassium-neodymium phosphate "K 4Nd 2P 4O 15" has been discovered in the latter isopleth section. This phosphate exists in the solid phase up to a temperature of 890 °C at which it decomposes into the parent phosphates NdPO 4 and K 4P 2O 7. Four invariant points: two quasi-ternary eutectics, E 1 (1057 °C) and E 2 (580 °C) and two quasi-ternary peritectics, P 1 (1078 °C) and P 2 (610 °C), occur in the NdPO 4-K 3PO 4-KPO 3 region.

  12. Phase Equilibria Study in the TeO2-Na2O-SiO2 System in Air Between 723 K (500 °C) and 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Santoso, Imam; Taskinen, Pekka

    2016-08-01

    Knowledge of phase equilibria in the TeO2-Na2O-SiO2 system at elevated temperatures is important for ceramic and glass industries and for improving the operation of the smelting process of tellurium-containing materials. A review of previous investigations has indicated, however, that there are omissions in the available datasets on the liquidus temperatures of the molten TeO2-Na2O-SiO2 mixtures. The employed experimental method included equilibration of mixtures made from high purity oxides, rapid quenching of the equilibrated samples in water and followed by compositional analysis of the phases using an electron probe X-ray microanalyzer. The liquidus and phase equilibria in the TeO2-SiO2, TeO2-Na2O, and SiO2-TeO2-Na2O systems have been studied for a wide range of compositions between 723 K (500 °C) and 1473 K (1200 °C) at TeO2, SiO2, and Na2SiO3 saturations. New data have been generated in the SiO2-TeO2-Na2O system at SiO2 saturation. The liquidus compositions in the TeO2-Na2O system at TeO2 saturation have been compared with the previous data and an assessed phase diagram.

  13. Silicate liquid immiscibility in magmas and in the system K2O-FeO-AI2O3-SiO2: an example of serendipity

    USGS Publications Warehouse

    Roedder, E.

    1978-01-01

    The concept of silicate liquid immiscibility was invoked early in the history of petrology to explain certain pairs of compositionally divergent rocks, but. as a result of papers by Greig (Am. J. Sci. 13, 1-44, 133-154) and Bowen (The Evolution of the Igneous Rocks), it fell into disfavor for many years. The discovery of immiscibility in geologically reasonable temperature ranges and compositions in experimental work on the system K2O-FeO-Al2O3-SiO2, and of evidence for immiscibility in a variety of lunar and terrestrial rocks, has reinstated the process. Phase equilibria in the high-silica corner of the tetrahedron representing the system K2O- FeO-Al2O3-SiO2 are presented, in the form of constant FeO sections through the tetrahedron, at 10% increments. Those sections, showing the tentative relationships of the primary phase volumes, are based on 5631 quenching runs on 519 compositions, made in metallic iron containers in pure nitrogen. Thirteen crystalline compounds are involved, of which at least six show two or more crystal modifica-tions. Two separate phase volumes, in each of which two immiscible liquids, one iron-rich and the other iron-poor, are present at the liquidus. One of these volumes is entirely within the quaternary system, astride the 1:1 K2O:Al2O3 plane. No quaternary compounds as such have been found, but evidence does point toward at least partial quaternary solid solution, with rapidly lowering liquidus temperatures, from K2O??Al2O3?? 2SiO2 ('potash nepheline', kalsilite. kaliophilite) to the isostructural compound K2O??FeO??3SiO2, and from K2O??Al2O3??4SiO2 (leucite) to the isostructural compound K2O??FeO??5SiO2, Both of these series apparently involve substitution, in tetrahedral coordination. of a ferrous iron and a silicon ion for two aluminum ions. Some of the 'impurities' found in analyses of the natural phases may reflect these substitutions. As a result of the geometry of the immiscibility volume located entirely within the quaternary

  14. Gels and gel-derived glasses in the system Na2O-B2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1983-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the system Na2O-B2O3-SiO2 are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures was found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel monoliths to transparent 'glass' without melting are described.

  15. Gels and gel-derived glasses in the Na2O-B2O3-SiO2 system. [containerless melting in space

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1982-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel-monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the Na2O-B2O3-SiO2 system are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures were found to be significantly different. IR absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel-monoliths to transparent 'glass' without melting are described.

  16. Dissolution Behavior of Rhodium in the Na2O-SiO2 and CaO-SiO2 Slags

    NASA Astrophysics Data System (ADS)

    Wiraseranee, Chompunoot; Okabe, Toru H.; Morita, Kazuki

    2013-06-01

    To understand the behavior of rhodium during its recovery process, the dissolution behaviors of rhodium in Na2O-SiO2 and in CaO-SiO2 slags at temperatures ranging from 1423 K to 1623 K (from 1150 °C to 1350 °C) and from 1773 K to 1873 K (from 1500 °C to 1600 °C), respectively, in an oxidizing atmosphere were investigated. The solubility of rhodium in the slags was found to increase with increasing oxygen partial pressure, temperature, and the basic oxide content. The correlation between the solubility of rhodium and the oxygen partial pressure suggested that rhodium dissolved into the slags as RhO1.5. The dissolution of rhodium was slightly endothermic: the enthalpy change of the dissolution of solid rhodium was determined to be 50 ± 10 kJ/mol for the 50(mass pct)Na2O-50SiO2; and 188 ± 94 kJ/mol for the 56(mass pct)CaO-44SiO2 slag systems. The increase in the solubility of rhodium with the basic oxide content indicated that rhodium exhibits acidic behavior in slags. The correlation between the solubility of rhodium and the sulfide capacity of the slags suggested that the ionic species of rhodium in slags is the rhodate ion, RhO{2/-}. The rhodate capacity of the slags was defined, and its application to estimate the possible rhodium content in various slag systems was proposed.

  17. Coded Access Optical Sensor (CAOS) Imager

    NASA Astrophysics Data System (ADS)

    Riza, N. A.; Amin, M. J.; La Torre, J. P.

    2015-04-01

    High spatial resolution, low inter-pixel crosstalk, high signal-to-noise ratio (SNR), adequate application dependent speed, economical and energy efficient design are common goals sought after for optical image sensors. In optical microscopy, overcoming the diffraction limit in spatial resolution has been achieved using materials chemistry, optimal wavelengths, precision optics and nanomotion-mechanics for pixel-by-pixel scanning. Imagers based on pixelated imaging devices such as CCD/CMOS sensors avoid pixel-by-pixel scanning as all sensor pixels operate in parallel, but these imagers are fundamentally limited by inter-pixel crosstalk, in particular with interspersed bright and dim light zones. In this paper, we propose an agile pixel imager sensor design platform called Coded Access Optical Sensor (CAOS) that can greatly alleviate the mentioned fundamental limitations, empowering smart optical imaging for particular environments. Specifically, this novel CAOS imager engages an application dependent electronically programmable agile pixel platform using hybrid space-time-frequency coded multiple-access of the sampled optical irradiance map. We demonstrate the foundational working principles of the first experimental electronically programmable CAOS imager using hybrid time-frequency multiple access sampling of a known high contrast laser beam irradiance test map, with the CAOS instrument based on a Texas Instruments (TI) Digital Micromirror Device (DMD). This CAOS instrument provides imaging data that exhibits 77 dB electrical SNR and the measured laser beam image irradiance specifications closely match (i.e., within 0.75% error) the laser manufacturer provided beam image irradiance radius numbers. The proposed CAOS imager can be deployed in many scientific and non-scientific applications where pixel agility via electronic programmability can pull out desired features in an irradiance map subject to the CAOS imaging operation.

  18. Present Y chromosomes reveal the ancestry of Emperor CAO Cao of 1800 years ago.

    PubMed

    Wang, Chuanchao; Yan, Shi; Hou, Zheng; Fu, Wenqing; Xiong, Momiao; Han, Sheng; Jin, Li; Li, Hui

    2012-03-01

    Emperor CAO Cao (155AD-220AD) is one of the most famous persons in Chinese history that had changed the history of East Asia. He claimed to be a descendant of Marquis CAO Can and therefore was of aristocratic ancestry. However, this claim has been suspected for around 1800 years. Here, we collected some present clans with full records of 70-100 generations claimed to be descendants of CAO Cao or CAO Can, and validated them by comparing their Y chromosomes. Haplotype O2-M268 is the only one that is enriched significantly in the Emperor's claimed descendant clans (P=9.323 × 10(-5), odds ratio=12.72) and, therefore, is most likely to be that of the Emperor. Moreover, our analysis showed that the Y chromosome haplotype of the Emperor is different from that of the Marquis (Haplotype O3-002611). Therefore, Emperor CAO Cao's claim was not supported by genetic evidence. This study offers a successful showcase of the utility of genetics in studying the ancient history.

  19. Basic network structure of SiO2-B2O3-Na2O glasses from diffraction and reverse Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Fábián, M.; Araczki, Cs

    2016-05-01

    Neutron- and high-energy synchrotron x-ray diffraction experiments have been performed on the (75-x)SiO2-xB2O3-25Na2O x = 5, 10, 15 and 20 mol% glasses. The structure factor has been measured over a broad momentum transfer range, between 0.4 and 22 Å-1. For data analyses and modelling the Fourier transformation and the reverse Monte Carlo simulation techniques have been applied. The partial atomic pair correlation functions, the nearest neighbour distances, coordination number distributions and average coordination number values and three-particle bond angle distributions have been revealed. The Si-O network proved to be highly stable consisting of SiO4 tetrahedral units with characteristic distances at r Si-O = 1.60 Å and r Si-Si = 3.0(5) Å. The behaviour of network forming boron atoms proved to be more complex. The first neighbour B-O distances show two distinct values at 1.30 Å and a characteristic peak at 1.5(5) Å and, both trigonal BO3 and tetrahedral BO4 units are present. The relative abundance of BO4 and BO3 units depend on the boron content, and with increasing boron content the number of BO4 is decreasing, while BO3 is increasing.

  20. Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content.

    PubMed

    Smith, J M; King, S P; Barney, E R; Hanna, J V; Newport, R J; Pickup, D M

    2013-01-21

    Calcium phosphate based biomaterials are extensively used in the context of tissue engineering: small changes in composition can lead to significant changes in properties allowing their use in a wide range of applications. Samples of composition (Al(2)O(3))(x)(Na(2)O)(0.11-x)(CaO)(0.445)(P(2)O(5))(0.445), where x = 0, 0.03, 0.05, and 0.08, were prepared by melt quenching. The atomic-scale structure has been studied using neutron diffraction and solid state (27)Al MAS NMR, and these data have been rationalised with the determined density of the final glass product. With increasing aluminium concentration the density increases initially, but beyond about 3 mol. % Al(2)O(3) the density starts to decrease. Neutron diffraction data show a concomitant change in the aluminium speciation, which is confirmed by (27)Al MAS NMR studies. The NMR data reveal that aluminium is present in 4, 5, and 6-fold coordination and that the relative concentrations of these environments change with increasing aluminium concentration. Materials containing aluminium in 6-fold coordination tend to have higher densities than analogous materials with the aluminium found in 4-fold coordination. Thus, the density changes may readily be explained in terms of an increase in the relative concentration of 4-coordinated aluminium at the expense of 6-fold aluminium as the Al(2)O(3) content is increased beyond 3 mol. %.

  1. Structural properties of Bi2O3-B2O3-SiO2-Na2O glasses for gamma ray shielding applications

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2016-03-01

    Glass samples of the xBi2O3-(0.70-x)B2O3-0.15SiO2-0.15Na2O (where x=0 up to 0.5 mol fraction) have been prepared in the laboratory by using melt quenching technique. 137Cs source has been used for experimental measurements of mass attenuation coefficient of γ-rays at 662 keV. Mass attenuation coefficient of our glass samples has been compared with standard nuclear radiation shield "barite concrete". It has been concluded that bismuth containing glass samples can be potential candidates for γ-ray shielding applications. Glasses must have appreciable elastic moduli values for their practical utility as γ-ray shields which are related to coordination number and non-bridging oxygens. Structural properties including coordination number and non-bridging oxygens of the structural units of the glass system have been estimated from the detailed analysis of Optical, Raman and FTIR spectra. Reported investigations can contribute to the development of transparent gamma ray shields.

  2. Bioactivity of SiO 2-CaO-P 2O 5-Na 2O glasses containing zinc-iron oxide

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra Kumar; Srinivasan, A.

    2010-01-01

    Glasses with composition x(ZnO,Fe 2O 3)(65 - x)SiO 220(CaO,P 2O 5)15Na 2O (6 ≤ x ≤ 21 mol%) were prepared by melt-quenching technique. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations nearly equal to those in human blood plasma. Formation of bioactive apatite layer on the samples treated in SBF was confirmed by using Fourier transform infrared reflection (FTIR) spectroscopy, grazing incidence X-ray diffraction (GI-XRD) and scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer. Development of an apatite structure on the surface of the SBF treated glass samples as functions of composition and time could be established using the GI-XRD data. FTIR spectra of the glasses treated in SBF show features at characteristic vibration frequencies of apatite after 1-day of immersion in SBF. SEM observations revealed that the spherical particles formed on the glass surface were made of calcium and phosphorus with the Ca/P molar ratio being close to 1.67, corresponding to the value in crystalline apatite. Increase in bioactivity with increasing zinc-iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of glass composition and immersion time in SBF.

  3. On the existence of a high-temperature polymorph of Na2Ca6Si4O15—implications for the phase equilibria in the system Na2O-CaO-SiO2

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Maier, Matthias

    2016-06-01

    previously unknown compound our results will also help to improve the interpretation of the phase relationships between the compounds in the ternary system Na2O-CaO-SiO2 which are of interest for several applications related to the field of applied mineralogy and materials science.

  4. Optical Properties of K2O-Li2O-WO3-B2O3 Glasses: Evidence of Mixed Alkali Effect

    NASA Astrophysics Data System (ADS)

    Edukondalu, Avula; Sripathi, T.; Kareem Ahmmad, Shaik; Rahman, Syed; Sivakumar, K.

    2016-10-01

    Glass with compositions xK2O-(30 - x)Li2O-10WO3-60B2O3 for 0 ≤ x ≤ 30 mol.% have been prepared using the normal melt quenching technique. The optical reflection and absorption spectra were recorded at room temperature in the wavelength range 300-800 nm. From the absorption edge studies, the values of the optical band gap (E opt) and Urbach energy (ΔE) have been evaluated. The values of E opt and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple Di-Domenico model.

  5. The Origin and Evolution of Kimberlite Melts: Stabilizing Phlogopite in the CMAS-CO2- H2O-K2O System

    NASA Astrophysics Data System (ADS)

    Buisman, I.; Sparks, S.; Walter, M.

    2008-12-01

    This project aims to investigate the melting phase relations of model lherzolite in the system CMAS- CO2-H2O-K2O to better understand the role of potassium (K) in the evolution and origin of kimberlitic melts. High-pressure multi-anvil and piston cylinder experiments are used to study this system at upper mantle pressures (3-9 GPa). This study aims at constraining the temperature and composition of primary melts at the volatile-rich mantle solidus at which kimberlite melts form. Kimberlites are potassium-rich, ultrabasic magmas (<35% SiO2), have a low viscosity (0.1-1 Pa s), and contain a very high volatile content (CO2 and H2O). A number of models have been suggested for the generation of carbonatite and kimberlite magmas, with the presence of volatiles being particularly important (eg. CO2). Together, H2O and CO2, show a much greater influence on the solidus of mantle lherzolite than when either are present alone. Melts of carbonatitic and kimberlitic composition can be produced under comparable P-T conditions by partial melting of carbonated lherzolite. Petrogenetic links between carbonatites and kimberlites are therefore implied in the CO2-bearing mantle source region (Gudfinnsson, 2005). The isobaric univariant equilibrium for melting of model lherzolite in CMAS-CO2-H2O-K2O is tracked at upper mantle conditions. This is done by constructing a series of bulk compositions that will saturate all phases and yield enough of each phase for EPMA analysis. The compositions of all phases along a portion of the isobaric univariant melting curves will be traced at a series of pressures. In this way, we can rigorously calculate the melting behaviour of lherzolite compositions as a function of pressure, temperature and bulk composition.

  6. Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders.

    PubMed

    Walkley, Brant; San Nicolas, Rackel; Sani, Marc-Antoine; Gehman, John D; van Deventer, Jannie S J; Provis, John L

    2016-04-01

    This study demonstrates the production of stoichiometrically controlled alkali-aluminosilicate gels ('geopolymers') via alkali-activation of high-purity synthetic amorphous aluminosilicate powders. This method provides for the first time a process by which the chemistry of aluminosilicate-based cementitious materials may be accurately simulated by pure synthetic systems, allowing elucidation of physicochemical phenomena controlling alkali-aluminosilicate gel formation which has until now been impeded by the inability to isolate and control key variables. Phase evolution and nanostructural development of these materials are examined using advanced characterisation techniques, including solid state MAS NMR spectroscopy probing (29)Si, (27)Al and (23)Na nuclei. Gel stoichiometry and the reaction kinetics which control phase evolution are shown to be strongly dependent on the chemical composition of the reaction mix, while the main reaction product is a Na2O-Al2O3-SiO2-H2O type gel comprised of aluminium and silicon tetrahedra linked via oxygen bridges, with sodium taking on a charge balancing function. The alkali-aluminosilicate gels produced in this study constitute a chemically simplified model system which provides a novel research tool for the study of phase evolution and microstructural development in these systems. Novel insight of physicochemical phenomena governing geopolymer gel formation suggests that intricate control over time-dependent geopolymer physical properties can be attained through a careful precursor mix design. Chemical composition of the main N-A-S-H type gel reaction product as well as the reaction kinetics governing its formation are closely related to the Si/Al ratio of the precursor, with increased Al content leading to an increased rate of reaction and a decreased Si/Al ratio in the N-A-S-H type gel. This has significant implications for geopolymer mix design for industrial applications. PMID:26911317

  7. Influence of fluoride additions on biological and mechanical properties of Na2O-CaO-SiO2-P2O5 glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Hu, J H; Chen, C Z

    2014-02-01

    Two series of Na2O-CaO-SiO2-P2O5 glass-ceramics doped with NH4HF2 (G-NH4HF2) or CaF2 (G-CaF2) have been prepared by sol-gel method. The glass-ceramic phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The mechanical properties and thermal expansion coefficient were measured by a microhardness tester, an electronic tensile machine and a thermal expansion coefficient tester. The structure difference between these two glass-ceramics was investigated by Fourier transform infrared spectroscopy (FTIR), and the in vitro bioactivity of the glass-ceramics was determined by in vitro simulated body fluid (SBF) immersion test. The hemolysis test, in vitro cytotoxicity test, systemic toxicity test and the implanted experiment in animals were used to evaluate the biocompatibility of the glass-ceramics. The mechanical properties of sample G-NH4HF2 are lower than that of sample G-CaF2, and the bioactivity of sample G-NH4HF2 is better than that of sample G-CaF2. The thermal expansion coefficients of these two glass-ceramics are all closer to that of Ti6Al4V. After 7 days of SBF immersion, apatites were induced on glass-ceramic surface, indicating that the glass-ceramics have bioactivity. The hemolysis test, in vitro cytotoxicity test and systemic toxicity test demonstrate that the glass-ceramics do not cause hemolysis reaction, and have no toxicity to cell and living animal. The implanted experiment in animals shows that bone tissue can form a good osseointegration with the implant after implantation for two months, indicating that the glass-ceramics are safe to serve as implants.

  8. Influence of fluoride additions on biological and mechanical properties of Na2O-CaO-SiO2-P2O5 glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Hu, J H; Chen, C Z

    2014-02-01

    Two series of Na2O-CaO-SiO2-P2O5 glass-ceramics doped with NH4HF2 (G-NH4HF2) or CaF2 (G-CaF2) have been prepared by sol-gel method. The glass-ceramic phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The mechanical properties and thermal expansion coefficient were measured by a microhardness tester, an electronic tensile machine and a thermal expansion coefficient tester. The structure difference between these two glass-ceramics was investigated by Fourier transform infrared spectroscopy (FTIR), and the in vitro bioactivity of the glass-ceramics was determined by in vitro simulated body fluid (SBF) immersion test. The hemolysis test, in vitro cytotoxicity test, systemic toxicity test and the implanted experiment in animals were used to evaluate the biocompatibility of the glass-ceramics. The mechanical properties of sample G-NH4HF2 are lower than that of sample G-CaF2, and the bioactivity of sample G-NH4HF2 is better than that of sample G-CaF2. The thermal expansion coefficients of these two glass-ceramics are all closer to that of Ti6Al4V. After 7 days of SBF immersion, apatites were induced on glass-ceramic surface, indicating that the glass-ceramics have bioactivity. The hemolysis test, in vitro cytotoxicity test and systemic toxicity test demonstrate that the glass-ceramics do not cause hemolysis reaction, and have no toxicity to cell and living animal. The implanted experiment in animals shows that bone tissue can form a good osseointegration with the implant after implantation for two months, indicating that the glass-ceramics are safe to serve as implants. PMID:24411365

  9. In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O-CaO-B2O3-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Abo-Naf, Sherief M.; Khalil, El-Sayed M.; El-Sayed, El-Sayed M.; Zayed, Hamdia A.; Youness, Rasha A.

    2015-06-01

    Na2O-CaO-B2O3-P2O5 glasses have been prepared by the melt-quenching method. B2O3 content was systematically increased from 5 to 30 mol%, at the expense of P2O5, in the chemical composition of these glasses. Density, Vickers microhardness and fracture toughness of the prepared glasses were measured. In vitro bioactivity of the glasses was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °C for 3, 7, 14 and 30 days. The glasses were tested in the form of glass grains as well as bulk slabs. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The kinetics of degradation of the glass particles were monitored by measuring the weight loss of the particles and the ionic concentration of Ca, P and B in the SBF solution using inductive coupled plasma-atomic emission spectroscopy (ICP-AES). The obtained results revealed the formation of a bioactive hydroxyapatite (HA) layer, composed of nano-crystallites, on the surface of glass grains after the in vitro assays. The results have been used to understand the formation of HA as a function of glass composition and soaking time in the SBF. It can be pointed out that increasing B2O3 content in glass composition enhances the bioactivity of glasses. The nanometric particle size of the formed HA and in vitro bioactivity of the studied glasses make them possible candidates for tissue engineering application.

  10. Optical spectroscopy of Sm(3+) doped Na2O-ZnO-La2O3-TeO2 glasses.

    PubMed

    Sobczyk, Marcin

    2015-10-01

    Telluride glasses with the composition xSm2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2 (where x=0.1, 1, 2, 5 and 7 mol%) were obtained by the melt quenching technique. Electronic absorption and fluorescence spectra as well as fluorescence dynamics of the Sm(3+)-doped title glasses are presented and analysed in detail. A Judd-Ofelt intensity analysis of the absorption spectrum at 300 K has been applied for determination of Ωλ parameters (Ω2=3.10, Ω4=3.80, Ω6=1.61×10(-20) cm(2)) which in turn have been used for calculations of the radiative transition probabilities (AT), the natural (radiative) lifetimes (τR) of the (4)G5/2 level of Sm(3+), the fluorescence branching ratios (β) and the emission cross-sections (σem). The τR value of the (4)G5/2 level amount to 1546 μs and is slightly higher than the measured decay time of 1306 μs. With the increasing of Sm2O3 concentration from 0.1 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 1306 to 41 μs. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The optical achieved results indicate that the investigated glasses are potentially applicable as an orange and/or red laser host.

  11. Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders.

    PubMed

    Walkley, Brant; San Nicolas, Rackel; Sani, Marc-Antoine; Gehman, John D; van Deventer, Jannie S J; Provis, John L

    2016-04-01

    This study demonstrates the production of stoichiometrically controlled alkali-aluminosilicate gels ('geopolymers') via alkali-activation of high-purity synthetic amorphous aluminosilicate powders. This method provides for the first time a process by which the chemistry of aluminosilicate-based cementitious materials may be accurately simulated by pure synthetic systems, allowing elucidation of physicochemical phenomena controlling alkali-aluminosilicate gel formation which has until now been impeded by the inability to isolate and control key variables. Phase evolution and nanostructural development of these materials are examined using advanced characterisation techniques, including solid state MAS NMR spectroscopy probing (29)Si, (27)Al and (23)Na nuclei. Gel stoichiometry and the reaction kinetics which control phase evolution are shown to be strongly dependent on the chemical composition of the reaction mix, while the main reaction product is a Na2O-Al2O3-SiO2-H2O type gel comprised of aluminium and silicon tetrahedra linked via oxygen bridges, with sodium taking on a charge balancing function. The alkali-aluminosilicate gels produced in this study constitute a chemically simplified model system which provides a novel research tool for the study of phase evolution and microstructural development in these systems. Novel insight of physicochemical phenomena governing geopolymer gel formation suggests that intricate control over time-dependent geopolymer physical properties can be attained through a careful precursor mix design. Chemical composition of the main N-A-S-H type gel reaction product as well as the reaction kinetics governing its formation are closely related to the Si/Al ratio of the precursor, with increased Al content leading to an increased rate of reaction and a decreased Si/Al ratio in the N-A-S-H type gel. This has significant implications for geopolymer mix design for industrial applications.

  12. 27Al magic-angle spinning nuclear magnetic resonance satellite transition spectroscopy of glasses in the system K2O-Al2O3-SiO2.

    PubMed

    Mundus, C; Müller-Warmuth, W

    1995-10-01

    27Al magic-angle spinning nuclear magnetic resonance satellite transition spectroscopy at 78 MHz has been applied to determine (true) chemical shift and quadrupole coupling parameters of glasses in the system K2O-Al2O3-SiO2 with 60-80 mol% SiO2 and K2O concentrations between 0 and 24 mol%. The powdered crystalline aluminosilicates andalusite and sillimanite have also been examined. In the glasses, all Al appears to be tetrahedrally bound in the aluminosilicate network unless x = mol% K2O:mol% Al2O3 becomes extremely small. Upon decreasing x the distortion of the tetrahedral Al(OSi)4 units increases in steps, and possible explanations are discussed. Six-coordinated aluminum observed for x < 0.2 is connected with the occurrence of interstitial Al3+ ions which charge-compensate the AlO4 units in addition to K+. PMID:8748646

  13. Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics.

    PubMed

    Placek, L M; Keenan, T J; Wren, A W

    2016-08-01

    The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces. PMID:27231265

  14. Evaluation to the effect of B2O3-La2O3-SrO-Na2O-Al2O3 bonding agent on Ti6Al4V-porcelain bonding.

    PubMed

    Zhao, C Q; Wu, S Q; Lu, Y J; Gan, Y L; Guo, S; Lin, J J; Huang, T T; Lin, J X

    2016-10-01

    Low-fusing bonding agents have been widely applied in Ti-ceramics restorations. As an important category, borate bonding agents have great potentials in increasing Ti-porcelain bonding. The purpose of this study is to evaluate the effect of borate bonding agent with addition of Na2O and Al2O3 on Ti6Al4V-porcelain bonding. The thermal properties of borate bonding agent, such as glass transition temperature (Tg) and crystallization peak temperature (Tp), were investigated to establish the sintering process. And the coefficient of thermal expansion (CTE) was to evaluate the matching effect of porcelain to Ti6Al4V. The bond strength was analyzed by the three point bending test. The microscopic morphology of the borate bonding agent surface after sintering, the interface of Ti-borate bonding agent-porcelain, and the fracture mode after porcelains fracture, were studied to assess the influence of borate bonding agent on Ti6Al4V-ceramics. With the addition of Na2O and Al2O3, the porcelain residues were observed increased indication on the Ti6Al4V surface after porcelain fracture and the bond strength was acquired the maximum (49.45MPa) in the bonding agent composition of 75.70B2O3-5.92La2O3-11.84SrO-4.67Na2O-1.87Al2O3. Those results suggest that borate bonding agent is an effective way to improve the Ti6Al4V-ceramics bond strength. And the addition of Na2O and Al2O3 strengthen this effect. PMID:27344231

  15. Thermodynamic modeling of melts in the system Na 2O-NaAlO 2-SiO 2-F 2O -1

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Baker, Don R.

    2005-12-01

    properties. Thermodynamic expressions for the activity-composition relationships are simplified if all entities are expressed using symbolic molecular notation (e.g., SiO 2, SiF 4, [NaAl]O 2, [NaAl]F 4, NaF etc.) with corresponding nonfractional site multiplicities (1, 2 or 4). The model has been applied to three subsystems of the Na 2O-NaAlO 2-SiO 2-F 2O -1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra and only negligible interaction between fluoride species and silicate polymer. Phase equilibria in the cryolite-albite system with a large depression of albite liquidus are interpreted via complete substitution of O 0 by O - and F 0 in the silicate framework. With increasing fluorine content, initial Al-F and Si-O short-range order evolves into the partial O-F disorder. The present model provides a useful relationship between experimental equilibria, macroscopic thermodynamics and melt speciation, thus it facilitates comparisons with, and interpretations of, spectroscopic and molecular simulation data.

  16. The Effect of Chlorine on the Rheology of Na2O-Fe2O3-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Zimova, M.; Webb, S.

    2004-12-01

    Because of the high fluid mobility of chlorine, the mantle wedge in subduction zone settings may be enriched in chlorine by the fluids released by the subducted altered oceanic crust plus sediments. The presence of chlorine (and other halogens) will affect the solidus temperature and the rheology of melts, thus influencing the magma evolution, eruption and degassing. Very little is known about the solubility mechanism and diffusivity of Cl in silicate melts and even less is known about the effect of Cl on viscosity. The present study addresses the effect of the halogen chlorine on the viscosity of silicate melts. The shear viscosities of Cl-bearing melts in the system Na2O-Fe2O3-Al2O3-SiO2 were determined over the temperature range 550-950C at room pressure in air. Viscosities were determined using the micropenetration technique in the range of 108.5 to 1012.0 Pa s. The compositions are based on addition of Fe2O3 or FeCl3 to aluminosilicate glasses with a fixed amount of SiO2 (67 mol %). Although there was loss of Cl- during the glass syntheses, no loss occurred during the viscometry experiments. It is to be expected that Cl- takes the structural position of an oxygen, and thus reduces the polymerization of the melt structure, and therefore the viscosity of the melt; as F- does. Our measurements show that, depending upon the melt composition, the addition of Cl- will either increase or decrease the viscosity of the melt. In the present melts at least 20% of the iron exists as network modifying, viscosity reducing Fe2+; while the rest exists as network forming Fe3+. It is proposed here that the different effects of chlorine on viscosity are due to the preferred Cl--Fe2+NBO bonding together with the different structure of peralkaline and peraluminous melts. In peralkaline aluminosilicate melts, the addition of Cl2O-1 will destroy 2 NBOs and create one BO if Cl- bonds primarily to the Fe2+ creating non-bridging oxygens. This would result in an increase in viscosity

  17. Acoustic velocity measurements on Na 2O-TiO 2-SiO 2 liquids: Evidence for a highly compressible TiO 2 component related to five-coordinated Ti

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Lange, Rebecca A.; Ai, Yuhui

    2007-09-01

    Longitudinal acoustic velocities were measured at 1 bar in 10 Na 2O-TiO 2-SiO 2 (NTS) liquids for which previous density and thermal expansion data are reported in the literature. Data were collected with a frequency-sweep acoustic interferometer at centered frequencies of 4.5, 5, and 6 MHz between 1233 and 1896 K; in all cases, the sound speeds decrease with increasing temperature. Six of the liquids have a similar TiO 2 concentration (˜25 mol %), so that the effect of varying Na/Si ratio on the partial molar compressibility of the TiO 2 component can be evaluated. Theoretically based models for βT and (∂ V/∂ P) T as a function of composition and temperature are presented. As found previously for the partial molar volume of TiO 2(V) in sodium silicate melts, values of β (13.7-18.8 × 10 -2/GPa) vary systematically with the Na/Si and Na/(Si + Ti) ratio in the liquid. In contrast values of β for the SiO 2 and Na 2O components (6.6 and 8.0 × 10 -2/GPa, respectively, at 1573 K) are independent of composition. Na 2O is the only component that contributes to the temperature dependence of the compressibility of NTS liquids (1.13 ± 0.04 × 10 -4/GPa K). The results further indicate that the TiO 2 component is twice as compressible as the Na 2O and SiO 2 components. The enhanced compressibility of TiO 2 appears to be related to the abundance of five-coordinated Ti ( [5]Ti) in these liquids, but not with a change in Ti coordination. Instead, it is proposed that the asymmetric geometry of [5]Ti in a square pyramidal site promotes different topological rearrangements in alkali titanosilicate liquids, which lead to the enhanced compressibility of TiO 2.

  18. Effect of Agitation on Crystallization Behavior of CaO-Al2O3-SiO2-Na2O-CaF2 Mold Fluxes with Varying Basicity

    NASA Astrophysics Data System (ADS)

    Li, Jiangling; Shu, Qifeng; Chou, Kuochih

    2015-08-01

    The effect of agitation on crystallization behaviors of CaO-Al2O3-SiO2-Na2O-CaF2 mold fluxes with basicity of 1.1 and 1.2 was investigated. It was found that crystallization temperatures of agitated samples were higher than those of static samples. The morphology of cuspidine shifted from dendrites to facet crystals with the decrease of temperature. The agitation was conducive to the formation of small dendritic cuspidine and could lead to crystals with smaller size. Crystalline fraction could be significantly enhanced by agitation at the initial stage of crystallization.

  19. Dielectric and Energy Storage Properties of BaO-SrO-Na2O-Nb2O5-SiO2 Glass-Ceramics with Different Crystallization Times

    NASA Astrophysics Data System (ADS)

    Li, Chang; Zhang, Qingmeng; Tang, Qun; Zhou, Hao; Tan, Feihu; Du, Jun

    2016-06-01

    A series of BaO-SrO-Na2O-Nb2O5-SiO2 (BSNNS) glass-ceramics have been prepared via controlled crystallization by varying the crystallization times from 1 min to 1000 min, and grain sizes of crystallized ceramic phases from dozens to hundreds of nanometers were obtained. Dielectric properties of BSNNS glass-ceramics were investigated. The permittivity and the temperature and electric field dependence of the permittivity are all related to crystallization time strongly. In addition, the energy density increases gradually, while the energy efficiency decreases with the increasing crystallization time. The maximum energy efficiency of 96.7% is obtained in the sample with crystallization time of 1 min, which is mainly attributed to low interfacial polarization.

  20. Improving transesterification acitvity of CaO with hydration technique.

    PubMed

    Yoosuk, Boonyawan; Udomsap, Parncheewa; Puttasawat, Buppa; Krasae, Pawnprapa

    2010-05-01

    An efficient technique for increasing the transesterification activity of CaO obtained from calcination of CaCO(3) was proposed in order to make them highly suitable for use as heterogeneous catalysts for biodiesel production. CaO was refluxed in water followed by the synthesis of the oxide from hydroxide species. The characterization results indicate that this procedure substantially increases both the specific surface area and the amount of basic site. Hydration and subsequent calcination also generates a new calcium oxide with less crystalline. Transesterification of palm olein was used to determine the activity of catalysts to show that the decomposed-hydrated CaO exhibits higher catalytic activity than CaO generated from calcination of CaCO(3). The methyl ester content was enhanced 18.4 wt.%. PMID:20089395

  1. CAOS spectroscopy of Am stars Kepler targets

    NASA Astrophysics Data System (ADS)

    Catanzaro, G.; Ripepi, V.; Biazzo, K.; Busá, I.; Frasca, A.; Leone, F.; Giarrusso, M.; Munari, M.; Scuderi, S.

    2015-07-01

    The Kepler space mission and its K2 extension provide photometric time series data with unprecedented accuracy. These data challenge our current understanding of the metallic-lined A stars (Am stars) for what concerns the onset of pulsations in their atmospheres. It turns out that the predictions of current diffusion models do not agree with observations. To understand this discrepancy, it is of crucial importance to obtain ground-based spectroscopic observations of Am stars in the Kepler and K2 fields in order to determine the best estimates of the stellar parameters. In this paper, we present a detailed analysis of high-resolution spectroscopic data for seven stars previously classified as Am stars. We determine the effective temperatures, surface gravities, projected rotational velocities, microturbulent velocities and chemical abundances of these stars using spectral synthesis. These spectra were obtained with CAOS, a new instrument recently installed at the observing station of the Catania Astrophysical Observatory on Mt Etna. Three stars have already been observed during quarters Q0-Q17, namely: HD 180347, HD 181206 and HD 185658, while HD 43509 was already observed during K2 C0 campaign. We confirm that HD 43509 and HD 180347 are Am stars, while HD 52403, HD 50766, HD 58246, HD 181206 and HD 185658 are marginal Am stars. By means of non-LTE (local thermodynamic equilibrium) analysis, we derived oxygen abundances from O I λ7771-5 Å triplet and we also discussed the results obtained with both non-LTE and LTE approaches.

  2. Na2O and Trace Elements Behavior in Trachytes and Phonolites at Suswa Volcano, Kenya: the Result of Combined Magma Mixing and Volatile-rich Na-Trace Element Fluids

    NASA Astrophysics Data System (ADS)

    Espejel-Garcia, V. V.; Anthony, E. Y.; Ren, M.; MacDonald, R.; Skilling, I. P.; White, J. C.

    2008-12-01

    The evolution of Suswa, a Quaternary volcano in the Kenya Rift, was dominated by the eruption of two rock suites, separated by a caldera event. Suswa is part of the Central Kenya Peralkaline Province (CKPP), which includes the Greater Olkaria Volcanic Complex (GOVC) and inter-center mafic fields, e.g. Tandamara and Elmenteita, whose compositions range from basalt to basaltic trachy-andesite (BTA). Both suites at Suswa range from trachyte to phonolite, but are distinguished by the amount of SiO2: pre- and syn-caldera rocks have 60-62%, and post-caldera rocks 57-59%. Trachyte to phonolite trends within each suite result from increasing Na2O, which is accompanied by increases in a number of trace elements (Be, Hf, Nb, Rb, Th, Y, Zn, Zr, and REE, except Eu). Magmatic processes included magma mixing, in which BTA magma similar to those of Tandamara and Elmenteita intruded the pre-caldera Suswa trachytic chamber, and fluid complexing, which was responsible for the enrichment in Na2O and trace elements. The importance of magma mixing in the CKPP has been recently documented at the GOVC by Macdonald et al. (2008, J Pet 49, 1515-1547), for which mafic-intermediate magmatic inclusions within comendites and disequilibrium phenocryst assemblages are part of the evidence. Evidence for mixing at Suswa includes: 1) mixed feldspar assemblages, e.g. syn-caldera ignimbrite samples contain both alkali feldspar (An2Ab62Or36), and xenocrystic plagioclase (An45Ab52Or3), and 2) heterogeneous matrix glass compositions. Glass in pre-caldera rocks is trachytic, similar to whole-rock compositions. Syn-caldera rocks have glass compositions both trachytic and intermediate between trachyte and BTA, while Tandamara BTA rocks contain trachytic glass. Glass in post-caldera rocks is mostly phonolitic. Glass inclusions in plagioclase xenocrysts are basaltic, similar to flows in the area. X-Y elemental plots do not show linear trends, as would be predicted from a mixing process. We attribute this to

  3. Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2-TiO2-CaO-Na2O/SrO bioactive glass.

    PubMed

    Li, Y; Placek, L M; Coughlan, A; Laffir, F R; Pradhan, D; Mellott, N P; Wren, A W

    2015-02-01

    This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface.

  4. Scattering Effect of Iron Metallic Particles on the Extinction Coefficient of CaO-SiO2-B2O3-Na2O-Fe2O3-CaF2 Glasses

    NASA Astrophysics Data System (ADS)

    Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo

    2016-08-01

    The extinction coefficient of the CaO-SiO2-B2O3-Na2O-Fe2O3-CaF2 glasses has been studied using a FT-IR and a UV-visible spectrometer in the range of 0.5-5 μm to investigate thermal radiation through glassy flux film during continuous casting of steels. In present investigations, iron oxide has been reduced to metallic iron droplets by reaction with graphite crucible during melting, which brings considerable increase of the extinction coefficient due to the scattering. To analyze the scattering effect of these droplets on the extinction coefficient, the number density and size parameter of metallic particles have been measured using an automated scanning electron microscope. The number of metallic particles is intensively proportional to boron contents due to the transition of molar structure, BO4 to BO3, with increasing boron oxide. It is found that calculated scattering coefficients based on Mie scattering theory are in good agreement with measured ones. As the increased scattering coefficient of glassy film would not cause any serious side effects on casting operations, utilization of scattering effects is believed to be significantly essential for the future design of commercial mold fluxes.

  5. Investigating the surface reactivity of SiO2-TiO2-CaO-Na2O/SrO bioceramics as a function of structure and incubation time in simulated body fluid.

    PubMed

    Li, Y; Coughlan, A; Wren, Anthony W

    2014-08-01

    This study focuses on evaluating the biocompatibility of a SiO2-TiO2-CaO-Na2O/SrO glass and glass-ceramic series. Glass and ceramic samples were synthesized and characterized using X-ray diffraction. Each material was subject to maturation in simulated body fluid over 1, 7 and 30 days to describe any changes in surface morphology. Calcium phosphate (CaP) deposition was observed predominantly on the Na(+) containing amorphous and crystalline materials, with plate-like morphology. The precipitated surface layer was also observed to crystallize with respect to maturation, which was most evident in the amorphous Na(+) containing glasses, Ly-N and Ly-C. The addition of Sr(2+) greatly reduced the solubility of all samples, with limited CaP precipitation on the amorphous samples and no deposition on the crystalline materials. The morphology of the samples was also different, presenting irregular plate-like structures (Ly-N), needle-like deposits (Ly-C) and globular-like structures (Ly-S). Cell culture analysis presented a significant increase in cell viability with the Na(+) materials, 134%, while the Sr(2+) containing glasses, 60-80% and ceramics, 60-85% presented a general reduction in cell viability, however these reductions were not significant.

  6. Performance of Na 2O promoted alumina as CO 2 chemisorbent in sorption-enhanced reaction process for simultaneous production of fuel-cell grade H 2 and compressed CO 2 from synthesis gas

    NASA Astrophysics Data System (ADS)

    Lee, Ki Bong; Beaver, Michael G.; Caram, Hugo S.; Sircar, Shivaji

    The performance of a novel thermal swing sorption-enhanced reaction (TSSER) concept for simultaneous production of fuel-cell grade hydrogen and compressed carbon dioxide as a by-product from a synthesis gas feed is simulated using Na 2O promoted alumina as a CO 2 chemisorbent in the process. The process simultaneously carries out the water gas shift (WGS) reaction and removal of CO 2 from the reaction zone by chemisorption in a single unit. Periodic regeneration of the chemisorbent is achieved by using the principles of thermal swing adsorption employing super-heated steam purge. Recently measured equilibrium and kinetic data for chemisorption and desorption of CO 2 on the promoted alumina using conventional column dynamic tests as well as new experimental data demonstrating the concept of sorption-enhanced WGS reaction using the material are reviewed. The simulated performance of the TSSER process employing this material as a chemisorbent is compared with the process performance using K 2CO 3 promoted hydrotalcite as the chemisorbent. The promoted alumina exhibited (i) ∼15% lower H 2 productivity at a slightly reduced CO to H 2 conversion, and (ii) comparable compressed CO 2 productivity at a higher CO 2 recovery, albeit at a relatively lower product pressure. However, the steam duty for regeneration of the chemisorbent was reduced by ∼50% for the promoted alumina.

  7. Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2-TiO2-CaO-Na2O/SrO bioactive glass.

    PubMed

    Li, Y; Placek, L M; Coughlan, A; Laffir, F R; Pradhan, D; Mellott, N P; Wren, A W

    2015-02-01

    This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface. PMID:25644099

  8. Structural and magnetic properties of SiO2-CaO-Na2O-P2O5 containing BaO-Fe2O3 glass-ceramics

    NASA Astrophysics Data System (ADS)

    Leenakul, W.; Kantha, P.; Pisitpipathsin, N.; Rujijanagul, G.; Eitssayeam, S.; Pengpat, K.

    2013-01-01

    The incorporation method was employed to produce bioactive glass-ceramics from the BaFe12O19-SiO2-CaO-Na2O-P2O5 glass system. The ferrimagnetic BaFe12O19 was first prepared using a simple mixed oxide method, where the oxide precursors of 45S5 bioglass were initially mixed and then melted to form glass. The devitrification of Na3Ca6(PO4)5 and Fe3O4 was observed in all of the quenched glass samples. The glass samples were then subjected to a heat treatment schedule for further crystallization. It was found that the small traces of BaFe12O19 phases started to crystallize in high BF content samples of 20 and 40 wt%. These samples also exhibited good magnetic properties comparable to that of other magnetic glass-ceramics. The bioactivity of the BF glass-ceramics improved with increasing BF content as was evident by the formation of bone-like apatite layers on the surface of all of the glass-ceramics after soaking in SBF for 14 days. The results support the use of these bioactive glass-ceramics for hyperthermia treatment within the human body.

  9. In vitro evaluation of bioactivity of SiO2-CaO-P2O5-Na2O-CaF2-ZnO glass-ceramics

    NASA Astrophysics Data System (ADS)

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Bashir, Farooq; Hossain, Tousif; Kayani, Zohra

    2014-09-01

    Zinc is an essential trace element that stimulates bone formation but it is also known as an inhibitor of apatite crystal growth. In this work addition of ZnO to SiO2-CaO-P2O5-Na2O-CaF2 glass-ceramic system was made by conventional melt-quenching technique. DSC curves showed that the addition of ZnO moved the endothermic and exothermic peaks to lower temperatures. X-ray diffraction analysis did not reveal any additional phase caused by ZnO addition and showed the presence of wollastonite and hydroxyapatite crystalline phases only in all the glass-ceramic samples. As bio-implant apatite forming ability is an essential condition, the surface reactivity of the prepared glass-ceramic specimens was studied in vitro in Kokubo's simulated body fluid (SBF) [1] with ion concentration nearly equal to human blood plasma for 30 days at 37 °C under static condition. Atomic absorption spectroscopy (AAS) was used to study the changes in element concentrations in soaking solutions and XRD, FT-IR and SEM were used to elucidate surface properties of prepared glass-ceramics, which confirmed the formation of HCAp on the surface of all glass-ceramics. It was found that the addition of ZnO had a positive effect on bioactivity of glass-ceramics and made it a potential candidate for restoration of damaged bones.

  10. Scattering Effect of Iron Metallic Particles on the Extinction Coefficient of CaO-SiO2-B2O3-Na2O-Fe2O3-CaF2 Glasses

    NASA Astrophysics Data System (ADS)

    Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo

    2016-10-01

    The extinction coefficient of the CaO-SiO2-B2O3-Na2O-Fe2O3-CaF2 glasses has been studied using a FT-IR and a UV-visible spectrometer in the range of 0.5-5 μm to investigate thermal radiation through glassy flux film during continuous casting of steels. In present investigations, iron oxide has been reduced to metallic iron droplets by reaction with graphite crucible during melting, which brings considerable increase of the extinction coefficient due to the scattering. To analyze the scattering effect of these droplets on the extinction coefficient, the number density and size parameter of metallic particles have been measured using an automated scanning electron microscope. The number of metallic particles is intensively proportional to boron contents due to the transition of molar structure, BO4 to BO3, with increasing boron oxide. It is found that calculated scattering coefficients based on Mie scattering theory are in good agreement with measured ones. As the increased scattering coefficient of glassy film would not cause any serious side effects on casting operations, utilization of scattering effects is believed to be significantly essential for the future design of commercial mold fluxes.

  11. The spectroscopic studies of gel-derived glasses and glass-ceramics in the Na 2O (Li 2O)-B 2O 3-P 2O 5-SiO 2 system

    NASA Astrophysics Data System (ADS)

    Adamczyk, A.; Handke, M.

    2001-09-01

    The gel-derived borophosphosilicate materials containing Na + and Li + cations by FTIR spectroscopy and X-ray diffraction methods were studied. The results obtained enabled one to define the structure of samples containing up to 10% mol. BPO 4. The alkali ions, Na + and Li + can be treated as borate and phosphate network depolymerisators. There is also no evidence of boron coordination changes, from trigonal to tetrahedral caused by Na 2O and Li 2O oxide addition to pure borophosphosilicate materials. Concurrently, the silicate network is left unchanged. The bands due to the B-O bond vibrations are not observed in the IR spectra of the crystalline materials, obtained by heating samples of composition analogous to amorphous ones. Such bands are present in the spectra of crystalline alkali-free samples of the same BPO 4 content. The amorphous and crystalline alkali-containing samples by the EDX microprobe were also studied. The results obtained showed that the heating of alkali borophosphosilicate samples caused the volatilisation of boron, phosphorus and alkali compounds from the structures studied. Such a process does not take place in case of alkali-free samples.

  12. CaO segregation in MnZn-ferrite

    SciTech Connect

    Lin, I.N.; Mishra, R.K.; Thomas, G.

    1982-06-01

    The reaction between CaO and MnZn ferrite is investigated by in-situ heating in a scanning electron microscope. The existence of an intermediate phase and a eutectic liquid at about 1300/sup 0/C is observed. The CaO segregation behavior of low loss MnZn ferrite is studies by in-situ heating in transmission electron microscope and Auger electron spectroscopy. The Ca is observed to stay at the grain boundaries in the form of amorphous intermediate phase at low temperatures and in a liquid phase at the sintering temperature. 5 figures.

  13. Coded access optical sensor (CAOS) imager and applications

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.

    2016-04-01

    Starting in 2001, we proposed and extensively demonstrated (using a DMD: Digital Micromirror Device) an agile pixel Spatial Light Modulator (SLM)-based optical imager based on single pixel photo-detection (also called a single pixel camera) that is suited for operations with both coherent and incoherent light across broad spectral bands. This imager design operates with the agile pixels programmed in a limited SNR operations starring time-multiplexed mode where acquisition of image irradiance (i.e., intensity) data is done one agile pixel at a time across the SLM plane where the incident image radiation is present. Motivated by modern day advances in RF wireless, optical wired communications and electronic signal processing technologies and using our prior-art SLM-based optical imager design, described using a surprisingly simple approach is a new imager design called Coded Access Optical Sensor (CAOS) that has the ability to alleviate some of the key prior imager fundamental limitations. The agile pixel in the CAOS imager can operate in different time-frequency coding modes like Frequency Division Multiple Access (FDMA), Code-Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA). Data from a first CAOS camera demonstration is described along with novel designs of CAOS-based optical instruments for various applications.

  14. Structure and Crystallization Kinetics of Glassy CaO-Al2O3-SiO2-CaF2-Na2O Mold Fluxes with Varying Basicity

    NASA Astrophysics Data System (ADS)

    Li, Jiangling; Yan, Baijun; Shu, Qifeng; Chou, Kuochih

    2015-12-01

    The structure and the crystallization kinetics of CaO-Al2O3-SiO2-CaF2-Na2O mold fluxes with varying basicities were investigated by solid-state 29Si nuclear magnetic resonance with magic angular spinning (MAS-NMR) and differential thermal analysis (DTA) technique, respectively. 29Si MAS-NMR study indicated that the increase of basicity decreased the degree of polymerization of mold fluxes. With the increasing basicity, Q 0, Q 2, and Q 3 gradually decreased, while Q 1 gradually increased, and the overall degree of polymerization was reduced. Crystallization analysis showed the cuspidine first crystallized from glass, and wollastonite crystal crystallized at elevated temperature for the samples with basicity (defined as CaO/SiO2 mass ratio) values of 0.9 and 1.0, respectively. Only cuspidine was found to crystallize from glass for the samples with basicity values of 1.1 and 1.2, indicating that the crystallization of wollastonite was suppressed with the increase of basicity. Crystallization kinetics analysis by DTA and field emission scanning electron microscopy equipped with energy dispersive spectroscopy investigation showed that growth mechanism of cuspidine is mainly of the diffusion-controlled three-dimensional growth with the increasing number of nuclei during heating. Activation energies for growth of cuspidine decreased with the increasing basicity of mold flux, which indicated that the crystallization ability was enhanced with the increase of basicity. The relationship between structure and crystallization of mold fluxes was established.

  15. Physical and spectroscopic properties of multi-component Na2O-PbO-Bi2O3-SiO2 glass ceramics with Cr2O3 as nucleating agent

    NASA Astrophysics Data System (ADS)

    Sambasiva Rao, M. V.; Rajyasree, Ch.; Narendrudu, T.; Suresh, S.; Suneel Kumar, A.; Veeraiah, N.; Krishna Rao, D.

    2015-09-01

    Transparent glass ceramics, synthesized from melt quenching followed by heat treatment, of the composition 10Na2O-30PbO-10Bi2O3-(50 - x)SiO2:xCr2O3 (mol%), where 0 ⩽ x ⩽ 0.5, were characterized with XRD, DTA, SEM and EDS. Physical and spectroscopic studies, viz., optical absorption, electron paramagnetic resonance (EPR), FTIR and Raman were investigated. The characterization of the host glass ceramic has revealed that the formation of a major phase of sodium silicate along with two minor phases such as lead silicate and bismuth oxide. By integrating Cr2O3 to the host glass additional crystal phases viz., NaCrO2, Na2Cr2O7 and Pb(CrO4) which are the complexes of Cr3+ and Cr6+ ions were also developed. As the concentration of nucleating agent is increased, a part of the Cr6+ ions is found to reduce in to Cr3+ ions. Spectroscopic studies have revealed that with an increase in the concentration of Cr2O3 from 0.1 to 0.5 mol%, there is a gradual increase in the intensity of vibrational modes of various asymmetric structural units of silicate, bismuthate and chromate in the glass ceramic network at the expense of symmetrical structural units. The analysis of the results of these studies has indicated that in the samples containing higher concentration of Cr2O3, chromium ions exists predominantly in Cr3+ state and occupy the octahedral positions in glass ceramic matrix and such glass ceramic samples are suitable for lasing action.

  16. Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3

    NASA Astrophysics Data System (ADS)

    El Shabrawy, Samha; Bocker, Christian; Rüssel, Christian

    2016-10-01

    Spherical magnetic Mg-Fe-O nanoparticles were successfully prepared by the crystallization of glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. The magnetic glass ceramics were prepared by melting the raw materials using the conventional melt quenching technique followed by a thermal treatment at temperatures in the range 560-700 °C for a time ranging from 2 to 8 h. The studies of the X-ray diffraction, electron microscopy and FTIR spectra confirmed the precipitation of finely dispersed spherical (Mg, Fe) based spinel nanoparticles with a minor quantity of hematite (α-Fe2O3) in the glass matrix. The average size of the magnetic nano crystals increases slightly with temperature and time from 9 to 15 nm as determined by the line broadening from the XRD patterns. XRD studies show that annealing the glass samples for long periods of time at temperature ≥604 °C results in an increase of the precipitated hematite concentration, dissolution of the spinel phase and the formation of magnesium di-borate phase (Mg2B2O5). For electron microscopy, the particles were extracted by two methods; (i) replica extraction technique and (ii) dissolution of the glass matrix by diluted acetic acid. An agglomeration of the nano crystals to larger particles (25-35 nm) was observed.

  17. Understanding Structural Properties of Carbonate-Silicate Melts: An EXAFS Study on Y and Sr in the System Na2O-CaO-Al2O3-SiO2-CO2

    NASA Astrophysics Data System (ADS)

    Pohlenz, J.; Pascarelli, S.; Mathon, O.; Belin, S.; Shiryaev, A.; Safonov, O.; Murzin, V.; Shablinskaya, K.; Irifune, T.; Wilke, M.

    2014-12-01

    Carbonatite volcanism generally occurs in intra-plate settings associated with continental rifting. The only active carbonatitic volcano is the Oldoinyo Lengai, Tanzania, which generates sodium-rich carbonatites in close association with phonolites and nephelinites1. The processes of carbonatite genesis are still unresolved, however carbonate-bearing melts evidently play a crucial role during mantle melting, in diamond formation and as metasomatic agents. Carbonate melts show extraordinary properties, especially in regard to their low melt viscosities and densities, high surface tensions and electrical conductivities as well as distinct geochemical affinities to a wide range of trace elements2. Understanding the structural properties of carbonate-bearing melts is fundamental to explaining their chemical and physical behaviour as well as modeling processes operating in the deep Earth. Extended X-ray absorption fine structure (EXAFS) spectroscopy is a versatile tool for element specific investigation of the short to medium range structure of melts and glasses. This study focuses on unraveling the influence of carbonate concentration on the structural incorporation of the geochemically important trace elements Y and Sr in silicate and carbonate melts in the system Na2O-CaO-Al2O3-SiO2-CO2. First, we present structural data of silicate glasses with up to 10 wt% CO2, quenched from melts under high temperature and pressure, which indicate that the local structure of Y and Sr is not or only slightly affected by CO2. Melts with higher CO2 contents could not be quenched to glass, so far. Second, we show results of high pressure, high temperature experiments conducted in the Paris Edinburgh-Press, which provides in-situ insight into carbonate-silicate melts. All EXAFS measurements were performed at the synchrotron facility beamlines SAMBA (SOLEIL) and BM23 (ESRF). Information derived from the trace elements' local structure is used to develop a structural model for carbonate

  18. The oxygenase CAO-1 of Neurospora crassa is a resveratrol cleavage enzyme.

    PubMed

    Díaz-Sánchez, Violeta; Estrada, Alejandro F; Limón, M Carmen; Al-Babili, Salim; Avalos, Javier

    2013-09-01

    The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.

  19. Caos en sistemas clásico-cuánticos

    NASA Astrophysics Data System (ADS)

    Dirani, L. D.; Núñez, J. A.

    Una de las formas de estudiar la existencia de caos en el comportamiento de un sistema clásico-cuántico, es truncando el espacio de Hilbert del sistema cuántico. El objetivo de este trabajo es analizar como afecta dicho truncamiento en la dinámica del sistema. Para tal fin se propone un Hamiltoniano integrable, cuyos valores de expectación asociados a coordenadas y momentos cuánticos responden, por el teorema de Ehrenfest, a un sistema de dos osciladores clásicos con acoplamiento lineal.

  20. Temperature-dependent luminescence and temperature-stimulated NIR-to-VIS up-conversion in Nd3+-doped La2O3-Na2O-ZnO-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Sobczyk, Marcin

    2013-04-01

    Telluride glasses of the composition xNd2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2, where (0≤x≤7) were prepared by the melt quench technique. Some physical and optical properties of the glasses were evaluated. The thermal behavior i.e. glass transition and crystallization temperatures were studied by using TGA-DTA technique. Optical properties of Nd3+-doped telluride glasses were investigated between 298 and 700 K. Basing on the obtained values of J-O parameter values (×10-20 cm2: Ω2=4.49±0.84, Ω4=5.03±0.61, Ω6=4.31±0.73), the radiative transition probabilities (AT), radiative lifetimes (τR), fluorescence branching ratios (β) and emission cross-sections (σem) were calculated for the 4F3/2→4IJ/2 (where J=9, 11 and 13) transitions of Nd3+ ions. The τR value of the 4F3/2 level amount to 164 μs and is slightly higher than the measured decay time of 162 μs. With the increasing of Nd2O3 concentration from 0.5 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 162 to 5.6 μs. The estimated quantum efficiency amount to 100%, based on a comparison of τR and the experimental decay time of a slightly doped Nd3+ telluride glass. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The 4F3/2→4I9/2 and 4F5/2→4I9/2 transitions were analyzed with respect to the fluorescence intensity ratio (FIR) and were found to be temperature dependent. Infrared-to-visible up-conversion emissions with a maximum at 603.0 and 635.3 nm were observed at high temperatures using the 804 nm excitation and are due to the 4G5/2→4I9/2 and 4G5/2→4I11/2 transitions of Nd3+ ions, respectively. The near quadratic dependence of fluorescence on excitation laser power confirms that two photons contribute to up-conversion of the orange emissions. The temperature-stimulated up-conversion excitation processes have been analyzed in detail. The optical results indicate that the investigated glasses are potentially applicable as a 1063 nm

  1. Development of electrically insulating CaO coatings

    SciTech Connect

    Natesan, K.; Reed, C.B.; Uz, M.; Rink, D.L.

    1998-09-01

    A systematic study has been initiated to develop electrically insulating CaO coatings by vapor phase transport and by in-situ formation in a liquid Li environment. Several experiments were conducted in vapor transport studies with variations in process temperature, time, specimen location, specimen surface preparation, and pretreatment. Several of the coatings obtained by the method exhibited Ca concentration in the range of 60--95 wt.% on the surface. However, coating thickness has not been very uniform among several samples exposed in the same run or even within the same sample. The coatings developed in these early tests degraded after 24 h exposure to Li at 500 C. Additional experiments are underway to develop better-adhering and more dense coatings by this method. A program to develop in-situ CaO coatings in Li has been initiated, and the first set of capsule tests at 800 C in three different Li-Ca mixtures will be completed in early July. Specimens included in the run are bare V-4Cr-4Ti alloy, specimens with a grit-blasted surface and O-precharged in 99.999% Ar, polished specimens precharged in a 99.999% Ar and 5000 ppm O{sub 2}-N{sub 2} mixture, and prealuminized V-5Cr-5Ti alloy preoxidized in a 5000 ppm O{sub 2}-N{sub 2} mixture. Additional experiments at lower temperatures are planned.

  2. Steam catalysis in CaO carbonation under low steam partial pressure

    SciTech Connect

    Yang, S.J.; Xiao, Y.H.

    2008-06-15

    CaO was widely used to capture CO{sub 2} in direct hydrogen production process, where steam always existed simultaneously. The effect of steam on CaO carbonation performance under low steam partial pressure was investigated using a pressurized thermogravimetric apparatus. The experimental results revealed that steam improved CaO carbonation performance significantly no matter whether Ca(OH){sub 2} was produced or not. At 823 K and 0.5 MPa of steam partial pressure, effect of steam on CaO carbonation performance could not be attributed mainly to production of Ca(OH){sub 2} because the hydration rate of CaO was very slow. The main reason was steam catalysis in CaO carbonation. Enhancement of steam on CaO carbonation performance without Ca(OH){sub 2} production could not be attributed to improvement of steam on the physical property, but to catalytic effect of steam. Effects of CaO precursors, CO{sub 2} partial pressure, steam partial pressure, and temperature with steam addition on CaO carbonation performance were also investigated.

  3. 12Cao-7Al2o3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Rand, Lauren P. (Inventor); Williams, John D. (Inventor); Martinez, Rafael A. (Inventor)

    2016-01-01

    The use of the electride form of 12CaO-7Al.sub.2O.sub.3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  4. Optical Properties and Electronic Structure of CaO

    NASA Astrophysics Data System (ADS)

    Sobolev, V. V.; Merzlyakov, D. A.; Sobolev, V. Val.

    2016-09-01

    Spectra of 11 optical functions of CaO in the ranges 6.5-7.2 eV at 2 K and 0-60 eV at 77 K were determined. A total of 14 maxima and shoulders of excitons and interband transitions were found including two distinct exciton structures at 6.9 and 11.4 eV and volume and surface plasmon maxima at ~38.3 and 33.2 eV, respectively. Their principal features and general trends were established. Variable formation efficiencies of spectra of the dielectric permittivity and characteristic electron-energy losses in different spectral ranges were analyzed. The calculations used known experimental reflectance spectra and computer programs based on the Kramers-Kronig correlations and analytical formulae for the relationship between optical functions.

  5. COMPARATIVE SO2 REACTIVITY OF CAO DERIVED FROM CACO3 AND CA(OH)2

    EPA Science Inventory

    Experimental data on sulfation rates of CaO particles derived from CaCO3 are compared to those derived from Ca(OH)2 using a product layer diffusion control model differing only in the shape of the CaO grain. Both the model and the experimental data indicate slightly higher reacti...

  6. CaO as drop-in colloidal catalysts for the synthesis of higher polyglycerols.

    PubMed

    Kirby, Fiona; Nieuwelink, Anne-Eva; Kuipers, Bonny W M; Kaiser, Anton; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2015-03-23

    Glycerol is an attractive renewable building block for the synthesis of polyglycerols, which find application in the cosmetic and pharmaceutical industries. The selective etherification of glycerol to higher oligomers was studied in the presence of CaO colloids and the data are compared with those obtained from NaOH and CaO. The materials were prepared by dispersing CaO, CaCO3 , or Ca(OH)2 onto a carbon nanofiber (CNF) support. Colloidal nanoparticles were subsequently dispensed from the CNF into the reaction mixture to give CaO colloids that have a higher activity than equimolar amounts of bulk CaO and NaOH. Optimization of the reaction conditions allowed us to obtain a product with Gardner color number <2, containing no acrolein and minimal cyclic byproducts. The differences in the CaO colloids originating from CNF and bulk CaO were probed using light scattering and conductivity measurements. The results confirmed that the higher activity of the colloids originating from CaO/CNF was due to their more rapid formation and smaller size compared with colloids from bulk CaO. We thus have developed a practical method for the synthesis of polyglycerols containing low amounts of Ca.

  7. Theoretical investigations on CaO ions: vibronic states and photoelectron spectroscopy.

    PubMed

    Khalil, H; Le Quéré, F; Léonard, C; Brites, V

    2013-11-01

    The low-lying electronic states, X(2)Π and A(2)Σ(+) of CaO(+) and X(2)Σ(+) and A(2)Π of CaO(-), have been determined at the MRCI+Q level of theory with the aug-cc-pV5Z(O) and cc-pCV5Z(Ca) basis sets. The two states of CaO(+) are close within <0.1 eV and coupled via spin-orbit effect. The X(2)Σ(+) and A(2)Π states of CaO(-) are energetically separated by <1 eV such that the first excited state is close to the electronic ground state of neutral CaO and unstable with respect to electron detachment. Using the potential energy curves and the spin-orbit coupling terms, the vibronic energy levels of these ions have been determined. The ionization energy and the electron affinity of CaO are calculated at 6.79 and 0.79 eV, respectively. The photoelectron spectra of CaO(-) and CaO have also been simulated.

  8. CaO as Drop-In Colloidal Catalysts for the Synthesis of Higher Polyglycerols

    PubMed Central

    Kirby, Fiona; Nieuwelink, Anne-Eva; Kuipers, Bonny W M; Kaiser, Anton; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2015-01-01

    Glycerol is an attractive renewable building block for the synthesis of polyglycerols, which find application in the cosmetic and pharmaceutical industries. The selective etherification of glycerol to higher oligomers was studied in the presence of CaO colloids and the data are compared with those obtained from NaOH and CaO. The materials were prepared by dispersing CaO, CaCO3, or Ca(OH)2 onto a carbon nanofiber (CNF) support. Colloidal nanoparticles were subsequently dispensed from the CNF into the reaction mixture to give CaO colloids that have a higher activity than equimolar amounts of bulk CaO and NaOH. Optimization of the reaction conditions allowed us to obtain a product with Gardner color number <2, containing no acrolein and minimal cyclic byproducts. The differences in the CaO colloids originating from CNF and bulk CaO were probed using light scattering and conductivity measurements. The results confirmed that the higher activity of the colloids originating from CaO/CNF was due to their more rapid formation and smaller size compared with colloids from bulk CaO. We thus have developed a practical method for the synthesis of polyglycerols containing low amounts of Ca. PMID:25684403

  9. SSC Model Fits to Simultaneous Fermi and CAO observations of Bl Lac's

    NASA Astrophysics Data System (ADS)

    Gordon, Tyler; Macomb, Daryl J.; Hand, Jared; Norris, Jay P.; Long, Min

    2016-01-01

    The Challis Astronomical Observatory (CAO) has been surveying a sample of blazar-type AGN since 2010. The CAO blazar sample includes4 3 sources - comprising 30 FSRQs, 15 BL Lacs, one radio galaxy and four unclassified sources - covering a redshift range 0.02 < z < 2. Observations are carried out in BVRI filters. Here we describe photometric results on a small sample emphasizing BL Lacs. We combine the CAO data with Fermi/LAT data and explore the suitability of fits to the data using the uniform conical jet model of Potter and Cotter (MNRAS, 2012, 423, 756-765).

  10. Assessment of CAOS as a training model in spinal surgery: a randomised study.

    PubMed

    Richards, P J; Kurta, I C; Jasani, V; Jones, C H Wynn; Rahmatalla, A; Mackenzie, G; Dove, J

    2007-02-01

    The objectives of this study were (1) to quantify the benefit of computer assisted orthopaedic surgery (CAOS) pedicle screw insertion in a porcine cadaver model evaluated by dissection and computed tomography (CT); (2) to compare the effect on performance of four surgeons with no experience of CAOS, and varying experience of pedicle screw insertion; (3) to see if CT with extended windows was an acceptable method to evaluate the position of the pedicle screws in the porcine cadaver model, compared to dissection. This was a prospective, randomised, controlled and blinded porcine cadaver study. Twelve 6-month-old porcine (white skinned Landrace) lumbar spines were scanned pre-operatively by spiral CT, as required for the CAOS computer data set. Computer randomisation allocated the specimens to one of four surgeons, all new to CAOS but with different levels of experience in spinal surgery. The usual anatomical landmarks for the freehand technique were known to all four surgeons. Two pedicles at each vertebral level were randomly allocated between conventional free hand insertion and an electromagnetic image guided surgery (NAVITRAK) and 6.5 mm cancellous AO screws inserted. Post-operatively, spiral CT was blindly evaluated by an independent radiologist and the spine fellow to assess the accuracy of pedicle screw placement, by each method. The inter- and intra-observer reliability of CT was evaluated compared to dissection. The pedicle screw placement was assessed as perfect if within the pedicle along its central axis, or acceptable (within < 2 mm from perfect), and measured in millimetres from perfect thereafter. One hundred and sixty-six of 168 pedicles in 12 porcine spines were operated on. Complete data were present for 163 pedicles (81 CAOS, 82 freehand). In the CAOS group 84% of screws were deemed acceptable or perfect, compared to 75.6% with the freehand technique. Screw misplacement was significantly reduced using CAOS (P = 0.049). Seventy-nine percent of CAOS

  11. Assessment of CAOS as a training model in spinal surgery: a randomised study

    PubMed Central

    Kurta, I. C.; Jasani, V.; Jones, C. H. Wynn; Rahmatalla, A.; MacKenzie, G.; Dove, J.

    2006-01-01

    The objectives of this study were (1) to quantify the benefit of computer assisted orthopaedic surgery (CAOS) pedicle screw insertion in a porcine cadaver model evaluated by dissection and computed tomography (CT); (2) to compare the effect on performance of four surgeons with no experience of CAOS, and varying experience of pedicle screw insertion; (3) to see if CT with extended windows was an acceptable method to evaluate the position of the pedicle screws in the porcine cadaver model, compared to dissection. This was a prospective, randomised, controlled and blinded porcine cadaver study. Twelve 6-month-old porcine (white skinned Landrace) lumbar spines were scanned pre-operatively by spiral CT, as required for the CAOS computer data set. Computer randomisation allocated the specimens to one of four surgeons, all new to CAOS but with different levels of experience in spinal surgery. The usual anatomical landmarks for the freehand technique were known to all four surgeons. Two pedicles at each vertebral level were randomly allocated between conventional free hand insertion and an electromagnetic image guided surgery (NAVITRAK®) and 6.5 mm cancellous AO screws inserted. Post-operatively, spiral CT was blindly evaluated by an independent radiologist and the spine fellow to assess the accuracy of pedicle screw placement, by each method. The inter- and intra-observer reliability of CT was evaluated compared to dissection. The pedicle screw placement was assessed as perfect if within the pedicle along its central axis, or acceptable (within < 2 mm from perfect), and measured in millimetres from perfect thereafter. One hundred and sixty-six of 168 pedicles in 12 porcine spines were operated on. Complete data were present for 163 pedicles (81 CAOS, 82 freehand). In the CAOS group 84% of screws were deemed acceptable or perfect, compared to 75.6% with the freehand technique. Screw misplacement was significantly reduced using CAOS (P = 0.049). Seventy-nine percent

  12. Nonisothermal Thermogravimetric Analysis of Thai Lignite with High CaO Content

    PubMed Central

    Pintana, Pakamon

    2013-01-01

    Thermal behaviors and combustion kinetics of Thai lignite with different SO3-free CaO contents were investigated. Nonisothermal thermogravimetric method was carried out under oxygen environment at heating rates of 10, 30, and 50°C min−1 from ambient up to 1300°C. Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods were adopted to estimate the apparent activation energy (E) for the thermal decomposition of these coals. Different thermal degradation behaviors were observed in lignites with low (14%) and high (42%) CaO content. Activation energy of the lignite combustion was found to vary with the conversion fraction. In comparison with the KAS method, higher E values were obtained by the FWO method for all conversions considered. High CaO lignite was observed to have higher activation energy than the low CaO coal. PMID:24250259

  13. [Academic heritage of Jiu huang ben cao (Materia Medica for Relief of Famines) in Japan].

    PubMed

    He, Huiling; Xiao, Yongzhi

    2014-11-01

    Jiu huang ben cao (Materia Medica for Relief of Famines) was the first monograph on famines herbal in the history of China, which creates a new research field of edible plants. Around the middle and late 17th century, Jiu huang ben cao was spread to Japan and aroused great attention of famous Japanese herbalists. Thus, all versions of different edition systems were circulated in Japan. Later, some famous Japanese scholar ssuccessively quoted texts of Jiu huang ben cao from the Nong zheng quan shu (Whole book on Agricultural Administration) spread in Japan, and block-printed it as an independent work. As a result, Jiu huang ben cao virtually circulated widely in Japan.

  14. CaO interaction in the staged combustion of coal

    SciTech Connect

    Levy, A.; Merryman, E.L.; Rising, B.W.

    1983-12-19

    The LIMB (limestone injection multi-stage burner) process offers special potential for reducing NO/sub x/ and SO/sub x/ by at least 50 percent in coal combustion. This is to be accomplished by adding limestone with fuel and/or air in a low NO/sub x/ burner. This program has been directed to defining the chemistry and kinetics necessary to optimize sulfur capture in LIMB combustion. More specifically, this program has attempted to clarify the role of calcium sulfide in LIMB chemistry. When limestone is added in a staged burner, there is a strong possibility that under certain circumstances CaS is produced in the reducing (fuel-rich) zone of the burner. Since CaS is more stable than CaSO/sub 4/, this affords the opportunity to (1) operate the burner at a higher temperature, 2200 to 2500 F, (2) pass the CaS rapidly through the high temperature zone (before dissociation), and (3) complete the combustion in a lean (air-rich) region where the sulfur is finally retained in CaSO/sub 4/. For these reasons this program has concentrated on the high temperature chemistry and kinetics of CaS. To achieve the program objective, the program was divided into three tasks. These involved (1) a study of CaS formation, (2) a brief examination of CaS oxidation, and (3) a laboratory examination of the combustion of coal in the presence of CaO under first stage, fuel-rich conditions. In the most general sense, the study has shown that the formation of CaS in the reducing zones of the burner may be restricted by competing kinetics and thermodynamics. The addition of lime in LIMB will require special care to optimize the ability to capture sulfur. 36 references, 44 figures, 10 tables.

  15. Effect of H2O on the morphological changes of KNO3 formed on K2O/Al2O3 NOx storage materials: Fourier transform infra-red (FTIR) and time-resolved x-ray diffraction (TR-XRD) studies

    SciTech Connect

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos; Hanson, Jonathan C.; Peden, Charles HF

    2014-02-27

    Based on combined FTIR and XRD studies, we report here that H2O induces a morphological change of KNO3 species formed on model K2O/Al2O3 NOx storage-reduction catalysts. Specifically as evidenced by FTIR, the contact of H2O with NO2 pre-adsorbed on K2O/Al2O3 promotes the transformation from bidentate (surface-like) KNO3 species to ionic (bulk-like) ones irrespective of K loadings. Once H2O is removed from the sample, a reversible transformation into bidentate KNO3 is observed, demonstrating a significant dependence of H2O on such morphological changes. TR-XRD results show the formation of two different types of bulk KNO3 phases (orthorhomobic and rhombohedral) in an as-impregnated sample. Once H2O begins to desorb above 400 K, the former is transformed into the latter, resulting in the existence of only the rhombohedral KNO3 phase. On the basis of consistent FTIR and TR-XRD results, we propose a model for the morphological changes of KNO3 species with respect to NO2 adsorption/desorption, H2O and/or heat treatments. Compared with the BaO/Al2O3 system, K2O/Al2O3 shows some similarities with respect to the formation of bulk nitrates upon H2O contact. However, there are significant differences that originate from the lower melting temperature of KNO3 relative to Ba(NO3)2.

  16. CAOS: the nested catchment soil-vegetation-atmosphere observation platform

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Blume, Theresa

    2016-04-01

    Most catchment based observations linking hydrometeorology, ecohydrology, soil hydrology and hydrogeology are typically not integrated with each other and lack a consistent and appropriate spatial-temporal resolution. Within the research network CAOS (Catchments As Organized Systems), we have initiated and developed a novel and integrated observation platform in several catchments in Luxembourg. In 20 nested catchments covering three distinct geologies the subscale processes at the bedrock-soil-vegetation-atmosphere interface are being monitored at 46 sensor cluster locations. Each sensor cluster is designed to observe a variety of different fluxes and state variables above and below ground, in the saturated and unsaturated zone. The numbers of sensors are chosen to capture the spatial variability as well the average dynamics. At each of these sensor clusters three soil moisture profiles with sensors at different depths, four soil temperature profiles as well as matric potential, air temperature, relative humidity, global radiation, rainfall/throughfall, sapflow and shallow groundwater and stream water levels are measured continuously. In addition, most sensors also measure temperature (water, soil, atmosphere) and electrical conductivity. This setup allows us to determine the local water and energy balance at each of these sites. The discharge gauging sites in the nested catchments are also equipped with automatic water samplers to monitor water quality and water stable isotopes continuously. Furthermore, water temperature and electrical conductivity observations are extended to over 120 locations distributed across the entire stream network to capture the energy exchange between the groundwater, stream water and atmosphere. The measurements at the sensor clusters are complemented by hydrometeorological observations (rain radar, network of distrometers and dense network of precipitation gauges) and linked with high resolution meteorological models. In this

  17. Zircon U-Pb and Lu-Hf isotopic and geochemical constraints on the origin of the paragneisses from the Jiaobei terrane, North China Craton

    NASA Astrophysics Data System (ADS)

    Shan, Houxiang; Zhai, Mingguo; Zhu, Xiyan; Santosh, M.; Hong, Tao; Ge, Songsheng

    2016-01-01

    Clastic sedimentary rocks are important tracers to understand the evolution of the continental crust. Whole-rock major and trace element data, zircon U-Pb dating and Hf isotopic data for the paragneisses from the Jiaobei terrane are presented in this study in order to constrain their protoliths, provenance and tectonic setting. The paragneisses are characterized by enrichment in Al2O3 and TiO2, negative DF (DF = 10.44 - 0.21SiO2 - 0.32Fe2O3T - 0.98MgO + 0.55CaO + 1.46Na2O + 0.54K2O) values and the presence of aluminum-rich metamorphic minerals (e.g., garnet and sillimanite). Together with the mineral assemblages and zircon features, it can be inferred that the protoliths of these rocks are of sedimentary origin. The K-A (A = Al2O3/(Al2O3 + CaO + Na2O + K2O), K = K2O/(Na2O + K2O)) and log(Fe2O3/K2O)-log(SiO2/Al2O3) diagrams indicate that they belong principally to clay-silty rocks with some contributions from graywacke. A series of geochemical indexes, such as the widely employed CIA (CIA = [Al2O3/(Al2O3 + CaO∗ + Na2O + K2O)] × 100; molar proportions) and ICV (ICV = (Fe2O3 + MnO + MgO + CaO + Na2O + K2O + TiO2)/Al2O3) values, and the A-CN-K diagram for the paragneisses indicate relatively weak weathering in the source rocks and negligible post-depositional K-metasomatism. In addition, their REE patterns, low Cr/Zr (0.61-1.99), high Zr/Y (4.81-23.59) and Th/U (3.21-40.67) ratios, the low to moderate contents of Cr (197-362 ppm) and Ni (6.68-233 ppm), and source rock discrimination diagrams collectively suggest that the sediments of the protoliths of the paragneisses in the Jiaobei terrane were derived from the source with intermediate-acidic composition, probably granitic-to-tonalitic rocks. In combination with geochronological and isotopic studies on the paragneisses and the basement rocks in the Jiaobei terrane, it is suggested that the Archean-early Paleoproterozoic granitic rocks in the Jiaobei terrane possibly provided the most important source materials. In

  18. The 6.8 μ m band is caused by CaO grains

    NASA Astrophysics Data System (ADS)

    Kimura, Y.; Nuth, J. A., III

    2005-05-01

    Protostellar objects have several significant infrared. In this study, we will concentrate on the band observed at 6.8 μ m, one of the most obscure features in young stellar objects (YSOs) and one that is only observed in young stellar objects. Although several materials have been proposed to explain this feature, each of these candidates requires specific environmental conditions to explain the observations. We believe that a complex of CaO and Ca(OH)2 could explain observations of a 6.8 μ m feature in protostellar systems. We discuss the condensation of CaO grains and the formation of a Ca(OH)2 surface layer. The smoke samples were observed using a transmission electron microscope at the University of New Mexico. The infrared spectra of our samples had characteristic dual peaks centered at 6.8 um which was produced by absorption in CaO combined with absorption by a Ca(OH)2 layer on the surface of the CaO grains, produced by reaction with moisture upon exposure to air. The infrared spectra are compared with the spectra of fifteen YSOs. We note that CaO-rich grains are seen in all meteoritic CAIs (calcium-aluminum-rich inclusions), characteristic components of carbonaceous chondrites that must have been produced in the solar nebula. In addition, since CaO has a number of nebular formation routes, CaO could be present in young stellar environments to a significantly higher degree than would be implied by its abundance in meteorites. Moreover, the 6.8 μ m feature has only been observed in YSOs. Therefore, we believe that CaO grains (together with Ca(OH)2 coatings of varying thickness) are a plausible candidate to explain the 6.8 μ m features seen in YSOs and hypothesize that they are produced in the hot interiors of young stellar environments.

  19. [Determination of major elements in superphosphate by X-ray fluorescence spectrometry].

    PubMed

    Rui, Yu-Kui; Li, He; Shen, Jian-Bo; Zhang, Fu-Suo

    2008-11-01

    Phosphate fertilizer is one of the most important fertilizers. The authors determined nine kinds of major elements in superphosphate, the most important phosphate fertilizer, by X-ray fluorescence spectrometry. The detection range of SiO2, Al2O3, TFe2O3, MnO, MgO, CaO, Na2O, K2O and P2O5 is 15.0%-90.0%, 0.20%-25.0%, 0.20%-25.0%, 0.01%-0.35%, 0.20%-40.0%, 0.10%-35.0%, 0.10%-7.50%, 0.05%-7.50% and 1.00%-100.00% respectively, and the precision of the method for SiO2, Al2O3, TFe2O3, MnO, MgO, CaO, Na2O, K2O and P2O5 range from 0.20% to 0.005%, so the method of X-ray fluorescence spectrometry is a fast and effectual method for detecting the composition of phosphate fertilizer. The contents of the above elements showed (1) the detected superphosphate content is 18.101% of P2O5, which is accordant to the labeled level (> or = 16%); (2) the detected superphosphate contains much SiO2, TFe2O3, MgO, CaO and K2O, which are necessary for plant growth and the content of which is 16.954%, 1.495%, 1.580%, 21.428% and 1.585% respectively. These data showed that phosphate fertilizer sometimes can supply some trace elements for plants, but we should eliminate the interference effect of these elements when we research the role of phosphorus; (3) superphosphate contains 3.225% of Al2O3, so the authors should attention to the aluminium poison when superphosphate is used chronically. PMID:19271522

  20. Effect of sulfation on the surface activity of CaO for N2O decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Lingnan; Hu, Xiaoying; Qin, Wu; Dong, Changqing; Yang, Yongping

    2015-12-01

    Limestone addition to circulating fluidized bed boilers for sulfur removal affects nitrous oxide (N2O) emission at the same time, but mechanism of how sulfation process influences the surface activity of CaO for N2O decomposition remains unclear. In this paper, we investigated the effect of sulfation on the surface properties and catalytic activity of CaO for N2O decomposition using density functional theory calculations. Sulfation of CaO (1 0 0) surface by the adsorption of a single gaseous SO2 or SO3 molecule forms stable local CaSO3 or CaSO4 on the CaO (1 0 0) surface with strong hybridization between the S atom of SOx and the surface O anion. The formed local CaSO3 increases the barrier energy of N2O decomposition from 0.989 eV (on the CaO (1 0 0) surface) to 1.340 eV, and further sulfation into local CaSO4 remarkably increases the barrier energy to 2.967 eV. Sulfation from CaSO3 into CaSO4 is therefore the crucial step for deactivating the surface activity for N2O decomposition. Completely sulfated CaSO4 (0 0 1) and (0 1 0) surfaces further validate the negligible catalytic ability of CaSO4 for N2O decomposition.

  1. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying.

    PubMed

    Liu, Huan; Liu, Peng; Hu, Hongyun; Zhang, Qiang; Wu, Zhenyu; Yang, Jiakuan; Yao, Hong

    2014-12-01

    Joint application of Fenton's reagent and CaO can dramatically enhance sludge dewaterability, thus are also likely to affect subsequent thermal drying process. This study investigated the synergistic effects of the two conditioners on the thermal drying behavior of sewage sludge and the emission characteristics of main sulfur-/nitrogen-containing gases. According to the results, Fenton peroxidation combined with CaO conditioning efficiently promoted sludge heat transfer, reduced the amounts of both free and bound water, and created porous structure in solids to provide evaporation channels, thus producing significant positive effects on sludge drying performance. In this case, the required time for drying was shortened to one-third. Additionally, joint usage of Fenton's reagent and CaO did not increase the losses of organic matter during sludge drying process. Meanwhile, they facilitated the formation of sulfate and sulfonic acid/sulfone, leading to sulfur retention in dried sludge. Both of Fenton peroxidation and CaO conditioning promoted the oxidation, decomposition, and/or dissolution of protein and inorganic nitrogen in sludge pre-treatment. As a consequence, the emissions of sulfurous and nitrogenous gases from dewatered sludge drying were greatly suppressed. These indicate that combining Fenton peroxidation with CaO conditioning is a promising strategy to improve drying efficiency of sewage sludge and to control sulfur and nitrogen contaminants during sludge thermal drying process.

  2. New pyrometallurgical process of EAF dust treatment with CaO addition

    NASA Astrophysics Data System (ADS)

    Chairaksa-Fujimoto, Romchat; Inoue, Yosuke; Umeda, Naoyoshi; Itoh, Satoshi; Nagasaka, Tetsuya

    2015-08-01

    The non-carbothermic zinc pyrometallurgical processing of electric arc furnace (EAF) dust was investigated on a laboratory scale. The main objective of this process was to convert highly stable zinc ferrite (ZnFe2O4), which accounts for more than half of total zinc in the EAF dust, into ZnO and Ca2Fe2O5 by CaO addition. The EAF dust was mixed with CaO powder in various ratios, pressed into pellets, and heated in a muffle furnace in air at temperatures ranging from 700 to 1100°C for a predetermined holding time. All ZnFe2O4 was transformed into ZnO and Ca2Fe2O5 at a minimum temperature of 900°C within 1 h when sufficient CaO to achieve a Ca/Fe molar ratio of 1.1 was added. However, at higher temperatures, excess CaO beyond the stoichiometric ratio was required because it was consumed by reactions leading to the formation of compounds other than ZnFe2O4. The evaporation of halides and heavy metals in the EAF dust was also studied. These components could be preferentially volatilized into the gas phase at 1100°C when CaO was added.

  3. [Quantitative estimation of CaO content in surface rocks using hyperspectral thermal infrared emissivity].

    PubMed

    Zhang, Li-Fu; Zhang, Xue-Wen; Huang, Zhao-Qiang; Yang, Hang; Zhang, Fei-Zhou

    2011-11-01

    The objective of the present paper is to study the quantitative relationship between the CaO content and the thermal infrared emissivity spectra. The surface spectral emissivity of 23 solid rocks samples were measured in the field and the first derivative of the spectral emissivity was also calculated. Multiple linear regression (MLR), principal component analysis (PCR) and partial least squares regression (PLSR) were modeled and the regression results were compared. The results show that there is a good relationship between CaO content and thermal emissivity spectra features; emissivities become lower when CaO content increases in the 10.3-13 mm region; the first derivative spectra have a better predictive ability compared to the original emissivity spectra.

  4. Formation of Water Chains on CaO(001): What Drives the 1D Growth?

    PubMed

    Zhao, Xunhua; Shao, Xiang; Fujimori, Yuichi; Bhattacharya, Saswata; Ghiringhelli, Luca M; Freund, Hans-Joachim; Sterrer, Martin; Nilius, Niklas; Levchenko, Sergey V

    2015-04-01

    Formation of partly dissociated water chains is observed on CaO(001) films upon water exposure at 300 K. While morphology and orientation of the 1D assemblies are revealed from scanning tunneling microscopy, their atomic structure is identified with infrared absorption spectroscopy combined with density functional theory calculations. The latter exploit an ab initio genetic algorithm linked to atomistic thermodynamics to determine low-energy H2O configurations on the oxide surface. The development of 1D structures on the C4v symmetric CaO(001) is triggered by symmetry-broken water tetramers and a favorable balance between adsorbate-adsorbate versus adsorbate-surface interactions at the constraint of the CaO lattice parameter.

  5. Dissolution process for ZrO.sub.2 -UO.sub.2 -CaO fuels

    DOEpatents

    Paige, Bernice E.

    1976-06-22

    The present invention provides an improved dissolution process for ZrO.sub.2 -UO.sub.2 -CaO-type pressurized water reactor fuels. The zirconium cladding is dissolved with hydrofluoric acid, immersing the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers in the resulting zirconium-dissolver-product in the dissolver vessel, and nitric acid is added to the dissolver vessel to facilitate dissolution of the uranium from the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers.

  6. The mineralogy and geochemistry of quartz-tourmaline schlieren in the granites of the Primorsky Complex, Western Baikal Region

    NASA Astrophysics Data System (ADS)

    Savel'eva, V. B.; Bazarova, E. P.; Kanakin, S. V.

    2014-12-01

    Quartz-tourmaline schlieren have been found within rapakivi-like granites of the Early Proterozoic Primorsky Complex in the Western Baikal Region. These rocks are biotite leucogranites with normal alkalinity (A/CNK = 1.00-1.04); a high iron mole fraction (92-95%); a K2O/Na2O value of about 2.0; relatively high F, Li, Rb, Cs, Sn, Pb, Th, and U contents; and low Ba, Sr, Eu, Zn, Sc, and V contents. The schlieren composed of quartz and tourmaline with relics of feldspar also contain fluorite, rare muscovite, chlorite, and accessory rutile, ilmenite, zircon, monazite, xenotime, and bastnäsite. B2O3 and F contents in the schlieren are 2.29-2.63 and 0.30-0.47 wt %, respectively. Fe2O3 (4.8-5.4 wt %), F, and H2O contents are higher in these schlieren than in the host granite, while SiO2, CaO, Na2O, K2O, and P2O5 contents are lower than in host rocks. K2O/Na2O values decrease in the schlieren down to 0.4. Enrichment of the schlieren in Fe and other ore elements (Zn, Co, Cu, Sn, etc.), together with B, F, H2O, and Na, suggests that they crystallized from fluid-saturated melt segregated from aluminosilicate melt in the apical part of a shallow-seated intrusion. The formation of tourmaline may be related to the interaction of the fluid with feldspars in the crystallizing granites; it was accompanied by a separation of fluid F-CO2. Quartz precipitated at the next stage, due to the acidic character of the aqueous fluid. In general, the relationships of minerals in the schlieren indicate distinct fractionation of LREE, HREE, and Y in the fluid-saturated melt.

  7. Evaluation of antibacterial activity of plant mediated CaO nanoparticles using Cissus quadrangularis extract.

    PubMed

    Marquis, Gowdhami; Ramasamy, Balagurunathan; Banwarilal, Sarkar; Munusamy, Ayyasamy Pudukadu

    2016-02-01

    An assessment of antibacterial activity of greenly synthesized nanoparticles using aqueous stem extract of Cissus quadrangularis was carried out. The synthesized nanoparticles were characterized by UV-Vis spectroscopy, SEM, XRD, FTIR and further subjected for antibacterial activity against the pathogens Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae and Vibrio cholerae. The SEM photograph represents cubic and hexagonal shape of NPs about 58nm respectively whereas the XRD indicated the pure phase of the product and no impurity in peaks of well crystallized products. The FTIR spectrum of nanoparticles showed intensive peaks with blue shift indicating the crystalline and shorten the distance of crystal lattice. The plant mediated CaO nanoparticles showed maximum inhibition on E. coli followed by other strains. In MIC, the plant mediated CaO NPs possess high activity against all the test organisms whereas the CaCl2 and CaO compounds were moderately active. The approach to the synthesis of plant mediated CaO NPs has many advantages as scaled up, economic viability, etc. Application of such ecofriendly nanoparticles in bactericidal, wound healing and other medical applications makes this method potential existing for the large scale synthesis of the inorganic materials. PMID:26723000

  8. Evaluation of antibacterial activity of plant mediated CaO nanoparticles using Cissus quadrangularis extract.

    PubMed

    Marquis, Gowdhami; Ramasamy, Balagurunathan; Banwarilal, Sarkar; Munusamy, Ayyasamy Pudukadu

    2016-02-01

    An assessment of antibacterial activity of greenly synthesized nanoparticles using aqueous stem extract of Cissus quadrangularis was carried out. The synthesized nanoparticles were characterized by UV-Vis spectroscopy, SEM, XRD, FTIR and further subjected for antibacterial activity against the pathogens Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae and Vibrio cholerae. The SEM photograph represents cubic and hexagonal shape of NPs about 58nm respectively whereas the XRD indicated the pure phase of the product and no impurity in peaks of well crystallized products. The FTIR spectrum of nanoparticles showed intensive peaks with blue shift indicating the crystalline and shorten the distance of crystal lattice. The plant mediated CaO nanoparticles showed maximum inhibition on E. coli followed by other strains. In MIC, the plant mediated CaO NPs possess high activity against all the test organisms whereas the CaCl2 and CaO compounds were moderately active. The approach to the synthesis of plant mediated CaO NPs has many advantages as scaled up, economic viability, etc. Application of such ecofriendly nanoparticles in bactericidal, wound healing and other medical applications makes this method potential existing for the large scale synthesis of the inorganic materials.

  9. Postcombustion Capture of CO2 with CaO in a Circulating Fluidized Bed Carbonator

    NASA Astrophysics Data System (ADS)

    Alonso, M.; Rodriguez, N.; González, B.; Grasa, G.; Murillo, R.; Abanades, J. C.

    There is an emerging postcombustion capture technology that uses CaO to capture CO2 from combustion flue gases in a circulating fluidized bed reactor. This paper summarizes recent work conducted at CSIC to understand and develop this technology. The paper includes experimental results at conditions close to those expected in the real system, carried out in continuous mode in a 30kW test facility made up of two interconnected circulating fluidized bed reactors. In one of the reactors, CO2 is captured from the gas phase by the CaO continuously circulating from a calciner. In the second reactor, the CaCO3 formed in the carbonator is regenerated to CaO and CO2 by calcination. Modeling of the system at process level, at reactor level (in particular the CFB carbonator), and at particle level (decay in capture capability of CaO) is also outlined. The work carried out so far confirms that the carbonator reactors can be designed to attain capture efficiencies between 70-90%, operating at fluid dynamic conditions close to those present in circulating fluidized bed combustors.

  10. Effect of partial carbonation on the cyclic CaO carbonation reaction

    SciTech Connect

    Grasa, G.; Abanades, J.C.; Anthony, E.J.

    2009-10-15

    CaO particles from the calcination of natural limestones can be used as regenerable solid sorbents in some CO{sub 2} capture systems. Their decay curves in terms of CO{sub 2} capture capacity have been extensively studied in the literature, always in experiments allowing particles to reach their maximum carbonation conversion for a given cycle. However, at the expected operating conditions in a CO{sub 2} capture system using the carbonation reaction, a relevant fraction of the CaO particles will not have time to fully convert in the carbonator reactor. This work investigates if there is any effect on the decay curves when CaO is only partially converted in each cycle. Experiments have been conducted in a thermobalance arranged to interrupt the carbonation reaction in each cycle before the end of the fast reaction period typical in the CaO-CO{sub 2} reaction. It is shown that, after the necessary normalization of results, the effective capacity of the sorbent to absorb CO{sub 2} during particle lifetime in the capture system slightly increases and CaO particles partially converted behave 'younger' than particles fully converted after every calcination. This has beneficial implications for the design of carbonation/calcination loops.

  11. Finding fatigue resistant and lightweight designs using the optimization methods CAO and SKO

    NASA Astrophysics Data System (ADS)

    Mattheck, C.; Walther, Frank; Baumgartner, A.

    1992-07-01

    Computer Aided Optimization (CAO), a new method of shape optimization based on the computer simulation of biological growth and Soft Kill Option (SKO), and a strategy to find new design solutions with reduced weight are presented. CAO is used to improve the design of technical components by gaining a homogenized stress distribution on the surface of two and three dimensional finite element models. SKO helps to define new topologies starting from a general oversized 'design area'. With CAO it is also possible to simulate the 'adaptive growth' of biological load carriers, while SKO simulates the mineralization process of bones adapted to their loading. The main ideas of the methods are outlined and several examples of optimizations are shown. If completely new solutions for technical problems are desired, SKO is used first and the design proposal being found is then optimized by CAO in order to achieve a lightweight and fatigue resistant design. The efficiency of the combination of the two methods as a complete layout procedure is shown.

  12. Melting of metasomatized subcontinental mantle: New experiments and a new predictive models for plagioclase, spinel and garnet lherzolite melting

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Till, C. B.; Barr, J. A.; Krawczynski, M. J.

    2010-12-01

    Data from new experiments where liquid is in equilibrium with olivine + orthopyroxene + high-Ca clinopyroxene + Al-phase (plagioclase, spinel or garnet) have allowed us to recalibrate and update the melting model of Kinzler and Grove (K&G, JGR 97: 6885-6926, 1992) for melting under nominally anhydrous conditions over a larger range of pressure. We use existing literature data along with new experiments on melting of a high K2O primitive high alumina olivine tholeiite (HAOT) from the Oregon High Lava Plains, a high-K olivine leucitite from the Tibetan Plateau and low alkali, high FeO + MgO lunar ultramafic glasses. The new spinel lherzolite model is constrained by 114 experimental data that span a temperature range of 1200 to 1580 oC, a pressure range of 1 to 2.7 GPa and liquid alkali contents of up to 4.5 wt. % K2O and 5 wt. % Na2O. The garnet-lherzolite melting model uses 26 experimental constraints with new experiments containing up to 3.4 wt. % K2O. We use the following dependent variables to represent the melt composition in terms of oxygen-based mineral components: Olivine - Clinopyroxene - Plagioclase - Quartz and temperature. The independent variables are: pressure (P), molar Mg/(Mg+Fe) (Mg#), wt. % (K2O + Na2O)/(Na2O + K2O + CaO) (1-Ca#), wt.% Al2O3/(Al2O3+SiO2) (Al#), wt% K2O and wt. % TiO2. These variables describe the departure of melting behavior from the simplified lherzolite analog in CMAS (CaO-MgO-Al2O3-SiO2) in which melting behavior in univariant. This revised model facilitates a prediction of the liquid composition and temperature of multiple saturation with a mantle mineral assemblage for a given pressure. The new model allows compositional dependent calibration of the spinel to garnet lherzolite transition in sub-continental mantle environments. For example, beneath the Tibetan Plateau melting occurs near this transition and primitive high-K lavas show evidence of derivation from spinel- and garnet-bearing lherzolite. In addition, the HAOT lavas

  13. Hydrometallurgical extraction of zinc from CaO treated EAF dust in ammonium chloride solution.

    PubMed

    Miki, Takahiro; Chairaksa-Fujimoto, Romchat; Maruyama, Katsuya; Nagasaka, Tetsuya

    2016-01-25

    Zinc in Electric Arc Furnace dust or EAF dust mainly exists as ZnFe2O4 and ZnO. While ZnO can be simply dissolved into either an acidic or alkaline solution, it is difficult to dissolve ZnFe2O4. In our previous work, we introduced a process called "CaO treatment", a preliminary pyrometallurgical process designed to transform the ZnFe2O4 in the EAF dust into ZnO and Ca2Fe2O5. The halogens and others heavy metals were favorably vaporized during CaO treatment with no essential evaporation loss of zinc and iron, leaving CaO treated dust which consisted mainly of ZnO and Ca2Fe2O5 and no problematic ZnFe2O4 compound. In this work, the selective leaching of zinc over iron and calcium in the CaO treated dust was investigated using an NH4Cl solution. The effects of temperature, reaction time and NH4Cl concentration on dissolution behavior were examined. While most of the zinc in the CaO treated dust was extracted after 2 h at 70 °C with 2 M NH4Cl, only about 20% of calcium was leached in NH4Cl solution. However, the iron did not dissolve and remained as Ca2Fe2O5 in residue. It was confirmed that zinc can be effectively recovered using NH4Cl solution.

  14. Materials compatibility during the chlorination of molten CaCl/sub 2/. CaO salts. [CaCl/sub 2/. CaO salt

    SciTech Connect

    Rense, C.E.C.; Fife, K.W.; Bowersox, D.F.; Ferran, M.D.

    1987-01-01

    As part of our effort to develop a semicontinuous PuO/sub 2/ reduction process, we are investigating promising materials for containing a 900/sup 0/C molten CaCl/sub 2/ . CaO chlorination reaction. We want the material to contain this reaction and to be reusable. We tested candidate materials in a simulated salt (no plutonium) using anhydrous HCl as the chlorinating agent. Data are presented on the performance of 36 metals and alloys, 9 ceramics, and 3 coatings.

  15. Sulfation of CaO particles in a carbonation/calcination loop to capture CO{sub 2}

    SciTech Connect

    Grasa, G.S.; Alonso, M.; Abanades, J.C.

    2008-03-15

    CaO is being proposed as a regenerable sorbent of CO{sub 2} via a carbonation/calcination loop. It is well known that natural sorbents lose their capacity to capture CO{sub 2} with the number of cycles due to textural degradation. In coal combustion systems, reaction with the SO{sub 2} present in flue gases also causes sorbent deactivation. This work investigates the effect of partial sorbent sulfation on the amount of CaO used in systems where both carbonation and sulfation reactions are competing. We have found that SO{sub 2} reacts with the deactivated CaO resulting from repetitive calcination/carbonation reactions. Therefore, the deactivation of CaO as a result of the presence of SO{sub 2} is lower than one would expect if one assumes that SO{sub 2} reacts only with active CaO. This work shows that changes in the texture of the sorbent due to repetitive carbonation/calcination cycles tend to increase the sulfation capacity of the sorbents tested. This suggests that the purge of deactivated CaO obtained from a CO{sub 2} capture loop could be a more effective sorbent of SO{sub 2} than fresh CaO.

  16. Phase relations in the greenschist-blueschist-amphibolite-eclogite facies in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), with application to metamorphic rocks from Samos, Greece

    NASA Astrophysics Data System (ADS)

    Will, Thomas; Okrusch, Martin; Schmädicke, Esther; Chen, Guoli

    Calculated phase equilibria among the minerals sodic amphibole, calcic amphibole, garnet, chloritoid, talc, chlorite, paragonite, margarite, omphacite, plagioclase, carpholite, zoisite/clinozoisite, lawsonite, pyrophyllite, kyanite, sillimanite, quartz and H2O are presented for the model system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), which is relevant for many greenschist, blueschist, amphibolite and eclogite facies rocks. Using the activity-composition relationships for multicomponent amphiboles constrained by Will and Powell (1992), equilibria containing coexisting calcic and sodic amphiboles could be determined. The blueschist-greenschist transition reaction in the NCFMASH system, for example, is defined by the univariant reaction sodic amphibole + zoisite=calcic amphibole + chlorite + paragonite + plagioclase (+ quartz + H2O) occurring between approximately 420 and 450°C at 9.5 to 10kbar. The calculated petrogenetic grid is a valuable tool for reconstructing the PT-evolution of metabasic rocks. This is shown for rocks from the island of Samos, Greece. On the basis of mineral and whole rock analyses, PT-pseudosections were calculated and, together with the observed mineral assemblages and reaction textures, are used to reconstruct PT-paths. For rocks from northern Samos, pseudomorphs after lawsonite preserved in garnet, the assemblage sodic amphibole-garnet-paragonite-chlorite-zoisite-quartz and the retrograde appearance of albitic plagioclase and the formation of calcic amphibole around sodic amphibole constrain a clockwise PT-path that reaches its thermal maximum at some 520°C and 19kbar. The derived PT-trajectory indicates cooling during exhumation of the rocks and is similar to paths for rocks from the western part of the Attic-Cycladic crystalline complex. Rocks from eastern Samos indicate lower pressures and are probably related to high-pressure rocks from the Menderes Massif in western Turkey.

  17. Thermodynamic modeling of phase relations and metasomatism in shear zones

    NASA Astrophysics Data System (ADS)

    Goncalves, P.; Oliot, E.; Marquer, D.

    2009-04-01

    Ductile shear zones have been recognized for a long time as privileged sites of intense fluid-rock interactions in the crust. In most cases they induce focused changes in mineralogy and bulk chemical composition (metasomatism) which in turn may control the deformation and fluid-migration processes. Therefore understanding these processes requires in a first step to be able to model phase relations in such open system. In this contribution, emphasizes in placed on metasomatic aspects of the problem. Indeed , in many ductile shear zones reported in metagranites, deformation and fluid-rock interactions are associated with gain in MgO and losses of CaO and Na2O (K2O is also a mobile component but it can be either gained or lost). Although the mineralogical consequences of this so-called Mg-metasomatism are well-documented (replacement of K-feldspar into phengite, breakdown of plagioclase into ab + ep, crystallization of chlorite), the origin of this coupled mass-transfer is still unknown. We have performed a forward modeling of phase relationships using petrogenetic grids and pseudosections that consider variations in chemical potential (μ) of the mobile elements (MgO, CaO, Na2O). Chemical potential gradients being the driving force of mass transfer, μ-μ diagrams are the most appropriate diagrams to model open systems where fluid-rock interactions are prominent. Chemical potential diagrams are equivalent to activity diagrams but our approach differs from previous work because (1) solid solutions are taken into account (2) phase relations are modeled in a more realistic chemical system (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) and (3) the use of pseudosections allows to predict changes of the mineralogy (modes, composition) for the specific bulk composition studied. A particular attention is paid to the relationships between component concentrations and chemical potentials, which is not obvious in multi-component system. The studied shear zone is located in the Grimsel

  18. Non-isothermal Crystallization Kinetics of Spinels in Vanadium Slag with High CaO Content

    NASA Astrophysics Data System (ADS)

    Zhou, Wang; Xie, Bing; Tan, Wen-Feng; Diao, Jiang; Zhang, Xie; Li, Hong-Yi

    2016-09-01

    This paper investigated the non-isothermal crystallization kinetics of the spinel crystals in vanadium slags containing high CaO content. Experiments were performed in combination with theoretical calculation to address this issue, and statistical analyses based on the Crystal Size Distribution theory. The results indicate that low cooling rate and high CaO content benefit the growth of spinel crystals. The growth mechanism is revealed to be controlled by interface reactions and diffusion at the cooling rates of 5 K/min and 15 K/min, respectively. However, at higher temperatures (>1673 K), the growth of spinel crystals is controlled by nucleation. While the temperature is decreased to 1523 K at the cooling rate of 5 K/min, the mean diameter of spinel crystals could reach 36.44 μm. Experimental results combining with theoretical reveal that low cooling rate benefits spinels growth, especially for the interval of 1523 K-1200 K.

  19. Characteristics of HCN removal using CaO at high temperatures

    SciTech Connect

    Houzhang Tan; Xuebin Wang; Congling Wang; Tongmo Xu

    2009-03-15

    Experimental investigation on the removal of hydrogen cyanide (HCN) using calcium oxide (CaO) was carried out in a fixed bed reactor at temperature ranging from 300 to 1173 K, and the original HCN was produced during the pyrolysis of pyridine. Effects of temperature, volume space velocity, and initial HCN concentration on HCN removal were discussed. The results of temperature-programmed experiments show that temperature is the main factor affecting HCN removal. With the formation of CO, HCN starts to decrease from 473 K, and remains unchanged from 673 to 873 K. At 873 K, there is a further decrease in HCN without CO formation, and when temperature is higher than 1023 K, HCN is removed completely. In the isothermal experiments, CaCN{sub 2} was detected at 723 K, but at higher temperatures of 923 and 1123 K, there was no CaCN{sub 2} in the solid residues, and the nitrogen in the removed HCN was equal to that in the formed N{sub 2}. This indicates that at a lower temperature CaO is consumed to remove HCN, CaO + 2HCN {yields} CaCN{sub 2} + CO + H{sub 2}; but at a higher temperature, CaO acts as a catalyst for HCN removal, 2C{sub i}H{sub j} + 2HCN {yields} N{sub 2} + (j + 1 - k)H{sub 2} + 2C{sub I} + 1H{sub k}. The investigation on the removal efficiency shows that there is a critical temperature and a critical volume space velocity at which the HCN removal efficiency is able to reach up to 100%. 41 refs., 9 figs., 2 tabs.

  20. Porous carbon material containing CaO for acidic gas capture: preparation and properties.

    PubMed

    Przepiórski, Jacek; Czyżewski, Adam; Pietrzak, Robert; Toyoda, Masahiro; Morawski, Antoni W

    2013-12-15

    A one-step process for the preparation of CaO-containing porous carbons is described. Mixtures of poly(ethylene terephthalate) with natural limestone were pyrolyzed and thus hybrid sorbents could be easily obtained. The polymeric material and the mineral served as a carbon precursor and CaO delivering agent, respectively. We discuss effects of the preparation conditions and the relative amounts of the raw materials used for the preparations on the porosity of the hybrid products. The micropore areas and volumes of the obtained products tended to decrease with increasing CaO contents. Increase in the preparation temperature entailed a decrease in the micropore volume, whereas the mesopore volume increased. The pore creation mechanism is proposed on the basis of thermogravimetric and temperature-programmed desorption measurements. The prepared CaO-containing porous carbons efficiently captured SO2 and CO2 from air. Washing out of CaO from the hybrid materials was confirmed as a suitable method to obtain highly porous carbon materials.

  1. Social structure and group dynamics of the Cao Vit gibbon (Nomascus nasutus) in Bangliang, Jingxi, China.

    PubMed

    Fan, Pengfei; Fei, Hanlan; Xiang, Zuofu; Zhang, Wen; Ma, Changyong; Huang, Tao

    2010-01-01

    The Cao Vit gibbon (Nomascus nasutus) was rediscovered in 2002 in Vietnam and then in 2006 in China. This is the only known population with about 110 individuals located along the China-Vietnam border. Little is known about it other than its population size and distribution. We describe the social structure and group dynamics of the Cao Vit gibbons in China based on 2 years of monitoring from 2007 to 2009. Four established study groups at this site consisted of 1 adult male, 2 adult females and 2-6 offspring. Two juveniles in 2 groups disappeared during the research. Four infants were born in 3 groups from November 2008 to February 2009. In 2 of the groups, both adult females had dependent infants. These observations suggest that Cao Vit gibbons live in polygynous groups, contrary to the usual monogamous group with only 1 adult female, but nevertheless similar to the social organization of both N. concolor and N. hainanus. We observed a coordinated dispersal of 1 adult male and 2 large juveniles, and the male formed a pair with a newly arrived female. Our observations support a growing awareness of variability in gibbon social organization.

  2. Thermoluminescence properties of gamma irradiated CaO: Sm3+ phosphor

    NASA Astrophysics Data System (ADS)

    Prakash, D.; Nagabhushana, K. R.

    2016-07-01

    Pure and samarium doped calcium oxide (CaO) is synthesized by solution combustion technique. The samples are annealed at 600 °C for two hours. X-ray diffraction (XRD) pattern of the annealed sample show cubic phase with space group Fm3m. The average crystallite size is found to be ∼54 nm. Fourier transform infra red (FTIR) spectrum exhibits bands at 424, 544 cm-1 (Ca-O bond), 875 cm-1 (C-O bond), 1460 cm-1 (C-O stretch) and 3640 cm-1 (O-H stretch). The samples are irradiated with gamma rays in a dose range 100-4000 Gy. Thermoluminescence (TL) glow curves are recorded at a linear heating rate (β) of 5 Ks-1. A prominent TL glow with a peak at 636 K is observed in undoped sample. A new TL glow with peak at ∼458 K is observed in addition to 636 K in samarium doped (1 mol%) CaO. TL glow peak intensity (Imax) at 636 K increases with γ - dose in the study range. TL emissions at 560, 600 and 640 nm are observed in doped samples corresponding to Sm3+ transitions along with pristine emissions. TL glow curves are deconvoluted to obtain kinetic parameters. The mean value of activation energy and the frequency factor of the prominent deconvoluted TL glow peak (626 K) are found to be 1.26 eV and 4.49 × 109 s-1 respectively.

  3. Locomotion behavior of cao vit gibbon (Nomascus nasutus) living in karst forest in Bangliang Nature Reserve, Guangxi, China.

    PubMed

    Fan, Pengfei; Scott, Matthew B; Fei, Hanlan; Ma, Changyong

    2013-12-01

    The cao vit gibbon is a critically endangered species. Only approximately 110 individuals remain in degraded karst forest along the China-Vietnam border. Karst forest is unusual gibbon habitat. Currently, the canopy height of cao vit gibbon habitat is approximately 10 m. Research on the locomotor behavior of gibbons living in this particular forest type might provide important insight into locomotor stability and variability of gibbons. We used 5 min scan samples to record the locomotion mode, support use and canopy strata of gibbons in 3 groups for 2096 h between January 2008 and December 2009. Although cao vit gibbon habitat has a lower canopy in comparison to that of other forests inhabited by gibbons, cao vit gibbons displayed a similar overall locomotor pattern to other gibbon species (Symphalangus syndactylus, Hylobates lar and Hylobates agilis) in which brachiation dominate their locomotor behavior. Cao vit gibbons spent most of their time travelling on inclined branches (2-10 cm) in the middle stratum through the forest canopy. Adult females appear to more often employ safer modes of locomotion (bridging more often and brachiation less), while adult males choose riskier modes (leaping more and climbing less). As gibbons increased in body weight, as they grew from infant to adult, they tended to use larger supports. This research documented that locomotor behavior in Hylobatidae is strongly determined by anatomical characters, but cao vit gibbons also show the ability to use various supports, enabling them to survive in karst forest.

  4. Enclave Compositions Indicate Multiple Felsic Components at Chaos Crags, Lassen Volcanic National Park, California

    NASA Astrophysics Data System (ADS)

    Schmidt, E. R.; Hammersley, L. C.; Clynne, M. A.

    2014-12-01

    Chaos Crags, located in Lassen Volcanic National Park, is a series of 6 rhyodacite domes that exhibit dramatic evidence of magma mixing. Mafic enclaves from the Chaos Crags form two distinct textural groups: a finer-grained group containing abundant plagioclase crystals from the host rhyodacite, and a coarser-grained group generally lacking host phenocrysts. Enclave samples were collected from Dome B of the Chaos Crags with the intent of obtaining complete suites of the two textural groups. Geochemical data for the enclaves shows a weak correlation between texture and geochemistry. Notably, the geochemical data also shows two distinct chemical trends that appear to represent mixing with two different felsic components. The dominant trend shows mixing between the host rhyodacite and the mafic end member. The second trend is interpreted to result from mixing between the mafic end member and a cryptic felsic component that is distinct from the host rhyodacite. Modeling of major oxides, selected trace elements and rare earth elements suggests that, although the two clusters of enclaves mix towards different felsic end members, they appear start from the same mafic end member, which has a composition of approximately: SiO2 51.84%, CaO 10.45%, K2O 0.69%, P2O5 0.10%, MgO 5.35%, Na2O 2.8%, FeO 8.25%, Fe2O3 1.84%, Al2O3 19.47% and TiO2 0.76%, a composition common in the Lassen region. Preliminary modeling results indicate that, at 75% SiO2, the cryptic felsic component has a composition of: K2O 5.25%, P2O5 1.2%, Na2O 8.25%, Al2O3 14.65%, Fe2O3 0.18%, FeO 0.88% and TiO2 1.46%, with negligible amounts of CaO and MgO. At 70% SiO2 this composition is approximately: K2O 4.3%, P2O5 0.95%, Na2O 7.05%, Al2O3 15.66%, TiO2 1.31%, FeO 2.51% and Fe2O3 0.55% with negligible amounts of CaO and MgO. It is likely that this previously unrecognized mixing trend represents crustal contamination of the mafic end member. A suite of samples with compositions intermediate between these two trends

  5. Evolutionary changes in chlorophyllide a oxygenase (CAO) structure contribute to the acquisition of a new light-harvesting complex in micromonas.

    PubMed

    Kunugi, Motoshi; Takabayashi, Atsushi; Tanaka, Ayumi

    2013-07-01

    Chlorophyll b is found in photosynthetic prokaryotes and primary and secondary endosymbionts, although their light-harvesting systems are quite different. Chlorophyll b is synthesized from chlorophyll a by chlorophyllide a oxygenase (CAO), which is a Rieske-mononuclear iron oxygenase. Comparison of the amino acid sequences of CAO among photosynthetic organisms elucidated changes in the domain structures of CAO during evolution. However, the evolutionary relationship between the light-harvesting system and the domain structure of CAO remains unclear. To elucidate this relationship, we investigated the CAO structure and the pigment composition of chlorophyll-protein complexes in the prasinophyte Micromonas. The Micromonas CAO is composed of two genes, MpCAO1 and MpCAO2, that possess Rieske and mononuclear iron-binding motifs, respectively. Only when both genes were introduced into the chlorophyll b-less Arabidopsis mutant (ch1-1) was chlorophyll b accumulated, indicating that cooperation between the two subunits is required to synthesize chlorophyll b. Although Micromonas has a characteristic light-harvesting system in which chlorophyll b is incorporated into the core antennas of reaction centers, chlorophyll b was also incorporated into the core antennas of reaction centers of the Arabidopsis transformants that contained the two Micromonas CAO proteins. Based on these results, we discuss the evolutionary relationship between the structures of CAO and light-harvesting systems.

  6. Adsorption and dissociation kinetics of alkanes on CaO(100)

    NASA Astrophysics Data System (ADS)

    Chakradhar, A.; Liu, Y.; Schmidt, J.; Kadossov, E.; Burghaus, U.

    2011-08-01

    The adsorption kinetics of ethane, butane, pentane, and hexane on CaO(100) have been studied by multi-mass thermal desorption (TDS) spectroscopy. The sample cleanliness was checked by Auger electron spectroscopy. A molecular and dissociative adsorption pathway was evident for the alkanes, except for ethane, which does not undergo bond activation. Two TDS peaks appeared when recording the parent mass, which are assigned to different adsorption sites/configurations of the molecularly adsorbed alkanes. Bond activation leads to desorption of hydrogen and several alkane fragments assigned to methane and ethylene formation. Only one TDS feature is seen in this case. Formation of carbon residuals was absent.

  7. Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites

    NASA Astrophysics Data System (ADS)

    Laporte, Didier; Lambart, Sarah; Schiano, Pierre; Ottolini, Luisa

    2014-10-01

    Piston-cylinder experiments were performed to characterize the composition of liquids formed at very low degrees of melting of two fertile lherzolite compositions with 430 ppm and 910 ppm K2O at 1 and 1.3 GPa. We used the microdike technique (Laporte et al., 2004) to extract the liquid phase from the partially molten peridotite, allowing us to analyze liquid compositions at degrees of melting F down to 0.9%. At 1.3 GPa, the liquid is in equilibrium with olivine + orthopyroxene + clinopyroxene + spinel in all the experiments; at 1 GPa, plagioclase is present in addition to these four mineral phases up to about 5% of melting (T≈1240 °C). Important variations of liquid compositions are observed with decreasing temperature, including strong increases in SiO2, Na2O, K2O, and Al2O3 concentrations, and decreases in MgO, FeO, and CaO concentrations. The most extreme liquid compositions are phonolites with 57% SiO2, 20-22% Al2O3, Na2O + K2O up to 14%, and concentrations of MgO, FeO, and CaO as low as 2-3%. Reversal experiments confirm that low-degree melts of a fertile lherzolite have phonolitic compositions, and pMELTS calculations show that the amount of phonolite liquid generated at 1.2 GPa increases from 0.3% in a source with 100 ppm K2O to 3% in a source with 2000 ppm K2O. The enrichment in silica and alkalis with decreasing melt fraction is coupled with an increase of the degree of melt polymerization, which has important consequences for the partitioning of minor and trace elements. Thus Ti4+ in our experiments and, by analogy with Ti4+, other highly charged cations, and rare earth elements become less incompatible near the peridotite solidus. Our study brings a strong support to the hypothesis that phonolitic lavas or their plutonic equivalents (nepheline syenites) may be produced directly by partial melting of upper mantle rock-types at moderate pressures (1-1.5 GPa), especially where large domains of the subcontinental lithospheric mantle has been enriched in

  8. Influence of hot isostatic pressing on ZrO2-CaO dental ceramics properties.

    PubMed

    Gionea, Alin; Andronescu, Ecaterina; Voicu, Georgeta; Bleotu, Coralia; Surdu, Vasile-Adrian

    2016-08-30

    Different hot isostatic pressing conditions were used to obtain zirconia ceramics, in order to assess the influence of HIP on phase transformation, compressive strength, Young's modulus and density. First, CaO stabilized zirconia powder was synthesized through sol-gel method, using zirconium propoxide, calcium isopropoxide and 2-metoxiethanol as precursors, then HIP treatment was applied to obtain final dense ceramics. Ceramics were morphologically and structurally characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Density measurements, compressive strength and Young's modulus tests were also performed in order to evaluate the effect of HIP treatment. The zirconia powders heat treated at 500°C for 2h showed a pure cubic phase with average particle dimension about 70nm. The samples that were hot isostatic pressed presented a mixture of monoclinic-tetragonal or monoclinic-cubic phases, while for pre-sintered samples, cubic zirconia was the single crystalline form. Final dense ceramics were obtained after HIP treatment, with relative density values higher than 94%. ZrO2-CaO ceramics presented high compressive strength, with values in the range of 500-708.9MPa and elastic behavior with Young's modulus between 1739MPa and 4372MPa. Finally zirconia ceramics were tested for biocompatibility allowing the normal development of MG63 cells in vitro.

  9. Influence of hot isostatic pressing on ZrO2-CaO dental ceramics properties.

    PubMed

    Gionea, Alin; Andronescu, Ecaterina; Voicu, Georgeta; Bleotu, Coralia; Surdu, Vasile-Adrian

    2016-08-30

    Different hot isostatic pressing conditions were used to obtain zirconia ceramics, in order to assess the influence of HIP on phase transformation, compressive strength, Young's modulus and density. First, CaO stabilized zirconia powder was synthesized through sol-gel method, using zirconium propoxide, calcium isopropoxide and 2-metoxiethanol as precursors, then HIP treatment was applied to obtain final dense ceramics. Ceramics were morphologically and structurally characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Density measurements, compressive strength and Young's modulus tests were also performed in order to evaluate the effect of HIP treatment. The zirconia powders heat treated at 500°C for 2h showed a pure cubic phase with average particle dimension about 70nm. The samples that were hot isostatic pressed presented a mixture of monoclinic-tetragonal or monoclinic-cubic phases, while for pre-sintered samples, cubic zirconia was the single crystalline form. Final dense ceramics were obtained after HIP treatment, with relative density values higher than 94%. ZrO2-CaO ceramics presented high compressive strength, with values in the range of 500-708.9MPa and elastic behavior with Young's modulus between 1739MPa and 4372MPa. Finally zirconia ceramics were tested for biocompatibility allowing the normal development of MG63 cells in vitro. PMID:26481467

  10. Formation of 1D adsorbed water structures on CaO(001)

    NASA Astrophysics Data System (ADS)

    Zhao, Xunhua; Bhattacharya, Saswata; Ghiringhelli, Luca M.; Levchenko, Sergey V.; Scheffler, Matthias

    2015-03-01

    Understanding the interaction of water with oxide surfaces is of fundamental importance for basic and engineering sciences. Recently, a spontaneous formation of one-dimensional (1D) adsorbed water structures have been observed on CaO(001). Interestingly, at other alkaline earth metal oxides, in particular MgO(001) and SrO(001), such structures have not been found experimentally. We calculate the relative stability of adsorbed water structures on the three oxides using density-functional theory combined with the ab initio atomistic thermodynamics. Low-energy structures at different coverages are obtained with a first-principles genetic algorithm. Finite-temperature vibrational spectra are calculated using ab initio molecular dynamics. We find a range of (T, p) conditions where 1D structures are thermodynamically stable on CaO(001). The orientation and vibrational spectra of the 1D structures are in agreement with the experiments. The formation of the 1D structures is found to be actuated by a symmetry breaking in the adsorbed water tetramer, as well as by a balance between water-water and water-substrate interactions, determined by the lattice constant of the oxide.

  11. Mineralogical and chemical analyses of ancient glass beads from Taiwan and their implications

    NASA Astrophysics Data System (ADS)

    Liou, Y. S.; Liu, Y. C.

    2015-12-01

    Large numbers of monochrome glass beads with different colors, shapes, and stylistics excavated from the archaeological sites of Taiwan, which were dated mainly from the 2nd century AD to the early Historical Period of Taiwan. Archaeologically, these glass beads were more prevalent in eastern and northern Taiwan and were generally believed to be non-native, as well as were brought into Taiwan through the maritime exchange and/or trade activities between Taiwan and Southeast Asia/China since the Neolithic Age. Nevertheless, ancient glass beads have been little studies in Taiwan, aspects of these glass beads are not well detailed. In this work, non-destructive micro-Raman spectroscopy and μXRF are used in combination to examine 56 ancient glass beads excavated from six archaeological sites, eastern Taiwan, to unravel the mineralogical and chemical compositions and to help decipher the raw materials used and the provenance of beads. Micro-Raman measurements indicate the presence of hematite, zincite, siderite, sphalerite, lead tin yellow type II, adularia, chalcedony, anatase, rutite, ankerite, graphite, calcite, etc. Hematite, zincite, siderite, sphalerite, lead tin yellow type II, and rutile were found to be colorants/opacifiers. Among these crystalline phases, lead tin yellow type II was first detected in the ancient glass bead unearthed from Taiwan, which is accordant with results of chemical analysis. The chemical results obtained by μXRF show SiO2, Al2O3, Na2O, K2O, MgO, CaO, and PbO as the most abundant oxides. It is found that Na2O, Na2O, K2O, Al2O3, and MgO are the main/minor fluxes. According to the results, the three most frequent types are mineral soda alumina glass, soda plant ash glass, and lead silicate glass. The provenance of ancient beads unearthed from archaeological sites of Taiwan is possibility of multiple sources.

  12. Antibacterial glass-composite coatings for protection of special purpose steel panels

    NASA Astrophysics Data System (ADS)

    Savvova, O.; Bragina, L.; Babich, E.

    2011-12-01

    It has been established that the most informative and universal method for determination of biocide properties of vitreous coatings is qualitative method that takes into account the growth level of biotest microorganisms inoculated into liquid nutrient media. It is shown, that biocidity of glass-composite coatings on the basis of glasses of Na2O - K2O - CaO - ZrO2 - TiO2 - Al2O3 - P2O5 - B2O3 - SiO2 system is determined by the presence of calcium phosphates in them and depends on the type of bactericide filler. The most effective ones by the action on Pseudomonas aeruginosa bacterium and Aspergillus niger and Candida albicans fungi are zinc titanate and Ag+, to Escherichia coli- only zinc phosphate.

  13. Major and trace elements in igneous rocks from Apollo 15.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.

    1973-01-01

    The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.

  14. Semimicro chemical and x-ray fluorescence analysis of lunar samples

    USGS Publications Warehouse

    Rose, H.J.; Cuttitta, F.; Dwornik, E.J.; Carron, M.K.; Christian, R.P.; Lindsay, J.R.; Ligon, D.T.; Larson, R.R.

    1970-01-01

    Major and selected minor elements were determined in seven whole rock fragments, five portions of pulverized lunar rock, and the lunar soil. Three different rock types were represented: vesicular, fine-grained basaltic rocks; medium-to coarse-grained, vuggy gabbroic rocks; and breccia. The ranges (in percent) for the major constituents of the lunar samples are: SiO2, 38 to 42; Al2O3, 8 to 14; total iron as FeO, 15 to 20; MgO, 6 to 8; CaO, 10 to 12; Na2O, 0.5 to 1; K2O, 0.05 to 0.4; TiO2, 8 to 13; MnO, 0.2 to 0.3; and Cr2O3, 0.2 to 0.4. The high reducing capacity of the samples strongly suggests the presence of Ti(III).

  15. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin.

    PubMed

    Satyam Naidu, V; Aghalayam, P; Jayanti, S

    2016-06-01

    The present study investigates the enhancement of CO2 gasification reactivity of coals due to the presence of catalytic elements in biomass such as K2O, CaO, Na2O and MgO. Co-gasification of three Indian coal chars with two biomass chars has been studied using isothermal thermogravimetric analysis (TGA) in CO2 environment at 900, 1000 and 1100°C. The conversion profiles have been used to establish synergetic or inhibitory effect on coal char reactivity by the presence of catalytic elements in biomass char by comparing the 90% conversion time with and without biomass. It is concluded that both biomasses exhibit synergistic behavior when blended with the three coals with casuarina being more synergetic than empty fruit bunch. Some inhibitory effect has been noted for the high ash coal at the highest temperature with higher 90% conversion time for the blend over pure coal, presumably due to diffusional control of the conversion rate.

  16. Volatile fractionation and tektite source material

    NASA Technical Reports Server (NTRS)

    Walter, Louis S.

    1989-01-01

    The arguments used by Love and Woronow (1988) to assess the role played in the origin of bediasites by extensive volatile fractionation are critically examined. Using the ratios of 'refractory' oxides, CaO, Al2O3, and MgO, to the 'volatile' oxides, Na2O and K2O, these authors concluded that vapor fractionation did not play a significant role. In this paper, experimental evidence is presented that shows that the assumption of volatility for the alkali elements (as least with respect to silica) to be not valid under the conditions under which tektites formed. It is shown that the results of vapor fractionation in experiments on glasses of tektite composition are approximately parallel the trends seen in bediasite analysis.

  17. Self-healing of defects in CaO coatings on V-5%Cr-5%Ti in liquid lithium

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1994-11-01

    In-situ electrical resistance of CaO coatings produced on V-5%Cr-5%Ti by exposure of the alloy to liquid Li that contained 0.5-85 wt % dissolved Ca was measured as a function of time at temperatures between 250 and 600{degrees}C. Examination of the specimens after cooling to room temperature revealed no spallation, but homogeneous crazing cracks were present in the CaO coating. Additional tests to investigate the in-situ self-healing behavior of the cracks indicated that rapid healing occurred at >360{degrees}C.

  18. Biomineral microstructures in ferromanganese nodules: evidence of the biological and abiogenous origin

    NASA Astrophysics Data System (ADS)

    Lysyuk, G. N.

    2011-10-01

    Manganese oxides, which are widespread and of great practical importance, are formed and transformed by the active role of microorganisms. Manganese aggregates occur as both crystallized varieties and disordered fine-grained phases with significant ore grade and up to 50-60 vol % of X-ray amorphous components. X-ray amorphous nanosizedMn oxides in Fe-Mn nodules from the Pacific Ocean floor were examined from the standpoint of their biogenic origin. SEM examination showed abundant mineralized biofilms on the studied samples. The chemical composition of bacterial mass is as follows (wt %): 28.34 MnO, 17.14 Fe2O3, 7.11 SiO2, 2.41 CaO, 17.90 TiO2, 1.74Na2O,1.73 A12O3,1.30 MgO, 1.25P2O5,1.25 SO3,0.68 CoO, 0.54 CuO, 0.53 NiO, and 0.50 K2O. The chemical composition of fossilized cyanobacterial mats within the interlayer space of nodules is as follows (wt %): 48.35 MnO, 6.23 Fe2O3, 8.76 MgO, 5.05 A12O3, 4.45 SiO2, 3.63 NiO, 2.30 Na2O, 2.19 CuO, 1.31 CaO, and 0.68 K2O is direct evidence for participation of bacteria in Mn oxide formation. This phase consists of mineralized glycocalix consisting of nanosized flakes of todorokite. Native metals (Cu, Fe, and Zn) as inclusions 10-20 μm in size were identified in ferromanganese nodules as well. The formation of native metals can be explained by their crystallization at highly reducing conditions maintained by organic matter.

  19. Sampling and major element chemistry of the recent (A.D. 1631-1944) Vesuvius activity

    USGS Publications Warehouse

    Belkin, H.E.; Kilburn, C.R.J.; de Vivo, B.

    1993-01-01

    Detailed sampling of the Vesuvius lavas erupted in the period A.D. 1631-1944 provides a suite of samples for comprehensive chemical analyses and related studies. Major elements (Si, Ti, Al, Fetotal, Mn, Mg, Ca, Na, K and P), volatile species (Cl, F, S, H2O+, H2O- and CO2), and ferrous iron (Fe2+) were determined for one hundred and forty-nine lavas and five tephra from the A.D. 1631-1944 Vesuvius activity. The lavas represent a relatively homogeneous suite with respect to SiO2, TiO2, FeOtotal, MnO and P2O5, but show systematic variations among MgO, K2O, Na2O, Al2O3 and CaO. The average SiO2 content is 48.0 wt.% and the rocks are classified as tephriphonolites according to their content of alkalis. All of the lavas are silica-undersaturated and are nepheline, leucite, and olivine normative. There is no systematic variation in major-element composition with time, over the period A.D. 1631-1944. The inter-eruption and intra-eruption compositional differences are the same magnitude. The lavas are highly porphyritic with clinopyroxene and leucite as the major phases. Fractionation effects are not reflected in the silica content of the lavas. The variability of MgO, K2O, Na2O, and CaO can be modelled as a relative depletion or accumulation of clinopyroxene. ?? 1993.

  20. DUSTER: collection of meteoric CaO and carbon smoke particles in the upper stratosphere .

    NASA Astrophysics Data System (ADS)

    Della Corte, V.; Rietmeijer, F. J. M.; Rotundi, A.; Ferrari, M.; Palumbo, P.

    Nanometer- to micrometer-size particles present in the upper stratosphere are a mixture of terrestrial and extra-terrestrial origins. They can be extraterrestrial particles condensed after meteor ablation. Meteoric dust in bolides is occasionally deposited into the lower stratosphere around 20 km altitude. Nanometer CaO and pure carbon smoke particles were collected at 38 km altitude in the upper stratosphere in the Arctic during June 2008 using DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval), a balloon-borne instrument for the non-destructive collection of solid particles between 200 nm to 40 microns. We report the collection of micron sized CaCO_3 (calcite) grains. Their morphologies show evidence of melting and condensation after vaporization suggest at temperatures of approximately 3500 K. The formation environment of the collected grains was probably a dense dust cloud formed by the disintegration of a carbonaceous meteoroid during deceleration in the Earth� atmosphere. For the first time, DUSTER collected meteor ablation products that were presumably associated with the disintegration of a bolide crossing the Earth's atmosphere. The collected mostly CaO and pure carbon nanoparticles from the debris cloud of a fireball, included: 1) intact fragments; 2) quenched melted grains; and 3) vapor phase condensation products. The DUSTER project was funded by the Italian Space Agency (ASI), PRIN2008/MIUR (Ministero dell'Istruzione dell'Universitá e della Ricerca), PNRA 2013(Piano Nazionale Ricerca Antartide). CNES graciously provided this flight opportunity. We thank E. Zona and S. Inarta at the Laboratorio di Fisica Cosmica INAF, Osservatorio Astronomico di Capodimonte-Universitá di Napoli Parthenope. F.J.M.R. was supported by grant NNX07AI39G from the NASA Cosmochemistry Program. We thank three anonymous reviewers who assisted us in introducing our new instrument.

  1. ExoMol molecular line lists - XIII. The spectrum of CaO

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Blissett, Audra; Asari, Usama; Vasilios, Marcus; Hill, Christian; Tennyson, Jonathan

    2016-03-01

    An accurate line list for calcium oxide is presented covering transitions between all bound ro-vibronic levels from the five lowest electronic states X 1Σ+, A' 1Π, A 1Σ+, a 3Π, and b 3Σ+. The ro-vibronic energies and corresponding wavefunctions were obtained by solving the fully coupled Schrödinger equation. Ab initio potential energy, spin-orbit, and electronic angular momentum curves were refined by fitting to the experimental frequencies and experimentally derived energies available in the literature. Using our refined model we could (1) reassign the vibronic states for a large portion of the experimentally derived energies (van Groenendael A., Tudorie M., Focsa C., Pinchemel B., Bernath P. F., 2005, J. Mol. Spectrosc., 234, 255), (2) extended this list of energies to J = 61-118 and (3) suggest a new description of the resonances from the A 1Σ+-X 1Σ+ system. We used high level ab initio electric dipole moments reported previously (Khalil H., Brites V., Le Quere F., Leonard C., 2011, Chem. Phys., 386, 50) to compute the Einstein A coefficients. Our work is the first fully coupled description of this system. Our line list is the most complete catalogue of spectroscopic transitions available for 40Ca16O and is applicable for temperatures up to at least 5000 K. CaO has yet to be observed astronomically but its transitions are characterized by being particularly strong which should facilitate its detection. The CaO line list is made available in an electronic form as supplementary data to this article and at www.exomol.com.

  2. CaO insulator coatings on a vanadium-base alloy in liquid 2 at.% calcium-lithium

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1996-10-01

    The electrical resistance of CaO coatings produced on V-4%Cr-4%Ti and V-15%Cr-5%Ti by exposure of the alloy (round bottom samples 6-in. long by 0.25-in. dia.) to liquid lithium that contained 2 at.% dissolved calcium was measured as a function of time at temperatures between 300-464{degrees}C. The solute element, calcium in liquid lithium, reacted with the alloy substrate at these temperatures for 17 h to produce a calcium coating {approx}7-8 {mu}m thick. The calcium-coated vanadium alloy was oxidized to form a CaO coating. Resistance of the coating layer on V-15Cr-5Ti, measured in-situ in liquid lithium that contained 2 at.% calcium, was 1.0 x 10{sup 10} {Omega}-cm{sup 2} at 300{degrees}C and 400 h, and 0.9 x 10{sup 10} {Omega}-cm{sup 2} at 464{degrees}C and 300 h. Thermal cycling between 300 and 464{degrees}C changed the resistance of the coating layer, which followed insulator behavior. Examination of the specimen after cooling to room temperature revealed no cracks in the CaO coating. The coatings were evaluated by optical microscopy, scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), and X-ray analysis. Adhesion between CaO and vanadium alloys was enhanced as exposure time increased.

  3. Effect of CaO on the selectivity of N2O decomposition products: A combined experimental and DFT study

    NASA Astrophysics Data System (ADS)

    Wu, Lingnan; Hu, Xiaoying; Qin, Wu; Gao, Pan; Dong, Changqing; Yang, Yongping

    2016-09-01

    The effect of CaO on N2O decomposition and the selectivity of its decomposition products (NO and N2) was investigated using a fixed-bed flow reactor with varying temperatures from 317 °C to 947 °C. The selectivity of NO from CaO-catalyzed N2O decomposition is much lower than the N2 selectivity with the N2/NO products ratio greater than 12.1. Compared to N2O homogeneous decomposition with the minimum N2/NO products ratio of 6.2 at 718 °C, CaO also decreases the NO selectivity from 718 °C to 947 °C. Density functional theory calculations provide possible N2O decomposition routes on the CaO (1 0 0) surface considering both N2 and NO as N2O decomposition products. The N2 formation route is more favorable than the NO formation route in terms of energy barrier and reaction energy, and NO formation on the CaO (1 0 0) surface is likely to proceed via N2O + Osurf2- → N2 + O2 , surf2- and N2O + O2 , surf2- → 2NO + Osurf2-.

  4. Characterization of forest biodiversity in Western Amazon using CAO-VSWIR imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Féret, J.; Asner, G. P.

    2012-12-01

    Mapping canopy species richness is a key to the study and conservation of biological diversity in tropical forests, but to date, no reliable methods exist for operational biodiversity mapping of tropical regions. Airborne imaging spectroscopy has proven potential for the discrimination of canopy tree species, as a combination of high spectral and spatial resolution allows measurement of subtle spectral variations among individual tree crowns, corresponding to the chemical properties of the leaves in different species. We developed a method to estimate the Shannon diversity index, a popular biodiversity indicator, of a forest canopy from airborne spectral data by building upon the Spectral Variation Hypothesis, which relates biological diversity to spectral variability. We collected and analyzed hyperspectral data acquired by the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS) over the Los Amigos Conservation Concession in the Peruvian Amazon. The data have a spatial resolution of 2.0 m and 217 bands evenly spaced between 380 nm and 2510 nm. The method relies on a k-means clustering of a subset of pixels randomly selected from a site, each cluster serving as a proxy for different species. Each pixel in the image is then assigned to the nearest 'proxy-species', the Shannon index is computed for a given area, i.e. 1 ha, and the process is repeated several times to obtain the average estimated Shannon index. To test our approach, we applied the method to two types of data acquired by CAO AToMS. The first was an artificial gradient of biological diversity generated using pixels corresponding to species identified during a field campaign. This artificial gradient allowed total control on the number of species (ranging from 1 to 36 species per ha), and accurate quantification of the results. The spectral diversity index mapped using our method showed a strong correlation with the actual Shannon diversity index (R^2=0.81). The second dataset

  5. What Dominates the Error in the CaO Diatomic Bond Energy Predicted by Various Approximate Exchange-Correlation Functionals?

    PubMed

    Yu, Haoyu; Truhlar, Donald G

    2014-06-10

    In order to understand what governs the accuracy of approximate exchange-correlation functionals for intrinsically multiconfigurational systems containing metal atoms, the properties of the ground electronic state of CaO have been studied in detail. We first applied the T1, TAE(T), B1, and M diagnostics to CaO and confirmed that CaO is an intrinsically multiconfigurational system. Then, we compared the bond dissociation energies (BDEs) of CaO as calculated by 49 exchange-correlation functionals, three exchange-only functionals, and the HF method. To analyze the error in the BDEs for the various functionals, we decomposed each calculated BDE into four components, in particular the ionization potential, the electron affinity, the atomic excitation energy of the metal cation to prepare the valence state, and the interaction energy between prepared states. We found that the dominant error occurs in the calculated atomic excitation energy of the cation. Third, we compared dipole moments of CaO as calculated by the 53 methods, and we analyzed the dipole moments in terms of partial atomic charges to understand the contribution of ionic bonding and how it is affected by errors in the calculated ionization potential of the metal atom. We then analyzed the dipole moment in terms of the charge distribution among orbitals, and we found that the orbital charge distribution does not correlate well with the difference between the calculated ionization potential and electron affinity. Fourth, we examined the potential curves and internuclear distance dependence of the orbital energies of the lowest-energy CaO singlet and triplet states to analyze the near-degeneracy aspect of the correlation energy. The most important conclusion is that the error tends to be dominated by the error in the relative energies of s and d orbitals in Ca(+), and the most popular density functionals predict this excitation energy poorly. Thus, even if they were to predict the BDE reasonably well, it would

  6. Enhancing the quantity and quality of short-chain fatty acids production from waste activated sludge using CaO2 as an additive.

    PubMed

    Li, Yongmei; Wang, Jie; Zhang, Ai; Wang, Lin

    2015-10-15

    The effect of calcium peroxide (CaO2) addition on anaerobic fermentation of waste activated sludge (WAS) was investigated. The lab-scale experiments were conducted at 35 °C with CaO2 doses ranging from 0.05 to 0.3 g/g VSS. The performances of hydrolysis and acidification of WAS were significantly enhanced by CaO2 addition, whereas the production of methane was inhibited. Maximum total short-chain fatty acids (TSCFA) production (284 mg COD/g VSS) occurred at a CaO2 dose of 0.2 g/g VSS and fermentation time of 7 d, which was 3.9 times higher than the control tests. Further, CaO2 addition led to the conversion of other SCFAs to acetic acid. Acetic acid comprised 60.2% of TSCFA with the addition of 0.2 g CaO2/g VSS compared with 45.1% in the control tests. The mechanism of improved SCFAs generation was analyzed from the view of both chemical and biological effects. Chemical effect facilitated the disintegration of WAS, and improved the activities of both hydrolytic enzymes and acid-forming enzymes. Illumina MiSeq sequencing analysis revealed that bacteria within phylum Firmicutes increased significantly due to CaO2 addition, which played an important role in the hydrolysis and acidification of WAS. In addition, CaO2 oxidized most refractory organic contaminants, which were difficult to biodegrade under the ordinary anaerobic condition. Hydroxyl radicals were the most abundant reactive oxygen species released by CaO2, which played a key role in the removal of refractory organic compounds. We developed a promising technology to produce a valuable carbon source from WAS.

  7. Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II

    NASA Astrophysics Data System (ADS)

    Kurashige, Yuki; Chan, Garnet Kin-Lic; Yanai, Takeshi

    2013-08-01

    It is a long-standing goal to understand the reaction mechanisms of catalytic metalloenzymes at an entangled many-electron level, but this is hampered by the exponential complexity of quantum mechanics. Here, by exploiting the special structure of physical quantum states and using the density matrix renormalization group, we compute near-exact many-electron wavefunctions of the Mn4CaO5 cluster of photosystem II, with more than 1 × 1018 quantum degrees of freedom. This is the first treatment of photosystem II beyond the single-electron picture of density functional theory. Our calculations support recent modifications to the structure determined by X-ray crystallography. We further identify multiple low-lying energy surfaces associated with the structural distortion seen using X-ray crystallography, highlighting multistate reactivity in the chemistry of the cluster. Direct determination of Mn spin-projections from our wavefunctions suggests that current candidates that have been recently distinguished using parameterized spin models should be reassessed. Through entanglement maps, we reveal rich information contained in the wavefunctions on bonding changes in the cycle.

  8. Preparation and characterizaton of CaO nanoparticle for biodiesel production

    NASA Astrophysics Data System (ADS)

    Gupta, Jharna; Agarwal, Madhu

    2016-04-01

    Nanoparticle of CaO from calcium Nitrate (CaO/CaN) and Snail shell (CaO/SS) are successfully synthesized by method as described in the literature and used as an active and stable catalyst for the biodiesel production. These catalysts are characterized by Fourier-transform infrared spectra (FT-IR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA). The average crystalline size in nanometer was also calculated by Debye-Scherrer equation. The performance of the CaO/CaN and CaO/SS were tested for their catalytic activity via transesterification process and it was found that biodiesel yield has been increased from 93 to 96%. The optimum conditions for the highest yield were 8wt% catalyst loading, 65°C temperature, 12:1 methanol/oil molar ratio, and 6 h for reaction time. The nano catalyst from snail shell exhibits excellent catalytic activity and stability for the transesterification reaction, which suggested that this catalyst would be potentially used as a solid base nano catalyst for biodiesel production. In order to examine the reusability of catalyst developed from snail shell, five transesterification reaction cycles were also performed.

  9. Strain-induced topological transition in SrRu2O6 and CaOs2O6

    NASA Astrophysics Data System (ADS)

    Ochi, Masayuki; Arita, Ryotaro; Trivedi, Nandini; Okamoto, Satoshi

    2016-05-01

    The topological property of SrRu2O6 and isostructural CaOs2O6 under various strain conditions is investigated using density functional theory. Based on an analysis of parity eigenvalues, we anticipate that a three-dimensional strong topological insulating state should be realized when band inversion is induced at the A point in the hexagonal Brillouin zone. For SrRu2O6 , such a transition requires rather unrealistic tuning, where only the c axis is reduced while other structural parameters are unchanged. However, given the larger spin-orbit coupling and smaller lattice constants in CaOs2O6 , the desired topological transition does occur under uniform compressive strain. Our study paves a way to realize a topological insulating state in a complex oxide, which has not been experimentally demonstrated so far.

  10. Strain-induced topological transition in SrRu2O6 and CaOs2O6

    DOE PAGES

    Ochi, Masayuki; Arita, Ryotaro; Trivedi, Nandini; Okamoto, Satoshi

    2016-05-24

    The topological property of SrRu$_2$O$_6$ and isostructural CaOs$_2$O$_6$ under various strain conditions is investigated using density functional theory. Based on an analysis of parity eigenvalues, we anticipate that a three-dimensional strong topological insulating state should be realized when band inversion is induced at the A point in the hexagonal Brillouin zone. For SrRu$_2$O$_6$, such a transition requires rather unrealistic tuning, where only the $c$ axis is reduced while other structural parameters are unchanged. However, given the larger spin-orbit coupling and smaller lattice constants in CaOs$_2$O$_6$, the desired topological transition does occur under uniform compressive strain. Our study paves a waymore » to realize a topological insulating state in a complex oxide, which has not been experimentally demonstrated so far.« less

  11. Fabrication and performance testing of CaO insulator coatings on V-5%Cr-5%Ti in liquid lithium

    SciTech Connect

    Park, J.H.; Dragel, G.

    1995-04-01

    Corrosion resistance of structural materials, and the magnetohydrodynamic (MHD) force and its influence on thermal hydraulics and corrosion, are major concerns in the design of liquid-metal blankets for magnetic fusion reactors (MFRs). The objective of this study is to develop in-situ stable coatings at the liquid-metal/structural-material interface, with emphasis on coatings that can be converted to an electrically insulating film to prevent adverse currents that are generated by the MHD force from passing through the structural walls. The electrical resistance of CaO coatings produced on V-5Cr-5Ti by exposure of the alloy to liquid Li that contained 0.5 - 8.5 wt.% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degree}C. The solute element, Ca in liquid Li, reacted with the alloy substrate at 400-420{degree}C to produce a CaO coating.

  12. Melting of CaO and CaSiO3 at Deep Mantle Condition Using First Principles Simulations

    NASA Astrophysics Data System (ADS)

    Bajgain, S. K.; Ghosh, D. B.; Karki, B. B.

    2015-12-01

    Accurate prediction of melting temperatures of major mantle minerals at high pressures is important to understand the Hadean Earth as well as to explain the observed seismic anomalies at ultra-low velocity zone (ULVZ). To further investigate the geophysical implications of our recent first principles study of molten CaO and CaSiO­3, we calculated the melting temperatures of the corresponding solid phases by integrating the Clausius-Clapeyron equation. The melting behavior of their high-pressure phases can constrain the lower mantle solidus. Our calculations show melting temperature of 5700 ± 500 kelvins for CaSiO3 and 7800 ± 600 kelvins for CaO at the base of the lower mantle (136 GPa). The bulk sound velocities of CaO and CaSiO3 liquids at the core-mantle boundary are found to be 40 % lower than P-wave seismic velocity and 22 % lower than that of MgSiO3 liquid. With substantial decrease of melting temperature by freezing point depression and iron partitioning, the partial melting of multi-component silicate and its gravitational buoyancy at ULVZ cannot be ruled out.

  13. Canopy spectral and chemical diversity from lowland to tree line in the Western Amazon using CAO-VSWIR

    NASA Astrophysics Data System (ADS)

    Martin, R. E.; Asner, G. P.

    2012-12-01

    Canopy chemistry and spectroscopy offer insight into community assembly and ecosystem processes in high-diversity tropical forests. Results from one lowland site in the Peruvian Amazon suggests both an environmental and an evolutionary component of canopy trait development however, the degree to which larger environmental differences influence diversity in canopy traits and their respective spectroscopic signatures across remains poorly understood. The spectranomics approach explicitly connects phylogenetic, chemical and spectral patterns in tropical canopies providing the basis for analysis, while high-fidelity, airborne remote sensing measurements extend plot-level data to landscape-scale, achieving a comprehensive view of the region. In 2011, the Carnegie Airborne Observatory (CAO) was used to sample a large region of the Western Amazon Basin in southeastern Peru, extending from lowlands to tree line in the Andean mountains. The CAO Visible-Shortwave Imaging Spectrometer (VSWIR) collected 480-band high-fidelity imaging spectroscopy data of the forest canopy, while its high-resolution LiDAR captured information on canopy structure and the underlying terrain. The data were used to quantify relationships between environmental gradients and canopy chemical and spectral diversity. Results suggest strong environmental control with additional phylogenetic influence over canopy spectral and chemical properties, particularly those related to structure, defense and metabolic function. Data from CAO-VSWIR extends the large range in canopy chemical and spectral diversity related to environmental factors across the Western Amazon Basin.

  14. Influence of SrO substitution for CaO on the properties of bioactive glass S53P4.

    PubMed

    Massera, Jonathan; Hupa, Leena

    2014-03-01

    Commercial melt-quenched bioactive glasses consist of the oxides of silicon, phosphorus, calcium and sodium. Doping of the glasses with oxides of some other elements is known to affect their capability to support hydroxyapatite formation and thus bone tissue healing but also to modify their high temperature processing parameters. In the present study, the influence of gradual substitution of SrO for CaO on the properties of the bioactive glass S53P4 was studied. Thermal analysis and hot stage microscopy were utilized to measure the thermal properties of the glasses. The in vitro bioactivity and solubility was measured by immersing the glasses in simulated body fluid for 6 h to 1 week. The formation of silica rich and hydroxyapatite layers was assessed from FTIR spectra analysis and SEM images of the glass surface. Increasing substitution of SrO for CaO decreased all characteristic temperatures and led to a slightly stronger glass network. The initial glass dissolution rate increased with SrO content. Hydroxyapatite layer was formed on all glasses but on the SrO containing glasses the layer was thinner and contained also strontium. The results suggest that substituting SrO for CaO in S53P4 glass retards the bioactivity. However, substitution greater than 10 mol% allow for precipitation of a strontium substituted hydroxyapatite layer. PMID:24338267

  15. Effect of FeO and CaO on the Sulfide Capacity of the Ferronickel Smelting Slag

    NASA Astrophysics Data System (ADS)

    Kim, Ki Deok; Huh, Wan Wook; Min, Dong Joon

    2014-06-01

    The effect of FeO and CaO on the sulfide capacity in MgO-SiO2-FeO based slags equilibrating with Fe-Ni alloys at 1773 K and 1873 K (1500 °C and 1600 °C) was investigated. The sulfide capacity in the MgO-SiO2-FeO and MgO-SiO2-CaO-FeO slags increased with higher FeO content and higher temperatures due to an increase in the activity of O2- and a decrease in the activity coefficient of sulfide ion in slag. The sulfide capacity of the MgO-SiO2-CaO-FeO slag also increased with an increase in the CaO content due largely to the increase in the activity of O2-. Furthermore, CaO and FeO seem to be more effective than MgO in increasing the sulfide capacity in the MgO-SiO2-CaO-FeO slag system. In addition, the comparison of the experimental results with the theoretical estimate using the modified empirical optical basicity showed relatively good linear agreement.

  16. CaO insulator coatings and self-healing of defects on V-Cr-Ti alloys in liquid lithium

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1996-02-01

    Electrically insulating and corrosion-resistant coatings are required at the liquid metal/structural interface in fusion first-wall/blanket applications. The electrical resistance of CaO coatings produced on V-5%Cr-5%Ti by exposure of the alloy to liquid Li that contained 0.5--85 wt.% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degrees}C. The solute element, Ca in liquid Li, reacted with the alloy substrate at 400--420{degrees}C to produce a CaO coating. Resistance of the coating layer measured in-situ in liquid Li was {approx}10{sup 6} {Omega} at 400{degrees}C. Thermal cycling between 300 and 700{degrees}C changed the coating layer resistance. which followed insulator behavior. These results suggest that thin homogeneous coatings can be produced on variously shaped surfaces by controlling the exposure time, temperature, and composition of the liquid metal. The technique can be applied to various shapes(e.g., inside/outside of tubes, complex geometrical shapes) because the coating is formed by liquid-phase reaction. Examination of the specimens after cooling to room temperature revealed no spallation, but homogeneous crazing cracks were present in the CaO coating. Additional tests to investigate the in-situ self-healing behavior of the cracks indicated that rapid healing occurred at {ge}360{degrees}C.

  17. Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst.

    PubMed

    Witoon, Thongthai; Bumrungsalee, Sittisut; Vathavanichkul, Peerawut; Palitsakun, Supaphorn; Saisriyoot, Maythee; Faungnawakij, Kajornsak

    2014-03-01

    Calcium oxide-loaded porous materials have shown promise as catalysts in transesterification. However, the slow diffusion of bulky triglycerides through the pores limited the activity of calcium oxide (CaO). In this work, bimodal meso-macroporous silica was used as a support to enhance the accessibility of the CaO dispersed inside the pores. Unimodal porous silica having the identical mesopore diameter was employed for the purpose of comparison. Effects of CaO content and catalyst pellet size on the yield of fatty acid methyl esters (FAME) were investigated. The basic strength was found to increase with increasing the CaO content. The CaO-loaded bimodal porous silica catalyst with the pellet size of 325μm achieved a high %FAME of 94.15 in the first cycle, and retained an excellent %FAME of 88.87 after five consecutive cycles.

  18. Fusing Hyperspectral and LiDAR data from CAO-VSWIR for Increased Data Dimensionality

    NASA Astrophysics Data System (ADS)

    Knapp, D. E.; Asner, G. P.; Boardman, J. W.; Kennedy-Bowdoin, T.; Eastwood, M.; Anderson, C.; Martin, R. E.; Green, R. O.

    2012-12-01

    The use of multi-sensor platforms for scientific data collection requires precise co-location in order to gain maximum data dimensionality for Earth system research. The different types of collection mechanisms of the sensors (e.g., scanning and pushbroom) can make it difficult to precisely match data from multiple sensors, even when the sensors are flown on the same aircraft at the same time. To overcome these problems, the Carnegie Airborne Observatory (CAO) AToMS sensor suite uses a method that maximizes the match between the Light Detection and Ranging (LiDAR), Visible-to-Near Infrared (VNIR), and Visible-to-Shortwave Infrared (VSWIR) sensors. This is done by generating an intensity image from the LiDAR data that serves as a base on which the spectrometers (VNIR and VSWIR) are matched using ground control points (GCPs). To do so, we employ the use of automated tie point matching in the overlap regions of the spectrometers to improve the co-location between flightlines. The combination of the GCPs and tie points produce data that is used to build camera models for the VNIR and VSWIR spectrometers such that they will match the LiDAR data. The result produces a matched hyper-dimensional data set with great scientific information content. We compare the data dimensionality of two contrasting scenes - a built environment at Stanford University and a lowland tropical forest in Amazonia. Principal components analysis revealed 336 dimensions (degrees of freedom) in the Stanford case, and 218 dimensions in the Amazon. The Amazon case presents what could be the highest level of remotely sensed data dimensionality ever reported for a forested ecosystem. Simulated misalignment of data streams reduced the effective information content by up to 48%, highlighting the critical role of achieving high precision when undertaking multi-sensor fusion. The instrumentation and methods described here are a pathfinder for future airborne applications undertaken by the National

  19. On the use of ocean-atmosphere-wave models during an extreme CAO event: the importance of being coupled

    NASA Astrophysics Data System (ADS)

    Carniel, Sandro; Barbariol, Francesco; Benetazzo, Alvise; Bonaldo, Davide; Falcieri, Francesco M.; Miglietta, Mario M.; Ricchi, Antonio; Sclavo, Mauro

    2015-04-01

    During winter 2012 an extreme meteorological event stroke the whole Europe and particularly its central-southern sector. A strong and persistent spit of cold air coming from Siberian region (a Cold Air Outbreak, CAO) insisted on northern Italy and the Adriatic sea basin, leading to decreases in the sea temperatures up to 6 °C in less than two weeks, ice formation on the Venice lagoon and an exceptional snow fall in the Apennine region. In the sea the CAO was associated to a significant episode of dense water formation (DWF), a crucial phenomenon that heavily impacts the whole Adriatic Sea (from the sinking of water masses and associated ventilation of the northernmost shelf, to the flow along the western coast, until the flushing of southern Adriatic open slope and submarine canyons, with associated sediment transport and bottom reshaping). The extent of the DWF event in the Northern Adriatic sub-basin was estimated by means of coastal observatories, ad hoc measurements and, until now, results from existing one-way coupled atmosphere-ocean models. These are characterized by no SST feedback from the ocean to the atmosphere, and therefore by turbulent heat fluxes that may heavily reflect a non-consistent ocean state. The study proposes an investigation of the 2012 CAO using a fully coupled, three components, ocean-atmosphere-wave system (COAWST). Results highlight that, although the energy interplays between air and sea do not seem to significantly impact the wind forecasts, when providing heat fluxes that are consistent with the ocean temperature we find modified heat fluxes and air sea temperatures figures. Moreover, the consistent description of thermal exchanges adopted in the fully coupled model can affect the basin circulation, the quantification of dense water produced mass, and the description of its migration pathways and rates of off-shelf descent.

  20. Influence of high-temperature steam on the reactivity of CaO sorbent for CO₂ capture.

    PubMed

    Donat, Felix; Florin, Nicholas H; Anthony, Edward J; Fennell, Paul S

    2012-01-17

    Calcium looping is a high-temperature CO(2) capture technology applicable to the postcombustion capture of CO(2) from power station flue gas, or integrated with fuel conversion in precombustion CO(2) capture schemes. The capture technology uses solid CaO sorbent derived from natural limestone and takes advantage of the reversible reaction between CaO and CO(2) to form CaCO(3); that is, to achieve the separation of CO(2) from flue or fuel gas, and produce a pure stream of CO(2) suitable for geological storage. An important characteristic of the sorbent, affecting the cost-efficiency of this technology, is the decay in reactivity of the sorbent over multiple CO(2) capture-and-release cycles. This work reports on the influence of high-temperature steam, which will be present in flue (about 5-10%) and fuel (∼20%) gases, on the reactivity of CaO sorbent derived from four natural limestones. A significant increase in the reactivity of these sorbents was found for 30 cycles in the presence of steam (from 1-20%). Steam influences the sorbent reactivity in two ways. Steam present during calcination promotes sintering that produces a sorbent morphology with most of the pore volume associated with larger pores of ∼50 nm in diameter, and which appears to be relatively more stable than the pore structure that evolves when no steam is present. The presence of steam during carbonation reduces the diffusion resistance during carbonation. We observed a synergistic effect, i.e., the highest reactivity was observed when steam was present for both calcination and carbonation.

  1. Fourier Transform Spectroscopy of the A‧1Π-X1Σ+ System of CaO

    NASA Astrophysics Data System (ADS)

    Focsa, C.; Poclet, A.; Pinchemel, B.; Le Roy, R. J.; Bernath, P. F.

    2000-10-01

    The A‧1Π-X1Σ+ near-infrared system of CaO was observed for the first time at high resolution using a Fourier transform spectrometer. The A‧1Π-X1Σ+ chemiluminescence was excited in a Ca + N2O flame produced in a Broida-type oven. More than 3000 rotational lines, classified into 19 bands involving the A‧1Π 0 ≤ v‧ ≤ 3 and the X1Σ+ 1 ≤ v" ≤ 7 vibrational levels were measured in the 4000-10 000 cm-1 region with a precision of 0.005 cm-1. The X1Σ+ (v = 0, 1) millimeter-wave and X1Σ+ (v = 0-3) infrared data available in the literature were merged with our new electronic data in order to obtain improved Dunham constants for the ground state of CaO. Very peculiar perturbations are observed in the higher vibrational levels of the A‧1Π state, so the upper levels of transitions with v‧ = 2 and 3 were represented by term values in our least-squares analysis. The interaction of the A‧1Π (v ≥ 2) levels with the nearby b3Σ+ (v-2) levels has been detected. An extended set of A‧1Π (v = 0-3) data has been obtained which is suitable for use in a future multistate deperturbation analysis of the a3Π ∼ A‧1Π ∼ b3Σ+ ∼ A1Σ+ complex of excited states. The new near-infrared spectra of the A‧1Π-X1Σ+ transition of CaO also permits the first direct high-resolution linkage between the orange and green systems and the near-infrared bands.

  2. Behavioral responses of Cao Vit gibbon (Nomascus nasutus) to variations in food abundance and temperature in Bangliang, Jingxi, China.

    PubMed

    Fan, Peng-Fei; Fei, Han-Lan; Ma, Chang-Yong

    2012-07-01

    The Cao Vit gibbon is a critically endangered species with only about 110 individuals remaining in a degraded karst forest along the China-Vietnam border. Behavioral data from this site are particularly useful in understanding gibbon behavioral adaptations to different sets of ecological conditions and will contribute to the conservation of the species. We studied seasonal variation in the time budget and diet of the Cao Vit gibbon in response to variation in food availability and ambient temperature by observing two groups for 1,379 hr between January and December 2009. We used 5-min scan samples to record the activity of gibbons. Both ambient temperature and food availability varied from month to month. Gibbon groups increased resting time and huddled together in sleeping places in cold months. Gibbons spent more time feeding on fruit when fruit was more abundant suggesting that fruit was their preferred food. Alternatively, leaf eating was negatively correlated with leaf availability which suggested that leaves may be used as a fallback food. Gibbons increased their diet diversity when they ate more leaves. This might be a strategy to cope with toxins or digestion inhibitor accumulation associated with feeding from a limited number of leaf species. Individuals consumed more buds when Broussonetia papyrifera produced buds in March and April. During this period, they decreased traveling time and engaged in less frequent social interactions. Gibbons spent more time searching for and feeding on invertebrates during June and October. However, we did not collect data on invertebrate abundance and therefore cannot determine the relationship between invertebrate feeding and availability. We conclude that flexibility in consuming diverse food types and food species, and in responding to the availability of preferred foods, has enabled the Cao Vit gibbon to survive in a degraded karst forest habitat.

  3. The Capilla del Monte pluton, Sierras de Córdoba, Argentina: the easternmost Early Carboniferous magmatism in the pre-Andean SW Gondwana margin

    NASA Astrophysics Data System (ADS)

    Dahlquist, Juan A.; Pankhurst, Robert J.; Rapela, Carlos W.; Basei, Miguel A. S.; Alasino, Pablo H.; Saavedra, Julio; Baldo, Edgardo G.; Murra, Juan A.; da Costa Campos Neto, Mario

    2016-07-01

    New geochronological, geochemical, and isotopic data are reported for the Capilla del Monte two-mica granite pluton in the northeastern Sierras de Córdoba. An Early Carboniferous age is established by a U-Pb zircon concordia (336 ± 3 Ma) and a Rb-Sr whole-rock isochron (337 ± 2 Ma). Zircon saturation geothermometry indicates relatively high temperatures (735-800 °C). The granites have high average SiO2 (74.2 %), Na2O + K2O (7.8 %), and high field-strength elements, high K2O/Na2O (1.7) and FeO/MgO ratios (5.1), with low CaO content (0.71 %). REE patterns with marked negative Eu anomalies (Eu/Eu* 0.14-0.56) indicate crystal fractionation, dominantly of plagioclase and K-feldspar, from a peraluminous magma enriched in F. Isotope data (87Sr/86Srinitial = 0.7086, ɛ Nd336 = -5.5 to -4.4 with T DM = 1.5 Ga, zircon ɛ Hf336 +0.8 to -6.1; mean T DM = 1.5 Ga) suggest a Mesoproterozoic continental source, albeit with some younger or more juvenile material indicated by the Hf data. The pluton is the easternmost member of a Carboniferous A-type magmatic suite which shows an increase in juvenile input toward the west in this part of the pre-Andean margin. The petrological and geochemical data strongly suggest a similar intraplate geodynamic setting to that of the nearby but much larger, Late Devonian, Achala batholith, although Hf isotope signatures of zircon suggest a more uniformly crustal origin for the latter. Further studies are required to understand whether these bodies represent two independent magmatic episodes or more continuous activity.

  4. Relationship Between Iron Whisker Growth and Doping Amount of Oxide During Fe2O3 Reduction

    NASA Astrophysics Data System (ADS)

    Gong, Xuzhong; Zhao, Zhilong; Wang, Zhi; Zhang, Ben; Guo, Lei; Guo, Zhancheng

    2016-04-01

    Iron whisker growth during Fe2O3 doped with oxide reduced by CO was investigated by using in situ observation and scanning electron microscopy. The results indicated that the minimum doping amount (MDA) of various oxides, hindering the iron whisker growth, was different. The MDA of Al2O3, Li2O, Na2O, and K2O was 0.5, 0.4, 4, and 12 pct, respectively. From the reduction rate, it was found that Li2O, MgO, and Al2O3 had some suppressive effects on the Fe2O3 reduction process, thus, confining the growth of iron whisker. However, other oxides had some catalytic effects on the Fe2O3 reduction process (Fe2O3-Fe3O4-FeO-Fe), such as CaO, SrO, BaO, Na2O, and K2O. As long as their doping amount was enough, these oxides could inhibit the diffusion of the Fe atom. When the metal ionic radius in doped oxide was bigger than that of Fe3+, such as Ca2+, Sr2+, Ba2+, Na+, and K+, there were lots of spaces left in Fe2O3 doped with oxide after reduction, improving Fe atom diffusion. Consequently, their MDA was more than that of small radius to restrain the growth of iron whisker. Finally, the relationship between corresponding metal ionic radius, electron layer number, valence electron number, and MDA of oxide was expressed by using data fitting as follows: N_{{{{A}}y {{O}}x }} = 1.3 × 10^{ - 5} × {r_{{{{A}}^{x + } }}2 × √{n_{{{{A}}^{x + } }} } }/{f_{q }}

  5. Agglomeration characteristics of river sand and wheat stalk ash mixture at high temperatures

    NASA Astrophysics Data System (ADS)

    Shang, Linlin; Li, Shiyuan; Lu, Qinggang

    2013-02-01

    The agglomeration characteristics of river sand and wheat stalk ash mixture at various temperatures are investigated using a muffle furnace. The surface structural changes, as well as the elemental makeup of the surface and cross-section of the agglomerates, are analyzed by polarized light microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX). Multi-phase equilibrium calculation is performed with FactSage in identifying the melting behavior of the river sand-wheat stalk ash mixture at high temperatures. No indication of agglomeration is detected below 850°C. At a temperature of 900-1000°C, however, obvious agglomeration is observed and the agglomerates solidify further as temperature increases. The presence of potassium and calcium enrichment causes the formation of a sticky sand surface that induces agglomeration. The main component of the agglomerate surface is K2O-CaO-SiO2, which melts at low temperatures. The formation of molten silicates causes particle cohesion. The main ingredient of the binding phase in the cross-section is K2O-SiO2-Na2O-Al2O3-CaO; the agglomeration is not the result of the melting behavior of wheat stalk ash itself but the comprehensive results of chemical reaction and the melting behavior at high temperatures. The multi-phase equilibrium calculations agree well with the experimental results.

  6. Micro-Raman and micro-XRF analysis of glass beads from the Chungde site, Taiwan

    NASA Astrophysics Data System (ADS)

    Liou, Y. S.; Wang, S. C.; Liu, Y. C.

    2014-12-01

    A large number of ancient glass beads dating back from Late Neolithic Age to early Historical Period (ca. 2300-400 BP) of Taiwan have been uncovered from archaeological sites. These glass beads with variant colors, shapes, and stylistics have long been considered to possess socio-cultural significance. Due to the color and chemical composition of glass bead might be determined by raw materials, fluxing agents, colorants, opacifiers and stabilizers. In addition, ancient glass beads are rare and precious, non-destructive analysis has been employed to decipher about the provenances, manufacturing techniques, and exchange/trade routes. In this work, micro-Raman spectroscopy and micro X-ray fluorescent spectrometer (μ-XRF) were used to examine ten ancient glass beads excavated from the Chungde site, Hualien, Taiwan, dating back to 1500-800 BP, to unravel the mineralogical and chemical compositions. Micro Raman experimental results show that glass and anorthite glass are the main constituents accompanying with trace level of quartz, albite, siderite, ankerite, and amazonite. The Raman Index of Polymerization (Ip) indicate that the sintering temperature of the glass beads is in the range of 1000~1400°C. Furthermore, the chemical compositions are corresponding to the maximum stretching vibration peak wave number (νmax Si-O Stretching) and the maximum bending vibration peak wave number (δmax Si-O Bending), which are essentially consistent with that of the India-Pacific beads. The μ-XRF results indicate the presence of oxides including SiO2, Al2O3, Fe2O3, Na2O, K2O, CaO, MgO, SnO2, TiO2, CuO, etc., and could be classified to high aluminum of soda-lime glass system. According to ternary phase diagram analysis of CaO-K2O-Na2O and K2O-Al2O3-CaO, the ancient glass beads analyzed could be attributed to the India-Pacific beads, and is in accordance with that of Raman spectra. The combination of these facts leads to the conclusion that glass beads obtained from the Chungde

  7. The effect of composition on the viscosity, crystallization and dissolution of simple borate glasses and compositional design of borate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Goetschius, Kathryn Lynn

    Borate glasses have recently been developed for a variety of medical applications, but much less is known about their structures and properties than more common silicate glasses. Melt properties and crystallization tendency for compositions in the Na2O-CaO-B2O3 system were characterized using differential thermal analysis and viscosity measurements. Characteristic viscosity (isokom) temperatures varied with the ratio between the modifier content (Na2O+CaO) and B2O3, particularly at lower temperatures, consistent with the changes in the relative concentrations of tetrahedral borons in the glass structure. Similar glasses were used to study dissolution processes in water. These alkali-alkaline earth glasses dissolve congruently and follow linear dissolution kinetics. The dissolution rates were dependent on the glass structure, with slower rates associated with greater fractions of four-coordinated boron. For glasses with a fixed alkaline earth identity, the dissolution rates increased in the order LiNa2O, K2O, MgO, CaO, B2O3, SiO2, and P2O5) mixture model design was used to predict composition-property relationships to optimize the properties of new borate-based bioactive compositions for specific applications. Melt viscosity, thermal expansion coefficient, liquidus temperature and crystallization tendency were determined, as were dissolution rates in simulated body fluid (SBF).

  8. Evolution of the electronic structure of CaO thin films following Mo interdiffusion at high temperature

    NASA Astrophysics Data System (ADS)

    Cui, Yi; Pan, Yi; Pascua, Leandro; Qiu, Hengshan; Stiehler, Christian; Kuhlenbeck, Helmut; Nilius, Niklas; Freund, Hans-Joachim

    2015-01-01

    The electronic structure of CaO films of 10-60 monolayer thickness grown on Mo(001) has been investigated with synchrotron-mediated x-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Upon annealing or reducing the thickness of the film, a rigid shift of the CaO bands to lower energy is revealed. This evolution is explained with a temperature-induced diffusion of Mo ions from the metal substrate to the oxide and their accumulation in the interface region of the film. The Mo substitutes divalent Ca species in the rocksalt lattice and is able to release electrons to the system. The subsequent changes in the Mo oxidation state have been followed with high-resolution XPS measurements. While near-interface Mo transfers extra electrons back to the substrate, generating an interface dipole that gives rise to the observed band shift, near-surface species are able to exchange electrons with adsorbates bound to the oxide surface. For example, exposure of O2 results in the formation of superoxo species on the oxide surface, as revealed from STM measurements. Mo interdiffusion is therefore responsible for the pronounced donor character of the initially inert oxide, and largely modifies its adsorption and reactivity behavior.

  9. Generation of hydrogen from polyvinyl chloride by milling and heating with CaO and Ni(OH)2.

    PubMed

    Tongamp, William; Zhang, Qiwu; Shoko, Miyagi; Saito, Fumio

    2009-08-15

    This work discusses an alternative process option for the treatment of polyvinyl chloride (PVC) by producing hydrogen (H(2)) gas, at the same time fixing chlorine for proper environmental control. In the first-stage, a milling operation is performed in a planetary ball mill to obtain a mixture of PVC sample with CaO and Ni(OH)(2) to be used as feed in the second-step, involving heating of the milled product. Analyses by thermogravimetry-mass spectroscopy (TG-MS) and gas chromatography (GC) showed H(2), CH(4), CO and CO(2) as main constituents. The results clearly show that addition of Ni(OH)(2) to provide nickel as catalyst and CaO as adsorbent to fix CO(2) and HCl gases generated during heating, assisted in clean H(2) generation with concentration near 90% at temperatures between 450 and 550 degrees C. Analyses of solids after heating by X-ray diffraction and TG-DTA techniques showed both CaOHCl and CaCO(3) as main phases in the product. This process could be developed to treat PVC wastes together with other polymers and/or plastic wastes for production of H(2) gas.

  10. CaO insulator and Be intermetallic coatings on V-base alloys for liquid-lithium fusion blanket applications

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1996-04-01

    The objective of this study is to develop (a) stable CaO insulator coatings at the Liquid-Li/structural-material interface, with emphasis on electrically insulating coating that prevent adverse MHD-generated currents from passing through the V-alloy wall, and (b) stable Be-V intermetallic coating for first-wall components that face the plasma. Electrically insulating and corrosion-resistant coatings are required at the liquid-Li/structural interface in fusion first-wall/blanket application. The electrical resistance of CaO coatings produced on oxygen-enriched surface layers of V-5%Cr-5%Ti by exposing the alloy to liquid Li that contained 0.5-85 wt% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degrees}C. Crack-free Be{sub 2}V intermetallic coatings were also produced by exposing V-alloys to liquid Li that contained Be as a solute. These techniques can be applied to various shapes (e.g., inside/outside of tubes, complex geometrical shapes) because the coatings are formed by liquid-phase reactions.

  11. Tephra record from the Sea of Marmara for the last 70 ka and its paleoceanographic implications

    NASA Astrophysics Data System (ADS)

    Cagatay, M.; Wulf, S.; Guichard, F.; Ozmaral, A.; Sancar; Akçer-Ön, S.; Henry, P.; Gasperini, L.

    2013-12-01

    Sea of Marmara (SoM) is a gateway between the Mediterraean and Black seas, and a tectonically active basin located on a transform plate boundary. Tephra record in the SoM is therefore very important for dating palaeoceanographic, paleoclimatic and tectonic events. We report three tephra units in cores from the SoM extending back to ca 70 ka BP and including an upper marine and a lower lacustrine units separated by a 12 ka (uncalib.) boundary. The uppermost tephra unit is up to 8 mm thick layer in the marine unit. It is heterogenous phonolitic with high total alkali content of 12.4-15.7 wt % and K2O/Na2O of 0.9 to 1.2. The middle and lower tephra layers occur in the lacustrine unit in ca 29 m-long Core MD-01-2430. The middle tephra (MT-1) is a 70 mm-thick homogeneously rhyolitic layer. The lower tephra (MT-2) is 140 mm thick and has a phonolitic-trachytic composition with CaO content of 1.7-1.9 wt % and bimodal K2O/Na2O of 1.0-1.4. Using their geochemical composition and stratigraphic analysis, we assign the tephra units, from top to bottom, to Vesuvius AP2 Pumice, Santorini Cape Riva and Campanian Ignimbrite, which have been previously dated at 3.5 ka BP, 21.95 ka BP, and 39.3 ka BP (all calender ka). The continuous sedimentary record in the Core MD-01-2430 covering the last ca 70 ka indicates that the SoM was lacustrine, disconnected from the Mediterraean Sea during MIS4, MIS3 and most of MIS2. This implies that the sill depth of the Çanakkale Strait (Dardanelles) was shallower than the present-day -65 m sill depth during MIS3 and MIS4. Figure 1: Morphotectonic map of the Sea of Marmara showing location of the studied cores (red stars). Figure 2: Geochemical biplots of tephra glass composition. a) Total alkali silica diagram b) FeO versus total alkalies for allocating cryptotephras from core MNTKS34 and ML01 to the AP2 tephra from Vesuvius. c) FeO versus CaO for correlating tephra MT1 with the Y-2 tephra from Santorini. d) SiO2 versus CaO for discriminating the

  12. Effect of the substitution of Y2O3 for CaO on the bioactivity of 2.5CaO.2SiO2 glass.

    PubMed

    Costantini, A; Fresa, R; Buri, A; Branda, F

    1997-03-01

    Glasses were prepared whose composition is defined by the following general formula: (2.5-x)CaO.x/3Y2O3.2SiO2 (0 < or = x < or = 1). Their behaviour when they were soaked in a simulated body fluid (SBF) and their thermal properties (glass transformation and softening temperatures, Tg and Ts respectively) were studied Tg and Ts increase with the Y2O3 content. The trend can be explained on the basis of the increased structural rigidity when Ca2+ ions are substituted by Y2+ ions, because of the formation of stronger bonds to the oxygen. The bioactivity was studied by means of electron microscopy equipped with an energy dispersive system for elemental analysis and IR spectroscopy. All the glasses studied except the one with the greatest amount of Y2O3. x = 1.0, reacted with SBF by forming a calcium phosphate layer. The experimental results suggest that the bioactivity is negatively influenced by the Y2O3 content: the tendency to form a calcium phosphate layer is reduced the greater the amount of CaO substituted. A comparison with literature data indicates that the amount of Y2O3 that can be substituted depends on the CaO content of the base CaO-SiO2 glass. The experimental results are in good agreement with the mechanism reported in the literature. After 7 days soaking, crystalline hydroxyapatite is formed in the Y2O3-free glass and in the glasses of low Y2O3 content (x-0.2). PMID:9111947

  13. Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid.

    PubMed

    Liu, Xin; Rahaman, Mohamed N; Day, Delbert E

    2013-03-01

    Microfibrous bioactive glasses are showing a considerable capacity to heal soft tissue wounds, but little information is available on the mechanism of healing. In the present study, the conversion of microfibrous borate bioactive glass (diameter = 0.2-5 μm) with the composition designated 13-93B3 (5.5 Na2O, 11.1 K2O, 4.6 MgO, 18.5 CaO, 3.7 P2O5, 56.6 B2O3 wt%) was evaluated in vitro as a function of immersion time in a simulated body fluid (SBF) at 37 °C using structural and chemical techniques. Silicate 45S5glass microfibers (45 SiO2, 24.5 Na2O, 24.5 CaO, 6 P2O5 wt%) were also studied for comparison. Microfibrous 13-93B3 glass degraded almost completely and converted to a calcium phosphate material within 7-14 days in SBF, whereas >85 % of the silica remained in the 45S5 microfibers, forming a silica gel phase. An amorphous calcium phosphate (ACP) product that formed on the 13-93B3 microfibers crystallized at a slower rate to hydroxyapatite (HA) when compared to the ACP that formed on the 45S5 fibers. For immersion times >3 days, the 13-93B3 fibers released a higher concentration of Ca into the SBF than the 45S5 fibers. The fast and more complete degradation, slow crystallization of the ACP product, and higher concentration of dissolved Ca in SBF could contribute to the capacity of the microfibrous borate 13-93B3 glass to heal soft tissue wounds.

  14. Hydrogen-rich gas production via CaO sorption-enhanced steam gasification of rice husk: a modelling study.

    PubMed

    Beheshti, Sayyed Mohsen; Ghassemi, Hojat; Shahsavan-Markadeh, Rasoul; Fremaux, Sylvain

    2015-01-01

    Gasification is a thermochemical process in which solid or liquid fuels are transformed into synthesis gas through partial oxidation. In this paper, a kinetic model of rice husk gasification has been developed, which is interesting for the applications of the syngas produced. It is a zero-dimensional, steady-state model based on global reaction kinetic, empirical correlation of pyrolysis and is capable of predicting hydrogen yield in the presence of sorbent CaO. The model can also be used as a useful tool to investigate the influence of process parameters including steam/biomass ratio, CaO/fuel ratio (CaO/Fuel), and gasification temperature on hydrogen efficiency, CO2 capture ratio (CCR), and average carbonation conversion (Save). Similar to hydrogen formation, CCR also increases with increasing CaO/Fuel, but an opposite trend is exhibited in Save. Model predictions were compared with available data from the literature, which showed fairly good agreement.

  15. Environmental controls on plant chemical traits: Using the CAO-VSWIR to characterize patterns in a mediterranean-type ecosystem

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Asner, G. P.; Field, C. B.

    2012-12-01

    Here we present results from a new imaging spectrometer, the Carnegie Airborne Observatory's (CAO) Visible-Short Wave Infrared (VSWIR) sensor, and we use these data to map key plant functional traits in a semi-arid ecosystem, Jasper Ridge Biological Preserve (Woodside, CA USA). We considered four fundamental plant traits: leaf nitrogen per mass (Nmass, %), leaf carbon per mass (Cmass, %), leaf water fraction (WL), and canopy water fraction (WC).With these maps we ask the following questions: (1) How do these traits vary with environmental gradients and land use history, independent of species composition? (2) Does information about plant community improve our ability to explain trait patterns? And (3) what does the variation within plant communities tell us about the underlying processes driving or limiting this ecosystem? We show that the new CAO-VSWIR combined with partial least squares regression can effectively map these four plant chemical traits across multiple plant functional types (observed v. predicted R2s ranging from 0.55 for WL to 0.84 for Cmass). To consider how these traits varied with environmental gradients we used simultaneous autoregressive modeling and found, in general, that environment and land-use history together explained about a quarter of the variation in each trait, but that information about plant community boundaries dramatically improved our predictive power. While 29 - 44% of the variation in these four traits remained unexplained, when we considered the trait distributions within each plant community we found that most plant communities were sharply peaked (leptokurtic) or near normal, while a few communities were more evenly distributed (platykurtic) for each trait. These results show that, even though environmental gradients play a small but significant role, most of the plant communities at Jasper Ridge are characterized by a narrow range of trait patterns. For the few communities that are highly divergent, possible causal

  16. Fingerprint methods for suspended sediment transport processes by using X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Nakayama, K.; Beitia, C.; Ohtsu, N.; Yamasaki, S.; Yasuyuki, M.; Yamane, M.

    2014-12-01

    Suspended sediment (SS) can have significant impacts on ecological system, and high SS concentration can have significant impacts on human life. In the previous studies, radionuclide analysis has been applied to evaluate the production of SS in the river basins, which demonstrated that the surface soil erosion can be estimated by using radionuclide Pb-210ex. However, radionuclide analysis cannot indicate the relative amounts of SS transported from each individual sub-basin to the downstream end. Thus, X-ray Fluorescence Analysis (XRF Analysis) can be considered as an alternative method to radionuclide analysis because the XRF Analysis can measure 21 chemical compositions, Na2O, MgO, Al2O3, SiO2, P2O5, SO3, Cl, K2O, CaO, TiO2, Cr2O3, MnO, Fe2O3, Co2O3, NiO, CuO, ZnO, Rb2O, SrO, BaO, and Y2O3 by using X-ray Fluorescence Analyzer. In June of 2007, high turbidity, which is more than 10,000 (NTU), was measured in the Oromushi River basin of Hokkaido in Japan. Therefore, this study aims to clarify the mechanism of the transport of SS in the Oromushi River basin. We measured chemical compositions of soil with diameter less than 63 μm in the Oromushi River basin in order to pay attention to SS by using XRF. The Principal Component Analysis revealed that SiO2, Al2O3, Fe2O3, CaO and Na2O are the dominant chemical compositions. Although the predominant composition was the same in a river basin including the downstream end, significant differences were found in the pattern of chemical compositions. Therefore, by using the chemical compositions of SiO2, Al2O3, Fe2O3, CaO and Na2O, the Mixing Stable Isotope Analysis in R model (MixSIAR) based on Bayesian statistics was applied to estimate the transportation rate of SS from each sub-basin to the downstream end, which agreed with the field experiment results very well. As a result, spatial patterns of SS transportation rate are found to be strongly related to surface soil type.

  17. First measurement of the dissociative recombination of CaO+ with electrons brings closure to Ca ion recycling chemistry in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Bones, David; Plane, John

    2016-04-01

    Modelling the temporal and spatial extent of the metal layers in the mesosphere/lower thermosphere requires knowledge of the rate coefficients of dissociative recombination of metal oxide ions with electrons. Previously, these coefficients have been assumed to be 3 × 10‑7 cm3 s‑1 at 200 K. In this study the coefficient has been measured directly for the dissociative recombination of CaO+. Measurements are made in a flowing afterglow system with a Langmuir probe. Calcium oxide ions are introduced into an argon ion/electron plasma by pulsed laser ablation of a solid target. The relative concentration of CaO+ is measured by a quadrupole mass spectrometer as a function of flow rate (3 - 5 slm), which is inversely proportional to the reaction time of the CaO+ ions with the electrons in the plasma (2.1 to 3.5 ms). Charge transfer reactions between argon ions and neutral molecules complicate the analysis. A kinetic model describing gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data to extract the DR rate coefficient for CaO+. Unlike other metals present in the atmosphere, Ca+ ions are far more abundant than neutral Ca. The new DR rate coefficient is used to explore possible reasons for this anomaly in a model of meteor-ablated calcium in the mesosphere and lower thermosphere.

  18. First measurement of the dissociative recombination of CaO+ with electrons brings closure to Ca ion recycling chemistry in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Bones, David; Plane, John

    2016-04-01

    Modelling the temporal and spatial extent of the metal layers in the mesosphere/lower thermosphere requires knowledge of the rate coefficients of dissociative recombination of metal oxide ions with electrons. Previously, these coefficients have been assumed to be 3 × 10-7 cm3 s-1 at 200 K. In this study the coefficient has been measured directly for the dissociative recombination of CaO+. Measurements are made in a flowing afterglow system with a Langmuir probe. Calcium oxide ions are introduced into an argon ion/electron plasma by pulsed laser ablation of a solid target. The relative concentration of CaO+ is measured by a quadrupole mass spectrometer as a function of flow rate (3 - 5 slm), which is inversely proportional to the reaction time of the CaO+ ions with the electrons in the plasma (2.1 to 3.5 ms). Charge transfer reactions between argon ions and neutral molecules complicate the analysis. A kinetic model describing gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data to extract the DR rate coefficient for CaO+. Unlike other metals present in the atmosphere, Ca+ ions are far more abundant than neutral Ca. The new DR rate coefficient is used to explore possible reasons for this anomaly in a model of meteor-ablated calcium in the mesosphere and lower thermosphere.

  19. Pan-African alkali granites and syenites of Kerala as imprints of taphrogenic magmatism in the South Indian shield

    NASA Technical Reports Server (NTRS)

    Santosh, M.; Drury, S. A.; Iyer, S. S.

    1988-01-01

    Granite and syenite plutons with alkaline affinities ranging in age from 550 to 750 Ma sporadically puncture the Precambrian granulites of the Kerala region. All the bodies are small (20 to 60 sq km), E-W to NW-SE elongated elliptical intrusives with sharp contacts and lie on or close to major late Proterozoic lineaments. Geochemical plots of A-F-M and An-Ab-Or relations show an apparent alkali enrichment trend on the former, but the plutons define relatively distinct fields on the latter. Most of the plutons are adamellitic to granitic by chemistry. The variations of SiO2 with log sub 10 K2O/MgO (1) brings out the distinct alkaline nature of the plutons. Some of the granites are extremely potassic, like the Peralimala pluton, which shows up to 11.8 percent K2O. On a SiO2-Al2O3-Na2O+K2O (mol percent) plot, the plutons vary from peraluminous to peralkaline, but none are nepheline normative. Low MgO, low to moderate CaO and high Fe2O3/FeO values are other common characteristics. Among trace elements, depletion of Ba, Sr and Rb with high K/Ba and K/Rb values are typical. Overall, the plutons show a trend of decreasing K/Rb ratio with increasing K content. Individual plutons show more clearly defined trends similar to those from granitic masses characterized by plagioclase fractionation.

  20. Crystallization of Na2O-SiO2 gel and glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Weinberg, M. C.

    1984-01-01

    The crystallization behavior of a 19 wt pct soda silica gel and gel-derived glass was compared to that of the ordinary glass of the same composition. Both bulk and ground glass samples were utilized. X-ray diffraction measurements were made to identify the crystalline phases and gauge the extent of crystallization. It was found that the gel crystallized in a distinctive manner, while the gel glass behavior was not qualitatively different from that of the ordinary glass.

  1. Materials Data on Na2O (SG:58) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-10-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Na2O (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Use of solid-electrolyte galvanic cells to determine the activity of CaO in the CaO-ZrO{sub 2} system and the standard Gibbs free energies of formation of CaZrO{sub 3} from CaO and ZrO{sub 2}

    SciTech Connect

    Tanabe, Jun; Nagata, Kazuhiro

    1996-08-01

    Ultraclean steel is deoxidized by the addition of aluminum, followed by desulfurizing and deoxidizing by the addition of calcium and zirconium. As a result of the deoxidation and desulfurization of molten steel, considerable oxide and sulfide inclusions are produced. The activity of CaO in the CaO-ZrO{sub 2} system has been measured at 1,572 to 1,877 K with a galvanic cell composed of 4CaO {center_dot} P{sub 2}O{sub 5} as the solid electrolyte. The activity ZrO{sub 2} was calculated from the activity of CaO by integrating the Gibbs-Duhem relation. From the activities of CaO and ZrO{sub 2}, the standard Gibbs free energy of formation of CaO {center_dot} ZrO{sub 2} was determined as follows: {Delta}G{sub f}{sup 0} = {minus}25,200 ({+-}150) {minus} 17.58 ({+-}0.085) T (1,633 to 1,873 K) J/mol.

  4. Geochemistry of sedimentary-derived migmatite from NE Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Cruciani, Gabriele; Fancello, Dario; Franceschelli, Marcello; Scodina, Massimo

    2015-04-01

    In NE Sardinia at Porto Ottiolu, about 30 km south of Olbia (NE Sardinia), crops out a sequence of migmatized ortho and paragneiss, belonging to the Variscan basement's axial zone. Sedimentary-derived migmatite, which have a layered appearance in the field, were affected by three major variscan folding phase. D2, which is characterized by tight folds, is the most widespread deformation in the field. Leucosomes consists of discontinuous centimetre-thick, coarse-grained layers, that follow the S2 schistosity and are folded by D2 deformation phase. The contact with mesosome is sharp and sometimes marked by melanosome trails. They consist of quartz, plagioclase, very rare K-feldspar, muscovite, biotite, fibrolite, and rare kyanite. Plagioclase is unzoned oligoclase, though in some cases a thin albite rim is observed. Muscovite occurs as: i) single small- to medium-grained flakes enclosed in feldspar; ii) coarse grained crystals associated to biotite, fibrolite, and opaques, iii) in intergrowth with biotite to form thin elongated, slightly oriented trails, marking the faint foliation. Mesosomes are medium-grained, well foliated rocks, consisting of quartz, plagioclase muscovite, , biotite, fibrolite ± K-feldspar ± garnet. Fibrolite, muscovite and biotite are associated, to form strongly oriented, thick levels. Muscovite also occurs as unoriented crystals, showing quartz exsolutions and thin rims. A few mm-thick melanosome is usually present at the boundary between the leucosomes and mesosomes. Leucosomes are characterized by: SiO2: 75.4-77.9; Al2O3: 13.2-14.5; Fe2O3tot: 0.3-0.5; MgO: 0.1-0.2; CaO: 2.7- 3.7; Na2O: 3.9-4.6; K2O: 0.4-0.6 wt.%. An interesting feature is the relative high calcium content already described in other sedimentary-derived migmatite from Sardinia (Cruciani et al., 2008). In the normative Ab-An-Or diagram (Barker, 1979) the leucosomes plot at the boundary between trondhjemite/tonalite fields. All leucosomes are corundum normative and peraluminous

  5. Genetic variants of Cao Bang hantavirus in the Chinese mole shrew (Anourosorex squamipes) and Taiwanese mole shrew (Anourosorex yamashinai).

    PubMed

    Gu, Se Hun; Arai, Satoru; Yu, Hon-Tsen; Lim, Burton K; Kang, Hae Ji; Yanagihara, Richard

    2016-06-01

    To determine the genetic diversity and geographic distribution of Cao Bang virus (CBNV) and to ascertain the existence of CBNV-related hantaviruses, natural history collections of archival tissues from Chinese mole shrews (Anourosorex squamipes) and Taiwanese mole shrews (Anourosorex yamashinai), captured in Guizho Province, People's Republic of China, and in Nantou County, Taiwan, in 2006 and 1989, respectively, were analyzed for hantavirus RNA by RT-PCR. Pair-wise alignment and comparison of the S-, M- and L-segment sequences indicated CBNV in two of five Chinese mole shrews and a previously unrecognized hantavirus, named Xinyi virus (XYIV), in seven of 15 Taiwanese mole shrews. XYIV was closely related to CBNV in Vietnam and China, as well as to Lianghe virus (LHEV), recently reported as a distinct hantavirus species in Chinese mole shrews from Yunnan Province in China. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that XYIV shared a common ancestry with CBNV and LHEV, in keeping with the evolutionary relationship between Anourosorex mole shrews. Until such time that tissue culture isolates of CBNV, LHEV and XYIV can be fully analyzed, XYIV and LHEV should be regarded as genetic variants, or genotypes, of CBNV. PMID:26921799

  6. CO{sub 2} capture capacity of CaO in long series of carbonation/calcination cycles

    SciTech Connect

    Grasa, G.S.; Abanades, J.C.

    2006-12-20

    Calcium oxide can be an effective sorbent to separate CO{sub 2} at high temperatures. When coupled with a calcination step to produce pure CO{sub 2}, the carbonation reaction is the basis for several high-temperature CO{sub 2} capture systems. The evolution with cycling of the capture capacity of CaO derived from natural limestones is experimentally investigated in this work. Long series of carbonation/calcination cycles (up to 500) varying different variables affecting sorbent capacity have been tested in a thermogravimetric apparatus. Calcination temperatures above T > 950{sup o}C and very long calcination times accelerate the decay in sorption capacity, while other variables have a comparatively modest effect on the overall sorbent performance. A residual conversion of about 7-8% that remains constant after many hundreds of cycles and that seems insensitive to process conditions has been found. This residual conversion makes very attractive the carbonation/calcination cycle, by reducing (or even eliminating) sorbent purge rates in the system. A semiempirical equation has been proposed to describe sorbent conversion with the number of cycles based on these new long data series.

  7. Geological control of canopy structure and function in Panamanian forests as identified by CAO-AToMS

    NASA Astrophysics Data System (ADS)

    Higgins, M.; Asner, G. P.; Martin, R. E.; Knapp, D. E.

    2012-12-01

    Geological formations and their edaphic properties are known to control plant species composition in tropical forests. It has been speculated that these edaphic and compositional patterns might also be translated into functional patterns, but this has been difficult to test due to a lack of broad-scale but detailed canopy structural and functional data. Here we use the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS), which combines a 480-band visible-to-shortwave imaging spectrometer (VSWIR) with dual waveform LiDAR, to generate ultra-high resolution data on geomorphology, canopy structure, and canopy chemistry for forests in the vicinity of the Panama Canal. Using these remotely-sensed data, in conjunction with field data on soils and plant species composition, we demonstrate that geological formations regulate forest structure and chemistry in these forests via changes in soils and plant species composition. These chemical properties, moreover, correspond to canopy functional properties including photosynthetic investment and anti-herbivore defenses. Together, our findings indicate that forest canopy structure and function in these forests are an expression their geological history, over which variations due to contemporary variables such as climate are overlaid.

  8. Sleeping tree selection of Cao Vit gibbon (Nomascus nasutus) living in degraded karst forest in Bangliang, Jingxi, China.

    PubMed

    Fei, Han-Lan; Scott, Matthew B; Zhang, Wen; Ma, Chang-Yong; Xiang, Zuo-Fu; Fan, Peng-Fei

    2012-11-01

    We studied the sleep-related behavior of two Cao Vit gibbon (Nomascus nasutus) groups in Bangliang Nature Reserve in Jingxi County, China between January 2008 and December 2009 to test four hypotheses related to sleeping tree selection (predation avoidance, thermoregulation, food access, and range defense). Gibbons entered sleeping trees 88 ± SD 37 min before sunset before their main potential nocturnal predator become active. They usually moved rapidly and straight to sleeping trees and kept silent once settled. Over the course of the study, gibbon groups used many (87 and 57 per group) sleeping trees and reused them irregularly. They also tended to sleep in relatively tall trees without lianas, choosing small branches close to the treetop. These behaviors would make it difficult for potential terrestrial predators to detect and approach the gibbons. Therefore, these results strongly support the predation avoidance hypothesis. Gibbons tended to sleep closer to ridges than to valley bottoms and they did not sleep at lower elevations in colder months. They thus appeared not to select sleeping trees to minimize thermoregulatory stress. Gibbons very rarely slept in feeding trees, instead generally sleeping more than 100 m away from the last feeding trees of the day or the first feeding tree of the next morning. These patterns led us to reject the food access hypothesis. Lastly, we did not find evidence to support the range defense hypothesis because gibbons did not sleep in overlap areas with neighbors more often than expected based on the proportion of overlap and exclusively used areas.

  9. The Vibrational Frequencies of CaO2, ScO2, and TiO2: A Comparison of Theoretical Methods

    NASA Technical Reports Server (NTRS)

    Rosi, Marzio; Bauschlicher, Charles W., Jr.; Chertihin, George V.; Andrews, Lester; Arnold, James O. (Technical Monitor)

    1997-01-01

    The vibrational frequencies of several states of CaO2, ScO2, and TiO2 are computed at using density functional theory (DFT), the Hatree-Fock approach, second order Moller-Plesset perturbation theory (MP2), and the complete-active-space self-consistent-field theory. Three different functionals are used in the DFT calculations, including two hybrid functionals. The coupled cluster singles and doubles approach including the effect of unlinked triples, determined using perturbation theory, is applied to selected states. The Becke-Perdew 86 functional appears to be the cost effective method of choice, although even this functional does not perform well for one state of CaO2. The MP2 approach is significantly inferior to the DFT approaches.

  10. (CaO · Al2O3 · SiO2): Eu phosphors for violet/ultraviolet-to-white radiation conversion

    NASA Astrophysics Data System (ADS)

    Gurin, N. T.; Paksyutov, K. V.; Terent'ev, M. A.; Shirokov, A. V.

    2012-02-01

    (2CaO · 0.5Al2O3 · 5SiO2): Eu and (CaO · 0.2Al2O3 · SiO2): Eu phosphors doped with B2O3 in an amount of 3 wt % are obtained by direct solid-phase synthesis at 1350°C. When excited by LED radiation with a maximum at 380 nm, these phosphors emit white light with color coordinates, which are close to those in the EBU and NTSC TV standards and fall into the field of white light corresponding to light warning systems according to the International Commission on Illumination (CIE).

  11. Preparation of CaO as OLED getter material through control of crystal growth of CaCO{sub 3} by block copolymers in aqueous solution

    SciTech Connect

    Park, Jae-Hyung; Oh, Seong-Geun

    2009-01-08

    As the starting materials of organic light-emitting diode (OLED) getter, calcium carbonate (CaCO{sub 3}) particles with various shapes and crystal structures have been successfully prepared with additives (L64 or PEGPG), which contain blocks of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO). These CaCO{sub 3} particles were calcinated into highly crystalline calcium oxide (CaO) nanoparticles with high capacity of water adsorption up to 14.23 wt.%. The CaCO{sub 3} and CaO particles prepared at various conditions were characterized using the field emission scanning electron microscopy (FE-SEM), Fourier transform infrared microscopy (FT-IR), X-ray powder diffraction (XRD), and dynamic vapor sorption (DVS) method.

  12. End to end assembly of CaO and ZnO nanosheets to propeller-shaped architectures by orientation attachment approaches

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Fang

    2015-06-01

    Inspired by the agitation effect of propellers, heterogeneous propeller- shaped CaO/ZnO architectures were assembled in aqueous solution. Preferred nucleation and growth of CaO and ZnO nuclei resulted in their hexagonal nanosheets, and they were end to end combined into propeller-shaped architectures by oriented rotation and attachment reactions. When propeller-shaped CaO/ZnO product was used as solid base catalyst to synthesize biodiesel, a high biodiesel yield of 97.5% was achieved. The predominant exposure of active O2- on CaO(0 0 2) and ZnO(0 0 0 2) planes in propeller-shaped CaO/ZnO, led to good catalytic activity and high yield of biodiesel.

  13. Rotationally Resolved Spectroscopy of the B1Π← X1σ+ and C1σ+← X1σ+ Electronic Bands of CaO

    NASA Astrophysics Data System (ADS)

    Sullivan, Michael; Stewart, Jacob; Heaven, Michael

    2015-06-01

    The B1Π← X1σ+ and C1σ+← X1σ+ transitions of CaO, at energies below 30,000 cm-1, were previously investigated by Lagerqvist. The arc source used in that work yielded spectra at energies above 30,000 cm-1 that were too congested for analysis. In the present study we have used jet-cooling of CaO to extend the characterization of the B← X and C← X band systems up to 35,000 cm-1. Analyses of these data and spectroscopic constants will be reported. This work is being carried out in support of two-color photoionization studies of the cation, where the higher energy vibronic levels of the B and C states are used as the first excitation step. A. Lagerqvist, Arkiv För Fysik 8, 83, 1954

  14. The effect of Al2O3, CaO, Cr2O3 and MgO on devitrification of silica

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1988-01-01

    The effect of doping on devitrification of vitreous silica was studied at 1100, 1200, and 1300 C. Dispersion of dopants on a molecular scale was accomplished via a sol-gel technique. All dopants accelerated the devitrification of silica but to different degrees. The most active was CaO followed by MgO, Al2O3, and Cr2O3. Pure silica and silica containing Cr2O3 and Al2O3 devitrified to alpha-cristobalite only, whereas silica doped with CaO and MgO produced alpha-quartz and alpha-cristobalite. It appears that prolonged heat treatment would cause alpha-quartz to transform to alpha-cristobalite.

  15. Characterization and origin of the Taishanmiao aluminous A-type granites: implications for Early Cretaceous lithospheric thinning at the southern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Changming; Chen, Liang; Bagas, Leon; Lu, Yongjun; He, Xinyu; Lai, Xiangru

    2016-07-01

    Late Mesozoic magmatic rocks from the Taishanmiao Batholith were collected for LA-ICP-MS dating, Sr-Nd-Hf isotope systematics, and whole-rock major and trace element geochemistry to help understand the nature of collisional and extensional events along the southern margin of the North China Craton. The batholith consists of three texturally distinguishable phases of a 125 ± 1 Ma medium- to coarse-grained syenogranite, a 121 ± 1 Ma fine- to medium-grained syenogranite, and a 113 ± 1 Ma porphyritic monzogranite. Most of the units in the batholith are syenogranitic in composition with high levels of silica (70-78 wt% SiO2), alkalis (8.0-8.6 wt% Na2O + K2O), Fe* (FeOT/(FeOT + MgO) = 0.76-0.90), and depletion in CaO (0.34-1.37 wt%), MgO (0.12-0.52 wt%), TiO2 (0.09-0.40 wt%), and A/CNK (Al2O3/(Na2O + K2O + CaO)) molar ratios of 1.00-1.11. All samples have high proportions of Ga, Nb, Zr, Ga/Al, and REE, and depletions in Ba, Sr, Eu, and compatible elements, indicating that the batholith consists of A-type granites. The zircon saturation temperature for these units yields a mean value of 890 °C, and zircons with Early Cretaceous magmatic ages have ɛNd( t) values of -14.0 to -12.0, ɛHf( t) values ranging from -18.7 to -2.1, and corresponding Hf model ages of 2339-1282 Ma. These geochemical and isotopic characteristics allowed us to conclude that the primary magma for the Taishanmiao Batholith originated from partial melting of Precambrian crustal rocks in the medium-lower crust. However, the high Nb and Ta contents and low normalized Nb/Ta values for the Taishanmiao granites are due to fractionation in Nb- and Ta-rich amphibole (or biotite). It is further proposed that these aluminous A-type granites were generated in an extensional tectonic setting during the Early Cretaceous, which was induced by lithospheric thinning and asthenospheric upwelling beneath eastern China toward the Paleo-Pacific Plate.

  16. A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Boucher, Thomas F.; Ozanne, Marie V.; Carmosino, Marco L.; Dyar, M. Darby; Mahadevan, Sridhar; Breves, Elly A.; Lepore, Kate H.; Clegg, Samuel M.

    2015-05-01

    The ChemCam instrument on the Mars Curiosity rover is generating thousands of LIBS spectra and bringing interest in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibrations that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical composition. Here, LIBS spectral data are analyzed using linear regression methods including partial least squares (PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso), elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear regression methods including kernel principal component regression (K-PCR), polynomial kernel support vector regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100 samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests were employed to evaluate the statistical significance of differences among the nine models using their predicted residual sum of squares (PRESS) to make comparisons. For MgO, SiO2, Fe2O3, CaO, and MnO, the sparse models outperform all the others except for linear SVR, while for Na2O, K2O, TiO2, and P2O5, the sparse methods produce inferior results, likely because their emission lines in this energy range have lower transition probabilities. The strong performance of the sparse methods in this study suggests that use of dimensionality-reduction techniques as a preprocessing step may improve the performance of the linear models. Nonlinear methods tend to overfit the data and predict less accurately, while the linear methods proved to be more generalizable with better predictive performance. These results are attributed to the high dimensionality of the data (6144 channels

  17. Reconnaissance study of the Taylor Mountains pluton, southwestern Alaska

    USGS Publications Warehouse

    Hudson, Travis L.; Miller, Marti L.; Klimasauskas, Edward P.; Layer, Paul W.

    2010-01-01

    The Taylor Mountains pluton is a Late Cretaceous to early Tertiary (median age 65 + or ? 2 Ma) epizonal, composite biotite granite stock located about 235 km (145 mi) northeast of Dillingham in southwestern Alaska. This 30 km2 (12 mi2) pluton has sharp and discordant contacts with hornfels that developed in Upper Cretaceous clastic sedimentary rocks of the Kuskokwim Group. The three intrusive phases in the Taylor Mountains pluton, in order of emplacement, are (1) porphyritic granite containing large K-feldspar phenocrysts in a coarse-grained groundmass, (2) porphyritic granite containing large K-feldspar and smaller, but still coarse, plagioclase, quartz, and biotite phenocrysts in a fine-grained groundmass, and (3) fine-grained, leucocratic, equigranular granite. The porphyritic granites have different emplacement histories, but similar compositions; averages are 69.43 percent SiO2, 1.62 percent CaO, 5.23 percent FeO+MgO, 3.11 percent Na2O, and 4.50 percent K2O. The fine-grained, equigranular granite is distinctly felsic compared to porphyritic granite; it averages 75.3 percent SiO2, 0.49 percent CaO, 1.52 percent FeO+MgO, 3.31 percent Na2O, and 4.87 percent K2O. Many trace elements including Ni, Cr, Sc, V, Ba, Sr, Zr, Y, Nb, La, Ce, Th, and Nd are strongly depleted in fine-grained equigranular granite. Trace elements are not highly enriched in any of the granites. Known hydrothermal alteration is limited to one tourmaline-quartz replacement zone in porphyritic granite. Mineral deposits in the Taylor Mountains area are primarily placer gold (plus wolframite, cassiterite, and cinnabar); sources for these likely include scattered veins in hornfels peripheral to the Taylor Mountain pluton. The granite magmas that formed the Taylor Mountains pluton are thought to represent melted continental crust that possibly formed in response to high heat flow in the waning stage of Late Cretaceous subduction beneath interior Alaska.

  18. Ceramsite obtained from water and wastewater sludge and its characteristics affected by Fe2O3, CaO, and MgO.

    PubMed

    Zou, J L; Xu, G R; Li, G B

    2009-06-15

    To solve the disposal problems of residual sludges, wastewater treatment sludge (WWTS) and drinking-water treatment sludge (DWTS) were tested as components for producing ceramsite. Fe(2)O(3), CaO, and MgO were the major basic oxides in WWTS and DWTS, so their effect on characteristics of ceramsite was also investigated to optimize the process. Results show that WWTS and DWTS can be utilized for producing ceramsite with optimal contents of Fe(2)O(3), CaO, and MgO ranging 5-8%, 2.75-7%, and 1.6-4%, respectively. Ceramsite within the optimal Fe(2)O(3), CaO, and MgO contents ranges was characterized using thermal analysis, X-ray diffraction (XRD), morphological structures analyses, and compressive strength measurements. Higher strength ceramsite with more complex crystalline phases and fewer pores can be obtained at 6%

  19. CaO insulator coatings and self-healing of defects on V-Cr-Ti alloys in liquid lithium system

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1995-09-01

    Electrically insulating and corrosion-resistant coatings are required at the liquid metal/structural interface in fusion first-wall/blanket applications. Electrical resistance of CaO coatings that were produced on V-5%Cr-5%Ti by exposure of the alloy to liquid Li containing 0.5-85 wt.% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degrees}C. The solute element, Ca in liquid Li, reacted with the alloy substrate at 400-420{degrees}C to produce a CaO coating. Resistance of the coating layer measured in-situ in liquid Li was {approx}10{sup 6} {Omega} at 400{degrees}C. Thermal cycling between 300 and 700{degrees}C changed the coating layer resistance, which followed insulator behavior. These results suggest that thin homogeneous coatings can be produced on variously shaped surfaces by controlling the exposure time, temperature, and composition of the liquid metal. The technique can be applied to various shapes (e.g., inside/outside of tubes, complex geometrical shapes) because the coating is formed by liquid-phase reaction. Examination of the specimens after cooling to room temperature revealed no spallation, but homogeneous crazing cracks were present in the CaO coating. Additional tests to investigate the in-situ self-healing behavior of the cracks indicated that rapid healing occurred at {>=}360{degrees}C.

  20. The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts.

    PubMed

    Massera, J; Kokkari, A; Närhi, T; Hupa, L

    2015-06-01

    In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium.

  1. Mapping the geographic distribution of canopy species communities in lowland Amazon rainforest with CAO-AToMS (Invited)

    NASA Astrophysics Data System (ADS)

    Feret, J.; Asner, G. P.

    2013-12-01

    Mapping regional canopy diversity will greatly advance our understanding as well as the conservation of tropical rainforests. Changes in species composition across space and time are particularly important to understand the influence of climate, human activity and environmental factors on these ecosystems, but to date such monitoring is extremely challenging and is facing a scale gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. Advances were recently made in the field of spectroscopic imagery for the estimation of canopy alpha-diversity, and an original approach based on the segmentation of the spectral space proved its ability to estimate Shannon diversity index with unprecedented accuracy. We adapted this method in order to estimate spectral dissimilarity across landscape as a proxy for changes in species composition. We applied this approach and mapped species composition over four sites located in lowland rainforest of Peruvian Amazon. This study was based on spectroscopic imagery acquired using the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS), operating a unique sensor combining the fine spectral and spatial resolution required for such task. We obtained accurate estimation of Bray-Curtis distance between pairs of plots, which is the most commonly used metric to estimate dissimilarity in species composition (n=497 pairs, r=0.63). The maps of species composition were then compared to topo-hydrographic properties. Our results indicated a strong shift in species composition and community diversity between floodplain and terra firme terrain conditions as well as a significantly higher diversity of species communities within Amazonian floodplains. These results pave the way for global mapping of tropical canopy diversity at fine geographic resolution.

  2. Effects of microstructure and CaO addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Hsu, Yung-Fu; Liu, Yi-Xin; Hsieh, Chung-Kai

    2015-11-01

    In this study, the effects of grain size and the addition of CaCO3 on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. The bending strength of the ferrites increased from 66 to 84 MPa as the grain size of the sintered ceramics decreased from 10.25 μm to 7.53 μm, while the change in hardness was insignificant. The addition of various amounts of CaCO3 densified the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics at 1075 °C. In the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic, second phase CuO was segregated at the grain boundaries. With the CaCO3 content ≥1.5 wt%, a small amount of discrete plate-like second phase Fe2CaO4 was observed, together with the disappearance of the second phase CuO. The grain size of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic dropped from 7.80 μm to 4.68 μm, and the grain size distribution widened as the CaCO3 content increased from 0 to 5 wt%. Initially rising to 807 after CaCO3 addition up to 2.0 wt%, due to a reduced grain size, the Vickers hardness began to drop as the CaCO3 content increased. The bending strength grew linearly with the CaCO3 content and reached twice the value for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with an addition of 5.0 wt% CaCO3. The initial permeability of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic decreased substantially from 402 to 103 as the addition of CaCO3 in ferrite increased from 0 to 5 wt%, and the quality factor of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic was maximized at 95 for 1.0 wt% CaCO3 addition.

  3. Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks

    NASA Astrophysics Data System (ADS)

    Trépanier, Sylvain; Mathieu, Lucie; Daigneault, Réal; Faure, Stéphane

    2016-04-01

    This study proposes an artificial neural networks-based method for predicting the unaltered (precursor) chemical compositions of hydrothermally altered volcanic rock. The method aims at predicting precursor's major components contents (SiO2, FeOT, MgO, CaO, Na2O, and K2O). The prediction is based on ratios of elements generally immobile during alteration processes; i.e. Zr, TiO2, Al2O3, Y, Nb, Th, and Cr, which are provided as inputs to the neural networks. Multi-layer perceptron neural networks were trained on a large dataset of least-altered volcanic rock samples that document a wide range of volcanic rock types, tectonic settings and ages. The precursors thus predicted are then used to perform mass balance calculations. Various statistics were calculated to validate the predictions of precursors' major components, which indicate that, overall, the predictions are precise and accurate. For example, rank-based correlation coefficients were calculated to compare predicted and analysed values from a least-altered test dataset that had not been used to train the networks. Coefficients over 0.87 were obtained for all components, except for Na2O (0.77), indicating that predictions for alkali might be less performant. Also, predictions are performant for most volcanic rock compositions, except for ultra-K rocks. The proposed method provides an easy and rapid solution to the often difficult task of determining appropriate volcanic precursor compositions to rocks modified by hydrothermal alteration. It is intended for large volcanic rock databases and is most useful, for example, to mineral exploration performed in complex or poorly known volcanic settings. The method is implemented as a simple C++ console program.

  4. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry

    NASA Astrophysics Data System (ADS)

    Ichikawa, Shintaro; Nakamura, Toshihiro

    2014-06-01

    A micro glass bead technique was developed to assay precious siliceous samples for geochemical and archeological analyses. The micro-sized (approximately 3.5 mm in diameter and 0.8 mm in height) glass beads were prepared by mixing and fusing 1.1 mg of the powdered sample and 11.0 mg of the alkali lithium tetraborate flux for wavelength-dispersive X-ray fluorescence determination of major oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, and total Fe2O3). The preparation parameters, including temperature and agitation during the fusing process, were optimized for the use of a commercial platinum crucible rather than a custom-made crucible. The procedure allows preparation of minute sample amounts of siliceous samples using conventional fusing equipment. Synthetic calibration standards were prepared by compounding chemical reagents such as oxides, carbonates, and diphosphates. Calibration curves showed good linearity with r values > 0.997, and the lower limits of detection were in the 10s to 100s of μg g- 1 range (e.g., 140 μg g- 1 for Na2O, 31 μg g- 1 for Al2O3, and 8.9 μg g- 1 for MnO). Using the present method, we determined ten major oxides in igneous rocks, stream sediments, ancient potteries, and obsidian. This was applicable to siliceous samples with various compositions, because of the excellent agreement between the analytical and recommended values of six geochemical references. This minimal-scale analysis may be available for precious and limited siliceous samples (e.g., rock, sand, soil, sediment, clay, and archeological ceramics) in many fields such as archeology and geochemistry.

  5. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag

    SciTech Connect

    Kim, Min Sik; Jun, Yubin; Lee, Changha Oh, Jae Eun

    2013-12-15

    The use of calcium oxide (CaO) demonstrates a superior potential for the activation of ground granulated blast furnace slag (GGBFS), and it produces a higher mechanical strength than calcium hydroxide [Ca(OH){sub 2}]. The mechanical strength differences between CaO- and Ca(OH){sub 2}-activated GGBFS binders are explored using isothermal calorimetry, powder X-ray diffraction, thermogravimetric and differential thermal analysis (TGA and DTA) as well as compressive strength testing. Calcium silicate hydrate (C–S–H), Ca(OH){sub 2} and a hydrotalcite-like phase are found as reaction products in all samples. The TGA and DTA results indicate that the use of CaO produces more C–S–H, although this is not likely to be the primary cause of higher strength development in the CaO-activated GGBFS. Rather, other factors such as porosity may govern the strength at a higher order of magnitude. Significant reduction of Ca(OH){sub 2} occurs only with the use of Ca(OH){sub 2}, followed by the formation of carbonate (CaCO{sub 3}), indicating carbonation. -- Highlights: •CaO showed a better potential for the activation of GGBFS than Ca(OH){sub 2}. •Strength test, XRD, TGA/DTA and isothermal calorimetry are used. •C-S-H, Ca(OH){sub 2}, and a hydrotalcite-like phase are found in all samples. •The use of Ca(OH){sub 2} causes some degree of carbonation.

  6. Species classification and bioactive ingredients accumulation of BaiJiangCao based on characteristic inorganic elements analysis by inductively coupled plasma-mass spectrometry and multivariate analysis

    PubMed Central

    Wen-Lan, Li; Xue, Zhang; Xin-Xin, Yang; Shuai, Wang; Lin, Zhao; Huan-Jun, Zhao; Yong-Rui, Bao; Chen-Feng, Ji; Ning, Chen; Zheng, Xiang

    2015-01-01

    Background: Patrinia scabiosaefolia Fisch and Patrinia villosa (Thunb.) Juss., two species herbs with the same Chinese name “BaiJiangCao”, are important ancient herbal medicines widely used for more than 2000 years. The clinical application of two species herb is confused due to the difficult identification. Objective: The objective was to authenticate the species of BaiJiangCao and analyze the accumulation of bioactive ingredients based on characteristic inorganic elements analysis. Materials and Methods: Content of 32 inorganic elements in BaiJiangCao from different habitats were determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the characteristic inorganic elements were picked to distinguish the species of the herb by principal component analysis and cluster analysis. Contents of two bioactive ingredients, luteoloside, and oleanolic acid, in the samples, were also analyzed by high-performance liquid chromatography method. Relationship between accumulation of bioactive ingredients and content of macroelements in BaiJiangCao was established by statistics. Results: A 4 macroelements (Na, Mg, K, Fe) in 32 determined inorganic elements were picked for characteristic inorganic elements. Content of Na, Mg, K and Fe showed positive correlations with that of luteoloside, content of Na, Mg showed positive correlations with that of oleanolic acid, but content of K and Fe showed negative correlations with that of oleanolic acid. Conclusion: It is for the first time to utilize the characteristic inorganic elements as an index to classify the herb species by the method of ICP-MS and multivariate analysis. And it is also the first report to investigate the influence of inorganic elements in herb on the accumulation of bioactive components which could affect the pharmacological efficacy of the herb medicine. And this method could also be utilized in research of corresponding aspects. PMID:26600721

  7. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials. PMID:26398508

  8. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.

  9. The role of temperature on Cr(VI) formation and reduction during heating of chromium-containing sludge in the presence of CaO.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Zhai, Jianping; Zhao, Yongbin; Li, Qin; Cui, Hao

    2015-11-01

    In this study, the temperature dependence of Cr(VI) formation and reduction in the presence of CaO was examined during the thermal treatment of sludge that contains chromium. thermogravimetry-differential scanning calorimetry and X-ray diffractometry were used to characterize the thermal behavior and phase transformation, respectively. Na2CO3 leaching procedure was employed to determine the amount of Cr(VI). The result showed that CaO promoted Cr(III) oxidation, however, its influence is very dependent on heating temperature, with the extent of the effect varying with temperature. From 200-400 °C, the presence of CaO facilitated formation of intermediate product Cr2O3+x containing Cr(VI) during dehydration of chromium hydrate, while Cr2O3+x would decompose as temperature over 400 °C, accompanied by part of Cr(VI) being reduced to Cr(III). From 500 to 900 °C, Cr(III) reacted with CaO to form a leachable CaCrO4 product. This product was stable and a prolonged heating time did not reduce the amount of Cr(VI) significantly. At 1000-1200 °C, part of CaCrO4 was reduced to Ca(CrO2)2 in 1h. While extended heating time above 1h resulted in the Ca(CrO2)2 being oxidized reversibly to CaCrO4 at 1200 °C. Since CaCrO4 is thermodynamically less stable over 1000 °C, MgO could induce CaCrO4 to be reduced into MgCr2O4 at around 900 °C, lower than that for the reduction from CaCrO4 into Ca(CrO2)2. It suggested that adding MgO might be a potential approach for inhibiting Cr(VI) formation during heating sludge containing chromium.

  10. Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture

    SciTech Connect

    Siefert, Nicholas S.; Shekhawat, Dushyant; Litster, Shawn; Berry, David A.

    2013-08-15

    We present experimental results of coal gasification with and without the addition of calcium oxide and potassium hydroxide as dual-functioning catalyst-capture agents. Using two different coal types and temperatures between 700 and 900 °C, we studied the effect of these catalyst-capture agents on (1) the syngas composition, (2) CO2 and H2S capture, and (3) the steam-coal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen, and 10% other species when a CaO/C molar ratio of 0.5 was added. We demonstrated significantly enhanced steam–coal gasification kinetic rates when adding small amounts of potassium hydroxide to coal when operating a CaO-CaCO3 chemical looping gasification reactor. For example, the steam–coal gasification kinetic rate increased 250% when dry mixing calcium oxide at a Ca/C molar ratio of 0.5 with a sub-bituminous coal, and the kinetic rate increased 1000% when aqueously mixing calcium oxide at a Ca/C molar ratio of 0.5 along with potassium hydroxide at a K/C molar ratio of 0.06. In addition, we conducted multi-cycle studies in which CaCO3 was calcined by heating to 900 °C to regenerate the CaO, which was then reused in repeated CaO-CaCO3 cycles. The increased steam-coal gasification kinetics rates for both CaO and CaO + KOH persisted even when the material was reused in six cycles of gasification and calcination. The ability of CaO to capture carbon dioxide decreased roughly 2-4% per CaO-CaCO3 cycle. We also discuss an important application of this combined gasifier-calciner to electricity generation and selling the purge stream as a precalcined feedstock to a cement kiln. In this scenario, the amount of purge stream required is fixed not by the degradation in the capture ability but rather by the requirements at the cement kiln on the amount of CaSO4 and ash in the precalcined feedstock.

  11. The role of temperature on Cr(VI) formation and reduction during heating of chromium-containing sludge in the presence of CaO.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Zhai, Jianping; Zhao, Yongbin; Li, Qin; Cui, Hao

    2015-11-01

    In this study, the temperature dependence of Cr(VI) formation and reduction in the presence of CaO was examined during the thermal treatment of sludge that contains chromium. thermogravimetry-differential scanning calorimetry and X-ray diffractometry were used to characterize the thermal behavior and phase transformation, respectively. Na2CO3 leaching procedure was employed to determine the amount of Cr(VI). The result showed that CaO promoted Cr(III) oxidation, however, its influence is very dependent on heating temperature, with the extent of the effect varying with temperature. From 200-400 °C, the presence of CaO facilitated formation of intermediate product Cr2O3+x containing Cr(VI) during dehydration of chromium hydrate, while Cr2O3+x would decompose as temperature over 400 °C, accompanied by part of Cr(VI) being reduced to Cr(III). From 500 to 900 °C, Cr(III) reacted with CaO to form a leachable CaCrO4 product. This product was stable and a prolonged heating time did not reduce the amount of Cr(VI) significantly. At 1000-1200 °C, part of CaCrO4 was reduced to Ca(CrO2)2 in 1h. While extended heating time above 1h resulted in the Ca(CrO2)2 being oxidized reversibly to CaCrO4 at 1200 °C. Since CaCrO4 is thermodynamically less stable over 1000 °C, MgO could induce CaCrO4 to be reduced into MgCr2O4 at around 900 °C, lower than that for the reduction from CaCrO4 into Ca(CrO2)2. It suggested that adding MgO might be a potential approach for inhibiting Cr(VI) formation during heating sludge containing chromium. PMID:26072117

  12. Influences of CaO on Crystallization, Microstructures, and Properties of BaO-Al2O3-B2O3-SiO2 Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Bo; Tang, Bo; Xu, Mingjiang

    2015-10-01

    We have developed BaO-CaO-Al2O3-B2O3-SiO2 glass-ceramics with high thermal coefficient of expansion (TCE) to overcome thermal mismatch at board level. The crystalline phases include quartz (major), cristobalite (minor), and bazirite BaZrSi3O9 (minor). Calculations from whole-pattern fitting show that the crystallinity varies slightly within the range of 33.48% to 34.89%, while the mass fraction of the phases changes remarkably with the CaO content. This indicates that CaO cannot promote crystallization of Ba-Al-B-Si glass, but effectively suppresses the phase transformation from quartz to cristobalite, making the thermal expansion curves linear. An empirical equation for the TCE versus the temperature and the amount of CaO is established. Furthermore, the densification mechanism of Ca modifiers is revealed. Due to its higher field strength than Ba, substitution of Ca increases the glass viscosity and inhibits ion diffusion. Excessive CaO is thus harmful to the density, bending strength, and electrical properties. The sample with 10 wt.% CaO sintered at 950°C exhibited high bending strength (154.1 MPa) and high TCE (12.38 ppm/°C) as well as good electrical properties ( ɛ = 6.2, tan δ = 5 × 10-4, ρ = 3.8 × 1012 Ω cm).

  13. Performance and economic assessments of a solid oxide fuel cell system with a two-step ethanol-steam-reforming process using CaO sorbent

    NASA Astrophysics Data System (ADS)

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2016-02-01

    The hydrogen production process is known to be important to a fuel cell system. In this study, a carbon-free hydrogen production process is proposed by using a two-step ethanol-steam-reforming procedure, which consists of ethanol dehydrogenation and steam reforming, as a fuel processor in the solid oxide fuel cell (SOFC) system. An addition of CaO in the reformer for CO2 capture is also considered to enhance the hydrogen production. The performance of the SOFC system is analyzed under thermally self-sufficient conditions in terms of the technical and economic aspects. The simulation results show that the two-step reforming process can be run in the operating window without carbon formation. The addition of CaO in the steam reformer, which runs at a steam-to-ethanol ratio of 5, temperature of 900 K and atmospheric pressure, minimizes the presence of CO2; 93% CO2 is removed from the steam-reforming environment. This factor causes an increase in the SOFC power density of 6.62%. Although the economic analysis shows that the proposed fuel processor provides a higher capital cost, it offers a reducing active area of the SOFC stack and the most favorable process economics in term of net cost saving.

  14. [Textual research on Guang dong xin yu (New Sayings of Guangdong) quoted in Ben cao gang mu shi yi (Supplements to Compendium of Materia Medica].

    PubMed

    Zhang, Ruixian; Zhang, Wei; Li, Jian; Liang, Fei

    2014-05-01

    Altogether 15 terms for Guang dong xin yu (New Sayings of Guangdong) were used in Ben cao gang mu shi yi (Supplements to Compendium of Materia Medica), including Yue yu (Cantonese sayings), Chong yu (Sayings from Insect Drug), Jie yu (Sayings from Crustacean Drug), Xin yu (New Sayings), Yue hai xiang yu (Fragrant Sayings from Cantonese Region), Yue zhi mu yu (Sayings from Plants in Cantonese Annals), Guang dong suo yu (Trivial Sayings from Guangdong), Yue shan lu (Records of Cantonese Mountains), Yue lu (Cantonese Records), Jiao guang lu (Joint Guangdong Records), Yue cao zhi (Records of Cantonese Grasses), Guang guo lu (Records of Guangdong Fruits), Nan yue suo ji (Trivial Records of Southern Canton), Guang zhi (Guangdong Records), Yue zhi (Cantonese Records) etc. dealing with 57 sorts of drugs (with individual overlapping ones), the author of Xin yu was Qu Dajun, a surviving fogy of the Ming Dynasty actively involved in the activities to restore the old dynasty and resist the Qing Dynasty, and was persecuted in the literary inquisition in which his works were burnt so that Zhao Xuemin, when quoting his texts, had to go in a roundabout way. PMID:25208840

  15. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst.

    PubMed

    Liu, Shiyu; Xie, Qinglong; Zhang, Bo; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-03-01

    This study investigated fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Effects of reaction temperature, CaO/HZSM-5 ratio, and corn stover/scum ratio on co-pyrolysis product fractional yields and selectivity were investigated. Results showed that co-pyrolysis temperature was selected as 550°C, which provides the maximum bio-oil and aromatic yields. Mixed CaO and HZSM-5 catalyst with the weight ratio of 1:4 increased the aromatic yield to 35.77 wt.% of feedstock, which was 17% higher than that with HZSM-5 alone. Scum as the hydrogen donor, had a significant synergistic effect with corn stover to promote the production of bio-oil and aromatic hydrocarbons when the H/C(eff) value exceeded 1. The maximum yield of aromatic hydrocarbons (29.3 wt.%) were obtained when the optimal corn stover to scum ratio was 1:2. PMID:26773959

  16. Principal Component Analysis of Chinese Porcelains from the Five Dynasties to the Qing Dynasty

    NASA Astrophysics Data System (ADS)

    Yap, C. T.; Hua, Younan

    1992-10-01

    This is a study of the possibility of identifying antique Chinese porcelains according to the period or dynasty, using major and minor chemical components (SiO2 , Al2O3 , Fe2O3 , K2O, Na2O, CaO and MgO) from the body of the porcelain. Principal component analysis is applied to published data on 66 pieces of Chinese procelains made in Jingdezhen during the Five Dynasties and the Song, Yuan, Ming and Qing Dynasties. It is shown that porcelains made during the Five Dynasties and the Yuan (or Ming) and Qing Dynasties can be segregated completely without any overlap. However, there is appreciable overlap between the Five Dynasties and the Song Dynasty, some overlap between the Song and Ming Dynasties and also between the Yuan and Ming Dynasties. Interestingly, Qing procelains are well separated from all the others. The percentage of silica in the porcelain body decreases and that of alumina increases with recentness with the exception of the Yuan and Ming Dynasties, where this trend is reversed.

  17. Fluid-rock interaction at a carbonatite-gneiss contact, Alnö, Sweden

    NASA Astrophysics Data System (ADS)

    Skelton, A.; Hode Vuorinen, J.; Arghe, F.; Fallick, A.

    2007-07-01

    We evaluate balanced metasomatic reactions and model coupled reactive and isotopic transport at a carbonatite-gneiss contact at Alnö, Sweden. We interpret structurally channelled fluid flow along the carbonatite-gneiss contact at ˜640°C. This caused (1) metasomatism of the gneiss, by the reaction: {biotite + quartz + oligoclase + K2 O + Na2O ± CaO ± MgO ± FeO = albite + K-feldspar + arfvedsonite + aegirene-augite + H2 O + SiO2}, (2) metasomatism of carbonatite by the reaction: calcite + SiO2 = wollastonite + CO2, and (3) isotopic homogenization of the metasomatised region. We suggest that reactive weakening caused the metasomatised region to widen and that the metasomatic reactions are chemically (and possibly mechanically) coupled. Spatial separation of reaction and isotope fronts in the carbonatite conforms to a chromatographic model which assumes local calcite-fluid equilibrium, yields a timescale of 102-104 years for fluid-rock interaction and confirms that chemical transport towards the carbonatite interior was mainly by diffusion. We conclude that most silicate phases present in the studied carbonatite were acquired by corrosion and assimilation of ijolite, as a reactive by-product of this process and by metasomatism. The carbonatite was thus a relatively pure calcite-H2O-CO2-salt melt or fluid.

  18. The geochemistry model of the surface sediment determined by using ED-XRF technique: a case study of the Boka Kotorska bay, Adriatic Sea.

    PubMed

    Tanaskovski, Bojan; Jović, Mihajlo; Miličić, Ljiljana; Pezo, Lato; Mandić, Milica; Stanković, Slavka

    2016-06-01

    The spatial distribution of major oxides (Na2O, K2O, SiO2, Al2O3, Fe2O3, CaO, MgO, MnO, TiO2, P2O5) and numerous elements (Cr, Co, Ni, Cu, Zn, As, Se, Pb, Sn, Sb, Ba, Sr, Br, Rb, Zr, Mo, Cs, Y, V, Ga, La, U, Th, Nb, W, Sc, Ge, Gd, Yb, Hf, and Ce) was determined by using energy dispersive X-ray fluorescence spectrometry on the basis of previously measured organic matter and carbonates. The optimal measuring variables for the investigated oxides and elements were determined by using five standard reference materials. The carbonated sediment type can be determined on the basis of the highest Sr, Sc, La, Nb, Hf, and Yb concentrations followed with the lowest concentrations of the remaining elements and the negative Ce anomaly. The complexity of the obtained data was also examined by principal component analysis (PCA) and cluster analysis (CA) in the identifying geochemical composition of the surface sediment. Boka Kotorska bay's geographical position, orographical configuration, and hydrographic characteristics influence the geochemistry model of the surface sediment, quite different from the open sea. PMID:26948969

  19. Environmental changes in the western Amazônia: morphological framework, geochemistry, palynology and radiocarbon dating data.

    PubMed

    Horbe, Adriana M C; Behling, Hermann; Nogueira, Afonso C R; Mapes, Russell

    2011-09-01

    The sediments from the Coari lake, a "terra firme" lake sculpted into Plio-Pleistocene deposits, and the Acará lake, a flooding-type lake developed on Quaternary sediments in the floodplain of the mid-Solimões river, in the western Amazônia, Brazil, were studied to investigate the environmental condition of their developing. This study includes mineral composition, geochemistry, Pb isotope, palinology, radiocarbon-age and morphological framework of the lakes obtained from SRTM satellite images. The geological and the environmental conditions in the two lakes are highly variable and suggest that their evolution reflect autogenic processes under humid rainforest condition. Although kaolinite, quartz, muscovite, illite, and smectite are the main minerals in both lakes, the geochemistry indicates distinct source, the Acará lake sediments have higher concentrations of Al(2)O(3), Fe(2)O(3), FeO, CaO, K(2)O, MgO, Na(2)O, P(2)O(5), Ba, V, Cu, Ni, Zn, Pb, Sr, Li, Y and La and have more radiogenic Pb than the Coari lake sediments. The radiocarbon ages suggest that at 10160 yr BP the Coari lake started to be developed due to avulsion of the Solimões river, and the Acará lake was formed by the meander abandonment of Solimões river retaining its grass dominated shore at ca. 3710 yr BP. PMID:21830005

  20. First geochemical and geohronological data from granitoids in Ordu area, NE Turkey

    NASA Astrophysics Data System (ADS)

    Özdamar, Şenel; Aydın, Halil Can

    2016-04-01

    The major and trace elements and Ar-Ar results of the plutonic rocks from the Ordu plutons, Eastern Turkey, were studied to understand petrogenesis. The plutonic rocks consist of a variety of rock types ranging from quartzmonzonite to granite. These plutonic rocks have SiO2=57,70-77,10, Al2O3=12,35-18,10, Fe2O3=2,17-7,21, MgO=0,33-3,09, CaO=0,25-6,12, Na2O=2,65-3,64, K2O=3,66-7,48. All of the rocks show a shoshonitic afinity. Chondrite-normalized REE patterns are moderately fractionated and relatively flat [(La/Yb)N=6 to 15]. They display small negative Eu anomalies with enrichment of LILE and less amount of depletion of HFSE. The 40Ar/39Ar ages ˜44 Ma. These ages are interpreted as crystalliczation ages of the plutoniz rocks and also these ages imply collision of the Pontide and Anatolide-Tauride platform.

  1. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin.

    PubMed

    Satyam Naidu, V; Aghalayam, P; Jayanti, S

    2016-06-01

    The present study investigates the enhancement of CO2 gasification reactivity of coals due to the presence of catalytic elements in biomass such as K2O, CaO, Na2O and MgO. Co-gasification of three Indian coal chars with two biomass chars has been studied using isothermal thermogravimetric analysis (TGA) in CO2 environment at 900, 1000 and 1100°C. The conversion profiles have been used to establish synergetic or inhibitory effect on coal char reactivity by the presence of catalytic elements in biomass char by comparing the 90% conversion time with and without biomass. It is concluded that both biomasses exhibit synergistic behavior when blended with the three coals with casuarina being more synergetic than empty fruit bunch. Some inhibitory effect has been noted for the high ash coal at the highest temperature with higher 90% conversion time for the blend over pure coal, presumably due to diffusional control of the conversion rate. PMID:26967339

  2. Multielement chemical and statistical analyses from a uranium hydrogeochemical and stream-sediment survey in and near the Elkhorn Mountains, Jefferson County, Montana; Part II, Stream sediments

    USGS Publications Warehouse

    Suits, V.J.; Wenrich, K.J.

    1982-01-01

    Fifty-two stream-sediment samples, collected from an area south of Helena, Jefferson County, Montana, were sieved into two size fractions (50 ppm for the fine fraction) were encountered in samples from the Warm Springs Creek drainage area, along Prickly Pear Creek near Welmer and Golconda Creeks and along Muskrat Creek. All groups showed a significant correlation at the 99 percent confidence level (r between 0.73 and 0.77) between U and Th. Uranium was found to correlate significantly only with Th (as mentioned above) and with -Ni in the fine fraction of the volcanics group. U correlates significantly with -Al2O3, Ba, organic C, -K2O, -Sr and Y in both size fractions for the Boulder batholith. Correlations between U and each of several elements differ for the fine and coarse fractions of the Boulder batholith group, suggesting that the U distribution in these stream sediments is in large part controlled by grain size. Correlations were found between U and CaO, Cr, Fe203, -Na2O, Sc, -SiO2, TiO2, Yb and Zr in the coarse fraction but not in the fine fraction. U correlates weakly (to the 90% confidence level, crc<.37) with -Co and -Cu in the fine but not the coarse fraction. These results are compared to a previous study in the northern Absaroka mountains. Correlation coefficients between all other elements determined from these samples are also shown in Tables 12 to 15.

  3. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    NASA Technical Reports Server (NTRS)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  4. The geochemistry model of the surface sediment determined by using ED-XRF technique: a case study of the Boka Kotorska bay, Adriatic Sea.

    PubMed

    Tanaskovski, Bojan; Jović, Mihajlo; Miličić, Ljiljana; Pezo, Lato; Mandić, Milica; Stanković, Slavka

    2016-06-01

    The spatial distribution of major oxides (Na2O, K2O, SiO2, Al2O3, Fe2O3, CaO, MgO, MnO, TiO2, P2O5) and numerous elements (Cr, Co, Ni, Cu, Zn, As, Se, Pb, Sn, Sb, Ba, Sr, Br, Rb, Zr, Mo, Cs, Y, V, Ga, La, U, Th, Nb, W, Sc, Ge, Gd, Yb, Hf, and Ce) was determined by using energy dispersive X-ray fluorescence spectrometry on the basis of previously measured organic matter and carbonates. The optimal measuring variables for the investigated oxides and elements were determined by using five standard reference materials. The carbonated sediment type can be determined on the basis of the highest Sr, Sc, La, Nb, Hf, and Yb concentrations followed with the lowest concentrations of the remaining elements and the negative Ce anomaly. The complexity of the obtained data was also examined by principal component analysis (PCA) and cluster analysis (CA) in the identifying geochemical composition of the surface sediment. Boka Kotorska bay's geographical position, orographical configuration, and hydrographic characteristics influence the geochemistry model of the surface sediment, quite different from the open sea.

  5. In vitro cell response to Co-containing 1,393 bioactive glass.

    PubMed

    Hoppe, Alexander; Brandl, Andreas; Bleiziffer, Oliver; Arkudas, Andreas; Horch, Raymund E; Jokic, Bojan; Janackovic, Djordje; Boccaccini, Aldo R

    2015-12-01

    Cobalt ions are known to stimulate angiogenesis via inducing hypoxic conditions and hence are interesting agents to be used in conjunction with bioactive glasses (BGs) in bone tissue engineering approaches. In this work we investigated in vitro cell biocompatibility of Co releasing 1393 BG composition (in wt.%: 53SiO2, 6Na2O, 12K2O, 5MgO, 20CaO, and 4P2O5) derived scaffolds with osteoblast-like cells (MG-63) and human dermal microvascular endothelial cells (hDMECs). Cell viability, cell number and cell morphology of osteoblast-like cells in contact with particulate glass and 3D scaffolds were assessed showing good biocompatibility of 1393 reference material and with 1 wt.% CoO addition whereby 5 wt.% of CoO in the glass showed cytotoxicity. Furthermore for 1393 with 1 wt.% of CoO increased mitochondrial activity was measured. Similar observations were made with hDMECs: while 1393 and 1393 with 1 wt.% CoO were biocompatible and the endothelial phenotype was retained, 5 wt.% CoO containing BG showed cytotoxic effects after 1 week of cell culture. In conclusion, 1 wt.% Co containing BG was biocompatible with osteoblast like cells and endothelial cells and showed slightly stimulating effects on osteoblast-like cells whereas the addition of 5 wt.% CoO seems to exceed the vital therapeutic ranges of Co ions being released in physiological fluids.

  6. Environmental changes in the western Amazônia: morphological framework, geochemistry, palynology and radiocarbon dating data.

    PubMed

    Horbe, Adriana M C; Behling, Hermann; Nogueira, Afonso C R; Mapes, Russell

    2011-09-01

    The sediments from the Coari lake, a "terra firme" lake sculpted into Plio-Pleistocene deposits, and the Acará lake, a flooding-type lake developed on Quaternary sediments in the floodplain of the mid-Solimões river, in the western Amazônia, Brazil, were studied to investigate the environmental condition of their developing. This study includes mineral composition, geochemistry, Pb isotope, palinology, radiocarbon-age and morphological framework of the lakes obtained from SRTM satellite images. The geological and the environmental conditions in the two lakes are highly variable and suggest that their evolution reflect autogenic processes under humid rainforest condition. Although kaolinite, quartz, muscovite, illite, and smectite are the main minerals in both lakes, the geochemistry indicates distinct source, the Acará lake sediments have higher concentrations of Al(2)O(3), Fe(2)O(3), FeO, CaO, K(2)O, MgO, Na(2)O, P(2)O(5), Ba, V, Cu, Ni, Zn, Pb, Sr, Li, Y and La and have more radiogenic Pb than the Coari lake sediments. The radiocarbon ages suggest that at 10160 yr BP the Coari lake started to be developed due to avulsion of the Solimões river, and the Acará lake was formed by the meander abandonment of Solimões river retaining its grass dominated shore at ca. 3710 yr BP.

  7. Geochemistry and petrogenesis of Proterozoic granitic rocks from northern margin of the Chotanagpur Gneissic Complex (CGC)

    NASA Astrophysics Data System (ADS)

    Yadav, Bhupendra S.; Wanjari, Nishchal; Ahmad, Talat; Chaturvedi, Rajesh

    2016-07-01

    This study presents the geochemical characteristics of granitic rocks located on the northern margin of Chotanagpur Gneissic Complex (CGC), exposed in parts of Gaya district, Bihar and discusses the possible petrogenetic process and source characteristics. These granites are associated with Barabar Anorthosite Complex and Neo-proterozoic Munger-Rajgir group of rocks. The granitic litho-units identified in the field are grey, pink and porphyritic granites. On the basis of geochemical and petrographic characteristics, the grey and pink granites were grouped together as GPG while the porphyritic granites were named as PG. Both GPG and PG are enriched in SiO2, K2O, Na2O, REE (except Eu), Rb, Ba, HFSE (Nb, Y, Zr), depleted in MgO, CaO, Sr and are characterised by high Fe* values, Ga/Al ratios and high Zr saturation temperatures (GPGavg˜ 861 ∘C and PGavg˜ 835 ∘C). The REE patterns for GPG are moderately fractionated with an average (La/Yb)N˜ 4.55 and Eu/Eu* ˜ 0.58, than PG which are strongly fractionated with an average (La/Yb)N˜ 31.86 and Eu/Eu* ˜ 0.75. These features indicate that the granites have an A-type character. On the basis of geochemical data, we conclude that the granites are probably derived from a predominant crustal source with variable mantle involvement in a post-collisional setting.

  8. Mineralogical and chemical compositions of the paleosols of different ages buried under kurgans in the southern Ergeni region and their paleoclimatic interpretation

    NASA Astrophysics Data System (ADS)

    Tatyanchenko, T. V.; Alekseeva, T. V.; Kalinin, P. I.

    2013-04-01

    The chemical and mineralogical compositions and the contents and properties of the organic matter were studied in the paleosols of different ages buried under the kurgan group "Kalmykia" in the southern part of the Ergeni Upland. The investigated sequence of soils included profiles developed on the given territory about 5100, 4410, 4260, 4120, 3960, and 600 yrs ago. The background light chestnut soil was also examined. The results of our study showed that the earlier established climate changes in this area during the second half of the Holocene are reflected in the chemical and mineralogical compositions of the soils. These characteristics can be used as indicators of the paleoclimatic conditions together with some petrophysical characteristics, such as the magnetic susceptibility of the soil samples. The study of the mineralogical composition of the clay fraction of the paleosols attests to the transformation of the smectitic phase, accumulation of illites, and destruction of chlorites manifested at different degrees. It is argued that the geochemical indices—CIA, Al2O3/(CaO + MgO + K2O + Na2O), Rb/Sr, and Ba/Sr—are sensitive to climate changes and reflect the transformation of the mineral soil mass and the soil genesis.

  9. Reactions of yttria-stabilized zirconia with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1978-01-01

    The reactions between partially stabilized zirconia, containing 8 weight-percent yttria, and oxides and sulfates of various elements were studied at 1200, 1300, and 1400 C for times to 800, 400, and 200 hours, respectively. These oxides and sulfates represent impurities and additives potentially present in gas turbine fuels or impurities in the turbine combustion air as well as the elements of the substrate alloys in contact with zirconia. Based on the results, these compounds can be classified in four groups: (1) compounds which did not react with zirconia (Na2SO4, K2SO4, Cr2O3, Al2O3 and NiO); (2) compounds that reached completely with both zirconia phases (CaO, BaO, and BaSO4); (3) compounds that reacted preferentially with monoclinic zirconia (Na2O, K2O, CoO, Fe2O3, MgO, SiO2, and ZnO); and (4) compounds that reacted preferentially with cubic zirconia (V2O5, P2O5).

  10. Geochemical evidence for sundering of the West Mariana arc in miocene ash from the Parece Vela Basin

    NASA Astrophysics Data System (ADS)

    Warner, Russell J.; Flower, Martin F. J.; Rodolfo, Kelvin S.

    1987-10-01

    Glass and mineral fragments from discrete volcanic ash layers were sampled from DSDP/IPOD Site 450 in the Parece Vela Basin, Philippine Sea and analyzed by electron microprobe. The ashes are interpreted as eruptive products of the adjacent West Mariana arc system between 25 and 14 Ma B.P., and have compositions between basaltic andesite and rhyolite, and rarely, boninite. 'Continuous' chemical trends appear to reflect mixing of mafic and silicic magmas. 'Discontinuous' trends between these end-members are relatively few, and are consistent with 'liquid lines' produced by fractional crystallization. Andesitic tephra become progressively richer in MgO and CaO through the middle Miocene, while boninite appears towards the end of the sequence, between 14 and 15 Ma B.P. Coeval rhyolitic glasses become richer in K 2O and Na 2O, with maximum concentrations at about 15 Ma B.P. Chronologic changes in fractionation type and composition of parent magmas are interpreted to reflect the subaerial volcanic evolution of the West Mariana arc. The appearance of boninite is believed to signal early stages of arc sundering, and corresponds temporally with regional uplift of the sea floor above the carbonate compensation depth, precursor to a new pulse of back-arc spreading.

  11. [Preparation of sub-standard samples and XRF analytical method of powder non-metallic minerals].

    PubMed

    Kong, Qin; Chen, Lei; Wang, Ling

    2012-05-01

    In order to solve the problem that standard samples of non-metallic minerals are not satisfactory in practical work by X-ray fluorescence spectrometer (XRF) analysis with pressed powder pellet, a method was studied how to make sub-standard samples according to standard samples of non-metallic minerals and to determine how they can adapt to analysis of mineral powder samples, taking the K-feldspar ore in Ebian-Wudu, Sichuan as an example. Based on the characteristic analysis of K-feldspar ore and the standard samples by X-ray diffraction (XRD) and chemical methods, combined with the principle of the same or similar between the sub-standard samples and unknown samples, the experiment developed the method of preparation of sub-standard samples: both of the two samples above mentioned should have the same kind of minerals and the similar chemical components, adapt mineral processing, and benefit making working curve. Under the optimum experimental conditions, a method for determination of SiO2, Al2O3, Fe2O3, TiO2, CaO, MgO, K2O and Na2O of K-feldspar ore by XRF was established. Thedetermination results are in good agreement with classical chemical methods, which indicates that this method was accurate.

  12. A Structurally Based Viscosity Model for Oxide Melts

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Chou, Kuo-Chih; Mills, Ken

    2014-04-01

    A structurally based viscosity model is proposed to represent the viscosity of oxide melts as functions of both temperature and composition; The oxide melts cover the following constituents: Li2O, Na2O, K2O, MgO, CaO, SrO, BaO, FeO, MnO, Al2O3, SiO2, CaF2, TiO2, Fe2O3, and P2O5. The model describes the slag structure in terms of the various forms of oxygen ions which are classified according to the metal cations they bond with. Approximate methods for calculating the concentrations of these oxygen ions are proposed and are then used to describe the effect of melt structure on viscosity. The model provides a good description of the variations in viscosity with composition and temperature. The measured viscosities were compared with values calculated with the model, and the current model was found to provide reliable estimates of viscosities of slags used in various industrial processes ( e.g., blast furnace, basic oxygen steelmaking, ladle refining, continuous casting of steel, coal gasification, and electroslag remelting).

  13. Straczekite, a new calcium barium potassium vanadate mineral from Wilson Springs, Arkansas.

    USGS Publications Warehouse

    Evans, H.T.; Nord, G.; Marinenko, J.; Milton, C.

    1984-01-01

    Straczekite occurs as a rare secondary mineral in fibrous seams, along with other V minerals (A.M. 64-713), in ore from the vanadium mine in Wilson Springs (formerly Potash Sulfur Springs), Garland County, Arkansas. It forms soft, thin laths of dark greenish black crystals up to 0.5 mm in length. Indexed XRD data are tabulated; strongest lines 3.486(100), 10.449(50), 1.8306(50), 1.9437(15) A; a 11.679, b 3.6608, c 10.636 A, beta 100.53o; space group C2/m, C2 or Cm. Chemical analysis gave V2O5 66.4, V2O4 15.3, Fe2O3 0.9, Na2O 0.4, K2O 1.8, CaO 2.5, BaO 5.5, H2O 7.2, = 100.0, leading to the formula (Ca0.39Ba0.31K0.33Na0.11)- 196(V4+1.59V5+6.31Fe3+0.10)O20.02(H2O)2.9; Dcalc. 3.21 g/cm3. A possible layer structure is discussed. The name is for J. A. Straczek, Chief Geologist at Union Carbide Corp.-R.A.H.

  14. Heavy metal contamination of the Sacca di Goro lagoon area (Po River Delta, Northern Italy)

    NASA Astrophysics Data System (ADS)

    Rapti-Caputo, Dimitra

    2010-05-01

    The lagoon area of the Sacca di Goro, within the Po River delta, is ca. 20 km2 wide, with a mean depth of 1.5 m and a mean salinity of 29%o. It holds a major naturalistic interest as well as an economic one due to the aquaculture activities (mussels and clams). In this lagoon system, the quality of the sea-bottom sediments is crucial not only for the cultivated species, but also for the potential bio-accumulation problems in heavy metals. The definition of the qualitative status of the lagoon sediments is crucial for adopting the best management strategies and the protection of the environmental conditions. We determined the concentration in SiO2, TiO2, Al2O3, Fe2O3, MgO, MnO, CaO, Na2O, K2O, P2O5, Ba, Ce, Co, Cr, La, Nb, Ni, Pb, Rb, Sr, Th, V, Y, Zn, Cu, Ga, Nd, S and Sr, of 31 samples homogeneously collected over the lagoon area. This large dataset allowed i) to define the environmental quality of the sediments, ii) to recognise the areas with the higher contamination risk; and iii) to emphasise the local occurrence of polluting phenomena associated to chromium, nickel, vanadium, cobalt, lead, zinc and copper.

  15. Structure and properties of the slags of continuous converting of copper nickel-containing mattes and concentrates: II. Effect of the SiO2/CaO ratio on the structure and liquidus temperature of the slags

    NASA Astrophysics Data System (ADS)

    Pigarev, S. P.; Tsymbulov, L. B.; Selivanov, E. N.; Chumarev, V. M.

    2012-03-01

    The structure and liquidus temperature of the SiO2-CaO-Al2O3-FeO x -Cu2O-NiO slags that form during continuous converting of copper mattes and concentrates into blister copper are analyzed. The slag melt compositions are varied over a wide SiO2/CaO range. The slags are studied by X-ray diffraction, scanning electron microscopy, and electron-probe microanalysis. The liquidus temperature of the slags is determined by differential thermal analysis. It is found that, depending on the SiO2/CaO ratio, the structure and liquidus temperature of the slags change and the forms of copper in a slag also change. The SiO2/CaO range in a slag is recommended for the process of continuous converting of a copper nickel-containing sulfide raw materials.

  16. New data on selected Ivory Coast tektites

    USGS Publications Warehouse

    Cuttitta, F.; Carron, M.K.; Annell, C.S.

    1972-01-01

    Fourteen Ivory Coast tektites exhibit a range of bulk indices of refraction of 1.5156 to 1.5217 ?? 0.0004 and of bulk specific gravities of 2.428 to 2.502 ??0.005. Seven of these Ivory Coast (IVC) tektites were analyzed for major and minor element content. Compared to tektites from other strewn fields, their SiO2 content is low (67.2-69.1 %), A12O3 relatively high (15.8-16.8 %), and total iron relatively high but with a more restricted range (6.3-6.8 % as FeO). Their lime content is low (0.71-1.35%) compared to Australasian tektites but their MgO CaO ratio (about 3.1) is unusually high. All other tektite groups have Na2O K2O ratios less than unity, but the Na2O K2O ratio of the IVC tektites is slightly greater than unity. Their K Rb ratios range from 200 to 256 and average 227, which is higher than those determined for Australasian tektites, but similar to some obtained for moldavites. The Li content (41-48 ppm) is about the same as that of the Australasian tektites, but the Cs and Rb are lower, being 1.9 to 2.9 and 57 to 86 ppm, respectively. The IVC tektites are high in Cr (260-375 ppm), Co (19-25 ppm) and Ni (101-167 ppm), and particularly in Pb (<10-18 ppm), Cu (13-21 ppm) and Ga (14-23 ppm). The high Cr Ni ratios of the IVC tektites (range 2-3.6) are similar to those found for australites, philippinites and thailandites, but not the javanites and indochinites. Evaluation of these and other reported data show that compositional similarities between the IVC tektites and green or black Bosumtwi Crater glasses strongly support the hypothesis of a common impact origin-i.e. the Bosumtwi Crater site. Comparison of the IVC tektite composition with those of returned lunar materials (gabbros, basalts, breccia and soils) do not support a lunar origin for the Ivory Coast tektites. ?? 1972.

  17. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst.

    PubMed

    Joshi, Girdhar; Rawat, Devendra S; Sharma, Amit Kumar; Pandey, Jitendra K

    2016-11-01

    Microwave enhanced fast and efficient alcoholysis (methanolysis and ethanolysis) of non-edible oils (algal, jatropha and pongamia) is achieved using chemically activated waste egg shell derived CaO (i.e. CaO(cesp)) as heterogeneous catalyst. CaO(cesp) was extracted from waste chicken egg shell and further activated chemically by supporting transition metal oxide. The maximum conversion was achieved using 3wt% catalysts under 700W microwave irradiation and 10:1 alcohol/oil ratio in 6min. Alcoholysis using ZnO activated CaO(cesp) catalyst has shown higher reaction yields in comparison to other modified catalysts. Methanolysis has shown better biodiesel conversion in comparison to ethanolysis. The catalyst has shown longer lifetime and sustained activity after being used for four cycles. Due to more saturated fatty acid content; algal biodiesel has shown improved fuel properties in comparison to other biodiesels. PMID:27521785

  18. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst.

    PubMed

    Joshi, Girdhar; Rawat, Devendra S; Sharma, Amit Kumar; Pandey, Jitendra K

    2016-11-01

    Microwave enhanced fast and efficient alcoholysis (methanolysis and ethanolysis) of non-edible oils (algal, jatropha and pongamia) is achieved using chemically activated waste egg shell derived CaO (i.e. CaO(cesp)) as heterogeneous catalyst. CaO(cesp) was extracted from waste chicken egg shell and further activated chemically by supporting transition metal oxide. The maximum conversion was achieved using 3wt% catalysts under 700W microwave irradiation and 10:1 alcohol/oil ratio in 6min. Alcoholysis using ZnO activated CaO(cesp) catalyst has shown higher reaction yields in comparison to other modified catalysts. Methanolysis has shown better biodiesel conversion in comparison to ethanolysis. The catalyst has shown longer lifetime and sustained activity after being used for four cycles. Due to more saturated fatty acid content; algal biodiesel has shown improved fuel properties in comparison to other biodiesels.

  19. Long-range interaction between the Mn4CaO5 cluster and the non-heme iron center in photosystem II as revealed by FTIR spectroelectrochemistry.

    PubMed

    Kato, Yuki; Noguchi, Takumi

    2014-08-01

    It is known that inactivation of the Mn4CaO5 cluster, the catalytic center of water oxidation in photosystem II (PSII), induces a positive shift of the redox potential (Em) of the primary quinone electron acceptor QA by ∼+150 mV, resulting in suppression of the electron transfer from QA to the secondary quinone acceptor QB. Although the relevance of this Em(QA(-)/QA) shift to the photoprotection of PSII has been debated, its molecular mechanism is still enigmatic from a structural viewpoint because QA is ∼40 Å from the Mn4CaO5 cluster. In this work, we have investigated the influence of Mn depletion on the Em of the non-heme iron, which is located between QA and QB, and its surrounding structure. Electrochemical measurements in combination with Fourier transform infrared (FTIR) spectroscopy revealed that Mn depletion shifts Em(Fe(2+)/Fe(3+)) by +18 mV, which is ∼8 times smaller than the shift of Em(QA(-)/QA). Comparison of the Fe(2+)/Fe(3+) FTIR difference spectra between intact and Mn-depleted PSII samples showed that Mn depletion altered the pKa's of a His ligand to the non-heme iron, most probably the D1-His215 interacting QB, and a carboxylate group, possibly D1-Glu244, coupled with the non-heme iron. It was further shown that Mn depletion influences the C≡N vibration of bromoxynil bound to the QB site, indicative of the modification of the QB binding site. On the basis of these results, we discuss the mechanism of a long-range interaction between the donor and acceptor sides of PSII. PMID:25029208

  20. Factors Related to Adoption and Non-Adoption of Technical and Organizational Recommendations by Farmers Involved with Societe de Developpement du Cacao (SO.DE.CAO) in Cameroon. A Research Summary.

    ERIC Educational Resources Information Center

    Kamga, Andre; Cheek, Jimmy G.

    In order to promote cocoa production and assist cocoa farmers in overcoming diseases in this crop, the government of Cameroon created an experimental corporation called Societe de Developpement du Cacao (SO.DE.CAO) in 1974. This organization functioned much like an extension service to provide information about crop production and disease control.…

  1. Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications.

    PubMed

    Hoppe, Alexander; Jokic, Bojan; Janackovic, Djordje; Fey, Tobias; Greil, Peter; Romeis, Stefan; Schmidt, Jochen; Peukert, Wolfgang; Lao, Jonathan; Jallot, Edouard; Boccaccini, Aldo R

    2014-02-26

    Loading biomaterials with angiogenic therapeutics has emerged as a promising approach for developing superior biomaterials for engineering bone constructs. In this context, cobalt-releasing materials are of interest as Co is a known angiogenic agent. In this study, we report on cobalt-releasing three-dimensional (3D) scaffolds based on a silicate bioactive glass. Novel melt-derived "1393" glass (53 wt % SiO2, 6 wt % Na2O, 12 wt % K2O, 5 wt % MgO, 20 wt % CaO, and 4 wt % P2O5) with CoO substituted for CaO was fabricated and was used to produce a 3D porous scaffold by the foam replica technique. Glass structural and thermal properties as well as scaffold macrostructure, compressive strength, acellular bioactivity, and Co release in simulated body fluid (SBF) were investigated. In particular, detailed insights into the physicochemical reactions occurring at the scaffold-fluid interface were derived from advanced micro-particle-induced X-ray emission/Rutherford backscattering spectrometry analysis. CoO is shown to act in a concentration-dependent manner as both a network former and a network modifier. At a concentration of 5 wt % CoO, the glass transition point (Tg) of the glass was reduced because of the replacement of stronger Si-O bonds with Co-O bonds in the glass network. Compressive strengths of >2 MPa were measured for Co-containing 1393-derived scaffolds, which are comparable to values of human spongy bone. SBF studies showed that all glass scaffolds form a calcium phosphate (CaP) layer, and for 1393-1Co and 1393-5Co, CaP layers with incorporated traces of Co were observed. The highest Co concentrations of ∼12 ppm were released in SBF after reaction for 21 days, which are known to be within therapeutic ranges reported for Co(2+) ions.

  2. The dissolution of natural and artificial dusts in glutamic acid

    NASA Astrophysics Data System (ADS)

    Ling, Zhang; Faqin, Dong; Xiaochun, He

    2015-06-01

    This article describes the characteristics of natural dusts, industrial dusts, and artificial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2 and CaO and low K2O and Na2O in the chemical composition. The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 °C) in 32 h was investigated. The potential harm that the dust could lead to in body glutamic acid acidic environment, namely biological activity, is of great importance for revealing the human toxicological mechanism. The changes of pH values and electric conductivity of suspension of those dusts were similar, increased slowly in the first 8 h, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, and Mg was 35.4 to 429 mg/kg, particularly Ca was maximal of 20 to 334 mg/kg. The total amount of dissolved ions of Fe, Zn, Mn, Pb, and Ba was 0.18 to 5.59 mg/kg and in Al and Si was 3.0 to 21.7 mg/kg. The relative solubility order of dusts in glutamic acid is wollastonite > serpentine > sepiolite, the cement plant industrial dusts > natural dusts > power plant industrial dusts. The wollastonite and cement plant industrial dusts have the highest solubility, which also have high content of CaO; this shows that there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and power plant industrial dusts have lowest solubility, which also have high content of SiO2; this shows that there are a higher corrosion-resisting ability and stronger bio-resistibility.

  3. Cuprian fraipontite and sauconite from the Defiance-Silver Bill mines, Gleeson, Arizona.

    USGS Publications Warehouse

    Foord, E.E.; Taggart, J.E.; Conklin, N.M.

    1983-01-01

    XRD studies have shown the fine-grained, light blue-green mineral previously identified as turquoise or chrysocolla to be the rare species fraipontite + or - admixed sauconite. Composite microprobe and XRF analyses gave SiO2 24.8, Al2O3 17.3, CaO 0.34, CuO 5.2, ZnO 40.95, H2O (ign. loss, 900oC) 12.8, = 101.39, yielding the formula (Zn1.84Al0.77Cu0.24box 0.13- Ca0.02)3.00(Si1.51Al0.49)2.00O5(OH)4. Semiquantitative emission spectrographic analysis showed Fe 0.007, Mg 0.01, Ca 0.07, Si 10, Al major, Na 0.015, Zn major, Cu 5%; Mn 15, B 150, Be 7, Ni 50, Pb 15, Sc 15, Ga 70 and Ag 1 ppm. It has a 5.331(8), b 9.23(1), c 7.275(6) A, beta 104.15o; H. 3.5-4; Dcalc 3.44, Dobs. 3.08- 3.10; mean refr. ind. approx 1.61. Much of the fraipontite is admixed with sauconite, which may be forming from the fraipontite. XRF analysis of this material gave SiO2 32.8, Al2O3 10.9, MgO < 0.1, CaO 1.51, Na2O < 0.2, K2O < 0.02, TiO2 < 0.02, P2O5 < 0.02, MnO < 0.02, CuO 4.65, ZnO 39.9, ign. loss 13.9, = 103.7.-G.W.R.

  4. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China

    USGS Publications Warehouse

    Dai, S.; Zhao, L.; Peng, S.; Chou, C.-L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y.

    2010-01-01

    The fly ash from the Jungar Power Plant, Inner Mongolia, China, is unique because it is highly enriched in alumina (Al2O3>50%). The fly ash mainly consists of amorphous glass and mullite and trace amounts of corundum, quartz, char, calcite, K-feldspar, clay minerals, and Fe-bearing minerals. The mullite content in fly ash is as high as 37.4% because of high boehmite and kaolinite contents in feed coal. Corundum is a characteristic mineral formed during the combustion of boehmite-rich coal.Samples from the economizer were sieved into six size fractions (<120, 120-160, 160-300, 300-360, 360-500, and >500 mesh) and separated into magnetic, mullite+corundum+quartz (MCQ) and glass phases for mineralogical and chemical analysis. The corundum content increases but amorphous glass decreases with decreasing particle size. Fractions of small particle sizes are relatively high in mullite, probably because mullite was formed from fine clay mineral particles under high-temperature combustion condition. Similarly, fine corundum crystals formed in the boiler from boehmite in feed coal. The magnetic phase consists of hematite, magnetite, magnesioferrite, and MgFeAlO4 crystals. The MCQ phase is composed of 89% mullite, 6.1% corundum, 4.5% quartz, and 0.5% K-feldspar.Overall, the fly ash from the power plant is significantly enriched in Al2O3 with an average of 51.9%, but poor in SiO2, Fe2O3, CaO, MgO, Na2O, P2O5, and As. Arsenic, TiO2, Th, Al2O3, Bi, La, Ga, Ni, and V are high in mullite, and the magnetic matter is enriched in Fe2O3, CaO, MnO, TiO2, Cs, Co, As, Cd, Ba, Ni, Sb, MgO, Zn, and V. The remaining elements are high in the glass fraction. The concentration of K2O, Na2O, P2O5, Nb, Cr, Ta, U, W, Rb, and Ni do not clearly vary with particle size, while SiO2 and Hg decrease and the remaining elements clearly increase with decreasing particle size. ?? 2009 Elsevier B.V.

  5. Mineralogy, geochemistry and genesis of the modern sediments of Seyfe Lake, Kırşehir, central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Önalgil, Nergis; Kadir, Selahattin; Külah, Tacit; Eren, Muhsin; Gürel, Ali

    2015-02-01

    Seyfe Lake (Kırşehir, Turkey) is located within a depression zone extending along a NW-SE-trending fault in central Anatolia. Evaporite and carbonate sediments occur at the bottom of the lake which is fed by high-sulfate spring and well waters circulating N-S through salt domes. The recent sediments of Seyfe Lake are deposited in delta, backshore, beach, mud-flat and shallow lake environments. In the mud-flat environment, calcite, gypsum, halite, and thenardite are associated with fine-grained detrital sediments. Sediments from the margin to the lake center are distributed as calcite, gypsum and halite ± thenardite, yielding an annular distribution pattern. An increase in Na2O, SO3, and S, and a decrease in CaO toward the lake center are due to sediment distribution. On the other hand, a positive correlation of SiO2 with MgO, K2O, Na2O, Al2O3, and Fe2O3 + TiO2 is attributed to the presence of smectite, illite and feldspar. In addition, a positive correlation of Sr and Ba with CaO is related to the amount of gypsum in the sediments. Strontium is associated with in situ gypsum crystals; it increases in the intermediate and central zones of the lake as a result of a relative increase in salinity toward the lake center. The association of Sr with gypsum in the sediments suggests that Ca and Sr were derived from Sr-bearing evaporites and their carbonate host rocks, which were the likely aquifers for the brine. The S- and O-isotopic compositions of sulfate crystals range from +19.1‰ to +21.7‰ and from +16.9‰ to +20.9‰ SMOW, respectively, suggesting precipitation in a closed lake system. A relative increase of oxygen and sulfur isotope ratios toward the lake center suggests dissolution of gypsum in the host rock, with contributions from circulating groundwater and sulfate reduction (possibly by bacterial reduction). 87Sr/86Sr isotope ratios range from 0.707286 to 0.707879, suggesting a non-marine Oligo-Pliocene evaporitic host rock source for precipitation in

  6. Geochemistry of Mesoproterozoic sedimentary rocks of upper Vindhyan Group, southeastern Rajasthan and implications for weathering history, composition and tectonic setting of continental crust in the northern part of Indian shield

    NASA Astrophysics Data System (ADS)

    Raza, Mahshar; Khan, Abdullah; Bhardwaj, V. R.; Rais, Sarwar

    2012-04-01

    The upper Vindhyan succession of southeastern Rajasthan is divisible into Kaimur, Rewa and Bhander Groups. The major and trace element (including rare earth elements) data of the upper Vindhyan shales and sandstones are investigated to determine the weathering history, composition, and tectonic setting of Mesoproterozoic continental crust. CIA (chemical index of alteration) values, A-CN-K plot (A = Al2O3, CN = CaO* + Na2O, K = K2O) and depletion in U, Na2O, CaO, Sr and Ba suggest that the source area experienced moderate to high degree of chemical weathering under warm and humid conditions. Provenance modeling indicates that the Kaimur sandstones are best modeled with a mixture having 40% granitic gneiss, 20% Tonalite-Trondhjemite-Granodiorite (TTG), 20% mafic enclaves and 20% Berach Granite of the Banded Gneissic Complex (BGC). A mixture of 60% granitic gneiss, 20% mafic enclaves and 20% Berach Granite of the BGC can model the Rewa and Bhander Groups. It is suggested that the upper Vindhyan sedimentation commenced at the time of Delhi-Sausar orogeny at about 1100-1000 Ma. The orogenic movements uplifted the parts of old continental crust in the BGC terrain creating positive areas, which exposed older crustal blocks containing TTG as important component. The debris of Kaimur sandstone probably derived from these uplifted blocks. As indicated by Palaeocurrent data, the Rewa and Bhander formations were derived from Bundelkhand Granitic Gneiss Complex (BGGC) occurring to the north of the basin and/or the Chotanagpur Granitic Gneiss Complex (CGGC) of eastern Indian shield. The derivation of Lower and upper groups of Vindhyan succession from different source terrains of identical composition suggests that at the time of Vindhyan sedimentation, the BGC of Rajasthan, the BGGC of Central India and the CGGC of eastern India had similar lithological composition. This implies that well before the origin of the Vindhyan basin these discrete terrains evolved as a single unit

  7. Petrogenesis of syntectonic granites emplaced at the transition from thrusting to transcurrent tectonics in post-collisional setting: Whole-rock and Sr-Nd-Pb isotope geochemistry in the Neoproterozoic Quatro Ilhas and Mariscal Granites, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Florisbal, Luana Moreira; Bitencourt, Maria de Fátima; Janasi, Valdecir de Assis; Nardi, Lauro Valentim Stoll; Heaman, Larry M.

    2012-11-01

    The Neoproterozoic post-collisional period in southern Brazil (650-580 Ma) is characterized by substantial volumes of magma emplaced along the active shear zones that compose the Southern Brazilian Shear Belt. The early-phase syntectonic magmatism (630-610 Ma) is represented by the porphyritic, high-K, metaluminous to peraluminous Quatro Ilhas Granitoids and the younger heterogranular, slightly peraluminous Mariscal Granite. Quatro Ilhas Granitoids include three main petrographic varieties (muscovite-biotite granodiorite — mbg; biotite monzogranite — bmz; and leucogranite — lcg) that, although sharing some significant geochemical characteristics, are not strictly comagmatic, as shown by chemical and Sr-Nd-Pb isotope data. The most primitive muscovite-biotite granodiorite was produced by contamination of more mafic melts (possibly with some mantle component) with peraluminous crustal melts; the biotite monzogranite, although more felsic, has higher Ca, MgO, TiO2 and Ba, and lower K2O, FeOt, Sr and Rb contents, possibly reflecting some mixing with coeval mafic magmas of tholeiitic affinity; the leucogranite may be derived from pure crustal melts. The Mariscal Granite is formed by two main granite types which occur intimately associated in the same pluton, one with higher K (5-6.5 wt.% K2O) high Rb and lower CaO, Na2O, Ba and Zr as compared to the other (3-5 wt.% of K2O). The two Mariscal Granite varieties have compositional correspondence with fine-grained granites (fgg) that occur as tabular bodies which intruded the Quatro Ilhas Granoitoids before they were fully crystallized, and are inferred to correspond to the Mariscal Granite feeders, an interpretation that is reinforced by similar U-Pb zircon crystallization ages. The initial evolution of the post-collisional magmatism, marked by the emplacement of the Quatro Ilhas Granitoids varieties, activated sources that produced mantle and crustal magmas whose emplacement was controlled both by flat-lying and

  8. Synthesis and characterization of phosphates in molten systems Cs 2O-P 2O 5-CaO- MIII2O 3 ( MIII—Al, Fe, Cr)

    NASA Astrophysics Data System (ADS)

    Zatovsky, Igor V.; Strutynska, Nataliya Yu.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.; Ogorodnyk, Ivan V.; Shishkin, Oleg V.

    2011-03-01

    The crystallization of complex phosphates from the melts of Cs 2O-P 2O 5-CaO- MIII2O 3 ( MIII—Al, Fe, Cr) systems have been investigated at fixed value Cs/P molar ratios equal to 0.7, 1.0 and 1.3 and Са/Р=0.2 and Ca/ МIII=1. The fields of crystallization of CsCaP 3O 9, β-Ca 2P 2O 7, Cs 2CaP 2O 7, Cs 3CaFe(P 2O 7) 2, Ca 9MIII(PO 4) 7 ( MIII—Fe, Cr), Cs 0.63Ca 9.63Fe 0.37(PO 4) 7 and CsCa 10(PO 4) 7 were determined. Obtained phosphates were investigated using powder X-ray diffraction and FTIR spectroscopy. Novel whitlockite-related phases CsCa 10(PO 4) 7 and Cs 0.63Ca 9.63Fe 0.37(PO 4) 7 have been characterized by single crystal X-ray diffraction: space group R3c, a=10.5536(5) and 10.5221(4) Å, с=37.2283(19) and 37.2405(17) Å, respectively.

  9. A network pharmacology approach to discover active compounds and action mechanisms of San-Cao Granule for treatment of liver fibrosis

    PubMed Central

    Wei, Shizhang; Niu, Ming; Wang, Jian; Wang, Jiabo; Su, Haibin; Luo, Shengqiang; Zhang, Xiaomei; Guo, Yanlei; Liu, Liping; Liu, Fengqun; Zhao, Qingguo; Chen, Hongge; Xiao, Xiaohe; Zhao, Pan; Zhao, Yanling

    2016-01-01

    Ethnopharmacological relevance San-Cao Granule (SCG) has been used in patients with liver fibrosis for many years and has shown good effect. However, its mechanism of therapeutic action is not clear because of its complex chemical system. The purpose of our study is to establish a comprehensive and systemic method that can predict the mechanism of action of SCG in antihepatic fibrosis. Materials and methods In this study, a “compound–target–disease” network was constructed by combining the SCG-specific and liver fibrosis–specific target proteins with protein–protein interactions, and network pharmacology was used to screen out the underlying targets and mechanisms of SCG for treatment of liver fibrosis. Then, some key molecules of the enriched pathway were chosen to verify the effects of SCG on liver fibrosis induced by thioacetamide (TAA). Results This systematic approach had successfully revealed that 16 targets related to 11 SCG compounds were closely associated with liver fibrosis therapy. The pathway-enrichment analysis of them showed that the TGF-β1/Smad signaling pathway is relatively important. Animal experiments also proved that SCG could significantly ameliorate liver fibrosis by inhibiting the TGF-β1/Smad pathway. Conclusion SCG could alleviate liver fibrosis through the molecular mechanisms predicted by network pharmacology. Furthermore, network pharmacology could provide deep insight into the pharmacological mechanisms of Chinese herbal formulas. PMID:26929602

  10. Vibrational fingerprints of the Mn4CaO5 cluster in Photosystem II by mixed quantum-classical molecular dynamics.

    PubMed

    Bovi, Daniele; Capone, Matteo; Narzi, Daniele; Guidoni, Leonardo

    2016-10-01

    A detailed knowledge of the structures of the catalytic steps along the Kok-Joliot cycle of Photosystem II may help to understand the strategies adopted by this unique enzyme to achieve water oxidation. Vibrational spectroscopy has probed in the last decades the intermediate states of the catalytic cycle, although the interpretation of the data turned out to be often problematic. In the present work we use QM/MM molecular dynamics on the S2 state to obtain the vibrational density of states at room temperature. To help the interpretation of the computational and experimental data we propose a decomposition of the Mn4CaO5 moiety into five separate parts, composed by "diamond" motifs involving four atoms. The spectral signatures arising from this analysis can be easily interpreted to assign experimentally known bands to specific molecular motions. In particular, we focused in the low frequency region of the vibrational spectrum of the S2 state. We can therefore identify the observed bands around 600-620cm(-1) as characteristic for the stretching vibrations involving Mn1-O1-Mn2 or Mn3-O5 moieties. PMID:27444240

  11. NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on γ-Al2O3

    SciTech Connect

    Verrier, Christelle LM; Kwak, Ja Hun; Kim, Do Heui; Peden, Charles HF; Szanyi, Janos

    2008-07-15

    NOx uptake experiments were performed on a series of alkaline earth oxide (AEO) (MgO, CaO, SrO, BaO) on γ-alumina materials. Temperature Programmed Desorption (TPD) conducted on He flow revealed the presence of two kinds of nitrate species: i.e. bulk and surface nitrates. The ratio of these two types of nitrate species strongly depends on the nature of the alkaline earth oxide. The amount of bulk nitrate species increases with the basicity of the alkaline earth oxide. This conclusion was supported by the results of infrared and 15N solid state NMR studies of NO2 adsorption. Due to the low melting point of the precursor used for the preparation of MgO/Al2O3 material (Mg(NO3)2), a significant amount of Mg was lost during sample activation (high temperature annealing) resulting in a material with properties were very similar to that of the γ-Al2O3 support. The effect of water on the NOx species formed in the exposure of the AEO-s to NO2 was also investigated. In agreement with our previous findings for the BaO/γ-Al2O3 system, an increase of the bulk nitrate species and the simultaneous decrease of the surface nitrate phase were observed for all of these materials.

  12. Diffusion in the system K2O-SrO-SiO2. II - Cation self-diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Varshneya, A. K.; Cooper, A. R.

    1972-01-01

    The self-diffusion coefficients were measured by introducing a slab of glass previously irradiated in a reactor between two slabs of unirradiated glass. By heating the specimens, etching them sequentially and determining the radioactivity, self-diffusion coefficients for K and Sr were measured. It is pointed out that the results obtained in the investigations appear to support the proposal that the network of the base glass predominantly controls the activation energy for the diffusion of ions.

  13. [Study on carving workers of Chong xiu zheng he jing shi zheng lei bei yong ben cao (Revised Prepared Materia Medica Classified under Syndromes in Zhenghe Period) published by Huiming Xuan (Huiming Sanctum)].

    PubMed

    Liang, Fei; Li, Jian; Zhang, Wei; Zhang, Rui-Xian

    2012-11-01

    The ancient carving workers have made a great contribution to the xylographic printing art in ancient China, so the studies on them are significant for a survey of ancient Chinese printing history, and for the identification of ancient Chinese books edition. Zheng lei ben cao published by Huiming Xuan (Huiming Sanctum) in the Jin and Yuan dynasties, which is the earliest extant edition of Zhenghe version system of Zheng lei ben cao and has important literature value. Thirty carving workers were involved in its printing process. On the whole, these workers had a relatively high technique and completed a remarkably fine work. In addition to lettering, 28 persons of them also made a total of 536 pages with 900 exquisite engraving illustrations on Chinese materia medica included in this book. Because of the high levels on carving, this precious book has been the representative of Pingshui edition, which has a great reputation but has very few works now.

  14. [Study on carving workers of Chong xiu zheng he jing shi zheng lei bei yong ben cao (Revised Prepared Materia Medica Classified under Syndromes in Zhenghe Period) published by Huiming Xuan (Huiming Sanctum)].

    PubMed

    Liang, Fei; Li, Jian; Zhang, Wei; Zhang, Rui-Xian

    2012-11-01

    The ancient carving workers have made a great contribution to the xylographic printing art in ancient China, so the studies on them are significant for a survey of ancient Chinese printing history, and for the identification of ancient Chinese books edition. Zheng lei ben cao published by Huiming Xuan (Huiming Sanctum) in the Jin and Yuan dynasties, which is the earliest extant edition of Zhenghe version system of Zheng lei ben cao and has important literature value. Thirty carving workers were involved in its printing process. On the whole, these workers had a relatively high technique and completed a remarkably fine work. In addition to lettering, 28 persons of them also made a total of 536 pages with 900 exquisite engraving illustrations on Chinese materia medica included in this book. Because of the high levels on carving, this precious book has been the representative of Pingshui edition, which has a great reputation but has very few works now. PMID:23363847

  15. Toward models for the full oxygen-evolving complex of photosystem II by ligand coordination to lower the symmetry of the Mn3CaO4 cubane: demonstration that electronic effects facilitate binding of a fifth metal.

    PubMed

    Kanady, Jacob S; Lin, Po-Heng; Carsch, Kurtis M; Nielsen, Robert J; Takase, Michael K; Goddard, William A; Agapie, Theodor

    2014-10-15

    Synthetic model compounds have been targeted to benchmark and better understand the electronic structure, geometry, spectroscopy, and reactivity of the oxygen-evolving complex (OEC) of photosystem II, a low-symmetry Mn4CaOn cluster. Herein, low-symmetry Mn(IV)3GdO4 and Mn(IV)3CaO4 cubanes are synthesized in a rational, stepwise fashion through desymmetrization by ligand substitution, causing significant cubane distortions. As a result of increased electron richness and desymmetrization, a specific μ3-oxo moiety of the Mn3CaO4 unit becomes more basic allowing for selective protonation. Coordination of a fifth metal ion, Ag(+), to the same site gives a Mn3CaAgO4 cluster that models the topology of the OEC by displaying both a cubane motif and a "dangler" transition metal. The present synthetic strategy provides a rational roadmap for accessing more accurate models of the biological catalyst.

  16. Petrogenesis of Triassic granites from the Nanling Range in South China: Implications for geochemical diversity in granites

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zhao, Zi-Fu; Zheng, Yong-Fei

    2014-12-01

    A combined study of whole-rock major-trace elements and Sr-Nd isotopes, zircon U-Pb ages, Hf and O isotopes as well as biotite geochemistry was carried out for Triassic granite intrusions from the Nanling Range in South China. The results provide insights into the effects of source composition and melting conditions on the geochemical diversity of granites. The granites of interest are peraluminous, and contain primary muscovite and tourmaline. They are characterized by high zircon δ18O values of > 9.0‰, high initial 87Sr/86Sr values of ~ 0.7200, and homogeneous εNd(t) values of - 11.3 to - 9.8, as well as variable zircon εHf(t) values of - 12.2 to - 5.8. Biotite geochemistry is similar to that of common peraluminous granites. An integrated interpretation of these petrological, mineralogical and geochemical data indicates that these granites were derived from partial melting of metasedimentary rocks under variable physicochemical conditions. The differences in whole-rock and biotite geochemistry between the intrusions are ascribed to the variable effects of source heterogeneity and melting temperature. The Luxi intrusion exhibits higher contents of MgO, FeOT, TiO2 and CaO than common melts derived from metasedimentary rocks, tight variations in major-trace elements and homogeneous Sr-Nd isotopic compositions, and homogeneous biotite composition with high Mg# [= Mg / (Mg + Fe) in molar] and lower whole-rock A/CNK values [= Al2O3 / (CaO + Na2O + K2O) in molar]. These can be explained by originating from a relatively mafic metasedimentary source. On the other hand, the geochemical diversity of granites can be caused by the difference in melting temperature in addition to the source heterogeneity. This is suggested by the Xiazhuang and Fucheng intrusions which exhibit similar range of SiO2. Nevertheless, the Fucheng intrusion is ferroan, and high in TiO2, (Na2O + K2O)/CaO, TiO2/MgO, Ga/Al and Zr + Nb + Ce + Y, but low in CaO, MgO and Mg#. Most of its major

  17. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in Dong-ChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients

    PubMed Central

    Lo, Hui-Chen; Hsieh, Chienyan; Lin, Fang-Yi; Hsu, Tai-Hao

    2013-01-01

    The caterpillar fungus Ophiocordyceps sinensis (syn.† Cordyceps sinensis), which was originally used in traditional Tibetan and Chinese medicine, is called either “yartsa gunbu” or “DongChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo)” (“winter worm-summer grass”), respectively. The extremely high price of DongChongXiaCao, approximately USD $20,000 to 40,000 per kg, has led to it being regarded as “soft gold” in China. The multi-fungi hypothesis has been proposed for DongChongXiaCao; however, Hirsutella sinensis is the anamorph of O. sinensis. In Chinese, the meaning of “DongChongXiaCao” is different for O. sinensis, Cordyceps spp.,‡ and Cordyceps spƒ. Over 30 bioactivities, such as immunomodulatory, antitumor, anti-inflammatory, and antioxidant activities, have been reported for wild DongChongXiaCao and for the mycelia and culture supernatants of O. sinensis. These bioactivities derive from over 20 bioactive ingredients, mainly extracellular polysaccharides, intracellular polysaccharides, cordycepin, adenosine, mannitol, and sterols. Other bioactive components have been found as well, including two peptides (cordymin and myriocin), melanin, lovastatin, γ-aminobutyric acid, and cordysinins. Recently, the bioactivities of O. sinensis were described, and they include antiarteriosclerosis, antidepression, and antiosteoporosis activities, photoprotection, prevention and treatment of bowel injury, promotion of endurance capacity, and learning-memory improvement. H. sinensis has the ability to accelerate leukocyte recovery, stimulate lymphocyte proliferation, antidiabetes, and improve kidney injury. Starting January 1st, 2013, regulation will dictate that one fungus can only have one name, which will end the system of using separate names for anamorphs. The anamorph name “H. sinensis” has changed by the International Code of Nomenclature for algae, fungi, and plants to O. sinensis. PMID:24716152

  18. Role of a Water Network around the Mn4CaO5 Cluster in Photosynthetic Water Oxidation: A Fourier Transform Infrared Spectroscopy and Quantum Mechanics/Molecular Mechanics Calculation Study.

    PubMed

    Nakamura, Shin; Ota, Kai; Shibuya, Yuichi; Noguchi, Takumi

    2016-01-26

    Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II. Around the Mn4CaO5 cluster, a hydrogen bond network is formed by several water molecules, including four water ligands. To clarify the role of this water network in the mechanism of water oxidation, we investigated the effects of the removal of Ca(2+) and substitution with metal ions on the vibrations of water molecules coupled to the Mn4CaO5 cluster by means of Fourier transform infrared (FTIR) difference spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. The OH stretching vibrations of nine water molecules forming a network between D1-D61 and YZ were calculated using the QM/MM method. On the the calculated normal modes, a broad positive feature at 3200-2500 cm(-1) in an S2-minus-S1 FTIR spectrum was attributed to the vibrations of strongly hydrogen-bonded OH bonds of water involving the vibrations of water ligands to a Mn ion and the in-phase coupled vibration of a water network connected to YZ, while bands in the 3700-3500 cm(-1) region were assigned to the coupled vibrations of weakly hydrogen-bonded OH bonds of water. All the water bands were lost upon Ca(2+) depletion and Ba(2+) substitution, which inhibit the S2 → S3 transition, indicating that a solid water network was broken by these treatments. By contrast, Sr(2+) substitution slightly altered the water bands around 3600 cm(-1), reflecting minor modification in water interactions, consistent with the retention of water oxidation activity with a decreased efficiency. These results suggest that the water network around the Mn4CaO5 cluster plays an essential role in the water oxidation mechanism particularly in a concerted process of proton transfer and water insertion during the S2 → S3 transition.

  19. Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment.

    PubMed

    Wang, Si-Jia; He, Pin-Jing; Shao, Li-Ming; Zhang, Hua

    2016-10-01

    Minerals including Al2O3, SiO2 and CaO are predominant matrixes in waste, and are thought to facilitate lead (Pb) emission control. This study distinguished the inhibition of each mineral on common stable Pb-containing compounds, including highly volatile PbCl2 and less volatile PbO. Al2O3 can lower the volatilization temperature of Pb by 29 °C due to the generation of a eutectic compound and play a minor but non-negligible role in reducing Pb volatilization. The most conspicuous inhibition effect was exerted by SiO2 and a mixture of Al2O3 and SiO2, which completely integrated PbO into the glass phase at 690 °C and prohibited its migration. In contrast, SiO2 had no significant inhibition on volatile PbCl2. CaO inhibited PbO volatilization in the absence of oxygen by controlling its diffusion, while it converted PbO to Ca2PbO4 in the presence of oxygen, thus controlling Pb diffusion and decreasing the Pb volatilization ratio and rate. The influence of CaO on PbCl2 was complex because CaO can convert PbCl2 to PbO with formation of CaCl2, and CaCl2 can also be a Cl-donor for PbO. The roles of mineral matrixes in Pb conversion were shown to be important for Pb emission control. PMID:27434254

  20. Role of a Water Network around the Mn4CaO5 Cluster in Photosynthetic Water Oxidation: A Fourier Transform Infrared Spectroscopy and Quantum Mechanics/Molecular Mechanics Calculation Study.

    PubMed

    Nakamura, Shin; Ota, Kai; Shibuya, Yuichi; Noguchi, Takumi

    2016-01-26

    Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II. Around the Mn4CaO5 cluster, a hydrogen bond network is formed by several water molecules, including four water ligands. To clarify the role of this water network in the mechanism of water oxidation, we investigated the effects of the removal of Ca(2+) and substitution with metal ions on the vibrations of water molecules coupled to the Mn4CaO5 cluster by means of Fourier transform infrared (FTIR) difference spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. The OH stretching vibrations of nine water molecules forming a network between D1-D61 and YZ were calculated using the QM/MM method. On the the calculated normal modes, a broad positive feature at 3200-2500 cm(-1) in an S2-minus-S1 FTIR spectrum was attributed to the vibrations of strongly hydrogen-bonded OH bonds of water involving the vibrations of water ligands to a Mn ion and the in-phase coupled vibration of a water network connected to YZ, while bands in the 3700-3500 cm(-1) region were assigned to the coupled vibrations of weakly hydrogen-bonded OH bonds of water. All the water bands were lost upon Ca(2+) depletion and Ba(2+) substitution, which inhibit the S2 → S3 transition, indicating that a solid water network was broken by these treatments. By contrast, Sr(2+) substitution slightly altered the water bands around 3600 cm(-1), reflecting minor modification in water interactions, consistent with the retention of water oxidation activity with a decreased efficiency. These results suggest that the water network around the Mn4CaO5 cluster plays an essential role in the water oxidation mechanism particularly in a concerted process of proton transfer and water insertion during the S2 → S3 transition. PMID:26716470

  1. Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment.

    PubMed

    Wang, Si-Jia; He, Pin-Jing; Shao, Li-Ming; Zhang, Hua

    2016-10-01

    Minerals including Al2O3, SiO2 and CaO are predominant matrixes in waste, and are thought to facilitate lead (Pb) emission control. This study distinguished the inhibition of each mineral on common stable Pb-containing compounds, including highly volatile PbCl2 and less volatile PbO. Al2O3 can lower the volatilization temperature of Pb by 29 °C due to the generation of a eutectic compound and play a minor but non-negligible role in reducing Pb volatilization. The most conspicuous inhibition effect was exerted by SiO2 and a mixture of Al2O3 and SiO2, which completely integrated PbO into the glass phase at 690 °C and prohibited its migration. In contrast, SiO2 had no significant inhibition on volatile PbCl2. CaO inhibited PbO volatilization in the absence of oxygen by controlling its diffusion, while it converted PbO to Ca2PbO4 in the presence of oxygen, thus controlling Pb diffusion and decreasing the Pb volatilization ratio and rate. The influence of CaO on PbCl2 was complex because CaO can convert PbCl2 to PbO with formation of CaCl2, and CaCl2 can also be a Cl-donor for PbO. The roles of mineral matrixes in Pb conversion were shown to be important for Pb emission control.

  2. First-principles calculation of the 17O NMR parameters in Ca oxide and Ca aluminosilicates: the partially covalent nature of the Ca-O bond, a challenge for density functional theory.

    PubMed

    Profeta, Mickaël; Benoit, Magali; Mauri, Francesco; Pickard, Chris J

    2004-10-01

    We apply density functional theory (DFT) to the calculation of the (17)O NMR parameters in Ca and Mg oxides and aluminosilicates. We study the accuracy of the Perdew, Burke, and Ernzerhof (PBE) generalized-gradient approximation to DFT in the description of these systems and the origin of the experimentally observed large dependence of the (17)O chemical shift on the alkaline earth ion. We find that (i) the partially covalent nature of the Ca-O bond has a huge impact on the O chemical shifts. The Ca-O covalence alone explains why in Ca oxides and aluminosilicates the (17)O chemical shifts are much more deshielded than those of the corresponding Mg compounds. (ii) The Ca-O covalence is overestimated by the PBE functional. Thus PBE-DFT is not able to reproduce the measured (17)O NMR parameters in Ca oxide and Ca aluminosilicates. (iii) It is possible to correct for the PBE-DFT deficiency in a simple and transferable way and to predict very accurate (17)O NMR parameters. Such accuracy allows us to assign the (17)O NMR spectra of two important model systems: the grossite aluminate (CaAl(4)O(7)) and the wollastonite (CaSiO(3)) silicate.

  3. Tree species identification in an African Savanna with airborne imaging spectroscopy and LiDAR from the Carnegie Airborne Observatory (CAO) using stacked support vector machines

    NASA Astrophysics Data System (ADS)

    Baldeck, C. A.; Colgan, M.; Féret, J.; Asner, G. P.

    2012-12-01

    Airborne remote sensing data provide promising opportunities for species identification of individual tree and shrub crowns across large areas which cannot be mapped from the ground. Previous investigations of the potential for species identification of crowns from airborne data have focused on pixel-level information (0.5-1m2), and thus have been unable to take advantage of the structural information that exist at the crown level. Hyperspectral data consisting of 58 bands from 517 to 1054nm and LiDAR (light detection and ranging) data providing vegetation height information were acquired over several landscapes within Kruger National Park, South Africa, by the CAO in 2008 at 1.1m spatial resolution. Over 1,000 individual trees and shrubs were mapped and identified in the field to construct species spectral and structural libraries. We used stacked support vector machines (SVM) that incorporate pixel-level spectral information and crown-level structural information to predict species identity for individual tree crowns. The addition of a crown-level classification step that incorporates crown structural information significantly improved model accuracy by ~6% and our prediction accuracy of the final model was ~75% for 16 species classes. This model was then used to predict the species identity of individual crowns across multiple airborne-mapped landscapes, made possible by an automated crown segmentation algorithm. The resultant species maps will make it possible to examine the environmental controls over individual species distributions and tree community composition, and provide important landscape-scale species distribution information relevant to park management and conservation.

  4. Red emission generation through highly efficient energy transfer from Ce(3+) to Mn(2+) in CaO for warm white LEDs.

    PubMed

    Feng, Leyu; Hao, Zhendong; Zhang, Xia; Zhang, Liangliang; Pan, Guohui; Luo, Yongshi; Zhang, Ligong; Zhao, Haifeng; Zhang, Jiahua

    2016-01-28

    CaO:Ce(3+),Mn(2+) phosphors with various Mn(2+) concentrations were synthesized by a solid state reaction method. Efficient energy transfer from Ce(3+) to Mn(2+) was observed and it allows the emission color of CaO:Ce(3+),Mn(2+) to be continuously tuned from yellow (contributed by Ce(3+)) to red (by Mn(2+)) with an increase in Mn(2+) concentration and upon blue light excitation. The red emission becomes dominant when the Mn(2+) concentration is ≥0.014 with an energy transfer efficiency higher than 87% which can reach as high as 94% for a Mn(2+) concentration of only 0.02. A critical distance of 10.5 Å for the Ce(3+)-Mn(2+) energy transfer was determined. A faster decrease of Ce(3+) luminescence intensity in comparison with its lifetime was observed on increasing the Mn(2+) concentration. The analysis of this feature reveals that the Ce(3+) excitation energy can be completely transferred to Mn(2+) if the Ce(3+)-Mn(2+) distance is shorter than 7.6 Å. A warm white LED was fabricated through integrating an InGaN blue LED chip and a blend of two phosphors (YAG:Ce(3+) yellow phosphor and CaO:0.007Ce(3+),0.014Mn(2+) red phosphor) into a single package, which has CIE chromaticity coordinates of (x = 0.37, y = 0.35), a correlated color temperature of 3973 K and a color rendering index of 83.1. The results indicate that CaO:Ce(3+),Mn(2+) may serve as a potential red phosphor for blue LED based warm white LEDs.

  5. Bimodal Silurian and Lower Devonian volcanic rock assemblages in the Machias-Eastport area, Maine

    USGS Publications Warehouse

    Gates, Olcott; Moench, R.H.

    1981-01-01

    titanium and poorer in magnesium and nickel than the Silurian basalts; and the Eastport Formation has rhyolites and silicic dacites that have higher average SiO2 and K2O contents and higher ratios of FeO* to MgO than the Silurian ones. The younger Devonian assemblage is represented by one sample of basalt from a flow in red beds of the post-Acadian Upper Devonian Perry Formation, and by three samples from pre-Acadian diabases that intrude the Leighton and Hersey Formations. These rocks are even richer in titanium and iron and poorer in magnesium and nickel than the older Devonian basalts. Post-Acadian granitic plutons exposed along the coastal belt for which analyses are available are tentatively included in the younger Devonian assemblage. The most conspicuous features of the coastal volcanics and associated intrusives are the preponderance of rocks of basaltic composition ( < 52 percent SiO2 ) in the Silurian assemblage, and the near absence in all assemblages of intermediate rocks having 57-67 percent SiO2 (calculated without volatiles). All the rocks are variably altered spilites and keratophyres. The basaltic types are adequately defined, however, by eight samples of least altered basalts having calcic plagioclase, clinopyroxene, and 0.5 percent or less CO2 , The more altered basalts are variably enriched or depleted in Na2O, K2O, and CaO relative to the least altered ones. In the silicic rocks no primary ferromagnesian minerals are preserved. The Na2O and K2O contents of the silicic rocks are erratic; they are approximately reciprocal, possibly owing to alkali exchange while the rocks were still glassy. We propose that the coastal volcanic belt extended along an axis of thermal swelling in the Earth's mantle and upward intrusion of partially melted mantle into the sialic Avalonian crust. These processes were accompanied by shoaling and emergence of the belt, and they produced the bimodal volcanism. Tholeiitic basaltic melts segregated from mantle material

  6. Method of preventing oxidation of graphite fireproof material

    NASA Technical Reports Server (NTRS)

    Yamauchi, S.; Suzuki, H.

    1981-01-01

    A method of preventing oxidation of graphite fireproof material is given. A blend of 1 to 33 weight parts alumina and 3 to 19 parts of K2O + Na2O in 100 parts of SiO2 is pulverized followed by addition of 5 to 160 parts of silicon carbide powder in 100 parts of the mixture. This is thoroughly blended and coated on the surface of graphite fireproof material.

  7. Provenance analysis of the Oligocene turbidites (Andaman Flysch), South Andaman Island: A geochemical approach

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, P. C.; Ghosh, Biswajit

    2015-07-01

    The Oligocene-aged sandstone-shale turbidites of the Andaman Flysch are best exposed along the east coast of the South Andaman Island. Previously undocumented sandstone-shale geochemistry, investigated here, provides important geochemical constraints on turbidite provenance. The average 70.75 wt% SiO2, 14.52 wt% Al2O3, 8.2 wt% FeMgO and average 0.20 Al2O3/SiO2 and 1.08 K2O/Na2O ratios in sandstones, compare with quartzwackes. The shale samples have average 59.63 wt% SiO2, 20.29 wt% Al2O3, 12.63 wt% FeMgO and average 2.42 K2O/Na2O and 0.34 Al2O3/SiO2 ratios. Geochemical data on CaO-Na2O-K2O diagram fall close to a granite field and on K2O/Na2O-SiO2 diagram within an active continental margin tectonic setting. The range and average values of Rb and Rb/Sr ratios are consistent with acid-intermediate igneous source rocks, while the values and ratios for Cr and Ni are with mafic rocks. Combined geochemical, petrographic and palaeocurrent data indicate a dominantly plutonic-metamorphic provenance with a lesser contribution from sedimentary and volcanic source, which is possibly the Shan-Thai continental block and volcanic arc of the north-eastern and eastern Myanmar. Chemical index of alteration (CIA) values suggests a moderate range of weathering of a moderate relief terrane under warm and humid climate.

  8. Inclusion of K-feldspar-Quartz Aggregate in Omphacite From Eclogites From the Chinese Continental Scientific Drilling (CCSD) Main Borehole: A Potassic Melt Inclusion That Experienced UHP Metamorphism?

    NASA Astrophysics Data System (ADS)

    Liang, F.; Zeng, L.; Xu, Z.

    2006-12-01

    How the potassium-bearing phases behave during subduction of continental and oceanic crustal materials has been a focus of a number of recent studies. Answers to this question are critical to (1) test the petrogenetic models for the formation of K-cymrite and other K-bearing phases at ultrahigh pressure conditions; (2) determine the formation mechanisms for generation of potassic melts in the upper mantle conditions; and (3) evaluate the recycling and fractionation of potassium over other large ion lithophile elements in the mantle. K- feldspar + quartz assemblages as inclusions in omphacite as well as in garnet have been reported in UHP metamorphic terrains such as the Erzgebirge, Germany (Massonne et al. 2000; Massonne and Nasdala, 2003), North Qaidam, NW China (Song et al. 2003), and the Kokchetav Massif (Hwang et al. 2004), and were interpreted to be pseudomorphs after K-cymrite. We report a K-feldspar-quartz aggregate of a size 58μm?2μm as an inclusion in omphacite from a phengite eclogite from the CCSD main borehole. This inclusion consist of exclusively K-feldspar (~70%) and quartz (~30%), and impart similar radial fractures in the omphacite as coesites. K-feldspar and quartz form vermicular intergrowth. Microprobe and EDS analyses show that K-feldspars have 65-72 wt% SiO2, 15-18 wt% Al2O3, 12-15 wt% K2O, and minor Na2O (~0.2wt%), CaO (~0.05 wt%), and FeO (0.2-0.3wt%), similar to those in the Kokchetav Massif (Massonne, 2003; Hwang et al. 2004). Based on the modal composition of K-feldspar and quartz in this inclusion, its reconstructed bulk composition consist of 77.7 wt% SiO2, 11.6 wt% Al2O3, 9.9 wt% K2O, and minor FeO, CaO, and Na2O (<0.15 wt%). This composition is similar to the experimentally determined melt compositions in the KCMASH system at pressures of 2.0-4.5 GPa and temperatures of 850-1150°C (Hermann, 2002; Hwang et al. 2004). This extraordinary omphacite-hosted inclusion might form originally as K-rich melts during subduction of the Yangtze

  9. Growth of Megaspherulites In a Rhyolitic Vitrophyre

    NASA Technical Reports Server (NTRS)

    Smith, Robert K.; Tremallo, Robin L.; Lofgren, Gary E.

    2000-01-01

    Megaspherulites occur in the middle zone of a thick sequence of rhyolitic vitrophyre that occupies a small, late Eocene to early Oligocene volcanic-tectonic basin near Silver Cliff, Custer County, Colorado. Diameters of the megaspherulites range from 0.3 m to over 3.66 m, including a clay envelope. The megaspherulites are compound spherulites. consisting of an extremely large number (3.8 x 10(exp 9) to 9.9 x 10(exp 9)) of individual growth cones averaging 3 mm long by 1.25 mm wide at their termination. They are holocrystalline, very fine- to fine-grained, composed of disordered to ordered sanidine (orthoclase) and quartz, and surrounded by a thin K-feldspar, quartz rich rind, an inner clay layer with mordenite, and an outer clay layer composed wholly of 15 A montmorillonite. Whole rock analyses of the megaspherulites show a restricted composition from their core to their outer edge, with an average analyses of 76.3% SiO2, 0.34% CaO, 2.17% Na2O, 6.92% K2O, 0.83% H2O+ compared to the rhyolitic vitrophyre from which they crystallize with 71.07% SiO2, 0.57% CaO, 4.06% Na2O,4.l0% K2O, and 6.40% H2O+. The remaining oxides of Fe2O3 (total Fe), A12O3, MnO,MgO, TiO2, P2O5, Cr2O3, and trace elements show uniform distribution between the megaspherulites and the rhyolitic vitrophyre. Megaspherulite crystallization began soon after the rhyolitic lava ceased to flow as the result of sparse heterogeneous nucleation, under nonequilibrium conditions, due to a high degree of undercooling, delta T. The crystals grow with a fibrous habit which is favored by a large delta T ranging between 245 C and 295 C, despite lowered viscosity, and enhanced diffusion due to the high H2O content, ranging between 5% and 7%. Therefore, megaspherulite growth proceeded in a diffusion controlled manner, where the diffusion, rate lags behind the crystal growth rate at the crystal-liquid interface, restricting fibril lengths and diameters to the 10 micron to 15 micron and 3 micron and 8 micron ranges

  10. Chemical zonation in olivine-hosted melt inclusions

    NASA Astrophysics Data System (ADS)

    Newcombe, M. E.; Fabbrizio, A.; Zhang, Youxue; Ma, C.; Le Voyer, M.; Guan, Y.; Eiler, J. M.; Saal, A. E.; Stolper, E. M.

    2014-07-01

    Significant zonation in major, minor, trace, and volatile elements has been documented in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (e.g., MgO, FeO, Cr2O3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H2O, and F, components with a lower concentration in the host olivine than in the melt (e.g., Al2O3, SiO2, Na2O, K2O, TiO2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions, concurrent with diffusive propagation of the boundary layer toward the inclusion center. Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na2O, K2O) by coupling to slow diffusing components such as SiO2 and Al2O3. Concentrations of H2O and F decrease toward the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects. A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150-13,000 °C h-1 from the liquidus down to ~1,000 °C, consistent with previously determined cooling rates for

  11. Geochemistry and petrogenesis of Mashhad granitoids: An insight into the geodynamic history of the Paleo-Tethys in northeast of Iran

    NASA Astrophysics Data System (ADS)

    Mirnejad, H.; Lalonde, A. E.; Obeid, M.; Hassanzadeh, J.

    2013-06-01

    Mashhad granitoids in northeast Iran are part of the so-called Silk Road arc that extended for 8300 km along the entire southern margin of Eurasia from North China to Europe and formed as the result of a north-dipping subduction of the Paleo-Tethys. The exact timing of the final coalescence of the Iran and Turan plates in the Silk Road arc is poorly constrained and thus the study of the Mashhad granitoids provides valuable information on the geodynamic history of the Paleo-Tethys. Three distinct granitoid suites are developed in space and time (ca. 217-200 Ma) during evolution of the Paleo-Tethys in the Mashhad area. They are: 1) the quartz diorite-tonalite-granodiorite, 2) the granodiorite, and 3) the monzogranite. Quartz diorite-tonalite-granodiorite stock from Dehnow-Vakilabad (217 ± 4-215 ± 4 Ma) intruded the pre-Late Triassic metamorphosed rocks. Large granodiorite and monzogranite intrusions, comprising the Mashhad batholith, were emplaced at 212 ± 5.2 Ma and 199.8 ± 3.7 Ma, respectively. The high initial 87Sr/86Sr ratios (0.708042-0.708368), low initial 143Nd/144Nd ratios (0.512044-0.51078) and low ɛNd(t) values (- 5.5 to - 6.1) of quartz diorite-tonalite-granodiorite stock along with its metaluminous to mildly peraluminous character (Al2O3/(CaO + Na2O + K2O) Mol. = 0.94-1.15) is consistent with geochemical features of I-type granitoid magma. This magma was derived from a mafic mantle source that was enriched by subducted slab materials. The granodiorite suite has low contents of Y (≤ 18 ppm) and heavy REE (HREE) (Yb < 1.53 ppm) and high contents of Sr (> 594 ppm) and high ratio of Sr/Y (> 35) that resemble geochemical characteristics of adakite intrusions. The metaluminous to mildly peraluminous nature of granodiorite from Mashhad batholiths as well as its initial 87Sr/86Sr ratios (0.705469-0.706356), initial 143Nd/144Nd ratios (0.512204-0.512225) and ɛNd(t) values (- 2.7 to - 3.2) are typical of adakitic magmas generated by partial melting of a

  12. Geochemical Predictions of Elemental Compositions using Remote LIBS under Mars Conditions

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; Tucker, J.; Humphries, S.; Clegg, S. M.; Wiens, R. C.; Carmosino, M. L.

    2010-12-01

    The ChemCam instrument on Mars Science Laboratory will be the first deployment of laser-induced breakdown spectroscopy (LIBS) for remote geochemical analysis. Successful quantitative analyses of those results will use in-situ calibration targets and laboratory calibrations, and employ sophisticated algorithms for data reduction in order to correct for variations in peak intensities and areas caused by interactions in the plasma that are a function of chemical composition. Such chemical matrix effects influence the ratio of each emission line to the abundance of the element that produces it, and are directly related to the elemental composition of the sample. Advances in statistical analysis of LIBS data that mitigate matrix effects and provide for accurate and precise bulk analysis of major, minor, and trace elements are reported here. Our in-house data set currently includes LIBS spectra of >140 rock powders (igneous, metamorphic, and sedimentary) with highly-varying compositions (as determined by XRF) that were acquired at 7-9 m standoff distance under Mars atmospheric conditions using a laboratory instrument [1]. LIBS spectra were modeled using partial least squares analysis (PLS) to predict elemental compositions. Within the igneous suite, 10 repeat measurements of a single sample demonstrates consistency and precision; calculated 1-σ errors were 1.6 wt.%SiO2, 1.5 wt.% Al2O3, 0.4 wt.% TiO2, 1.2 wt.% Fe2O3T, 1.6 wt.% MgO, 0.02 wt.% MnO, 1.1 wt.% CaO, 0.5 wt.% Na2O, 0.2 wt.% P2O5, and 0.4 wt.% K2O. In the overall suite, predictions of all elements, expressed as root mean square errors (RMSEP), are better than ±2.45 for SiO2, ±1.64 for Al2O3, ±0.38 for TiO2, ±1.50 for Fe2O3T, ±1.88 for MgO, ±0.03 for MnO, ±0.82 for CaO, ±0.55 for K2O, ±0.62 for Na2O, and ±0.24 for P2O5 in units of wt.% oxides. On-going work should reduce these values even further. For elements at low concentrations, multivariate analyses must be interpreted with care because their

  13. Petrogenesis and geodynamic setting of Early Cretaceous mafic-ultramafic intrusions, South China: A case study from the Gan-Hang tectonic belt

    NASA Astrophysics Data System (ADS)

    Qi, Youqiang; Hu, Ruizhong; Liu, Shen; Coulson, Ian M.; Qi, Huawen; Tian, Jianji; Zhu, Jingjing

    2016-08-01

    A study using whole-rock major-trace elements and Sr-Nd isotopes as well as zircon U-Pb dating has been carried out on Early Cretaceous mafic-ultramafic intrusions from the Gan-Hang tectonic belt (GHTB), South China, to understand the origin of mantle sources and the sequential evolution of the underlying Late Mesozoic lithospheric mantle of this area. The study focused on two intrusions, one at Quzhou and the other at Longyou (see Fig. 1). They are primarily composed of mafic-ultramafic rocks with wide range of chemical compositions. The Quzhou mafic rocks have relatively narrow ranges of SiO2 (48.94-51.79 wt%), MgO (6.07-7.21 wt%), Fe2O3 (10.48-11.56 wt%), CaO (8.20-8.81 wt%), and Mg# (51.7-56.5) with relatively low K2O (0.56-0.67 wt%) and Na2O (3.09-3.42 wt%). By contrast, the ultramafic rocks from Longyou have distinct lower SiO2 (41.50-45.11 wt%) and higher MgO (9.05-9.90 wt%), Fe2O3 (12.14-12.62 wt%), CaO (8.64-10.67 wt%), and Mg# (59.5-61.1) with relatively higher K2O (1.32-1.75 wt%) and Na2O (4.53-5.08 wt%). They are characterized by Ocean Island Basalts (OIB)-type trace element distribution patterns, with a significant enrichment of light rare earth elements (LREE), large ion lithophile elements (LILE, i.e., Rb, Ba, K, and Sr) and high field strength elements (HFSE, i.e., Nb, Ta), and slight depletion of Th, U, Ti, and Y. The intrusions exhibit relatively depleted Sr-Nd isotope compositions, with (87Sr/86Sr)i range of 0.7035 to 0.7055 (143Nd/144Nd)i of 0.51264 to 0.51281 and εNd(t) values of + 3.0 to + 6.6. Zircon U-Pb dating of Longyou and Quzhou intrusions yields consistent magma emplacement ages of 129.0 ± 3.9 to 126.2 ± 2.4 Ma, respectively. The dating results are consistent with the peak of extension in Early Cretacerous throughout the Gan-Hang tectonic belt. Their magmas were principally derived from near-solidus partial melting of pyroxenites with different content of silica, and the pyroxenites were resulted from a juvenile SCLM peridotite

  14. Reaction between Metapelite-derived Hydrous Partial Melt and Subsolidus Fertile Peridotite at 2-3 GPa - Generation of High-K Magmas in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Nelson, J. M.; Mallik, A.; Dasgupta, R.

    2013-12-01

    Trace compositions of arc magmas display signatures of recycled sediments [1] and thermal and geodynamic models of subduction zones suggest that sediment contribution to sub-arc mantle occurs in the form of hydrous melts generated at the slab-mantle interface by fluid-present melting [2, 3] or in the mantle wedge by diapiric rise of downgoing sediments [4]. Partial melts of hydrous pelitic sediments are rhyolitic in P-T conditions of the mantle wedge and are out of equilibrium with the surrounding peridotite, which implies inevitable reaction between such melt and overlying peridotite. However, partial melting in the mantle wedge with slab input has mostly been studied in peridotite+H2O systems [e.g. 5] and experimental constraints on sediment-peridotite hybrid remain limited [6]. In this study, we explore the phase equilibria of a sediment melt-fluxed fertile peridotite with the aim of understanding genesis of high-K arc magmas. Experiments were performed in AuPd capsules using a piston cylinder, on a 1:3 mixture of rhyolitic melt with 7.3 wt.% H2O [3] and fertile peridotite from 1150-1350 °C at 2-3 GPa. Interstitial melt/fluid is present at 1150 °C, 2 GPa and 1150-1200 °C, 3 GPa. While residual opx+cpx+biotite are present at both pressures, olivine is present from 1200-1300 °C, 2 GPa and garnet from 1150-1300 °C, 3 GPa. Cpx and biotite disappear at 1200-1250 °C, 2 GPa and 1350 °C, 3 GPa. At 2 GPa, from 1200-1300 °C, the melt composition (on a volatile-free basis), shows an increase in SiO2 (50-51 wt.%), MgO (10-14 wt.%) and decrease in Al2O3 (16-14 wt.%), CaO (10-7 wt.%), Na2O (3-2 wt.%) and H2O (13-8 wt.%.). K2O increases from 5 to 7 wt.% till 1250 °C followed by a decrease to 5 wt.%, at 1300 °C. FeO* varies between 6 and 5 wt.%. At 3 GPa, from 1225-1350 °C, the reacted melt displays an increase in SiO2 (47-49 wt.%), FeO* (4.2-5.4 wt.%), MgO (11-14 wt.%), and decrease in Al2O3 (15-14 wt.%), CaO (12-7 wt.%), Na2O (4-3 wt.%) and H2O (16-11 wt.%). K2O

  15. The Use of Multi-Component Statistical Techniques in Understanding Subduction Zone Arc Granitic Geochemical Data Sets

    NASA Astrophysics Data System (ADS)

    Pompe, L.; Clausen, B. L.; Morton, D. M.

    2015-12-01

    Multi-component statistical techniques and GIS visualization are emerging trends in understanding large data sets. Our research applies these techniques to a large igneous geochemical data set from southern California to better understand magmatic and plate tectonic processes. A set of 480 granitic samples collected by Baird from this area were analyzed for 39 geochemical elements. Of these samples, 287 are from the Peninsular Ranges Batholith (PRB) and 164 from part of the Transverse Ranges (TR). Principal component analysis (PCA) summarized the 39 variables into 3 principal components (PC) by matrix multiplication and for the PRB are interpreted as follows: PC1 with about 30% of the variation included mainly compatible elements and SiO2 and indicates extent of differentation; PC2 with about 20% of the variation included HFS elements and may indicate crustal contamination as usually identified by Sri; PC3 with about 20% of the variation included mainly HRE elements and may indicate magma source depth as often diplayed using REE spider diagrams and possibly Sr/Y. Several elements did not fit well in any of the three components: Cr, Ni, U, and Na2O.For the PRB, the PC1 correlation with SiO2 was r=-0.85, the PC2 correlation with Sri was r=0.80, and the PC3 correlation with Gd/Yb was r=-0.76 and with Sr/Y was r=-0.66 . Extending this method to the TR, correlations were r=-0.85, -0.21, -0.06, and -0.64, respectively. A similar extent of correlation for both areas was visually evident using GIS interpolation.PC1 seems to do well at indicating differentiation index for both the PRB and TR and correlates very well with SiO2, Al2O3, MgO, FeO*, CaO, K2O, Sc, V, and Co, but poorly with Na2O and Cr. If the crustal component is represented by Sri, PC2 correlates well and less expesively with this indicator in the PRB, but not in the TR. Source depth has been related to the slope on REE spidergrams, and PC3 based on only the HREE and using the Sr/Y ratios gives a reasonable

  16. Improving SiO2 impurity tolerance of Ce0.8Sm0.2O1.9: Synergy of CaO and ZnO in scavenging grain-boundary resistive phases

    NASA Astrophysics Data System (ADS)

    Ge, Lin; Ni, Qing; Cai, Guifan; Sang, Tianyi; Guo, Lucun

    2016-08-01

    Rapid oxygen ion conduction, which is important in solid oxide fuel cell (SOFC) electrolytes, is often dramatically hindered by the presence of even small concentrations of impurities such as SiO2, which is ubiquitous in ceramic processing. In this study, rapid degradation of the grain boundary (GB) conduction of Ce0.8Sm0.2O1.9 (SDC) is observed with increasing SiO2 addition from 0 to 1 wt%. Nearly complete GB conduction recovery is achieved through synergy between CaO and ZnO in the SDC + x wt% Si systems. Scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) demonstrate the formation of a Ca-, Si-, and Sm-containing secondary phases, which is related to the enhancements in GB conductivity and reductions in activation energy. The scavenging effect of CaO is verified in this study and ZnO is observed to promote the scavenging reaction. Compared with the single-addition case (CaO/ZnO), the much higher SiO2 impurity tolerance of the combined system suggests the commercial potential of the "scavenger + promoter" strategy presented in this work.

  17. Improving SiO2 impurity tolerance of Ce0.8Sm0.2O1.9: Synergy of CaO and ZnO in scavenging grain-boundary resistive phases

    NASA Astrophysics Data System (ADS)

    Ge, Lin; Ni, Qing; Cai, Guifan; Sang, Tianyi; Guo, Lucun

    2016-08-01

    Rapid oxygen ion conduction, which is important in solid oxide fuel cell (SOFC) electrolytes, is often dramatically hindered by the presence of even small concentrations of impurities such as SiO2, which is ubiquitous in ceramic processing. In this study, rapid degradation of the grain boundary (GB) conduction of Ce0.8Sm0.2O1.9 (SDC) is observed with increasing SiO2 addition from 0 to 1 wt%. Nearly complete GB conduction recovery is achieved through synergy between CaO and ZnO in the SDC + x wt% Si systems. Scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) demonstrate the formation of a Ca-, Si-, and Sm-containing secondary phases, which is related to the enhancements in GB conductivity and reductions in activation energy. The scavenging effect of CaO is verified in this study and ZnO is observed to promote the scavenging reaction. Compared with the single-addition case (CaO/ZnO), the much higher SiO2 impurity tolerance of the combined system suggests the commercial potential of the "scavenger + promoter" strategy presented in this work.

  18. PIXE and ICP-AES analysis of early glass unearthed from Xinjiang (China)

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Cheng, H. S.; Ma, B.; Li, Q. H.; Zhang, P.; Gan, F. X.; Yang, F. J.

    2005-10-01

    Early glasses (about 1066 BC-220 AD) unearthed from Xinjiang of China were chemically characterized by using PIXE and ICP-AES. It was found that these glasses were basically attributed to PbO-BaO-SiO2 system, K2O-SiO2 system, Na2O-CaO-SiO2 system and Na2O-CaO-PbO-SiO2 system. The results from the cluster analysis showed that some glasses had basically similar recipe and technology. The PbO-BaO-SiO2 glass and the K2O-SiO2 glass were thought to come from the central area and the south of ancient China, respectively. The part of the Na2O-CaO-SiO2 glass (including the Na2O-CaO-PbO-SiO2 glass) might be imported from Mesopotamia, while the other part might be locally produced.

  19. [Rapid determination of major and trace elements in the salt lake clay minerals by X-ray fluorescence spectrometry].

    PubMed

    Wang, Xiao-Huan; Meng, Qing-Fen; Dong, Ya-Ping; Chen, Mei-Da; Li, Wu

    2010-03-01

    A rapid multi-element analysis method for clay mineral samples was described. This method utilized a polarized wave-length dispersive X-ray fluorescence spectrometer--Axios PW4400, which had a maximum tube power of 4 000 watts. The method was developed for the determination of As, Mn, Co, Cu, Cr, Dy, Ga, Mo, P, Pb, Rb, S, Sr, Ni, ,Cs, Ta, Th, Ti, U, V, Y, Zn, Zr, MgO, K2O, Na2O, CaO, Fe2O3, Al2O3, SiO2 and so on. Thirty elements in clay mineral species were measured by X-ray fluorescence spectrometry with pressed powder pellets. Spectral interferences, in particular the indirect interferences of each element, were studied. A method to distinguish the interference between each other periodic elements in element periodic table was put forward. The measuring conditions and existence were mainly investigated, and the selected background position as well as corrected spectral overlap for the trace elements were also discussed. It was found that the indirect spectral overlap line was the same important as direct spectral overlap line. Due to inducing the effect of indirect spectral overlap, some elements jlike Bi, Sn, W which do not need analysis were also added to the elements channel. The relative standard deviation (RSD) was in the range of 0.01% to 5.45% except three elements Mo, Cs and Ta. The detection limits, precisions and accuracies for most elements using this method can meet the requirements of sample analysis in clay mineral species.

  20. Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: microstructure and mechanical response

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang

    2010-01-01

    Scaffolds of 13-93 bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 2P2O5, 54SiO2; mol %), containing oriented pores with controllable diameter, were prepared by unidirectional freezing of camphene-based suspensions (10 vol% particles) on a cold substrate (−196°C or 3°C). By varying the annealing time (0–72 h) to coarsen the camphene phase, constructs with the same porosity (86 ± 1%) but with controllable pore diameters (15–160 μm) were obtained after sublimation of the camphene. The pore diameters had a self-similar distribution that could be fitted by a diffusion-controlled coalescence model. Sintering (1 h at 690°C) was accompanied by a decrease in the porosity and pore diameter, the magnitude of which depended on the pore size of the green constructs, giving scaffolds with a porosity of 20–60% and average pore diameter of 6–120 μm. The compressive stress vs. deformation response of the sintered scaffolds in the orientation direction was linear, followed by failure. The compressive strength and elastic modulus in the orientation direction varied from 180 MPa and 25 GPa, respectively, (porosity = 20%) to 16 MPa and 4 GPa, respectively, (porosity = 60%), which were 2–3 times larger than the values in the direction perpendicular to the orientation. The potential use of these 13-93 bioactive glass scaffolds for the repair of large defects in load-bearing bones, such as segmental defects in long bones, is discussed. PMID:20807594

  1. Petrological and geochemical comparition between the upper and lower rhyolite of the Binchuan basaltic profile,Emeishan LIP succession

    NASA Astrophysics Data System (ADS)

    Huixin, H.; Yu, W.

    2013-12-01

    Emeishan basalt is well known worldwide,and it has been well tested from the geochemistry and petrology.However,the eruptional rock sequences is rare reported. Some former work reported that on the top of Emeishan basalt,there is always sit with rhyolite(or felsic-composition,mainly are rhyolite and trachyte ).This work is focusing on newly found rhyolite and trachyte succession at the bottom of Binchuan basalt pofile,and the comparition between the bottom and top felsic-composition of the Binchuan pofile basaltic related succession from petrological and geochemistry points. The bottom rhyolite is lack of phenocryst,and the filling of blowhole is observed quartz only. Otherwise,the phenocryst of the top rhyolite is mainly alkaline-feldspar. The upper layered rhyolite is less sillical rich than the lower part with the content of SiO2 65-70,68-74 respectively. Additionally,the content of TiO2 (0.82-0.87,0.57-0.70),Total Fe2O3(5.15-5.87,2.89-4.88),MgO(2.13-2.64,0.19-0.48),CaO(1.18-1.49,0.13-0.42), P2O5(0.18-0.25,0.02-0.25) of the upper layered rhyolite is more abundant than the lower layer. However,the amount of the Na2O,K2O of both upper and lower rhyolite can not be distinguished clearly as weathering effect suspectively. This may note that the two kinds of rhyolite are formed from different geological process. The upper may due to the crystallization differentiation of the mafic magmas ,while the lower is formed in the result of crust remelting.

  2. Solving petrological problems through machine learning: the study case of tectonic discrimination using geochemical and isotopic data

    NASA Astrophysics Data System (ADS)

    Petrelli, Maurizio; Perugini, Diego

    2016-10-01

    Machine-learning methods are evaluated to study the intriguing and debated topic of discrimination among different tectonic environments using geochemical and isotopic data. Volcanic rocks characterized by a whole geochemical signature of major elements (SiO2, TiO2, Al2O3, Fe2O3T, CaO, MgO, Na2O, K2O), selected trace elements (Sr, Ba, Rb, Zr, Nb, La, Ce, Nd, Hf, Sm, Gd, Y, Yb, Lu, Ta, Th) and isotopes (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 87Sr/86Sr and 143Nd/144Nd) have been extracted from open-access and comprehensive petrological databases (i.e., PetDB and GEOROC). The obtained dataset has been analyzed using support vector machines, a set of supervised machine-learning methods, which are considered particularly powerful in classification problems. Results from the application of the machine-learning methods show that the combined use of major, trace elements and isotopes allows associating the geochemical composition of rocks to the relative tectonic setting with high classification scores (93 %, on average). The lowest scores are recorded from volcanic rocks deriving from back-arc basins (65 %). All the other tectonic settings display higher classification scores, with oceanic islands reaching values up to 99 %. Results of this study could have a significant impact in other petrological studies potentially opening new perspectives for petrologists and geochemists. Other examples of applications include the development of more robust geothermometers and geobarometers and the recognition of volcanic sources for tephra layers in tephro-chronological studies.

  3. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.

    PubMed

    Zhao, Shichang; Wang, Hui; Zhang, Yadong; Huang, Wenhai; Rahaman, Mohamed N; Liu, Zhongtang; Wang, Deping; Zhang, Changqing

    2015-03-01

    There is growing interest in the use of synthetic biomaterials to deliver inorganic ions that are known to stimulate angiogenesis and osteogenesis in vivo. In the present study, we investigated the effects of varying amounts of copper in a bioactive glass on the response of human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and on blood vessel formation and bone regeneration in rat calvarial defects in vivo. Porous scaffolds of a borosilicate bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5, mol.%) doped with 0.5, 1.0 and 3.0wt.% CuO were created using a foam replication method. When immersed in simulated body fluid, the scaffolds released Cu ions into the medium and converted to hydroxyapatite. At the concentrations used, the Cu in the glass was not toxic to the hBMSCs cultured on the scaffolds in vitro. The alkaline phosphatase activity of the hBMSCs and the expression levels of angiogenic-related genes (vascular endothelial growth factor and basic fibroblast growth factor) and osteogenic-related genes (runt-related transcription factor 2, bone morphogenetic protein-2 and osteopontin) increased significantly with increasing amount of Cu in the glass. When implanted in rat calvarial defects in vivo, the scaffolds (3wt.% CuO) significantly enhanced both blood vessel formation and bone regeneration in the defects at 8weeks post-implantation. These results show that doping bioactive glass implants with Cu is a promising approach for enhancing angiogenesis and osteogenesis in the healing of osseous defects.

  4. Late Ediacaran (605-580 Ma) post-collisional alkaline magmatism in the Arabian-Nubian Shield: A case study of Serbal ring-shaped intrusion, southern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Azer, Mokhles K.

    2013-11-01

    The Serbal pluton is a late Neoproterozoic (605-580 Ma) post-collisional A-type granites in southern Sinai, Egypt (northernmost Arabian-Nubian Shield, ANS). It is characterized by discontinuous ring-shaped outcrops dislocated by later faulting. The pluton intrudes late Neoproterozoic metamorphic and high-K calc-alkaline rocks. The Serbal pluton mostly comprises an outer zone of alkali feldspar granite surrounding a core of peralkaline granite. Gradational and sharp contacts in the Serbal granites suggest that they were emplaced with a very short time interval, still before complete crystallization of the earlier batch. Serbal granites are highly evolved (75.98-78.52 wt.% SiO2) and display the typical geochemical characteristics of post-collisional A-type granites, namely high SiO2, Na2O + K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga and Y and low CaO, MgO, Ba, and Sr. They are rich in REE and have extreme Eu-negative anomalies (Eu/Eu* = 0.01-0.23). The chemical characteristics indicate that the peralkaline granite shares many features of granites with the tetrad REE effect. The Serbal pluton evolved through fractional crystallization of a parental magma derived through partial melting of a juvenile crustal protolith that had been extracted from a source having mantle geochemical and isotopic characteristics. The crystallization temperatures using Fe-Ti oxides of the Serbal granites point to their formation at high temperatures, up to 650-850 °C at a shallow depth of emplacement (<10 km).

  5. Chemical composition of phosphorites of the Phosphoria Formation

    USGS Publications Warehouse

    Gulbrandsen, R.A.

    1966-01-01

    The chemical composition, both major and minor constituents, of 60 samples of phosphorite from the Phosphoria Formation was determined. Major constituents of the average phosphorite are, by weight per cent: SiO2, 11??9; Al2O3, 1??7; Fe2O3,1??1; MgO, 0??3; CaO, 44??0; Na2O, 0??6; K2O, 0??5; total H2O, 2??2; H2O-, 0??6; TiO2, 0??1; P2O5, 30??5; CO2, 2??2; SO3, 1??8; F, 3??1; organic matter, 2??1; and oil, 0??2. Uranium averages 0??009 per cent. The phosphate mineral is basically apatite, Ca5(PO4)3F, with small but significant and variable substitutions-Na, Sr, U and Th for Ca, and CO3 and SO4 for PO4. Rare metals not associated with apatite are associated principally with the organic-matter component of the rocks. This group includes As, Ag, Cd, Cr, Cu, Mo, Ni, Sb, Se, V and Zn. Chromium is the most abundant, having a modal abundance of 0??1 per cent and a maximum concentration of 0??3 per cent. The average phosphorite is composed of approximately 80 per cent apatite, 10 per cent quartz, 5 per cent muscovite-illite, 2 per cent organic matter, 1 per cent dolomite-calcite, 1 per cent iron oxide, and 1 per cent other components. It is texturally a medium-grained pellet phosphorite. ?? 1966.

  6. Comparing results from two continental geochemical surveys to world soil composition and deriving Predicted Empirical Global Soil (PEGS2) reference values

    NASA Astrophysics Data System (ADS)

    de Caritat, Patrice; Reimann, Clemens; Bastrakov, E.; Bowbridge, D.; Boyle, P.; Briggs, S.; Brown, D.; Brown, M.; Brownlie, K.; Burrows, P.; Burton, G.; Byass, J.; de Caritat, P.; Chanthapanya, N.; Cooper, M.; Cranfield, L.; Curtis, S.; Denaro, T.; Dhnaram, C.; Dhu, T.; Diprose, G.; Fabris, A.; Fairclough, M.; Fanning, S.; Fidler, R.; Fitzell, M.; Flitcroft, P.; Fricke, C.; Fulton, D.; Furlonger, J.; Gordon, G.; Green, A.; Green, G.; Greenfield, J.; Harley, J.; Heawood, S.; Hegvold, T.; Henderson, K.; House, E.; Husain, Z.; Krsteska, B.; Lam, J.; Langford, R.; Lavigne, T.; Linehan, B.; Livingstone, M.; Lukss, A.; Maier, R.; Makuei, A.; McCabe, L.; McDonald, P.; McIlroy, D.; McIntyre, D.; Morris, P.; O'Connell, G.; Pappas, B.; Parsons, J.; Petrick, C.; Poignand, B.; Roberts, R.; Ryle, J.; Seymon, A.; Sherry, K.; Skinner, J.; Smith, M.; Strickland, C.; Sutton, S.; Swindell, R.; Tait, H.; Tang, J.; Thomson, A.; Thun, C.; Uppill, B.; Wall, K.; Watkins, J.; Watson, T.; Webber, L.; Whiting, A.; Wilford, J.; Wilson, T.; Wygralak, A.; Albanese, S.; Andersson, M.; Arnoldussen, A.; Baritz, R.; Batista, M. J.; Bel-lan, A.; Birke, M.; Cicchella, C.; Demetriades, A.; Dinelli, E.; De Vivo, B.; De Vos, W.; Duris, M.; Dusza-Dobek, A.; Eggen, O. A.; Eklund, M.; Ernstsen, V.; Filzmoser, P.; Finne, T. E.; Flight, D.; Forrester, S.; Fuchs, M.; Fugedi, U.; Gilucis, A.; Gosar, M.; Gregorauskiene, V.; Gulan, A.; Halamić, J.; Haslinger, E.; Hayoz, P.; Hobiger, G.; Hoffmann, R.; Hoogewerff, J.; Hrvatovic, H.; Husnjak, S.; Janik, L.; Johnson, C. C.; Jordan, G.; Kirby, J.; Kivisilla, J.; Klos, V.; Krone, F.; Kwecko, P.; Kuti, L.; Ladenberger, A.; Lima, A.; Locutura, J.; Lucivjansky, P.; Mackovych, D.; Malyuk, B. I.; Maquil, R.; McLaughlin, M.; Meuli, R. G.; Miosic, N.; Mol, G.; Négrel, P.; O'Connor, P.; Oorts, K.; Ottesen, R. T.; Pasieczna, A.; Petersell, V.; Pfleiderer, S.; Poňavič, M.; Prazeres, C.; Rauch, U.; Reimann, C.; Salpeteur, I.; Schedl, A.; Scheib, A.; Schoeters, I.; Sefcik, P.; Sellersjö, E.; Skopljak, F.; Slaninka, I.; Šorša, A.; Srvkota, R.; Stafilov, T.; Tarvainen, T.; Trendavilov, V.; Valera, P.; Verougstraete, V.; Vidojević, D.; Zissimos, A. M.; Zomeni, Z.

    2012-02-01

    Analytical data for 10 major oxides (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2 and TiO2), 16 total trace elements (As, Ba, Ce, Co, Cr, Ga, Nb, Ni, Pb, Rb, Sr, Th, V, Y, Zn and Zr), 14 aqua regia extracted elements (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo and Pb), Loss On Ignition (LOI) and pH from 3526 soil samples from two continents (Australia and Europe) are presented and compared to (1) the composition of the upper continental crust, (2) published world soil average values, and (3) data from other continental-scale soil surveys. It can be demonstrated that average upper continental crust values do not provide reliable estimates for natural concentrations of elements in soils. For many elements there exist substantial differences between published world soil averages and the median concentrations observed on two continents. Direct comparison with other continental datasets is hampered by the fact that often mean, instead of the statistically more robust median, is reported. Using a database of the worldwide distribution of lithological units, it can be demonstrated that lithology is a poor predictor of soil chemistry. Climate-related processes such as glaciation and weathering are strong modifiers of the geochemical signature inherited from bedrock during pedogenesis. To overcome existing shortcomings of predicted global or world soil geochemical reference values, we propose Preliminary Empirical Global Soil reference values based on analytical results of a representative number of soil samples from two continents (PEGS2).

  7. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)

    NASA Astrophysics Data System (ADS)

    Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.

    2016-08-01

    The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.

  8. Clay mineralogical and geochemical constraints on late Pleistocene weathering processes of the Qaidam Basin, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Miao, WeiLiang; Fan, QiShun; Wei, HaiCheng; Zhang, XiYing; Ma, HaiZhou

    2016-09-01

    At the Qarhan Salt Lake (QSL) on the central-eastern Qaidam Basin, northern Tibetan Plateau, Quaternary lacustrine sediments have a thickness of over 3000 m and mainly composed of organic-rich clay and silty clay with some silt halite and halite. In this study, a 102-m-long sediment core (ISL1A) was obtained from the QSL. Combining with AMS 14C and 230Th dating, clay minerals and major-element concentrations of ISL1A were used to reconstruct the weathering process and trend of the QSL since late Pleistocene. The results reveal that the clay mineral from <2 μm fraction in ISL1A is composed of illite (47-77%), chlorite (8-27%), smectite (including illite-smectite mixed layers, 3-29%) and kaolinite (2-11%). Such clay mineral assemblages in ISL1A derived primarily from felsic igneous rocks, gneisses and schists of Eastern Kunlun Mountains on the south of the QSL. The abundance of illite mineral displays an opposite fluctuation trending with that of smectite, chlorite and kaolinite mineral in ISL1A, which is significantly different from the monsoon-controlled regions. Moreover, higher values of illite, kaolinite/chlorite and illite/chlorite ratios, and lower values of smectite, chlorite and kaolinite minerals occurred in 83-72.5 ka, 68.8-54 ka, 32-24 ka, corresponding to late MIS 5, late MIS 4, early MIS 3 and late MIS 3, respectively. These three phases were almost similarly changed with oxygen isotopes of authigenic carbonates and pollen records in ISL1A, which implies that stronger chemical weathering corresponds to higher effective moisture periods of source region in the Qaidam Basin. Based on chemical weathering index and (Al2O3-(CaO + Na2O)-K2O) diagram, chemical weathering degree in this study area takes a varying process from low to intermediate on the whole.

  9. Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis

    NASA Astrophysics Data System (ADS)

    Guzmics, Tibor; Mitchell, Roger H.; Szabó, Csaba; Berkesi, Márta; Milke, Ralf; Abart, Rainer

    2011-02-01

    Kerimasi calciocarbonatite consists principally of calcite together with lesser apatite, magnetite, and monticellite. Calcite hosts fluid and S-bearing Na-K-Ca-carbonate inclusions. Carbonatite melt and fluid inclusions occur in apatite and magnetite, and silicate melt inclusions in magnetite. This study presents statistically significant compositional data for quenched S- and P-bearing, Ca-alkali-rich carbonatite melt inclusions in magnetite and apatite. Magnetite-hosted silicate melts are peralkaline with normative sodium-metasilicate. On the basis of our microthermometric results on apatite-hosted melt inclusions and forsterite-monticellite phase relationships, temperatures of the early stage of magma evolution are estimated to be 900-1,000°C. At this time three immiscible liquid phases coexisted: (1) a Ca-rich, P-, S- and alkali-bearing carbonatite melt, (2) a Mg- and Fe-rich, peralkaline silicate melt, and (3) a C-O-H-S-alkali fluid. During the development of coexisting carbonatite and silicate melts, the Si/Al and Mg/Fe ratio of the silicate melt decreased with contemporaneous increase in alkalis due to olivine fractionation, whereas the alkali content of the carbonatite melt increased with concomitant decrease in CaO resulting from calcite fractionation. Overall the peralkalinity of the bulk composition of the immiscible melts increased, resulting in a decrease in the size of the miscibility gap in the pseudoquaternary system studied. Inclusion data indicate the formation of a carbonatite magma that is extremely enriched in alkalis with a composition similar to that of Oldoinyo Lengai natrocarbonatite. In contrast to the bulk compositions of calciocarbonatite rocks, the melt inclusions investigated contain significant amount of alkalis (Na2O + K2O) that is at least 5-10 wt%. The compositions of carbonatite melt inclusions are considered as being better representatives of parental magma composition than those of any bulk rock.

  10. Mineralogical, geochemical and radiological characterisation of Selmo Formation in Batman area, Turkey.

    PubMed

    Isik, Umit; Damla, Nevzat; Akkoca, Dicle Bal; Cevik, Uğur

    2012-06-01

    This work deals with the mineralogical, geochemical and radiological characterisations of Selmo Formation in Batman neighbourhood. The upper Miocene-Pliocene Selmo Formation is common in the centre of Batman and composed of carbonated sandy claystones and silty-sandy stone lenses. The common whole minerals of the samples are quartz, feldspars, calcite and dolomite. The clay minerals are smectite, illite, chlorite and mixed-layer clay (chlorite-smectite). The geochemical mean values of the samples are 51.7% SiO(2); 12.6% Al(2)O(3); 6.2% Fe(2)O(3); 3.6% MgO; 6.3% CaO; 1.1% Na(2)O; 1.7% K(2)O; 0.8% TiO(2); 0.2% P(2)O(5); 0.1% MnO; and 0.03% Cr(2)O(3). In addition, baseline maps for the concentrations of each radionuclide, the radium equivalent activity and the outdoor gamma dose rate distributions have been plotted for the study area. The mean activity concentrations of (226)Ra, (232)Th, (40)K and (137)Cs were determined to be 32, 24, 210 and 9 Bq kg(-1), respectively. The assessments of the radiological hazard indices, such as radium equivalent activity, absorbed dose rate in air, annual effective dose equivalent, excess lifetime cancer risk, external hazard index and internal hazard index, were calculated and compared with the internationally accepted reference values. This study shows that the concentrations of radioactivities in the measured samples were within the recommended safety limits and did not pose to be any significant source of radiation hazard.

  11. Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Dehouck, Erwin; McLennan, Scott M.; Meslin, Pierre-Yves; Cousin, Agnès.

    2014-12-01

    X-ray diffraction patterns of the three samples analyzed by Curiosity's Chemistry and Mineralogy (CheMin) instrument during the first year of the Mars Science Laboratory mission—the Rocknest sand, and the John Klein and Cumberland drill fines, both extracted from the Sheepbed mudstone—show evidence for a significant amorphous component of unclear origin. We developed a mass balance calculation program that determines the range of possible chemical compositions of the crystalline and amorphous components of these samples within the uncertainties of mineral abundances derived from CheMin data. In turn, the chemistry constrains the minimum abundance of amorphous component required to have realistic compositions (all oxides ≥ 0 wt %): 21-22 wt % for Rocknest and 15-20 wt % for Cumberland, in good agreement with estimates derived from the diffraction patterns (~27 and ~31 wt %, respectively). Despite obvious differences between the Rocknest sand and the Sheepbed mudstone, the amorphous components of the two sites are chemically very similar, having comparable concentrations of SiO2, TiO2, Al2O3, Cr2O3, FeOT, CaO, Na2O, K2O, and P2O5. MgO tends to be lower in Rocknest, although it may also be comparable between the two samples depending on the exact composition of the smectite in Sheepbed. The only unambiguous difference is the SO3 content, which is always higher in Rocknest. The observed similarity suggests that the two amorphous components share a common origin or formation process. The individual phases possibly present within the amorphous components include: volcanic (or impact) glass, hisingerite (or silica + ferrihydrite), amorphous sulfates (or adsorbed SO42-), and nanophase ferric oxides.

  12. In situ calibration using univariate analyses based on the onboard ChemCam targets: first prediction of Martian rock and soil compositions

    NASA Astrophysics Data System (ADS)

    Fabre, C.; Cousin, A.; Wiens, R. C.; Ollila, A.; Gasnault, O.; Maurice, S.; Sautter, V.; Forni, O.; Lasue, J.; Tokar, R.; Vaniman, D.; Melikechi, N.

    2014-09-01

    Curiosity rover landed on August 6th, 2012 in Gale Crater, Mars and it possesses unique analytical capabilities to investigate the chemistry and mineralogy of the Martian soil. In particular, the LIBS technique is being used for the first time on another planet with the ChemCam instrument, and more than 75,000 spectra have been returned in the first year on Mars. Curiosity carries body-mounted calibration targets specially designed for the ChemCam instrument, some of which are homgeneous glasses and others that are fine-grained glass-ceramics. We present direct calibrations, using these onboard standards to infer elements and element ratios by ratioing relative peak areas. As the laser spot size is around 300 μm, the LIBS technique provides measurements of the silicate glass compositions representing homogeneous material and measurements of the ceramic targets that are comparable to fine-grained rock or soil. The laser energy and the auto-focus are controlled for all sequences used for calibration. The univariate calibration curves present relatively to very good correlation coefficients with low RSDs for major and ratio calibrations. Trace element calibration curves (Li, Sr, and Mn), down to several ppm, can be used as a rapid tool to draw attention to remarkable rocks and soils along the traverse. First comparisons to alpha-particle X-ray spectroscopy (APXS) data, on selected targets, show good agreement for most elements and for Mg# and Al/Si estimates. SiO2 estimates using univariate cannot be yet used. Na2O and K2O estimates are relevant for high alkali contents, but probably under estimated due to the CCCT initial compositions. Very good results for CaO and Al2O3 estimates and satisfactory results for FeO are obtained.

  13. Geochemistry of rock units at the potential repository level, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Peterman, Z.E.; Cloke, P.L.

    2002-01-01

    The compositional variability of the phenocryst-poor member of the 12.8 Ma Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults. The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in wt. % or g/100 g is: SiO2, 76.29; Al2O3, 12.55; FeO, 0.14; Fe2O3, 0.97; MgO, 0.13; CaO, 0.50; Na2O, 3.52; K2O, 4.83; TiO2, 0.11; and MnO, 0.07. ?? 2002 Published by Elsevier Science Ltd.

  14. Application of distance correction to ChemCam laser-induced breakdown spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; Melikechi, N.; Cousin, A.; Wiens, R. C.; Lasue, J.; Clegg, S. M.; Tokar, R.; Bender, S.; Lanza, N. L.; Maurice, S.; Berger, G.; Forni, O.; Gasnault, O.; Dyar, M. D.; Boucher, T.; Lewin, E.; Fabre, C.

    2016-06-01

    Laser-induced breakdown spectroscopy (LIBS) provides chemical information from atomic, ionic, and molecular emissions from which geochemical composition can be deciphered. Analysis of LIBS spectra in cases where targets are observed at different distances, as is the case for the ChemCam instrument on the Mars rover Curiosity, which performs analyses at distances between 2 and 7.4 m is not a simple task. In our previous work we showed that spectral distance correction based on a proxy spectroscopic standard created from first-shot dust observations on Mars targets ameliorates the distance bias in multivariate-based elemental-composition predictions of laboratory data. In this work, we correct an expanded set of neutral and ionic spectral emissions for distance bias in the ChemCam data set. By using and testing different selection criteria to generate multiple proxy standards, we find a correction that minimizes the difference in spectral intensity measured at two different distances and increases spectral reproducibility. When the quantitative performance of distance correction is assessed, there is improvement for SiO2, Al2O3, CaO, FeOT, Na2O, K2O, that is, for most of the major rock forming elements, and for the total major-element weight percent predicted. However, for MgO the method does not provide improvements while for TiO2, it yields inconsistent results. In addition, we have observed that many emission lines do not behave consistently with distance, evidenced from laboratory analogue measurements and ChemCam data. This limits the effectiveness of the method.

  15. Tertiary epizonal plutonic rocks of the Selway-Bitterroot Wilderness, Idaho County, Idaho

    SciTech Connect

    Motzer, W.E.

    1996-01-01

    Geologic mapping in the Selway-Bitterroot Wilderness identified approximately 731 kmS of epizonal plutonic granitic rocks within the Bitterroot lobe of the Idaho batholith. From north to south, the intrusions are the Rock Lake Creek stock and the Whistling Pig, Running Creek, Bad Luck and Painted Rocks plutons. The stock and plutons consist of medium- to coarse-grained biotite and hornblende-biotite syenorgranite to monzogranite and quartz syenite capped by fine-grained biotite leucogranite. These rocks are intruded by late-synplutonic leucogranite dikes and post plutonic porphyritic rhyolite to rhyodacite and basalt dikes. The medium-grained granitic rocks are high in SiO2, K2O, Na2O, Ga, Th, U, W and Zr, but low in Al7O3, CaO, MgO, Cr, Ni, Co and V. Most of the granites are peraluminous. Rare-earth element (REE) plots (rock sample/chondrite) show enrichment in light REE over heavy REE with strong EU depletions. K-Ar biotite radiometric age determinations for medium-grained granites in all of the plutons range from approximately 51 Ma (Whistling Pig pluton) to 43.7 Ma (Painted Rocks pluton). Petrogenetic studies suggest that the plutons were rapidly emplaced to within 3.0 km of the paleosurface. The types, textures and color of the rocks result from devolatilization of the crystallizing melt and very low-grade hydrothermal alteration. The fluorine-rich melts are the fractionated with accumulate residue; they are considered to be anorogenic (A-type) granites intruded into the center of a metamorphic core complex.

  16. X-ray fluorescence analysis of rare earth elements in rocks using low dilution glass beads.

    PubMed

    Nakayama, Kenichi; Nakamura, Toshihiro

    2005-07-01

    Major and trace elements (Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, Rb, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Gd, Dy, Th and U) in igneous rocks were assayed with fused lithium borate glass beads using X-ray fluorescence spectrometry. Low dilution glass beads, which had a 1:1 sample-to-flux ratio, were prepared for determination of rare earth elements. Complete vitrification of 1:1 mixture required heating twice at 1200 degrees C with agitation. Extra pure reagents containing determinants were used for calibrating standards instead of the rock standard. The calibration curves of the 23 elements showed good linearity. Furthermore, the lower limits of detection corresponding to three times the standard deviation for blank measurements were 26 mass ppm for Na2O, 6.7 for MgO, 4.5 for Al2O3, 4.5 for SiO2, 18 for P2O5, 1.1 for K2O, 4.0 for CaO, 3.9 for TiO2, 1.6 for MnO, 0.8 for Fe2O3, 0.5 for Rb, 0.2 for Sr, 0.4 for Y, 0.5 for Zr, 3.3 for La, 6.5 for Ce, 2.7 for Pr, 2.1 for Nd, 1.7 for Sm, 0.7 for Gd, 2.7 for Dy, 0.5 for Th, and 0.6 for U. Using the present method, we determined the contents of these 23 elements in four rhyolitic and granitic rocks from Japan. PMID:16038502

  17. Petrography and geochemistry of lower carboniferous greywacke and mudstones in Northeast Junggar, China: Implications for provenance, source weathering, and tectonic setting

    NASA Astrophysics Data System (ADS)

    Tao, Huifei; Sun, Shu; Wang, Qingchen; Yang, Xiaofa; Jiang, Lin

    2014-06-01

    Northeast Junggar occupies an important position that links East Junggar and Chinese Altai. Numerous magmatic and sedimentary rocks of the Paleozoic in this area recorded the final amalgamation processes of East Junggar and Chinese Altai. This study analyzes the petrological and geochemical characteristics of sandstones and mudstones from the Early Carboniferous Nanmingshui formation in Northeast Junggar. The provenance and tectonic setting of these clastic rocks are discussed. Petrography indicates that the composition and texture maturity of the sandstones are low. The components of the sandstones are mainly volcanic fragments (61-87%), feldspars (9-30%), and monocrystalline quartz (2-18%), with a few polycrystalline quartz and other minerals. Slice observation indicates that the majority of the volcanic fragments of sandstones are basic-intermediate volcanic rocks with a few dacite and felsic plutonic fragments. The detrital modes of the sandstones reflect that these sandstones are derived from undissected arcs. A low to moderate chemical index of alteration and the Al2O3-CaO* + Na2O-K2O diagram reflect a low to moderate weathering degree in the source area. Trace and rare earth element (e.g., La, Th, Hf, Sc, Cr, Co, and Eu) contents and their ratios suggest that the source rocks of the clastic rocks are intermediate-basic rocks with some felsic rocks. Compared with sandstones, the source rocks for mudstones are more felsic. The petrography and geochemistry characteristics of the clastic rocks suggest that the proximal Dulate arc should be the primary source area. Mixing calculations based on REE data suggest that approximately two-thirds of the sandstone fragments are intermediate-basic volcanic rocks. The contents of the major and trace elements, as well as the stratum features, of the clastic rocks manifest that these clastic rocks resemble sedimentary rocks in a back-arc basin. The formation of this back-arc basin is caused by the southward subduction of the

  18. X-ray fluorescence analysis of rare earth elements in rocks using low dilution glass beads.

    PubMed

    Nakayama, Kenichi; Nakamura, Toshihiro

    2005-07-01

    Major and trace elements (Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, Rb, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Gd, Dy, Th and U) in igneous rocks were assayed with fused lithium borate glass beads using X-ray fluorescence spectrometry. Low dilution glass beads, which had a 1:1 sample-to-flux ratio, were prepared for determination of rare earth elements. Complete vitrification of 1:1 mixture required heating twice at 1200 degrees C with agitation. Extra pure reagents containing determinants were used for calibrating standards instead of the rock standard. The calibration curves of the 23 elements showed good linearity. Furthermore, the lower limits of detection corresponding to three times the standard deviation for blank measurements were 26 mass ppm for Na2O, 6.7 for MgO, 4.5 for Al2O3, 4.5 for SiO2, 18 for P2O5, 1.1 for K2O, 4.0 for CaO, 3.9 for TiO2, 1.6 for MnO, 0.8 for Fe2O3, 0.5 for Rb, 0.2 for Sr, 0.4 for Y, 0.5 for Zr, 3.3 for La, 6.5 for Ce, 2.7 for Pr, 2.1 for Nd, 1.7 for Sm, 0.7 for Gd, 2.7 for Dy, 0.5 for Th, and 0.6 for U. Using the present method, we determined the contents of these 23 elements in four rhyolitic and granitic rocks from Japan.

  19. Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation.

    PubMed

    Dvininov, E; Popovici, E; Pode, R; Cocheci, L; Barvinschi, P; Nica, V

    2009-08-15

    The synthesis and properties of metal oxide pillared cationic clays (PILCs) has been subject to numerous studies in the last decades. In order to obtain TiO(2)-pillared type materials, sodium montmorillonite from Romania-areal of Valea Chioarului, having the following composition (% wt): SiO(2)-72.87; Al(2)O(3)-14.5; MgO-2.15; Fe(2)O(3)-1.13; Na(2)O-0.60; K(2)O-0.60; CaO-0.90; PC-5.70 and cation exchange capacity, determined by ammonium acetate method, of 82 meq/100g, as matrix, was used. Sodium form of the clay was modified, primarily, by intercalation of cetyl-trimethylammonium cations between negatively charged layers which will lead to the expansion of the interlayer space. For the preparation of the TiO(2)-pillared clay, the alkoxide molecules, as titania precursor, were adsorbed onto/into clay samples (1 mmol Ti/g clay), in hydrochloric acid environment, the resulted species being converted into TiO(2) pillars by calcination. The as-prepared materials have been used as catalysts for Congo Red dye photodegradation, under UV. The photocatalytic activity of the pillared clays is a function of TiO(2) pillars size, their increase leading to the enhancement of the contact areas between dye solution and photoactive species present in the interlayer space. The structural characteristics and properties of the obtained materials were investigated by X-ray Diffraction, Thermogravimetry Analysis, UV-vis Diffuse Reflectance, Transmission Electron Microscopy and Energy Dispersive X-ray Analysis. PMID:19250741

  20. Partial melting of apatite-bearing charnockite, granulite, and diorite: Melt compositions, restite mineralogy, and petrologic implications

    NASA Technical Reports Server (NTRS)

    Beard, James S.; Lofgren, Gary E.; Sinha, A. Krishna; Tollo, Richard P.

    1994-01-01

    Melting experiments (P = 6.9 kbar, T = 850-950 deg C, NNO is less than fO2 is less than HM) were done on mafic to felsic charnockites, a dioritic gneiss, and a felsic garnet granulite, all common rock types in the Grenville basement of eastern North America. A graphite-bearing granulite gneiss did not melt. Water (H2O(+) = 0.60 to 2.0 wt %) is bound in low-grade, retrograde metamorphic minerals and is consumed during the earliest stages of melting. Most melts are water-undersaturated. Melt compositions range from metaluminous, silicic granodiorite (diorite starting composition) to peraluminous or weakly metaluminous granites (all others). In general, liquids become more feldspathic, less silicic, and less peraluminous and are enriched in FeO, MgO, and TiO2 with increasing temperature. Residual feldspar mineralogy controls the CaO, K2O, and Na2O contents of the partial melts and the behavior of these elements can be used, particularly if the degree of source melting can be ascertained, to infer some aspects of the feldspar mineralogy of the source. K-feldspar, a common restite phase in the charnockite and granulite (but not the diorite) should control the behavior of Ba and, possibly, Eu in these systems and yield signatures of these elements that can distinguish source regions and, in some cases, bulk versus melt assimilation. Apatite, a common restite phase, is enriched in rare earth elements (REE), especially middle REE. Retention of apatite in the restite will result in steep, light REE-enriched patterns for melts derived from the diorite and charnockites.

  1. Natural radionuclide concentrations in granite rocks in Aswan and Central-Southern Eastern Desert, Egypt and their radiological implications.

    PubMed

    Issa, Shams A M; Uosif, M A M; Abd el-Salam, L M

    2012-07-01

    Different types of granites, used extensively in local construction, were collected from five localities in Egypt, namely: Abu Ziran (Central Eastern Desert), Gabal El Maesala (Aswan) and three areas from Wadi Allaqi, (Gabal Abu Marw, Gabal Haumor and Gabal um Shalman), in the South Eastern Desert. Granite samples were studied radiologically, petrographically and geochemically. The contents of natural radionuclides ((226)Ra, (232)Th and (40)K) were measured in investigated samples by using gamma spectrometry [NaI (Tl) 3'×3']. The activity concentrations of (226)Ra, (232)Th and (40)K in the selected granite samples ranged from 9±0.5 to 111±7, 8±1 to 75±4 and 100±6 to 790±40 Bq kg(-1), respectively. The external hazard index (H(ex)), absorbed dose and annual effective dose rate were evaluated to assess the radiation hazard for people living in dwellings made of the materials studied. The calculated radium equivalents were lower than the values recommended for construction materials (370 Bq kg(-1)). The excess lifetime cancer risks were also calculated. Petrographically, the granites studied are varied in the form of potash-feldspar, quartz, plagioclase, mica and hornblende. The accessory minerals are zircon, apatite and allanite. Geochemically, the chemical composition of the granite is studied especially for major oxides. They are characterized to have SiO(2), K(2)O, Na(2)O and Al(2)O(3) with depletion in CaO, MgO, TiO(2) and P(2)O(5).

  2. Thermal Expansion Calculation of Silicate Glasses at 210°C, Based on the Systematic Analysis of Global Databases

    SciTech Connect

    Fluegel, Alex

    2010-10-01

    Thermal expansion data for more than 5500 compositions of silicate glasses were analyzed statistically. These data were gathered from the scientific literature, summarized in SciGlass© 6.5, a new version of the well known glass property database and information system. The analysis resulted in a data reduction from 5500 glasses to a core of 900, where the majority of the published values is located within commercial glass composition ranges and obtained over the temperature range 20 to 500°C. A multiple regression model for the linear thermal expansivity at 210°C, including error formula and detailed application limits, was developed based on those 900 core data from over 100 publications. The accuracy of the model predictions is improved about twice compared to previous work because systematic errors from certain laboratories were investigated and corrected. The standard model error (precision) was 0.37 ppm/K, with R² = 0.985. The 95% confidence interval for individual predictions largely depends on the glass composition of interest and the composition uncertainty. The model is valid for commercial silicate glasses containing Na2O, CaO, Al2O3, K2O, MgO, B2O3, Li2O, BaO, ZrO2, TiO2, ZnO, PbO, SrO, Fe2O3, CeO2, fining agents, and coloring and de-coloring components. In addition, a special model for ultra-low expansion glasses in the system SiO2-TiO2 is presented. The calculations allow optimizing the time-temperature cooling schedule of glassware, the development of glass sealing materials, and the design of specialty glass products that are exposed to varying temperatures.

  3. Mineralogy and geochemistry of pseudogley soils and recent alluvial clastic sediments in the Ngog-Lituba region, Southern Cameroon: An implication to their genesis

    NASA Astrophysics Data System (ADS)

    Ndjigui, Paul-Désiré; Ebah Abeng, Sandrine Appolonie; Ekomane, Emile; Nzeukou, Aubin Nzeugang; Ngo Mandeng, Francine Sidonie; Matoy Lindjeck, Marthe

    2015-08-01

    Mineralogical and geochemical investigations have been done on the hydromorphic clays (pseudogley soils and recent alluvial clastic sediments) in the Sanaga Maritime region (Southern Cameroon). Pseudogley soils are developed on gneisses from the Yaoundé Group. They have a dark brown to greyish brown color, with silty clay texture. Their mineral assemblage is made up of kaolinite, goethite, quartz, smectite, rutile, muscovite-illite and feldspars. The alluvial clastic sediments are characterized by variable colors (purple yellow, greenish, dark brown and purple brown) and sandy clay to clay texture. The mineral assemblage of alluvial clays is similar to that of pseudogley soils. SEM observations confirm the presence of kaolinite, smectite, quartz and muscovite-illite. Infrared data show that kaolinite is more orderly in pseudogley than in the alluvial clastic sediments. The Ngog-Lituba gneisses have moderate contents in SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O and several trace elements including REE. High element depletion is noticed in the pseudogley soils except Cr, V, Zr, Pb and REE. However, the alluvial clays are marked by a strong mobilization of LILE (Na, K, Ba, Rb and Sr) and REE, relative to the parent rock and pseudogley soils. The chondrite-normalized REE patterns are homogenous and parallel with Ce-anomalies. The (La/Yb)N shows that the REE fractionation increase from the parent rock to the alluvial clastic sediments. The mineralogical and geochemical features show that the clastic river sediments are derived from the erosion of the neighboring pseudogley materials before hydraulic sorting.

  4. Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Feng, Chengyou; Zhao, Yiming; Li, Daxin

    2015-12-01

    The post-collisional magmatism of Qiman Tagh is characterized by the intrusion of voluminous intermediate to felsic granitoids, including syenogranite, monzogranite, granodiorite, tonalite and diorite. The granitoids can be divided into two magmatic suites: Calc-alkaline (CA) and alkaline (Alk), which were emplaced from ~ 236 Ma to ~ 204 Ma. The CA suite contains metaluminous granodiorites and monzogranites. Typical Qiman Tagh CA granodiorites show moderately fractionated REE patterns ((La/Yb)N = 4.35-25.11) with significant negative Eu anomalies (Eu/Eu* = 0.54-1.34), and the primitive mantle-normalized spidergrams show strong depletion of Nb and Sr. The Qiman Tagh CA monzogranites show similar fractionated REE patterns ((La/Yb)N = 2.70-13.5) with less prominent negative Eu anomalies, and the chondrite-normalized spidergrams show strongly depleted Ba, Nb and Sr. The Alk suite, including syenogranite, is highly potassic (K2O/Na2O = 1.09-3.56) and peraluminous (A/CNK = 0.91-1.06). Compared to typical Qiman Tagh CA granodiorites, the Qiman Tagh Alk granitoids can be distinguished by their higher Rb, Nb, Ga/Al, FeO*/MgO, Y/Sr and Rb/Sr, as well as their lower Mg#, MgO, CaO, Al2O3, Sr, Co, V, Eu/Eu*, Ba/Nb, La/Nb, Ba/La and Ce/Nb. The Qiman Tagh CA rocks were most likely to be derived from the partial melting of garnet-amphibolite-facies rocks in the lower crust, leaving behind anhydrous granulite-facies rocks with plagioclase and garnet in the residue. The Alk rocks may have formed by the continued partial melting of granulite-facies rocks at elevated temperatures (> 830 °C).

  5. Origin of the disseminated magnetite pyroxenite in the Tieshanmiao-type iron deposits in the Wuyang region of Henan Province, China

    NASA Astrophysics Data System (ADS)

    Yao, Tong; Li, Hou-Min; Li, Wen-Jun; Li, Li-Xing; Zhao, Chuang

    2015-12-01

    The Tieshanmiao-type iron deposits in the southern North China Craton comprise two types of ores: banded pyroxene-magnetite quartzite (BMQ) and disseminated magnetite pyroxenite (DMP). Whether the quartz-poor DMP represents metamorphosed iron-bearing ultramafic rocks or chemical sedimentary rocks is still unclear. Pyroxene compositions in the DMP are low in Al2O3 and TiO2, which are similar to those from the BMQ and altered marble and pyroxenite. However, the compositions are different from those in the metamorphosed ultramafic rocks. The DMP and BMQ also show similar major element contents, with dominant SiO2, total Fe2O3, CaO, MgO but low contents of Al2O3, TiO2, MnO, Na2O, K2O, indicating a similar source through submarine chemical precipitation with little input from terrestrial or volcanic materials. The BMQ, DMP and magnetite separates from these rocks exhibit seawater-like signatures of REE patterns with LREE depletion, positive La, Gd and Y anomalies and high Y/Ho ratios, indicating that seawater participated in the formation of the iron ores. Combined with strong positive Eu anomalies, we infer that the deposition of the BMQ and DMP was mainly controlled by the mixing of seawater with hydrothermal fluids. The lack of negative Ce anomalies of the DMP, BMQ and magnetite separates indicate an anoxic marine environment. The DMP is rich in carbonate but relatively poor in silica and the BMQ is rich in silica but poor in carbonate. The protoliths of the DMP and BMQ in the Tieshanmiao-type iron deposits are inferred to be quartz-carbonate iron-bearing formations which underwent subsequent metamorphism.

  6. Petrogeochemistry of listvenite association in metaophiolites of Sahlabad region, eastern Iran: Implications for possible epigenetic Cu-Au ore exploration in metaophiolites

    NASA Astrophysics Data System (ADS)

    Aftabi, Alijan; Zarrinkoub, Mohammad Hossien

    2013-01-01

    Petrogeochemical investigations at the Sahlabad region have revealed that epigenetic listvenite veins occur in sheared zones of metaophiolitic suites of Cretaceous age. The listvenite mineralization developed in three forms, namely (1) the silica-listvenite veins which are chiefly composed of chalcedony, opal, quartz, pyrite, chalcopyrite, serpentine and relicts of chrome spinels, magnetite and fuchsite; (2) the carbonate listvenite veins which are comprised principally of magnesite, dolomite, calcite, siderite, pyrite, chalcopyrite, serpentine and relicts of fuchsite, chrome spinels and magnetite; and (3) the silica-carbonate listvenite veins which include opal, quartz, dolomite, magnesite, pyrite, chalcopyrite, serpentine and relicts of chrome spinels and magnetite. The absence of mineralized granitoids and the frequent occurrences of clearcut non-metamorphosed veins indicate that the mineralizing fluids were rich in CO2, H2O, H2S and H4SiO4 and possibly formed as a result of metamorphic dehydration and decarbonation reactions of the oceanic crust at the amphibolite-greenschist facies. Geochemically, the listvenites are enriched in SiO2, MgO, CaO, CO2, LOI, Cr, Ni, Co, Au, Cu, Ag, Hg, and Pt. Also, the veins contain high values of LOI, indicating the H2O-CO2-rich metamorphogenic fluids. The high Cr content and detectable values of K2O, Al2O3 and Na2O in the listvenite veins possibly indicate the presence of fuchsite and chrome spinels. The geochemical signatures attest that the hydrothermal fluids probably derived from a metamorphosed ultramafic protolith. The maximum values for gold, copper, mercury and silver in the listvenites are about 1.9 ppm, 5.4 %, 8 ppm and 6.5 ppm, respectively and provide a unique exploration guide for further gossan sampling, remote sensing mapping, isotopic and fluid inclusion studies in the Iranian metaophiolites.

  7. Authenticity and provenance studies of copper-bearing andesines using Cu isotope ratios and element analysis by fs-LA-MC-ICPMS and ns-LA-ICPMS.

    PubMed

    Fontaine, Gisela H; Hametner, Kathrin; Peretti, Adolf; Günther, Detlef

    2010-12-01

    Whereas colored andesine/labradorite had been thought unique to the North American continent, red andesine supposedly coming from the Democratic Republic of the Congo (DR Congo), Mongolia, and Tibet has been on the market for the last 10 years. After red Mongolian andesine was proven to be Cu-diffused by heat treatment from colorless andesine starting material, efforts were taken to distinguish minerals sold as Tibetan and Mongolian andesine. Using nanosecond laser ablation-inductively coupled plasma mass spectrometry (ICPMS), the main and trace element composition of andesines from different origins was determined. Mexican, Oregon, and Asian samples were clearly distinguishable by their main element content (CaO, SiO(2) Na(2)O, and K(2)O), whereas the composition of Mongolian, Tibetan, and DR Congo material was within the same range. Since the Li concentration was shown to be correlated with the Cu concentration, the formerly proposed differentiation by the Ba/Sr vs. Ba/Li ratio does not distinguish between samples from Tibet and Mongolia, but only between red and colorless material. Using femtosecond laser ablation multi-collector ICPMS in high-resolution mode, laboratory diffused samples showed variations up to 3‰ for (65)Cu/(63)Cu within one mineral due to the diffusion process. Ar isotope ratio measurements proved that heat treatment will reduce the amount of radiogenic (40)Ar in the samples significantly. Only low levels of radiogenic Ar were found in samples collected on-site in both mine locations in Tibet. Together with a high intra-sample variability of the Cu isotope ratio, andesine samples labeled as coming from Tibet are most probably Cu-diffused, using initially colorless Mongolian andesines as starting material. Therefore, at the moment, the only reliable source of colored andesine/labradorite remains the state of Oregon. PMID:20967428

  8. Porous and strong bioactive glass (13–93) scaffolds prepared by unidirectional freezing of camphene-based suspensions

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang; Tomsia, Antoni P.

    2011-01-01

    Scaffolds of 13–93 bioactive glass (6Na2O, 12K2O, 5MgO, 20CaO, 4P2O5, 53SiO2; wt %) with an oriented pore architecture were formed by unidirectional freezing of camphene-based suspensions, followed by thermal annealing of the frozen constructs to grow the camphene crystals. After sublimation of the camphene, the constructs were sintered (1 h at 700 °C) to produce a dense glass phase with oriented macropores. The objective of this work was to study how constant freezing rates (1–7 °C/min) during the freezing step influenced the pore orientation and mechanical response of the scaffolds. When compared to scaffolds prepared by freezing the suspensions on a substrate kept at a constant temperature of 3 °C (time-dependent freezing rate), higher freezing rates resulted in better pore orientation, a more homogeneous microstructure, and a marked improvement in the mechanical response of the scaffolds in compression. Scaffolds fabricated using a constant freezing rate of 7 °C/min (porosity = 50 ± 4%; average pore diameter = 100 μm), had a compressive strength of 47 ± 5 MPa and an elastic modulus of 11 ± 3 GPa (in the orientation direction). In comparison, scaffolds prepared by freezing on the constant-temperature substrate had strength and modulus values of 35 ± 11 MPa and 8 ± 3 GPa, respectively. These oriented bioactive glass scaffolds prepared by the constant freezing rate route could potentially be used for the repair of defects in load-bearing bones, such as segmental defects in the long bones. PMID:21855661

  9. Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts

    NASA Astrophysics Data System (ADS)

    Gervasoni, Fernanda; Klemme, Stephan; Rocha-Júnior, Eduardo R. V.; Berndt, Jasper

    2016-03-01

    The importance of zircon in geochemical and geochronological studies, and its presence not only in aluminous but also in alkaline rocks, prompted us to think about a new zircon saturation model that can be applied in a wide range of compositions. Therefore, we performed zircon crystallization experiments in a range of compositions and at high temperatures, extending the original zircon saturation model proposed by Watson and Harrison (Earth Planet Sci Lett 64:295-304, 1983) and Boehnke et al. (Chem Geol 351:324-334, 2013). We used our new data and the data from previous studies in peraluminous melts, to describe the solubility of zircon in alkaline and aluminous melts. To this effect, we devised a new compositional parameter called G [ {( {3 \\cdot {{Al}}2 {{O}}3 + {{SiO}}2 )/({{Na}}2 {{O}} + {{K}}2 {{O}} + {{CaO}} + {{MgO}} + {{FeO}}} )} ] (molar proportions), which enables to describe the zircon saturation behaviour in a wide range of rock compositions. Furthermore, we propose a new zircon saturation model, which depends basically on temperature and melt composition, given by (with 1σ errors): ln [ {{Zr}} ] = ( {4.29 ± 0.34} ) - ( {1.35 ± 0.10} ) \\cdot ln G + ( {0.0056 ± 0.0002} ) \\cdot T( °C ) where [Zr] is the Zr concentration of the melt in µg/g, G is the new parameter representing melt composition and T is the temperature in degrees Celsius. The advantages of the new model are its straightforward use, with the G parameter being calculated directly from the molar proportions converted from electron microprobe measurements, the temperature calculated given in degrees Celsius and its applicability in a wider range of rocks compositions. Our results confirm the high zircon solubility in peralkaline rocks and its dependence on composition and temperature. Our new model may be applied in all intermediate to felsic melts from peraluminous to peralkaline compositions.

  10. Electron- and Photon-stimulated Desorption of Alkali Atoms from Lunar Sample and a Model Mineral Surface

    NASA Technical Reports Server (NTRS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-01-01

    We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  11. Chemical modifications accompanying blueschist facies metamorphism of Franciscan conglomerates, Diablo Range, California

    USGS Publications Warehouse

    Moore, Diane E.; Liou, J.G.; King, B.-S.

    1981-01-01

    As part of an investigation of blueschist-facies mineral parageneses in pebbles and matrix of some Franciscan metaconglomerates of the Diablo Range, California, textural and major-element chemical analyses were conducted on a number of igneous pebbles that comprise a range of rock types from granite and dacite to gabbro and basalt. Compositions of the igneous pebbles differ significantly from common igneous rocks, particularly with respect to Ca, K, Na, Si and H2O. The SiO2 and H2O contents are characteristically high and the K2O contents low. The CaO and Na2O contents may be relatively enriched or reduced in different pebbles. The igneous pebbles show little evidence of alteration prior to their incorporation into the Franciscan conglomerates, and the chemical modifications are considered to have been produced during metamorphism of the conglomerates to (lawsonite + albite + aragonite ?? jadeite)-bearing assemblages. The observed variations in the pebbles are shown to be functions of: (1) bulk chemistry; (2) the igneous mineral assemblage; (3) the stable metamorphic mineral assemblage; and (4) the composition of pore fluids in the conglomerates. The relative proportions of Mg and Fe in most of the pebbles apparently have been unaffected by the metamorphism, and these parameters, along with other textural and chemical factors, were used to determine the petrogenetic affinities of the igneous pebbles. The plutonic and most of the volcanic pebbles correspond to calc-alkaline rock series, whereas a few volcanic pebbles show apparent Fe-enrichment characteristic of tholeiitic rocks. A continental margin arc-batholith complex would be the best source for these igneous detrital assemblages. Conglomerates in local areas differ in igneous lithologies from conglomerates in other areas and probably differ somewhat in age, perhaps reflecting varying degrees of unroofing of such a complex during deposition of Franciscan sediments. ?? 1981.

  12. Reactivity of clay minerals with acids and alkalies

    USGS Publications Warehouse

    Carroll, D.; Starkey, H.C.

    1971-01-01

    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6??45 N, 1:1), acetic acid (4??5 N, 1:3), sodium hydroxide (2??8 N), sodium chloride solution (pH 6??10; Na = 35???; Cl = 21??5???), and natural sea water (pH 7??85; Na = 35??5???; Cl = 21??5???) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective. ?? 1971.

  13. Isotopic variation in the Tuolumne Intrusive Suite, central Sierra Nevada, California

    USGS Publications Warehouse

    Kistler, R.W.; Chappell, B.W.; Peck, D.L.; Bateman, P.C.

    1986-01-01

    Granitoid rocks of the compositionally zoned Late Cretaceous Toulumne Intrusive Suite in the central Sierra Nevada, California, have initial87Sr/86Sr values (Sri) and143Nd/144Nd values (Ndi) that vary from 0.7057 to 0.7067 and from 0.51239 to 0.51211 respectively. The observed variation of both Sri and Ndi and of chemical composition in rocks of the suite cannot be due to crystal fractionation of magma solely under closed system conditons. The largest variation in chemistry, Ndi, and Sri is present in the outer-most equigranular units of the Tuolumne Intrusive Suite. Sri varies positively with SiO2, Na2O, K2O, and Rb concentrations, and negatively with Ndi, Al2O3, Fe2O3, MgO, FeO, CaO, MnO, P2O5, TiO2, and Sr concentrations. This covariation of Sri, Ndi and chemistry can be modeled by a process of simple mixing of basaltic and granitic magmas having weight percent SiO2 of 48.0 and 73.3 respectively. Isotopic characteristic of the mafic magma are Sri=0.7047, Ndi=0.51269 and ??18O=6.0, and of the felsic magma are Sri=0.7068, Ndi=0.51212 and ??18O=8.9. The rocks sampled contain from 50 to 80% of the felsic component. An aplite in the outer equigranular unit of the Tuolumne Intrusive Suite apparently was derived by fractional crystallization of plagioclase and hornblende from magma with granudiorite composition that was a product of mixing of the magmas described above. Siliceous magmas derived from the lower crust, having a maximum of 15 percent mantle-derived mafic component, are represented by the inner prophyritic units of the Tuolumne Intrusive Suite. ?? 1986 Springer-Verlag.

  14. Evidence from FTIR difference spectroscopy that D1-Asp61 influences the water reactions of the oxygen-evolving Mn4CaO5 cluster of photosystem II.

    PubMed

    Debus, Richard J

    2014-05-13

    Understanding the mechanism of photosynthetic water oxidation requires characterizing the reactions of the water molecules that serve as substrate or that otherwise interact with the oxygen-evolving Mn4CaO5 cluster. FTIR difference spectroscopy is a powerful tool for studying the structural changes of hydrogen bonded water molecules. For example, the O-H stretching mode of water molecules having relatively weak hydrogen bonds can be monitored near 3600 cm(-1), the D-O-D bending mode can be monitored near 1210 cm(-1), and highly polarizable networks of hydrogen bonds can be monitored as broad features between 3000 and 2000 cm(-1). The two former regions are practically devoid of overlapping vibrational modes from the protein. In Photosystem II, water oxidation requires a precisely choreographed sequence of proton and electron transfer steps in which proton release is required to prevent the redox potential of the Mn4CaO5 cluster from rising to levels that would prevent its subsequent oxidation. Proton release takes place via one or more proton egress pathways leading from the Mn4CaO5 cluster to the thylakoid lumen. There is growing evidence that D1-D61 is the initial residue of one dominant proton egress pathway. This residue interacts directly with water molecules in the first and second coordination spheres of the Mn4CaO5 cluster. In this study, we explore the influence of D1-D61 on the water reactions accompanying oxygen production by characterizing the FTIR properties of the D1-D61A mutant of the cyanobacterium, Synechocystis sp. PCC 6803. On the basis of mutation-induced changes to the carbonyl stretching region near 1747 cm(-1), we conclude that D1-D61 participates in the same extensive networks of hydrogen bonds that have been identified previously by FTIR studies. On the basis of mutation-induced changes to the weakly hydrogen-bonded O-H stretching region, we conclude that D1-D61 interacts with water molecules that are located near the Cl(-)(1) ion and that

  15. Archaean multiphase Porosozero sanukitoid pluton of the Kola region: petrological, geochronological and geochemical data

    NASA Astrophysics Data System (ADS)

    Kudryashov, Nikolai; Mokrushin, Artem; Petrovsky, Michail; Elizarov, Dmitry

    2013-04-01

    The Porosozero sanukitoid intrusion is located in the greenstone belt of the Kolmozero-Voronja, north-eastern part Fennoscandian (Baltic) Shield. The Porosozero multiphase pluton was formed as a result of the 4 magmatic phases during the period ca. 60 million years. The main phase is represented by a differentiated series of gabbro-diorite - quartz monzodiorite - granodiorite - granite. The zircon TIMS ages of granodiorite and quartz monzodiorites are 2733±6 Ma and 2734±4 Ma, respectively. The second phase is composed of leucogranites formed during intrusion of the residual melt portion from intracrustal source. The age of zircon from leucogranite is 2712±6 Ma. The third phase is represented by the lamprophyre dykes with the zircon age 2680±8 Ma. The late pegmatite veins were formed during the fourth final phase. The volume relationships between the gabbro-diorite, quartz monzodiorites, granodiorites and granites are 5:55:27:13, respectively. The medium weighted composition of the initial melt, calculated from the rock compositions of the first phase is andesite (wt.%): SiO2 = 61.53, TiO2 = 0.58, Al2O3 = 15.74, Fe2O3 = 3.75, FeO = 3.07, MnO = 0.10, MgO = 3.06, CaO = 5.83, Na2O = 3.78, K2O = 2.37. The compositional variation is the result of fractional crystallization. The last magmas may have experienced some crustal contamination. All rocks of the first phase are enriched in Ba (500-800 ppm), Sr (450-700 ppm), K2O (1.8-3.2 wt. %), P2O5 (0.15-0.35), LREE [(La/Yb)N=15-23] and contain high concentrations of Cr (150-400 ppm) and Ni (60-140 ppm), possess high mg# values (0.45-0.65), and show a negative Nb-Ta anomaly. Sm-Nd isotopic data for sanukitoids indicate their formation from a mantle source enriched in LILE and LREE with ɛNd (2740) = +1.02 - +0.36, T(DM)=2.9-2.8 Ga. The Porosozero polyphasic pluton is similar to worldwide Archaean and Phanerozoic magmatic sanukitoide series. The Porosozero pluton formation is determined by the processes of mantle

  16. Chemo-stratigraphy in the Murray Formation Using ChemCam

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.; Anderson, R. B.; Bridges, N.; Bridges, J.; Calef, F. J., III; Clegg, S. M.; Le Deit, L.; Fisk, M. R.; Forni, O.; Gasnault, O.; Kah, L. C.; Kronyak, R. E.; Lanza, N.; Lasue, J.; Mangold, N.; Maurice, S.; Milliken, R.; Ming, D. W.; Nachon, M.; Newsom, H. E.; Rapin, W.; Stack, K.; Sumner, D. Y.; Wiens, R. C.

    2015-12-01

    Curiosity has completed a detailed chemo-stratigraphy analysis at the Pahrump exposure of the Murray formation. In total >570 chemical measurements and supporting remote micro images to classify texturally were collected. Chemical trends with both stratigraphic position and with texture were evaluated. From these data emerges a complex aqueous history where sediments have interacted with fluids with variable chemistry in distinct episodes. The ChemCam data collected at the nearby "Garden City" (GC) vein complex provides constraints on the chemical evolution of the Pahrump. GC is thought be stratigraphically above the Pahrump outcrop. Fluids producing the veins likely also migrated through the Pahrump sediments. Multiple episodes of fluids are evident at GC, forming distinct Ca sulfate, F-rich, enhanced MgO, and FeO-rich veins. These different fluid chemistries could be the result of distinct fluids migrating through the section from a distance with a pre-established chemical signature, fluids locally evolved from water rock interactions, or both. Texturally rocks have been classified into two distinct categories: fine grained or as cross-bedded sandstones. The sandstones have significantly lower SiO2, Al2O3, and K2O and higher FeO, and CaO. Fine grained rocks have further been sub-classified as resistant and recessive with other textural features such as laminations and pits noted.The strongest chemical trend in the fine-grained sandstones shows enhancements in MgO and FeO in erosion-resistant materials compared to fine grained recessive units, suggesting that increased abundance of Mg- and/or iron-rich cements may provide additional strength. The MgO and FeO variations with texture are independent of stratigraphic locations (e.g resistant material at both the bottom and top of the outcrop both are enhanced in MgO and FeO). The presence of the GC MgO and FeO rich veins provides additional evidence for fluids rich in these elements were present in the outcrop. Other

  17. Geochemistry of Eclogite Xenoliths from Kimberlite Pipe Udachnaya

    NASA Astrophysics Data System (ADS)

    Agashev, Aleksey; Pokhilenko, Ludmila; Pokhilenko, Nikolai

    2016-04-01

    A suite of 17 unique big (1 to 20 kg) and fresh ecligite xenoliths from Udachnaya kimberlite pipe have been studied for their whole-rock and minerals major and trace elements composition.Whole rock major elements composition of the Udachnaya eclogite xenoliths suite have a great variability in their MgO contents (9-19Wt%). Based on major elements composition Udachnaya eclogites can be subdivided in two subsets, high magnesian (Mg# 68.8-81.9) and low magnesian (Mg# 56.8-59). High variations also shown by Al2O3 and Na2O concentrations and high Mg# samples tend to contain less of those oxides then low Mg# samples with some exceptions. Two eclogitic groups are clearly different in style of inter-elements correlations. FeO and CaO contents are positively correlate with MgO in low Mg# group of eclogites but negatively in high Mg# group. The same relations present between Al2O3 contents of eclogite group with their Mg#. Compared to present day MORB composition eclogite samples have similar contents of most of elements with some depletion in TiO2 and P2O5 and enrichment in MgO and K2O. The variability of these elements concentrations can be related to melt extraction while elevated K2O can indicate late metasomatic enrichment. In terms of trace elements composition Udachnaya eclogites are enriched over PM but comparable to that of MORB composition, except significant enrichment in LILE elements (Rb, Ba, K, Sr). The records of both subduction related processes and mantle metasomatism could be find in geochemical features of these rocks. Most of the eclogites show positive Eu anomaly which is direct evidence of plagioclase accumulation in eglogites protolith. Variation of La/Yb ratio (1-11), in majority of samples are the range 2-4 indicates different degrees of samples metasomatic enrichment in LREE. Udachnaya eclogites have range of Sm/Nd ratio from 0.25 to 0.5 (MORB is 0.32) which positive covariates with Nd content. This trend could not be a result of melt extraction nor

  18. Characteristics of chemical weathering and water-rock interaction in Lake Nyos dam (Cameroon): Implications for vulnerability to failure and re-enforcement

    NASA Astrophysics Data System (ADS)

    Fantong, Wilson Y.; Kamtchueng, Brice T.; Yamaguchi, Kohei; Ueda, Akira; Issa; Ntchantcho, Romaric; Wirmvem, Mengnjo J.; Kusakabe, Minoru; Ohba, Takeshi; Zhang, Jing; Aka, Festus T.; Tanyileke, Gregory; Hell, Joseph V.

    2015-01-01

    For the first time, comprehensive study of hydrogeochemistry of water seeps, role of chemical weathering on dam failure, estimation of minimum width of dam to resist failure and simulation of changes in dissolved ions and secondary mineral was conducted on the Lake Nyos dam. The salient results and conclusions were; the dam spring water represented a mixture of 60-70% rainwater and 30-40% Lake water (from 0 to -40 m). The chemistry of the observed waters was Ca-HCO3 for rainwater, Ca-Mg-HCO3 in boreholes, and Mg-Ca-HCO3- for spring water. The relative rate at which ions dissolved in water was HCO3- > Mg2+ > Ca2+ > Na+ > SiO2 > K+ > NO3- > SO42- > Cl-. Weathering of rocks resulted in the formation of clay minerals such as kaolinite and smectite. Relative mobility of elements compared to Alumina (Al2O3) indicated that in monzonites there was a loss of CaO, Na2O, K2O, P2O5 and gain of SiO2, Fe2O3, TiO2, MnO and MgO, while in basalts there was a loss of SiO2, Fe2O3, Ca2O, NaO, MgO and gain of TiO2, K2O and P2O5. Values of chemical alteration index that ranged from 49 to 82 suggest a weak to intermediate categories of chemical weathering that occurred at a rate of 5.7 mm/year. Paired to that rate, which suggests that the dam is not vulnerable to failure at the previously thought time scale, some other processes (physical weathering, secondary mineral formation and lake overflow) can cause instant failure. Hydrostatic pressure of 1.6 GN generated by Lake water can be supported only when the width of the dam is greater than 19 m. PHREEQC-based simulation for 10 years indicates decoupling of Ca and Mg, and Na and Mg. Multidisciplinary monitoring of the dam is advocated.

  19. Influence of ZrO2-Y2O3 and ZrO2-CaO coatings on microstructural and mechanical properties on Mg-1,3Ca- 5,5Zr biodegradable alloy

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Matei, MN; Oprisan, B.; Chicet, D.; Earar, K.

    2016-06-01

    Zirconia (ZrO2) as a ceramic biomaterial facilitates the osteoconductivity in new bone formation around implant. In order to improve the degradation and the surface properties, it is necessary to apply a surface film to satisfy multiple clinical requirements such as mechanical strength, biocompatibility, and degradation rate. Therefore, surface changing to form a tenacious, biocompatible and corrosion resistant modified layer has become a necessary study in biodegradable materials. The aim of the study is to observe the morphology, structural and scratch analysis for some coatings of ZrO2-CaO and ZrO2-Y2O3 having similar thickness deposited with an atmospheric plasma spraying facility, Sulzer Metco 9MCE, using scanning electron microscopy and X-Ray diffraction. Some mechanical aspects were highlighted during the scratch test. Comparative scratch tests were carried out to study the bonding properties between the coatings and the substrates.

  20. Synthesis and characterization of 64SiO2-26CaO-5P2O5-5CuO bioactive composition for the growth of hydroxyapatite layer by XRD, Raman and pH studies

    NASA Astrophysics Data System (ADS)

    Kaur, Pardeep; Singh, K. J.

    2016-05-01

    Bioactive sample with the nominal composition of 64SiO2-26CaO-5P2O5-5CuO has been prepared in the laboratory by using the sol-gel technique. The bioactivity of the prepared sample has been analyzed by using the Tris Simulated Body Fluid which has also been prepared in the laboratory. XRD and Raman techniques have been employedto probe the formation of hydroxyapatite layer. pH studies has also been undertaken to check the acidic/non-acidic behavior of sample. Growth of hydroxyapatite layer has been observed after one day on the surface of the sample. Moreover, sample has been observed to be non-acidic in nature.

  1. A study of physical and optical absorption spectra of VO2+ ions in potassium and sodium oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Kumar, J. Siva; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    Spectroscopic and physical properties of V2O5 doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K2O and Na2O) were changes and are prepared by melt quenching technique. The values of ri, rp, Rm, αm molar volume and Λth increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K2O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boron separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K2O content which manifests the mixed alkali effect.

  2. Geochemical Characteristics of Ultramafic Rocks From Main Hole of CCSDP, Sulu UHPM Belt

    NASA Astrophysics Data System (ADS)

    Li, T.; Yang, J.; Xu, Z.; Chen, S.

    2004-12-01

    In the main hole of Chinese Continental Scientific Drilling Project (CCSDP), the ultramafic rocks, hosted by rutile eclogite, occur at the depth between 603.2 ˜.683.5 m. Ultramafic rocks are composed of mainly wehrlite and minor lherzolite. Most of these rocks contain abundant garnet and Ti-clinohumite, but minor rocks have no garnet and Ti-clinohumite. Serpentinization varies in different degrees ,through the depth and minor talc and prehnite, present mainly at the lowermost part of the profile. Besides, there is a 10 m thick layer and many thin lens of rutile phengite eclogite, as well as small blocks of eclogite and thin layers of phlogopite orthopyroxenite and megacrystic amphibolite in the ultramfic sequence. The contacts between the ultramafic rocks and hosting eclogite and lens in them are sharp. The uppermost ultramafic rock possibly has a tectonic contact, with the host eclogite, characterized by mixed agglomerates of them. Major element concentrations of wehrlite and its altered product serpentinite range between SiO2 40.60% ˜.43.42%, TiO2<0.31%, Al2O3 3.16% ˜.8.96%, total FeO 12.27% ˜.16.77%, MnO 0.18% ˜.0.27%, MgO 27.65% ˜.39.20%, CaO 1.02% ˜.5.32%, Na2O 0.01% ˜.0.74%, K2O 0.01% ˜.0.81% and P2O5 0.01% ˜.0.12%. The average fusible compositions are fairly high(TiO2 0.21% Al2O3 5.06% CaO 2.53% and Na2O 0.25%) and closing to or exceeding the corresponding compositions of primary mantle .Representative refractory composition MgO is lower than that of primary mantle. MgO is lower and varies narrowly between 77.26 ˜.85.07. When compared with A type Zhimafang peridotite(Zhang et al, 2000), the wehrlite in borehole has relatively lower SiO2 and MgO and higher TiO2, Al2O3, CaO and total FeO. In a word, wehrlite shows more fertile characteristics. Total REE concentrations range 4.38×10-6 ˜.43.26×10-6, most of which are higher than that of primary mantle(PM, 6.86×10-6). Most of the samples show moderate LREE enriched characteristics with

  3. Late Precambrian alkaline plutons in southwest India: Geochronologic and rare-earth element constraints on Pan-African magmatism

    NASA Astrophysics Data System (ADS)

    Santosh, M.; Iyer, S. S.; Vasconcellos, M. B. A.; Enzweiler, J.

    1989-12-01

    The Precambrian granulite facies terrain of southwestern India is intruded by a suite of alkali granite and syenite plutons. RbSr whole-rock isotope data for the Angadimogar syenite (AM) and the Peralimala alkali granite (PM), belonging to this suite, define isochron ages of 638 ± 28 and 750 ± 40 Ma, respectively, with initial {87Sr}/{86Sr} ratios of 0.7032 ± 0.0008 and 0.7031 ± 0.0008, respectively. These age data, together with data from previous studies, demonstrate long-lived magmatic activity in the time span from the late Proterozoic to the early Palaeozoic, broadly contemporaneous with Pan-African events in other fragments of the Gondwana supercontinent. REE patterns are reported for four plutons of this Pan-African alkali granite-syenite suite: Chengannoor (CR), Vellingiri (VL) and the two dated intrusions (AM and PM). CR and AM are characterised by high total REE, strongly LREE-enriched patterns with no Eu anomaly, associated with low Sr, Rb, U and Th. K 2O, {K2O }/{Na2O }, {K2O }/{MgO} and the agpaitic index are lower for these plutons as compared to the other two. The PM and VL intrusions have lower total REE and less strongly fractionated REE patterns, associated with high K 2O, {K2O }/{Na2O } and {K2O }/{MgO} ratios, high Sr and Rb levels, but low U and Th. The geochemical patterns in these rocks compare them well with A-type granites and their tectonic relations assign affinities to magmatism of within-plate type. The alkaline magmatism manifests an extensional phase associated with the pre-rift tectonics of the Indian continent within the Gondwana assemblage. A petrogenetic model is development for these plutons, involving decompression-induced melting of deep crustal source materials characterised by low initial {87Sr}/{86Sr} and high {K}/{Rb} ratios.

  4. O(-) identified at high temperatures in CaO-based catalysts for oxidative methane dimerization

    NASA Technical Reports Server (NTRS)

    Freund, F.; Maiti, G. C.; Batllo, F.; Baerns, M.

    1990-01-01

    A technique called charge-distribution analysis (CDA) is employed to study mobile charge carriers in the oxidation catalysts CaO, CaO with 11 percent Na2O, and CaO with 10 percent La2O3. A threshold temperature of about 550-600 C is identified at which highly mobile charge carriers are present, and the CDA studies show that they are O(-) states. The present investigation indicates the usefulness of CDA in catalysis research with pressed powder samples and gas/solid reactions.

  5. Leaching of silica bands and concentration of magnetite in Archean BIF by hypogene fluids: Beebyn Fe ore deposit, Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Duuring, Paul; Hagemann, Steffen

    2013-03-01

    The ~2,752-Ma Weld Range greenstone belt in the Yilgarn Craton of Western Australia hosts several Fe ore deposits that provide insights into the role of early hypogene fluids in the formation of high-grade (>55 wt% Fe) magnetite-rich ore in banded iron formation (BIF). The 1.5-km-long Beebyn orebody comprises a series of steeply dipping, discontinuous, <50-m-thick lenses of magnetite-(martite)-rich ore zones in BIF that extend from surface to vertical depths of at least 250 m. The ore zones are enveloped by a 3-km-long, 150-m-wide outer halo of hypogene siderite and ferroan dolomite in BIF and mafic igneous country rocks. Ferroan chlorite characterises 20-m-wide proximal alteration zones in mafic country rocks. The magnetite-rich Beebyn orebody is primarily the product of hypogene fluids that circulated through reverse shear zones during the formation of an Archean isoclinal fold-and-thrust belt. Two discrete stages of hypogene fluid flow caused the pseudomorphic replacement of silica-rich bands in BIF by Stage 1 siderite and magnetite and later by Stage 2 ferroan dolomite. The resulting carbonate-altered BIF is markedly depleted in SiO2 and enriched in CaO, MgO, LOI, P2O5 and Fe2O3(total) compared with the least-altered BIF. Subsequent reactivation of these shear zones and circulation of hypogene fluids resulted in the leaching of existing hypogene carbonate minerals and the concentration of residual magnetite-rich bands. These Stage 3 magnetite-rich ore zones are depleted in SiO2 and enriched in K2O, CaO, MgO, P2O5 and Fe2O3(total) relative to the least-altered BIF. Proximal wall rock hypogene alteration zones in mafic igneous country rocks (up to 20 m from the BIF contact) are depleted in SiO2, CaO, Na2O, and K2O and are enriched in Fe2O3(total), MgO and P2O5 compared with distal zones. Recent supergene alteration affects all rocks within about 100 m below the present surface, disturbing hypogene mineral and the geochemical zonation patterns associated with

  6. Geochemistry and shock petrography of the Crow Creek Member, South Dakota, USA: Ejecta from the 74-Ma Manson impact structure

    USGS Publications Warehouse

    Katongo, C.; Koeberl, C.; Witzke, B.J.; Hammond, R.H.; Anderson, R.R.

    2004-01-01

    The Crow Creek Member is one of several marl units recognized within the Upper Cretaceous Pierre Shale Formation of eastern South Dakota and northeastern Nebraska, but it is the only unit that contains shock-metamorphosed minerals. The shocked minerals represent impact ejecta from the 74-Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84-21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal-unit samples, mainly from the Gregory 84-21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2, (29-58 wt%), Al2O3 (6-14 wt%), and CaO (7-30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75-99), coupled with the Al2O3-(CaO*,+Na2O -K2O (A-CN'-K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present-day crater radius of Manson

  7. Crystallization of tholeiitic basalt in Alae Lava Lake, Hawaii

    USGS Publications Warehouse

    Peck, D.L.; Wright, T.L.; Moore, J.G.

    1966-01-01

    . Ferric-ferrous ratios suggest that oxidation with maximum intensity between 550??C and 610??C moved downward in the crust as it cooled; this was followed by reduction at a temperature of about 100??C. The crystallized basalt is a homogeneous fine-grained rock containing on the average 48.3 percent by volume intergranular pyroxene (augite > pigeonite), 34.2 percent plagioclase laths (An60 70), 7.9 percent interstitial glass, 6.9 percent opaques (ilmenite > magnetite), 2.7 percent olivine (Fo70 80), and a trace of apatite. Chemical analyses of 18 samples, ranging from initially quenched pumice to lava cored more than a year after the eruption from the center and from near the base of the lake, show little variation from silica-saturated tholeiitic basalt containing 50.4 percent SiO2, 2.4 percent Na2O, and 0.54 percent K2O. Apparently there was no significant crystal settling and no appreciable vapor-phase transport of these components during the year of crystallization. However, seven samples of interstitial liquid that had been filter-pressed into gash fractures and drill holes from partly crystalline mush near the base of the crust show large differences from the bulk composition of the solidified crust-lower MgO, CaO, and Al2O3; and higher total iron, TiO2, Na2O, K2O, P2O5, and F, and, in most samples, SiO2. The minor elements Ba, Ga, Li, Y, and Yb and possibly Cu tend to be enriched in the filter-pressed liquids, and Cr and possibly Ni tend to be depleted. ?? 1966 Stabilimento Tipografico Francesco Giannini & Figli.

  8. Physico-chemical conditions of crystallization of the Guli ulrabasic massif (North Part of the Siberian Platform): evidence from melt inclusions

    NASA Astrophysics Data System (ADS)

    Simonov, Vladimir; Vasiliev, Yuri; Kotlyarov, Alexey; Stupakov, Sergey

    2014-05-01

    Conditions of formation of the Guli ultrabasic massif (Maimecha Kotui Province in the North Part of the Siberian Platform) attract attention of numerous researchers. For the solution of genetic problems of various rocks from this ultramafic complex the data on melt inclusions in minerals has been earlier used (Sokolov et al., 1999; Rass, Plechov, 2000; Sokolov, 2003; Panina, 2006). At the same time, formation of dunites, occupying the main volume of the Guli massif, remain almost not considered by means of thermobarogeochemical methods and the role of magmatic processes in this case is not ascertained. As a result of melt inclusions study in the Cr-spinel the new data on physical and chemical parameters of dunite crystallization in the Guli ulrabasic massif was obtained. On the ratio (Na2O + K2O) - SiO2 the majority of analyses of glasses and calculated compositions of inclusions settle down in the field of subalkaline series. On the diagram MgO - SiO2 bulk chemical compositions of inclusions (with the magnesium content of 19-28 wt. %) correspond to picrites and picrite-basalts. They are in close association with the data on inclusions in the Cr-spinel from dunites of Konder (Siberian Platform) and Nizhnii Tagil (Ural Mountains) platinum-bearing ultrabasic massifs and also are situated near to the field of inclusions in the olivine phenocrysts from meimechites (Maimecha Kotui Province in the North Part of the Siberian Platform). Similarity of melt inclusions in the Cr-spinel from the dunite of the Guli massif and in the olivine from meimechites is established on the variety of petrochemical components - Al2O3, CaO, Na2O, K2O. The calculated compositions of inclusions from dunites coincide mostly with the data on inclusions from meimechites, while glasses of inclusions from Cr-spinel contain less titan and magnesium. As a whole for the melts of the Maimecha Kotui Province (that form both dunites of the Guli massif and meimechites) much higher contents of TiO2 (from

  9. Glass and mineral analyses from first deposits of Peach Spring Supereruption (SW USA) illuminate initial tapping of a zoned magma chamber

    NASA Astrophysics Data System (ADS)

    Mccracken, R. G.; Miller, C. F.; Buesch, D.; Gualda, G. A.; Covey, A.

    2012-12-01

    The Peach Spring supereruption (18.78±0.02 Ma) was sourced from Silver Creek caldera in the southern Black Mountains, Arizona (Ferguson et al. in press). The resulting ignimbrite, the Peach Spring Tuff (PST), blanketed >32,000 km2 of Arizona, California, and Nevada (Buesch, 1993). Underlying the ignimbrite is a thin (≤ 1m thick) basal layered deposit that consists of texturally distinct layers 1a-e (Valentine et al. 1989) and is present up to ~100 km from the source caldera. Basal layered deposits contain the first material erupted during the PST supereruption, preceding the main eruption event. Petrography and geochemistry of minerals and pumice clasts from basal layered deposits collected ~15-100 km from the caldera, combined with a survey of glass and crystal compositions from both outflow and basal deposits, permit (1) comparisons with the overlying ignimbrite, and (2) insights into the initial stages of the supereruption and extraction of magma from the chamber. Pumice clasts from a pumice-rich layer (1a2) of the basal deposit were characterized by LA-ICPMS and SEM. Unaltered glass has a uniform high-Si rhyolite composition (76.7% SiO2, 13.0% Al2O3, 3.6% Na2O, 5.3% K2O, 0.6% FeO, <0.1% MgO, 0.6% CaO, 0.1% TiO2). Mildly altered glass is similar but has lower Na2O and higher K2O. Pumice clasts are relatively crystal poor (<10% phenocrysts) with an assemblage dominated by sanidine (~Or55Ab43An2), with lesser plagioclase (~Ab73An19Or8), minor hornblende and biotite, and accessory magnetite, sphene, zircon, chevkinite, and apatite; no quartz was identified. Initial LA-ICPMS results for glass reveal REE patterns with large negative Gd (0.21: i.e. U-shaped REE pattern) and Eu (0.31) anomalies, very low Ba and Sr (≤10 ppm), and high Rb (~250 ppm). These compositions are essentially identical to those of the most common pumice from distal outflow ignimbrite, but very different from crystal-rich (>30%) trachyte pumice that dominates the intracaldera fill and is

  10. Time constraints on the inversion of the tectonic regime in the northern margin of the North China Craton: Evidence from the Daqingshan granites

    NASA Astrophysics Data System (ADS)

    Meng, Qingpeng; He, Yuankai; Zhang, Wen; Zheng, Rongguo; Xu, Cao; Zhang, Zhaoyu; Wu, Tairan

    2014-01-01

    The Daqingshan granites are located in a late Mesozoic tectono-magmatic belt at the northern margin of the North China Craton (NCC), and include the Deshengying, Xinisubei, Gulouban, and Kuisu plutons. Ion probe U-Pb zircon dating indicates that the granites were emplaced at 131 ± 1, 140 ± 4, 145 ± 1, and 142 ± 2 Ma, respectively. All of the granites are alkali- and potassium-rich, with high SiO2 (73.2-76.7 wt.%), K2O (4.50-5.57 wt.%), Na2O (3.60-4.93 wt.%), and K2O/Na2O (0.99-1.49), and low Al2O3 (12.3-14.5 wt.%), CaO (0.45-0.79 wt.%), and MgO (⩽0.12 wt.%). The granites are light rare earth element enriched ([La/Yb]N = 5.6-48.7). The Xinisubei and Gulouban monzogranites and the Kuisu mylonitic monzogranite have small Eu anomalies (δEu = 0.65-1.23), low Zr + Nb + Ce + Y (132-321 ppm), and exhibit a negative correlation between P2O5 and SiO2 contents, which are characteristic of highly fractionated I-type granites with a post-collisional origin. The Deshengying monzogranite is distinctive in being an aluminous A-type granite as evidenced by high 10,000 × Ga/Al (>2.6) and Zr + Nb + Ce + Y (312-532 ppm), low Ba and Sr, marked negative Eu anomalies (δEu = 0.08-0.20), strong Ba, Sr, P, and Ti depletions, and an absence of alkali minerals. This granite was probably produced by partial melting of continental crust heated by hot mantle-derived magmas during crustal extension. The Deshengying monzogranite represents a post-kinematic pluton emplaced into the Daqingshan fold-and-thrust belt, whereas the Kuisu mylonitic monzogranite is a syn-kinematic pluton intruded along the Hohhot detachment fault. It is evident that the Daqingshan area experienced a change from a compressional to an extensional tectonic regime during 145-140 Ma. The post-orogenic collapse may have resulted in extension of the upper continental crust. Subsequently, as the thrust-detachment system became inactive, the lower crust of the NCC underwent modification and melting from 131 Ma. We conclude

  11. Carbonate-Silicate Association in the Kamafugite of the Toro-Ankole Province (East African Rift)

    NASA Astrophysics Data System (ADS)

    Muravyeva, Natalya; Senin, Valery

    2010-05-01

    . The temperature and oxygen fugacity for the studied rocks was estimated from olivine-spinel equilibrium. Obtained results indicate that crystallization of the mafurite occurred within a wide range of temperature (1230-750°C) and oxygen fugacity (1-3 log units above the QFM buffer). These data demonstrate that crystallization of Toro-Ankole kamafugites occurred in a relatively oxidized setting close to those of wehrlites and subduction-related island-arc oxidized magmas. An increase in oxygen chemical potential resulted from mantle metasomatism widely spread in this area of the East African Rift. To elucidate the origin of kamafugite carbonate inclusions the bulk composition of initial melt for two crystallized inclusions in the ugandite olivine was calculated from data on analyzed mineral compositions. Obtained melts appear to be carbonatite, close to the bomb of Katwe-Kikorongo and average composition of intrusive carbonatite. According to morphology, these are primary inclusions and obtained composition is close to the composition of melt trapped during olivine crystallization. The validity of results has been estimated using a multicomponent system (SiO2 + Al2O3 + TiO2) - CaO + MgO + FeO*)-(Na2O + K2O), which is most close to natural rocks. The compositions of the kamafugite rocks of the Toro-Ankole province were plotted on the diagram with calculated "carbonatite melts". Compositions of calculated melts from inclusions in olivine are plotted on the trend of progressive melting carbonatised lherzolite (or fractional crystallization of alkali basalts), which connects fields of primary carbonatite melts and alkali basalts with data points of high-Mg volcanics of Bunyaruguru. The presence of magmatic carbonates in the olivine from the mafurite and ugandite of the Bunyaruguru volcanic field, the western branch of the East African Rift, indicates that ultrapotassic magmas were in equilibrium with primary carbonatite melts at P-T conditions of their formation.

  12. Proto-Pacific-margin source for the Ordovician turbidite submarine fan, Lachlan Orogen, southeast Australia: Geochemical constraints

    NASA Astrophysics Data System (ADS)

    Offler, R.; Fergusson, C. L.

    2016-04-01

    The Early Palaeozoic proto-Pacific Pacific margin of Gondwana was characterised by a huge turbidite submarine fan with abundant clastic detritus derived from unknown sources within Gondwana. These deposits are widespread in the Lachlan Orogen of southeast Australia and include the Ordovician Adaminaby Group. Here we show that the mudstones and sandstones of the Adaminaby Group have chemical compositions that indicate the detritus in them was derived from a felsic, continental source similar in composition to Post Archean Australian Shales (PAAS). Chondrite normalised REE patterns showing LREE enrichment, flat PAAS normalised patterns and elemental ratios La/Sc, Cr/Th, Cr/V, Th/Sc and Th/U, have been used to support this interpretation. The dominance of quartz, and to a lesser degree plagioclase and biotite in the sandstones, suggests that the source was mainly granodioritic to tonalitic in composition. Th/Yb and Ta/Yb ratios indicate that the source was probably calc-alkaline, continental and shoshonitic. In addition, the presence of detrital muscovite, low-grade metamorphic and felsic volcanic clasts, demonstrates that a low-grade metamorphic terrane and volcanic arc contributed to the detritus observed in the samples. The presence of well-rounded zircons and tourmalines, very high Zr contents, high Zr/Sc and higher Cr/V ratios in some samples particularly in the Shoalhaven River area, indicate that some of the detritus was recycled. SiO2 versus (Al2O3 + K2O + Na2O) plots suggest the source areas experienced conditions varying from humid/semi-humid to semi-arid. Textural features and weathering trends of samples from all locations follow a curved pathway on Al2O3 - (CaO* + Na2O) - K2O (ACNK) diagrams, and indicate that the clays formed from weathering had been K-metasomatised prior to penetrative deformation. Chemical indices of alteration (CIA) reveal that even the freshest sandstones are altered and others are moderately to strongly altered. Discrimination

  13. In vivo behavior of bioactive phosphate glass-ceramics from the system P2O5-Na2O-CaO containing TiO2.

    PubMed

    Monem, Ahmed Soltan; ElBatal, Hatem A; Khalil, Elsayed M A; Azooz, Moenis A; Hamdy, Yousry M

    2008-03-01

    Soda lime phosphate bioglass-ceramics with incorporation of small additions of TiO2 were prepared in the metaphosphate and pyrophosphate region, using an appropriate two-step heat treatment of controlled crystallization defined by differential thermal analysis results. Identification and quantification of crystalline phases precipitated from the soda lime phosphate glasses were performed using X-ray diffraction analysis. Calcium pyrophosphate (beta-Ca2P2O7), sodium metaphosphate (NaPO3), calcium metaphosphate (beta-Ca(PO3)2), sodium pyrophosphate (Na4P2O7), sodium calcium phosphate (Na4Ca(PO3)6) and sodium titanium phosphate (Na5Ti(PO4)3) phases were detected in the prepared glass-ceramics. The degradation of the prepared glass-ceramics were carried out for different periods of time in simulated body fluid at 37 degrees C using granules in the range of (0.300-0.600 mm). The released ions were estimated by atomic absorption spectroscopy and the surface textures were measured by scanning electron microscopy. Evaluation of in vivo bioactivity of the prepared glass-ceramics was carried through implanting the samples in the rabbit femurs. The results showed that the addition of 0.5 TiO2 mol% enhanced the bioactivity while further increase of the TiO2 content decreased the bioactivity. The effect of titanium dioxide on the bioactivity was interpreted on the basis of its action on the crystallization process of the glass-ceramics.

  14. In vivo behavior of bioactive phosphate glass-ceramics from the system P2O5-Na2O-CaO containing TiO2.

    PubMed

    Monem, Ahmed Soltan; ElBatal, Hatem A; Khalil, Elsayed M A; Azooz, Moenis A; Hamdy, Yousry M

    2008-03-01

    Soda lime phosphate bioglass-ceramics with incorporation of small additions of TiO2 were prepared in the metaphosphate and pyrophosphate region, using an appropriate two-step heat treatment of controlled crystallization defined by differential thermal analysis results. Identification and quantification of crystalline phases precipitated from the soda lime phosphate glasses were performed using X-ray diffraction analysis. Calcium pyrophosphate (beta-Ca2P2O7), sodium metaphosphate (NaPO3), calcium metaphosphate (beta-Ca(PO3)2), sodium pyrophosphate (Na4P2O7), sodium calcium phosphate (Na4Ca(PO3)6) and sodium titanium phosphate (Na5Ti(PO4)3) phases were detected in the prepared glass-ceramics. The degradation of the prepared glass-ceramics were carried out for different periods of time in simulated body fluid at 37 degrees C using granules in the range of (0.300-0.600 mm). The released ions were estimated by atomic absorption spectroscopy and the surface textures were measured by scanning electron microscopy. Evaluation of in vivo bioactivity of the prepared glass-ceramics was carried through implanting the samples in the rabbit femurs. The results showed that the addition of 0.5 TiO2 mol% enhanced the bioactivity while further increase of the TiO2 content decreased the bioactivity. The effect of titanium dioxide on the bioactivity was interpreted on the basis of its action on the crystallization process of the glass-ceramics. PMID:17701314

  15. Attaching an alkali metal atom to an alkaline earth metal oxide (BeO, MgO, or CaO) yields a triatomic metal oxide with reduced ionization potential and redirected polarity.

    PubMed

    Nowiak, Grzegorz; Skurski, Piotr; Anusiewicz, Iwona

    2016-04-01

    The existence of a series of neutral triatomic metal oxides MON and their corresponding cations MON (+) (M = Be, Mg, Ca; N = Li, Na, K) was postulated and verified theoretically using ab initio methods at the CCSD(T)/6-311+G(3df)//MP2/6-311+G(3df) level of theory. The calculations revealed that the vertical ionization potentials (IPs) of the MON radicals (calculated using the outer-valence Green's function technique (OVGF) with the 6-311+G(3df) basis set) were ca. 2-3 eV smaller than the IPs of the corresponding MO and NO systems or that of the isolated M atom. Population analysis of the neutral triatomic MON molecules and their corresponding MO counterparts indicated that the attachment of an alkali metal atom to any oxide MO (BeO, MgO, CaO) reverses its polarity, which manifests itself as the redirection of the dipole moment vector. PMID:26994021

  16. Alkali element enrichments on the BABBs at the IODP Expedition 333 Site C0012 in the northern Shikoku Basin

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Nakamura, K.; Fujinaga, K.

    2015-12-01

    The Shikoku Basin is a back arc basin located westside of the Izu-Ogasawara (Bonin) arc, spreading was from 25 to 15 Ma. The drilling of the DSDP, ODP and IODP recovered the backarc basin basalt (BABB) of the Shikoku Basin. Site C0012, south of the Kii Peninsula, was operated during the IODP Exp 333, and BABB was recovered 100m thickness under the 520m of sediment. This BABB is divided into upper aphyric pillow (Unit 1) and lower massive flow (Unit 2) divided at the 560 mbsf, and show variable degree of alteration, clay mineral and zeolite depositions. SiO2 and MgO contents of these basalts are 47-55 and 5-8 wt%. These basalts show wide variation of enrichment of alkali elements, 2.3-7.5 and 0.4-4.2 wt% of Na2O and K2O. Na2O+K2O contents show 3.2-8.0 wt%, and 2 wt% higher trends than other BABBs in the Shikoku Basin at the same SiO2 contents. Na2O and K2O show proportional and anti-proportional trends with increasing LOI. Therefore, both alkali element enrichments in these rocks are caused by secondary mineralization, and host phase of Na2O is hydrous and that of K2O is anhydrous minerals. Secondary mineral phases was mainly identified by XRD. The identified host phases of Na are analcime and thomsonite. Analcime is observed in rocks of more than 4 wt% of Na2O. Chlorite and smectite are identified to clay minerals. This mineral assemblage indicates the high-temperature zeolite facies alteration. The host phases of K are mainly identified into K-feldspar. We assume that secondary mineralization of K-fd is associated with low-temperature albitization. Compared to the lithostratigraphy, the Na enrichment is prominent in the Unit 1 and upper 20 m of the Unit 2, and the K enrichment is prominent in lower part of the Unit 2. We consider that the Na enrichment associated with zeolite depositions occurred under high water/rock ratio with active hydrothermal circulation because of high water permeability of pillow lava, and K enrichment associated with albitization occurred

  17. Fertilization ratios of N-P2O5-K2O for Tifton 85 bermudagrass on two coastal plain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bermudagrass [Cynodon dactylon (L.) Pers.] cultivar Tifton 85 is widely grown throughout the southeastern United States and many other countries for forage production. Because Tifton 85 is actually a hybrid between C. dactylon and C. nlemfuensis, it may not respond to fertilization in the same way ...

  18. Geochemical characterization of migmatized orthogneiss from Porto Ottiolu (NE Sardinia, Italy) and its inferences on partial melting process

    NASA Astrophysics Data System (ADS)

    Cruciani, Gabriele; Fancello, Dario; Franceschelli, Marcello; Columbu, Stefano

    2015-04-01

    by the occurrence of myrmekitic miscrostructures between quartz and feldspar, quartz films at the feldspar interface and by albite rims around plagioclase. Some selected samples were analysed for major, minor and trace element content. The leucosomes are characterized by the following major elements content: SiO2: 72.9-76.2; Al2O3: 14.7-15.4; Fe2O3tot: 0.1-0.7; MgO: 0.1-0.3; CaO: 0.5-3.2; Na2O: 2.4-3.5; K2O: 4.0-8.6 wt%. The noticeable wide range in CaO and K2O is related to the high variability of the plagioclase/K-feldspar ratio. Most leucosomes have granitic composition, except for those occurring along shear zones that have tonalitic composition. Mesosomes major elements contents are SiO2 ca. 70; Al2O3: 14.4-15.1; Fe2O3tot: 2.1-3.4; MgO ca. 1.0; CaO ca. 3.0; Na2O ca. 3.5; K2O ca. 2.6 wt.%. They have granodioritic compositions. All leucosome and mesosome samples are corundum normative. Chondrite-normalized REE patterns of leucosomes are characterized by a marked positive Eu anomaly and by LREE enrichment. Mesosomes are characterized by marked negative Eu anomalies, as well as by LREE and HREE enrichment. ∑REE is higher in mesosomes (153 ppm) than in leucosomes (20-63 ppm). Field relationships, microstructural and geochemical data support the hypothesis that migmatization was generated by partial melting of a probaby Ordovician granitoid. The origin of the various types of leucosome has been discussed.

  19. Optimization of the thermodynamic properties and phase diagrams of P2O5-containing systems

    NASA Astrophysics Data System (ADS)

    Hudon, Pierre; Jung, In-Ho

    2014-05-01

    P2O5 is an important oxide component in the late stage products of numerous igneous rocks such as granites and pegmatites. Typically, P2O5 combines with CaO and crystallizes in the form of apatite, while in volatile-free conditions, Ca-whitlockite is formed. In spite of their interest, the thermodynamic properties and phase diagrams of P2O5-containg systems are not well known yet. In the case of the pure P2O5 for example, no experimental thermodynamic data are available for the liquid and the O and O' solid phases. As a result, we re-evaluated all the thermodynamic and phase diagram data of the P2O5 unary system [1]. Optimization of the thermodynamic properties and phase diagrams of the binary P2O5 systems was then performed including the Li2O-, Na2O-, MgO-, CaO-, BaO-, MnO-, FeO-, Fe2O3-, ZnO-, Al2O3-, and SiO2-P2O5 [2] systems. All available thermodynamic and phase equilibrium data were simultaneously reproduced in order to obtain a set of model equations for the Gibbs energies of all phases as functions of temperature and composition. In particular, the Gibbs energy of the liquid solution was described using the Modified Quasichemical Model [3-5] implemented in the FactSage software [6]. Thermodynamic modeling of the Li2O-Na2O-K2O-MgO-CaO-FeO-Fe2O3-Al2O3-SiO2 system, which include many granite-forming minerals such as nepheline, leucite, pyroxene, melilite, feldspar and spinel is currently in progress. [1] Jung, I.-H., Hudon, P. (2012) Thermodynamic assessment of P2O5. J. Am. Ceram. Soc., 95 (11), 3665-3672. [2] Rahman, M., Hudon, P. and Jung, I.-H. (2013) A coupled experimental study and thermodynamic modeling of the SiO2-P2O5 system. Metall. Mater. Trans. B, 44 (4), 837-852. [3] Pelton, A.D. and Blander, M. (1984) Computer-assisted analysis of the thermodynamic properties and phase diagrams of slags. Proc. AIME Symp. Metall. Slags Fluxes, TMS-AIME, 281-294. [4] Pelton, A.D. and Blander, M. (1986) Thermodynamic analysis of ordered liquid solutions by a modified

  20. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores.

    PubMed

    Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F

    2012-07-15

    Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not

  1. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores.

    PubMed

    Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F

    2012-07-15

    Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not

  2. Binary, ternary and quaternary silicates of CaO, BaO and ZnO in high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD)

    SciTech Connect

    Kerstan, Marita; Mueller, Matthias; Ruessel, Christian

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We examined the thermal expansion of various silicates of CaO, BaO and ZnO. Black-Right-Pointing-Pointer Thermal expansions were determined by dilatometry and high-temperature X-ray diffraction. Black-Right-Pointing-Pointer High-temperature X-ray diffraction enabled to determine anisotropic thermal expansion. Black-Right-Pointing-Pointer CaSiO{sub 3}, Ca{sub 3}Si{sub 2}O{sub 7} and BaCa{sub 2}Si{sub 3}O{sub 9} exhibit the highest thermal expansion. Black-Right-Pointing-Pointer CaSiO{sub 3}, Ca{sub 3}Si{sub 2}O{sub 7} and BaCa{sub 2}Si{sub 3}O{sub 9} are suitable as components in high temperature seals. -- Abstract: Gas-tight seals based on glasses suitable for joining of materials with high thermal expansion coefficients are for example required for solid-oxide fuel cells. If these seals are to be used at high temperatures, they can only be fabricated from glasses which enable the crystallization of phases with high thermal expansion coefficients. This paper reports on some components from systems suitable for high thermal expansion seals: binary calcium silicates, CaSiO{sub 3}, Ca{sub 3}Si{sub 2}O{sub 7} and Ca{sub 2}SiO{sub 4} zinc silicates, Zn{sub 2}SiO{sub 4}, ternary silicates of BaO, CaO and ZnO, BaCa{sub 2}Si{sub 3}O{sub 9}, Ca{sub 2}ZnSi{sub 2}O{sub 7}, and one quaternary silicate, Ba{sub 2}CaZn{sub 2}Si{sub 6}O{sub 17,} studied by high-temperature X-ray diffraction. Only CaSiO{sub 3}, Ca{sub 3}Si{sub 2}O{sub 7} and BaCa{sub 2}Si{sub 3}O{sub 9} exhibit thermal expansion coefficients in the range suitable for high thermal expansion seals of 11.2-11.8 Multiplication-Sign 10{sup -6} K{sup -1} (100-800 Degree-Sign C). The thermal expansions strongly depend on the respective crystallographic axis. The coefficient of thermal expansion of a sealing glass is not only affected by the thermal expansions of the crystalline phases, but also by that of the residual glassy phase as well as by the elastic properties. The phase

  3. Lanthanum and neodymium solubility in simplified SiO{sub 2}-B{sub 2}O{sub 3}-Na{sub 2}O-Al{sub 2}O{sub 3}-CaO high level waste glass

    SciTech Connect

    Kidari, Abdessamad; Bardez-Giboire, Isabelle

    2012-08-15

    Lanthanum and neodymium incorporation in simplified high level waste glasses has been investigated for SiO{sub 2}B{sub 2}O{sub 3}Na{sub 2}OAl{sub 2}O{sub 3}CaO compositions quenched from 1200 degrees C, for varying La /(La + Nd) (atomic) and increasing rare-earth oxides contents. In this system and beyond the solubility limit, rare-earths (RE) elements are reported to form apatite phases with the general formula Ca{sub 2}RE{sub 8}(SiO{sub 4}){sub 6}O{sub 2}. In the current study, speciation of these trivalent RE{sup 3+} cations in both amorphous network and crystal phases was determined from X-ray diffraction, scanning electron microscopy, optical absorption at 10 K, Raman spectroscopy, and electron probe microanalysis. It appeared that RE{sub 2}O{sub 3} solubility was higher for La -rich formulations than for Nd -rich ones and that an increase in the RE oxide content reduces the connectivity of the network building units through formation of non-bridging oxygens at the expense of the oxygen bridges. This depolymerization of the glass network did not affect neodymium environment which consisted in silicate tetrahedra. The composition of the apatite crystals was found to be affected by the La /(La + Nd) of the parent glass and deviation from the ideal composition (Ca{sub 2}RE{sub 8}(SiO{sub 4}){sub 6}O{sub 2}) occurred in the neodymium end of the system. It thus appears that both RE{sub 2}O{sub 3} solubility and crystal composition are strongly dependent on the type and crystal chemistry of the RE elements. (authors)

  4. Simulations with CAO-3D model of photochemical response caused by precipitating electrons and solar protons at both polar regions during geomagnetic storms in October-November 2003 (preliminary comparison with MIPAS data)

    NASA Astrophysics Data System (ADS)

    Krivolutsky, Alexei A.; Banin, Max; Maik Wissing, Jan; Vyushkova, Tatyana

    Relativistic electrons precipitating from radiation belts and solar protons can penetrate below 100 km into the polar atmosphere sometimes reaching the stratospheric levels wasting its energy and causing the ionization. It leads to additional production of NOx and HOx chemical com-pounds which destroy ozone in the chemical catalytic cycles. One of the strongest geomagnetic storms accompained by a strong Solar Proton Eevent (SPE) occured in October-November 2003. This period was covered also by observations with MIPAS instrument placed on board of ENVISAT satellite. The response of atmospheric chemical composition in both polar regions was studied with CAO-3D photochemical-transport model. In order to calculate ionization rates induced by precipitating electrons and solar protons during late October and November 2003, corresponding proton and electron fluxes in different energetic channels from GOES-10 and POES-15/16 have been used. The Atmospheric Ionization Module Osnabruck -AIMOS /Wissing and Kallenrode, 2009/ was used to calculate 3D fields of ionization rates separately by electrons and protons. Photochemical simulations showed that Northern and Southern po-lar regions had different photochemical response. Such difference mostly is the result of the two factors: polar cap expansion during the geomagnetic storm and the effect of horizontal transport. The calculated members of NOy, HOx, Cly families were preliminary compared with corresponding observed data measured by MIPAS and showed a general agreement. The sensitivity of calculated chemical response to the efficiencies of NOx and HOx production by en-ergetic particles have been studied also. This work was supported by Russian Science Foudation for Basic Research (grant 09-05-009949) and by contract 1-6-08 under Russian Sub-Program "Reseach and Investigation of Antarctica".

  5. Variation of photoluminescence features in Pr{sup 3+} doped lithium-fluoro-borate glass by changing different modifier oxides (MgO, CaO, CdO and PbO)-Judd-Ofelt theory application

    SciTech Connect

    Balakrishna, A.; Rajesh, D.; Babu, S.; Ratnakaram, Y. C.

    2015-06-24

    Pr{sup 3+} (1.0 mol%) doped different modifier oxide based six lithium-fluoro-borate glasses with chemical composition of 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-20MO (where M= Mg, Ca, Cd and Pb), 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10MgO-10CaO and 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10CdO-10PbO were prepared by conventional melt quenching technique. Judd-Ofelt theory has been applied for evaluating the Judd-Ofelt intensity parameters for Pr{sup 3+} ion in these glass compositions and are in turn to used to predict radiative properties such as radiative transition probabilities (A{sub T}), branching ratios (β) and stimulated emission cross-section (σ{sub P}). Stimulated emission cross-section (σ{sub p}) of prominent emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} and {sup 1}D{sub 2}→{sup 3}H{sub 4} of Pr{sup 3+} ion in all lithium-fluoro-borate glasses were calculated. Among all the emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} posseses higher branching ratio and stimulated emission cross-section in Mg-Ca glass, which leads to the best laser excitation at 487 nm wavelength.

  6. Structural changes correlated with magnetic spin state isomorphism in the S2 state of the Mn4CaO5 cluster in the oxygen-evolving complex of photosystem II

    DOE PAGES

    Chatterjee, Ruchira; Han, Guangye; Kern, Jan; Gul, Sheraz; Fuller, Franklin D.; Garachtchenko, Anna; Young, Iris D.; Weng, Tsu -Chien; Nordlund, Dennis; Alonso-Mori, Roberto; et al

    2016-05-09

    The Mn4CaO5 cluster in photosystem II catalyzes the four-electron redox reaction of water oxidation in natural photosynthesis. This catalytic reaction cycles through four intermediate states (Si, i = 0 to 4), involving changes in the redox state of the four Mn atoms in the cluster. Recent studies suggest the presence and importance of isomorphous structures within the same redox/intermediate S-state. It is highly likely that geometric and electronic structural flexibility play a role in the catalytic mechanism. Among the catalytic intermediates that have been identified experimentally thus far, there is clear evidence of such isomorphism in the S2 state, withmore » a high-spin (5/2) (HS) and a low spin (1/2) (LS) form, identified and characterized by their distinct electron paramagnetic resonance (EPR spectroscopy) signals. We studied these two S2 isomers with Mn extended X-ray absorption fine structure (EXAFS) and absorption and emission spectroscopy (XANES/XES) to characterize the structural and electronic structural properties. The geometric and electronic structure of the HS and LS S2 states are different as determined using Mn EXAFS and XANES/XES, respectively. The Mn K-edge XANES and XES for the HS form are different from the LS and indicate a slightly lower positive charge on the Mn atoms compared to the LS form. Based on the EXAFS results which are clearly different, we propose possible structural differences between the two spin states. As a result, such structural and magnetic redox-isomers if present at room temperature, will likely play a role in the mechanism for water-exchange/oxidation in photosynthesis.« less

  7. Multi-analytical characterization of archaeological ceramics. A case study from the Sforza Castle (Milano, Italy).

    NASA Astrophysics Data System (ADS)

    Barberini, V.; Maspero, F.; Galimberti, L.; Fusi, N.

    2009-04-01

    The aim of this work was the characterization, using several analytical techniques, of a sample of ancient pottery found during archaeological excavations in the 14th century's Sforza Castle in Milano. The use of a multi-analytical approach is well established in the study of archaeological materials (e.g. Tite et al. 1984, Ribechini et al. 2008). The chemical composition of the sample was determined with X-ray fluorescence spectroscopy. The chemical composition is: SiO2 61.3(±3)%, Al2O3 22.5(±2)%, Fe2O3 7.19(±6)%, K2O 3.85(±1)%, MgO 1.6(±1)%, Na2O 1.6(±4)% (probably overestimated), TiO2 1.02(±2)%, CaO 0.93(±1)%, MnO 0.15(±1)% and P2O5 0.06(±2)%. The K2O content, important when dealing with TL dating, was determined also with atomic absorption spectrophotometry. The K2O content determined with atomic absorption is 3.86(±3)%, in agreement with X-ray fluorescence analysis. The mineralogical composition of the sample was determined with X-ray powder diffraction: quartz 59.6(±1) wt%, mica 37.8(±3) wt% and feldspar (plagioclase) 2.6(±2) wt%. The sample homogeneity was assessed with X-ray computerised tomography (CT), which is a very powerful non-destructive analysis tool for 3D characterization (Sèguin, 1991). CT images show differences in materials with different X-ray absorption (mainly depending on different densities) and 3D reconstruction has many interesting archaeological applications (e.g. study of sealed jars). CT images of the studied sample showed the presence of angular fragments (probably quartz) few millimetres wide immersed in a fine grained matrix. Moreover, before and after the CT analysis, some ceramic powder was sampled to perform thermoluminescence analysis (TL, the powder used for this analysis can not be recovered). It was thus possible to evaluate the dose absorbed by the material due the X-ray irradiation. The dose absorbed after 3 hours of irradiation, the time needed for a complete scan of a 7 x 5 x 1 cm, is about 100 Gy, which

  8. IT Leadership: CAO 2.0

    ERIC Educational Resources Information Center

    Voyles, Bennett

    2006-01-01

    Most of the time, technology in the classroom is a "we" or "they" issue: On one side are the people who deploy and operate the systems, on the other, the academics and staffers who use them. But, typically, on both sides, everyone is so busy trying to prepare for the next class or the next term that there's little opportunity to ask what new…

  9. órbitas: caos en familia

    NASA Astrophysics Data System (ADS)

    Carpintero, D. D.

    Durante los últimos años, ha ido adquiriendo importancia la descripción dinámica de un sistema estelar a través de su estructura orbital, complementando el tradicional uso de la función de distribución en el espacio fase. El desarrollo de esta nueva concepción condujo, con el tiempo, a la conclusión de que las órbitas caóticas juegan un importante papel dinámico en modelos realistas de galaxias. Sin embargo, la determinación de la caoticidad de una órbita, o de la familia regular a la cual pertenece, siguió siendo una tarea artesanal. Nuevos métodos de clasificación fueron surgiendo con el tiempo; hoy en día, se cuenta con métodos que permiten determinar automáticamente el contenido orbital de cualquier potencial arbitrario que se desee para modelar una galaxia, o incluso determinar la familia de una órbita sin siquiera conocer el potencial en el que está sumergida.

  10. Origin of primitive ultra-calcic arc melts at crustal conditions - Experimental evidence on the La Sommata basalt, Vulcano, Aeolian Islands

    NASA Astrophysics Data System (ADS)

    Lanzo, Giovanni; Di Carlo, Ida; Pichavant, Michel; Rotolo, Silvio G.; Scaillet, Bruno

    2016-07-01

    To interpret primitive magma compositions in the Aeolian arc and contribute to a better experimental characterization of ultra-calcic arc melts, equilibrium phase relations have been determined experimentally for the La Sommata basalt (Som-1, Vulcano, Aeolian arc). Som-1 (Na2O + K2O = 4.46 wt.%, CaO = 12.97 wt.%, MgO = 8.78 wt.%, CaO/Al2O3 = 1.03) is a reference primitive ne-normative arc basalt with a strong ultra-calcic affinity. The experiments have been performed between 44 and 154 MPa, 1050 and 1150 °C and from NNO + 0.2 to NNO + 1.9. Fluid-present conditions were imposed with H2O-CO2 mixtures yielding melt H2O concentrations from 0.7 to 3.5 wt.%. Phases encountered include clinopyroxene, olivine, plagioclase and Fe-oxide. Clinopyroxene is slightly earlier than olivine in the crystallization sequence. It is the liquidus phase at 150 MPa, being joined by olivine on the liquidus between 44 and 88 MPa. Plagioclase is the third phase to appear in the crystallization sequence and orthopyroxene was not found. Experimental clinopyroxenes (Fs7-16) and olivines (Fo78-92) partially reproduce the natural phenocryst compositions (respectively Fs5-7 and Fo87-91). Upon progressive crystallization, experimental liquids shift towards higher SiO2 (up to ~ 55 wt.%), Al2O3 (up to ~ 18 wt.%) and K2O (up to ~ 5.5 wt.%) and lower CaO, MgO and CaO/Al2O3. Experimental glasses and natural whole-rock compositions overlap, indicating that progressive crystallization of Som-1 type melts can generate differentiated compositions such as those encountered at Vulcano. The low pressure cotectic experimental glasses reproduce glass inclusions in La Sommata clinopyroxene but contrast with glass inclusions in olivine which preserve basaltic melts more primitive than Som-1. Phase relations for the La Sommata basalt are identical in all critical aspects to those obtained previously on a synthetic ultra-calcic arc composition. In particular, clinopyroxene + olivine co-saturation occurs at very low

  11. Geochemistry of Jurassic to earliest Cretaceous deposits in the Nagato Basin, SW Japan: implication of factor analysis to sorting effects and provenance signatures

    NASA Astrophysics Data System (ADS)

    Ohta, Tohru

    2004-10-01

    One of the intractable problems in provenance analysis is the hydraulic sorting effect and resultant mineralogical heterogeneity in coarse- and fine-grained sediments which conceals provenance characteristics. The present study uses factor analysis to address geochemical responses to the sorting effect and provenance of Late Mesozoic sediments in the Nagato Basin, SW Japan. Factor analysis has proven useful for comprehending geochemical gradients between coarse- and fine-grained sediments. In the present example, compositional differences are based on varying proportions of quartz, plagioclase, chrome spinel, authigenic minerals and phyllosilicates. The contrasting behaviors of these minerals during the depositional stage resulted in the systematic fractionation of SiO 2/Al 2O 3, Na 2O/K 2O and Cr/Ba. Sandstones and mudstones exhibit an array of compositions in SiO 2/Al 2O 3-Na 2O/K 2O and SiO 2/Al 2O 3-Cr/Ba diagrams, the ranges of which reflect compositional variations due to the sorting effect. Sediments of different provenance exhibit distinctive mineral arrays and can be discriminated simply by reading the gradients of the continua. Therefore, this kind of data management concurrently quantifies the sorting effect and allows an estimation of the original source material. The SiO 2/Al 2O 3-Na 2O/K 2O diagram is particularly useful for scrutinizing igneous and mature continental provenances, while the SiO 2/Al 2O 3-Cr/Ba diagram ascertains contributions from mafic sources. This investigative approach delineates a systematic provenance transition within the Nagato Basin: a serpentinite melange provenance in the early Early Jurassic, a magmatic arc in the late Early to middle Middle Jurassic and a continental interior in the latest Jurassic to earliest Cretaceous. The provenance changed by the direct input of mature continental material into the Nagato Basin, which resulted from dissection of the volcanic arc.

  12. Vibrational features of phospho-silicate glasses: Periodic B3LYP simulations

    NASA Astrophysics Data System (ADS)

    Corno, Marta; Pedone, Alfonso

    2009-07-01

    B3LYP periodic calculations with double-ζ polarised basis set using C RYSTAL06 code have been run on a bioactive phospho-silicate glass similar in composition to Bioglass ® 45S5 (46.1 SiO 2, 24.4 Na 2O, 26.9 CaO and 2.6 P 2O 5 mol%) and a phosphorous-free soda-lime glass (49.5 SiO 2, 24.2 Na 2O and 26.4 CaO mol%). Initial structures have been obtained through a melt-quench process by classical molecular dynamics techniques and the effect of phosphorous on the glass network structure and dynamics have been assessed by B3LYP vibrational spectra.

  13. Novel polyvinyl alcohol-bioglass 45S5 based composite nanofibrous membranes as bone scaffolds.

    PubMed

    Shankhwar, Nisha; Kumar, Manishekhar; Mandal, Biman B; Srinivasan, A

    2016-12-01

    Composite nanofibrous membranes based on sol-gel derived 45SiO2 24.5CaO 24.5 Na2O 6 P2O5 (bioglass, BG) and 43SiO2 24.5CaO 24.5 Na2O 6 P2O5 2Fe2O3 (magnetic bioglass, MBG) blended with polyvinyl alcohol (PVA) have been electrospun. These low cost membranes were mostly amorphous in structure with minor crystalline (sodium calcium phosphate) precipitates. All membranes were biodegradable. Among these, the composites exhibited higher tensile strength, better proliferation of human osteosarcoma MG63 cells and higher alkaline phosphatase enzyme activity than the bare PVA membrane, indicating their potential in bone tissue engineering. The magnetic PVA-MBG scaffold was also found to be a promising candidate for magnetic hyperthermia application. PMID:27612814

  14. Experimental evidence of self-limited growth of nanocrystals in glass.

    PubMed

    Bhattacharyya, Somnath; Bocker, Christian; Heil, Tobias; Jinschek, Jörg R; Höche, Thomas; Rüssel, Christian; Kohl, Helmut

    2009-06-01

    Growth of nanocrystals precipitated in glasses with specific compositions can be effectively limited by diffusion barriers forming around crystallites. For the first time, we do experimentally prove this concept of self-limited growth on the nanoscale for a SiO(2)/Al(2)O(3)/Na(2)O/K(2)O/BaF(2) glass in which BaF(2) nanocrystals are formed. As shown by advanced analytical transmission electron microscopy techniques, the growth of these BaF(2) crystals, having great potential for photonic applications, is inherently limited by the formation of a ca. 1 nm wide SiO(2) shell.

  15. Bulk, rare earth, and other trace elements in Apollo 14 and 15 and Luna 16 samples.

    NASA Technical Reports Server (NTRS)

    Laul, J. C.; Wakita, H.; Showalter, D. L.; Boynton, W. V.; Schmitt, R. A.

    1972-01-01

    Measurement of 24 and 34 bulk, minor, and trace elements in lunar specimens by instrumental and radiochemical neutron activation analysis shows greater Al2O3, Na2O, and K2O abundances and higher TiO2, FeO, MnO and Cr2O3 depletions in Apollo 14 soil samples as compared to Apollo 11 samples and to most of Apollo 12 samples. The uniform abundances in 14230 core tube soils and three other Apollo 14 soils indicate that the regolith is uniform to at least 22 cm depth and within about 200 m from the lunar module.

  16. Glass-to-metal seals comprising relatively high expansion metals

    NASA Technical Reports Server (NTRS)

    Hirayama, C. (Inventor)

    1974-01-01

    A glass suitable for glass-to-metal seals that has a resistance to attack by moisture and a high coefficient of linear thermal expansion is introduced. Linear expansion covers the range from 12 to 14 x 10 to the minus 6 C between room temperature and 500 C. The glass is essentially composed of, by molar percent, about 9% of K2O, about 10% of Na2O, about 70% of SiO2, about 6% Al2O3, and about 5% of MgO.

  17. Osumilite-(Mg): Validation as a mineral species and new data

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Rastsvetaeva, R. K.; Aksenov, S. M.; Belakovskiy, D. I.; Van, K. V.; Schüller, W.; Ternes, B.

    2013-12-01

    Osumilite-(Mg), the Mg-dominant analogue of osumilite, has been approved by the CNMNC IMA as a new mineral species. The holotype sample has been found at Bellerberg, Eifel volcanic area, Germany. Fluorophlogopite, sanidine, cordierite, mullite, sillimanite, topaz, pseudobrookite and hematite are associated minerals. Osumilite-(Mg) occurs as short prismatic or thick tabular hexagonal crystals reaching 0.5 × 1 mm in size in the cavities in basaltic volcanic glasses at their contact with thermally metamorphosed xenoliths of pelitic rocks. The mineral is brittle, with Mohs' hardness 6.5. Cleavage was not observed. Color is blue to brown. D meas = 2.59(1), D calc = 2.595 g/cm3. No bands corresponding to H2O and OH-groups are in the IR spectrum. Osumilite-(Mg) is uniaxial (+), ω = 1.539(2), ɛ = 1.547(2). The chemical composition (electron microprobe, average of 5 point analyses, wt %) is: 0.08 Na2O, 3.41 K2O, 0.04 CaO, 7.98 MgO, 0.28 MnO, 21.57 Al2O3, 3.59 Fe2O3, 62.33 SiO2, total 99.28. The empirical formula is: (K0.72Na0.03Ca0.01)(Mg1.97Mn0.04)[Al4.21Fe{0.45/3+}Si10.32]O30. The simplified formula is: KMg2Al3(Al2Si10)O10. The crystal structure was refined on a single crystal, R = 0.0294. Osumilite-(Mg) is hexagonal, space group P6/ mcc; a = 10.0959(1), c = 14.3282(2)Å, V = 1264.79(6) Å3, Z = 2. The strongest reflections in the X-ray powder diffraction pattern [ d, Å I %) ( hkl)] are: 7.21 (37) (002), 5.064 (85) (110), 4.137 (45) (112), 3.736 (43) (202), 3.234 (100) (211), 2.932 (42) (114), 2.767 (51) (204). A type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4174/1.

  18. Stratigraphy and Petrology of the Grande Soufriere Hills Volcano, Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Daly, G.; Smith, A. L.; Garcia, R.; Killingsworth, N.

    2007-12-01

    O2, Sr, V, and Sc and increasing values for Na2O, K2O, Ba, Rb, and Zr with increasing silica. Samples from the megabreccia can be chemically distinguished from the younger rocks of this center. Petrologic models suggest that the younger rocks from the Grand Soufriere Hills can be produced by fractional crystallization of basaltic magma such as those erupted from other centers (such as Morne Anglais to the west). Minor variations within this suite of andesites can be related to upper crustal fractionation of phenocryst phases.

  19. The Southeast Asian Tin Belt

    NASA Astrophysics Data System (ADS)

    Schwartz, M. O.; Rajah, S. S.; Askury, A. K.; Putthapiban, P.; Djaswadi, S.

    1995-07-01

    Range-type plutons (28% of tin production). Tin-mineralized plutons are characterized by high concentrations of SiO 2, K 2O, Rb, Sn, Th and U, whereas the concentrations of Fe 2O 3, MgO, CaO, Na 2O, Ba and Sr as well as the Fe2O3/FeO ratios are low. Tin-mineralized plutons are also distinguished by high initial 87Sr/86Sr ratios low magnetic susceptibilities.

  20. Petrogenesis, geochronology, and tectonic significance of granitoids in the Tongshan intrusion, Anhui Province, Middle-Lower Yangtze River Valley, eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Yu; Du, Yang-Song; Teng, Chuan-Yao; Zhang, Jing; Pang, Zhen-Shan

    2014-01-01

    The Tongshan copper deposit in Anhui Province is a typical mid-sized skarn and porphyry type deposit in the Anqing-Guichi district along the Middle-Lower Yangtze River Valley, eastern China. The Tongshan intrusion is closely related to this mineralization. The intrusion mainly comprises rocks that are quartz diorite porphyry, quartz monzonite porphyry, and granodiorite porphyry. Plagioclase in these rocks is mostly andesine (An = 31.0-42.9), along with minor oligoclase. Biotite is magnesium-rich [Mg/(Mg + Fe) = 0.52-0.67] and aluminum-poor (Al2O3 = 12.32-14.09 wt.%), and can be classified as magnesio-biotite. Hornblende is TiO2-poor (<1.96 wt.%) and magnesium-rich [Mg/(Mg + Fe) > 0.60], and is magnesio-hornblende or edenite. The SHRIMP zircon U-Pb age of the quartz monzonite porphyry is 145.1 ± 1.2 Ma, which corresponds to the middle Yanshanian period. Whole-rock geochemical results show that the rocks are silica-rich (SiO2 = 60.23-66.23 wt.%) and alkali-rich (K2O + Na2O = 4.97-8.72 wt.%), and low in calcium (CaO = 2.61-5.66 wt.%). Trace element results show enrichments in large ion lithophile element (e.g., K, Rb, and Ba) and depletions in some high field strength elements (e.g., Nb, Ta, P, and Ti). The total rare earth element (REE) content of the rocks is low (ΣREE < 200 μg/g), and they exhibit light REE enrichment [(La/Yb)N > 10] and small positive Eu anomalies (average δEu = 1.16). These mineralogical, geochronological, and geochemical results show that the intrusion has a mixed crust-mantle source. The Tongshan intrusion was formed by multiple emplacements of crustally contaminated basaltic magma generated by varying degrees of partial melting of enriched lithospheric mantle and lower crust. Hornblende thermobarometry yielded magmatic crystallization temperatures of 652-788 °C and an average crystallization pressure of 1.4 kbar, which corresponds to a depth of approx. 4.7 km. Biotite thermobarometry yielded similar temperatures and lower pressures of 735

  1. Calcium isotope analytical technique for mafic rocks and its applications on constraining the source of Cenozoic ultra-potassic rocks in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhang, Z.; Xu, J.

    2013-12-01

    Ca isotope analytical technique for mafic rocks has been recently developed and set up at our lab. About mg level of a mafic rock sample was digested, and then a sub portion of the solution contains about 100ug Ca was spiked with a 42Ca-43Ca double spike and went through the column chemistry. Generally the Ca recovery is almost 100% and the procedure blank is about 50-150ng. Finally, about 5-10ug of the collected Ca cut was measured on our Triton TIMS. The precision of the data was around 0.1 per mil and the data we collected for standards are consistent with those reported by previous studies. There are two groups of Cenozoic ultra-potassic rocks that are widespread in Tibetan Plateau: a northern group in Songpan-Ganzi and Qiangtang Terranes and a southern group in Lhasa Terrane. Previous petrology evidence, such as a relative enrichment in large ion lithophile element (LILE); negative Ta,Nb and Ti anomalies and high LREE/HREE ratio, support that those rocks are both derived from sub-continental lithospheric mantle (SCLM). However, differences between these two groups of rocks do exist: the southern group has higher K2O, Rb, Zr, Th, contents and a higher Rb/Ba, coupled with lower Al2O3, CaO, Na2O, Sr; the southern 87Sr/86Sr ratios are higher while the 143Nd/144Nd ratios are lower, etc. These suggest that the rocks could be derived from different mantle sources or produced by different geological processes. Ca isotope is chosen in this study to better understand the source of the ultra-potassic rocks because Ca isotope has been a great tracer of different geological reservoirs and the isotopic compositions of Ca may represent different genesic processes. We propose that the ultra-potassic rocks in the Tibet should have significant 40Ca enrichments due to the decay from 40K to 40Ca, therefore the variation of Ca isotopic compositions among these ultra-potassic rocks could be obvious. We believe that based on our calcium data together with earlier Sr, Nd, Pb data

  2. Toward understanding the effect of low-activity waste glass composition on sulfur solubility

    DOE PAGES

    Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; Piepel, Greg F.; Kruger, Albert A.; Jantzen, C.

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which inmore » turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ≈ P2O5 > Na2O ≈ B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ≈ SnO2 > Others ≈ SiO2. As a result, the order of component effects is similar to previous literature data, in most cases.« less

  3. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model.

    PubMed

    Zhao, Shichang; Li, Le; Wang, Hui; Zhang, Yadong; Cheng, Xiangguo; Zhou, Nai; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-01-01

    There is a need for better wound dressings that possess the requisite angiogenic capacity for rapid in situ healing of full-thickness skin wounds. Borate bioactive glass microfibers are showing a remarkable ability to heal soft tissue wounds but little is known about the process and mechanisms of healing. In the present study, wound dressings composed of borate bioactive glass microfibers (diameter = 0.4-1.2 μm; composition 6Na2O, 8K2O, 8MgO, 22CaO, 54B2O3, 2P2O5; mol%) doped with 0-3.0 wt.% CuO were created and evaluated in vitro and in vivo. When immersed in simulated body fluid, the fibers degraded and converted to hydroxyapatite within ∼7 days, releasing ions such as Ca, B and Cu into the medium. In vitro cell culture showed that the ionic dissolution product of the fibers was not toxic to human umbilical vein endothelial cells (HUVECs) and fibroblasts, promoted HUVEC migration, tubule formation and secretion of vascular endothelial growth factor (VEGF), and stimulated the expression of angiogenic-related genes of the fibroblasts. When used to treat full-thickness skin defects in rodents, the Cu-doped fibers (3.0 wt.% CuO) showed a significantly better capacity to stimulate angiogenesis than the undoped fibers and the untreated defects (control) at 7 and 14 days post-surgery. The defects treated with the Cu-doped and undoped fibers showed improved collagen deposition, maturity and orientation when compared to the untreated defects, the improvement shown by the Cu-doped fibers was not markedly better than the undoped fibers at 14 days post-surgery. These results indicate that the Cu-doped borate glass microfibers have a promising capacity to stimulate angiogenesis and heal full-thickness skin defects. They also provide valuable data for understanding the role of the microfibers in healing soft tissue wounds.

  4. Geochemical investigation of a semi-continuous extrusive basaltic section from the Deccan Volcanic Province, India: implications for the mantle and magma chamber processes

    NASA Astrophysics Data System (ADS)

    Vijaya Kumar, Kopparapu; Chavan, Chakradhar; Sawant, Sariput; Naga Raju, K.; Kanakdande, Prachiti; Patode, Sangita; Deshpande, Krishna; Krishnamacharyulu, S. K. G.; Vaideswaran, T.; Balaram, V.

    2010-06-01

    Spatial and temporal variations in the geochemistry of an extrusive basaltic section of Deccan traps record progressive changes in mantle melting and crustal filtration and are relevant to understand continental flood basalt (CFB) magmatism. In the present work we have carried out detailed field, petrographic, density and magnetic susceptibility, and geochemical investigations on a small, semi-continuous extrusive section in the eastern Deccan Volcanic Province (DVP) to understand the role of shallow magma chambers in CFB magmatism. Four formations, Ajanta, Chikhli, Buldhana and Karanja crop out in the Gangakhed-Ambajogai area with increasing elevation. Our studies indicate that: (1) the Karanja Formation represents a major magma addition, as indicated by abrupt change in texture, increases in MgO, CaO, Ni, Cr, and Sr, and drastic decreases in Al2O3, Na2O, K2O, Rb, Ba, REE, bulk-rock density and magnetic susceptibility; (2) assimilation fractional crystallization, crystal-laden magmas, and accessory cumulus phases influence the trace element chemistry of Deccan basalts; (3) the predicted cumulate sequence of olivine gabbro-leucogabbro-oxide-apatite gabbro is supported by the observed layered series in a shallow magma chamber within the DVP; (4) the initial magma was saturated with olivine, plagioclase, and augite, and final the pressure of equilibration for the Gangakhed-Ambajogai section basalts is ~2 kbar (~6 km depth); (5) petrophysical parameters act as proxies for magmatic processes; (6) a small layer of oxide-rich basalts may represent the latest erupted pulse in a given magmatic cycle in the DVP; (7) parental basalts to some of the red boles, considered as formation boundaries, might represent small degree partial melts of the mantle; (8) SW Deccan basaltic-types continue into the eastern DVP; and (9) in addition to the magma chamber processes, dynamic melting of the mantle may have controlled DVP geochemistry. The present study underscores the importance of

  5. Apatite and clinopyroxene as tracers for metasomatic processes in nepheline clinopyroxenites of Uralian-Alaskan-type complexes in the Ural Mountains, Russian Federation

    NASA Astrophysics Data System (ADS)

    Krause, Joachim; Harlov, Daniel E.; Pushkarev, Evgeny V.; Brügmann, Gerhard E.

    2013-11-01

    Clinopyroxene and apatite are found to trace metasomatic processes in nepheline-bearing clinopyroxenites (tilaites) from the igneous, mafic-ultramafic Uralian-Alaskan-type complexes of Kytlym and Nizhny Tagil, Ural Mountains, Russian Federation. The clinopyroxenites consist predominantly of coarse-grained, partially to totally altered clinopyroxene phenocrysts in a matrix of fine-grained olivine, clinopyroxene, plagioclase, K-feldspar, and nepheline. Apatite occurs as idiomorphic inclusions (<25 μm) in the clinopyroxene and as xenomorphic grains in the matrix. In the matrix, plagioclase is partially to totally replaced by a fine-grained symplectitic intergrowth of K-feldspar and nepheline most likely due to the influx of an K2O-, Na2O-, and Al2O3-bearing fluid. During conversion of the plagioclase, CaO and SiO2 were partitioned into the fluid. Altered areas in the clinopyroxene phenocrysts are characterized by the redistribution of major and trace elements. This includes depletion in Mg, Rb, and Sr and enrichment in Al, Na, Ba, U, Th, REE except Eu, and HFSE compared to the original magmatic areas in the clinopyroxene. Apatite inclusions in the altered areas of the clinopyroxene and in the matrix are enriched in Cl relative to apatite inclusions in the unaltered areas of clinopyroxene. It is proposed that these rocks experienced a two-stage metasomatic process. Stage 1 was the partial to total alteration of plagioclase to K-feldspar and nepheline due to interaction with an infiltrating (K,Na)Cl-rich brine (most likely late magmatic) with an Al component, which enriched the fluid in CaCl2. Stage 2 consisted of the partial to total chemical alteration of the original magmatic clinopyroxene by this now CaCl2-enriched fluid through the mechanism of coupled dissolution-reprecipitation. This process also chemically altered the apatite inclusions from fluor-chlorapatite to chlor-fluorapatite and redistributed as well as partially removed the titanomagnetite inclusions in

  6. Explosive eruption of rhyodacitic magma at the Cordón-Caulle volcanic complex, southern Chile

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Schipper, C.

    2011-12-01

    After lying dormant for decades, the Cordón-Caulle volcanic complex (CCVC) reactivated again on 4 June, 2011 with an explosive eruption that produced a sustained vertical ash column reaching roughly 14,000 m a.s.l. This explosive phase produced a tephra plume that dispersed E-SE across the Chilean Patagonia into Argentina, and within a week encircled the globe prompting widespread disruption to air traffic and several airport closures. After about 3 weeks of fluctuating explosive activity, a lava flow began effusing from the same vent as the initial activity. We analyzed pumice and ash samples of the Plinian fall from 4 June for their major and trace element makeup, mineralogical characteristics, and 3D textural relationships within pyroclasts. The light beige, phenocryst-poor (<5 vol%) pumice contains plagioclase (~1mm) as its primary phase, and magnetite, orthopyroxene and clinopyroxene in sub-equal amounts. The crystals often form intergrowth clusters but may also be found separate and enclosed in highly vesicular microlite-free glass. As shown by XRF analyses on bulk pumice and ash samples collected from two localities southeast of the vent, the current eruptives comprise the following (in wt.%): SiO2 = 69.6, TiO2 = 0.70, Al2O3 = 14.3, Fe2O3 = 4.56, MnO = 0.11, MgO = 0.54, CaO = 2.3, Na2O = 5.14, K2O = 2.75, P2O5 = 0.11; and, (in ppm): Cr = 6.7, Ni = 2.3, Rb = 70.3, Sr = 163.3, Y = 51.7, Zr = 328, Ba = 702, Pb = 23.7. Interestingly, these compositions are virtually identical to those of magma erupted during 1960 and closely resemble rhyodacite erupted in 1921 from nearby vents. The primary difference between the present eruption and its recent predecessors is the much greater eruptive vigour of the current phase. Another distinction between the present and past historical eruptions is the presence of conspicuous mafic-felsic mingling textures in a small percentage (~0.5 vol%) of the current pumice. Textural and chemical analyses of the mafic blobs are

  7. Petrological constraints on magma storage and transfer beneath Volcán Cerro Machín (Colombia): A volcano showing signs of unrest

    NASA Astrophysics Data System (ADS)

    Muir, D.; Caricchi, L.; Mendez, R.; Londoño, J. M.

    2012-04-01

    Cerro Machín Volcano, located in the Central Cordillera (Colombia) is a dacitic volcano positioned along a large-scale fracture system. Past activity is characterised by explosions of varying intensities and by the effusion of lava domes, with 6 main eruptive cycles occurring over the last 10 kyrs. Currently, the volcano presents two central domes with a total diameter of about 3 km, where two fumarolic fields are located. The rest of the edifice is composed of a 600 m thick ring of pyroclastic flows. Recent seismic swarms, located at depths between 18 and 2 km, have prompted further investigation of this volcanic system. Erupted products are dacitic with similar bulk chemistries to Pinatubo (65.1 wt% SiO2, 2.1 wt% MgO, 2.1 wt% K2O, 4.3 wt% CaO and 4.4 wt% Na2O) apart from FeOT, which at 3.3 wt%, is lower by around 1 wt%. The mineralogical assemblage is composed of plagioclase, quartz, hornblende (two populations: high- and low-Mg) and biotite phenocrysts along with ilmenite, magnetite, and accessory apatite and zircon. All phases, both in products of explosive eruption and dome samples, appear to be at equilibrium with an absence of sieve textures in plagioclase and no dehydration reaction rims in the hydrous phases. Because of the similarities in bulk composition, phase equilibria experiments for Pinatubo (Scaillet et al., 2001) can be used to provide information on the storage conditions of Machín magmas prior to eruption. The presence of biotite suggests temperatures lower than 750°C with melt water contents of at least 5.7 wt % corresponding to water saturation pressures between 225 and 240 MPa. Analyses to determine the amount of sulphur present in the magma are currently being performed to assess its possible influence on the stability of biotite (Scaillet et al., 2001). The lack of evidence of mineral resorption in the eruptive products may imply relatively low magmatic temperatures or fast rates of magma transfer beneath Cerro Machín volcano. We are

  8. Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Chatterjee, N.; Grove, T. L.

    2003-04-01

    Phase equilibrium experiments on the most magnesian Apollo 15C green picritic glass composition indicate a multiple saturation point with olivine and orthopyroxene at 1520 deg C and 1.3 GPa (about 260 km depth in the moon). This composition has the highest Mg# of any lunar picritic glass and the shallowest multiple saturation point. Experiments on an Apollo 15A composition indicate a multiple saturation point with olivine and orthopyroxene at 1520°C and 2.2 GPa (about 440 km depth in the moon). The importance of the distinctive compositional trends of the Apollo 15 groups A, B, and C picritic glasses merits the reanalysis of NASA slide 15426,72 with modern electron microprobe techniques. We confirm the compositional trends reported by Delano (1979, 1986) in the major element oxides SiO2, TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, and CaO, and we also obtained data for the trace elements P2O5, K2O, Na2O, NiO, S, Cu, Cl, Zn, and F. Petrogenetic modeling demonstrates that the Apollo 15 A-B-C glass trends could not have been formed by fractional crystallization or any continuous assimilation/fractional crystallization (AFC) process. The B and C glass compositional trends could not have been formed by batch or incremental melting of an olivine + orthopyroxene source or any other homogeneous source, though the A glasses may have been formed by congruent melting over a small pressure range at depth. The B compositional trend is well modeled by starting with an intermediate A composition and assimilating a shallower, melted cumulate, and the C compositional trend is well modeled by a second assimilation event. The assimilation process envisioned is one in which heat and mass transfer were separated in space and time. In an initial intrusive event, a picritic magma crystallized and provided heat to melt magma ocean cumulates. In a later replenishment event, the picritic magma incrementally mixed with the melted cumulate (creating the compositional trends in the green glass data

  9. A comparative evaluation of the CF:CS and CRS models in 210Pb chronological studies applied to hydrographic basins in Brazil.

    PubMed

    Bonotto, D M; García-Tenorio, R

    2014-09-01

    The Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported⧸excess (210)Pb models have been applied to a (210)Pb data set providing of eighteen sediments profiles sampled at four riverine systems occurring in Brazil, South America: Corumbataí River basin (S1=Site 1, São Paulo State), Atibaia River basin (S2=Site 2, São Paulo State), Ribeirão dos Bagres basin (S3=Site 3, São Paulo State) and Amazon River mouth (S4=Site 4, Amapá State). These sites were chosen for a comparative evaluation of the performance of the CF:CS and CRS models due to their pronounced differences on the geographical location, geological context, soil composition, biodiversity, climate, rainfall, and water flow regime, among other variable aspects. However, all sediments cores exhibited a common denominator consisting on a database built from the use of the same techniques for acquiring the sediments major chemical composition (SiO2, Al2O3, Na2O, K2O, CaO, MgO, Fe2O3, MnO, P2O5, TiO2 and LOI-Loss on Ignition) and unsupported/excess (210)Pb activity data. In terms of sedimentation rates, the performance of the CRS model was better than that of the CF:CS model as it yielded values more compatible with those expected from field evidences. Under the chronological point of view, the CRS model always provided ages within the permitted range of the (210)Pb-method in the studied sites, whereas the CF:CS model predicted some values above 150 years. The SiO2 content decreased in accordance with the LOI increase in all cores analyzed and such inverse relationship was also tracked in the SiO2-LOI curves of historical trends. The SiO2-LOI concentration fluctuations in sites S1 and S3 also coincided with some Cu and Cr inputs in the drainage systems. PMID:25005051

  10. Geochemistry of oceanic igneous rocks - Ridges, islands, and arcs - With emphasis on manganese, scandium, and vanadium

    USGS Publications Warehouse

    Doe, B.R.

    1997-01-01

    A database on a number of elements in oceanic volcanic rocks is presented, including the principal major-element oxides - SiO2, TiO2, Al2O3, Fe2O3(T), MnO, MgO, CaO, Na2O, K2O, and P2O5 (where T refers to total iron) - and the trace elements - Ba, Ce, Cr, Cu, Ni, Sc, Sr, V, Pb (mainly by isotope dilution), Yb, Zn, and Zr. Interpretations are given for transition metals, with emphasis on Mn, Sc, and V, in order to determine the concentration of the elements in primitive melts and assess their trends in magmatic differentiation. Transition metals are not enriched in plagioclase, so all are incompatible with pure plagioclase removal - that is, they become enriched in the melt. Both Cr and Ni are known to be highly compatible with olivine separation - i.e., they are depleted in the melt early in differentiation. Also, Sc is compatible with clinopyroxene (Cpx) removal from the melt and is depleted by separation of Cpx. Copper does not fit well in any of the principal silicates, but Cu, like Ni, is greatly enriched in sulfides that may remain in the source or separate from the magma. Decreasing Ni abundances and increasing Cu contents during differentiation are a sign of olivine separation. In the analysis presented herein, V - in the absence of Cpx separation - is found to behave remarkably like the moderately incompatible element Zn, and these two elements add to the list of element pairs of similar incompatibility whose ratios are insensitive to differentiation and to submarine weathering as well. Both are enhanced in titanomagnetite, so both would he compatible during titanomagnetite separation. When Cpx separates, however, V becomes compatible like Sc, but Zn remains incompatible. Thus, decreasing V (and Sc) contents and increasing Zn contents during differentiation are a sign of Cpx separation. Manganese often behaves much like Zn and therefore is moderately incompatible, but Mn is less compatible than Zn and V in titanomagnetite. Thus, decreasing Zn and V with

  11. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Ghiorso, Mark S.; Sack, Richard O.

    1995-03-01

    A revised regular solution-type thermodynamic model for twelve-component silicate liquids in the system SiO2 TiO2 Al2O3 Fe2O3 Cr2O3 FeO MgO CaO Na2O K2O P2O5 H2O is calibrated. The model is referenced to previously published standard state thermodynamic properties and is derived from a set of internally consistent thermodynamic models for solid solutions of the igneous rock forming minerals, including: (Mg, Fe2+, Ca)-olivines, (Na, Mg, Fe2+, Ca)M2 (Mg, Fe2+, Ti, Fe3+, Al)M1 (Fe3+, Al, Si)2 TETO6- pyroxenes, (Na,Ca,K)-feldspars, (Mg, Fe2+) (Fe3+, Al, Cr)2O4-(Mg, Fe2+)2 TiO4 spinels and (Fe2+, Mg, Mn2+)TiO3-Fe2O3 rhombohedral oxides. The calibration utilizes over 2,500 experimentally determined compositions of silicate liquids coexisting at known temperatures, pressures and oxygen fugacities with apatite ±feldspar ±leucite ±olivine ±pyroxene ±quartz ±rhombohedral oxides ±spinel ±whitlockite ±water. The model is applicable to natural magmatic compositions (both hydrous and anhydrous), ranging from potash ankaratrites to rhyolites, over the temperature ( T) range 900° 1700° C and pressures ( P) up to 4 GPa. The model is implemented as a software package (MELTS) which may be used to simulate igneous processes such as (1) equilibrium or fractional crystallization, (2) isothermal, isenthalpic or isochoric assimilation, and (3) degassing of volatiles. Phase equilibria are predicted using the MELTS package by specifying bulk composition of the system and either (1) T and P, (2) enthalpy (H) and P, (3) entropy (S) and P, or (4) T and volume (V). Phase relations in systems open to oxygen are determined by directly specifying the f o2 or the T-P-f o2 (or equivalently H- P-f o2, S- P-f o2, T-V- f o2) evolution path. Calculations are performed by constrained minimization of the appropriate thermodynamic potential. Compositions and proportions of solids and liquids in the equilibrium assemblage are computed.

  12. An example of trondhjemite genesis by means of alkali metasomatism: Rockford Granite, Alabama Appalachians

    NASA Astrophysics Data System (ADS)

    Drummond, Mark S.; Ragland, Paul C.; Wesolowski, David

    1986-03-01

    A model for trondhjemite genesis is proposed where granite is transformed to trondhjemite via infiltration by a Na-rich metamorphic fluid. The Rockford Granite of the Northern Alabama Piedmont serves as the case example for this process and is characterized as a synmetamorphic, peraluminous trondhjemite-granite suite. The major process operative in the conversion of granite to trondhjemite involves cation exchange of Na for K in the feldspar and mica phases through a volatile fluid medium. Whole-rock δ 18O values for the trondhjemites are negatively correlated with atomic proportion K/Na ratio indicating a partial reequilibration of the altered granitoids with a Na- and18O-rich metamorphically derived fluid. Biotite decomposition to an Al-epidote-paragonitic muscovite-secondary quartz assemblage is also associated with the sodium metasomatism, as are apatite replacement by Al-epidote and secondary zircon crystallization. Rare albitization of primary magmatic plagioclase and discontinuous grossularite reaction rim growth on magmatic garnet are present in the trondhjemites indicating the mobility of Ca during alkali metasomatism. The replacement of magmatic phases by me tasomatic phases exemplifies the chemical changes produced during infiltration metasomatism where the trondhjemites are depleted in P2O5, Th, Rb, U, K2O, V, Sn, F, MgO, Pb, TiO2, FeO* and Li and enriched in CaO, Na2O, Zr and Sr relative to the granites. Other elements, such as Cr, MnO, Cu, Zn, Co, Ba, SiO2, Ni, Al2O3, are shown to be relatively immobile during the metasomatism. The infiltration metasomatism probably occurred during prograde regional metamorphism, when a discrete fluid phase was produced in the surrounding amphibolite-grade metasediments. Foliation planes in the granite apparently served as conduits for fluid flow with reaction-enhanced permeability accompanying the 8% molar volume reduction during Na-for-K exchange in the feldspars. A source for the Na and Sr in the metamorphic fluid

  13. A Raman model for determining the chemical composition of silicate glasses

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Morgavi, Daniele; Hess, Kai-Uwe; Neuville, Daniel R.; Perugini, Diego; Dingwell, Donald B.

    2015-04-01

    Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light which provides information about molecular vibrations of the investigated sample. Since the discovery of the Raman Effect (1928) in scattered light from liquids, the Raman investigation has been extended to a large number of substances at different pressure-temperature conditions. Recently, the Raman instrument setup has rapidly grown thanks to the progress in development of lasers, charge coupled devices and confocal systems (see Neuville et al. 2014 for a review). Here we present the first Raman model able to determine the chemical composition of silicate glasses. In this study we combine chemical analysis from magma mixing experiments between remelted basaltic and rhyolitic melts, with a high spatial resolution Raman spectroscopy investigation; we focus on tracking the evolution of the Raman spectrum with chemical composition of silicate glasses. The mixing process is driven by a recently-developed apparatus that generates chaotic streamlines in the melts (Morgavi et al., 2013), mimicking the development of magma mixing in nature. From these experiments we obtained a glassy filament with a chemical composition ranging from a basalt to a rhyolite. Raman and microprobe measurements have been performed on a filament of ~1000 μm diameter, every 2.5-20 μm. The evolution of the acquired Raman spectra with the measured chemical composition has been parametrized by combining both the Raman spectra of the basaltic and rhyolitic end-members. Using the developed Raman model we have been able to determine the chemical composition (mol% of SiO2, Al2O3, FeO, CaO, MgO, Na2O and K2O) of the investigated filament. Additionally, the proposed Raman model has been successfully tested using external remelted natural samples; reference glasses (Jochum et al., 2000), a remelted basalt, andesite from Etna and Montserrat respectively. Finally, as the Raman spectrum depends on the

  14. Geochemistry of mid ocean ridge basalts (MORB) from the northern Central Indian Ridge between 7°46 and 13°20 S: Implication of mantle heterogeneity influenced by Reunion hotspot plume?

    NASA Astrophysics Data System (ADS)

    Lee, J.; Lee, I.; Lee, S.; Kim, J.

    2010-12-01

    Between the Rodrigues Triple Junction (RTJ) and Carlsberg Ridge, The Central Indian Ridge (CIR) is a slow-intermediate spreading-rate (~ 43mm/year) plate boundary formed during separation of the Mascarene Plateau from the Chagos-Lacadives Ridge. Although several samplings of basaltic rocks were carried out in previous explorations on Indian Ridge, no systematic studies on the petrogenesis of CIR, especially for north of 18°S have been reported yet. We present the major and trace element composition of lavas dredged along the spreading axis of the northern CIR between 7°46 and 13°20 S. The mineralogy of the CIR MORB mainly consists of tiny needle- and/or lath-like plagioclase microlites (~45%), sub- to anhedral olivine (~15%), small anhedral clino-pyroxene (~10%), and intersertal/intergranular Fe-Ti oxide glass matrix (~30%). In the whole rock and glass chemistry, the samples show the very similar pattern of compositional variation in SiO2, Al2O3, FeO, and CaO concentration against MgO (6.59 ~ 8.68 wt %), although relatively less compatible elements (TiO2, Na2O, K2O, and P2O5) show linear trend. Plottings of Na8.0, Fe8.0, and CaO/Al2O3 vs. depth are examined to check the varying extents of partial melting and the global correlations. The results broadly agree with the global trend of MORB and fall within the dry MORB domain. Concentration of light rare earth elements (LREE) vary widely in the analyzed rock samples ((La/Sm)N ≈ 0.68 ~ 1.41 and (Nb/Yb)N ≈ 0.42 ~ 1.93). In spider diagram normalized by primitive mantle, the volcanic lavas show systematic increase of incompatible element concentration from south (segment 1) to north (segment 5), which could be attributed to the influence of enriched source in south of the study area. However, basalts from segment 2 are significantly enriched in incompatible elements. Plots of the ratios of several incompatible elements versus La/Sm ratio show a linear trend which could be attributed to the mixing of depleted and

  15. Reprint of "Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: Composition of lavas from 1988 to 2007"

    NASA Astrophysics Data System (ADS)

    Keller, J.; Zaitsev, A. N.

    2012-11-01

    The natrocarbonatites of Oldoinyo Lengai, Tanzania, are unique in magmatic petrology. The historical activity of Oldoinyo Lengai has seen changes from nephelinitic to natrocarbonatitic character of the emitted magmas. Since 1983 the activity was characterized by the effusion of fluid natrocarbonatite lava from which we have collected and analyzed fresh samples in the summit crater from 1988 to 2007. The available compositional data set forms the basis for presenting and discussing the typical composition and variation of natrocarbonatites and their relationship to the silicate magmas of Oldoinyo Lengai. The "type" natrocarbonatite major and trace element composition is derived for an average of 25 samples with low standard deviation. Oldoinyo Lengai carbonatites are unique in almost all aspects of their petrological and geochemical characteristics and are characterized as extremely alkali-rich, with Na2O + K2O generally about 40 wt.%, and with high CaO contents of 14-18 wt.%. This composition results from the presence of phenocrysts of nyerereite (Na,K)2Ca(CO3)2 and gregoryite (Na,K,Cax)2-x(CO3) dominating the highly porphyritic natrocarbonatite lavas, with sylvite and fluorite as main groundmass minerals. The significance of particular trace element concentrations and ratios of equally incompatible elements (REE, Ba, Sr, Th/U, Nb/Ta, Zr/Hf) is evaluated for models of liquid-liquid separation. In defining a "type" natrocarbonatite composition, we also distinguish special variations in chemical and/or mineralogical compositions as follows: (1) silicate-bearing natrocarbonatites, characterized by the occurrence of nephelinite spheroids, as in the 1993 and 2006 lavas; (2) residual melt compositions as described from the 1988 eruptive period as represented by the aphyric, filter-pressed interstitial melt of solidifying porphyritic lavas; (3) an interlude during 2000 when natrocarbonatites with sylvite and fluorite microcrysts were emitted. After 25 years of mostly mild

  16. Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: Composition of lavas from 1988 to 2007

    NASA Astrophysics Data System (ADS)

    Keller, J.; Zaitsev, A. N.

    2012-09-01

    The natrocarbonatites of Oldoinyo Lengai, Tanzania, are unique in magmatic petrology. The historical activity of Oldoinyo Lengai has seen changes from nephelinitic to natrocarbonatitic character of the emitted magmas. Since 1983 the activity was characterized by the effusion of fluid natrocarbonatite lava from which we have collected and analyzed fresh samples in the summit crater from 1988 to 2007. The available compositional data set forms the basis for presenting and discussing the typical composition and variation of natrocarbonatites and their relationship to the silicate magmas of Oldoinyo Lengai. The "type" natrocarbonatite major and trace element composition is derived for an average of 25 samples with low standard deviation. Oldoinyo Lengai carbonatites are unique in almost all aspects of their petrological and geochemical characteristics and are characterized as extremely alkali-rich, with Na2O + K2O generally about 40 wt.%, and with high CaO contents of 14-18 wt.%. This composition results from the presence of phenocrysts of nyerereite (Na,K)2Ca(CO3)2 and gregoryite (Na,K,Cax)2-x(CO3) dominating the highly porphyritic natrocarbonatite lavas, with sylvite and fluorite as main groundmass minerals. The significance of particular trace element concentrations and ratios of equally incompatible elements (REE, Ba, Sr, Th/U, Nb/Ta, Zr/Hf) is evaluated for models of liquid-liquid separation. In defining a "type" natrocarbonatite composition, we also distinguish special variations in chemical and/or mineralogical compositions as follows: (1) silicate-bearing natrocarbonatites, characterized by the occurrence of nephelinite spheroids, as in the 1993 and 2006 lavas; (2) residual melt compositions as described from the 1988 eruptive period as represented by the aphyric, filter-pressed interstitial melt of solidifying porphyritic lavas; (3) an interlude during 2000 when natrocarbonatites with sylvite and fluorite microcrysts were emitted. After 25 years of mostly mild

  17. A Paleoproterozoic paleosol horizon in the Lesser Himalaya and its regional implications

    NASA Astrophysics Data System (ADS)

    Bhargava, O. N.; Kaur, Gurmeet; Deb, M.

    2011-11-01

    A Paleoproterozoic paleosol horizon in the Himachal Himalaya along a basement-cover contact is identified on the basis of an integrated field-petrographic-geochemical studies. The paleosol horizon is exposed in a road section along the Sutlej River near Karcham. It is represented by a 2-5 m thick sericite schist unit along the contact of the 1866 ± 10 Ma Jeori-Wangtu-Bandal Gneissic Complex (JWBGC) and the overlying sericite quartzite of the Manikaran Formation (Rampur Group), which is interstratified with 1800 ± 13 Ma tholeiitic flows in its basal part. The geochemical studies reveal a sharp drop in the concentration of SiO 2, Fe 2O 3, MgO, CaO, Na 2O and a rise in concentration of Al 2O 3, TiO 2, K 2O and P 2O 5 at the contact of granite gneiss and sericite schist. REE plots of granite gneiss, sericite schist and quartzite samples of the Manikaran Formation display similarity of pattern, fractionation between the LREE and HREE and comparable negative Eu anomaly. The total REE of the sericite schist and sericitic quartzite is lower than those of the granite gneiss. Based on these studies the sericite schist is inferred to be a metamorphosed alumina-rich soil, which appears to have formed in a warm and humid climate in a waterlogged terrain of gentle relief, and is post-1866 Ma and pre-1800 Ma in age. Apparent gradation from the strongly deformed amphibolite facies JWBC to the sericite schist with diffused contact indicates that the JWBGC was already metamorphosed and deformed prior to the development of the paleosol; thereafter both together with the overlying Manikaran Formation were subjected to low-grade metamorphism during the Himalayan orogeny. The JWBC is involved in the crystalline thrust sheet and is present throughout the length of the Himalaya. Thus, it is inferred that the Paleoproterozoic metamorphism was a regional event in the Himalaya at a time when the Indian Plate was part of the Nuna Supercontinent.

  18. Heavy metal accumulation in balsam pear and cowpea related to the geochemical factors of variable-charge soils in the Pearl River Delta, South China.

    PubMed

    Chang, Chun-Ying; Xu, Xiang-Hua; Liu, Chuan-Ping; Li, Shu-Yi; Liao, Xin-Rong; Dong, Jun; Li, Fang-Bai

    2014-07-01

    Variable-charge (v-c) soils in subtropical areas contain considerable amounts of iron/aluminum (Fe/Al) oxides that can strongly influence the fate of heavy metals in agricultural ecosystems. However, the relationship between heavy metal accumulation in vegetables and the geochemical factors associated with v-c soils in subtropical regions remains unknown. The present study investigated heavy metal accumulation under field conditions in the Pearl River Delta (PRD) by measuring the content of 8 heavy metals (zinc (Zn), arsenic (As), copper (Cu), mercury (Hg), lead (Pb), chromium (Cr), nickel (Ni) and cadmium (Cd)) in 43 pairs of v-c soil and vegetable (balsam pear and cowpea) samples. Soil physicochemical properties including pH, texture, organic matter and oxide minerals (Fe2O3, SiO2, Al2O3, CaO, MgO, K2O and Na2O) were also analyzed. Heavy metal accumulation from soil to vegetables was assessed based on bioconcentration factors (BCFs). The results showed that soil extractable Fe, oxide minerals and chemical weathering indices of v-c soils strongly affected heavy metal accumulation, whereas the content of Zn, Cu, Cr and Ni in vegetables was strongly affected by the soil clay content. Significant correlations were found between the BCFs of heavy metals and oxide minerals. However, no significant relationship was found between pH and heavy metal accumulation (except for Cu) in balsam pear and cowpea. Correlation analyses showed that a lower oxalate/DCB- extractable Fe content might indicate greater heavy metal (Zn, Cu, Hg, Cr and Ni) accumulation in vegetables. Therefore, it can be deduced that oxalate/DCB- extractable Fe content is a critical geochemical factor that determines the bioavailability of heavy metals and that iron biogeochemical cycles play vital roles in the fate of heavy metals in vegetable fields in this area. These findings provide new insights into the behaviors and fate of heavy metals in subtropical v-c soils and can be used to develop possible

  19. The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Anderson, Ryan B.; Morris, Richard V.; Clegg, Samuel M.; Bell, James F.; Wiens, Roger C.; Humphries, Seth D.; Mertzman, Stanley A.; Graff, Trevor G.; McInroy, Rhonda

    2011-10-01

    Laser-induced breakdown spectroscopy (LIBS) was used to quantitatively analyze 195 rock slab samples with known bulk chemical compositions, 90 pressed-powder samples derived from a subset of those rocks, and 31 pressed-powder geostandards under conditions that simulate the ChemCam instrument on the Mars Science Laboratory Rover (MSL), Curiosity. The low-volatile (<2 wt.%) silicate samples (90 rock slabs, corresponding powders, and 22 geostandards) were split into training, validation, and test sets. The LIBS spectra and chemical compositions of the training set were used with three multivariate methods to predict the chemical compositions of the test set. The methods were partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs. Both the full LIBS spectrum and the intensity at five pre-selected spectral channels per major element (feature selection) were used as input data for the multivariate calculations. The training spectra were supplied to the algorithms without averaging ( i.e. five spectra per target) and with averaging ( i.e. all spectra from the same target averaged and treated as one spectrum). In most cases neural networks did not perform better than PLS for our samples. PLS2 without spectral averaging outperformed all other procedures on the basis of lowest quadrature root mean squared error (RMSE) for both the full test set and the igneous rocks test set. The RMSE for PLS2 using the igneous rock slab test set is: 3.07 wt.% SiO 2, 0.87 wt.% TiO 2, 2.36 wt.% Al 2O 3, 2.20 wt.% Fe 2O 3, 0.08 wt.% MnO, 1.74 wt.% MgO, 1.14 wt.% CaO, 0.85 wt.% Na 2O, 0.81 wt.% K 2O. PLS1 with feature selection and averaging had a higher quadrature RMSE than PLS2, but merits further investigation as a method of reducing data volume and computation time and potentially improving prediction accuracy, particularly for samples that differ significantly from the training set. Precision and accuracy were influenced

  20. Origin of hydrous fluids at seismogenic depth: Constraints from natural and experimental fault rocks

    NASA Astrophysics Data System (ADS)

    Mittempergher, Silvia; Dallai, Luigi; Pennacchioni, Giorgio; Renard, François; Di Toro, Giulio

    2014-01-01

    Fluids control the mechanical behavior of fault zones during the seismic cycle. We used geochemical, mineralogical, microstructural, hydrogen isotope compositions and Fourier Transform Infrared (FTIR) investigations to characterize the origin of hydrous fluids involved in ductile and brittle shear zones at the bottom of the seismogenic crust. Natural samples were collected from exhumed mylonitic shear zones and cataclasite-pseudotachylyte bearing faults in the northern Adamello (Italian Southern Alps), which were active at 9-11 km depth. Pseudotachylytes, solidified coseismic friction-induced melts, testify to ancient seismogenic behavior of the faults. Natural pseudotachylytes were compared with artificial pseudotachylytes produced in high velocity friction experiments simulating seismic slip. Mylonites have mineralogical, elemental and hydrogen isotope compositions (-80‰<δD<-78‰) similar to the host tonalite (-77‰<δD<-73‰), within the analytical error of ±5‰. Cataclasites have instead mineralogical (chlorite, epidote, K-feldspar, no biotite), major and trace elements (enrichment in K2O, Ba, Rb; depletion in CaO, Na2O, SiO2) and hydrogen isotope (-69‰<δD<-60‰) compositions suggesting interactions with a crustal metamorphic fluid. Pseudotachylytes are composed of high temperature minerals (plagioclase, biotite, dmisteinbergite, cordierite, and scapolite) and have elemental compositions resulting from mixing of tonalite and cataclasite. Pseudotachylytes have complex microstructures, including: (i) microlitic domains, with well crystallized micrometric biotite, which have hydrogen isotope composition (-81‰<δD<-59‰) similar to cataclasites and tonalite; and (ii) cryptocrystalline domains, with poorly crystallized biotite, which have very high water content, release water upon heating at T>50 °C and have low δD value (-93‰). The hydrogen isotope composition of bulk samples is dominated by the composition of cryptocrystalline domains (-103

  1. Origin of two types of rhyolites in the Tarim Large Igneous Province: Consequences of incubation and melting of a mantle plume

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Quan; Xu, Yi-Gang; Tian, Wei; Zhong, Yu-Ting; Mundil, Roland; Li, Xian-Hua; Yang, Yue-Heng; Luo, Zhen-Yu; Shang-Guan, Shi-Mai

    2014-09-01

    The Early Permian Tarim Large Igneous Province (LIP) in northwestern China contains a large area of silicic volcanics (~ 48,000 km2) which are spatially and temporally associated with mafic-ultramafic rocks. In order to understand the behavior of crust above a mantle plume, selected rhyolitic samples are investigated in terms of U-Pb zircon dating, geochemical and isotopic analyses. The Tarim rhyolites have high A/CNK ratios (= molar Al2O3/CaO + Na2O + K2O), Fe#, Ga/Al ratios, concentrations of high field strength elements (HFSEs) such as Zr and Nb, and rare earth elements (REEs), along with high zircon saturation temperatures (872-940 °C), typical of aluminous A-type granitoids. Two contrasting rock types have been recognized. The low Nb-Ta type rhyolites are mainly associated with the first phase of the Tarim flood basalt magmatism at ~ 290 Ma. They are characterized by negative Nb-Ta anomalies, low εNd(t) and εHf(t) values, and high 87Sr/86Sr(t) and δ18Ozircon values, consistent with a derivation from continental crustal source. The high Nb-Ta type rhyolites and their plutonic equivalents are associated with the second episode of Tarim magmatism (283-272 Ma). They are characterized by small negative to positive Nb-Ta anomalies, oceanic island basalt (OIB)-like trace element ratios, low 87Sr/86Sr(t) and high εNd(t) and εHf(t) values. These high Nb-Ta rhyolites are best interpreted as hybrid products of crystal fractionation of mafic magmas, coupled with crustal assimilation. The temporal and compositional evolution of the Tarim rhyolites reflects various extents of thermal and mass exchange between mantle-derived basaltic magma and crustal material above a mantle plume. When the plume head rises to the base of the Tarim craton, it first melts enriched components in the lithospheric mantle (~ 290 Ma), part of which may have ponded near the crust-mantle boundary and induced crustal anatexis leading to the formation of the low Nb-Ta type rhyolites. At ~ 280 Ma

  2. Formation and emplacement of two contrasting late-Mesoproterozoic magma types in the central Namaqua Metamorphic Complex (South Africa, Namibia): Evidence from geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Bial, Julia; Büttner, Steffen H.; Frei, Dirk

    2015-05-01

    The Namaqua Metamorphic Complex is a Mesoproterozoic low-pressure, granulite facies belt along the southern and western margin of the Kaapvaal Craton. The NMC has formed between ~ 1.3 and 1.0 Ga and its central part consists essentially of different types of granitoids intercalated with metapelites and calc-silicate rocks. The granitoids can be subdivided into three major groups: (i) mesocratic granitoids, (ii) leucocratic granitoids and (iii) leucogranites. The high-K, ferroan mesocratic granitoids (54-75 wt% SiO2) have a variable composition ranging from granitic to tonalitic, and contain biotite and/or hornblende or orthopyroxene. They are strongly enriched in REE and LILE, indicating A-type chemical characteristics, and are depleted in Ba, Sr, Eu, Nb, Ta and Ti. The leucocratic granitoids and leucogranites (68-76 wt% SiO2) differ from the other group in having a granitic or slightly syenitic composition containing biotite and/or garnet/sillimanite. They have lower REE and MgO, FeOt, CaO, TiO2, MnO concentrations, but higher Na2O and K2O contents. Compositional variations in mesocratic granitoids indicate their formation by fractional crystallization of a mafic parental magma. Leucocratic granitoids and leucogranites lack such trends, which suggests melting of a felsic crustal source without subsequent further evolution of the generated magmas. The mineralogical and geochemical characteristics of the mesocratic granitoids are consistent magmatic differentiation of a mantle derived, hot (> 900 °C) parental magma. The leucocratic granitoids and leucogranites granites were formed from low-temperature magmas (< 730 °C), generated during fluid-present melting from metasedimentary sources. New U-Pb zircon ages reveal that both magma types were emplaced into the lower crust within a 30-40 million years interval between 1220-1180 Ma. In this time period the crust reached its thermal peak, which led to the formation of the leucocratic granitoids and leucogranites. A

  3. Magma mixing in the San Francisco Volcanic Field, AZ

    NASA Astrophysics Data System (ADS)

    Bloomfield, Anne L.; Arculus, Richard J.

    1989-08-01

    A wide variety of rock types are present in the O'Leary Peak and Strawberry Crater volcanics of the Pliocene to Recent San Francisco Volcanic Field (SFVF), AZ. The O'Leary Peak flows range from andesite to rhyolite (56 72 wt % SiO2) and the Strawberry Crater flows range from basalt to dacite (49 64 wt % SiO2). Our interpretation of the chemical data is that both magma mixing and crustal melting are important in the genesis of the intermediate composition lavas of both suites. Observed chemical variations in major and trace elements can be modeled as binary mixtures between a crustal melt similar to the O'Leary dome rhyolite and two different mafic end-members. The mafic end-member of the Strawberry suite may be a primary mantle-derived melt. Similar basalts have also been erupted from many other vents in the SFVF. In the O'Leary Peak suite, the mafic end-member is an evolved (low Mg/(Mg+ Fe)) basalt that is chemically distinct from the Strawberry Crater and other vent basalts as it is richer in total Fe, TiO2, Al2O3, MnO, Na2O, K2O, and Zr and poorer in MgO, CaO, P2O5, Ni, Sc, Cr, and V. The derivative basalt probably results from fractional crystallization of the more primitive, vent basalt type of magma. This evolved basalt occurs as xenolithic (but originally magmatic) inclusions in the O'Leary domes and andesite porphyry flow. The most mafic xenolith may represent melt that mixed with the O'Leary dome rhyolite resulting in andesite preserved as other xenoliths, a pyroclastic unit (Qoap), porphyry flow (Qoaf) and dacite (Darton Dome) magmas. Thermal constraints on the capacity of a melt to assimilate (and melt) a volume of solid material require that melt mixing and not assimilation has produced the observed intermediate lavas at both Strawberry Crater and O'Leary Peak. Textures, petrography, and mineral chemistry support the magma mixing model. Some of the inclusions have quenched rims where in contact with the host. The intermediate rocks, including the

  4. Geochemistry and geodynamics of a Late Cretaceous bimodal volcanic association from the southern part of the Pannonian Basin in Slavonija (Northern Croatia)

    USGS Publications Warehouse

    Pamic, J.; Belak, M.; Bullen, T.D.; Lanphere, M.A.; McKee, E.H.

    2000-01-01

    In this paper we present petrological and geochemical information on a bimodal basaltrhyolite suite associated with A-type granites of Late Cretaceous age from the South Pannonian Basin in Slavonija (Croatia). Basalts and alkali-feldspar rhyolites, associated in some places with ignimbrites, occur in volcanic bodies that are interlayered with pyroclastic and fossiliferous Upper Cretaceus sedimentary rocks. The petrology and geochemistry of the basalts and alkali-feldspar rhyolites are constrained by microprobe analyses, major and trace element analyses including REE, and radiogenic and stable isotope data. Basalts that are mostly transformed into metabasalts (mainly spilites), are alkalic to subalkalic and their geochemical signatures, particularly trace element and REE patterns, are similar to recent back-arc basalts. Alkali-feldspar rhyolites have similar geochemical features to the associated cogenetic A-type granites, as shown by their large variation of Na2O and K2O (total 8-9%), very low MgO and CaO, and very high Zr contents ranging between 710 and 149ppm. Geochemical data indicate an amphibole lherzolite source within a metasomatized upper mantle wedge, with the influence of upper mantle diapir with MORB signatures and continental crust contamination. Sr incorporated in the primary basalt melt had an initial 87Sr/86Sr ratio of 0.7039 indicating an upper mantle origin, whereas the 87Sr/86Sr ratio for the alkalifeldspar rhyolites and associated A-type granites is 0.7073 indicating an apparent continental crust origin. However, some other geochemical data favour the idea that they might have mainly originated by fractionation of primary mafic melt coupled with contamination of continental crust. Only one rhyolite sample appears to be the product of melting of continental crust. Geological and geodynamic data indicate that the basalt-rhyolite association was probably related to Alpine subduction processes in the Dinaridic Tethys which can be correlated with

  5. Experimental and Petrological Constraints on Lunar Differentiation from the Apollo 15 Green Picritic Glasses

    NASA Technical Reports Server (NTRS)

    Elkins-Tanton, Linda T.; Chatterjee, Nilanjan; Grove, Timothy L.

    2003-01-01

    Phase equilibrium experiments on the most magnesian Apollo 15C green picritic glass composition indicate a multiple saturation point with olivine and orthopyroxene at 1520 C and 1.3 GPa (about 260 km depth in the moon). This composition has the highest Mg# of any lunar picritic glass and the shallowest multiple saturation point. Experiments on an Apollo 15A composition indicate a multiple saturation point with olivine and orthopyroxene at 1520 C and 2.2 GPa (about 440 km depth in the moon). The importance of the distinctive compositional trends of the Apollo 15 groups A, B, and C picritic glasses merits the reanalysis of NASA slide 15426,72 with modern electron microprobe techniques. We confirm the compositional trends reported by Delano (1979, 1986) in the major element oxides SiO2, TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, and CaO, and we also obtained data for the trace elements P2O5, K2O, Na2O, NiO, S, Cu, Cl, Zn, and F. Petrogenetic modeling demonstrates that the Apollo 15 A-B-C glass trends could not have been formed by fractional crystallization or any continuous assimilation/fractional crystallization (AFC) process. The B and C glass compositional trends could not have been formed by batch or incremental melting of an olivine + orthopyroxene source or any other homogeneous source, though the A glasses may have been formed by congruent melting over a small pressure range at depth. The B compositional trend is well modeled by starting with an intermediate A composition and assimilating a shallower, melted cumulate, and the C compositional trend is well modeled by a second assimilation event. The assimilation process envisioned is one in which heat and mass transfer were separated in space and time. In an initial intrusive event, a picritic magma crystallized and provided heat to melt magma ocean cumulates. In a later replenishment event, the picritic magma incrementally mixed with the melted cumulate (creating the compositional trends in the green glass data set

  6. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model.

    PubMed

    Zhao, Shichang; Li, Le; Wang, Hui; Zhang, Yadong; Cheng, Xiangguo; Zhou, Nai; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-01-01

    There is a need for better wound dressings that possess the requisite angiogenic capacity for rapid in situ healing of full-thickness skin wounds. Borate bioactive glass microfibers are showing a remarkable ability to heal soft tissue wounds but little is known about the process and mechanisms of healing. In the present study, wound dressings composed of borate bioactive glass microfibers (diameter = 0.4-1.2 μm; composition 6Na2O, 8K2O, 8MgO, 22CaO, 54B2O3, 2P2O5; mol%) doped with 0-3.0 wt.% CuO were created and evaluated in vitro and in vivo. When immersed in simulated body fluid, the fibers degraded and converted to hydroxyapatite within ∼7 days, releasing ions such as Ca, B and Cu into the medium. In vitro cell culture showed that the ionic dissolution product of the fibers was not toxic to human umbilical vein endothelial cells (HUVECs) and fibroblasts, promoted HUVEC migration, tubule formation and secretion of vascular endothelial growth factor (VEGF), and stimulated the expression of angiogenic-related genes of the fibroblasts. When used to treat full-thickness skin defects in rodents, the Cu-doped fibers (3.0 wt.% CuO) showed a significantly better capacity to stimulate angiogenesis than the undoped fibers and the untreated defects (control) at 7 and 14 days post-surgery. The defects treated with the Cu-doped and undoped fibers showed improved collagen deposition, maturity and orientation when compared to the untreated defects, the improvement shown by the Cu-doped fibers was not markedly better than the undoped fibers at 14 days post-surgery. These results indicate that the Cu-doped borate glass microfibers have a promising capacity to stimulate angiogenesis and heal full-thickness skin defects. They also provide valuable data for understanding the role of the microfibers in healing soft tissue wounds. PMID:25890736

  7. A large eruption convulsed in prehistoric times an extensive area of Catamarca, Southern Central Andes, NW Argentina

    NASA Astrophysics Data System (ADS)

    Fernandez-Turiel, Jose-Luis; Ratto, Norma; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Rejas, Marta; Lobo, Agustin

    2016-04-01

    Geomorphological, stratigraphical, mineralogical and chemical characteristics of many recent 30-160 cm ash deposits occurring at the Bolsón de Fiambalá in Catamarca, NW Argentina, allow their correlation. This lithostratigraphic unit is named Fiambalá Ash and it is uncovered or covered by colluvial deposits and present-day aeolian deposits, reworked products of the primary fall deposits. The grain size of these ash deposits is gritty rather than silty. They are nearly unique among regional ashes in containing hornblende phenocrysts. In addition, they are made up of glass (subangular blocky shards), feldspars, biotite, and quartz; magnetite, ilmenite, apatite and titanite are scarce. The glass is rhyolitic (˜75 to 79 % m/m SiO2; ˜3 to 4 % m/m Na2O; ˜3 to 5 % m/m K2O; 1 to 2 % m/m CaO; normalized to 100 %). On the other hand, in northern margins of Fiambalá basin, extensive remnants of fines-poor pumiceous debris flows and hyperconcentrated sandflow deposits as thick as 10 m are exposed on the walls of the river gorges, where the base is usually covered, e.g., Chuquisaca River. There is no significant unconformity or intercalation of other materials, thus suggesting rapid emplacement after a single eruptive event. A preliminary age of Fiambalá Ash based on archaeological studies bracket it between 1400-1270 and 1270-980 cal a BP (OxCal 4.2.4, SHCal13, 2 sigma). The geographical distribution, the geomorphological features observed in satellite images and the information on the main trends of the stratigraphy, the abundance of hornblende and biotite in the younger proximal ash fall deposits, ignimbrites and lava-domes of the Nevado Tres Cruces complex, favours this edifice as the strongest candidate to be the source of the Upper Holocene pyroclastic deposits found in the Fiambalá basin. The archaeological records seem to evidence the abrupt environmental and societal changes associated with this major eruption. Significant areas of Catamarca were likely

  8. Petrology and geochemistry of Mesozoic granitic rocks from the Nansha micro-block, the South China Sea: Constraints on the basement nature

    NASA Astrophysics Data System (ADS)

    Yan, Quanshu; Shi, Xuefa; Liu, Jihua; Wang, Kunshan; Bu, Wenrui

    2010-01-01

    There are several micro-blocks dispersed in the South China Sea (SCS), e.g., Xisha-Zhongsha block, Nansha block and Reed-Northeastern Palawan block, etc., but detailed petrological constraints on their basement nature were previously lacking. The magmatic ages for granitic rock samples from two dredge stations in the Nansha micro-block vary from 159 to 127 Ma, which are comparable to magmatic activities occurred in the northern margin (Pearl river mouth), HongKong and East China. Petrographic characteristics, major-, trace element and Sr-Nd isotopic data of nine samples from two dredged station performed in the Nansha micro-block, the SCS, are reported. Petrographically, these granitic rocks can be divided into two groups which underwent a complex history of magmatic process, i.e., tonalitic rock (Group I) and monzogranitic rock (Group II). The Rittmann index ( σ) for these rocks (1.9-3.1) suggest that they belong to calc-alkaline rocks. Group I rocks which is of typical I-type, have higher contents of TiO 2, Al 2O 3, FeO, MgO, CaO, Na 2O and P 2O 5, but lower values of SiO 2 and K 2O, when compared with those of Group II with I-type characteristics. Group I rocks are produced by partial melting of older Precambrian basement with the variable influence of mantle-derived magma which results from the interaction of released fluids from the subducted slab and the overlying mantle wedge in a general convergent margin setting, and Group II rocks result from partial melting of lower crustal basic rocks (amphibolite) and/or further partial melting of the Group I rocks associated with the variable influence from the underplating mantle-derived magma resulting from lithospheric extensional regime. Both Groups I and II have undergone assimilation and fractional crystallization (AFC) processes during its petrogenesis. This study therefore demonstrates that there exists a continental basement within micro-blocks in the South China Sea, and further supports the idea that a

  9. Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69Ga early terrestrial ecosystems and paleoatmospheric chemistry

    USGS Publications Warehouse

    Driese, S.G.; Jirsa, M.A.; Ren, M.; Brantley, S.L.; Sheldon, N.D.; Parker, Dana C.; Schmitz, M.

    2011-01-01

    Field and laboratory investigations of a 2690.83Ma (207Pb/206Pb age of Saganaga Tonalite) unconformity exposed in outcrop in northeastern Minnesota, USA, reveal evidence for development of a deep paleoweathering profile with geochemical biosignatures consistent with the presence of microbial communities and weakly oxygenated conditions. Weathering profiles are characterized by a 5-50m thick regolith that consists of saprolitized Saganaga Tonalite and Paulson Lake succession basaltic metavolcanic rocks retaining rock structure, which is cross-cut by a major unconformity surface marking development of a successor basin infilled with alluvial deposits. The regolith and unconformity are overlain by thick conglomerate deposits that contain both intrabasinal (saprock) as well as extrabasinal detritus. Thin-section microscopy and electron microprobe analyses reveal extensive hydrolysis and sericitization of feldspars, exfoliation and chloritization of biotite, and weathering of Fe-Mg silicates and Cu-Fe sulfides; weathering of Fe-Ti oxides was relatively less intense than for other minerals and evidence was found for precipitation of Fe oxides. Geochemical analyses of the tonalite, assuming immobile TiO2 during weathering (??Ti,j), show depletion of SiO2, Al2O3, Na2O, CaO, MgO, and MnO, and to a lesser degree of K2O, relative to least-weathered parent materials. Significant Fe was lost from the tonalite. A paleoatmospheric pCO2 of 10-50 times PAL is estimated based on geochemical mass-balance of the tonalite profile and assuming a formation time of 50-500Kyr. Interpretations of metabasalt paleoweathering are complicated by additions of sediment to the profile and extensive diagenetic carbonate (dolomite) overprinting. Patterns of release of P and Fe and retention of Y and Cu in tonalite are consistent with recent laboratory experiments of granite weathering, and with the presence of acidic conditions in the presence of organic ligands (produced, for example, by a

  10. Northernmost Known Outcrop in North America of Lower Cretaceous Porphyritic Ocoite Facies (Ocoa, Chile) at Western Mexico: the Talpa Ocoite

    NASA Astrophysics Data System (ADS)

    Zárate-del Valle, P. F.; Demant, A.

    2003-04-01

    At Talpa de Allende region in Western Mexico is located the northernmost known outcrop of ocoite facies (andesite): the Talpa ocoite (TO). The ocoite facies consists of an calk-alkaline andesitic rock rich in K and characterized by the presence of megacrysts of plagioclase (An48-65). TO belongs to the so-called Guerrero Terrane composed of plutono-volcanic and volcano-sedimentary sequences of the Alisitos-Teloloapan arc that was accreted to the North American craton at the end of the early Cretaceous (Lapierre et al., 1992, Can. J. Earth Sci. 29. 2478--2489). Geodynamically TO belongs to lithological sequence number IV or "Tecoman" of Tardy et al. (1994, Tectonophysics 230, 49--73). TO in hand-sample shows typical megacrysts (>1 cm) of plagioclase and clinopyroxene in a dark green aphanitic matrix. This andesitic lava has a shoshonitic character as evidenced by chemical composition: SiO_2 TiO_2 Al_2O_3 Fe_2O_3 MnO MgO CaO Na_2O K_2O P_2O_5 LOI % Ba Sr (ppm) 55.64 0.73 16.61 8.39 0.13 3.59 6.40 3.55 2.85 0.36 1.84% 1093 880 Under microscope TO is characterized by a porphyritic texture made of large labradorite phenocrysts (up to 3 cm) and clinopyroxene with a matrix made of plagioclase microlites; TO has been affected by a low grade metamorphism process belonging to the prehnite-pumpellite facies as it happens in Chile (Levi, 1969, Contr. Mineral. and Petrol. 24-1, p. 30--49). Electron microprobe analysis shows that plagioclase (An55-57) is partly transformed into albite (An7-9); clinopyroxene shows a variation in composition from Wo33En41Fs17 to Wo40En44Fs24 and it is transformed towards the margin first into amphibole and then into biotite. TO outcrops located at East of Talpa river are affected by a deep rubefaction process. TO is not characterized by the presence of bitumen as it occurs in Northern Chile (Nova-Muñoz et al., 2001, EUG XI Meeting, OS09 Supo09 PO, 606); TO is related in time with albian-cenomanian volcanogenic massive sulphides of Western Mexico

  11. Calcinaksite, KNaCa(Si4O10) H2O, a new mineral from the Eifel volcanic area, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Aksenov, Sergey M.; Rastsvetaeva, Ramiza K.; Blass, Günter; Varlamov, Dmitry A.; Pekov, Igor V.; Belakovskiy, Dmitry I.; Gurzhiy, Vladislav V.

    2015-08-01

    The new mineral calcinaksite, ideally KNaCa(Si4O10) · H2O, the first hydrous and Ca-dominant member of the litidionite group, is found in a xenolith of metamorphosed carbonate-rich rock from the southern lava flow of the Bellerberg volcano, Eastern Eifel region, Rheinland-Pfalz, Germany. It is associated with wollastonite, gehlenite, brownmillerite, Ca2SiO4 (larnite or calcio-olivine), quartz, aragonite, calcite, jennite, tobermorite and ettringite. Calcinaksite occurs as clusters of colourless to light-grey subhedral prismatic crystals. The mineral is brittle, with Mohs' hardness of 5; Dmeas is 2.62(2) g/cm3 and Dcalc is 2.623 g/cm3. The IR spectrum shows the presence of H2O molecules forming three different H-bonds. Calcinaksite is optically biaxial (+), α = 1.542(2), β = 1.550(2), γ = 1.565(3), 2 V meas = 75(10). The chemical composition (electron-microprobe data, H2O determined by the Alimarin method, wt%) is: Na2O 6.69, K2O 12.01, CaO 15.04, FeO 0.59, SiO2 61.46, H2O 4.9, total 100.69. The empirical formula is H2.11 K0.99Na0.84Ca1.04Fe0.03Si3.98O11. The crystal structure was solved and refined to R 1 = 0.053, wR 2 = 0.075 based upon 3057 reflections having I > 3σ( I). Calcinaksite is triclinic, space group P , a = 7.021(2), b = 8.250(3), c = 10.145(2) Å. α = 102.23(2)°, β = 100.34(2)°, γ = 115.09(3)°, V = 495.4(3) Å3, Z = 2. The strongest reflections of the X-ray powder pattern [ d, Å ( I,%) ( hkl)] are: 3.431 (70) (-121, -211, -210, 012, 0-22), 3.300 (67) (-031), 3.173 (95) (-103, -201, -220, 003, 111), 3.060 (100) (-212, 2-11, -221, 200, -1-13, 021, -202), 2.851 (83) (0-23, -122, 1-13, 1-31), 2.664 (62) (1-23, -222, 201).

  12. Diffusion-Reaction Between Basaltic Andesite and Gabbro at 0.5 GPa: an Explanation for Anorthitic Plagioclase?

    NASA Astrophysics Data System (ADS)

    Lundstrom, C. C.; Boudreau, A. E.; Pertermann, M.

    2004-12-01

    Despite the remarkably smooth variation in bulk composition of erupted lavas at Arenal volcano (1968-2003), mineral compositions vary widely. Plagioclase ranges from An52 to An95 while Cr2O3 in CPX varies from 0.7 to 0.05 wt % (Streck et al., 2003). To address the question "how do bulk compositions remain near-steady-state while crystal compositions vary widely," we have performed 2 diffusion-reaction experiments in the piston cylinder at 0.5 GPa. These juxtaposed Arenal basaltic andesite AR-8 at 1200° C with a Stillwater Complex gabbro, lying in a thermal gradient toward the piston. In one experiment, we synthesized a glass-plagioclase (An67-75) aggregate of AR-8 in a graphite-Pt-Ti capsule at P-T, polished one end, dried tracer solutions of 45Ca, 6Li, 84Sr and 136Ba on its surface, and juxtaposed it with gabbro for 13 days. Profiles of bulk composition as a function of distance from the interface show that AR-8 gains Al2O3, MgO and CaO from the gabbro and loses Na2O, K2O, SiO2 and FeO to it. Notably, a plagioclase rich (65%) layer develops at the interface between the two materials as CPX disappears. This layer and the compositional profiles are reproduced by diffusion-reaction models using IRIDIUM (Boudreau, 2003). Plagioclase at the interface develops a texture of homogeneous anorthitic cores (An90) that abruptly shift to 10μ m rims having compositions (An67) in Na-Ca exchange equilibrium with the co-existing melt. A beta track map shows that 45Ca is incorporated into the plagioclase cores while SIMS analyses indicate isotopic equilibration between core and melt. Thus, these anorthitic plagioclase result from diffusion-reaction with efficient chemical communication between the melt and the plagioclase core. Microchannels cutting through the rim, rather than solid-state diffusion, appear to control re-equilibration. Other observations from the experiment parallel Arenal lavas: Mg# variation in OPX is small in both experiments and lavas while profiles of Cr

  13. Carbonate Stability and Melt Composition in Peridotite-CO2 System to 20 GPa

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Ohtani, E.; Litasov, K. D.; Suzuki, A.; Terasaki, H.

    2005-12-01

    Carbon dioxide and water are the most important volatile constituents in the Earth and they produce drastic changes in the melting phase relations and partial melt compositions of the mantle peridotite. Study of the peridotite-CO2 system is closely related to petrogenesis of kimberlite and diamond. There are a few high pressure mineral inclusions (i.e. majorite garnet and Ca and Mg perovskite) in diamond which suggest that kimberlites may be originated from the transition zone and lower mantle. The phase relations and melt compositions in the CO2-bearing peridotite at high pressures are poorly constrained, however the kimberlite and basalt-CO2 systems have been studied intensively. Simplified peridotite-CO2 system (like CMS or CMAS) has been studied at pressures up to 12 GPa (Canil and Scarfe, 1990), whereas complex peridotite-CO2 systems have been investigated only at lower pressures (up to 4 GPa, e.g. Wendlandt and Mysen, 1980). In this work we report the preliminary results on the phase relations and melt compositions of a model peridotite-CO2 system determined at 10-20 GPa and temperature range from 1200 to 2100oC. Our results show that solidus of carbonated peridotite is consistent with low-pressure data for CMAS-CO2 system. Liquidus phase at 10-20 GPa is majorite garnet. At 10-15 GPa, crystallization sequence with decreasing temperature is garnet, olivine and clinoenstatite. Magnesite is the most important CO2-rich phase stable in peridotite up to 1600oC at 20 GPa. The partial melt formed by 10-25% melting at 10-20 GPa has high MgO (26-34 wt.%) and FeO (7.0-10.4 wt.%) and low SiO2 (18-36 wt.%) and Al2O3 (0.5-1.3 wt.%) contents. It also contains 6-12 wt.% CaO, 0.6-2.0 wt.% Na2O and 0.1-0.3 wt.% K2O. The CO2 contents in the melts are 14-32 wt.%. The SiO2-poor nature of the partial melts is different from the results for melting of anhydrous or water-bearing peridotite. Partial melting of hydrous peridotite produces the melts enriched in SiO2, which can be

  14. Geochemical indications and Detrital Zircon U-Pb ages of net-like laterite from Youjiang terrace, Bose Basin, southwestern China: new evidence of proximal provenance for laterite sediments

    NASA Astrophysics Data System (ADS)

    Cheng, F.; Hong, H.; Li, C.; Ye, H.; Yang, H.

    2015-12-01

    The net-like laterite sediments is widely spread over the terraces and high lands of the river valley in southern China during mid-Pleistocene, although whose origin is still debated. The Xiaomei laterite sediments on the terraces of Youjiang River, Guangxi Zhuang Autonomous Region, southern China, was dominated by the intermittently uplift of the Tibetan Plateau for the mechanism during the Quaternary times. Compared to the loess-paleosol deposits in Chinese Loess Plateau (CLP), the upper continental crust (UCC) and the post-Archean Australian average shale (PAAS), the sediments show notable depletion of the relative mobile compositions like CaO, MgO, Na2O, K2O, Sr, Ba and the accumulation of TiO2, Al2O3, Fe2O3(t), Zr, but similar with other laterite sediments (the Xuancheng and Jiujiang laterite profiles) in the middle to lower reaches of Yangtze River, southern China. The relatively uniform La/Th ratio, U/Pb vs. Th/Pb ratio and chondrite-normalized REE distribution pattern of Xiaomei samples are similar with the loess-paleosol deposits and UCC values, which suggesting the sediments have experienced well-mixing prior to deposition and intense superficial weathering. The low ɛNd(t) values and uniform 147Sm/144Nd ratios with the 87Sr/86Sr vs. Rb/Sr ratios show the notable differences with loess-paleosol deposits and the recycling function of the old fluvial sediments which are similar with the Pearl River sediments. The stable zircon age distribution pattern with three age groups of 240-300Ma, 420-480Ma and 900-1000Ma for Xiaomei laterite samples are different with the loess-paleosol deposits and its source regions. The zircons are mainly derived from a source of the Upper Permian to Middle Triassic clastic rocks in Youjiang Basin, superordinate tectonic unit of Bose Basin, and their potential source areas like the Emeishan Large Igneous Province (Emeishan LIP) and the southeastern area of south China Craton (SCC). For the basis of these data, we suggest that that

  15. Solubility of BaS in BaO-BaF2 slag and the Influence of FeOx, SiO2, Cr2O3, BaCI2, CaO, and MgO on the sulfide capacity of this system

    NASA Astrophysics Data System (ADS)

    Rachev, Ivan P.; Tsukihashi, Fumitaka; Sano, Nobuo

    1992-03-01

    The influence of SiO2, FeOx, Cr2O3, BaCl2, CaO, and MgO on the sulfide capacity of the BaO-BaF2 system was measured at 1473 K, using a gas-slag-metal equilibration technique. It was found that the substitution of BaF2 by SiO2, FeOx, Cr2O3, and BaCl2 decreases the sulfide capacity of the BaO-BaF2 system. Similar results were obtained for the carbonate capacity. The CaO-saturated BaO-BaF2 flux, however, was found to have slightly higher sulfide and carbonate capacities than the pure BaO-BaF2 flux. The solubility of CaO increased with increasing BaF2 content and was 18 mol pet in BaF2 at 1473 K. The solubility of MgO in the BaO-BaF2 system at the same temperature is very low, and it has no effect on the sulfide and carbonate capacities. The solubility of BaS in the BaO-BaF2 system was also measured at 1473 K and had its maximum for the slag containing 40 mass pet BaO. The activity of BaO in the system was calculated from those data.

  16. Unravelling the complex interaction between mantle and crustal magmas encoded in the lavas of San Vincenzo (Tuscany, Italy). Part II: Geochemical overview and modelling

    NASA Astrophysics Data System (ADS)

    Ridolfi, Filippo; Renzulli, Alberto; Perugini, Diego; Cesare, Bernardo; Braga, Roberto; Del Moro, Stefano

    2016-02-01

    This work reports a geochemical overview and modelling of the lavas erupted ~ 4.4 Ma ago at San Vincenzo (Tuscan Magmatic Province, TMP). Although these lavas cover a relatively small area (~ 10 km2), they show very large geochemical variations caused by the interaction of mantle-derived and crustal-anatectic magmas. The lavas consist of peraluminous rhyolites (87Sr/86Sr(i) up to 0.726) hosting primarily variably sized magmatic enclaves with shoshonite/latite compositions (87Sr/86Sr(i) down to 0.708). New whole-rock data for a large shoshonite enclave show high concentrations of LREE, LILE, and tetravalent HFSE, coupled with pentavalent HFSE depletions and enrichments in compatible elements such as Cr and Co. The chondrite-normalised REE pattern is strongly fractionated and characterised by a negative Eu anomaly (Eu/Eu* = 0.79). Hybridisation and AFC models suggest that the shoshonite enclave is the result of 12% rhyolite contamination of a mantle-derived magma akin to the potassic trachybasalt/shoshonite lavas of Capraia Island (~ 4.6 Ma; TMP), following an 18.5% assimilation of Late Triassic metasediments (13% evaporite and 5.5% carbonate) and 56% fractionation of clinopyroxene (39%), plagioclase (10%), and biotite (7%). Each rhyolite sample is characterised by mineral-scale isotopic disequilibria (e.g., 87Sr/86Sr(i) = 0.711-0.726), glass inclusions with large K2O/Na2O variations (1.1-3.4) and a poli-thermobarometric history of crustal melt production at eutectic conditions. A multi-parametric approach accounting for K2O/Na2O (1.3-2.2), 87Sr/86Sr(i) (0.713-0.725), Sr (104-311 ppm) and Rb (294-403 ppm) whole-rock variations, allowed us to divide the anatectic (A) rhyolites into five groups (A1, A2.1, A2.2, A2.3, A3). Group A1 shows the highest 87Sr/86Sr(i) ratios and the lowest values of Sr, K2O/Na2O and Rb. It is related to A2.1 and A3 rhyolites by positive K2O/Na2O-Rb and K2O/Na2O-FeO correlations. These three rhyolite groups crop out in the south of San

  17. Sr-Nd-Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet: Constraints on its formation setting

    NASA Astrophysics Data System (ADS)

    Zhang, Liang-Liang; Liu, Chuan-Zhou; Wu, Fu-Yuan; Zhang, Chang; Ji, Wei-Qiang; Wang, Jian-Gang

    2016-08-01

    The Cretaceous Xigaze ophiolite is best exposed at the central part of the Yarlung-Zangbo Suture Zone, Tibet Plateau. It consists of a thick section of mantle peridotites, but a relatively thin mafic sequence. This study presents geochronological and geochemical data for intrusive dykes (both mafic and felsic) and basalts to revisit the formation setting of the Xigaze ophiolite. The rodingites are characterized by high CaO and low Na2O contents relative to mafic dykes and show big variations in trace element compositions. Both gabbros and diabases have similar geochemical compositions, with MgO contents of 6.42-11.48 wt% and Mg# of 0.56-0.71. They display REE patterns similar to N-MORB and are variably enriched in large ion lithophile elements. Basalts have fractionated compositions and display LREE-depleted patterns very similar to N-MORB. They do not show obvious enrichment in LILE and depletion in high-field-strength elements, but a negative Nb anomaly is present. The studied plagiogranites have compositions of trondhjemite to tonalite, with high Na2O and low K2O contents. They have low TiO2 contents less than 1 wt%, consistent with melts formed by anatexis of gabbros rather than by differentiation of basalts. Zircons from seven samples, including three rodingites, three plagiogranites, and one gabbro, have been dated and yielded U-Pb ages of 124.6 ~ 130.5 Ma, indicating the Xigaze ophiolite was formed during the Early Cretaceous. They have mantle-like δ18O values of + 4.92 ~ + 5.26‰ and very positive εHf(t) values of + 16 ~ + 13.3. Ages of the rodingites and less altered gabbros indicate that serpentinization was occurred at ~ 125 Ma. Occurrence of both gabbroic and diabase dykes within the serpentinites suggests that the mantle lithosphere of the Xigaze ophiolite was rapidly exhumed. Both mafic and felsic dykes have slightly more radiogenic 87Sr/86Sr ratios relative to MORB, but depleted Hf-Nd isotpe compositions. They have a limited range of ε

  18. Effect of the Chemical Composition on The Pyroplastic Deformation of Sanitaryware Porcelain Body

    NASA Astrophysics Data System (ADS)

    Yeşim Tunçel, Derya; Kerim Kara, Mustafa; Özel, Emel

    2011-10-01

    Pyroplastic deformation is the bending of a ceramic specimen caused by gravity during heat treatment. It can be defined as the loss of shape of product during its firing. Pyroplastic deformation is related to properties of liquid phases formed during firing. Therefore, the effect of the chemical composition on the pyroplastic deformation of sanitaryware porcelain was investigated in this study. Systematical compositional arrangements were made according to different combinations of (SiO2/Al2O3) and (Na2O/K2O) ratios by using Seger formula approach. Pyroplastic deformation behaviour of compositions within a controlled firing regime was investigated by using fleximeter. The bodies were also prepared in a special form by slip casting method at laboratory scale in order to determine the pyroplastic deformation of the samples. The experimental results showed that a definite combination at SiO2/Al2O3 ratio of 5 and Na2O/K2O ratio of 4 give the lowest pyroplastic deformation in the porcelain body formulations. The pyroplastic deformation value of this composition was determined as 25 mm which is 44% lower than that of the standard composition (45 mm).

  19. The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains: a case study from southern India

    NASA Astrophysics Data System (ADS)

    Rajesh, H. M.

    2007-11-01

    Large charnockite massifs occur in some of the Precambrian high-grade terrains like the southern Indian granulite terrain. The Cardamom Hill charnockite massif from the Madurai Block, southern India, consists of an intermediate type and silicic type, with the intermediate type showing similarities to high-Ba-Sr granitoids with low K2O/Na2O ratios and the silicic type showing similarities to high-Ba-Sr granitoids with high K2O/Na2O ratios. Within the constraints imposed by near basaltic composition of the most mafic samples and their relatively high concentrations of both compatible and incompatible elements, comparison with recent experimental studies on various source compositions, and trace- and rare-earth-element modeling, the distinctive features of the intermediate charnockites can be best explained in terms of assimilation-fractional crystallization (AFC) models involving interaction between a mantle-derived basaltic magma and lower crustal materials. Silicic charnockites on the other hand are high temperature melts of moderately hydrous basaltic magmas. A two-stage model which involves an initial partial melting of hydrous basaltic magma and later fractionation explains the geochemical features of the silicic charnockites, with the fractionation stage most probably an open system AFC. It is suggested that for massifs showing spatial association of intermediate and silicic charnockites, a model taking into account their compositional difference in terms of the effect of variations in the conditions (e.g., temperature, water fugacity) that prevailed, can account for plausible petrogenetic scenarios.

  20. New data on selected Ivory Coast tektites.

    NASA Technical Reports Server (NTRS)

    Cuttitta, F.; Carron, M. K.; Annell, C. S.

    1972-01-01

    Fourteen Ivory Coast tektites exhibit a range of bulk indices of refraction of 1.5156 to 1.5217 plus or minus 0.0004 and of bulk specific gravities of 2.428 to 2.502 plus or minus 0.005. Seven of these Ivory Coast (IVC) tektites were analyzed for major and minor element content. Compared to tektites from other strewn fields, their SiO2 content is low (67.2-69.1%), Al2O3 relatively high (15.8-16.8%), and total iron relatively high but with a more restricted range (6.3-6.8% as FeO). Their lime content is low (0.71-1.35%) compared to Australasian tektites but their MgO/CaO ratio (about 3.1) is unusually high. All other tektite groups have Na2O/K2O ratios less than unity, but the Na2O/K2O ratio of the IVC tektites is slightly greater than unity. Their K/Rb ratios range from 200 to 256 and average 227.

  1. Geochemistry of the Yangla volcanic rocks and its relationship to Cu mineralization in the Yangla copper deposit, western Yunnan, China

    NASA Astrophysics Data System (ADS)

    Yang, Xian; Liu, Jiajun; Zhai, Degao; Han, Siyu; Wang, Huan; Yang, Longbo; Huo, Dongliang

    2012-10-01

    The Yangla copper deposit is a recently discovered, giant copper deposit with an estimated Cu reserve of about 1,200,000 tons. Development is now underway. Previous studies have reported that the Yangla copper deposit is a VMS-type deposit related to the Yangla volcanic rocks. Volcanic bulk-rock analyses shows high contents of Si (49.3%-58.7%), Na2O (Na2O = 3.3%-4.9%), MgO (MgO = 3.7%-8.6%), and CaO(CaO = 6.8%-9.0%), low TiO2 (TiO2 = 0.9%-2.1%) and K2O(K2O = 0.2%-1.4%) contents. The geochemistry of the volcanic represent forearc basalts. Four molybdenites samples from the ore bodies in the deposit yield Re-Os model ages ranging from 229.7 ± 3.3 Ma to 233 ± 3.4 Ma. The REE distribution patterns and the primitive-mantle-normalized trace element patterns of the volcanic rocks are similar to the ores, indicating the Yangla copper deposit are closely associated with the Yangla volcanic rocks. The results contribute to our understanding of the genesis of the Yangla copper deposit and will guide further exploration in the region.

  2. Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gümüşhane pluton (NE Turkey)

    NASA Astrophysics Data System (ADS)

    Topuz, Gültekin; Altherr, Rainer; Siebel, Wolfgang; Schwarz, Winfried H.; Zack, Thomas; Hasözbek, Altuğ; Barth, Mathias; Satır, Muharrem; Şen, Cüneyt

    2010-04-01

    The Gümüşhane pluton, a high-K calc-alkaline I-type granodiorite/granite complex, forms an important component of the pre-Liassic basement of the Eastern Pontides (NE Turkey). In its eastern part, the pluton shows a compositional zonation ranging from biotite-hornblende granodiorite in the NW through biotite-hornblende granite to leucogranite/granophyre in the SE. Numerous mafic microgranular enclaves (up to ˜ 40 cm in diameter) suggest the former presence of globules of mafic melt during crystallization. Emplacement of the pluton occurred during the latest Early Carboniferous, as shown by the 320 ± 4 Ma 40Ar- 39Ar biotite/hornblende and 324 ± 6 Ma LA-ICP-MS U-Pb zircon ages. In Harker diagrams, samples of the different rock types exhibit well-defined data trends. With increasing SiO 2, the abundances of TiO 2, Al 2O 3, Fe 2O 3tot, MnO, MgO, CaO, P 2O 5 and Sc decrease, but those of K 2O and Rb increase. However, the variations of Sr, Ba, (La/Yb) cn, Sr/Y and ∑ REEs vs. SiO 2 form distinctive groupings, which cannot be explained by a simple fractional crystallization. Chondrite-normalized (cn) REE patterns of granodiorite/granite samples show concave-upward shapes with (La/Yb) cn ranging from 5.2 to 12.4 and Eu/Eu* from 0.84 to 0.47, while there is almost no fractionation of the middle REE relative to the heavy REE. In primitive mantle-normalized element concentration diagrams, all rocks display marked negative anomalies in Ba, Nb/Ta, Sr, P and Ti, but positive anomalies in K and Pb. These geochemical features imply a fractionating mineral assemblage of clinopyroxene, amphibole and plagioclase without significant involvement of garnet. The granophyres are, on the other hand, characterized by higher K 2O/Na 2O and Rb/Sr ratios, lower (La/Yb) cn ratios (1.3 to 4.8) and more pronounced negative anomalies in Ba, Nb/Ta, Sr, Eu, P and Ti. Initial ɛNd values range from - 3.78 to - 5.30 and Nd model ages from 1.38 to 163 Ga. The magmas of the granite

  3. Juvenile accretion (2360-2330 Ma) in the São Francisco Craton, and implications for the Columbia supercontinent: evidence from U-Pb zircon ages, Sr-Nd-Hf and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Teixeira, W.; Ávila, C.

    2012-12-01

    The Mineiro and the Itabuna-Salvador-Curaçá belts are segments of an Early Proterozoic orogen, in the São Francisco/West Congo-North Gabon craton. The latter segment includes island-arc rocks with preserved portions of the accretionary prism and back-arc basins, developed between 2.4 and 2.0 Ga. The Mineiro belt evolved marginally to the Minas passive margin basin (<2.55 to 2.35 Ga). It contains mainly granitoid rocks with ages between 2.25-2.20 Ga and 2.12-2.08 Ga, along with coeval back arc sequences. The overall framework includes regional metamorphism and related faults and shear zones across both belts. Similar tectonic features are portrayed by the West Central African belt (of Eburnean age) by considering the early contiguous African counterpart. We present an integrated geochronologic and geochemical study for the Resende Costa orthogneiss (Mineiro belt): the gneissic rocks are slightly metaluminous to peraluminous, subalkaline, show varied SiO2 (69 to 73wt.%) contents, and low K2O and high- Na2O +CaO ones. Chemically, they are compatible with high Al2O3 trondhjemites. They also show weak positive Eu/Eu* anomalies, low Rb (24 to 70ppm), Ba (500 to 1000ppm), Th (2.1 to 8.5ppm) contents, very high Sr/Y ratios (75 to 158) and variable LREE and low HREE patterns (Yb < 1.23 ppm). The Resende Costa pluton yields two U-Pb (LA-ICPMS) zircon crystallization ages (2358±10 Ma and 2356±12 Ma), while the zircon rims yield 2133±32 Ma, interpreted as the age of metamorphism. The Sm/Nd TDM whole rock model ages are between 2.35-2.50 Ga, whereas the ɛNd(t) values range from +1.2 to +3.0, ɛSr(t) from +10 to -6, and ɛHf(t) in zircon between -3 to +6. The nearby Ramos gneissic pluton gives U-Pb zircon age of 2331±17 Ma, TDM age of 2.4 Ga, ɛNd(t) +2.2, ɛHf(t) (-9/+9) and ɛSr(t) +40 values. The overall signature implies to short crustal residence for the protholiths with minor contamination during the petrogenesis. Published data reveal that the nearby Lagoa Dourada

  4. An Approach to Geochemical and Protolith Features of the Mesozoic HP/LT Rocks in the Biga Peninsula, NW Turkey

    NASA Astrophysics Data System (ADS)

    Şengün, Firat; Yiǧitbaş, Erdinç; Onur Tunç, Ä.°Smail

    2010-05-01

    The Biga Peninsula in northwestern Anatolia is a tectonic mosaic comprised of different tectonic units which represented by continental and oceanic assemblages in different origin and ages. High-degree metamorphic rocks occur in the both Çamli ca metamorphics and Çetmi Group. HP eclogite/blueschists are associated with quartz-mica schist within the Çamli ca metamorphics. On the other hand, another HP eclogite/blueschist unit is associated with garnet-mica schist in the Çetmi Group. The host Çamli ca metamorphic rocks record only a single - stage greenschist - facies metamorphism and were juxtaposed with the high - grade metamorphic rocks along ductile - semi-brittle (?) strike - slip faults after the high degree metamorphism and during or after the low-grade metamorphism of the Çamli ca metamorphic unit. Major, trace and rare earth elements (REE) compositions of HP eclogite/blueschist and associated metasedimentary rocks from the Biga Peninsula have been determined to reveal their protolith, source area and tectonic setting. Whole-rock geochemistry for the HP eclogite/blueschist suggests that their protoliths were basalt with high TiO2 and K2O-Na2O content and Nb/Y ratios. Most HP metabasite samples plot in the tholeiitic basalt field. ∑ REE abundances range from 47.55 to 107.4 ppm. Europium anomolies are variable (Eu/Eu*= 0.9-1.1) and generally small negative (average Eu/Eu*=1) which is implying weak plagioclase fractionation. REE pattern and trace element contents similar to typical MORB based on tectonic discrimination diagrams. The relatively high concentrations of CaO and low concentrations of K2O suggest that the protoliths were derived from a depleted source. Metasedimentary rocks coexisting with HP metamorphic rocks have different SiO2, Al2O3 and TiO2 values in the both Çamli ca metamorphics and Çetmi Group. Those of the Çamli ca metamorphics have high SiO2 and low Al2O3 and TiO2 values. However, those of the Çetmi Group have low SiO2 and

  5. Zircon U-Pb geochronology and geochemistry of two episodes of granitoids from the northwestern Zhejiang Province, SE China: Implication for magmatic evolution and tectonic transition

    NASA Astrophysics Data System (ADS)

    Li, Zilong; Zhou, Jing; Mao, Jianren; Santosh, M.; Yu, Minggang; Li, Yinqi; Hu, Yizhou; Langmuir, Charles H.; Chen, Zhongxing; Cai, Xiongxiang; Hu, Yanhua

    2013-10-01

    Granitoids (175-80 Ma) representing a prominent Yanshanian (Jurassic to Cretaceous) magmatic event in South China widely intrude the Precambrian crystalline basement and Paleozoic strata. Here we report zircon U-Pb age data, geochemical characteristics and Sr-Nd isotopes of the Late Jurassic and Early Cretaceous granitoids from the northwestern Zhejiang Province (ZXB) of southeastern China. Our results reveal two distinct episodes for the Yanshanian magmatism. The Jiemeng and Datongkeng granodiorites formed at 148.6 ± 1.1 Ma, whereas the Huangshitan, Jiuligang and Ruhong aluminous A-type granites were generated between 129.0 ± 0.6 Ma and 126.1 ± 1.1 Ma. The two magmatic phases represent a tectonic transition from an active continental margin to post-orogenic setting during the Late Jurassic (ca. 150 Ma) to Early Cretaceous (ca. 128 Ma). Geochemically, these intrusions are granodioritic to granitic in composition and show an affinity of S-type and A-type granitoids, respectively. The S-type granodiorites of Jiemeng and Datongkeng are characterized by moderate SiO2 (65.0-69.6 wt.%), high K2O + Na2O (5.0-7.6 wt.%), K2O/Na2O (1.2-1.5), Zr (31-109 ppm), Sr (71-190 ppm) and high field strength elements, low to intermediate Mg#, and moderate Nb depletion. The A-type granites of Huangshitan, Jiuligang and Ruhong are characterized by high SiO2 (72.7-77.2 wt.%), K2O + Na2O (6.9-8.8 wt.%), K2O/Na2O (1.3-2.1), FeT/(FeT + Mg), Ga (17-29 ppm, > 20 ppm commonly), Zr (96-197 ppm) and Sr (8-45 ppm) with slight Nb depletion. The S-type granodiorites have higher Mg#, A/NK, Sr, Sr/Ba, Sr/Y, (La/Yb)N, and LREE/HREE, and lower SiO2, K2O + Na2O, Ga and Zr with weak negative Eu anomalies compared to those of the A-type granites with negative Eu anomalies. All these rocks show Y/Nb ratios > 1.2, high initial 87Sr/86Sr (ISr) ratios and low ɛNd(t), and are depleted in Nb, Ti and Sr, indicating crustal origin with subduction zone signatures. We suggested that the ZXB S-type granitic

  6. A petrologic study of the Teanaway Basalt: Eocene slab window volcanism in central WA

    NASA Astrophysics Data System (ADS)

    Roepke, E.; Tepper, J. H.; Ivener, D.

    2013-12-01

    O (0.16-0.28 wt% vs 0.11-0.24 wt%), and TiO2 (1.2-2.4 wt% vs 0.8-2.7 wt%), and have a narrower range of CaO (1.5-9.4 wt%) and Na2O (1.5-3.3 wt%) concentrations. Both LR and ER samples display modest LREE enrichment (La/Yb = 2.1-3.7) and similar incompatible element ratios, suggesting similar sources. ER samples show a broader range of REE contents but extend to lower levels, and have smaller negative Eu anomalies (Eu/Eu* = 0.55-0.96). Pearce element ratio plots suggest much of the variation reflects different degrees of plag+cpx fractionation. Alkaline lavas are restricted to ER and the central area of the TB. Differences in concentration at similar Mg# (most notably in Fe2O3T, TiO2, MnO, and Na2O) suggest multiple parent magmas, probably from similar mantle sources. With increasing stratigraphic height in the ~1.6 km thick LR section, there are general decreases in SiO2 (60 to 54 wt%), and general increases in CaO (4 to 8 wt%), MnO (0.1-0.15 wt%), and P2O5 (0.2-0.65 wt%). Mg# displays several cycles of decrease followed by increase, each extending over 400-1000m. These trends are suggestive of an evolving system that experienced multiple replenishment events.

  7. Compositional change of granitoids from Eastern Pontides Orogenic Belt (NE Turkey) at ca. 84 Ma: Response to slab rollback of the Black Sea

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Zhu, Di-Cheng; Eyuboglu, Yener; Wu, Fu-Yuan; Rızaoǧlu, Tamer; Zhao, Zhi-Dan; Xu, Li-Juan

    2016-04-01

    Magma generation and evolution is a natural consequence of mantle dynamics and crust-mantle interaction. As a result, changes of magma compositions in time and space can be used, in turn, to infer these deep processes. In this paper we report new zircon U-Pb age and Hf isotope, whole-rock major and trace element, and Nd isotope data for the granitoids from Kürtün in Eastern Pontides. These data, together with the data in the literature, reveal the occurrence of magma compositional variations at ca. 84 Ma in the region, providing new insights into the mantle dynamics responsible for the generation of the extensive Late Cretaceous felsic magmatism in Eastern Pontides Orogenic Belt (NE Turkey) (Eyuboglu et al., 2015). Group I samples (SiO2 = 77-62 wt.%) were concentrated in 91-86 Ma and are characterized by their low CaO (1.6-1.5 wt.%) and Th (8.2-3.0 ppm) contents and low K2O/Na2O (0.7-0.1) and Th/La (0.4-0.2) ratios. Group II samples (SiO2 = 71-63 wt.%) were concentrated in 82-72 Ma and include high concentrations of CaO (5.2-3.0 wt.%) and Th (29.6-14.3), high K2O/Na2O (1.5-1.1) and varying Th/La (1.0-0.5) ratios. Group I samples have positive zircon eHf(t) (+9.6 to +7.6) and whole-rock eNd(t) (+3.5 to +2.5), significantly differing from those of Group II samples with eHf(t) of +1.9 to -1.5 and whole-rock eNd(t) of -3.6 to -3.8. Modeling results indicate that the Nd-Hf isotopic compositions of Group I and II samples can be interpreted as having derived from partial melting of the low-K amphibolite within the juvenile lower crust beneath the Eastern Pontides Orogenic Belt that incorporated into 15-20% and 70-75% enriched components from the basement rocks represented by the Carboniferous granites exposed in the region, respectively. In combination with the geological observations that indicate the occurrence of regional thermal subsidence (Bektaş et al., 1999) and extensional structure (Bektaş et al., 1999, 2001) during the Campanian (83.6-72.1 Ma), the coeval

  8. Palaeoweathering, composition and tectonics of provenance of the Proterozoic intracratonic Kaladgi-Badami basin, Karnataka, southern India: Evidence from sandstone petrography and geochemistry

    NASA Astrophysics Data System (ADS)

    Dey, Sukanta; Rai, A. K.; Chaki, Anjan

    2009-05-01

    Petrographic and geochemical data on the sandstones of the Proterozoic intracratonic Kaladgi-Badami basin, southern India are presented to elucidate the palaeoweathering pattern, and composition and tectonics of their provenance. The Kaladgi-Badami basin, hosting the Kaladgi Supergroup, occupies an E-W trending area. The Supergroup unconformably overlies Archaean basement TTG gneisses, granites and greenstones, comprises a cyclic arenite-pelite-carbonate association and is divided into the Bagalkot and Badami Groups. The immature arkosic character of the basal Saundatti Quartzite Member (Bagalkot Group) containing fresh and angular feldspars, along the northern margin of the basin, suggests that during the initial stage of deposition, this part of the basin received sediments from a restricted, uplifted and less weathered source dominated by K-rich granites occurring to the north. In contrast, the Saundatti Quartzite along the southern margin displays a mostly mature, quartz-rich character with less abundant but severely weathered feldspars, and higher SiO 2 and CIA but lower Al 2O 3, TiO 2, Rb, Sr, Ba, K 2O, K 2O/Na 2O, Zr/Ni and Zr/Cr. This is interpreted in terms of a tectonically stable, considerably weathered mixed source (Archaean gneisses, granites and greenstones) along the southern fringe of the basin. The highly mature (quartz arenite) Muchkundi Quartzite Member (also of the Bagalkot Group), occurring higher up in the succession, exhibits minor but severely altered feldspars, and higher SiO 2, Na 2O, CIA, Cr and Ni with lower K 2O, Al 2O 3, TiO 2 and K 2O/Na 2O. This reflects that with the passage of time the source evolved to a uniform, extensively weathered, tectonically stable peneplained provenance which consisted of less evolved TTG gneisses and greenstones. This was followed by closure, deformation and upliftment of the basin hosting the Bagalkot Group and subsequent deposition of the Badami Group. Sandstone Members of this younger Group (Cave

  9. Alkali content of alpine ultramafic rocks

    USGS Publications Warehouse

    Hamilton, W.; Mountjoy, W.

    1965-01-01

    The lower limit of abundance of sodium and potassium in ultramafic rocks is less than the threshold amount detectable by conventional analytical methods. By a dilutionaddition modification of the flame-spectrophotometric method, sodium and potassium have been determined in 40 specimens of alpine ultramafic rocks. Samples represent six regions in the United States and one in Australia, and include dunite, peridotite, pyroxenite, and their variably serpentinized and metamorphosed derivatives. The median value found for Na2O is 0.004 per cent, and the range of Na2O is 0.001-0.19. The median value for K2O is 0.0034 per cent and the range is 0.001-0.031 per cent. Alkali concentrations are below 0.01 per cent Na2O in 28 samples and below 0.01 per cent K2O in 35. Derivation of basalt magma from upper-mantle material similar to such ultramafic rocks, as has been postulated, is precluded by the relative amounts of sodium and potassium, which are from 200 to 600 times more abundant in basalt than in the ultramafic rocks. Similar factors apply to a number of other elements. No reasonable process could produce such concentrations in, for example, tens of thousands of cubic miles of uniform tholeiitic basalt. The ultramafic rocks might have originated either as magmatic crystal precipitates or as mantle residues left after fusion and removal of basaltic magma. Injection of ultramafic rocks to exposed positions is tectonic rather than magmatic. ?? 1965.

  10. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    NASA Astrophysics Data System (ADS)

    Larson, Peter B.; Cunningham, Charles G.; Naeser, Charles W.

    1994-03-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  11. The Comparative Structural Study of Vitreous Matrices P{sub 2}O{sub 5}centre dotMeO [MeO ident to Li{sub 2}O (M{sub 1}) or CaO (M{sub 2})] Systems and {sub x}Fe{sub 2}O{sub 3}(100-x)[P{sub 2}O{sub 5}centre dotMeO] Glasses by Raman Spectroscopy

    SciTech Connect

    Andronache, C.

    2010-01-21

    For getting information about the way in which the structural units presented in glass matrices P{sub 2}O{sub 5}centre dotLi{sub 2}O (M{sub 1}) and P{sub 2}O{sub 5}centre dotCaO (M{sub 2}) are modifying with the substitutions Li{sub 2}O with CaO, these glasses where investigated by Raman spectroscopies. The absorption bands obtained and their assignments for each those two matrices are summarized. The influence of Fe{sub 2}O{sub 3} content on the structure of M1 and M2 matrices was followed.

  12. Extensive partial melting and melt extraction in pelitic metasediments: An example from the Chiwaukum schist (Washington Cascades)

    NASA Astrophysics Data System (ADS)

    Austin, N.; Kelemen, P.

    2006-12-01

    Partial melting of crustal sediments plays an important role in both the production of anatectic granites (eg. Brown, 1994; Harris et al., 1995; Johnson et al., 2003), and modification of mantle derived melts via assimiation (eg. McBirney et al., 1987; Grove et al., 1982). These processes rely heavily on segregation of anatectic melts from their sedimentary source (Brown, 1994; Sawyer, 1994; Brown et al., 1995). Here, we investigate the extent of melting and melt extraction in the pelitic Chiwaukum schist (central Washington St.), within the contact aureole of the Big Jim intrusive complex. The Big Jim complex, part of the regionally extensive Mt. Stuart Batholith, intruded the pelitic Chiwaukum schist at ~96 Ma (Tabor et al., 1982, 1987; Matzel, 2004). It is concentrically zoned, with an ultramafic core and intermediate to felsic rim (Kelemen & Ghiorso, 1986). Peak metamorphic grades in the schist reach pyroxene hornfels, and textures indicative of partial melting of the schist are apparent; the pelitic schists, and their migmatized counterparts form a continuum from un-migmatized metasediments to structureless, biotite free hornfels, containing leucosome lenses. With increasing grade, there is a continuous decrease in Th and light REE's, elements that are mobile in melts and are largely immobile in hydrothermal fluids; REE and trace element patterns show no evidence of contamination of the partially molten schist by the intruding pluton. There is a sharp decrease in K2O in the schist with increasing grade, which correlates with the breakdown of biotite, while there is a sharp concomitant increase in CaO content. By assuming that CaO is immobile, minimum melt losses are estimated to be between 0 and 80%. Samples that have experienced greater melt loss are characterized by a decrease in Th, K#, and alumina saturation index, while they show increased Ca# and Mg#. This probably results from removal of a peraluminuos, K rich melt, with Na2O>>CaO and Fe

  13. Research of Geochemical Associations of Nephelin Ores

    NASA Astrophysics Data System (ADS)

    Vulf, M.; Simonov, K.; Sazonov, A.

    The instant paper concerns research of distribution petrogenic chemical members in urtit ore body of Kia-Shaltyrsk deposit. Rocks of the deposit are ore for producing alum earth. Actuality of the subject based on outlooks of detection noble metal ore-bearing (Au, Pt, Pd, Rh, Ru) in alkaline rocks of Siberia, including rocks of Kia-Shaltyrsk deposit (Kuznetsk Alatau). The main purpose of analysis of distribution of members is directed to detection of a non-uniformity of distribution of substance and segments enriched with alum earth and noble members. The basic solved problems are following: o Creation regression models of ore body; o Definition of cumulative distribution functions of members in a contour of ore body; o The analysis of the obtained outcomes in geologic terms. For construction regression models the full-scale data was used, which was presented by the results of the spectral and silicate analyses of gold and petrogenic members containing 130 assays arranged in ore body. A non-linear multiparameter model of the ore body based on components of nephelin ore using neural net approach was constructed. For each member the corresponding distribution function is produced. The model is constructed on the following members: Au, Al2O3, SiO2, Fe2O3, CaO, MgO, SO3, R2O ((Na2O+K2O) -1) and losses of burning. The error of model forecasting membersS concentrations was from 0.02 up to 20%. Large errors basically connected with assays located near contact of ore body and ad- jacent strata or with very high concentrations of members; also they can be connected with different genesis of rocks or superposition of other processes. The analysis of concentrations of members and normalised absolute errors of the fore- cast has shown, that all members can be sectioned into two groups: first: Al2O3, SiO2, R2O, Fe2O3 and second: Au, losses of burning, CaO, MgO, SO3. The distribution of 1 gold is tightly connected with calcium and losses of burning and spatially linked with zones

  14. Petrography and Geochemistry of the Zamora Batholith in the south of the sub-Andean zone (Ecuador)

    NASA Astrophysics Data System (ADS)

    Villares, F. M.

    2013-05-01

    -alkaline. They have affinities slightly peraluminous (ASI = 1,00 to 1,16). CaO is moderate to high (CaO ≈ 3.58), the alkalis have averaged of Na2O≈3,09 and K2O≈3,28. The concentrations of Na2O/K2O are moderate ranging between 0.7 and 1.7, with an average value of 1.04. The contents of Ba and Sr are moderate. The content of Zr is low (61 to 161 ppm). The multi-element diagrams normalized to chondritic values and to primitive mantle show Nb and Ta negative anomaly. Considering the multi-element diagrams, the rocks are slightly enriched in LILE (Large Ion-Lithophile-elements) mainly in Rb, Cs and Ba and slight positive anomalies in K and Sr, other incompatible elements have negative anomalies such as HFSE ( High Field Strength Elements) Ti, Nb, Ta. The values of (Eu/Eu*)N are in the range of 0.54 to 1.03. (Eu* = (SmN*GdN)1/2). Correlations between major element and silica, and relationships between trace elements indicate that fractional crystallization is a dominant process in the magma evolution. Most granitoids are also slightly peraluminous; but we believe this characteristic is due to rock alteration. The Zamora Batolith is a plutonic complex generated within a magmatic arc in normal conditions of maturity.

  15. In-situ Analysis of Diamonds and Their Mineral Inclusions From the Lynx Kimberlite Dyke Complex, Central Quebec

    NASA Astrophysics Data System (ADS)

    van Rythoven, A.; McCandless, T. E.; Schulze, D. J.; Bellis, A.; Taylor, L. A.; Liu, Y.

    2009-05-01

    solution was also found (13.6-20.1 wt. % Ni, 3.9-9.6 wt. % Cu). One stone containing a grain of omphacite (0.01 wt. % K2O, 4.1 wt. % Na2O) is the only eclogitic diamond in the group. The diopside inclusions have nearly identical compositions that indicate equilibration conditions in the range of 58-60 kbar and 1250-1280°C that plot on the 41 mW/m2 geotherm. The least forsteritic olivine inclusion analysed was also found in the diamond with the diopside inclusions, suggesting a fairly fertile lherzolitic region of mantle at 180-190 km depth. The garnet data indicate both strongly harzburgitic (G10, 12.4- 13.7 wt. % Cr2O3, 3.7-4.4 wt. % CaO) and more lherzolitic (G10-G9 boundary, 8.9 wt. % Cr2O3, 5.8 wt. % CaO) parageneses.

  16. Nucleation and crystallization of Ca doped basaltic glass for the production of a glass-ceramic material

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Royo, Irene; Garcia-Valles, Maite; Martínez, Salvador

    2016-04-01

    Sewage sludge from wastewater treatment plants is a waste with a composition roughly similar to that of a basalt. It may contain potentially toxic elements that can be inertized by vitrification. Using a glass-ceramic process, these elements will be emplaced in newly formed mineral phases. Glass-ceramic production requires an accurate knowledge of the temperatures of nucleation (TN) and crystal growth of the corresponding minerals. This work arises from the study of the addition of ions to a basaltic matrix in order to establish a model of vitrification of sewage sludge. In this case a glass-ceramic is obtained from a glass made with a basalt that has been doped with 16% CaO. Two glasses which underwent different cooling processes have been produced and compared. The first was annealed at 650oC (AG) and the second was quenched (QG). The chemical composition of the glasses is SiO2 36.11 wt%, Al2O312.19 wt%, CaO 24.44 wt%, FeO 10.06 wt%, MgO 9.19 wt%, Na2O 2.28 wt%, TiO2 2.02 wt%, K2O 1.12 wt%, P2O5 0.46 wt%. Glass transition temperature obtained by dilatometry varies from 640 oC (AG) to 700 oC (QG). The temperatures of nucleation and crystal growth of the glass have been determined by Differential Thermal Analysis (DTA). The phases formed after these treatments were identified by X-Ray Diffraction. The temperatures of exothermic and endothermic peaks measured in the quenched glass are, in average, 10 oC higher than those found for the annealed glass. The exothermic peaks provide crystallization temperatures for different phases: a first event at 857 oC corresponds to the growth of magnetite, pyroxene and nepheline, whereas a second event at 1030 oC is due to the crystallization of melilite from the reaction between previous minerals and a remaining amorphous phase. The complete melting of this system occurs at 1201 oC. This glass has been nucleated inside the DTA furnace (500-850° C/3 hours) and then heated up to 1300 oC using the fraction between 400-500μm. TN

  17. Dependence of optical properties on the composition in Er 3+-doped xNaPO 3-(80 - x)TeO 2-10ZnO-10Na 2O glasses

    NASA Astrophysics Data System (ADS)

    Yang, Yanmin; Yang, Zhiping; Li, Panlai; Li, Xu; Guo, Qinglin; Chen, Baojiu

    2009-11-01

    Transparent and uniform tellurite-phosphate glasses were prepared and the reason why the substitution of NaPO 3 for P 2O 5 can eliminate the coloration of tellurite-phosphate was discussed. The result of TDA indicated that introducing NaPO 3 into tellurite glasses can improve thermal stability of glass hosts. The compositional dependence of absorption cross-sections of 4I 13/2, 4I 11/2 and 2H 11/2 level, emission cross-section of 4I 13/2 level, host phonon energy, up-conversion and 1.5 μm optical emission intensity as well as and quantum yield for 4I 13/2 level in PTEr glasses were investigated too. By analyzing obtained data, authors believe that tellurite-phosphate glasses can be used as potential host material for developing optical amplifiers.

  18. Studies of the Local Distortions and the EPR Parameters for Cu2+ in xLi2O-(30-x)Na2O-69·5B2O Glasses

    NASA Astrophysics Data System (ADS)

    Ding, Chang-Chun; Wu, Shao-Yi; Kuang, Min-Quan; Hu, Xian-Fen; Li, Guo-Liang

    2016-03-01

    The local distortions and electron paramagnetic resonance (EPR) parameters for Cu2+ in lithium sodium borate (LNB) glasses xLi2O·(30-x)·Na2O·69.5B2O3 (5≤x≤25 mol%) are theoretically studied at various concentrations x in a consistent way. Owing to the Jahn-Teller effect, the [CuO6]10- clusters are found to experience the significant tetragonal elongations of 16% along C4 axis. Despite the nearly unchanging observed g factors, measured d-d transition band (or cubic field parameter Dq) shows remarkable linear increases with concentration x, whose influences on g‖ and g⊥ are actually cancelled by the linearly increasing covalency factor N and relative elongation ratio η with x. The almost unvarying hyperfine structure constants are attributed to the fact that the influences of the linearly increasing N and the linearly decreasing core polarisation constant κ largely cancel one another. The microscopic mechanisms of the above concentration dependences for these quantities are illustrated from mixed alkali effect (modification of B2O3 network by transforming some BO3 units into BO4 ones with variations in modifier Li2O concentration).

  19. Effect of Fe2O3 concentration on the structure of the SiO2-Na2O-Al2O3-B2O3 glass system.

    PubMed

    Dantas, Noelio O; Ayta, Walter E F; Silva, Anielle C A; Cano, Nilo F; Silva, Sebastião W; Morais, Paulo C

    2011-10-15

    The structural properties of the glass matrix 40SiO(2)·30Na(2)O·1Al(2)O(3)·(29-x)B(2)O(3)·xFe(2)O(3) (mol%), 0.0≤x≤29.0 were studied by X-ray diffraction (XRD), differential thermal analysis (DTA) and Raman and infrared spectroscopy (FT-IR). XRD demonstrated Fe(3)O(4) crystal formation for Fe(2)O(3) concentrations of 29.0 mol%. DTA showed that glass transition and crystallization temperatures changed as a function of Fe(2)O(3) concentration and that these alterations were related to structural change in the glass system. Interesting aspects of Raman and FT-IR spectra were found, and this gives information about of the structure changes in Si-O-Si units of these glasses as a function of Fe(2)O(3) concentration.

  20. The nephelinitic–phonolitic volcanism of the Trindade Island (South Atlantic Ocean): Review of the stratigraphy, and inferences on the volcanic styles and sources of nephelinites

    NASA Astrophysics Data System (ADS)

    Pires, Gustavo Luiz Campos; Bongiolo, Everton Marques

    2016-12-01

    Trindade Island is located in the South Atlantic Ocean, 1170 km from the Brazilian coast, and represents the eastern end of the E-W Vitória-Trindade Chain. It shows the youngest plume-induced (ca. 3.7 to <0.17 Ma) subaerial volcanism on the South American plate, associated with the Trindade plume activity. Almeida (1961) recognized five volcanogenic successions at Trindade (in decreasing age): the Trindade Complex (TC, >2.4 Ma) and the Desejado (DF, ∼2.4 to 1.5 Ma), Morro Vermelho (MV, <0.17 Ma), Valado (VF, no age) and Paredão (PF, no age) formations, composed of effusive-pyroclastic deposits and subvolcanic intrusions associated with nephelinite-phonolite volcanic episodes. We revised the original Almeida's (1961) stratigraphy with additional field work and petrography to recognize eruptive styles and processes within the nephelinite-phonolite volcanism. Also, available geochemical databases were used to improve the stratigraphic correlation between nephelinites from different units and to characterize their mantle sources. The nephelinitic volcanism may represent Strombolian and Hawaiian-type activity of low viscosity and volatile-rich lavas interlayered with pyroclastic successions (fall-out deposits). Phonolitic deposits record explosive Vulcanian-style episodes of volatile-rich and higher-viscosity lavas interlayered with pyroclastic deposits (mostly pyroclastic flows). Geochemical data allowed the individualization of nephelinites as follows: (1) MV olivine-rich nephelinites and all olivine-free varieties are low K2O/Na2O, K2O/TiO2 and intermediate CaO/Al2O3 that may be derived from N-MORB and HIMU mantle components; (2) the VF olivine-rich nephelinites have high K2O/Na2O, K2O/TiO2 and CaO/Al2O3 that indicates both EM and HIMU mantle sources and; (3) the PF olivine-rich nephelinites show high K2O/TiO2 similar to those from VF, and intermediate CaO/Al2O3 as nephelinites from MV rocks, suggesting a mixed source with EM + HIMU > N-MORB components. We

  1. The age and origin of felsic intrusions of the Thetford Mines ophiolite, Quebec.

    USGS Publications Warehouse

    Clague, D.A.; Frankel, C.S.; Eaby, J.S.

    1985-01-01

    This ophiolite was obducted in the early Ordovician during the closing of the proto-Atlantic. The tectonized peridotite of the lower unit of the ophiolite is intruded by felsic dykes and pods, including isolated lenses of massive rodingite, small bodies of strongly deformed diorite, and younger, less deformed monzonite. These intrusions are found only near the base of the ophiolite, and are considered to have been emplaced before the ophiolite reached its present position. The young group of intrusions consists of biotite-muscovite quartz monzonite and leuco-quartz monzonite. Analysed samples have high K2O, high (K2O X 100)/Na2O + K2O) ratios, and high initial Sr ratios, indicating that the magma source was continental and that these felsic rocks formed by partial melting of continental sediments. Whole-rock and mineral isochron ages suggest that the felsic intrusions are approx 456 + or - 4 m.y. old and that they were metamorphosed approx 418 + or - 7 m.y. ago. The detachment of the ophiolite occurred approx 491 + or - 3 m.y. ago. The felsic dykes were intruded approx 35 m.y. later, during the Taconic orogeny. The lengthy time between detachment and final nappe emplacement recorded by the felsic dykes may be a requirement for formation of abundant asbestiform chrysotile. Whole-rock analyses (16) and Rb, Sr and 87Sr/86Sr data from the Colline de Granite, King Mts., Vimy Ridge and Black Lake samples are presented.-P.Br.

  2. Quantitative structure-property relationships of potentially bioactive fluoro phospho-silicate glasses.

    PubMed

    Lusvardi, G; Malavasi, G; Tarsitano, F; Menabue, L; Menziani, M C; Pedone, A

    2009-07-30

    In this work, the glass transition temperature and chemical durability of bioactive phospho-silicate glasses were experimentally determined and correlated to the structural descriptor Fnet derived from classical molecular dynamics simulations. The replacement of CaF2 for Na2O in the parent glass 45S5 enhances both chemical durability and density, while the replacement of CaF2 for CaO lowers chemical durability. The proposed descriptor, Fnet, provides satisfactorily correlations with glass transition temperature and chemical durability over a wide range of compositions.

  3. EFFECTS OF LIME (CAO) ON THE ENDOTOXIN LEVELS OF BIOSOLIDS

    EPA Science Inventory

    Lime addition is a common practice for treating biosolids in order to meet EPA 503 requirements for land application. Since this treatment kills the majority of microorganisms, will it increase the level of endotoxins present in biosolids? And, if endotoxin levels are increased, ...

  4. U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions of Motuo quartz-monzonite: Implication for the genesis and diversity of the high Ba-Sr granitoids in orogenic belt

    NASA Astrophysics Data System (ADS)

    Pan, Fa-Bin; Zhang, Hong-Fei; Xu, Wang-Chun; Guo, Liang; Luo, Bi-Ji; Wang, Shuai

    2016-02-01

    Early Paleogene granitoids in Southern Lhasa subterrane have been widely investigated and many petrogenesis and geodynamic models have been proposed in the past few years. However, contemporaneous granitoids in the Motuo tectono-magmatic belt, southeast Lhasa terrane, are still limitedly studied. Here we present the petrology, zircon U-Pb geochronology, whole-rock geochemistry, and Sr-Nd-Hf isotope data of the Damu and 52 K quartz-monzonite in the Motuo area. LA-ICP-MS U-Pb zircon dating shows that they have magma crystallization ages of 49 and 69 Ma, respectively. The Damu quartz-monzonite (SiO2 = 63.76-68.33 wt.%) is high-K calc-alkaline (K2O = 2.54-4.02 wt.% with K2O/Na2O = 0.59-1.09) and metaluminous to weakly peraluminous (A/CNK = 0.99-1.07). The 52 K quartz-monzonite (SiO2 = 61.12-66.12 wt.%) shows slightly higher K2O contents (3.80-5.28 wt.% with K2O/Na2O = 1.03-1.45) and metaluminous series (A/CNK = 0.96-1.00). The analyzed samples are characterized by high Ba (850-2573 ppm), Sr (534-986 ppm) contents, and fractionated REE patterns ((La/Yb)N = 22-72 and (Sm/Yb)N = 4.55-8.24). These geochemical features are comparable with those of high Ba-Sr granite. They display weakly evolved Sr-Nd-Hf compositions (whole-rock (87Sr/86Sr)0 = 0.7068 to 0.7086, εNd(t) = - 4.20 to - 3.41, and zircon εHf(t) = - 5.2 to - 0.9). Geochemical and Sr-Nd-Hf isotopic data reflect that the Damu and 52 K quartz-monzonite represent residual magma from AFC processes of lithospheric mantle-derived mafic melts. The over-thickened lower crust in the eastern Lhasa terrane had been delaminated during ca. 83-70 Ma, which led to the replacement of ancient lithospheric mantle by the juvenile lithospheric mantle. The juvenile mantle wedge in the study area was suspected to be metasomatized by melts that were derived from the foundering arc root, rather than the subducted sediments. Thus, the early Paleogene high Ba-Sr magmas from the SE Lhasa terrane may provide evidence for recycling of

  5. Sodium metasomatism along the Melones fault zone, Sierra Nevada foothills, California, USA

    USGS Publications Warehouse

    Albino, G.V.

    1995-01-01

    Albitite, locally aegirine- and riebeckite-bearing, formed as a result of sodium metasomatism of felsic dykes and argillites along the Melones Fault Zone near Jamestown, California. Pyrite, magnetite, hematite and titanite are common in small amounts in altered dykes. The dykes were originally plagioclase-hornblende porphyritic, and had major and trace element abundances typical of calc-alkaline rocks, whereas they now have Na2O contents as high as 11.40%. Mass balance calculations indicate that alteration involved addition of large amounts of sodium, and the removal of SiO2 and K2O. Textural preservation, combined with volume factors calculated from specific gravity and whole rock analytical data, indicate that Na-metasomatism was essentially isovolumetric. -from Author

  6. Search for solid conductors of Na(+) and K(+) ions: Five new conductors

    NASA Technical Reports Server (NTRS)

    Singer, J.; Kautz, H.; Fielder, W. L.; Fordyce, J.

    1975-01-01

    Five conductors of three structure types were discovered which, as solids, can transport Na(+) or K(+) ions with conductivities of approximately .00001/(omega cm) at 300 K. These compounds are: (1) the pyrochlores NaTaWO6 and NaTa2O5F, both with an activation energy for conduction delta E of 21 kJ/mole; (2) the bodycentered cubic form of NaSbO3, with delta E = 42 kJ/mole; and (3) the niobates 2Na2O with 3Nb2O5 and 2K2O with 3Nb2O5, with the alkali ions probably in open layers of the incompletely determined structure; delta E = 17 kJ/mole. On the basis of approximately 40 structure types, some generalizations were made regarding the relation between structure and ionic transport.

  7. Bioactive glass coatings for orthopedic metallic implants

    SciTech Connect

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  8. Zur chemie der marsoberfläche

    USGS Publications Warehouse

    Keil, Klaus; Clark, Benton C.; Baird, A.K.; Toulmin, Priestley; Rose, Harry J.

    1978-01-01

    Analyses of 13 samples of Martian surface materials with the Viking X-ray fluorescence spectrometers show SiO2 similar to that of terrestrial mafic rocks, whereas Fe2O3, Cl, and S are higher and Al2O3, K2O, Rb, Sr, Y, and Zr are lower. Low totals suggest presence of CO2, H2O, and Na2O. Duricrust fragments are higher in S than fines, but samples from both landing sites are surprisingly similar. We suggest that Martian surface materials are aeolian deposits of complex mixtures of weathering products of maficultramafic rocks, possibly consisting of iron-rich clays, sulfates, iron oxides, carbonates, and chlorides.

  9. 87Sr 86Sr ratios for basalt from Loihi Seamount, Hawaii

    USGS Publications Warehouse

    Lanphere, M.

    1983-01-01

    87Sr 86Sr ratios of 15 samples of basalt dredged from Loihi Seamount range from 0.70334 to 0.70368. The basalt types range from tholeiite to basanite in composition and can be divided into six groups on the basis of abundances of K2O, Na2O, Rb and Sr and 87Sr 86Sr ratio. The isotopic data require that the various basalt types be derived from source regions differing in Sr isotopic composition. The Loihi basalts may be produced by mixing of isotopically distinct sources, but the tholeiites and alkalic basalts from Loihi do not show a well-developed inverse trend between Rb/Sr and 87Sr 86Sr that is characteristic of the later stages of Hawaiian volcanoes such as Haleakala and Koolau. ?? 1983.

  10. Petrogenesis of Challis volcanics from central and southwestern Idaho - Trace element and Pb isotopic evidence

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Mertzman, Stanley A.

    1991-01-01

    An analysis of the lava flows and ash-flow tuffs in Idaho is conducted to determine the composition of the volcanics in terms of major and trace elements and Pb isotopic substances. Al2O3 is found to be low, MgO content is high, and the concentration of K2O is higher or equal to that of Na2O with respect to the lavas of mafic to intermediate composition. Trace elements and element ratios are compatible with the crustal component, and the Pb isotopic compositions suggest a lack of assimilation during crystallization. The evidence does not support the notion of a magma system related to subduction, and the data regarding Pb isotopes and trace elements point to a connection with the lithosphere. A model is proposed for the Challis volcanics in which they resulted from completely melting within the lithosphere and then extending during the late Mesozoic and early Cenozoic compression.

  11. Chemical Analyses of Pre-Holocene Rocks from Medicine Lake Volcano and Vicinity, Northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.

    2008-01-01

    Chemical analyses are presented in an accompanying table (Table 1) for more than 600 pre-Holocene rocks collected at and near Medicine Lake Volcano, northern California. The data include major-element X-ray fluorescence (XRF) analyses for all of the rocks plus XRF trace element data for most samples, and instrumental neutron activation analysis (INAA) trace element data for many samples. In addition, a limited number of analyses of Na2O and K2O by flame photometry (FP) are included as well assome wet chemical analyses of FeO, H2O+/-, and CO2. Latitude and longitude location information is provided for all samples. This data set is intended to accompany the geologic map of Medicine Lake Volcano (Donnelly-Nolan, in press); map unit designations are given for each sample collected from the map area.

  12. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    PubMed

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization.

  13. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    PubMed

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. PMID:24287337

  14. Structural characterization by x-ray methods of novel antimicrobial gallium-doped phosphate-based glasses.

    PubMed

    Pickup, D M; Moss, R M; Qiu, D; Newport, R J; Valappil, S P; Knowles, J C; Smith, M E

    2009-02-14

    Antimicrobial gallium-doped phosphate-based glasses of general composition (P(2)O(5))(0.45)(CaO)(0.16)(Na(2)O)(0.39-x)(Ga(2)O(3))(x) (where x=0, 0.01, 0.03, and 0.05) have been studied using the advanced synchrotron-based techniques of Ga K-edge x-ray absorption spectroscopy and high-energy x-ray diffraction to provide a structural insight into their unique properties. The results show that the Ga(3+) ions are octahedrally coordinated. Furthermore, substitution of Na(2)O by Ga(2)O(3) strengthens the phosphate network structure because the presence of GaO(6) octahedra inhibits the migration of the remaining Na(+) ions. The results are discussed in terms of the use of Na(2)O-CaO-P(2)O(5) glasses as controlled-delivery devices for antimicrobial Ga(3+) ions in biomedical applications. We are thereby able to relate the atomic-scale environment of the Ga(3+) ions beneficially to the glass dissolution, and thus to their ability to disrupt bacterial cell activity by usurping the role of iron. PMID:19222291

  15. Geochemistry and geochronology of the volcano-plutonic rocks associated with the Glojeh epithermal gold mineralization, NW Iran

    NASA Astrophysics Data System (ADS)

    Siani, Majid Ghasemi; Mehrabi, Behzad; Azizi, Hossein; Wilkinson, Camilla Maya; Ganerød, Morgan

    2015-08-01

    Eocene to Oligocene volcano-plutonic rocks are widespread throughout NW Iran. The Tarom-Hashtjin metallogenic province is one of the most promising epithermal-porphyry ore mineralized districts in NW Iran. The Glojeh gold deposit, located in the center of this province, is a typical high to intermediate sulfidation epithermal system, spatially and temporally associated with a granite intrusion and associated high-K calc-alkaline to shoshonitic volcano-plutonic rocks. The intrusive complexes of the Glojeh district are characterized by: SiO2 contents of 60.9 to 70.7 wt.%, K2O+Na2O of 7.60 to 8.92 wt.%, and K2O/Na2O ratios of 0.9 to 1.8. They are enriched in light rare earth elements (LREEs), and large ion lithophile elements (LILEs), depleted in high field strength elements (HFSEs), and have weak negative Eu anomalies (Eu/Eu*= 0.5 to 0.9). 40Ar/39Ar geochronology applied to biotite and feldspar, separated from two intrusives (Goljin and Varmarziar), and two feldspar aliquots separated from hydrothermal veins at North Glojeh and South Glojeh, was carried out to constrain magmatic and hydrothermal events. Plagioclase (± sericite), from North Glojeh and South Glojeh produced ages (42.20±0.34 Ma, and 42.56±1.47 Ma respectively) that overlap with the age of the Goljin intrusion (41.87±1.58 Ma). Geochemical data for the volcano-plutonic rocks in the Glojeh district, that have87Sr/86Sr isotopic compositions that range from 0.706344 to 0.708331, suggest an origin involving partial melting of a depleted mantle source during Neo-Tethyan subduction.

  16. Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Thompson, L. M.; Forni, O.; Williams, A. J.; Fabre, C.; Le Deit, L.; Wiens, R. C.; Williams, R.; Anderson, R. B.; Blaney, D. L.; Calef, F.; Cousin, A.; Clegg, S. M.; Dromart, G.; Dietrich, W. E.; Edgett, K. S.; Fisk, M. R.; Gasnault, O.; Gellert, R.; Grotzinger, J. P.; Kah, L.; Le Mouélic, S.; McLennan, S. M.; Maurice, S.; Meslin, P.-Y.; Newsom, H. E.; Palucis, M. C.; Rapin, W.; Sautter, V.; Siebach, K. L.; Stack, K.; Sumner, D.; Yingst, A.

    2016-03-01

    The Curiosity rover has analyzed various detrital sedimentary rocks at Gale Crater, among which fluvial and lacustrine rocks are predominant. Conglomerates correspond both to the coarsest sediments analyzed and the least modified by chemical alteration, enabling us to link their chemistry to that of source rocks on the Gale Crater rims. In this study, we report the results of six conglomerate targets analyzed by Alpha-Particle X-ray Spectrometer and 40 analyzed by ChemCam. The bulk chemistry derived by both instruments suggests two distinct end-members for the conglomerate compositions. The first group (Darwin type) is typical of conglomerates analyzed before sol 540; it has a felsic alkali-rich composition, with a Na2O/K2O > 5. The second group (Kimberley type) is typical of conglomerates analyzed between sols 540 and 670 in the vicinity of the Kimberley waypoint; it has an alkali-rich potassic composition with Na2O/K2O < 2. The variety of chemistry and igneous textures (when identifiable) of individual clasts suggest that each conglomerate type is a mixture of multiple source rocks. Conglomerate compositions are in agreement with most of the felsic alkali-rich float rock compositions analyzed in the hummocky plains. The average composition of conglomerates can be taken as a proxy of the average igneous crust composition at Gale Crater. Differences between the composition of conglomerates and that of finer-grained detrital sediments analyzed by the rover suggest modifications by diagenetic processes (especially for Mg enrichments in fine-grained rocks), physical sorting, and mixing with finer-grained material of different composition.

  17. Geological and geochemical criteria for the continental nature of the Mendeleev Rise (the Arctic Ocean) from the data of drilling and dredging of seabed rock material

    NASA Astrophysics Data System (ADS)

    Morozov, Andrey; Petrov, Oleg; Kremenetskiy, Alexander; Kashubin, Sergey; Rekant, Pavel; Gusev, Eugene; Shokalskiy, Sergey; Shevchenko, Sergey; Sergeev, Sergey; Artyushkov, Eugene

    2013-04-01

    The results are presented of geological and geophysical studies on the Mendeleev Rise at 10 test sites at 79°N to 83°N (expedition "Arktika-2012" in August-September 2012). During the expedition, for the first time, three boreholes were drilled in the bedrocks of the Mendeleev Rise basement at a depth of 1700-2600 m, and more than 20 thousand fragments of seabed rock material were dredged. Among them carbonate-bearing rocks including dolomite with relicts of trilobites and ostracoderms (D3-C) consti