Sample records for naa radioisotope production

  1. Cyclotron Production of Medical Radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila-Rodriguez, M. A.; Zarate-Morales, A.; Flores-Moreno, A.

    2010-08-04

    The cyclotron production of radioisotopes for medical applications is gaining increased significance in diagnostic molecular imaging techniques such as PET and SPECT. In this regard, radioisotope production has never been easier or more convenient until de introduction of compact medical cyclotrons in the last few decades, which allowed the use of short-lived radioisotopes in in vivo nuclear medicine studies on a routine basis. This review outlines some general considerations about the production of radioisotopes using charged particle accelerators.

  2. Commercial Superconducting Electron Linac for Radioisotope Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, Terry Lee; Boulware, Charles H.; Hollister, Jerry L.

    2015-08-13

    The majority of radioisotopes used in the United States today come from foreign suppliers or are generated parasitically in large government accelerators and nuclear reactors. Both of these restrictions limit the availability of radioisotopes and discourage the development and evaluation of new isotopes and for nuclear medicine, science, and industry. Numerous studies have been recommending development of dedicated accelerators for production of radioisotopes for over 20 years (Institute of Medicine, 1995; Reba, et al, 2000; National Research Council, 2007; NSAC 2009). The 2015 NSAC Long Range Plan for Isotopes again identified electron accelerators as an area for continued research andmore » development. Recommendation 1(c) from the 2015 NSAC Isotope report specifically identifies electron accelerators for continued funding for the purpose of producing medical and industrial radioisotopes. Recognizing the pressing need for new production methods of radioisotopes, the United States Congress passed the American Medical Isotope Production Act of 2012 to develop a domestic production of 99Mo and to eliminate the use of highly enriched uranium (HEU) in the production of 99Mo. One of the advantages of high power electron linear accelerators (linacs) is they can create both proton- and neutron-rich isotopes by generating high energy x-rays that knock out protons or neutrons from stable atoms or by fission of uranium. This allows for production of isotopes not possible in nuclear reactors. Recent advances in superconducting electron linacs have decreased the size and complexity of these systems such that they are economically competitive with nuclear reactors and large, high energy accelerators. Niowave, Inc. has been developing a radioisotope production facility based on a superconducting electron linac with liquid metal converters.« less

  3. The influence of naphthaleneacetic acid (NAA) and coumarin on flavonoid production by fungus Phellinus sp.: modeling of production kinetic profiles.

    PubMed

    Ma, Xiao-Kui; Li, Le; Peterson, Eric Charles; Ruan, Tingting; Duan, Xiaoyi

    2015-11-01

    For the purpose of improving the fungal production of flavonoids, the influence of naphthaleneacetic acid (NAA) and coumarin on flavonoid production by fungus Phellinus sp. P0988 was investigated by developing the corresponding kinetics of flavonoid production in a 7-L bioreactor. Phellinus sp. was confirmed to form flavonoids in pellets and broth when cultivated in basic medium, and the optimum concentration of NAA and coumarin in medium for flavonoid production were determined to be 0.03 and 0.02 g/L, respectively. The developed unstructured mathematical models were in good agreement with the experimental results with respect to flavonoid production kinetic profiles with NAA and coumarin supplementation at optimum levels and revealed significant accuracy in terms of statistical consistency and robustness. Analysis of these kinetic processes indicated that NAA and coumarin supplementations imposed a stronger positive influence on flavonoid production and substrate consumption compared to their effects on cell growth. The separate addition of NAA and coumarin resulted in enhancements in final product accumulation and productivity, achieving final flavonoid concentrations of 3.60 and 2.75 g/L, respectively, and glucose consumption showed a significant decrease compared to the non-supplemented control as well. Also, the separate presence of NAA and coumarin respectively decreased maintenance coefficients (M s) from 2.48 in the control to 1.39 and 0.22, representing decreases of 43.9 and 91.1 %, respectively. The current study is the first known application of mathematical kinetic models to explore the influence of medium components adding on flavonoid production by fungi.

  4. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica.

    PubMed

    Vaičiukynienė, Danutė; Kantautas, Aras; Vaitkevičius, Vitoldas; Jakevičius, Leonas; Rudžionis, Žymantas; Paškevičius, Mantas

    2015-11-01

    The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Optimization of commercial scale photonuclear production of radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bindu, K. C.; Harmon, Frank; Starovoitova, Valeriia N.

    2013-04-19

    Photonuclear production of radioisotopes driven by bremsstrahlung photons using a linear electron accelerator in the suitable energy range is a promising method for producing radioisotopes. The photonuclear production method is capable of making radioisotopes more conveniently, cheaply and with much less radioactive waste compared to existing methods. Historically, photo-nuclear reactions have not been exploited for isotope production because of the low specific activity that is generally associated with this production process, although the technique is well-known to be capable of producing large quantities of certain radioisotopes. We describe an optimization technique for a set of parameters to maximize specific activitymore » of the final product. This set includes the electron beam energy and current, the end station design (an integrated converter and target as well as cooling system), the purity of materials used, and the activation time. These parameters are mutually dependent and thus their optimization is not trivial. {sup 67}Cu photonuclear production via {sup 68}Zn({gamma}p){sup 67}Cu reaction was used as an example of such an optimization process.« less

  6. Radioisotope Production for Medical and Physics Applications

    NASA Astrophysics Data System (ADS)

    Mausner, Leonard

    2012-10-01

    Radioisotopes are critical to the science and technology base of the US. Discoveries and applications made as a result of the availability of radioisotopes span widely from medicine, biology, physics, chemistry and homeland security. The clinical use of radioisotopes for medical diagnosis is the largest sector of use, with about 16 million procedures a year in the US. The use of ^99Mo/^99mTc generator and ^18F make up the majority, but ^201Tl, ^123I, ^111In, and ^67Ga are also used routinely to perform imaging of organ function. Application of radioisotopes for therapy is dominated by use of ^131I for thyroid malignancies, ^90Y for some solid tumors, and ^89Sr for bone cancer, but production of several more exotic species such as ^225Ac and ^211At are of significant current research interest. In physics ^225Ra is of interest for CP violation studies, and the actinides ^242Am, ^249Bk, and ^254Es are needed as targets for experiments to create superheavy elements. Large amounts of ^252Cf are needed as a fission source for the CARIBU experiment at ANL. The process of radioisotope production is multidisciplinary. Nuclear physics input based on nuclear reaction excitation function data is needed to choose an optimum target/projectile in order to maximize desired isotope production and minimize unwanted byproducts. Mechanical engineering is needed to address issues of target heating, induced mechanical stress and material compatibility of target and claddings. Radiochemists are involved as well since chemical separation to purify the desired final radioisotope product from the bulk target and impurities is also usually necessary. Most neutron rich species are produced at a few government and university reactors. Other radioisotopes are produced in cyclotrons in the commercial sector, university/hospital based facilities, and larger devices at the DOE labs. The landscape of US facilities, the techniques involved, and current supply challenges will be reviewed.

  7. Functionalized NaA nanozeolites labeled with 224,225Ra for targeted alpha therapy.

    PubMed

    Piotrowska, Agata; Leszczuk, Edyta; Bruchertseifer, Frank; Morgenstern, Alfred; Bilewicz, Aleksander

    2013-01-01

    The 223 Ra, 224 Ra, and 225 Ra radioisotopes exhibit very attractive nuclear properties for application in radionuclide therapy. Unfortunately the lack of appropriate bifunctional ligand for radium is the reason why these radionuclides have not found application in receptor-targeted therapy. In the present work, the potential usefulness of the NaA nanozeolite as a carrier for radium radionuclides has been studied. 224 Ra and 225 Ra, α-particle emitting radionuclides, have been absorbed in the nanometer-sized NaA zeolite (30-70 nm) through simple ion exchange. 224,225 Ra-nanozeolites exhibited very high stability in solutions containing physiological salt, EDTA, amino acids, and human serum. To make NaA nanozeolite particles dispersed in water their surface was modified with a silane coupling agent containing poly(ethylene glycol) molecules. This functionalization approach let us covalently attach a biomolecule to the NaA nanozeolite surface.

  8. Actinium radioisotope products of enhanced purity

    DOEpatents

    Meikrantz, David Herbert; Todd, Terry Allen; Tranter, Troy Joseph; Horwitz, E. Philip

    2010-06-15

    A product includes actinium-225 (.sup.225Ac) and less than about 1 microgram (.mu.g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (.sup.233U) and thorium-229 (.sup.229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (.mu.g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.

  9. The plasma separation process as a pre-cursor for large scale radioisotope production

    NASA Astrophysics Data System (ADS)

    Stevenson, Nigel R.

    2001-07-01

    Radioisotope production generally employs either accelerators or reactors to convert stable (usually enriched) isotopes into the desired product species. Radioisotopes have applications in industry, environmental sciences, and most significantly in medicine. The production of many potentially useful radioisotopes is significantly hindered by the lack of availability or by the high cost of key enriched stable isotopes. To try and meet this demand, certain niche enrichment processes have been developed and commercialized. Calutrons, centrifuges, and laser separation processes are some of the devices and techniques being employed to produce large quantities of selective enriched stable isotopes. Nevertheless, the list of enriched stable isotopes in sufficient quantities remains rather limited and this continues to restrict the availability of many radioisotopes that otherwise could have a significant impact on society. The Plasma Separation Process is a newly available commercial technique for producing large quantities of a wide range of enriched isotopes and thereby holds promise of being able to open the door to producing new and exciting applications of radioisotopes in the future.

  10. Reactors are indispensable for radioisotope production.

    PubMed

    Mushtaq, Ahmad

    2010-12-01

    Radioisotopes can be produced by reactors and accelerators. For certain isotopes there could be an advantage to a certain production method. However, nowadays many reports suggest, that useful isotopes needed in medicine, industry and research could be produced efficiently and dependence on reactors using enriched U-235 may be eliminated. In my view reactors and accelerators will continue to play their role side by side in the supply of suitable and economical sources of isotopes.

  11. BEST medical radioisotope production cyclotrons

    NASA Astrophysics Data System (ADS)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  12. Preliminary investigation of parasitic radioisotope production using the LANL IPF secondary neutron flux

    NASA Astrophysics Data System (ADS)

    Engle, J. W.; Kelsey, C. T.; Bach, H.; Ballard, B. D.; Fassbender, M. E.; John, K. D.; Birnbaum, E. R.; Nortier, F. M.

    2012-12-01

    In order to ascertain the potential for radioisotope production and material science studies using the Isotope Production Facility at Los Alamos National Lab, a two-pronged investigation has been initiated. The Monte Carlo for Neutral Particles eXtended (MCNPX) code has been used in conjunction with the CINDER 90 burnup code to predict neutron flux energy distributions as a result of routine irradiations and to estimate yields of radioisotopes of interest for hypothetical irradiation conditions. A threshold foil activation experiment is planned to study the neutron flux using measured yields of radioisotopes, quantified by HPGe gamma spectroscopy, from representative nuclear reactions with known thresholds up to 50 MeV.

  13. Progress on 241Am Production for Use in Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Baker, S. R.; Bell, K. J.; Brown, J.; Carrigan, C.; Carrott, M. J.; Gregson, C.; Clough, M.; Maher, C. J.; Mason, C.; Rhodes, C. J.; Rice, T. G.; Sarsfield, M. J.; Stephenson, K.; Taylor, R. J.; Tinsley, T. P.; Woodhead, D. A.; Wiss, T.

    2014-08-01

    Electrical power sources used in outer planet missions are a key enabling technology for data acquisition and communications. Power sources generate electricity from the thermal energy from alpha decay of the radioisotope 238Pu via thermo-electric conversion. Production of 238Pu requires specialist facilities including a nuclear reactor and reprocessing plants that are expensive to build and operate, so naturally, a more economical alternative is attractive to the industry. Within Europe 241Am is a feasible alternative to 238Pu that can provide a heat source for radioisotope thermoelectric generators (RTGs) and radioisotope heating units (RHUs). As a daughter product of 241Pu decay, 241Am is present at 1000s kg levels within the UK civil plutonium stockpile.A chemical separation process is required to extract the 241Am in a pure form and this paper describes such a process, successfully developed to the proof of concept stage.

  14. Energy-Recovery Linacs for Commercial Radioisotope Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland Paul

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL)more » is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial

  15. BEST medical radioisotope production cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan

    2013-04-19

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beammore » intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.« less

  16. Oligodendrocytes Do Not Export NAA-Derived Aspartate In Vitro.

    PubMed

    I Amaral, Ana; Hadera, Mussie Ghezu; Kotter, Mark; Sonnewald, Ursula

    2017-03-01

    Oligodendroglial cells are known to de-acetylate the N-acetylaspartate (NAA) synthesized and released by neurons and use it for lipid synthesis. However, the role of NAA regarding their intermediary metabolism remains poorly understood. Two hypotheses were proposed regarding the fate of aspartate after being released by de-acetylation: (1) aspartate is metabolized in the mitochondria of oligodendrocyte lineage cells; (2) aspartate is released to the medium. We report here that aspartoacylase mRNA expression increases when primary rat oligodendrocyte progenitor cells (OPCs) differentiate into mature cells in culture. Moreover, characterising metabolic functions of acetyl coenzyme A and aspartate from NAA catabolism in mature oligodendrocyte cultures after 5 days using isotope-labelled glucose after 5-days of differentiation we found evidence of extensive NAA metabolism. Incubation with [1,6- 13 C]glucose followed by gas chromatography-mass spectrometry and high performance liquid chromatography analyses of cell extracts and media in the presence and absence of NAA established that the acetate moiety produced by hydrolysis of NAA does not enter mitochondrial metabolism in the form of acetyl coenzyme A. We also resolved the controversy concerning the possible release of aspartate to the medium: aspartate is not released to the medium by oligodendrocytes in amounts detectable by our methods. Therefore we propose that: aspartate released from NAA joins the cytosolic aspartate pool rapidly and takes part in the malate-aspartate shuttle, which transports reducing equivalents from glycolysis into the mitochondria for ATP production and enters the tricarboxylic acid cycle at a slow rate.

  17. Development of a beam line for radio-isotope production at the KOMAC

    NASA Astrophysics Data System (ADS)

    Kim, Han-Sung

    2016-09-01

    A new beam line of the 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex), aiming for RI (radioisotope) production has been constructed reflecting the increasing demands for various RIs (radioisotopes), such as Sr-82 and Cu-67 for medical applications. Proton beam with beam energy of 100 MeV and an average current of 0.6 mA is directed to the 100-mm-diameter production target through a beam window made of aluminum-beryllium alloy. Major components of the newly-installed beam line include electromagnets for bending and focusing, beam diagnostic systems such as a BPM (beam position monitor) and a BCM (beam current monitor), and a vacuum pumping system based on an ion pump. In this paper, the design features and the installation of the RI-production beam line at the KOMAC are given.

  18. NAA and NAAG variation in neuronal activation during visual stimulation.

    PubMed

    Castellano, G; Dias, C S B; Foerster, B; Li, L M; Covolan, R J M

    2012-11-01

    N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-L-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.

  19. Targets for production of the medical radioisotopes with alpha and proton or deuteron beams

    NASA Astrophysics Data System (ADS)

    Stolarz, Anna; Kowalska, J. A.; Jastrzebski, J.; Choiński, J.; Sitarz, M.; Szkliniarz, K.; Trzcińska, A.; Zipper, W.

    2018-05-01

    The research quantities of some medical radioisotopes were produced in reactions induced by 32 MeV internal alpha beam (211At, Sc isotopes), 16 MeV and 28 MeV proton beams (Sc isotopes) and 8 MeV deuteron beam (Sc isotopes). The frame-less targets used for irradiation with internal alpha beam were prepared from elemental (Bi for 211At) and compound (CaCO3 for Sc radioisotopes) materials. The CaCO3 powder targets were also used for production of Sc radioisotopes with proton or deuteron external beams. Methods developed for preparation of the targets suitable for the irradiating beam type are described in this work.

  20. N-Acetylaspartylglutamate (NAAG) and N-Acetylaspartate (NAA) in Patients With Schizophrenia

    PubMed Central

    Jessen, Frank; Fingerhut, Natascha; Sprinkart, Alois M.; Kühn, Kai-Uwe; Petrovsky, Nadine; Maier, Wolfgang; Schild, Hans-H; Block, Wolfgang; Wagner, Michael; Träber, Frank

    2013-01-01

    Background : Imbalance of glutamatergic neurotransmission has been proposed as a key mechanism underlying symptoms of schizophrenia. The neuropetide N-acetylaspartylglutamate (NAAG) modulates glutamate release. NAAG provides a component of the proton magnetic resonance spectrum (1H-MRS) in humans. The signal of NAAG, however, largely overlaps with its precursor and degrading product N-acetylaspartate (NAA) that by itself does not act in glutamatergic neurotransmission. Methods: We quantified NAAG and NAA separately from the 1H-MRS signal in 20 patients with schizophrenia and 20 healthy comparison subjects on a 3.0 Tesla MR scanner. The 1H-MRS voxels were positioned in the anterior cingulate cortex (ACC) and in the left frontal lobe. Psychopathological symptoms and cognitive performance were assessed. Results: In the ACC, the ratio NAAG/NAA was increased (P = .041) and NAAG was increased at a trend level (P = .066) in patients, while NAA was reduced (P = .030). NAA correlated with attention performance in patients (r = .64, P = .005) in the ACC. There was no group difference of NAAG, NAA, or NAAG/NAA in the frontal lobe but an inverse correlation of NAAG with negatives symptoms (Positive and Negative Symptoms Scale [PANSS] negative, r = −.58, P = .018) and with the total symptom score (PANSS total, r = −.50, P = .049). In addition, there was a positive correlation of frontal lobe NAAG (r = .53, P = .035) and NAAG/NAA (r = .54, P = .030) with episodic memory in patients. Conclusions: In this study, we present the first in vivo evidence for altered NAAG concentration in patients with schizophrenia. PMID:21914645

  1. N-acetylaspartylglutamate (NAAG) and N-acetylaspartate (NAA) in patients with schizophrenia.

    PubMed

    Jessen, Frank; Fingerhut, Natascha; Sprinkart, Alois M; Kühn, Kai-Uwe; Petrovsky, Nadine; Maier, Wolfgang; Schild, Hans-H; Block, Wolfgang; Wagner, Michael; Träber, Frank

    2013-01-01

    BACKGROUND : Imbalance of glutamatergic neurotransmission has been proposed as a key mechanism underlying symptoms of schizophrenia. The neuropetide N-acetylaspartylglutamate (NAAG) modulates glutamate release. NAAG provides a component of the proton magnetic resonance spectrum (1H-MRS) in humans. The signal of NAAG, however, largely overlaps with its precursor and degrading product N-acetylaspartate (NAA) that by itself does not act in glutamatergic neurotransmission. We quantified NAAG and NAA separately from the 1H-MRS signal in 20 patients with schizophrenia and 20 healthy comparison subjects on a 3.0 Tesla MR scanner. The 1H-MRS voxels were positioned in the anterior cingulate cortex (ACC) and in the left frontal lobe. Psychopathological symptoms and cognitive performance were assessed. In the ACC, the ratio NAAG/NAA was increased (P = .041) and NAAG was increased at a trend level (P = .066) in patients, while NAA was reduced (P = .030). NAA correlated with attention performance in patients (r = .64, P = .005) in the ACC. There was no group difference of NAAG, NAA, or NAAG/NAA in the frontal lobe but an inverse correlation of NAAG with negatives symptoms (Positive and Negative Symptoms Scale [PANSS] negative, r = -.58, P = .018) and with the total symptom score (PANSS total, r = -.50, P = .049). In addition, there was a positive correlation of frontal lobe NAAG (r = .53, P = .035) and NAAG/NAA (r = .54, P = .030) with episodic memory in patients. In this study, we present the first in vivo evidence for altered NAAG concentration in patients with schizophrenia.

  2. An alternate approach to the production of radioisotopes for nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    D'Auria, John M.; Keller, Roderich; Ladouceur, Keith; Lapi, Suzanne E.; Ruth, Thomas J.; Schmor, Paul

    2013-03-01

    There is a growing need for the production of radioisotopes for both diagnostic and therapeutic medical applications. Radioisotopes that are produced using the (n,γ) or (γ,n) reactions, however, typically result in samples with low specific activity (radioactivity/gram) due to the high abundance of target material of the same element. One method to effectively remove the isotopic impurity is electro-magnetic mass separation. An Ion Source Test Facility has been constructed at TRIUMF to develop high-intensity, high-efficiency, reliable ion sources for purification of radioactive isotopes, particularly those used in nuclear medicine. In progress studies are presented.

  3. An alternate approach to the production of radioisotopes for nuclear medicine applications.

    PubMed

    D'Auria, John M; Keller, Roderich; Ladouceur, Keith; Lapi, Suzanne E; Ruth, Thomas J; Schmor, Paul

    2013-03-01

    There is a growing need for the production of radioisotopes for both diagnostic and therapeutic medical applications. Radioisotopes that are produced using the (n,γ) or (γ,n) reactions, however, typically result in samples with low specific activity (radioactivity∕gram) due to the high abundance of target material of the same element. One method to effectively remove the isotopic impurity is electro-magnetic mass separation. An Ion Source Test Facility has been constructed at TRIUMF to develop high-intensity, high-efficiency, reliable ion sources for purification of radioactive isotopes, particularly those used in nuclear medicine. In progress studies are presented.

  4. Radioisotopic heat source

    DOEpatents

    Sayell, E.H.

    1973-10-23

    A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)

  5. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burlison, J.S.

    1981-08-01

    The sixteenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboraory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopesmore » purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.« less

  6. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burlison, J.S.

    1980-06-01

    The fifteenth edition of the radioisotope customer list was prepared at the request of the Division of Financial Services, Office of the Assistant Secretary for Environment, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Rocky Flats Area Office; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: Isotope suppliers, facility, contracts and isotopes or services supplied; alphabetical list ofmore » customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customer numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1979.« less

  7. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burlison, J.S.

    1982-09-01

    The seventeenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of Energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory: Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopesmore » purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.« less

  8. Material science as basis for nuclear medicine: Holmium irradiation for radioisotopes production

    NASA Astrophysics Data System (ADS)

    Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko

    2018-05-01

    Material Science, being an interdisciplinary field, plays important roles in nuclear science. These applications are seen in weaponry, armoured vehicles, accelerator structure and development, semiconductor detectors, nuclear medicine and many more. Present study presents the applications of some metals in nuclear medicine (radioisotope production). The charged-particle-induced nuclear reactions by using cyclotrons or accelerators have become a very vital feature of the modern nuclear medicine. Realising the importance of excitation functions for the efficient production of medical radionuclides, some very high purity holmium metals are generally prepared or purchased for bombardment in nuclear accelerators. In the present work, various methods to obtain pure holmium for radioisotope production have been discussed while also presenting details of our present studies. From the experimental work of the present studies, some very high purity holmium foils have been used in the work for a comprehensive study of residual radionuclides production cross-sections. The study was performed using a stacked-foil activation technique combined with γ-ray spectrometry. The stack was bombarded with 50.4 MeV alpha particle beam from AVF cyclotron of RI Beam Factory, Nishina Centre for Accelerator-Based Science, RIKEN, Japan. The work produced thulium radionuclides useful in nuclear medicine.

  9. Production of Medical Radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for Cancer Treatment and Arterial Restenosis Therapy after PTCA

    DOE R&D Accomplishments Database

    Knapp, F. F. Jr.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  10. 76 FR 63668 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Licensing of Non-Power Reactors: Format and Content,'' for the Production of Radioisotopes and NUREG-1537, part 2, ``Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors... production facility and the Research and Test Reactor Licensing Branch (PRLB) of the Division of Policy and...

  11. NAA thinning of ‘W. Murcott’

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to determine if NAA thinning may be useful for managing cropload in Florida ‘W Murcott’. Trials were conducted in two groves of ages 4 and 6 years. NAA was applied on 13 May, 2010, when fruitlets averaged 10-12 mm in diameter. A randomized complete block design was used, ...

  12. Multivariate Associations of Fluid Intelligence and NAA.

    PubMed

    Nikolaidis, Aki; Baniqued, Pauline L; Kranz, Michael B; Scavuzzo, Claire J; Barbey, Aron K; Kramer, Arthur F; Larsen, Ryan J

    2017-04-01

    Understanding the neural and metabolic correlates of fluid intelligence not only aids scientists in characterizing cognitive processes involved in intelligence, but it also offers insight into intervention methods to improve fluid intelligence. Here we use magnetic resonance spectroscopic imaging (MRSI) to measure N-acetyl aspartate (NAA), a biochemical marker of neural energy production and efficiency. We use principal components analysis (PCA) to examine how the distribution of NAA in the frontal and parietal lobes relates to fluid intelligence. We find that a left lateralized frontal-parietal component predicts fluid intelligence, and it does so independently of brain size, another significant predictor of fluid intelligence. These results suggest that the left motor regions play a key role in the visualization and planning necessary for spatial cognition and reasoning, and we discuss these findings in the context of the Parieto-Frontal Integration Theory of intelligence. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Development of Water Target for Radioisotope Production

    NASA Astrophysics Data System (ADS)

    Tripp, Nathan

    2011-10-01

    Ongoing studies of plant physiology at TUNL require a supply of nitrogen-13 for use as a radiotracer. Production of nitrogen-13 using a water target and a proton beam follows the nuclear reaction 16-O(p,a)13-N. Unfortunately the irradiation of trace amounts of oxygen-18 within a natural water target produces fluorine-18 by the reaction 18-O(p, n)18-F. The presence of this second radioisotope reduces the efficacy of nitrogen-13 as a radiotracer. Designing a natural water target for nitrogen-13 production at TUNL required the design of several new systems to address the problems inherent in nitrogen-13 production. A heat exchanger cools the target water after irradiation within the target cell. The resulting improved thermal regulation of the target water prevents the system from overheating and minimizes the effect of the cavitations occurring within the target. Alumina pellets within a scrubbing unit remove the fluorine-18 contamination from the irradiated water. The modular design of the water target apparatus makes the system highly adaptable, allowing for easy reuse and adaptation of the different components into future projects. The newly designed and constructed water target should meet the current and future needs of TUNL researchers in the production of nitrogen-13. This TUNL REU project was funded in part by a grant from the National Science Foundation (NSF) NSF-PHY-08-51813.

  14. GEANT4 simulation of cyclotron radioisotope production in a solid target.

    PubMed

    Poignant, F; Penfold, S; Asp, J; Takhar, P; Jackson, P

    2016-05-01

    The use of radioisotopes in nuclear medicine is essential for diagnosing and treating cancer. The optimization of their production is a key factor in maximizing the production yield and minimizing the associated costs. An efficient approach to this problem is the use of Monte Carlo simulations prior to experimentation. By predicting isotopes yields, one can study the isotope of interest expected activity for different energy ranges. One can also study the target contamination with other radioisotopes, especially undesired radioisotopes of the wanted chemical element which are difficult to separate from the irradiated target and might result in increasing the dose when delivering the radiopharmaceutical product to the patient. The aim of this work is to build and validate a Monte Carlo simulation platform using the GEANT4 toolkit to model the solid target system of the South Australian Health and Medical Research Institute (SAHMRI) GE Healthcare PETtrace cyclotron. It includes a GEANT4 Graphical User Interface (GUI) where the user can modify simulation parameters such as the energy, shape and current of the proton beam, the target geometry and material, the foil geometry and material and the time of irradiation. The paper describes the simulation and presents a comparison of simulated and experimental/theoretical yields for various nuclear reactions on an enriched nickel 64 target using the GEANT4 physics model QGSP_BIC_AllHP, a model recently developed to evaluate with high precision the interaction of protons with energies below 200MeV available in Geant4 version 10.1. The simulation yield of the (64)Ni(p,n)(64)Cu reaction was found to be 7.67±0.074 mCi·μA(-1) for a target energy range of 9-12MeV. Szelecsenyi et al. (1993) gives a theoretical yield of 6.71mCi·μA(-1) and an experimental yield of 6.38mCi·μA(-1). The (64)Ni(p,n)(64)Cu cross section obtained with the simulation was also verified against the yield predicted from the nuclear database TENDL and

  15. Age-modulated association between prefrontal NAA and the BDNF gene.

    PubMed

    Salehi, Basira; Preuss, Nora; van der Veen, Jan Willem; Shen, Jun; Neumeister, Alexander; Drevets, Wayne C; Hodgkinson, Colin; Goldman, David; Wendland, Jens R; Singleton, Andrew; Gibbs, Jesse R; Cookson, Mark R; Hasler, Gregor

    2013-07-01

    Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of psychiatric and neurological disorders and in the mechanisms of antidepressant pharmacotherapy. Psychiatric and neurological conditions have also been associated with reduced brain levels of N-acetyl-aspartate (NAA), which has been used as a putative marker of neural integrity. However, few studies have explored the relationship between BDNF polymorphisms and NAA levels directly. Here, we present data from a single-voxel proton magnetic resonance spectroscopy study of 64 individuals and explore the relationship between BDNF polymorphisms and prefrontal NAA level. Our results indicate an association between a single nucleotide polymorphism (SNP) within BDNF, known as rs1519480, and reduced NAA level (p = 0.023). NAA levels were further predicted by age and Asian ancestry. There was a significant rs1519480 × age interaction on NAA level (p = 0.031). Specifically, the effect of rs1519480 on NAA level became significant at age ⩾34.17 yr. NAA level decreased with advancing age for genotype TT (p = 0.001) but not for genotype CT (p = 0.82) or CC (p = 0.34). Additional in silico analysis of 142 post-mortem brain samples revealed an association between the same SNP and reduced BDNF mRNA expression in the prefrontal cortex. The rs1519480 SNP influences BDNF mRNA expression and has an impact on prefrontal NAA level over time. This genetic mechanism may contribute to inter-individual variation in cognitive performance seen during normal ageing, as well as contributing to the risk for developing psychiatric and neurological conditions.

  16. Radioisotope trithiol complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurisson, Silvia S.; Cutler, Cathy S.; Degraffenreid, Anthony J.

    The present invention is directed to a series of stable radioisotope trithiol complexes that provide a simplified route for the direct complexation of radioisotopes present in low concentrations. In certain embodiments, the complex contains a linking domain configured to conjugate the radioisotope trithiol complex to a targeting vector. The invention is also directed to a novel method of linking the radioisotope to a trithiol compound to form the radioisotope trithiol complex. The inventive radioisotope trithiol complexes may be utilized for a variety of applications, including diagnostics and/or treatment in nuclear medicine.

  17. Therapeutic clinical applications of reactor-produced radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, F.F. Jr.

    1997-12-01

    One of the most rapidly growing areas of clinical nuclear medicine is the therapeutic use of radioisotopes for applications in oncology, rheumatology and, more recently, interventional cardiology. With the rapidly increasing development and evaluation of new agents, their introduction into clinical use, and commercialization, the availability of high levels of therapeutic reactor-produced neutron-rich radioisotopes is of increasing importance. The goals of this paper are to discuss the issues associated with optimization of the production and processing of reactor-produced radioisotopes for therapy, with special emphasis on {sup 188}W, and the optimization of the use of the {sup 188}W/{sup 188}Re generator. Inmore » addition, other key examples of therapeutic radioisotopes of current interest and their specific clinical applications are discussed.« less

  18. Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge.

    PubMed

    Anuwattana, Rewadee; Khummongkol, Pojanie

    2009-07-15

    Na-A type zeolites were prepared from two industrial wastes: the solid by-product of cupola slag and aluminum sludge from an aluminum plating plant. Two preparation methods using the same starting material compositions were carried out. In the first method, alkaline fusion was introduced, followed by the hydrothermal treatment to obtain sodium aluminosilicate which was then crystallized in NaOH solution under the condition of 90+/-3 degrees C for 1-9h with different H(2)O/SiO2 ratios. The result shows that higher H(2)O/SiO2 ratio increases the rate of crystallization. The largest amount of crystallinity for Na-A was found at 3h. In the second method, alkaline hydrothermal treatment without fusion was carried out in the same condition as the first method. No Na-A zeolite was obtained by this method. The changes of the dissolved amounts of Si(4+) and Al(3+) in 3M NaOH were investigated during the hydrothermal reaction.

  19. Reduced concentrations of N-acetylaspartate (NAA) and the NAA-creatine ratio in the basal ganglia in bipolar disorder: a study using 3-Tesla proton magnetic resonance spectroscopy.

    PubMed

    Frye, Mark A; Thomas, M Albert; Yue, Kenneth; Binesh, Nader; Davanzo, Pablo; Ventura, Joseph; O'Neill, Joseph; Guze, Barry; Curran, John G; Mintz, Jim

    2007-04-15

    The N-acetylaspartate (NAA) peak is prominent in the proton magnetic resonance spectrum and is thought to reflect neuron loss or dysfunction. This study was conducted to explore NAA biochemistry and its clinical correlates in mania. Subjects comprised 16 manic patients and 17 controls who underwent a structured diagnostic interview and (1)H magnetic resonance spectroscopy (MRS) acquisition. STEAM (1)H MRS (TR/TE/TM=2000/20/8 ms) was acquired at 3 Tesla from 2 x 2 x 2 cm(3) voxels in anterior cingulate (AC), right basal ganglia (BG), and left occipital-parietal white matter (OP). Absolute metabolite concentrations and ratios to creatine were calculated using the LC Model. The mean absolute concentrations of NAA and NAA-creatine ratio in the BG were significantly lower in manic subjects than in controls. There was a significant inverse correlation between NAA in the BG and the number of prior hospitalizations for mania. These data suggest BG pathology in mania and that NAA decrements may mark prior manic episode burden. Limitations of this study include small sample size and lack of tissue segmentation. Further study is encouraged to clarify state vs. trait aspects of NAA in bipolar disorder.

  20. Radio-isotope production scale-up at the University of Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickles, Robert Jerome

    Our intent has been to scale up our production capacity for a subset of the NSAC-I list of radioisotopes in jeopardy, so as to make a significant impact on the projected national needs for Cu-64, Zr-89, Y-86, Ga-66, Br-76, I-124 and other radioisotopes that offer promise as PET synthons. The work-flow and milestones in this project have been compressed into a single year (Aug 1, 2012- July 31, 2013). The grant budget was virtually dominated by the purchase of a pair of dual-mini-cells that have made the scale-up possible, now permitting the Curie-level processing of Cu-64 and Zr-89 with greatlymore » reduced radiation exposure. Mile stones: 1. We doubled our production of Cu-64 and Zr-89 during the grant period, both for local use and out-bound distribution to ≈ 30 labs nationwide. This involved the dove-tailing of beam schedules of both our PETtrace and legacy RDS cyclotron. 2. Implemented improved chemical separation of Zr-89, Ga-66, Y-86 and Sc-44, with remote, semi-automated dissolution, trap-and-release separation under LabView control in the two dual-mini-cells provided by this DOE grant. A key advance was to fit the chemical stream with miniature radiation detectors to confirm the transfer operations. 3. Implemented improved shipping of radioisotopes (Cu-64, Zr-89, Tc-95m, and Ho-163) with approved DOT 7A boxes, with a much-improved FedEx shipping success compared to our previous steel drums. 4. Implemented broad range quantitative trace metal analysis, employing a new microwave plasma atomic emission spectrometer (Agilent 4200) capable of ppb sensitivity across the periodic table. This new instrument will prove essential in bringing our radiometals into FDA compliance needing CoA’s for translational research in clinical trials. 5. Expanded our capabilities in target fabrication, with the purchase of a programmable 1600 oC inert gas tube furnace for the smelting of binary alloy target materials. A similar effort makes use of our RF induction furnace

  1. Student research with 400keV beams: {sup 13}N radioisotope production target development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fru, L. Che; Clymer, J.; Compton, N.

    2013-04-19

    The AN400 Van de Graaff accelerator at the Minnesota State University, Mankato, Applied Nuclear Science Lab has demonstrated utility as an accessible and versatile platform for student research. Despite the limits of low energy, the research team successfully developed projects with applications to the wider radioisotope production community. A target system has been developed for producing and extracting {sup 13}N by the {sup 12}C(d,n){sup 13}N reaction below 400keV. The system is both reusable and robust, with future applications to higher energy machines producing this important radioisotope for physiological imaging studies with Positron Emission Tomography. Up to 36({+-}1)% of the {supmore » 13}N was extracted from the graphite matrix when 35 A current was externally applied to the graphite target while simultaneously flushing the target chamber with CO{sub 2} gas.« less

  2. List of DOE radioisotope customers with summary of radioisotope shipments FY 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burlison, J.S.; Laidler, R.I.

    1979-05-01

    The purpose of the document is to list DOE's radioisotopes production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc.

  3. APOLLO CREW (NAA) - ASTRONAUT EDWARD H. WHITE - TRAINING

    NASA Image and Video Library

    1966-06-24

    The members of the prime crew of the first manned Apollo space flight Apollo/Saturn 204 (AS-204) inspect spacecraft equipment during a tour of North American Aviation's (NAA) Downey facility. In the foreground, left to right, are astronauts Roger B. Chaffee, Virgil I. Grissom, and Edward H. White, II. NAA engineers and technicians are in the background. NORTH AMERICAN AVIATION, INC., DOWNEY, CA B&W

  4. Reduced hippocampal N-acetyl-aspartate (NAA) as a biomarker for overweight.

    PubMed

    Coplan, Jeremy D; Fathy, Hassan M; Abdallah, Chadi G; Ragab, Sherif A; Kral, John G; Mao, Xiangling; Shungu, Dikoma C; Mathew, Sanjay J

    2014-01-01

    We previously demonstrated an inverse relationship between both dentate gyrus neurogenesis - a form of neuroplasticity - and expression of the antiapoptotic gene marker, BCL-2 and adult macaque body weight. We therefore explored whether a similar inverse correlation existed in humans between body mass index (BMI) and hippocampal N-acetyl-aspartate (NAA), a marker of neuronal integrity and putatively, neuroplasticity. We also studied the relationship of a potentially neurotoxic process, worry, to hippocampal NAA in patients with generalized anxiety disorder (GAD) and control subjects (CS). We combined two previously studied cohorts of GAD and control subjects. Using proton magnetic resonance spectroscopy imaging ((1)H MRSI) in medication-free patients with GAD (n = 29) and a matched healthy control group (n = 22), we determined hippocampal concentrations of (1) NAA (2) choline containing compounds (CHO), and (3) Creatine + phosphocreatine (CR). Data were combined from 1.5 T and 3 T scans by converting values from each cohort to z-scores. Overweight and GAD diagnosis were used as categorical variables while the Penn State Worry Questionnaire (PSWQ) and Anxiety Sensitivity Index (ASI) were used as dependent variables. Overweight subjects (BMI ≥ 25) exhibited lower NAA levels in the hippocampus than normal-weight subjects (BMI < 25) (partial Eta-squared = 0.14) controlling for age, sex and psychiatric diagnosis, and the effect was significant for the right hippocampus in both GAD patients and control subjects. An inverse linear correlation was noted in all subjects between right hippocampal NAA and BMI. High scores on the PSWQ predicted low hippocampal NAA and CR. Both BMI and worry were independent inverse predictors of hippocampal NAA. Overweight was associated with reduced NAA concentrations in the hippocampus with a strong effect size. Future mechanistic studies are warranted.

  5. Reduced hippocampal N-acetyl-aspartate (NAA) as a biomarker for overweight☆

    PubMed Central

    Coplan, Jeremy D.; Fathy, Hassan M.; Abdallah, Chadi G.; Ragab, Sherif A.; Kral, John G.; Mao, Xiangling; Shungu, Dikoma C.; Mathew, Sanjay J.

    2014-01-01

    Objective We previously demonstrated an inverse relationship between both dentate gyrus neurogenesis – a form of neuroplasticity – and expression of the antiapoptotic gene marker, BCL-2 and adult macaque body weight. We therefore explored whether a similar inverse correlation existed in humans between body mass index (BMI) and hippocampal N-acetyl-aspartate (NAA), a marker of neuronal integrity and putatively, neuroplasticity. We also studied the relationship of a potentially neurotoxic process, worry, to hippocampal NAA in patients with generalized anxiety disorder (GAD) and control subjects (CS). Methods We combined two previously studied cohorts of GAD and control subjects. Using proton magnetic resonance spectroscopy imaging (1H MRSI) in medication-free patients with GAD (n = 29) and a matched healthy control group (n = 22), we determined hippocampal concentrations of (1) NAA (2) choline containing compounds (CHO), and (3) Creatine + phosphocreatine (CR). Data were combined from 1.5 T and 3 T scans by converting values from each cohort to z-scores. Overweight and GAD diagnosis were used as categorical variables while the Penn State Worry Questionnaire (PSWQ) and Anxiety Sensitivity Index (ASI) were used as dependent variables. Results Overweight subjects (BMI ≥ 25) exhibited lower NAA levels in the hippocampus than normal-weight subjects (BMI < 25) (partial Eta-squared = 0.14) controlling for age, sex and psychiatric diagnosis, and the effect was significant for the right hippocampus in both GAD patients and control subjects. An inverse linear correlation was noted in all subjects between right hippocampal NAA and BMI. High scores on the PSWQ predicted low hippocampal NAA and CR. Both BMI and worry were independent inverse predictors of hippocampal NAA. Conclusion Overweight was associated with reduced NAA concentrations in the hippocampus with a strong effect size. Future mechanistic studies are warranted. PMID:24501701

  6. The Texas A&M Radioisotope Production and Radiochemistry Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akabani, Gamal

    The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostic and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015, allowing us to work in earnest in our project objectives. Experiments began immediately after licensing, and we started the assembly and testing of our target systems. There were four analytical/theoreticalmore » projects and two experimental target systems. These were for At-211 production and for Zn- 62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using (a) a subcritical aqueous target system and (b) production of Tc-99m from accelerator-generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011; due to the lack of a radiochemistry laboratory, it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.« less

  7. The Texas A&M Radioisotope Production and Radiochemistry Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akabani, Gamal

    The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostics and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015, allowing us to work in earnest in our project objectives. Experiments began immediately after licensing, and we started the assembly and testing of our target systems. There were four analytical/theoreticalmore » projects and two experimental target systems. These were for At-211 production and for Zn-62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using a) a subcritical aqueous target system and b) production of Tc-99m from accelerator-generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011 and, due to the lack of a radiochemistry laboratory, it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.« less

  8. Effects of IBA and NAA treatments on rooting Douglas-fir stem cuttings.

    Treesearch

    D.L. Copes

    2000-01-01

    The effectiveness of six IBA and four NAA concentrations, four combinations of IBA and NAA concentrations, and control were tested for their ability to enhance rooting frequency (%) of Douglas-fir cuttings. Two IBA and one NAA treatments were also compared to the control for quality of root system. Between 1984 and 1998, six independent studies were conducted in mist...

  9. Decreased NAA in gray matter is correlated with decreased availability of acetate in white matter in postmortem multiple sclerosis cortex.

    PubMed

    Li, S; Clements, R; Sulak, M; Gregory, R; Freeman, E; McDonough, J

    2013-11-01

    Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the central nervous system (CNS) which leads to progressive neurological disability. Our previous studies have demonstrated mitochondrial involvement in MS cortical pathology and others have documented decreased levels of the neuronal mitochondrial metabolite N-acetyl aspartate (NAA) in the MS brain. While NAA is synthesized in neurons, it is broken down in oligodendrocytes into aspartate and acetate. The resulting acetate is incorporated into myelin lipids, linking neuronal mitochondrial function to oligodendrocyte-mediated elaboration of myelin lipids in the CNS. In the present study we show that treating human SH-SY5Y neuroblastoma cells with the electron transport chain inhibitor antimycin A decreased levels of NAA as measured by HPLC. To better understand the significance of the relationship between mitochondrial function and levels of NAA and its breakdown product acetate on MS pathology we then quantitated the levels of NAA and acetate in MS and control postmortem tissue blocks. Regardless of lesion status, we observed that levels of NAA were decreased 25 and 32 % in gray matter from parietal and motor cortex in MS, respectively, compared to controls. Acetate levels in adjacent white matter mirrored these decreases as evidenced by the 36 and 45 % reduction in acetate obtained from parietal and motor cortices. These data suggest a novel mechanism whereby mitochondrial dysfunction and reduced NAA levels in neurons may result in compromised myelination by oligodendrocytes due to decreased availability of acetate necessary for the synthesis of myelin lipids.

  10. The radioisotope complex project "RIC-80" at the Petersburg Nuclear Physics Institute.

    PubMed

    Panteleev, V N; Barzakh, A E; Batist, L Kh; Fedorov, D V; Ivanov, V S; Moroz, F V; Molkanov, P L; Orlov, S Yu; Volkov, Yu M

    2015-12-01

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-line or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes (82)Sr and (223,224)Ra are also presented.

  11. NAA For Human Serum Analysis: Comparison With Conventional Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Laura C.; Zamboni, Cibele B.; Medeiros, Jose A. G.

    2010-08-04

    Instrumental and Comparator methods of Neutron Activation Analysis (NAA) were applied to determine elements of clinical relevancy in serum samples of adult population (Sao Paulo city, Brazil). A comparison with the conventional analyses, Colorimetric for calcium, Titrymetric for chlorine and Ion Specific Electrode for sodium and potassium determination were also performed permitting a discussion about the performance of NAA methods for clinical chemistry research.

  12. Magnetic zeolite NaA: synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+.

    PubMed

    Liu, Haibo; Peng, Shuchuan; Shu, Lin; Chen, Tianhu; Bao, Teng; Frost, Ray L

    2013-06-01

    The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu(2+), Pb(2+)). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3=2.3, Na2O/SiO2=1.4, H2O/Na2O=50, crystallization time 8h, crystallization temperature 95 °C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g(-1) for Cu(2+), Pb(2+) with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu(2+), Pb(2+) from water with metallic contaminants and can be separated easily after a magnetic process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Decreased NAA in Gray Matter is Correlated with Decreased Availability of Acetate in White Matter in Postmortem Multiple Sclerosis Cortex

    PubMed Central

    Li, S.; Clements, R.; Sulak, M.; Gregory, R.; Freeman, E.; McDonough, J.

    2013-01-01

    Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the central nervous system (CNS) which leads to progressive neurological disability. Our previous studies have demonstrated mitochondrial involvement in MS cortical pathology and others have documented decreased levels of the neuronal mitochondrial metabolite N-acetyl aspartate (NAA) in the MS brain. While NAA is synthesized in neurons, it is broken down in oligodendrocytes into aspartate and acetate. The resulting acetate is incorporated into myelin lipids, linking neuronal mitochondrial function to oligodendrocyte-mediated elaboration of myelin lipids in the CNS. In the present study we show that treating human SH-SY5Y neuroblastoma cells with the electron transport chain inhibitor antimycin A decreased levels of NAA as measured by HPLC. To better understand the significance of the relationship between mitochondrial function and levels of NAA and its breakdown product acetate on MS pathology we then quantitated the levels of NAA and acetate in MS and control postmortem tissue blocks. Regardless of lesion status, we observed that levels of NAA were decreased 25 and 32 % in gray matter from parietal and motor cortex in MS, respectively, compared to controls. Acetate levels in adjacent white matter mirrored these decreases as evidenced by the 36 and 45 % reduction in acetate obtained from parietal and motor cortices. These data suggest a novel mechanism whereby mitochondrial dysfunction and reduced NAA levels in neurons may result in compromised myelination by oligodendrocytes due to decreased availability of acetate necessary for the synthesis of myelin lipids. PMID:24078261

  14. NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A-T phosphoramidite building blocks.

    PubMed

    Schmidtgall, Boris; Höbartner, Claudia; Ducho, Christian

    2015-01-01

    Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T-T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X-T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A-T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues.

  15. N-acetyl-aspartate (NAA) as a correlate of pharmacological treatment in psychiatric disorders: a systematic review.

    PubMed

    Paslakis, Georgios; Träber, Frank; Roberz, Jens; Block, Wolfgang; Jessen, Frank

    2014-10-01

    The amino-acid N-acetyl-aspartate (NAA) is located in neurons and the concentration of NAA correlates with neuronal mitochondrial function. The signal of NAA, as measured with proton magnetic resonance spectroscopy (1H-MRS), is considered to reflect both, neuronal density and integrity of neuronal mitochondria. A reduction of the NAA concentrations has been found in several psychiatric disorders. Newer studies report reversal of decreased NAA concentration with treatment. The objective of this review is to summarize the literature on NAA changes in association with psychopharmacological treatment in psychiatric disorders (affective disorders, obsessive-compulsive disorder, schizophrenia and dementia). The majority of studies identified increased NAA concentrations in response to treatment, while a smaller number of studies did not find this effect. The NAA increase seems to be neither specific for a certain disorder nor for a specific intervention. This suggests that the reduction of NAA may represent an altered functional (metabolic) state of neurons common to different psychiatric disorders and the increase after treatment to indicate functional restoration as one general effect of interventions. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  16. Widespread extrahippocampal NAA/(Cr+Cho) abnormalities in TLE with and without mesial temporal sclerosis.

    PubMed

    Mueller, Susanne G; Ebel, Andreas; Barakos, Jerome; Scanlon, Cathy; Cheong, Ian; Finlay, Daniel; Garcia, Paul; Weiner, Michael W; Laxer, Kenneth D

    2011-04-01

    MR spectroscopy has demonstrated extrahippocampal NAA/(Cr+Cho) reductions in medial temporal lobe epilepsy with (TLE-MTS) and without (TLE-no) mesial temporal sclerosis. Because of the limited brain coverage of those previous studies, it was, however, not possible to assess differences in the distribution and extent of these abnormalities between TLE-MTS and TLE-no. This study used a 3D whole brain echoplanar spectroscopic imaging (EPSI) sequence to address the following questions: (1) Do TLE-MTS and TLE-no differ regarding severity and distribution of extrahippocampal NAA/(Cr+Cho) reductions? (2) Do extrahippocampal NAA/(Cr+Cho) reductions provide additional information for focus lateralization? Forty-three subjects (12 TLE-MTS, 13 TLE-no, 18 controls) were studied with 3D EPSI. Statistical parametric mapping (SPM2) was used to identify regions of significantly decreased NAA/(Cr+Cho) in TLE groups and in individual patients. TLE-MTS and TLE-no had widespread extrahippocampal NAA/(Cr+Cho) reductions. NAA/(Cr+Cho) reductions had a bilateral fronto-temporal distribution in TLE-MTS and a more diffuse, less well defined distribution in TLE-no. Extrahippocampal NAA/(Cr+Cho) decreases in the single subject analysis showed a large inter-individual variability and did not provide additional focus lateralizing information. Extrahippocampal NAA/(Cr+Cho) reductions in TLE-MTS and TLE-no are neither focal nor homogeneous. This reduces their value for focus lateralization and suggests a heterogeneous etiology of extrahippocampal spectroscopic metabolic abnormalities in TLE.

  17. Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy.

    PubMed

    Upadhyay, Jaymin; Hallock, Kevin; Erb, Kelley; Kim, Dae-Shik; Ronen, Itamar

    2007-11-01

    In diffusion tensor imaging (DTI) the anisotropic movement of water is exploited to characterize microstructure. One confounding issue of DTI is the presence of intra- and extracellular components contributing to the measured diffusivity. This causes an ambiguity in determining the underlying cause of diffusion properties, particularly the fractional anisotropy (FA). In this study an intracellular constituent, N-acetyl aspartate (NAA), was used to probe intracellular diffusion, while water molecules were used to probe the combined intra- and extracellular diffusion. NAA and water diffusion measurements were made in anterior and medial corpus callosum (CC) regions, which are referred to as R1 and R2, respectively. FA(NAA) was found to be greater than FA(Water) in both CC regions, thus indicating a higher degree of anisotropy within the intracellular space in comparison to the combined intra- and extracellular spaces. A decreasing trend in the FA of NAA and water was observed between R1 and R2, while the radial diffusivity (RD) for both molecules increased. The increase in RD(NAA) is particularly significant, thus explaining the more significant decrease in FA(NAA) between the two regions. It is suggested that diffusion tensor spectroscopy of NAA can potentially be used to further characterize microscopic anatomic organization in white matter. Copyright 2007 Wiley-Liss, Inc.

  18. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition

    PubMed Central

    Singhal, N. K.; Huang, H.; Li, S.; Clements, R.; Gadd, J.; Daniels, A.; Kooijman, E. E.; Bannerman, P.; Burns, T.; Guo, F.; Pleasure, D.; Freeman, E.; Shriver, L.

    2017-01-01

    The neuronal mitochondrial metabolite N-acetylaspartate (NAA) is decreased in the multiple sclerosis (MS) brain. NAA is synthesized in neurons by the enzyme N-acetyltransferase-8-like (NAT8L) and broken down in oligodendrocytes by aspartoacylase (ASPA) into acetate and aspartate. We have hypothesized that NAA links the metabolism of axons with oligodendrocytes to support myelination. To test this hypothesis, we performed lipidomic analyses using liquid chromatography–tandem mass spectrometry (LC–MS/MS) and high-performance thin-layer chromatography (HPTLC) to identify changes in myelin lipid composition in postmortem MS brains and in NAT8L knockout (NAT8L−/−) mice which do not synthesize NAA. We found reduced levels of sphingomyelin in MS normal appearing white matter that mirrored decreased levels of NAA. We also discovered decreases in the amounts of sphingomyelin and sulfatide lipids in the brains of NAT8L−/− mice compared to controls. Metabolomic analysis of primary cultures of oligodendrocytes treated with NAA revealed increased levels of α-ketoglutarate, which has been reported to regulate histone demethylase activity. Consistent with this, NAA treatment resulted in alterations in the levels of histone H3 methylation, including H3K4me3, H3K9me2, and H3K9me3. The H3K4me3 histone mark regulates cellular energetics, metabolism, and growth, while H3K9me3 has been linked to alterations in transcriptional repression in developing oligodendrocytes. We also noted the NAA treatment was associated with increases in the expression of genes involved in sulfatide and sphingomyelin synthesis in cultured oligodendrocytes. This is the first report demonstrating that neuronal-derived NAA can signal to the oligodendrocyte nucleus. These data suggest that neuronal-derived NAA signals through epigenetic mechanisms in oligodendrocytes to support or maintain myelination. PMID:27709268

  19. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition.

    PubMed

    Singhal, N K; Huang, H; Li, S; Clements, R; Gadd, J; Daniels, A; Kooijman, E E; Bannerman, P; Burns, T; Guo, F; Pleasure, D; Freeman, E; Shriver, L; McDonough, J

    2017-01-01

    The neuronal mitochondrial metabolite N-acetylaspartate (NAA) is decreased in the multiple sclerosis (MS) brain. NAA is synthesized in neurons by the enzyme N-acetyltransferase-8-like (NAT8L) and broken down in oligodendrocytes by aspartoacylase (ASPA) into acetate and aspartate. We have hypothesized that NAA links the metabolism of axons with oligodendrocytes to support myelination. To test this hypothesis, we performed lipidomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance thin-layer chromatography (HPTLC) to identify changes in myelin lipid composition in postmortem MS brains and in NAT8L knockout (NAT8L -/- ) mice which do not synthesize NAA. We found reduced levels of sphingomyelin in MS normal appearing white matter that mirrored decreased levels of NAA. We also discovered decreases in the amounts of sphingomyelin and sulfatide lipids in the brains of NAT8L -/- mice compared to controls. Metabolomic analysis of primary cultures of oligodendrocytes treated with NAA revealed increased levels of α-ketoglutarate, which has been reported to regulate histone demethylase activity. Consistent with this, NAA treatment resulted in alterations in the levels of histone H3 methylation, including H3K4me3, H3K9me2, and H3K9me3. The H3K4me3 histone mark regulates cellular energetics, metabolism, and growth, while H3K9me3 has been linked to alterations in transcriptional repression in developing oligodendrocytes. We also noted the NAA treatment was associated with increases in the expression of genes involved in sulfatide and sphingomyelin synthesis in cultured oligodendrocytes. This is the first report demonstrating that neuronal-derived NAA can signal to the oligodendrocyte nucleus. These data suggest that neuronal-derived NAA signals through epigenetic mechanisms in oligodendrocytes to support or maintain myelination.

  20. Tailoring medium energy proton beam to induce low energy nuclear reactions in ⁸⁶SrCl₂ for production of PET radioisotope ⁸⁶Y.

    PubMed

    Medvedev, Dmitri G; Mausner, Leonard F; Pile, Philip

    2015-07-01

    This paper reports results of experiments at Brookhaven Linac Isotope Producer (BLIP) aiming to investigate effective production of positron emitting radioisotope (86)Y by the low energy (86)Sr(p,n) reaction. BLIP is a facility at Brookhaven National Laboratory designed for the proton irradiation of the targets for isotope production at high and intermediate proton energies. The proton beam is delivered by the Linear Accelerator (LINAC) whose incident energy is tunable from 200 to 66 MeV in approximately 21 MeV increments. The array was designed to ensure energy degradation from 66 MeV down to less than 20 MeV. Aluminum slabs were used to degrade the proton energy down to the required range. The production yield of (86)Y (1.2+/-0.1 mCi (44.4+/-3.7) MBq/μAh) and ratio of radioisotopic impurities was determined by assaying an aliquot of the irradiated (86)SrCl2 solution by gamma spectroscopy. The analysis of energy dependence of the (86)Y production yield and the ratios of radioisotopic impurities has been used to adjust degrader thickness. Experimental data showed substantial discrepancies in actual energy propagation compared to energy loss calculations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase

    DOE PAGES

    Chen, Ji-Yun; Liu, Liang; Cao, Chun-Ling; ...

    2016-08-23

    N-terminal acetylation (Nt-acetylation), carried out by N-terminal acetyltransferases (NATs), is a conserved and primary modification of nascent peptide chains. Naa60 (also named NatF) is a recently identified NAT found only in multicellular eukaryotes. This protein was shown to locate on the Golgi apparatus and mainly catalyze the Nt-acetylation of transmembrane proteins, and it also harbors lysine Nε -acetyltransferase (KAT) activity to catalyze the acetylation of lysine ε-amine. Here, we report the crystal structures of human Naa60 (hNaa60) in complex with Acetyl-Coenzyme A (Ac-CoA) or Coenzyme A (CoA). The hNaa60 protein contains an amphipathic helix following its GNAT domain that maymore » contribute to Golgi localization of hNaa60, and the β7-β8 hairpin adopted different conformations in the hNaa60(1-242) and hNaa60(1-199) crystal structures. Remarkably, we found that the side-chain of Phe 34 can influence the position of the coenzyme, indicating a new regulatory mechanism involving enzyme, co-factor and substrates interactions. Moreover, structural comparison and biochemical studies indicated that Tyr 97 and His 138 are key residues for catalytic reaction and that a non-conserved β3-β4 long loop participates in the regulation of hNaa60 activity.« less

  2. The radioisotope complex project “RIC-80” at the Petersburg Nuclear Physics Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panteleev, V. N., E-mail: vnp@pnpi.spb.ru; Barzakh, A. E.; Batist, L. Kh.

    2015-12-15

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-linemore » or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes {sup 82}Sr and {sup 223,224}Ra are also presented.« less

  3. Radioisotopes for research on and control of mosquitos

    PubMed Central

    Bruce-Chwatt, Leonard J.

    1956-01-01

    Practical applications of radioactive isotopes in medicine, science, and industry have multiplied enormously during the past five years. In this paper, the author attempts to gather what is known about the use of radioactive isotopes in the research on malaria control. The development of the uranium pile for large-scale production of radioisotopes and technical progress in the making of reliable electronic equipment have greatly contributed to the application of radioactive tracers in biological research. The present knowledge of radioisotopes in mosquito and in insecticide research is discussed. ImagesFIG. 1 PMID:13404435

  4. Analysis of Cl and Na in Hyperimmune Sera by NAA

    NASA Astrophysics Data System (ADS)

    Baptista, T. S.; Zamboni, C. B.; Marcelino, J. R.

    2011-08-01

    The Cl and Na concentration values in four types of hyperimmune sera (anti-Bothrops, anti-Diphtheria, anti-Rabies and anti-Tetanus) used for immunological therapy were determined using Neutron Activation Analysis (NAA). These data were compatible with the specifications established by the Word Health Organization (WHO-OMS) and with the Brazilian Official Pharmacopea (Pharmaceutical Code Official of the Country). These data are an important support for quality control of hyperimmune sera production at Butantan Institute (São Paulo city, Brazil), responsible for supplying the Brazilian market.

  5. Radioisotopes as Political Instruments, 1946–1953

    PubMed Central

    Creager, Angela N. H.

    2009-01-01

    The development of nuclear “piles,” soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country’s atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments—both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy—in the early Cold War. PMID:20725612

  6. Synthesis of zeolite NaA membrane from fused fly ash extract.

    PubMed

    Ameh, Alechine E; Musyoka, Nicholas M; Fatoba, Ojo O; Syrtsova, Daria A; Teplyakov, Vladimir V; Petrik, Leslie F

    2016-01-01

    Zeolite-NaA membranes were synthesized from an extract of fused South African fly ash on a porous titanium support by a secondary growth method. The influence of the synthesis molar regime on the formation of zeolite NaA membrane layer was investigated. Two synthesis mixtures were generated by adding either aluminium hydroxide or sodium aluminate to the fused fly ash extract. The feedstock material and the synthesized membranes were characterized by X-diffraction (XRD), scanning electron microscopy (SEM) and X-ray fluorescence spectroscopy (XRF). It was found by XRD and SEM that the cubic crystals of a typical zeolite NaA with a dense intergrown layer was formed on the porous Ti support. The study shows that the source of Al used had an effect on the membrane integrity as sodium aluminate provided the appropriate amount of Na(+) to form a coherent membrane of zeolite NaA, whereas aluminium hydroxide did not. Morphological, the single hydrothermal stage seeded support formed an interlocked array of zeolite NaA particles with neighbouring crystals. Also, a robust, continuous and well-intergrown zeolite NaA membrane was formed with neighbouring crystals of zeolite fused to each other after the multiple stage synthesis. The synthesized membrane was permeable to He (6.0 × 10(6) L m(-2)h(-1) atm(-1)) and CO2 (5.6 × 10(6) L m(-2)h(-1) atm(-1)), which indicate that the layer of the membrane was firmly attached to the porous Ti support. Membrane selectivity was maintained showing membrane integrity with permselectivity of 1.1, showing that a waste feedstock, fly ash, could be utilized for preparing robust zeolite NaA membranes on Ti support.

  7. hNaa10p contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing

    PubMed Central

    Lee, Chung-Fan; Ou, Derick S.-C.; Lee, Sung-Bau; Chang, Liang-Hao; Lin, Ruo-Kai; Li, Ying-Shiuan; Upadhyay, Anup K.; Cheng, Xiaodong; Wang, Yi-Ching; Hsu, Han-Shui; Hsiao, Michael; Wu, Cheng-Wen; Juan, Li-Jung

    2010-01-01

    Hypermethylation-mediated tumor suppressor gene silencing plays a crucial role in tumorigenesis. Understanding its underlying mechanism is essential for cancer treatment. Previous studies on human N-α-acetyltransferase 10, NatA catalytic subunit (hNaa10p; also known as human arrest-defective 1 [hARD1]), have generated conflicting results with regard to its role in tumorigenesis. Here we provide multiple lines of evidence indicating that it is oncogenic. We have shown that hNaa10p overexpression correlated with poor survival of human lung cancer patients. In vitro, enforced expression of hNaa10p was sufficient to cause cellular transformation, and siRNA-mediated depletion of hNaa10p impaired cancer cell proliferation in colony assays and xenograft studies. The oncogenic potential of hNaa10p depended on its interaction with DNA methyltransferase 1 (DNMT1). Mechanistically, hNaa10p positively regulated DNMT1 enzymatic activity by facilitating its binding to DNA in vitro and its recruitment to promoters of tumor suppressor genes, such as E-cadherin, in vivo. Consistent with this, interaction between hNaa10p and DNMT1 was required for E-cadherin silencing through promoter CpG methylation, and E-cadherin repression contributed to the oncogenic effects of hNaa10p. Together, our data not only establish hNaa10p as an oncoprotein, but also reveal that it contributes to oncogenesis through modulation of DNMT1 function. PMID:20592467

  8. Radioisotopes: Today's Applications.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Radioisotopes are useful because of their three unique characteristics: (1) radiation emission; (2) predictable radioactive lives; and (3) the same chemical properties as the nonradioactive atoms of that element. Researchers are able to "order" a radioisotope with the right radiation, half-life, and chemical property to perform a given task with…

  9. Preliminary results on the production of short-lived radioisotopes with a Plasma Focus device.

    PubMed

    Angeli, E; Tartari, A; Frignani, M; Mostacci, D; Rocchi, F; Sumini, M

    2005-01-01

    An experimental campaign was conducted to assess the feasibility of short-lived radioisotope (SLR) production within the pulsed discharges of a Plasma Focus (PF) device. This so-called "endogenous production" technique rests on the exploitation of nuclear reactions for the creation of SLR directly within the plasma, rather than on irradiating an external target. Until now only one research group has published data relevant to PF endogenous production of SLR, and the data seem to confirm that the PF has the capability to breed SLR. The campaign demonstrated production of (15)O, (17)F and (13)N from the (14)N(d,n)(15)O, (12)C(d,n)(13)N and (16)O(d,n)(17)F reactions. A 7kJ, 17kV Mather-type PF was operated with natural nitrogen, oxygen, CO(2) and deuterium in the vacuum chamber. Results to date confirm that, with a PF of this type, up to 1microCi of SLRs per discharge can be obtained.

  10. Production and Clinical Applications of Radiopharmaceuticals and Medical Radioisotopes in Iran.

    PubMed

    Jalilian, Amir Reza; Beiki, Davood; Hassanzadeh-Rad, Arman; Eftekhari, Arash; Geramifar, Parham; Eftekhari, Mohammad

    2016-07-01

    During past 3 decades, nuclear medicine has flourished as vibrant and independent medical specialty in Iran. Since that time, more than 200 nuclear physicians have been trained and now practicing in nearly 158 centers throughout the country. In the same period, Tc-99m generators and variety of cold kits for conventional nuclear medicine were locally produced for the first time. Local production has continued to mature in robust manner while fulfilling international standards. To meet the ever-growing demand at the national level and with international achievements in mind, work for production of other Tc-99m-based peptides such as ubiquicidin, bombesin, octreotide, and more recently a kit formulation for Tc-99m TRODAT-1 for clinical use was introduced. Other than the Tehran Research Reactor, the oldest facility active in production of medical radioisotopes, there is one commercial and three hospital-based cyclotrons currently operational in the country. I-131 has been one of the oldest radioisotope produced in Iran and traditionally used for treatment of thyrotoxicosis and differentiated thyroid carcinoma. Since 2009, (131)I-meta-iodobenzylguanidine has been locally available for diagnostic applications. Gallium-67 citrate, thallium-201 thallous chloride, and Indium-111 in the form of DTPA and Oxine are among the early cyclotron-produced tracers available in Iran for about 2 decades. Rb-81/Kr-81m generator has been available for pulmonary ventilation studies since 1996. Experimental production of PET radiopharmaceuticals began in 1998. This work has culminated with development and optimization of the high-scale production line of (18)F-FDG shortly after installation of PET/CT scanner in 2012. In the field of therapy, other than the use of old timers such as I-131 and different forms of P-32, there has been quite a significant advancement in production and application of therapeutic radiopharmaceuticals in recent years. Application of (131)I

  11. MRS of pilocytic astrocytoma: The peak at 2 ppm may not be NAA.

    PubMed

    Tamrazi, Benita; Nelson, Marvin D; Blüml, Stefan

    2017-08-01

    To determine whether the chemical shift of residual N-acetylaspartate (NAA) signal in pilocytic astrocytomas (PA) is consistent with the position of the NAA peak in controls. MR spectra from 27 pediatric World Health Organization (WHO) grade I pilocytic astrocytoma patients, fifteen patients with WHO grade II and high-grade (III-IV) astrocytomas, and 36 controls were analyzed. All spectra were acquired with a short echo time (35 ms), single voxel point-resolved spectroscopy sequence on clinical 3 tesla scanners. Fully automated LCModel software was used for processing, which included the fitting of peak positions for NAA and creatine (Cr). The chemical shift difference between the NAA and Cr peaks was significantly smaller (by 0.016 ± 0.005 parts per million, P < 1e-10) in PAs than in controls and was also smaller than what was observed in infiltrative astrocytomas. The chemical shift position of the residual NAA peak in PAs is not consistent with NAA. The signal likely originates from an N-acetyl group of one or more other chemicals such as N-acetylated sugars. Magn Reson Med 78:452-456, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions.

    PubMed

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25-5 d on 1.0 × MS medium containing 0.25 mg L(-1) GA3 + 1 mg L(-1) NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L(-1) NAA + 0.25 mg L(-1) GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders.

  13. Alternative Radioisotopes for Heat and Power Sources

    NASA Astrophysics Data System (ADS)

    Tinsley, T.; Sarsfield, M.; Rice, T.

    Production of 238Pu requires considerable facilities including a nuclear reactor and reprocessing plants that are very expensive to build and operate. Thus, a more economical alternative is very attractive to the industry. There are many alternative radioisotopes that exist but few that satisfy the criteria of performance, availability and cost to produce. Any alternative to 238Pu must exist in a chemical form that is compatible with the materials required to safely encapsulate the heat source at the high temperatures of operation and potential launch failure scenarios. The chemical form must also have suitable thermal properties to ensure maximum energy conversion efficiencies when integrated into radioisotope thermoelectric generators over the required mission durations. In addition, the radiation dose must be low enough for operators during production and not so prohibitive that excessive shielding mass is required on the space craft. This paper will focus on the preferred European alternative of 241Am, and the issues that will need to be addressed.

  14. N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) promote growth and inhibit differentiation of glioma stem-like cells.

    PubMed

    Long, Patrick M; Moffett, John R; Namboodiri, Aryan M A; Viapiano, Mariano S; Lawler, Sean E; Jaworski, Diane M

    2013-09-06

    Metabolic reprogramming is a pathological feature of cancer and a driver of tumor cell transformation. N-Acetylaspartate (NAA) is one of the most abundant amino acid derivatives in the brain and serves as a source of metabolic acetate for oligodendrocyte myelination and protein/histone acetylation or a precursor for the synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG). NAA and NAAG as well as aspartoacylase (ASPA), the enzyme responsible for NAA degradation, are significantly reduced in glioma tumors, suggesting a possible role for decreased acetate metabolism in tumorigenesis. This study sought to examine the effects of NAA and NAAG on primary tumor-derived glioma stem-like cells (GSCs) from oligodendroglioma as well as proneural and mesenchymal glioblastoma, relative to oligodendrocyte progenitor cells (Oli-Neu). Although the NAA dicarboxylate transporter NaDC3 is primarily thought to be expressed by astrocytes, all cell lines expressed NaDC3 and, thus, are capable of NAA up-take. Treatment with NAA or NAAG significantly increased GSC growth and suppressed differentiation of Oli-Neu cells and proneural GSCs. Interestingly, ASPA was expressed in both the cytosol and nuclei of GSCs and exhibited greatest nuclear immunoreactivity in differentiation-resistant GSCs. Both NAA and NAAG elicited the expression of a novel immunoreactive ASPA species in select GSC nuclei, suggesting differential ASPA regulation in response to these metabolites. Therefore, this study highlights a potential role for nuclear ASPA expression in GSC malignancy and suggests that the use of NAA or NAAG is not an appropriate therapeutic approach to increase acetate bioavailability in glioma. Thus, an alternative acetate source is required.

  15. Combination of the Auxins NAA, IBA, and IAA with GA3 Improves the Commercial Seed-Tuber Production of Potato (Solanum tuberosum L.) under In Vitro Conditions

    PubMed Central

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25–5 d on 1.0 × MS medium containing 0.25 mg L−1  GA3 + 1 mg L−1 NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L−1  NAA + 0.25 mg L−1 GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders. PMID:25028654

  16. Radioisotope Power System Pool Concept

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  17. On the nature of the NAA diffusion attenuated MR signal in the central nervous system.

    PubMed

    Kroenke, Christopher D; Ackerman, Joseph J H; Yablonskiy, Dmitriy A

    2004-11-01

    In the brain, on a macroscopic scale, diffusion of the intraneuronal constituent N-acetyl-L-aspartate (NAA) appears to be isotropic. In contrast, on a microscopic scale, NAA diffusion is likely highly anisotropic, with displacements perpendicular to neuronal fibers being markedly hindered, and parallel displacements less so. In this report we first substantiate that local anisotropy influences NAA diffusion in vivo by observing differing diffusivities parallel and perpendicular to human corpus callosum axonal fibers. We then extend our measurements to large voxels within rat brains. As expected, the macroscopic apparent diffusion coefficient (ADC) of NAA is practically isotropic due to averaging of the numerous and diverse fiber orientations. We demonstrate that the substantially non-monoexponential diffusion-mediated MR signal decay vs. b value can be quantitatively explained by a theoretical model of NAA confined to an ensemble of differently oriented neuronal fibers. On the microscopic scale, NAA diffusion is found to be strongly anisotropic, with displacements occurring almost exclusively parallel to the local fiber axis. This parallel diffusivity, ADCparallel, is 0.36 +/- 0.01 microm2/ms, and ADCperpendicular is essentially zero. From ADCparallel the apparent viscosity of the neuron cytoplasm is estimated to be twice as large as that of a temperature-matched dilute aqueous solution. (c) 2004 Wiley-Liss, Inc.

  18. N-Acetylaspartate (NAA) and N-Acetylaspartylglutamate (NAAG) Promote Growth and Inhibit Differentiation of Glioma Stem-like Cells*

    PubMed Central

    Long, Patrick M.; Moffett, John R.; Namboodiri, Aryan M. A.; Viapiano, Mariano S.; Lawler, Sean E.; Jaworski, Diane M.

    2013-01-01

    Metabolic reprogramming is a pathological feature of cancer and a driver of tumor cell transformation. N-Acetylaspartate (NAA) is one of the most abundant amino acid derivatives in the brain and serves as a source of metabolic acetate for oligodendrocyte myelination and protein/histone acetylation or a precursor for the synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG). NAA and NAAG as well as aspartoacylase (ASPA), the enzyme responsible for NAA degradation, are significantly reduced in glioma tumors, suggesting a possible role for decreased acetate metabolism in tumorigenesis. This study sought to examine the effects of NAA and NAAG on primary tumor-derived glioma stem-like cells (GSCs) from oligodendroglioma as well as proneural and mesenchymal glioblastoma, relative to oligodendrocyte progenitor cells (Oli-Neu). Although the NAA dicarboxylate transporter NaDC3 is primarily thought to be expressed by astrocytes, all cell lines expressed NaDC3 and, thus, are capable of NAA up-take. Treatment with NAA or NAAG significantly increased GSC growth and suppressed differentiation of Oli-Neu cells and proneural GSCs. Interestingly, ASPA was expressed in both the cytosol and nuclei of GSCs and exhibited greatest nuclear immunoreactivity in differentiation-resistant GSCs. Both NAA and NAAG elicited the expression of a novel immunoreactive ASPA species in select GSC nuclei, suggesting differential ASPA regulation in response to these metabolites. Therefore, this study highlights a potential role for nuclear ASPA expression in GSC malignancy and suggests that the use of NAA or NAAG is not an appropriate therapeutic approach to increase acetate bioavailability in glioma. Thus, an alternative acetate source is required. PMID:23884408

  19. Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80.

    PubMed

    Goris, Marianne; Magin, Robert S; Foyn, Håvard; Myklebust, Line M; Varland, Sylvia; Ree, Rasmus; Drazic, Adrian; Bhambra, Parminder; Støve, Svein I; Baumann, Markus; Haug, Bengt Erik; Marmorstein, Ronen; Arnesen, Thomas

    2018-04-24

    N-terminal (Nt) acetylation is a major protein modification catalyzed by N-terminal acetyltransferases (NATs). Methionine acidic N termini, including actin, are cotranslationally Nt acetylated by NatB in all eukaryotes, but animal actins containing acidic N termini, are additionally posttranslationally Nt acetylated by NAA80. Actin Nt acetylation was found to regulate cytoskeletal dynamics and motility, thus making NAA80 a potential target for cell migration regulation. In this work, we developed potent and selective bisubstrate inhibitors for NAA80 and determined the crystal structure of NAA80 in complex with such an inhibitor, revealing that NAA80 adopts a fold similar to other NAT enzymes but with a more open substrate binding region. Furthermore, in contrast to most other NATs, the substrate specificity of NAA80 is mainly derived through interactions between the enzyme and the acidic amino acids at positions 2 and 3 of the actin substrate and not residues 1 and 2. A yeast model revealed that ectopic expression of NAA80 in a strain lacking NatB activity partially restored Nt acetylation of NatB substrates, including yeast actin. Thus, NAA80 holds intrinsic capacity to posttranslationally Nt acetylate NatB-type substrates in vivo. In sum, the presence of a dominant cotranslational NatB in all eukaryotes, the specific posttranslational actin methionine removal in animals, and finally, the unique structural features of NAA80 leave only the processed actins as in vivo substrates of NAA80. Together, this study reveals the molecular and cellular basis of NAA80 Nt acetylation and provides a scaffold for development of inhibitors for the regulation of cytoskeletal properties. Copyright © 2018 the Author(s). Published by PNAS.

  20. Targets for the production of radioisotopes and method of assembly

    DOEpatents

    Quinby, Thomas C.

    1976-01-01

    A target for preparation of radioisotopes by nuclear bombardment, and a method for its assembly are provided. A metallic sample to be bombarded is enclosed within a metallic support structure and the resulting target subjected to heat and pressure to effect diffusion bonds therebetween. The bonded target is capable of withstanding prolonged exposure to nuclear bombardment without thermal damage to the sample.

  1. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of 64Cu and 67Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Sepiani, M.

    2015-03-01

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE & LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  2. Testing the applicability of the k0-NAA method at the MINT's TRIGA MARK II reactor

    NASA Astrophysics Data System (ADS)

    Siong, Wee Boon; Dung, Ho Manh; Wood, Ab. Khalik; Salim, Nazaratul Ashifa Abd.; Elias, Md. Suhaimi

    2006-08-01

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k0 method has become the preferred standardization method of NAA ( k0-NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k0-NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters ( α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k0-NAA method at the MINT.

  3. Molecular simulation of water removal from simple gases with zeolite NaA.

    PubMed

    Csányi, Eva; Ható, Zoltán; Kristóf, Tamás

    2012-06-01

    Water vapor removal from some simple gases using zeolite NaA was studied by molecular simulation. The equilibrium adsorption properties of H(2)O, CO, H(2), CH(4) and their mixtures in dehydrated zeolite NaA were computed by grand canonical Monte Carlo simulations. The simulations employed Lennard-Jones + Coulomb type effective pair potential models, which are suitable for the reproduction of thermodynamic properties of pure substances. Based on the comparison of the simulation results with experimental data for single-component adsorption at different temperatures and pressures, a modified interaction potential model for the zeolite is proposed. In the adsorption simulations with mixtures presented here, zeolite exhibits extremely high selectivity of water to the investigated weakly polar/non-polar gases demonstrating the excellent dehydration ability of zeolite NaA in engineering applications.

  4. Realistic Specific Power Expectations for Advanced Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    Radioisotope Power Systems (RPS) are being considered for a wide range of future NASA space science and exploration missions. Generally, RPS offer the advantages of high reliability, long life, and predictable power production regardless of operating environment. Previous RPS, in the form of Radioisotope Thermoelectric Generators (RTG), have been used successfully on many NASA missions including Apollo, Viking, Voyager, and Galileo. NASA is currently evaluating design options for the next generation of RPS. Of particular interest is the use of advanced, higher efficiency power conversion to replace the previous thermoelectric devices. Higher efficiency reduces the quantity of radioisotope fuel and potentially improves the RPS specific power (watts per kilogram). Power conversion options include Segmented Thermoelectric (STE), Stirling, Brayton, and Thermophotovoltaic (TPV). This paper offers an analysis of the advanced 100 watt-class RPS options and provides credible projections for specific power. Based on the analysis presented, RPS specific power values greater than 10 W/kg appear unlikely.

  5. B cell increases and ex vivo IL-2 production as secondary endpoints for the detection of sensitizers in non-radioisotopic local lymph node assay using flow cytometry.

    PubMed

    Jung, Kyoung-Mi; Jang, Won-Hee; Lee, Yong-Kyoung; Yum, Young Na; Sohn, Soojung; Kim, Bae-Hwan; Chung, Jin-Ho; Park, Young-Ho; Lim, Kyung-Min

    2012-03-25

    Non-radioisotopic local lymph node assay (LLNA) using 5-bromo-2'-deoxyuridine (BrdU) with flow cytometry (FCM) is gaining attention since it is free from the regulatory issues in traditional LLNA (tLLNA) accompanying in vivo uses of radioisotope, (3)H-thymidine. However, there is also concern over compromised performance of non-radioisotopic LLNA, raising needs for additional endpoints to improve the accuracy. With the full 22 reference substances enlisted in OECD Test Guideline No. 429, we evaluated the performance of LLNA:BrdU-FCM along with the concomitant measurements of B/T cell ratio and ex vivo cytokine production from isolated lymph node cells (LNCs) to examine the utility of these markers as secondary endpoints. Mice (Balb/c, female) were topically treated with substances on both ears for 3 days and then, BrdU was intraperitoneally injected on day 5. After a day, lymph nodes were isolated and undergone FCM to determine BrdU incorporation and B/T cell sub-typing with B220+ and CD3e+. Ex vivo cytokine production by LNCs was measured such as IL-2, IL-4, IL-6, IL-12, IFN-γ, MCP-1, GM-CSF and TNFα. Mice treated with sensitizers showed preferential increases in B cell population and the selective production of IL-2, which matched well with the increases in BrdU incorporation. When compared with guinea pig or human data, BrdU incorporation, B cell increase and IL-2 production ex vivo could successfully identify sensitizers with the accuracy comparable to tLLNA, suggesting that these markers may be useful for improving the accuracy of LLNA:BrdU-FCM or as stand-alone non-radioisotopic endpoints. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Applications of Radioisotopes

    DOE PAGES

    Hayes, Robert

    2017-03-10

    Radioisotopes are used all over the globe in many different types of applications. To name but a few examples, they are used in research in science, technology, and medicine; in industry; in geolog-ical explorations; in forensics for art technology and archeology; in space activities; in home pro-tection devices; and in homeland security activities. This article presents (a) general discussion about radioisotopes and radioactivity and (b) brief discussion for each one of their many applications. It is not generally credible that all current and potential science, engineering, and technological applications for radioisotopes could be listed in a single article. Perhaps allmore » those we know of could be detailed and listed in a large comprehensive book or series of works. This had been attempted early in the previous century along with select industry and application-specific reference works such as chemistry, hydrology, agriculture, and the paper industry.« less

  7. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study.

    PubMed

    Rule, R R; Suhy, J; Schuff, N; Gelinas, D F; Miller, R G; Weiner, M W

    2004-09-01

    After replication of previous findings we aimed to: 1) determine if previously reported (1)H MRSI differences between ALS patients and control subjects are limited to the motor cortex; and 2) determine the longitudinal metabolic changes corresponding to varying levels of diagnostic certainty. Twenty-one patients with possible/suspected ALS, 24 patients with probable/definite ALS and 17 control subjects underwent multislice (1)H MRSI co-registered with tissue-segmented MRI to obtain concentrations of the brain metabolites N-acetylaspartate (NAA), creatine, and choline in the left and right motor cortex and in gray matter and white matter of non-motor regions in the brain. In the more affected hemisphere, reductions in the ratios, NAA/Cho and NAA/Cre+Cho were observed both within (12.6% and 9.5% respectively) and outside (9.2% and 7.3% respectively) the motor cortex in probable/definite ALS. However, these reductions were significantly greater within the motor cortex (P<0.05 for NAA/Cho and P<0.005 for NAA/Cre+Cho). Longitudinal changes in NAA were observed at three months within the motor cortex of both possible/suspected ALS patients (P<0.005) and at nine months outside the motor cortex of probable/definite patients (P<0.005). However, there was no clear pattern of progressive change over time. NAA ratios are reduced in the motor cortex and outside the motor cortex in ALS, suggesting widespread neuronal injury. Longitudinal changes of NAA are not reliable, suggesting that NAA may not be a useful surrogate marker for treatment trials.

  8. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of {sup 64}Cu and {sup 67}Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasrabadi, M. N., E-mail: mnnasrabadi@ast.ui.ac.ir; Sepiani, M.

    2015-03-30

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  9. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  10. Cosmogenic radioisotopes in Gebel Kamil meteorite

    NASA Astrophysics Data System (ADS)

    Taricco, C.; Colombetti, P.; Bhandari, N.; Sinha, N.; Di Martino, M.; Vivaldo, G.

    2012-04-01

    Recently a small (45 m in diameter) and very young (< 5,000 years) impact crater was discovered in Egypt (Folco et al., 2010, 2011); it was generated by an iron meteorite named Gebel Kamil (Meteoritical Bulletin No. 98, Weisberg et al. 2010). During systematic searches, many specimens were found in the area surrounding the crater. We present the gamma-activity measurement of a 672 g fragment using a highly selective Ge-NaI spectrometer operating at Monte dei Cappuccini Laboratory (IFSI, INAF) in Torino, Italy. This apparatus allows to reveal the radioisotope activity generated by cosmic rays in the meteoroids as they travel through the interplanetary space before falling on the Earth. From the 26Al activity measurement and its depth production profiles, we infer (i) that the radius of the meteoroid should be about 1 m, constraining to 30-40 ton the range of pre-atmospheric mass previously proposed and (ii) that the fragment should have been located deeply inside the meteoroid, at a depth > 0.7 m. The 44Ti activity is under the detection threshold of the apparatus; using the depth production profiles of this radioisotope and its half-life T1/2 = 59.2 y, we deduce an upper limit to the date of fall.

  11. White matter NAA/Cho and Cho/Cr ratios at MR spectroscopy are predictive of motor outcome in preterm infants.

    PubMed

    Kendall, Giles S; Melbourne, Andrew; Johnson, Samantha; Price, David; Bainbridge, Alan; Gunny, Roxanna; Huertas-Ceballos, Angela; Cady, Ernest B; Ourselin, Sebastian; Marlow, Neil; Robertson, Nicola J

    2014-04-01

    To determine (a) whether diffuse white matter injury of prematurity is associated with an increased choline (Cho)-to-creatine (Cr) ratio and a reduced N-acetylaspartate (NAA)-to-Cho ratio and whether these measures can be used as biomarkers of outcome and (b) if changes in peak area metabolite ratios at magnetic resonance (MR) spectroscopy are associated with changes in T2 and fractional anisotropy (FA) at MR imaging. The local ethics committee approved this study, and informed parental consent was obtained for each infant. At term-equivalent age, 43 infants born at less than 32 weeks gestation underwent conventional and quantitative diffusion-tensor and T2-weighted MR imaging. Single-voxel point-resolved proton (hydrogen 1) MR spectroscopy was performed from a 2-cm(3) voxel centered in the posterior periventricular white matter. Outcome was evaluated by using Bayley scales at a corrected age of 1 year. Associations were investigated with Pearson product moment or Spearman rank order correlation. Differences in ratios in infants with and infants without impairment were tested by using t tests. NAA/Cho and Cho/Cr ratios correlated with the scaled gross motor score and the composite motor score, independent of gestational age (P < .05). FA at diffusion-tensor MR imaging and T2 at MR imaging correlated with the NAA/Cho ratio (P < .05 for both) but not with the Cho/Cr ratio. Infants with motor scores of less than 85 (impaired) had an increased Cho/Cr ratio (P < .03) and a reduced NAA/Cho ratio (P < .01) compared to those without impairment. A combination of increased Cho/Cr ratio and decreased NAA/Cho ratio predicted impaired motor outcome at a corrected age of 1 year with a sensitivity of 0.80 (95% confidence interval [CI]: 0.57, 0.94) and a specificity of 0.80 (95% CI: 0.66, 0.88). The combination of Cho/Cr and NAA/Cho ratios measured in the posterior periventricular white matter at term-equivalent age is predictive of motor outcome at 1 year in infants born at less

  12. Contributions and future of radioisotopes in medical, industrial, and space applications

    NASA Astrophysics Data System (ADS)

    Tingey, G. L.; Dix, G. P.; Wahlquist, E. J.

    1990-11-01

    There are 333 isotopes that have a half-life between 1 day and 100,000 years that have a wide variety of applications including public health, medicine, industrial technology, food technology and packaging, agriculture, energy supply, and national security. This paper provides an overview of some of the most extensive applications of radioisotopes including some observations of future uses. Examples are discussed that indicate that the use of radioisotopes is almost unlimited and will continue to grow. There is a growing need for future applications development and production.

  13. Contributions and Future of Radioisotopes in Medical, Industrial and Space Applications

    DOE R&D Accomplishments Database

    Tingey, G. L.; Dix, G. P.; Wahlquist, E. J.

    1990-11-01

    There are 333 isotopes that have a half-life between 1 day and 100,000 years that have a wide variety of applications including public health, medicine,industrial technology, food technology and packaging, agriculture, energy supply, and national security. This paper provides an overview of some of the most extensive applications of radioisotopes including some observations of future uses. Examples are discussed that indicate that the use of radioisotopes is almost unlimited and will continue to grow. There is a growing need for future applications development and production. 12 refs., 1 tab. (BM)

  14. Investigation of NAA and NAAG dynamics underlying visual stimulation using MEGA-PRESS in a functional MRS experiment

    PubMed Central

    Landim, Ricardo C.G.; Edden, Richard A.E.; Foerster, Bernd; Li, Li Min; Covolan, Roberto J.M.; Castellano, Gabriela

    2017-01-01

    N-acetyl-aspartate (NAA) is responsible for the majority of the most prominent peak in 1H-MR spectra, and has been used as diagnostic marker for several pathologies. However, ~10% of this peak can be attributed to N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide whose release may be triggered by intense neuronal activation. Separate measurement of NAA and NAAG using MRS is difficult due to large superposition of their spectra. Specifically, in functional MRS (fMRS) experiments, most work has evaluated the sum NAA + NAAG, which does not appear to change during experiments. The aim of this work was to design and perform an fMRS experiment using visual stimulation and a spectral editing sequence, MEGA-PRESS, to further evaluate the individual dynamics of NAA and NAAG during brain activation. The functional paradigm used consisted of three blocks, starting with a rest (baseline) block of 320 s, followed by a stimulus block (640 s) and a rest block (640 s). Twenty healthy subjects participated in this study. On average, subjects followed a pattern of NAA decrease and NAAG increase during stimulation, with a tendency to return to basal levels at the end of the paradigm, with a peak NAA decrease of −(21 ± 19)% and a peak NAAG increase of (64 ± 62)% (Wilcoxon test, p < 0.05). These results may relate to: 1) the only known NAAG synthesis pathway is from NAA and glutamate; 2) a relationship between NAAG and the BOLD response. PMID:26656908

  15. Investigation of NAA and NAAG dynamics underlying visual stimulation using MEGA-PRESS in a functional MRS experiment.

    PubMed

    Landim, Ricardo C G; Edden, Richard A E; Foerster, Bernd; Li, Li Min; Covolan, Roberto J M; Castellano, Gabriela

    2016-04-01

    N-acetyl-aspartate (NAA) is responsible for the majority of the most prominent peak in (1)H-MR spectra, and has been used as diagnostic marker for several pathologies. However, ~10% of this peak can be attributed to N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide whose release may be triggered by intense neuronal activation. Separate measurement of NAA and NAAG using MRS is difficult due to large superposition of their spectra. Specifically, in functional MRS (fMRS) experiments, most work has evaluated the sum NAA+NAAG, which does not appear to change during experiments. The aim of this work was to design and perform an fMRS experiment using visual stimulation and a spectral editing sequence, MEGA-PRESS, to further evaluate the individual dynamics of NAA and NAAG during brain activation. The functional paradigm used consisted of three blocks, starting with a rest (baseline) block of 320 s, followed by a stimulus block (640 s) and a rest block (640 s). Twenty healthy subjects participated in this study. On average, subjects followed a pattern of NAA decrease and NAAG increase during stimulation, with a tendency to return to basal levels at the end of the paradigm, with a peak NAA decrease of -(21±19)% and a peak NAAG increase of (64±62)% (Wilcoxon test, p<0.05). These results may relate to: 1) the only known NAAG synthesis pathway is from NAA and glutamate; 2) a relationship between NAAG and the BOLD response. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Decrease of NAA with aging outside the seizure focus in mesial temporal lobe epilepsy--a proton-MRS study at 3 Tesla.

    PubMed

    Riederer, Franz; Bittsanský, Michal; Lehner-Baumgartner, Eva; Baumgartner, Christoph; Mlynárik, Vladimír; Gruber, Stephan; Moser, Ewald; Kaya, Marihan; Serles, Wolfgang

    2007-11-07

    There is evidence that chronic pharmacoresistant temporal lobe epilepsy (TLE) is a progressive disorder accompanied by mental deterioration. We investigated effects of aging on cerebral N-acetyl-aspartate (NAA) concentrations in the temporal lobe of 12 patients with pharmacoresistant mesial TLE (mTLE) and 22 healthy controls by means of proton-magnetic resonance spectroscopy ((1)H-MRS) at 3 T. Furthermore, we calculated correlations between NAA concentrations and measures of verbal and figural memory in patients. In mTLE patients but not in healthy controls the concentration of NAA in the lateral temporal lobe was negatively correlated with age. In patients with mTLE NAA in left lateral temporal voxels correlated with verbal memory. NAA in medial temporal voxels did not correlate with age or neuropsychological measures. Significant decrease of NAA with age in the lateral temporal lobe of patients with mTLE provides evidence for progressive neuronal dysfunction with aging. NAA is a marker of neuronal integrity since it correlates with verbal memory.

  17. Production of radioisotopes with a Synchrocyclotron. Report No. 68; LA PRODUCCION DE RADIOISOTOPOS EN UN SINCROCICLOTRON. INFORME NO. 68

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palcos, M.C.; Radicella, R.; Rodriguez, J.

    1962-01-01

    Possibilities for the use of a synchrotron for the production of radioisotopes are briefly considered in an analysis of its advantages and disadvantages. Because of the importance of the maximum surface of the particle bundle, the geometry of the bundie is briefly described. The techniques developed and the criteria used for the irradiation of various materials, with special refurence to the preparation of targets, are discussed. Methods perfected for the production and chemical separation of carrier-free Bel, e/sup 59/, Sr/sup 85/, Y/sup 88/, In/sup 111/, and Bi/sup 206/, are given. Some of these isotopes are produced routinely. (tr-auth)

  18. Reduced NAA levels in the dorsolateral prefrontal cortex of young bipolar patients.

    PubMed

    Sassi, Roberto B; Stanley, Jeffrey A; Axelson, David; Brambilla, Paolo; Nicoletti, Mark A; Keshavan, Matcheri S; Ramos, Renato T; Ryan, Neal; Birmaher, Boris; Soares, Jair C

    2005-11-01

    Converging evidence implicates prefrontal circuits in the pathophysiology of bipolar disorder. Proton spectroscopy studies performed in adult bipolar patients assessing prefrontal regions have suggested decreased levels of N-acetylaspartate (NAA), a putative marker of neuronal integrity. In order to examine whether such abnormalities would also be found in younger patients, a 1H spectroscopy study was conducted that focused on the dorsolateral prefrontal cortex of children and adolescents with bipolar disorder. The authors examined the levels of NAA, creatine plus phosphocreatine, and choline-containing molecules in the left dorsolateral prefrontal cortex of 14 bipolar disorder patients (mean age=15.5 years, SD=3, eight female) and 18 healthy comparison subjects (mean age=17.3, SD=3.7, seven female) using short echo time, single-voxel in vivo 1H spectroscopy. Absolute metabolite levels were determined using the water signal as an internal reference. Bipolar patients presented significantly lower NAA levels and a significant inverse correlation between choline-containing molecules and number of previous affective episodes. No differences were found for other metabolites. These findings suggest that young bipolar patients have decreased NAA levels in the dorsolateral prefrontal cortex, similar to what was previously reported in adult patients. Such changes may reflect an underdevelopment of dendritic arborizations and synaptic connections. These neuronal abnormalities in the dorsolateral prefrontal cortex of bipolar disorder youth are unlikely to represent long-term degenerative processes, at least in the subgroup of patients where the illness had relatively early onset.

  19. Reproducibility over a 1-month period of 1H-MR spectroscopic imaging NAA/Cr ratios in clinically stable multiple sclerosis patients.

    PubMed

    Mostert, J P; Blaauw, Y; Koch, M W; Kuiper, A J; Hoogduin, J M; De Keyser, J

    2008-08-01

    N-acetylaspartate/creatine (NAA/Cr) ratios, assessed with proton magnetic resonance spectroscopy, are increasingly used as a surrogate marker for axonal dysfunction and degeneration in multiple sclerosis (MS). The purpose of this study was to test short-time reproducibility of NAA/Cr ratios in patients with clinically stable MS. In 35 MS patients we analysed NAA/Cr ratios obtained with (1)H-MR spectroscopic imaging at the centrum semiovale either with lateral ventricles partially included (group 1; n=15) or more cranially with no ventricles included (group 2; n=20). To test short-term reproducibility of the NAA/Cr measurements, patients were scanned twice 4 weeks apart. We determined mean NAA/Cr and Cho/Cr ratios of 12 grey matter and 24 white matter voxels. Mean NAA/Cr ratios of both the white and grey matter did not change after 4 weeks. Overall 4-week reproducibility of the NAA/Cr ratio, expressed as coefficient of variation, was 4.8% for grey matter and 3.5% for white matter. Reproducibility of cranial scanning of the ventricles was slightly better than with cerebrospinal fluid included. Our study shows good short-term reproducibility of NAA/Cr ratio measurements in the centrum semiovale, which supports the reliability of this technique for longitudinal studies.

  20. IEA-R1 Nuclear Research Reactor: 58 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra

    IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors.more » The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)« less

  1. Spectroscopic imaging of the pilocarpine model of human epilepsy suggests that early NAA reduction predicts epilepsy.

    PubMed

    Gomes, W A; Lado, F A; de Lanerolle, N C; Takahashi, K; Pan, C; Hetherington, H P

    2007-08-01

    Reduced hippocampal N-acetyl aspartate (NAA) is commonly observed in patients with advanced, chronic temporal lobe epilepsy (TLE). It is unclear, however, whether an NAA deficit is also present during the clinically quiescent latent period that characterizes early TLE. This question has important implications for the use of MR spectroscopic imaging (MRSI) in the early identification of patients at risk for TLE. To determine whether NAA is diminished during the latent period, we obtained high-resolution (1)H spectroscopic imaging during the latent period of the rat pilocarpine model of human TLE. We used actively detuneable surface reception and volume transmission coils to enhance sensitivity and a semiautomated voxel shifting method to accurately position voxels within the hippocampi. During the latent period, 2 and 7 d following pilocarpine treatment, hippocampal NAA was significantly reduced by 27.5 +/- 6.9% (P < 0.001) and 17.3 +/- 6.9% (P < 0.001) at 2 and 7 d, respectively. Quantitative estimates of neuronal loss at 7 d (2.3 +/- 7.7% reduction; P = 0.58, not significant) demonstrate that the NAA deficit is not due to neuron loss and therefore likely represents metabolic impairment of hippocampal neurons during the latent phase. Therefore, spectroscopic imaging provides an early marker for metabolic dysfunction in this model of TLE.

  2. Elemental analysis by IBA and NAA — A critical comparison

    NASA Astrophysics Data System (ADS)

    Watterson, J. I. W.

    1988-12-01

    In this review neutron activation analysis (NAA) and ion beam analysis (IBA) have been compared in the context of the entire field of analytical science using the discipline of scientometrics, as developed by Braun and Lyon. This perspective on the relative achievements of the two methods is modified by considering and comparing their particular attributes and characteristics, particularly in relation to their differing degree of maturity. This assessment shows that NAA, as the more mature method, is the most widely applied nuclear technique, but the special capabilities of IBA give it the ability to provide information about surface composition and elemental distribution that is unique, while it is still relatively immature and it is not yet possible to define its ultimate role with any confidence.

  3. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  4. NaA zeolite derived from blast furnace slag: its application for ammonium removal.

    PubMed

    Guo, Hongwei; Tang, Lizhen; Yan, Bingji; Wan, Kang; Li, Peng

    2017-09-01

    In this paper, high value added NaA zeolite material was prepared from blast furnace (BF) slag by hydrothermal method and its adsorption behavior on the removal of ammonium ion was investigated. It was found out that the synthetic NaA cubic zeolite with smaller crystal size obtained at nSiO 2 /nAl 2 O 3 = 2 and nH 2 O/nNaOH = 20 showed better adsorption performance. The kinetics of the adsorption of ammonium ion by synthesized NaA zeolite was fitted by the pseudo-second-order kinetic model. The intra-particle diffusion modeling reveals that two mixed rate-controlling mechanisms were involved in the adsorption process. The relatively high value of activation energy of 92.3 kJ·mol -1 indicates a high impact of temperature on the adsorption rate, and the nature of ammonium adsorption is chemical reaction rather than physisorption. Based on the thermodynamics calculations, the adsorption of ammonium was found to be an endothermic, spontaneous process. The adsorption isothermal analysis showed that the Langmuir model could be well fitted and a maximum adsorption capacity of 83.3 mg·g -1 of NH 4 + was obtained. Thus, it was demonstrated that by forming low cost NaA zeolite and using it for environmental remediation, the synchronous minimization of BF slag and ammonia nitrogen contamination could be achieved.

  5. Low thalamic NAA-concentration corresponds to strong neural activation in working memory in Kleine-Levin syndrome.

    PubMed

    Vigren, Patrick; Tisell, Anders; Engström, Maria; Karlsson, Thomas; Leinhard Dahlqvist, Olof; Lundberg, Peter; Landtblom, Anne-Marie

    2013-01-01

    Kleine Levin Syndrome (KLS) is a rare disorder of periodic hypersomnia and behavioural disturbances in young individuals. It has previously been shown to be associated with disturbances of working memory (WM), which, in turn, was associated with higher activation of the thalamus with increasing WM load, demonstrated with functional magnetic resonance imaging (fMRI). In this study we aimed to further elucidate how these findings are related to the metabolism of the thalamus. fMRI and magnetic resonance spectroscopy were applied while performing a WM task. Standard metabolites were examined: n-acetylaspartate (NAA), myo-inositol, choline, creatine and glutamate-glutamine. Fourteen KLS-patients and 15 healthy controls participated in the study. The patients with active disease were examined in asymptomatic periods. There was a statistically significant negative correlation between thalamic fMRI-activation and thalamic NAA, i.e., high fMRI-activation corresponded to low NAA-levels. This correlation was not seen in healthy controls. Thalamic levels of NAA in patients and controls showed no significant differences between the groups. None of the other metabolites showed any co-variation with fMRI-activation. This study shows negative correlation between NAA-levels and fMRI-activity in the left thalamus of KLS-patients while performing a WM task. This correlation could not be found in healthy control subjects, primarily interpreted as an effect of increased effort in the patient group upon performing the task. It might indicate a disturbance in the neuronal networks responsible for WM in KLS patients, resulting in higher effort at lower WM load, compared with healthy subjects. The general relationship between NAA and BOLD-signal is also discussed in the article.

  6. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents

    PubMed Central

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-01-01

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil. To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. PMID:27036033

  7. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents.

    PubMed

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-05-03

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil.To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment.

  8. Simultaneous measurement of Aspartate, NAA, and NAAG using HERMES spectral editing at 3 Tesla.

    PubMed

    Chan, Kimberly L; Saleh, Muhammad G; Oeltzschner, Georg; Barker, Peter B; Edden, Richard A E

    2017-07-15

    It has previously been shown that the HERMES method ('Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy') can be used to simultaneously edit pairs of metabolites (such as N-acetyl-aspartate (NAA) and N-acetyl aspartyl glutamate (NAAG), or glutathione and GABA). In this study, HERMES is extended for the simultaneous editing of three overlapping signals, and illustrated for the example of NAA, NAAG and Aspartate (Asp). Density-matrix simulations were performed in order to optimize the HERMES sequence. The method was tested in NAA and Asp phantoms, and applied to the centrum semiovale of the nine healthy control subjects that were scanned at 3T. Both simulations and phantom experiments showed similar metabolite multiplet patterns with good segregation of all three metabolites. In vivo measurements show consistent relative signal intensities and multiplet patterns with concentrations in agreement with literature values. Simulations indicate co-editing of glutathione, glutamine, and glutamate, but their signals do not significantly overlap with the detected aspartyl resonances. This study demonstrates that a four-step Hadamard-encoded editing scheme can be used to simultaneously edit three otherwise overlapping metabolites, and can measure NAA, NAAG, and Asp in vivo in the brain at 3T with minimal crosstalk. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A multi-matrix HILIC-MS/MS method for the quantitation of endogenous small molecule neurological biomarker N-acetyl aspartic acid (NAA).

    PubMed

    Sangaraju, Dewakar; Shahidi-Latham, Sheerin K; Burgess, Braydon L; Dean, Brian; Ding, Xiao

    2017-06-05

    A multi-matrix hydrophilic interaction liquid chromatography tandem mass spectrometric method (HILIC-MS/MS) was developed for the quantitation of N-Acetyl Aspartic acid (NAA) using stable isotope labeled internal standard, D3-NAA in various biological matrices such as human plasma, human CSF, mouse plasma, brain and spinal cord. A high throughput 96-well plate format supported liquid extraction (SLE) procedure was developed and used for sample preparation. Mass spectrometric analysis of NAA was performed using selected reaction monitoring transitions in positive electrospray ionization mode. As NAA is endogenously present, a surrogate matrix approach was used for quantitation of NAA and the method was qualified over linear calibration curve range of 0.01-10μg/mL. Intra and inter assay precision indicated by percent relative standard deviation (%RSD) was less than 7.1% for low, medium, medium high and high QCs. The accuracy of the method ranged from 92.6-107.0% of nominal concentration for within-run and between-run for the same QCs. Extraction recovery of NAA and D3-NAA was greater than 76%. Stability of NAA was established in the above biological matrices under bench top (RT, 5h), freeze thaw (-20±10°C, 3 cycles) and moues/human plasma sample collection (Wet ice, RT) conditions. HILIC-MS/MS method was then used to quantify and compare the NAA levels in human plasma and CSF of ALS patients versus control human subjects. NAA CSF levels in control human subjects (73.3±31.0ng/mL,N=10) were found to be slightly higher than ALS patients (46.1±22.6ng/mL, N=10) (P=0.04). No differences were observed in NAA plasma levels in human control subjects (49.7±13.8ng/mL,N=9) as compared to ALS patients (49.6±8.1ng/mL, N=10) (P=0.983). NAA endogenous concentrations in mouse plasma, brain and spinal cord were found to be 243.8±56.8ng/mL (N=6), 1029.8±115.2μg/g tissue weight (N=5) and 487.6±178.4μg/g tissue weight (N=5) respectively. Copyright © 2017 Elsevier B.V. All

  10. Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway.

    PubMed

    Pavlou, Demetria; Kirmizis, Antonis

    2016-03-01

    Protein N-terminal acetylation is an abundant post-translational modification in eukaryotes implicated in various fundamental cellular and biochemical processes. This modification is catalysed by evolutionarily conserved N-terminal acetyltransferases (NATs) whose deregulation has been linked to cancer development and thus, are emerging as useful diagnostic and therapeutic targets. Naa40 is a highly selective NAT that acetylates the amino-termini of histones H4 and H2A and acts as a sensor of cell growth in yeast. In the present study, we examine the role of Naa40 in cancer cell survival. We demonstrate that depletion of Naa40 in HCT116 and HT-29 colorectal cancer cells decreases cell survival by enhancing apoptosis, whereas Naa40 reduction in non-cancerous mouse embryonic fibroblasts has no effect on cell viability. Specifically, Naa40 knockdown in colon cancer cells activates the mitochondrial caspase-9-mediated apoptotic cascade. Consistent with this, we show that caspase-9 activation is required for the induced apoptosis because treatment of cells with an irreversible caspase-9 inhibitor impedes apoptosis when Naa40 is depleted. Furthermore, the effect of Naa40-depletion on cell-death is mediated through a p53-independent mechanism since p53-null HCT116 cells still undergo apoptosis upon reduction of the acetyltransferase. Altogether, these findings reveal an anti-apoptotic role for Naa40 and exhibit its potential as a therapeutic target in colorectal cancers.

  11. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  12. Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme A metabolism in the CNS.

    PubMed

    Ariyannur, Prasanth S; Moffett, John R; Manickam, Pachiappan; Pattabiraman, Nagarajan; Arun, Peethambaran; Nitta, Atsumi; Nabeshima, Toshitaka; Madhavarao, Chikkathur N; Namboodiri, Aryan M A

    2010-06-04

    N-acetylaspartate (NAA) is a concentrated, neuron-specific brain metabolite routinely used as a magnetic resonance spectroscopy marker for brain injury and disease. Despite decades of research, the functional roles of NAA remain unclear. Biochemical investigations over several decades have associated NAA with myelin lipid synthesis and energy metabolism. However, studies have been hampered by an inability to identify the gene for the NAA biosynthetic enzyme aspartate N-acetyltransferase (Asp-NAT). A very recent report has identified Nat8l as the gene encoding Asp-NAT and confirmed that the only child diagnosed with a lack of NAA on brain magnetic resonance spectrograms has a 19-bp deletion in this gene. Based on in vitro Nat8l expression studies the researchers concluded that many previous biochemical investigations have been technically flawed and that NAA may not be associated with brain energy or lipid metabolism. In studies done concurrently in our laboratory we have demonstrated via cloning, expression, specificity for acetylation of aspartate, responsiveness to methamphetamine treatment, molecular modeling and comparative immunolocalization that NAT8L is the NAA biosynthetic enzyme Asp-NAT. We conclude that NAA is a major storage and transport form of acetyl coenzyme A specific to the nervous system, thus linking it to both lipid synthesis and energy metabolism. Published by Elsevier B.V.

  13. Computer-assisted uncertainty assessment of k0-NAA measurement results

    NASA Astrophysics Data System (ADS)

    Bučar, T.; Smodiš, B.

    2008-10-01

    In quantifying measurement uncertainty of measurement results obtained by the k0-based neutron activation analysis ( k0-NAA), a number of parameters should be considered and appropriately combined in deriving the final budget. To facilitate this process, a program ERON (ERror propagatiON) was developed, which computes uncertainty propagation factors from the relevant formulae and calculates the combined uncertainty. The program calculates uncertainty of the final result—mass fraction of an element in the measured sample—taking into account the relevant neutron flux parameters such as α and f, including their uncertainties. Nuclear parameters and their uncertainties are taken from the IUPAC database (V.P. Kolotov and F. De Corte, Compilation of k0 and related data for NAA). Furthermore, the program allows for uncertainty calculations of the measured parameters needed in k0-NAA: α (determined with either the Cd-ratio or the Cd-covered multi-monitor method), f (using the Cd-ratio or the bare method), Q0 (using the Cd-ratio or internal comparator method) and k0 (using the Cd-ratio, internal comparator or the Cd subtraction method). The results of calculations can be printed or exported to text or MS Excel format for further analysis. Special care was taken to make the calculation engine portable by having possibility of its incorporation into other applications (e.g., DLL and WWW server). Theoretical basis and the program are described in detail, and typical results obtained under real measurement conditions are presented.

  14. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    PubMed

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  15. Assessment of radioisotope heaters for remote terrestrial applications

    NASA Astrophysics Data System (ADS)

    Uherka, Kenneth L.

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold-region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaskan installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radio-isotopic heaters for freeze-up protection of water storage tanks and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.

  16. Integro-differential equation analysis and radioisotope imaging systems. Research proposal. [Testing of radioisotope imaging system in phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, H.

    1976-03-09

    Design modifications of a five-probe focusing collimator coincidence radioisotope scanning system are described. Clinical applications of the system were tested in phantoms using radioisotopes with short biological half-lives, including /sup 75/Se, /sup 192/Ir, /sup 43/K, /sup 130/I, and /sup 82/Br. Data processing methods are also described. (CH)

  17. Formation of medical radioisotopes 111In, 117 m Sn, 124Sb, and 177Lu in photonuclear reactions

    NASA Astrophysics Data System (ADS)

    Danagulyan, A. S.; Hovhannisyan, G. H.; Bakhshiyan, T. M.; Avagyan, R. H.; Avetisyan, A. E.; Kerobyan, I. A.; Dallakyan, R. K.

    2015-06-01

    The possibility of the photonuclear production of radioisotopes 111In, 117 m Sn, 124Sb, and 177Lu is discussed. Reaction yields were measured by the gamma-activation method. The enriched tin isotopes 112, 118Sn and Te and HfO2 of natural isotopic composition were used as targets. The targets were irradiated at the linear electron accelerator of Alikhanian National Science Laboratory (Yerevan) at the energy of 40 MeV. The experimental results obtained in this way reveal that the yield and purity of radioisotopes 111In and 117 mSn are acceptable for their production via photonuclear reactions. Reactions proceeding on targets from Te and HfO2 of natural isotopic composition and leading to the formation of 124Sb and 177Lu have small yields and are hardly appropriate for the photoproduction of these radioisotopes even in the case of enriched targets.

  18. Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies.

    PubMed

    Cheng, Hanyin; Dharmadhikari, Avinash V; Varland, Sylvia; Ma, Ning; Domingo, Deepti; Kleyner, Robert; Rope, Alan F; Yoon, Margaret; Stray-Pedersen, Asbjørg; Posey, Jennifer E; Crews, Sarah R; Eldomery, Mohammad K; Akdemir, Zeynep Coban; Lewis, Andrea M; Sutton, Vernon R; Rosenfeld, Jill A; Conboy, Erin; Agre, Katherine; Xia, Fan; Walkiewicz, Magdalena; Longoni, Mauro; High, Frances A; van Slegtenhorst, Marjon A; Mancini, Grazia M S; Finnila, Candice R; van Haeringen, Arie; den Hollander, Nicolette; Ruivenkamp, Claudia; Naidu, Sakkubai; Mahida, Sonal; Palmer, Elizabeth E; Murray, Lucinda; Lim, Derek; Jayakar, Parul; Parker, Michael J; Giusto, Stefania; Stracuzzi, Emanuela; Romano, Corrado; Beighley, Jennifer S; Bernier, Raphael A; Küry, Sébastien; Nizon, Mathilde; Corbett, Mark A; Shaw, Marie; Gardner, Alison; Barnett, Christopher; Armstrong, Ruth; Kassahn, Karin S; Van Dijck, Anke; Vandeweyer, Geert; Kleefstra, Tjitske; Schieving, Jolanda; Jongmans, Marjolijn J; de Vries, Bert B A; Pfundt, Rolph; Kerr, Bronwyn; Rojas, Samantha K; Boycott, Kym M; Person, Richard; Willaert, Rebecca; Eichler, Evan E; Kooy, R Frank; Yang, Yaping; Wu, Joseph C; Lupski, James R; Arnesen, Thomas; Cooper, Gregory M; Chung, Wendy K; Gecz, Jozef; Stessman, Holly A F; Meng, Linyan; Lyon, Gholson J

    2018-05-03

    N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development. Copyright © 2018 American Society of Human Genetics. All rights reserved.

  19. Synthesis of zeolites Na-A and Na-X from tablet compressed and calcinated coal fly ash

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Gao, Wenyan; Liu, Xin; Zhang, Yifu; Meng, Changgong

    2017-10-01

    Zeolites Na-A and Na-X are important synthetic zeolites widely used for separation and adsorption in industry. It is of great significance to develop energy-efficient routines that can synthesize zeolites Na-A and Na-X from low-cost raw materials. Coal fly ash (CFA) is the major residue from the combustion of coal and biomass containing more than 85% SiO2 and Al2O3, which can readily replace the conventionally used sodium silicate and aluminate for zeolite synthesis. We used Na2CO3 to replace the expensive NaOH used for the calcination of CFA and showed that tablet compression can enhance the contact with Na2CO3 for the activation of CFA through calcination for the synthesis of zeolites Na-A and Na-X under mild conditions. We optimized the control variables for zeolite synthesis and showed that phase-pure zeolite Na-A can be synthesized with CFA at reactant molar ratio, hydrothermal reaction temperature and reaction time of 1.3Na2O: 0.6Al2O3: 1SiO2: 38H2O at 80°C for 6 h, respectively, while phase-pure zeolite Na-X can be synthesized at 2.2Na2O: 0.2Al2O3: 1SiO2: 88H2O at 100°C for 8 h, respectively. The composition, morphology, specific surface area, vibration spectrum and thermogravimetry of synthesized Na-A and Na-X were further characterized.

  20. The predictive value of baseline NAA/Cr for treatment response of first-episode schizophrenia: A ¹H MRS study.

    PubMed

    Liu, Weibo; Yu, Hualiang; Jiang, Biao; Pan, Bing; Yu, Shaohua; Li, Huichun; Zheng, Leilei

    2015-07-23

    The study focused on the predictive value of baseline metabolite ratios in bilateral hippocampus of first-episode schizophrenia by using proton magnetic resonance spectroscopy ((1)H MRS). (1)H MRS data were acquired from 23 hallucination and 17 non-hallucination first-episode schizophrenia patients compared with 17 healthy participants. Clinical characteristics of patients were rated using the Positive and Negative Syndrome Scale (PANSS) before and after 3-month treatment. The schizophrenia patients showed lower NAA/Cr ratio than healthy participants respectively (p=0.024; p=0.001), and non-hallucination patients had even lower NAA/Cr ratio than hallucination patients (p=0.033). After 3-month treatment, hallucination patients had greater improvement in negative symptoms than non-hallucination patients (p=0.018). The reduction of PANSS total score and negative factor score was positively correlated with the left NAA/Cr in both group patients (p<0.05). Given that the bilateral hippocampal baseline NAA/Cr had predictive value for the whole treatment response, and the left hippocampal NAA/Cr can predict the prognosis of negative symptoms during acute phase medication in first-episode schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Performance-related increases in hippocampal N-acetylaspartate (NAA) induced by spatial navigation training are restricted to BDNF Val homozygotes.

    PubMed

    Lövdén, Martin; Schaefer, Sabine; Noack, Hannes; Kanowski, Martin; Kaufmann, Jörn; Tempelmann, Claus; Bodammer, Nils Christian; Kühn, Simone; Heinze, Hans-Jochen; Lindenberger, Ulman; Düzel, Emrah; Bäckman, Lars

    2011-06-01

    Recent evidence indicates experience-dependent brain volume changes in humans, but the functional and histological nature of such changes is unknown. Here, we report that adult men performing a cognitively demanding spatial navigation task every other day over 4 months display increases in hippocampal N-acetylaspartate (NAA) as measured with magnetic resonance spectroscopy. Unlike measures of brain volume, changes in NAA are sensitive to metabolic and functional aspects of neural and glia tissue and unlikely to reflect changes in microvasculature. Training-induced changes in NAA were, however, absent in carriers of the Met substitution in the brain-derived neurotrophic factor (BDNF) gene, which is known to reduce activity-dependent secretion of BDNF. Among BDNF Val homozygotes, increases in NAA were strongly related to the degree of practice-related improvement in navigation performance and normalized to pretraining levels 4 months after the last training session. We conclude that changes in demands on spatial navigation can alter hippocampal NAA concentrations, confirming epidemiological studies suggesting that mental experience may have direct effects on neural integrity and cognitive performance. BDNF genotype moderates these plastic changes, in line with the contention that gene-context interactions shape the ontogeny of complex phenotypes.

  2. Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex: evidence that NAA functions as a molecular water pump during visual stimulation.

    PubMed

    Baslow, Morris H; Hrabe, Jan; Guilfoyle, David N

    2007-01-01

    N-acetyl-l-aspartic acid (NAA), an amino acid synthesized and stored primarily in neurons in the brain, has been proposed to be a molecular water pump (MWP) whose function is to rapidly remove water from neurons against a water gradient. In this communication, we describe the results of a functional (1)H proton magnetic resonance spectroscopy (fMRS) study, and provide evidence that in the human visual cortex, over a 10-min period of visual stimulation, there are stimulation-induced graded changes in the NAA MRS signal from that of a preceding 10-min baseline period with a decline in the NAA signal of 13.1% by the end of the 10-min stimulation period. Upon cessation of visual stimulation, the NAA signal gradually increases during a 10-min recovery period and once again approaches the baseline level. Because the NAA MRS signal reflects the NAA concentration, these changes indicate rapid focal changes in its concentration, and transient changes in its intercompartmental metabolism. These include its rates of synthesis and efflux from neurons and its hydrolysis by oligodendrocytes. During stimulation, the apparent rate of NAA efflux and hydrolysis increased 14.2 times, from 0.55 to 7.8 micromol g(-1) h(-1). During recovery, the apparent rate of synthesis increased 13.3 times, from 0.55 to 7.3 micromol g(-1) h(-1). The decline in the NAA signal during stimulation suggests that a rapid increase in the rate of NAA-obligated water release to extracellular fluid (ECF) is the initial and seminal event in response to neurostimulation. It is concluded that the NAA metabolic cycle in the visual cortex is intimately linked to rates of neuronal signaling, and that the functional cycle of NAA is associated with its release to ECF, thus supporting the hypothesis that an important function of the NAA metabolic cycle is that of an efflux MWP.

  3. Preparing for Harvesting Radioisotopes from FRIB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peaslee, Graham F.; Lapi, Suzanne E.

    2015-02-02

    The Facility for Rare Isotope Beams (FRIB) is the next generation accelerator facility under construction at Michigan State University. FRIB will produce a wide variety of rare isotopes by a process called projectile fragmentation for a broad range of new experiments when it comes online in 2020. The accelerated rare isotope beams produced in this facility will be more intense than any current facility in the world - in many cases by more than 1000-fold. These beams will be available to the primary users of FRIB in order to do exciting new fundamental research with accelerated heavy ions. In themore » standard mode of operation, this will mean one radioisotope will be selected at a time for the user. However, the projectile fragmentation process also yields hundreds of other radioisotopes at these bombarding energies, and many of these rare isotopes are long-lived and could have practical applications in medicine, national security or the environment. This project developed new methods to collect these long-lived rare isotopes that are by-products of the standard FRIB operation. These isotopes are important to many areas of research, thus this project will have a broad impact in several scientific areas including medicine, environment and homeland security.« less

  4. Is NAA reduction in normal contralateral cerebral tissue in stroke patients dependent on underlying risk factors?

    PubMed

    Walker, P M; Ben Salem, D; Giroud, M; Brunotte, F

    2006-05-01

    This retrospective study investigated the dependence of N-acetyl aspartate (NAA) ratios on risk factors for cerebral vasculopathy such as sex, age, hypertension, diabetes mellitus, carotid stenosis, and dyslipidaemia, which may have affected brain vessels and induced metabolic brain abnormalities prior to stroke. We hypothesise that in stroke patients metabolic alterations in the apparently normal contralateral brain are dependent on the presence or not of such risk factors. Fifty nine patients (31 male, 28 female: 58.8+/-16.1 years old) with cortical middle cerebral artery (MCA) territory infarction were included. Long echo time chemical shift imaging spectroscopy was carried out on a Siemens 1.5 T Magnetom Vision scanner using a multi-voxel PRESS technique. Metabolite ratios (NAA/choline, NAA/creatine, lactate/choline, etc) were studied using uni- and multivariate analyses with respect to common risk factors. The influence of age, stroke lesion size, and time since stroke was studied using a linear regression approach. Age, sex, and hypertension all appeared to individually influence metabolite ratios, although only hypertension was significant after multivariate analysis. In both basal ganglia and periventricular white matter regions in apparently normal contralateral brain, the NAA/choline ratio was significantly lower in hypertensive (1.37+/-0.16 and 1.50+/-0.19, respectively) than in normotensive patients (1.72+/-0.19 and 1.85+/-0.15, respectively). Regarding MCA infarction, contralateral tissue remote from the lesion behaves abnormally in the presence of hypertension, the NAA ratios in hypertensive patients being significantly lower. These data suggest that hypertension may compromise the use of contralateral tissue data as a reference for comparison with ischaemic tissue.

  5. Dorsolateral prefrontal cortex N-acetylaspartate/total creatine (NAA/tCr) loss in male recreational cannabis users.

    PubMed

    Hermann, Derik; Sartorius, Alexander; Welzel, Helga; Walter, Sigrid; Skopp, Gisela; Ende, Gabriele; Mann, Karl

    2007-06-01

    Cannabinoids present neurotoxic and neuroprotective properties in in vitro studies, inconsistent alterations in human neuroimaging studies, neuropsychological deficits, and an increased risk for psychotic episodes. Proton magnetic resonance spectroscopy ((1)H-MRS), neuropsychological testing, and hair analysis for cannabinoids was performed in 13 male nontreatment-seeking recreational cannabis users and 13 male control subjects. A significantly diminished N-acetylaspartate/total creatine (NAA/tCr) ratio in the dorsolateral prefrontal cortex (DLPFC) was observed in cannabis users (p = .0003). The NAA/tCr in the putamen/globus pallidum region correlated significantly with cannabidiol (R(2) = .66, p = .004). Results of the Wisconsin Card Sorting test, Trail making Test, and D2 test for attention were influenced by cannabinoids. Chronic recreational cannabis use is associated with an indication of diminished neuronal and axonal integrity in the DLPFC in this study. As chronic cannabis use is a risk factor for psychosis, these results are interesting because diminished NAA/tCr ratios in the DLPFC and neuropsychological deficits were also reported in schizophrenia. The strong positive correlation of NAA/tCr and cannabidiol in the putamen/globus pallidum is in line with neuroprotective properties of cannabidiol, which were also observed in in vitro model studies of Parkinson's disease.

  6. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualls, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Program's budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Program's portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  7. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualis, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  8. Development of a Short-Lived Radioisotope Production Service (SRPS) for CTTC at the University of Alberta SLOWPOKE Reactor Facility

    DTIC Science & Technology

    2004-12-01

    abundance and neutron cross-section of 17~r (the precursor of 171 Er~~limit,tb~’Xi!Y o~_ 171Er that could be produced and delivered to Suf field to about...the radioisotope being produced. Additional factors relate to the irradiation conditions and include the reactor neutron flux and the irradiation...generally be desirable to have single radioisotopic sources with nuclear characteristics (e.g., half-life, gamma-ray energies and emission rates

  9. Iron oxide nanoparticles in NaA zeolite cages

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, S. K.; Vijayalakshmi, R.; Sudarsan, V.; Salunke, H. G.; Bhargava, S. C.

    2013-07-01

    Zeolite NaA samples with varying concentration of Fe3+ ions have been prepared by wet chemical method. Based on powder X-ray diffraction, 29Si and 27Al MAS NMR and Fe3+ EPR investigations, the formation of nano-sized ferric oxide particles inside the larger α-cages of zeolite NaA has been established. Both Mössbauer effect and magnetization measurements carried out down to 4.5 K established the superparamagnetic behaviour of these Fe2O3 particles with a blocking temperature of ≈20 K, where the magnetization values showed deviation for the zero field cooled and field cooled samples and the appearance of a very narrow magnetic hysteresis loop below this temperature. For all Fe3+ containing samples the room temperature Mössbauer spectrum is a broad quadrupole doublet with chemical shift, δ ≈ 0.33 mm/s and quadrupole splitting, ΔEq ≈ 0.68 mm/s. Variable temperature 57Fe Mössbauer effect measurements exhibited magnetic features below the blocking temperature and at 4.5 K, the observed spectrum is a broad magnetic sextet characterized by an internal hyperfine field value of ≈504 kOe along with a very weak central superparamagnetic quadrupole doublet.

  10. Power from Radioisotopes, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.; Mead, Robert L.

    This 1971 revision deals with radioisotopes and their use in power generators. Early developments and applications for the Systems for Nuclear Auxiliary Power (SNAP) and Radioisotope Thermoelectric Generators (RTGs) are reviewed. Present uses in space and on earth are included. Uses in space are as power sources in various satellites and space…

  11. NAA TECHNIQUE FOR CLINICAL INVESTIGATION OF MICE IMMUNIZED WITH BOTHROP VENOM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamboni, C. B.; Aguiar, R. O.; Kovacs, L.

    2009-06-03

    In the present study Neutron Activation Analysis (NAA) technique was used to determine sodium concentration in whole blood of mice immunized with Bothrops venom. With this value it was possible to perform clinical investigation in this animal model using whole blood.

  12. Evidence that the tri-cellular metabolism of N-acetylaspartate functions as the brain's "operating system": how NAA metabolism supports meaningful intercellular frequency-encoded communications.

    PubMed

    Baslow, Morris H

    2010-11-01

    N-acetylaspartate (NAA), an acetylated derivative of L-aspartate (Asp), and N-acetylaspartylglutamate (NAAG), a derivative of NAA and L-glutamate (Glu), are synthesized by neurons in brain. However, neurons cannot catabolize either of these substances, and so their metabolism requires the participation of two other cell types. Neurons release both NAA and NAAG to extra-cellular fluid (ECF) upon stimulation, where astrocytes, the target cells for NAAG, hydrolyze it releasing NAA back into ECF, and oligodendrocytes, the target cells for NAA, hydrolyze it releasing Asp to ECF for recycling to neurons. This sequence is unique as it is the only known amino acid metabolic cycle in brain that requires three cell types for its completion. The results of this cycling are two-fold. First, neuronal metabolic water is transported to ECF for its removal from brain. Second, the rate of neuronal activity is coupled with focal hyperemia, providing stimulated neurons with the energy required for transmission of meaningful frequency-encoded messages. In this paper, it is proposed that the tri-cellular metabolism of NAA functions as the "operating system" of the brain, and is essential for normal cognitive and motor activities. Evidence in support of this hypothesis is provided by the outcomes of two human inborn errors in NAA metabolism.

  13. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC articlemore » comprising the radioisotope immobilized therein.« less

  14. Accuracy of noninvasive quantification of brain NAA concentrations using PRESS sequence: verification in a swine model with external standard.

    PubMed

    Wu, R H; Lin, R; Li, H; Xiao, Z W; Rao, H B; Luo, W H; Guo, G; Huang, K; Zhang, X G; Lang, Z J

    2005-01-01

    The metabolite ratios had been employed in the field of MR spectroscopy (MRS) for a long period. The main drawback of metabolite ratio is that ratio results are not comparable with absolute metabolite concentration in vivo. The purpose of this study was to examine the accuracy of noninvasive quantification of brain N-acetylaspartate (NAA) concentrations using previously reported MR external standard method. Eight swine were scanned on a GE 1.5 T scanner with a standard head coil. The external standard method was utilized with a sphere filled with NAA, GABA, glutamine, glutamate, creatine, choline chloride, and myo-inositol. The position resolved spectroscopy (PRESS) sequence was used with TE=135 msec, TR=1500 msec, and 128 scan averages. The analysis of MRS was done with SAGE/IDL program. In vivo NAA concentration was obtained using the equation S=N * e(-TE/T2) * [1-e(-TR/T1). In vitro NAA concentration was measured by high performance liquid chromatography (HPLC). In the MRS group, the mean concentration of NAA was 10.03 plusmn 0.74 mmol/kg. In the HPLC group, the mean concentration of NAA was 9.22 plusmn 0.55 mmol/kg. There was no significant difference between the two groups (p = 0.46). However, slightly higher value was observed in the MRS group (7/8 swine), compared with HPLC group. The range of differences was between 0.02~2.05 mmol/kg. MRS external reference method could be more accurate than internal reference method. 1H MRS does not distinguish between N-acetyl resonance frequencies and other N-acetylated amino acids.

  15. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  16. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  17. N-acetylaspartate (NAA) correlates inversely with cannabis use in a frontal language processing region of neocortex in MDMA (Ecstasy) polydrug users: a 3 T magnetic resonance spectroscopy study.

    PubMed

    Cowan, Ronald L; Joers, James M; Dietrich, Mary S

    2009-03-01

    Impaired verbal memory is common in MDMA (Ecstasy) polydrug users. The contributions of Ecstasy or polydrug exposure to reduced verbal memory are unclear, as is the neural basis for this cognitive deficit. Ecstasy users have reduced gray matter in brain regions mediating verbal memory (BA 18, 21 and 45). N-acetylaspartate (NAA) as a neuronal marker and myoinositol (mI) as a glial marker are inconsistently affected in Ecstasy users. We used 3 T MRS in 17 recreational drug users to test the hypothesis that Ecstasy polydrug use would be associated with altered NAA or mI in BA 18, 21 and 45. No effects were seen for mI. Metabolite ratios for NAA (mean+/-SD) were: BA 18-NAA/Cr (2.030+/-0.188); BA 21-NAA/Cr (1.861+/-0.325); BA 45-NAA/Cr (1.925+/-0.329). Lifetime cannabis use was significantly associated with BA 45 NAA/Cr (r=-0.687, p=0.014) but not with NAA in BA 18 or 21. In contrast, there were no statistically significant associations for lifetime use of Ecstasy, alcohol, or cocaine with NAA. These findings suggest that cannabis use may contribute to altered neuronal integrity in Ecstasy polydrug users in a brain region associated with verbal memory processing.

  18. [Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis].

    PubMed

    Zhu, Li-Fang; Xu, Chao; Zhu, Zai-Biao; Yang, He-Tong; Guo, Qiao-Sheng; Xu, Hong-jian; Ma, Hong-Jian; Zhao, Gui-Hua

    2014-08-01

    To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established.

  19. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions.

    PubMed

    Zhao, Yafei; Zhang, Bing; Zhang, Xiang; Wang, Jinhua; Liu, Jindun; Chen, Rongfeng

    2010-06-15

    Well-ordered cubic NaA zeolite was first synthesized using natural halloysite mineral with nanotubular structure as source material by hydro-thermal method. SEM and HRTEM images indicate that the synthesized NaA zeolite is cubic-shaped crystal with planar surface, well-defined edges and symmetrical and uniform pore channels. The adsorption behavior of ammonium ions (NH(4)(+)) from aqueous solution onto NaA zeolite was investigated as a function of parameters such as equilibrium time, pH, initial NH(4)(+) concentration, temperature and competitive cations. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 44.3 mg g(-1) of NH(4)(+) was achieved. The regeneration and reusable ability of this adsorbent was evaluated, and the results indicated that the recovered adsorbent could be used again for NH(4)(+) removal with nearly constant adsorption capacity. Thermodynamic parameters such as change in free energy (DeltaG(0)), enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were also determined, which indicated that the adsorption was a spontaneous and exothermic process at ambient conditions. Compared with other adsorbents, the as-synthesized NaA zeolite displays a faster adsorption rate and higher adsorption capacity, which implies potential application for removing NH(4)(+) pollutants from wastewaters. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Analysis of medieval limestone sculpture from southwestern France and the Paris Basin by NAA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, L.; Harbottle, G.

    1994-12-31

    Compositional characterization of limestone from sources known to medieval craftsmen and from the monuments they built can be used in conjunction with stylistic and iconographic criteria to infer geographic origin of sculptures that have lost their histories. Limestone from 47 quarrying locations in France and from numerous medieval monuments have been subjected to neutron activation analysis (NAA) to form the nucleus of the Brookhaven Limestone Database. Even though the method and techniques of NAA are well established, this paper briefly summarizes the parameters and experimental conditions useful for determining those concentration variables for which limestone from different sources exhibits significantmore » and reproducible differences.« less

  1. NASA's Radioisotope Power Systems Program Status

    NASA Technical Reports Server (NTRS)

    Dudzinski, Leonard A.; Hamley, John A.; McCallum, Peter W.; Sutliff, Thomas J.; Zakrajsek, June F.

    2013-01-01

    NASA's Radioisotope Power Systems (RPS) Program began formal implementation in December 2010. The RPS Program's goal is to make available RPS for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible to meet mission needs. To meet this goal, the RPS Program manages investments in RPS system development and RPS technologies. The current keystone of the RPS Program is the development of the Advanced Stirling Radioisotope Generator (ASRG). This generator will be about four times more efficient than the more traditional thermoelectric generators, while providing a similar amount of power. This paper provides the status of the RPS Program and its related projects. Opportunities for RPS generator development and targeted research into RPS component performance enhancements, as well as constraints dealing with the supply of radioisotope fuel, are also discussed in the context of the next ten years of planetary science mission plans.

  2. Radioisotope-powered cardiac pacemaker program. Clinical studies of the nuclear pacemaker model NU-5. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-01

    Beginning in February, 1970, the Nuclear Materials and Equipment Corporation (NUMEC) undertook a program to design, develop and manufacture a radioisotope powered cardiac pacemaker system. The scope of technical work was specified to be: establish system, component, and process cost reduction goals using the prototype Radioisotope Powered Cardiac Pacemaker (RCP) design and develop production techniques to achieve these cost reduction objectives; fabricate radioisotope powered fueled prototype cardiac pacemakers (RCP's) on a pilot production basis; conduct liaison with a Government-designated fueling facility for purposes of defining fueling requirements, fabrication and encapsulation procedures, safety design criteria and quality control and inspection requirements;more » develop and implement Quality Assurance and Reliability Programs; conduct performance, acceptance, lifetime and reliability tests of fueled RCP's in the laboratory; conduct liaison with the National Institutes of Health and with Government specified medical research institutions selected for the purpose of undertaking clinical evaluation of the RCP in humans; monitor and evaluate, on a continuing basis, all test data; and perform necessary safety analyses and tests. Pacemaker designs were developed and quality assurance and manufacturing procedures established. Prototype pacemakers were fabricated. A total of 126 radioisotope powered units were implanted and have been followed clinically for approximately seven years. Four (4) of these units have failed. Eighty-three (83) units remain implanted and satisfactorily operational. An overall failure rate of less than the target 0.15% per month has been achieved.« less

  3. A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber.

    PubMed

    Singh, Bir; Cheek, Hannah D; Haigler, Candace H

    2009-07-01

    Use of a synthetic auxin (naphthalene-1-acetic acid, NAA) to start (Gossypium hirsutum) ovule/fiber cultures hindered fiber secondary wall cellulose synthesis compared with natural auxin (indole-3-acetic acid, IAA). In contrast, NAA promoted fiber elongation and ovule weight gain, which resulted in larger ovule/fiber units. To reach these conclusions, fiber and ovule growth parameters were measured and cell wall characteristics were examined microscopically. The differences in fiber from NAA and IAA culture were underpinned by changes in the expression patterns of marker genes for three fiber developmental stages (elongation, the transition stage, and secondary wall deposition), and these gene expression patterns were also analyzed quantitatively in plant-grown fiber. The results demonstrate that secondary wall cellulose synthesis: (1) is under strong transcriptional control that is influenced by auxin; and (2) must be specifically characterized in the cotton ovule/fiber culture system given the many protocol variables employed in different laboratories.

  4. N-acetylaspartate (NAA) correlates inversely with cannabis use in a frontal language processing region of neocortex in MDMA (Ecstasy) Polydrug Users: a 3 Tesla Magnetic Resonance Spectroscopy Study

    PubMed Central

    Cowan, Ronald L; Joers, James M; Dietrich, Mary S

    2015-01-01

    Impaired verbal memory is common in MDMA (Ecstasy) polydrug users. The contributions of Ecstasy or polydrug exposure to reduced verbal memory are unclear, as is the neural basis for this cognitive deficit. Ecstasy users have reduced gray matter in brain regions mediating verbal memory (BA 18, 21 and 45). N-acetylaspartate (NAA) as a neuronal marker and myoinositol (mI) as a glial marker are inconsistently affected in Ecstasy users. We used 3 Tesla MRS in 17 recreational drug users to test the hypothesis that Ecstasy polydrug use would be associated with altered NAA or mI in BA 18, 21 and 45. No effects were seen for mI. Metabolite ratios for NAA (mean ± SD) were: BA 18--NAA/Cr (2.030 ± 0.188); BA 21--NAA/Cr (1.861 ± 0.325); BA 45--NAA/Cr (1.925 ± 0.329). Lifetime cannabis use was significantly associated with BA 45 NAA/Cr (r = −0.687, p = 0.014) but not with NAA in BA 18 or 21. In contrast, there were no statistically significant associations for lifetime use of Ecstasy, alcohol, or cocaine with NAA. These findings suggest that cannabis use may contribute to altered neuronal integrity in Ecstasy polydrug users in a brain region associated with verbal memory processing. PMID:19032963

  5. Trace impurities analysis of aluminum nanopowder and its air combustion product

    NASA Astrophysics Data System (ADS)

    Kabanov, Denis V.; Merkulov, Viktor G.; Mostovshchikov, Andrey V.; Ilyin, Alexander P.

    2018-03-01

    Neutron activation analysis (NAA) allows estimating micro-concentrations of chemicals and analyzes tens of elements at one measurement. In this paper we have used NAA to examine metal impurities in the electroexplosive aluminum nanopowder (ANP) and its air-combustion products produced by burning in crucibles in an electric and magnetic field and without application of fields. It has been revealed that in the air-combustion products impurities content is reduced. The presence of impurities in the ANP is associated with electric explosion technology (erosion of electrode and chamber materials) and with the previous development of various nanopowders in the composition of this electric explosive device. NAA is characterized by a high sensitivity and reproducibility to elements content and low metering error. According to the obtained results it has been concluded that NAA metering error does not exceed 10% in the wide concentration range, from 0.01 to 2100 ppm, particularly. Besides, there is high reproducibility of the method that has been proved on macro-elements of Ca (>1000 ppm), Fe (>2000 ppm), and micro-elements as Sm, U, Ce, Sb, Th, etc. (<0.9 ppm). It is recommended to use an individual unit for the production of pure metal powders for electric explosion and production of nanopowders, which is possible with mass production of nanopowders.

  6. Radioisotopic energy conversion system (RECS): A new radioisotopic power cell, based on nuclear, atomic, and radiation transport principles

    NASA Astrophysics Data System (ADS)

    Steinfelds, Eric Victor

    The topic of this thesis is the development of the Radioisotope Energy Conversion System (RECS) in a project which is utilizing analytical computational assisted design and some experimental Research in the investigation of fluorescers and effective transducers with the appropriate energy range choice for the conversion of energy. It is desirable to increase the efficiency in electrical power from the raw kinetic power available from the radioactive material within radioisotope power generators. A major step in this direction is the development and use of Radioisotope Energy Conversion Systems to supplement and ideally replace Radioactive Thermal Generators (RTG). It is possible to achieve electrical conversion efficiencies exceeding 25% for RECS power devices compared to only 9 percent efficiency for RTG's. The theoretical basis with existent materials for the potential achievability of efficiencies above 25% is documented within this thesis. The fundamental RECS consists of a radioisotope radiative source (C1), a mediating fluorescent gas (C2) which readily absorbs energy from the beta particles (or alpha's) and subsequently emits blue or UV photons, photovoltaic cells (C3) to convert the blue and UV photons into electrical energy [2], and electrical circuitry (C4). Solid State inspired component (C3), due to its theoretical (and attainable) high efficiency, is a large step ahead of the RTG design concept. The radioisotope flux source produces the beta(-) particles or alpha particles. Geometrically, presently, we prefer to have the ambient fluorescent gas surround the radioisotope flux source. Our fluorescer shall be a gas such as Krypton. Our specifically wide band-gap photovoltaic cells shall have gap energies which are slightly less than that of UV photons produced by the fluorescing gas. Diamond and Aluminum Nitride sample materials are good potential choices for photovoltaic cells, as is explained here in. Out of the material examples discussed, the highest

  7. Chronic intermittent but not constant hypoxia decreases NAA/Cr ratios in neonatal mouse hippocampus and thalamus.

    PubMed

    Douglas, Robert M; Miyasaka, Naoyuki; Takahashi, Kan; Latuszek-Barrantes, Adrianna; Haddad, Gabriel G; Hetherington, Hoby P

    2007-03-01

    Chronic constant hypoxia (CCH) and chronic intermittent hypoxia (CIH) are known to have deleterious effects on the central nervous system. Because of the difference in the pattern of hypoxic exposure, it is possible that the pathological outcome would vary. The N-acetyl aspartate/creatine (NAA/Cr) ratio is a reliable marker of neuronal integrity, and this can be noninvasively measured by proton nuclear magnetic resonance spectroscopy. P2 CD1 mouse pups with their dams were exposed to either CCH, where the Fi(O(2)) was maintained at 11% continuously or to CIH, where the Fi(O(2)) was varied between 21 and 11% every 4 min. P30 mice exposed to intermittent hypoxia for 4 wk demonstrated a significant decrease in the NAA/Cr ratio in the hippocampus and thalamus, which was reversed by a subsequent exposure to 4 wk of normoxia. Meanwhile, mice exposed to 4 wk of constant hypoxia did not demonstrate any differences in their NAA/Cr ratios from controls in these brain regions. These results indicate that an intermittent pattern of hypoxic exposure may have a more adverse effect on neuronal function and integrity than a continuous one. The reversal of NAA/Cr levels to baseline during the return to normoxia indicates that therapeutic strategies targeted at alleviating the intermittent hypoxic stress in diseases, such as obstructive sleep apnea, have the potential for inducing significant neurocognitive recovery in these patients.

  8. NASA Radioisotope Power System Program - Technology and Flight Systems

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Dudzinski, Leonard A.

    2009-01-01

    NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.

  9. Reduced NAA-levels in the NAWM of patients with MS is a feature of progression. A study with quantitative magnetic resonance spectroscopy at 3 Tesla.

    PubMed

    Aboul-Enein, Fahmy; Krssák, Martin; Höftberger, Romana; Prayer, Daniela; Kristoferitsch, Wolfgang

    2010-07-20

    Reduced N-acetyl-aspartate (NAA) levels in magnetic resonance spectroscopy (MRS) may visualize axonal damage even in the normal appearing white matter (NAWM). Demyelination and axonal degeneration are a hallmark in multiple sclerosis (MS). To define the extent of axonal degeneration in the NAWM in the remote from focal lesions in patients with relapsing-remitting (RRMS) and secondary progressive MS (SPMS). 37 patients with clinical definite MS (27 with RRMS, 10 with SPMS) and 8 controls were included. We used 2D (1)H-MR-chemical shift imaging (TR = 1500ms, TE = 135ms, nominal resolution 1ccm) operating at 3Tesla to assess the metabolic pattern in the fronto-parietal NAWM. Ratios of NAA to creatine (Cr) and choline (Cho) and absolute concentrations of the metabolites in the NAWM were measured in each voxel matching exclusively white matter on the anatomical T2 weighted MR images. No significant difference of absolute concentrations for NAA, Cr and Cho or metabolite ratios were found between RRMS and controls. In SPMS, the NAA/Cr ratio and absolute concentrations for NAA and Cr were significantly reduced compared to RRMS and to controls. In our study SPMS patients, but not RRMS patients were characterized by low NAA levels. Reduced NAA-levels in the NAWM of patients with MS is a feature of progression.

  10. An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.

    2005-01-01

    NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02-OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), August 13, 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.

  11. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  12. Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2005-01-01

    NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).

  13. Prefrontal NAA and Glx Levels in Different Stages of Psychotic Disorders: a 3T 1H-MRS Study.

    PubMed

    Liemburg, Edith; Sibeijn-Kuiper, Anita; Bais, Leonie; Pijnenborg, Gerdina; Knegtering, Henderikus; van der Velde, Jorien; Opmeer, Esther; de Vos, Annerieke; Dlabac-De Lange, Jozarni; Wunderink, Lex; Aleman, André

    2016-02-23

    H-Magnetic Resonance Spectroscopy ((1)H-MRS) can offer insights in various neuropathologies by measuring metabolite levels in the brain. In the current study we investigated the levels of glutamate + glutamine (Glx, neurotransmitter and precursor) and N-Acetyl Aspartate + glutamic acid (NAA + NAAG; neuronal viability) in the prefrontal cortex of patients with a psychotic disorder and people at Ultra High Risk (UHR) for psychosis. A (1)H-MRS spectrum was acquired in 31 patients with a recent onset psychotic disorder and 60 with a chronic state, 16 UHR patients and 36 healthy controls. Absolute metabolite levels were calculated using LCModel with a reference water peak. Groups were compared while taking into account age and partial volume effects. Moreover, we investigated associations with positive and negative symptoms, duration of illness, and antipsychotic treatment in patients. The most notable finding is that chronicity of schizophrenia was related to decreased levels of Glx and NAA. On the other hand, although on an exploratory note, UHR showed increased levels of prefrontal Glx and NAA levels with increasing age. Our results may indicate an initial Glx and NAA increase and subsequent decrease during illness progression that may be related to the neurotoxic effects of glutamate.

  14. NASA's Advanced Radioisotope Power Conversion Technology Development Status

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre

    2007-01-01

    NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).

  15. Nuclear energy in the service of biomedicine: the U.S. Atomic Energy Commission's radioisotope program, 1946-1950.

    PubMed

    Creager, Angela N H

    2006-01-01

    The widespread adoption of radioisotopes as tools in biomedical research and therapy became one of the major consequences of the "physicists' war" for postwar life science. Scientists in the Manhattan Project, as part of their efforts to advocate for civilian uses of atomic energy after the war, proposed using infrastructure from the wartime bomb project to develop a government-run radioisotope distribution program. After the Atomic Energy Bill was passed and before the Atomic Energy Commission (AEC) was formally established, the Manhattan Project began shipping isotopes from Oak Ridge. Scientists and physicians put these reactor-produced isotopes to many of the same uses that had been pioneered with cyclotron-generated radioisotopes in the 1930s and early 1940s. The majority of early AEC shipments were radioiodine and radiophosphorus, employed to evaluate thyroid function, diagnose medical disorders, and irradiate tumors. Both researchers and politicians lauded radioisotopes publicly for their potential in curing diseases, particularly cancer. However, isotopes proved less successful than anticipated in treating cancer and more successful in medical diagnostics. On the research side, reactor-generated radioisotopes equipped biologists with new tools to trace molecular transformations from metabolic pathways to ecosystems. The U.S. government's production and promotion of isotopes stimulated their consumption by scientists and physicians (both domestic and abroad), such that in the postwar period isotopes became routine elements of laboratory and clinical use. In the early postwar years, radioisotopes signified the government's commitment to harness the atom for peace, particularly through contributions to biology, medicine, and agriculture.

  16. Radioisotope Reduction Using Solar Power for Outer Planetary Missions

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    Radioisotope power systems have historically been (and still are) the power system of choice from a mass and size perspective for outer planetary missions. High demand for and limited availability of radioisotope fuel has made it necessary to investigate alternatives to this option. Low mass, high efficiency solar power systems have the potential for use at low outer planetary temperatures and illumination levels. This paper documents the impacts of using solar power systems instead of radioisotope power for all or part of the power needs of outer planetary spacecraft and illustrates the potential fuel savings of such an approach.

  17. Radioisotopic heat source

    DOEpatents

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  18. Concentration of Ca in blood of amateur runners using NAA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacs, L.; Zamboni, C. B.; Metairon, S.

    2013-05-06

    In this study the Ca levels were determined in amateur runners blood at LABEX (Laboratorio de Bioquimica do Exercicio - UNICAMP, Brazil), using Neutron Activation Analyses (NAA) technique. The range established at rest (162 - 410 mgL{sup -1}) when compared with control group (51 - 439 mgL{sup -1}) suggests that there is a dependency of these limits in the function of the adopted physical training.

  19. Sodium Analysis in Whole Blood of Athletes Using NAA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacs, Luciana; Zamboni, Cibele B.; Nunes, Lazaro A. S.

    In this investigation the sodium levels in blood were analyzed in athletes submitted to constant load exercise at treadmill (LABEX and UNICAMP) by NAA. These data were compared with the rest condition (before starting the exercise program) as well as with the sodium levels of the healthy group (control group) select from Blood Banks. The results showed alterations in sodium levels of the athletes during the exercise training, mainly increase, suggesting the necessity of its evaluation during physical activities.

  20. Novel approach in k0-NAA for highly concentrated REE Samples.

    PubMed

    Abdollahi Neisiani, M; Latifi, M; Chaouki, J; Chilian, C

    2018-04-01

    The present paper presents a new approach for k 0 -NAA for accurate quantification with short turnaround analysis times for rare earth elements (REEs) in high content mineral matrices. REE k 0 and Q 0 values, spectral interferences and nuclear interferences were experimentally evaluated and improved with Alfa Aesar Specpure Plasma Standard 1000mgkg -1 mono-rare earth solutions. The new iterative gamma-ray self-attenuation and neutron self-shielding methods were investigated with powder standards prepared from 100mg of 99.9% Alfa Aesar mono rare earth oxide diluted with silica oxide. The overall performance of the new k 0 -NAA method for REEs was validated using a certified reference material (CRM) from Canadian Certified Reference Materials Project (REE-2) with REE content ranging from 7.2mgkg -1 for Yb to 9610mgkg -1 for Ce. The REE concentration was determined with uncertainty below 7% (at 95% confidence level) and proved good consistency with the CRM certified concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. An Updated Comprehensive Risk Analysis for Radioisotopes Identified of High Risk to National Security in the Event of a Radiological Dispersion Device Scenario

    NASA Astrophysics Data System (ADS)

    Robinson, Alexandra R.

    An updated global survey of radioisotope production and distribution was completed and subjected to a revised "down-selection methodology" to determine those radioisotopes that should be classified as potential national security risks based on availability and key physical characteristics that could be exploited in a hypothetical radiological dispersion device. The potential at-risk radioisotopes then were used in a modeling software suite known as Turbo FRMAC, developed by Sandia National Laboratories, to characterize plausible contamination maps known as Protective Action Guideline Zone Maps. This software also was used to calculate the whole body dose equivalent for exposed individuals based on various dispersion parameters and scenarios. Derived Response Levels then were determined for each radioisotope using: 1) target doses to members of the public provided by the U.S. EPA, and 2) occupational dose limits provided by the U.S. Nuclear Regulatory Commission. The limiting Derived Response Level for each radioisotope also was determined.

  2. Operational Readiness Review Plan for the Radioisotope Thermoelectric Generator Materials Production Tasks

    DOE R&D Accomplishments Database

    Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.

  3. Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study.

    PubMed

    Muñoz Maniega, S; Cvoro, V; Chappell, F M; Armitage, P A; Marshall, I; Bastin, M E; Wardlaw, J M

    2008-12-09

    Although much tissue damage may occur within the first few hours of ischemic stroke, the duration of tissue injury is not well defined. We assessed the temporal pattern of neuronal loss and ischemia after ischemic stroke using magnetic resonance spectroscopic imaging (MRSI) and diffusion-weighted imaging (DWI). We measured N-acetylaspartate (NAA) and lactate in 51 patients with acute ischemic stroke at five time points, from admission to 3 months, in voxels classified as normal, possibly or definitely abnormal (ischemic) according to the appearance of the stroke lesion on the admission DWI. We compared changes in NAA and lactate in different voxel classes using linear mixed models. NAA was significantly reduced from admission in definitely and possibly abnormal (p < 0.01) compared to contralateral normal voxels, reaching a nadir by 2 weeks and remaining reduced at 3 months. Lactate was significantly increased in definitely and possibly abnormal voxels (p < 0.01) during the first 5 days, falling to normal at 2 weeks, rising again later in these voxels. The progressive fall in N-acetylaspartate suggests that some additional neuronal death may continue beyond the first few hours for up to 2 weeks or longer. The mechanism is unclear but, if correct, then it is possible that interventions to limit this ongoing subacute tissue damage might add to the benefit of hyperacute treatment, making further improvements in outcome possible.

  4. Measurement of the cariogenicity of snacks using a radioisotope PAHA disc.

    PubMed

    Lee, Eun-Jung; Yun, Hye-Kyoung; Hwang, In-Kyeong; Bae, Kwang-Hak; Jin, Bo-Hyoung; Paik, Dai-il

    2012-06-01

    This study aimed to establish a method for measuring the cariogenic potential of foods with high reproducibility in vitro. Streptococcus mutans (S. mutans) was incubated in test foods with radioisotope polyacrylamide hydroxyapatite (PAHA) for 150 min at 37 °C. Then, the amount of radioisotope (32)P released from PAHA was measured using a liquid scintillation counter and scanning electron microscopy (SEM). The radioisotope PAHA discs that were soaked in 10% sucrose solutions had a high cariogenic potential and showed a remarkably demineralized surface (p < 0.05). The radioisotope PAHA disc that was incubated with snacks that had a high cariogenic potential showed a remarkably demineralized surface via SEM. Candy had a relatively high cariogenic potential, whereas xylitol gum had a relatively low potential. The cariogenicity of snacks can easily be evaluated by measuring the amount of (32)P released from radioisotope PAHA discs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Formation of medical radioisotopes {sup 111}In, {sup 117m}Sn, {sup 124}Sb, and {sup 177}Lu in photonuclear reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danagulyan, A. S.; Hovhannisyan, G. H., E-mail: hov-gohar@ysu.am; Bakhshiyan, T. M.

    2015-06-15

    The possibility of the photonuclear production of radioisotopes {sup 111}In, {sup 117m}Sn, {sup 124}Sb, and {sup 177}Lu is discussed. Reaction yields were measured by the gamma-activation method. The enriched tin isotopes {sup 112,} {sup 118}Sn and Te and HfO{sub 2} of natural isotopic composition were used as targets. The targets were irradiated at the linear electron accelerator of Alikhanian National Science Laboratory (Yerevan) at the energy of 40 MeV. The experimental results obtained in this way reveal that the yield and purity of radioisotopes {sup 111}In and {sup 117}mSn are acceptable for their production via photonuclear reactions. Reactions proceeding onmore » targets from Te and HfO{sub 2} of natural isotopic composition and leading to the formation of {sup 124}Sb and {sup 177}Lu have small yields and are hardly appropriate for the photoproduction of these radioisotopes even in the case of enriched targets.« less

  6. A historical perspective on radioisotopic tracers in metabolism and biochemistry.

    PubMed

    Lappin, Graham

    2015-01-01

    Radioisotopes are used routinely in the modern laboratory to trace and quantify a myriad of biochemical processes. The technique has a captivating history peppered with groundbreaking science and with more than its share of Nobel Prizes. The discovery of radioactivity at the end of the 19th century paved the way to understanding atomic structure and quickly led to the use of radioisotopes to trace the fate of molecules as they flowed through complex organic life. The 1940s saw the first radiotracer studies using homemade instrumentation and analytical techniques such as paper chromatography. This article follows the history of radioisotopic tracers from meager beginnings, through to the most recent applications. The author hopes that those researchers involved in radioisotopic tracer studies today will pause to remember the origins of the technique and those who pioneered this fascinating science.

  7. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk

    PubMed Central

    2011-01-01

    Background Naphthaleneacetic acid (NAA), a synthetic auxin analogue, is widely used as an effective thinner in apple orchards. When applied shortly after fruit set, some fruit abscise leading to improved fruit size and quality. However, the thinning results of NAA are inconsistent and difficult to predict, sometimes leading to excess fruit drop or insufficient thinning which are costly to growers. This unpredictability reflects our incomplete understanding of the mode of action of NAA in promoting fruit abscission. Results Here we compared NAA-induced fruit drop with that caused by shading via gene expression profiling performed on the fruit abscission zone (FAZ), sampled 1, 3, and 5 d after treatment. More than 700 genes with significant changes in transcript abundance were identified from NAA-treated FAZ. Combining results from both treatments, we found that genes associated with photosynthesis, cell cycle and membrane/cellular trafficking were downregulated. On the other hand, there was up-regulation of genes related to ABA, ethylene biosynthesis and signaling, cell wall degradation and programmed cell death. While the differentially expressed gene sets for NAA and shading treatments shared only 25% identity, NAA and shading showed substantial similarity with respect to the classes of genes identified. Specifically, photosynthesis, carbon utilization, ABA and ethylene pathways were affected in both NAA- and shading-induced young fruit abscission. Moreover, we found that NAA, similar to shading, directly interfered with leaf photosynthesis by repressing photosystem II (PSII) efficiency within 10 minutes of treatment, suggesting that NAA and shading induced some of the same early responses due to reduced photosynthesis, which concurred with changes in hormone signaling pathways and triggered fruit abscission. Conclusions This study provides an extensive transcriptome study and a good platform for further investigation of possible regulatory genes involved in the

  8. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk.

    PubMed

    Zhu, Hong; Dardick, Chris D; Beers, Eric P; Callanhan, Ann M; Xia, Rui; Yuan, Rongcai

    2011-10-17

    Naphthaleneacetic acid (NAA), a synthetic auxin analogue, is widely used as an effective thinner in apple orchards. When applied shortly after fruit set, some fruit abscise leading to improved fruit size and quality. However, the thinning results of NAA are inconsistent and difficult to predict, sometimes leading to excess fruit drop or insufficient thinning which are costly to growers. This unpredictability reflects our incomplete understanding of the mode of action of NAA in promoting fruit abscission. Here we compared NAA-induced fruit drop with that caused by shading via gene expression profiling performed on the fruit abscission zone (FAZ), sampled 1, 3, and 5 d after treatment. More than 700 genes with significant changes in transcript abundance were identified from NAA-treated FAZ. Combining results from both treatments, we found that genes associated with photosynthesis, cell cycle and membrane/cellular trafficking were downregulated. On the other hand, there was up-regulation of genes related to ABA, ethylene biosynthesis and signaling, cell wall degradation and programmed cell death. While the differentially expressed gene sets for NAA and shading treatments shared only 25% identity, NAA and shading showed substantial similarity with respect to the classes of genes identified. Specifically, photosynthesis, carbon utilization, ABA and ethylene pathways were affected in both NAA- and shading-induced young fruit abscission. Moreover, we found that NAA, similar to shading, directly interfered with leaf photosynthesis by repressing photosystem II (PSII) efficiency within 10 minutes of treatment, suggesting that NAA and shading induced some of the same early responses due to reduced photosynthesis, which concurred with changes in hormone signaling pathways and triggered fruit abscission. This study provides an extensive transcriptome study and a good platform for further investigation of possible regulatory genes involved in the induction of young fruit

  9. NASA Radioisotope Power Conversion Technology NRA Overview

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2005-01-01

    The focus of the National Aeronautics and Space Administration's (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of two to four decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100 W(sub e) scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.

  10. NASA Radioisotope Power Conversion Technology NRA Overview

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2005-01-01

    The focus of the National Aeronautics and Space Administration s (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of 2 to 4 decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.

  11. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Yussup, Nolida; Salim, Nazaratul Ashifa Bt. Abdullah; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh@Shaari, Syirrazie Bin Che; Azman, Azraf B.; Ismail, Nadiah Binti

    2015-04-01

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on `Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)'. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  12. Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenfield, Bryce A.

    2009-12-01

    A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coveragemore » in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.« less

  13. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  14. An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.

    2005-01-01

    NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02- OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), 13 August 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.

  15. RADIOISOTOPE EXPERIMENTS IN HIGH SCHOOL BIOLOGY, AN ANNOTATED SELECTED BIBLIOGRAPHY.

    ERIC Educational Resources Information Center

    HURLBURT, EVELYN M.

    SELECTED REFERENCES ON THE USE OF RADIOISOTOPES IN BIOLOGY ARE CONTAINED IN THIS ANNOTATED BIBLIOGRAPHY FOR SECONDARY SCHOOL STUDENTS. MATERIALS INCLUDED WERE PUBLISHED AFTER 1960 AND DEAL WITH THE PROPERTIES OF RADIATION, SIMPLE RADIATION DETECTION PROCEDURES, AND TECHNIQUES FOR USING RADIOISOTOPES EXPERIMENTALLY. THE REFERENCES ARE LISTED IN…

  16. Hair radioactivity as a measure of exposure to radioisotopes

    NASA Technical Reports Server (NTRS)

    Strain, W. H.; Pories, W. J.; Fratianne, R. B.; Flynn, A.

    1972-01-01

    Since many radioisotopes accumulate in hair, this tropism was investigated by comparing the radioactivity of shaved with plucked hair collected from rats at various time intervals up to 24 hrs after intravenous injection of the ecologically important radioisotopes, iodine-131, manganese-54, strontium-85, and zinc-65. The plucked hair includes the hair follicles where biochemical transformations are taking place. The data indicate a slight surge of each radioisotpe into the hair immediately after injection, a variation of content of each radionuclide in the hair, and a greater accumulation of radioactivity in plucked than in shaved hair. These results have application not only to hair as a measure of exposure to radioisotopes, but also to tissue damage and repair at the hair follicle.

  17. Role of Natural IgM Autoantibodies (IgM-NAA) and IgM Anti-Leukocyte Antibodies (IgM-ALA) in Regulating Inflammation.

    PubMed

    Lobo, Peter I

    2017-01-01

    Natural IgM autoantibodies (IgM-NAA) are rapidly produced to inhibit pathogens and abrogate inflammation mediated by invading microorganisms and host neoantigens. IgM-NAA achieve this difficult task by being polyreactive with low binding affinity but with high avidity, characteristics that allow these antibodies to bind antigenic determinants shared by pathogens and neoantigens. Hence the same clones of natural IgM can bind and mask host neoantigens as well as inhibit microorganisms. In addition, IgM-NAA regulate the inflammatory response via mechanisms involving binding of IgM to apoptotic cells to enhance their removal and binding of IgM to live leukocytes to regulate their function. Secondly, we review how natural IgM prevents autoimmune disorders arising from pathogenic IgG autoantibodies as well as by autoreactive B and T cells that have escaped tolerance mechanisms. Thirdly, using IgM knockout mice, we show that regulatory B and T cells require IgM to effectively regulate inflammation mediated by innate, adaptive and autoimmune mechanisms. It is therefore not surprising why the host positively selects such autoreactive B1 cells that generate protective IgM-NAA, which are also evolutionarily conserved. Fourthly, we show that IgM anti-leukocyte autoantibodies (IgM-ALA) levels and their repertoire can vary in normal humans and disease states and this variation may partly explain the observed differences in the inflammatory response after infection, ischemic injury or after a transplant. Finally we also show how protective IgM-NAA can be rendered pathogenic under non-physiological conditions. IgM-NAA have therapeutic potential. Polyclonal IgM infusions can be used to abrogate ongoing inflammation. Additionally, inflammation arising after ischemic kidney injury, e.g., during high-risk elective cardiac surgery or after allograft transplantation, can be prevented by pre-emptively infusing polyclonal IgM, or DC pretreated ex vivo with IgM, or by increasing in vivo Ig

  18. Radioisotope Power Systems Program Status and Expectations

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Hamley, John A.; Sutliff, Thomas J.; Mccallum, Peter W.; Sandifer, Carl E.

    2017-01-01

    The Radioisotope Power Systems (RPS) Programs goal is to make RPS available for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible to use to meet mission needs. To meet this goal, the RPS Program manages investments in RPS system development and RPS technologies. The RPS Program exists to support NASA's Science Mission Directorate (SMD). The RPS Program provides strategic leadership for RPS, enables the availability of RPS for use by the planetary science community, successfully executes RPS flight projects and mission deployments, maintains a robust technology development portfolio, manages RPS related National Environmental Policy Act (NEPA) and Nuclear Launch Safety (NLS) approval processes for SMD, maintains insight into the Department of Energy (DOE) implementation of NASA funded RPS production infrastructure operations, including implementation of the NASA funded Plutonium-238 production restart efforts. This paper will provide a status of recent RPS activities.

  19. Differences in iron concentration in whole blood of animal models using NAA

    NASA Astrophysics Data System (ADS)

    Bahovschi, V.; Zamboni, C. B.; Lopes Silva, L. F. F.; Metairon, S.; Medeiros, I. M. M. A.

    2015-07-01

    In this study Neutron Activation Analysis technique (NAA) was applied to determine Fe concentration in whole blood samples of several animal models such as: mice (Mus musculus), Golden Hamster (Mesocricetus auratus), Wistar rats, Albinic Rabbits of New Zealand, Golden Retriever dogs and Crioulabreed horses. These results were compared with human whole blood estimation to check their similarities.

  20. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfillmore » its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.« less

  1. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nuclearmalaysia.gov.my; Yussup, Nolida; Ibrahim, Maslina Bt. Mohd

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on ‘Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)’. The objective ofmore » the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.« less

  2. Absence of age-related prefrontal NAA change in adults with autism spectrum disorders.

    PubMed

    Aoki, Y; Abe, O; Yahata, N; Kuwabara, H; Natsubori, T; Iwashiro, N; Takano, Y; Inoue, H; Kawakubo, Y; Gonoi, W; Sasaki, H; Murakami, M; Katsura, M; Nippashi, Y; Takao, H; Kunimatsu, A; Matsuzaki, H; Tsuchiya, K J; Kato, N; Kasai, K; Yamasue, H

    2012-10-23

    Atypical trajectory of brain growth in autism spectrum disorders (ASDs) has been recognized as a potential etiology of an atypical course of behavioral development. Numerous neuroimaging studies have focused on childhood to investigate atypical age-related change of brain structure and function, because it is a period of neuron and synapse maturation. Recent studies, however, have shown that the atypical age-related structural change of autistic brain expands beyond childhood and constitutes neural underpinnings for lifelong difficulty to behavioral adaptation. Thus, we examined effects of aging on neurochemical aspects of brain maturation using 3-T proton magnetic resonance spectroscopy ((1)H-MRS) with single voxel in the medial prefrontal cortex (PFC) in 24 adult men with non-medicated high-functioning ASDs and 25 age-, IQ- and parental-socioeconomic-background-matched men with typical development (TD). Multivariate analyses of covariance demonstrated significantly high N-acetylaspartate (NAA) level in the ASD subjects compared with the TD subjects (F=4.83, P=0.033). The low NAA level showed a significant positive correlation with advanced age in the TD group (r=-0.618, P=0.001), but was not evident among the ASD individuals (r=0.258, P=0.223). Fisher's r-to-z transformation showed a significant difference in the correlations between the ASD and TD groups (Z=-3.23, P=0.001), which indicated that the age-NAA relationship was significantly specific to people with TD. The current (1)H-MRS study provided new evidence that atypical age-related change of neurochemical aspects of brain maturation in ASD individuals expands beyond childhood and persists during adulthood.

  3. Absence of age-related prefrontal NAA change in adults with autism spectrum disorders

    PubMed Central

    Aoki, Y; Abe, O; Yahata, N; Kuwabara, H; Natsubori, T; Iwashiro, N; Takano, Y; Inoue, H; Kawakubo, Y; Gonoi, W; Sasaki, H; Murakami, M; Katsura, M; Nippashi, Y; Takao, H; Kunimatsu, A; Matsuzaki, H; Tsuchiya, K J; Kato, N; Kasai, K; Yamasue, H

    2012-01-01

    Atypical trajectory of brain growth in autism spectrum disorders (ASDs) has been recognized as a potential etiology of an atypical course of behavioral development. Numerous neuroimaging studies have focused on childhood to investigate atypical age-related change of brain structure and function, because it is a period of neuron and synapse maturation. Recent studies, however, have shown that the atypical age-related structural change of autistic brain expands beyond childhood and constitutes neural underpinnings for lifelong difficulty to behavioral adaptation. Thus, we examined effects of aging on neurochemical aspects of brain maturation using 3-T proton magnetic resonance spectroscopy (1H-MRS) with single voxel in the medial prefrontal cortex (PFC) in 24 adult men with non-medicated high-functioning ASDs and 25 age-, IQ- and parental-socioeconomic-background-matched men with typical development (TD). Multivariate analyses of covariance demonstrated significantly high N-acetylaspartate (NAA) level in the ASD subjects compared with the TD subjects (F=4.83, P=0.033). The low NAA level showed a significant positive correlation with advanced age in the TD group (r=−0.618, P=0.001), but was not evident among the ASD individuals (r=0.258, P=0.223). Fisher's r-to-z transformation showed a significant difference in the correlations between the ASD and TD groups (Z=−3.23, P=0.001), which indicated that the age–NAA relationship was significantly specific to people with TD. The current 1H-MRS study provided new evidence that atypical age-related change of neurochemical aspects of brain maturation in ASD individuals expands beyond childhood and persists during adulthood. PMID:23092982

  4. The U.S. Department of Energy advanced radioisotope power system program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, L.

    1998-07-01

    Radioisotope power systems for spacecraft are and will continue to be an enabling power technology for deep space exploration. The US Department of Energy (DOE) is responsible for the Nation's development of Advanced Radioisotope Power Systems (ARPS) to meet harsh environments and long life requirements. The DOE has provided radioisotope power systems for space missions since 1961. The radioisotope power system used for the recent Cassini mission included three Radioisotope Thermoelectric Generators (RTGs) which provided a total of 888 Watts electric at 6.7% conversion efficiency. The DOE's goal is to develop a higher efficiency and lower mass ARPS for futuremore » deep space missions. The ARPS program involves the design, development, fabrication, and qualification, and safety analysis of the ARPS units. Organizations that support the development, fabrication and testing of the ARPS include the Lockheed Martin Astronautics (LMA), Advanced Modular Power Systems (AMPS), Mound, Oak Ridge National Laboratory (ORNL), and Los Alamos National Laboratory (LANL). The Europa Orbiter and Pluto/Kuiper Express missions represent the near term programs targeted for the application of ARPS in addressing the issues and questions existing for deep space exploration.« less

  5. Diagnostics and Therapy with Radioisotopes; DIAGNOSTICA E TERAPIA CON I RADIOISOTOPI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastai, P.; Antogenetti, I.; Dogliotti, G.C.

    1962-01-01

    A review of the principal studies done on diagnosis and therapy with radioisotopes is presented. The book is divided into four sections. The ftrst section deals with the theoretical and practical fundamentals for an understanding of the use of radiosiotopes in diagnosis and treatment. The basic ideas of radioisotopic measurement are reviewed in the second section. The third section presents the applications of radioisotopes to clinical diagnosis, and the fourth section their application to clinical therapy. Abstracts have been prepared of the 35 papers compiled. (J.S.R.)

  6. Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L.

    PubMed

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar

    2014-11-01

    Adventitious root cultures of Prunella vulgaris L. were established in shaking flask system for the production of biomass and secondary metabolites. Adventitious root cultures were induced from callus cultures obtained from leaf explants on solid Murashige and Skoog (MS) medium containing combination of 6-benzyladenine (BA; 1.0 mg l(-1)) and naphthalene acetic acid (NAA; 1.5 mg l(-1)). Thereafter, 0.49 g inoculum was transferred to liquid MS medium supplemented with different concentrations of NAA (0.5-2.0 mg l(-1)). Growth kinetics of adventitious roots was recorded with an interval of 7 days for 49 days period. Highest biomass accumulation (2.13 g/l) was observed in liquid medium containing 1.0 mg l(-1) NAA after 21 days of inoculation. However, other concentrations of NAA also showed similar accumulation pattern but the biomass gradually decreases after 49 days of inoculation. Adventitious roots were collected and dried for investigation of total phenolics (TP), total flavonoids (TF), and antioxidant activities. Higher TPC (0.995 GAE mg/g-DRB) and TFC (6.615 RE mg/g-DRB) were observed in 0.5 mg l(-1) NAA treated cultures. In contrast, higher antioxidant activity (83.53 %) was observed 1.5 mg l(-1) NAA treated cultures. These results are helpful in up scaling of root cultures into bioreactor for secondary metabolites production.

  7. U.S. Space Radioisotope Power Systems and Applications: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.; Bennett, Gary L.

    2011-01-01

    Radioisotope power systems (RPS) have been essential to the U.S. exploration of outer space. RPS have two primary uses: electrical power and thermal power. To provide electrical power, the RPS uses the heat produced by the natural decay of a radioisotope (e.g., plutonium-238 in U.S. RPS) to drive a converter (e.g., thermoelectric elements or Stirling linear alternator). As a thermal power source the heat is conducted to whatever component on the spacecraft needs to be kept warm; this heat can be produced by a radioisotope heater unit (RHU) or by using the excess heat of a radioisotope thermoelectric generator (RTG). As of 2010, the U.S. has launched 41 RTGs on 26 space systems. These space systems have ranged from navigational satellites to challenging outer planet missions such as Pioneer 10/11, Voyager 1/2, Galileo, Ulysses, Cassini and the New Horizons mission to Pluto. In the fall of 2011, NASA plans to launch the Mars Science Laboratory (MSL) that will employ the new Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) as the principal power source. Hundreds of radioisotope heater units (RHUs) have been launched to provide warmth to Apollo 11, used to provide heating of critical components in a seismic experiment package, Pioneer 10/11, Voyager 1/2, Galileo, Cassini, Mars Pathfinder, MER rovers, etc. to provide temperature control to critical spacecraft electronics and other mechanical devices such as propulsion system propellant valves. A radioisotope (electrical) power source or system (RPS) consists of three basic elements: (1) the radioisotope heat source that provides the thermal power, (2) the converter that transforms the thermal power into electrical power and (3) the heat rejection radiator. Figure 1 illustrates the basic features of an RPS. The idea of a radioisotope power source follows closely after the early investigations of radioactivity by researchers such as Henri Becquerel (1852-1908), Marie Curie (1867-1935), Pierre Curie (1859

  8. Production of Medical Isotopes with Electron Linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotsch, D A; Alford, K.; Bailey, J. L.

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around formore » decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.« less

  9. Investigation of Miniaturized Radioisotope Thermionic Power Generation for General Use

    NASA Technical Reports Server (NTRS)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only approx.7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.

  10. Investigation of miniaturized radioisotope thermionic power generation for general use

    NASA Astrophysics Data System (ADS)

    Duzik, Adam J.; Choi, Sang H.

    2016-04-01

    Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only ~7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.

  11. Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2009-01-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  12. Treatment of radioactive liquid waste (Co-60) by sorption on Zeolite Na-A prepared from Iraqi kaolin.

    PubMed

    Mustafa, Yasmen A; Zaiter, Maysoon J

    2011-11-30

    Iraqi synthetic zeolite type Na-A has been suggested as ion exchange material to treat cobalt-60 in radioactive liquid waste which came from neutron activation for corrosion products. Batch experiments were conducted to find out the equilibrium isotherm for source sample. The equilibrium isotherm for radioactive cobalt in the source sample showed unfavorable type, while the equilibrium isotherm for the total cobalt (the radioactive and nonradioactive cobalt) in the source sample showed a favorable type. The ability of Na-A zeolite to remove cobalt from wastewater was checked for high cobalt concentration (822 mg/L) in addition to low cobalt concentration in the source sample (0.093 mg/L). A good fitting for the experimental data with Langmuir equilibrium model was observed. Langmuir constant qm which is related to monolayer adsorption capacity for low and high cobalt concentration was determined to be 0.021 and 140 mg/g(zeolite). The effects of important design variables on the zeolite column performance were studied these include initial concentration, flow rate, and bed depth. The experimental results have shown that high sorption capacity can be obtained at high influent concentration, low flow rate, and high bed depth. Higher column performance was obtained at higher bed depth. Thomas model was employed to predict the breakthrough carves for the above variables. A good fitting was observed with correlation coefficients between 0.915 and 0.985. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Efficiency of Pm-147 direct charge radioisotope battery.

    PubMed

    Kavetskiy, A; Yakubova, G; Yousaf, S M; Bower, K; Robertson, J D; Garnov, A

    2011-05-01

    A theoretical analysis is presented here of the efficiency of direct charge radioisotope batteries based on the efficiency of the radioactive source, the system geometry, electrostatic repulsion of beta particles from the collector, the secondary electron emission, and backscattered beta particles from the collector. Efficiency of various design batteries using Pm-147 sources was experimentally measured and found to be in good agreement with calculations. The present approach can be used for predicting the efficiency for different designs of direct charge radioisotope batteries. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. N-acetylaspartate (NAA) levels in selected areas of the brain in patients with chronic schizophrenia treated with typical and atypical neuroleptics: a proton magnetic resonance spectroscopy (1H MRS) study.

    PubMed

    Szulc, Agata; Galińska, Beata; Tarasów, Eugeniusz; Kubas, Bozena; Dzienis, Wojciech; Konarzewska, Beata; Poplawska, Regina; Tomczak, Anna A; Czernikiewicz, Andrzej; Walecki, Jerzy

    2007-05-01

    NAA, marker of neurons integrity and viability, is one of the most important brain metabolites visible in 1H MRS. In most studies of schizophrenia, the decrease of NAA level was observed in the temporal, frontal lobes and in the thalamus. This finding was observed more often among chronic patients, what suggests the influence of disease duration or the effect of neuroleptic treatment. The aim of the present study was the comparison of NAA levels in brain of schizophrenic patients taking typical and atypical neuroleptics. We analyzed the NAA levels in selected brain areas in 58 schizophrenic patients and 21 healthy controls. 10 patients were treated with typical neuroleptics, 10 patients with clozapine, 17 received olanzapine and 21 - risperidone. 1H MRS was performed on a 1,5 MR scanner with PRESS sequence. Voxels of 2x2x2 cm were localized in the left frontal, left temporal lobe and left thalamus. There were no differences in NAA levels between patients on typical and atypical medications analyzed together and separately (olanzapine, clozapine and risperidone groups). We also did not find any differences between patients taking selected atypical neuroleptics and controls. The NAA level in the thalamus in the group of patients receiving typical antipsychotics was the lowest among all groups and differed significantly from healthy controls. The results of our study suggest that atypical neuroleptics may have favorable effect on NAA concentration in brain of schizophrenic patients. Decrease in NAA level in patients taking typical medication may be caused by the progression of the disease or by the direct action of these drugs.

  15. Iron Oxide Nanoradiomaterials: Combining Nanoscale Properties with Radioisotopes for Enhanced Molecular Imaging

    PubMed Central

    Pellico, Juan; Fernández-Barahona, Irene; Bhavesh, Riju; Ruiz-Cabello, Jesús

    2017-01-01

    The combination of the size-dependent properties of nanomaterials with radioisotopes is emerging as a novel tool for molecular imaging. There are numerous examples already showing how the controlled synthesis of nanoparticles and the incorporation of a radioisotope in the nanostructure offer new features beyond the simple addition of different components. Among the different nanomaterials, iron oxide-based nanoparticles are the most used in imaging because of their versatility. In this review, we will study the different radioisotopes for biomedical imaging, how to incorporate them within the nanoparticles, and what applications they can be used for. Our focus is directed towards what is new in this field, what the nanoparticles can offer to the field of nuclear imaging, and the radioisotopes hybridized with nanomaterials for use in molecular imaging. PMID:29358900

  16. Single voxel magnetic resonance spectroscopy at 3 Tesla in a memory disorders clinic: early right hippocampal NAA/Cr loss in mildly impaired subjects.

    PubMed

    Caserta, Maria T; Ragin, Ann; Hermida, Adriana P; Ahrens, R John; Wise, Leon

    2008-11-30

    In this study, we use magnetic resonance spectroscopy (MRS) at 3 Tesla to measure N-acetyl aspartate (NAA), myo-inositol (mI) and choline (Cho) to creatine (Cr) ratios in R (right) and L (left) hippocampi (H) in 8 mildly memory impaired (MMI), 6 probable Alzheimer's Disease (PRAD), and 17 control subjects. NAA/Cr was significantly reduced in the RH in the MMI group and bilaterally in the PRAD group vs. controls. No other metabolite differences were noted between the three groups. Five MMI subjects have converted to PRAD in follow-up. These findings suggest that RH NAA/Cr ratios measured at 3 Tesla may be a sensitive marker of future progression to dementia in a clinically defined population with isolated memory complaints.

  17. On-Site Inspection RadioIsotopic Spectroscopy (Osiris) System Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caffrey, Gus J.; Egger, Ann E.; Krebs, Kenneth M.

    2015-09-01

    We have designed and tested hardware and software for the acquisition and analysis of high-resolution gamma-ray spectra during on-site inspections under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The On-Site Inspection RadioIsotopic Spectroscopy—Osiris—software filters the spectral data to display only radioisotopic information relevant to CTBT on-site inspections, e.g.,132I. A set of over 100 fission-product spectra was employed for Osiris testing. These spectra were measured, where possible, or generated by modeling. The synthetic test spectral compositions include non-nuclear-explosion scenarios, e.g., a severe nuclear reactor accident, and nuclear-explosion scenarios such as a vented underground nuclear test. Comparing its computer-based analyses to expert visual analysesmore » of the test spectra, Osiris correctly identifies CTBT-relevant fission product isotopes at the 95% level or better.The Osiris gamma-ray spectrometer is a mechanically-cooled, battery-powered ORTEC Transpec-100, chosen to avoid the need for liquid nitrogen during on-site inspections. The spectrometer was used successfully during the recent 2014 CTBT Integrated Field Exercise in Jordan. The spectrometer is controlled and the spectral data analyzed by a Panasonic Toughbook notebook computer. To date, software development has been the main focus of the Osiris project. In FY2016-17, we plan to modify the Osiris hardware, integrate the Osiris software and hardware, and conduct rigorous field tests to ensure that the Osiris system will function correctly during CTBT on-site inspections. The planned development will raise Osiris to technology readiness level TRL-8; transfer the Osiris technology to a commercial manufacturer, and demonstrate Osiris to potential CTBT on-site inspectors.« less

  18. Brain Creatine Elevation and NAA Reduction Indicates Neuronal Dysfunction in the Setting of Enhanced Glial Energy Metabolism in a Macaque Model of neuroAIDS

    PubMed Central

    Ratai, Eva-Maria; Annamalai, Lakshmanan; Burdo, Tricia; Joo, Chan-Gyu; Bombardier, Jeffrey P.; Fell, Robert; Hakimelahi, Reza; He, Julian; Lentz, Margaret R.; Campbell, Jennifer; Curran, Elizabeth; Halpern, Elkan F.; Masliah, Eliezer; Westmoreland, Susan. V.; Williams, Kenneth C.; González, R. Gilberto

    2011-01-01

    Proton magnetic resonance spectroscopy (1H MRS) has emerged as one of the most informative neuroimaging modalities for studying the effect of HIV infection in the brain, providing surrogate markers by which to assess disease progression and monitor treatment. Reductions in the level of N-Acetylaspartate (NAA) and NAA/creatine (NAA/Cr) are established markers of neuronal injury or loss. However, the biochemical basis of altered creatine levels in neuroAIDS is not well understood. This study used a rapid progression macaque model of neuroAIDS to elucidate the changes in creatine. As the disease progressed 1H MRS revealed a decrease in NAA, indicative of neuronal injury, and an increase in creatine yet to be elucidated. Subsequently, immunohistochemistry and stereology measures of decreased synaptophysin, microtubule-associated protein 2, and neuronal density confirmed neuronal injury. Furthermore, increases in ionized calcium binding adaptor molecule 1 and glial fibrillary acidic protein indicated microglial and astroglial activation, respectively. Given these data, elevated creatine may reflect enhanced high-energy phosphate turnover in highly metabolizing activated astrocytes and microglia. PMID:21381104

  19. A pilot study of hippocampal volume and N-acetylaspartate (NAA) as response biomarkers in riluzole-treated patients with GAD.

    PubMed

    Abdallah, Chadi G; Coplan, Jeremy D; Jackowski, Andrea; Sato, João R; Mao, Xiangling; Shungu, Dikoma C; Mathew, Sanjay J

    2013-04-01

    Anxiolytic benefit following chronic treatment with the glutamate modulating agent riluzole in patients with generalized anxiety disorder (GAD) was previously associated with differential changes in hippocampal NAA concentrations. Here, we investigated the association between hippocampal volume and hippocampal NAA in the context of riluzole response in GAD. Eighteen medication-free adult patients with GAD received 8-week of open-label riluzole. Ten healthy subjects served as a comparison group. Participants underwent magnetic resonance imaging and spectroscopy at baseline and at the end of Week 8. GAD patients who completed all interventions were classified as remitters (n=7) or non-remitters (n=6), based on final Hamilton Anxiety Rating Scale (HAM-A) scores ≤7. At baseline, GAD patients had a significant reduction in total hippocampal volume compared to healthy subjects (F(1,21)=6.55, p=0.02). This reduction was most pronounced in the remitters, compared to non-remitters and healthy subjects. Delta (final-baseline) hippocampal volume was positively correlated with delta NAA in GAD. This positive association was highly significant in the right hippocampus in GAD [r=0.81, p=0.002], with no significant association in healthy subjects [Fisher r-to-z p=0.017]. Across all GAD patients, delta hippocampal volume was positively associated with improvement in HAM-A (rspearman=0.62, p=0.03). These preliminary findings support hippocampal NAA and volume as neural biomarkers substantially associated with therapeutic response to a glutamatergic drug. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  20. Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation

    DOE R&D Accomplishments Database

    Libby, W. F.

    1958-08-04

    Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)

  1. Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James

    2011-01-01

    A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.

  2. How to Handle Radioisotopes Safely.

    ERIC Educational Resources Information Center

    Sulcoski, John W.

    This booklet is one in a series of instructional aids designed for use by elementary and secondary school science teachers. The various units and forms of radioactive materials used by teachers are first considered. Then, the quantities of radioisotopes that a person may possess without a license from the Atomic Energy Commission (AEC) are…

  3. Stimulus sensitive gel with radioisotope and methods of making

    DOEpatents

    Weller, Richard E.; Lind, Michael A.; Fisher, Darrell R.; Gutowska, Anna; Campbell, Allison A.

    2005-03-22

    The present invention is a thermally reversible stimulus-sensitive gel or gelling copolymer radioisotope carrier that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff. Addition of a biodegradable backbone and/or a therapeutic agent imparts further utility. The method of the present invention for making a thermally reversible stimulus-sensitive gelling copolymer radionuclcide carrier has the steps of: (a) mixing a stimulus-sensitive reversible gelling copolymer with an aqueous solvent as a stimulus-sensitive reversible gelling solution; and (b) mixing a radioisotope with said stimulus-sensitive reversible gelling solution as said radioisotope carrier. The gel is enhanced by either combining it with a biodegradable backbone and/or a therapeutic agent in a gelling solution made by mixing the copolymer with an aqueous solvent.

  4. Stimulus sensitive gel with radioisotope and methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, Richard E; Lind, Michael A; Fisher, Darrell R

    2001-10-02

    The present invention is a thermally reversible stimulus-sensitive gel or gelling copolymer radioisotope carrier that is a linear random copolymer of an [meth]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff. Addition of a biodegradable backbone and/or a therapeutic agent imparts further utility. The method of the present invention for making a thermally reversible stimulus-sensitive gelling copolymer radionuclcide carrier has the steps of: (a) mixing a stimulus-sensitive reversible gelling copolymer withmore » an aqueous solvent as a stimulus-sensitive reversible gelling solution; and (b) mixing a radioisotope with said stimulus-sensitive reversible gelling solution as said radioisotope carrier. The gel is enhanced by either combining it with a biodegradable backbone and/or a therapeutic agent in a gelling solution made by mixing the copolymer with an aqueous solvent.« less

  5. Effect of Fe3O4 addition on removal of ammonium by zeolite NaA.

    PubMed

    Liu, Haibo; Peng, Shuchuan; Shu, Lin; Chen, Tianhu; Bao, Teng; Frost, Ray L

    2013-01-15

    Magnetic zeolite NaA with different Fe(3)O(4) loadings was prepared by hydrothermal synthesis based on metakaolin and Fe(3)O(4). The effect of added Fe(3)O(4) on the removal of ammonium by zeolite NaA was investigated by varying the Fe(3)O(4) loading, pH, adsorption temperature, initial concentration, adsorption time. Langmuir, Freundlich, and pseudo-second-order modeling were used to describe the nature and mechanism of ammonium ion exchange using both zeolite and magnetic zeolite. Thermodynamic parameters such as change in Gibbs free energy, enthalpy and entropy were calculated. The results show that all the selected factors affect the ammonium ion exchange by zeolite and magnetic zeolite, however, the added Fe(3)O(4) apparently does not affect the ion exchange performance of zeolite to the ammonium ion. Freundlich model provides a better description of the adsorption process than Langmuir model. Moreover, kinetic analysis indicates the exchange of ammonium on the two materials follows a pseudo-second-order model. Thermodynamic analysis makes it clear that the adsorption process of ammonium is spontaneous and exothermic. Regardless of kinetic or thermodynamic analysis, all the results suggest that no considerable effect on the adsorption of the ammonium ion by zeolite is found after the addition of Fe(3)O(4). According to the results, magnetic zeolite NaA can be used for the removal of ammonium due to the good adsorption performance and easy separation method from aqueous solution. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Investigation of Fe and Ca in non-stimulated human saliva using NAA

    NASA Astrophysics Data System (ADS)

    de Medeiros, J. A. G.; Zamboni, C. B.; Kovacs, L.; Lewgoy, H. R.

    2015-07-01

    In this study we investigated non-stimulated human whole saliva of healthy subjects and patients with periodontal disease using Neutron Activation Analysis technique (NAA). The measurements were performed in the IEA-R1 nuclear reactor at IPEN-CNEN/SP. We found considerable metabolic changes mainly in Fe and Ca concentration in whole saliva of periodontal patients. These data are useful for identifying or preventing this oral disease in the Brazilian population.

  7. Effects of exogenous application of CPPU, NAA and GA4+7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.).

    PubMed

    Qian, Chunlu; Ren, Nannan; Wang, Jingye; Xu, Qiang; Chen, Xuehao; Qi, Xiaohua

    2018-03-15

    In protected vegetable fields, plant growth regulators are often used to improve cucumber fruit growth. However, the effects of plant growth regulators on the appearance and nutritional quality of cucumber (Cucumis sativus L.) remain largely unknown. In the present study, 100 mg/L N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU), naphthaleneacetic acid (NAA) or gibberellin A4+A7 (GA 4+7 ) was applied to the female cucumber flowers 1 day before anthesis and at anthesis. The CPPU, NAA and GA 4+7 treatments resulted in parthenocarpic fruits with similar weights, sizes and shapes as the pollinated fruits. NAA treatment did not affect the appearance and nutritional characteristics of cucumber at harvest and after storage. CPPU treatment increased the flesh firmness at harvest but decreased phenolic acid and vitamin C contents after storage. GA 4+7 treatment decreased the flesh firmness but increased total flavonoids and protein content after storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Method for detection of long-lived radioisotopes in small biochemical samples

    DOEpatents

    Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.; Davis, J.C.

    1994-11-22

    Disclosed is a method for detection of long-lived radioisotopes in small biochemical samples, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering the chemical specie to the biologist host in doses sufficiently low to avoid significant overt damage to the biological system, d. allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host, e. isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources, f. converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in the material by means of direct isotopic counting. 5 figs.

  9. Method for detection of long-lived radioisotopes in small biochemical samples

    DOEpatents

    Turteltaub, Kenneth W.; Vogel, John S.; Felton, James S.; Gledhill, Barton L.; Davis, Jay C.

    1994-01-01

    Disclosed is a method for detection of long-lived radioisotopes in small bio-chemical samples, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biologist host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.

  10. Development of an Integrated Robotic Radioisotope Identification and Location System

    DTIC Science & Technology

    2009-05-05

    TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Development of an Integrated Robotic Radioisotope...system within a robotic base in order to inspect an area for either radioisotopes that could be used for a radiological dispersal device (RDD) or are...classified as Special Nuclear Material (SNM). In operation, at a given location in the room, the robot rotates about its circumference searching for

  11. A splice donor mutation in NAA10 results in the dysregulation of the retinoic acid signaling pathway and causes Lenz microphthalmia syndrome

    PubMed Central

    Esmailpour, Taraneh; Riazifar, Hamidreza; Liu, Linan; Donkervoort, Sandra; Huang, Vincent H; Madaan, Shreshtha; Shoucri, Bassem M; Busch, Anke; Wu, Jie; Towbin, Alexander; Chadwick, Robert B; Sequeira, Adolfo; Vawter, Marquis P; Sun, Guoli; Johnston, Jennifer J; Biesecker, Leslie G; Kawaguchi, Riki; Sun, Hui; Kimonis, Virginia; Huang, Taosheng

    2014-01-01

    Introduction Lenz microphthalmia syndrome (LMS) is a genetically heterogeneous X-linked disorder characterised by microphthalmia/anophthalmia, skeletal abnormalities, genitourinary malformations, and anomalies of the digits, ears, and teeth. Intellectual disability and seizure disorders are seen in about 60% of affected males. To date, no gene has been identified for LMS in the microphthalmia syndrome 1 locus (MCOPS1). In this study, we aim to find the disease-causing gene for this condition. Methods and results Using exome sequencing in a family with three affected brothers, we identified a mutation in the intron 7 splice donor site (c.471+2T→A) of the N-acetyltransferase NAA10 gene. NAA10 has been previously shown to be mutated in patients with Ogden syndrome, which is clinically distinct from LMS. Linkage studies for this family mapped the disease locus to Xq27-Xq28, which was consistent with the locus of NAA10. The mutation co-segregated with the phenotype and cDNA analysis showed aberrant transcripts. Patient fibroblasts lacked expression of full length NAA10 protein and displayed cell proliferation defects. Expression array studies showed significant dysregulation of genes associated with genetic forms of anophthalmia such as BMP4, STRA6, and downstream targets of BCOR and the canonical WNT pathway. In particular, STRA6 is a retinol binding protein receptor that mediates cellular uptake of retinol/vitamin A and plays a major role in regulating the retinoic acid signalling pathway. A retinol uptake assay showed that retinol uptake was decreased in patient cells. Conclusions We conclude that the NAA10 mutation is the cause of LMS in this family, likely through the dysregulation of the retinoic acid signalling pathway. PMID:24431331

  12. Radioisotope Electric Propulsion Centaur Orbiter Spacecraft Design Overview

    NASA Technical Reports Server (NTRS)

    Oleson, Steve; McGuire, Melissa; Sarver-Verhey, Tim; Juergens, Jeff; Parkey, Tom; Dankanich, John; Fiehler, Doug; Gyekenyesi, John; Hemminger, Joseph; Gilland, Jim; hide

    2009-01-01

    Radioisotope electric propulsion (REP) has been shown in past studies to enable missions to outerplanetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass radioisotope power systems (RPS) and light spacecraft (S/C) components. In order to determine what are the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers cost cap. The design shows that an orbiter using several long lived (approximately 200 kg Xenon throughput), low power (approximately 700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the New Frontiers cost cap. Optimal specific impulses for the Hall thrusters were found to be around 2000 sec with thruster efficiencies over 40%. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be reused to enhance science and simplify communications.

  13. The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas.

    PubMed

    Guo, Jun; Yao, Chengjun; Chen, Hong; Zhuang, Dongxiao; Tang, Weijun; Ren, Guang; Wang, Yin; Wu, Jinsong; Huang, Fengping; Zhou, Liangfu

    2012-08-01

    The marginal delineation of gliomas cannot be defined by conventional imaging due to their infiltrative growth pattern. Here we investigate the relationship between changes in glioma metabolism by proton magnetic resonance spectroscopic imaging ((1)H-MRSI) and histopathological findings in order to determine an optimal threshold value of choline/N-acetyl-aspartate (Cho/NAA) that can be used to define the extent of glioma spread. Eighteen patients with different grades of glioma were examined using (1)H-MRSI. Needle biopsies were performed under the guidance of neuronavigation prior to craniotomy. Intraoperative magnetic resonance imaging (MRI) was performed to evaluate the accuracy of sampling. Haematoxylin and eosin, and immunohistochemical staining with IDH1, MIB-1, p53, CD34 and glial fibrillary acidic protein (GFAP) antibodies were performed on all samples. Logistic regression analysis was used to determine the relationship between Cho/NAA and MIB-1, p53, CD34, and the degree of tumour infiltration. The clinical threshold ratio distinguishing tumour tissue in high-grade (grades III and IV) glioma (HGG) and low-grade (grade II) glioma (LGG) was calculated. In HGG, higher Cho/NAA ratios were associated with a greater probability of higher MIB-1 counts, stronger CD34 expression, and tumour infiltration. Ratio threshold values of 0.5, 1.0, 1.5 and 2.0 appeared to predict the specimens containing the tumour with respective probabilities of 0.38, 0.60, 0.79, 0.90 in HGG and 0.16, 0.39, 0.67, 0.87 in LGG. HGG and LGG exhibit different spectroscopic patterns. Using (1)H-MRSI to guide the extent of resection has the potential to improve the clinical outcome of glioma surgery.

  14. Specification for strontium-90 500-watt(e) radioisotopic thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Hammel, T.; Himes, J.; Lieberman, A.; McGrew, J. W.; Owings, D.; Schumann, F.

    1983-04-01

    A conceptual design for a demonstration 500-watt(e) radioisotopic thermoelectric generator (RTG) was created. The design effort was divided into two tasks, viz., create a design specification for a capsule strenth member that utilizes a standard Strontium 90 fluoride filled WESF inner liner, and create a conceptual design for a 500-watt(e) RTG. The strength member specification was designed to survive an external pressure of 24,500 psi and meet the requirements of special form radioisotope heat sources. Therefore the capsule is if desired, licensed for domestic and international transport. The design for the RTG features a radioisotopic heat source, an array of nine capsules in a tungsten biological shield, four current technology series connected thermoelectric conversion modules, low conductivity thermal insulation, and a passive finned housing radiator for waste heat dissipation. The preliminary RTG specification formulated previous to contract award was met or exceeded.

  15. Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash.

    PubMed

    Zhu, Li; Ji, Jiayou; Wang, Shulin; Xu, Chenxi; Yang, Kun; Xu, Man

    2018-09-01

    Al 2 O 3 -NaA zeolite composite hollow fiber membranes were successfully fabricated via hydrothermal synthesis by using industrial solid waste coal fly ash and porous Al 2 O 3 hollow fiber supports. The as-synthesized Al 2 O 3 -NaA zeolite composite hollow fiber membranes were then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hollow fiber membranes were used to remove lead ions (Pb(II), 50 mg L -1 ) from synthetic wastewater with a removal efficiency of 99.9% at 0.1 MPa after 12 h of filtration. This study showed that the Al 2 O 3 -NaA zeolite composite hollow fiber membranes (the pore size of the membrane was about 0.41 nm in diameter) synthesized from coal fly ash could be efficiently used for treating low concentration Pb(II) wastewater. It recycled solid waste coal fly ash not only to solve its environment problems, but also can produce high-value Al 2 O 3 -NaA zeolite composite hollow fiber membranes for separation application in treating wastewater containing Pb(II). Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Planning For Multiple NASA Missions With Use Of Enabling Radioisotope Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    Since the early 1960’s the Department of Energy (DOE) and its predecessor agencies have provided radioisotope power systems (RPS) to NASA as an enabling technology for deep space and various planetary missions. They provide reliable power in situations where solar and/or battery power sources are either untenable or would place an undue mass burden on the mission. In the modern era of the past twenty years there has been no time that multiple missions have been considered for launching from Kennedy Space Center (KSC) during the same year. The closest proximity of missions that involved radioisotope power systems would bemore » that of Galileo (October 1989) and Ulysses (October 1990). The closest that involved radioisotope heater units would be the small rovers Spirit and Opportunity (May and July 2003) used in the Mars Exploration Rovers (MER) mission. It can be argued that the rovers sent to Mars in 2003 were essentially a special case since they staged in the same facility and used a pair of small launch vehicles (Delta II). This paper examines constraints on the frequency of use of radioisotope power systems with regard to launching them from Kennedy Space Center using currently available launch vehicles. This knowledge may be useful as NASA plans for its future deep space or planetary missions where radioisotope power systems are used as an enabling technology. Previous descriptions have focused on single mission chronologies and not analyzed the timelines with an emphasis on multiple missions.« less

  17. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk

    USDA-ARS?s Scientific Manuscript database

    Naphthaleneacetic acid (NAA), a synthetic auxin analogue, is widely used as an effective thinner in apple orchards. When applied shortly after fruit set, some fruit abscise leading to improved fruit size and quality. However, the thinning results of NAA are inconsistent and difficult to predict, s...

  18. The studies on the toxicity mechanism of environmentally hazardous natural (IAA) and synthetic (NAA) auxin--The experiments on model Arabidopsis thaliana and rat liver plasma membranes.

    PubMed

    Hąc-Wydro, Katarzyna; Flasiński, Michał

    2015-06-01

    This paper concerns the studies towards membrane-damage effect of two auxins: indole-3-acetic acid - IAA and 1-naphthaleneacetic acid - NAA on plant (Arabidopsis thaliana) and animal (rat liver) model membranes. The foregoing auxins are plant growth regulators widely used in agriculture to control the quality of the crop. However, their accumulation in the environment makes them hazardous for the living organisms. The aim of our investigations was to compare the effect of natural (IAA) vs. synthetic (NAA) auxin on the organization of plant and animal model membranes and find a possible correlation between membrane-disturbing effect of these compounds and their toxicity. The collected data evidenced that auxins cause destabilization of membranes, decrease their condensation and weakens interactions of molecules. The alterations in the morphology of model systems were also noticed. The foregoing effects of auxins are concentration-dependent and additionally NAA was found to act on animal vs. plant membranes more selectively than IAA. Interestingly, both IAA and NAA induce the strongest disordering in model lipid system at the concentration, which is frequently reported as toxic to animal and plants. Based on the above findings it was proposed that membrane-damage effect induced by IAA and NAA may be important from the point of view of the mechanism of toxicity of these compounds and cannot be ignored in further investigations in this area. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With

  20. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Astrophysics Data System (ADS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-10-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With

  1. Relationship of executive functioning deficits to N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) in youth with bipolar disorder.

    PubMed

    Huber, Rebekah S; Kondo, Douglas G; Shi, Xian-Feng; Prescot, Andrew P; Clark, Elaine; Renshaw, Perry F; Yurgelun-Todd, Deborah A

    2018-01-01

    Although cognitive deficits in bipolar disorder (BD) have been repeatedly observed, our understanding of these impairments at a mechanistic level remains limited. Few studies that investigated cognitive impairments in bipolar illness have examined the association with brain biochemistry. This pilot study utilized proton magnetic resonance spectroscopy ( 1 H-MRS) to evaluate the relationship between neurocognitive performance and brain metabolites in youth with BD. Thirty participants, twenty depressed BD participants and ten healthy comparison participants, ages 13-21, completed mood and executive function measures. 1 H-MRS data were also acquired from the anterior cingulate cortex (ACC) using two-dimensional (2D) J-resolved 1 H-MRS sequence. Proton metabolites including N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) were quantified for both groups. Participants with BD performed significantly lower on executive functioning measures than comparison participants. There were significant positive correlations between Wisconsin Card Sorting Test (WCST) performance and NAA (p < .001) and GABA (p < .01) in the ACC in bipolar youth, such that as WCST performance increased, both NAA and GABA levels increased. Small sample size and lack of control for medications. These findings build on previous observations of biochemical alterations associated with BD and indicate that executive functioning deficits in bipolar youth are correlated with NAA and GABA. These results suggest that cognitive deficits occur early in the course of illness and may reflect risk factors associated with altered neurochemistry. Further investigation of the relationship between brain metabolites and cognition in BD may lead to important information for developing novel, targeted interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Nanocluster metal films as thermoelectric material for radioisotope mini battery unit

    NASA Astrophysics Data System (ADS)

    Borisyuk, P. V.; Krasavin, A. V.; Tkalya, E. V.; Lebedinskii, Yu. Yu.; Vasiliev, O. S.; Yakovlev, V. P.; Kozlova, T. I.; Fetisov, V. V.

    2016-10-01

    The paper is devoted to studying the thermoelectric and structural properties of films based on metal nanoclusters (Au, Pd, Pt). The experimental results of the study of single nanoclusters' tunneling conductance obtained with scanning tunneling spectroscopy are presented. The obtained data allowed us to evaluate the thermoelectric power of thin film consisting of densely packed individual nanoclusters. It is shown that such thin films can operate as highly efficient thermoelectric materials. A scheme of miniature thermoelectric radioisotope power source based on the thorium-228 isotope is proposed. The efficiency of the radioisotope battery using thermoelectric converters based on nanocluster metal films is shown to reach values up to 1.3%. The estimated characteristics of the device are comparable with the parameters of up-to-date radioisotope batteries based on nickel-63.

  3. Dynamic Radioisotope Power System Development for Space Explorations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualls, A L

    Dynamic power conversion offers the potential to produce radioisotope power systems (RPS) that generate higher power outputs and utilize the Pu-238 radioisotope more efficiently than Radioisotope Thermoelectric Generators (RTG). Additionally, dynamic systems also offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power will be available at the end of the mission when it is needed for both powering the science and transmitting the results. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust and reliable dynamic conversionmore » technology is challenging yet essential to building a suitable generator. Considerations include working within existing handling infrastructure where possible so that development costs can be kept low and integrating dynamic generators into spacecraft, which may be more complex than integration of static systems. Methods of interfacing to and controlling a dynamic generator must be considered and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development and adaption.Dynamic power conversion offers the potential to produce Radioisotope Power Systems (RPS) that generate higher power outputs and utilize the available heat source plutonium fuel more efficiently than Radioisotope Thermoelectric Generators. Additionally, dynamic systems offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power would be available at the end of the mission, when it is needed most for both powering science instruments and transmitting the resulting data. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric

  4. Advanced Stirling Radioisotope Generator Life Certification Plan

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  5. Naphthalene Acetic Acid Potassium Salt (NAA-K+) Affects Conidial Germination, Sporulation, Mycelial Growth, Cell Surface Morphology, and Viability of Fusarium oxysporum f. sp. radici-lycopersici and F. oxysporum f. sp. cubense in Vitro.

    PubMed

    Manzo-Valencia, María Karina; Valdés-Santiago, Laura; Sánchez-Segura, Lino; Guzmán-de-Peña, Dora Linda

    2016-11-09

    The response to exogenous addition of naphthalene acetic acid potassium salt (NAA-K + ) to Fusarium oxysporum f. sp radici-lycopersici ATCC 60095 and F. oxysporum f. sp. cubense isolated from Michoacan Mexico soil is reported. The in vitro study showed that NAA-K + might be effective in the control of Fusarium oxysporum. Exogenous application of NAA-K + affected both spores and mycelium stages of the fungi. Viability testing using acridine orange and propidium iodide showed that NAA-K + possesses fungal killing properties, doing it effectively in the destruction of conidia of this phytopathogenic fungi. Analysis of treated spores by scanning electron microscopy showed changes in the shape factor and fractal dimension. Moreover, NAA-K + repressed the expression of brlA and fluG genes. The results disclosed here give evidence of the use of this synthetic growth factor as a substance of biocontrol that presents advantages, and the methods of application in situ should be explored.

  6. Applications of XRF, NAA and low-kV radiographic techniques in the study of body composition and diseased tissue

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Ng, K. H.; Green, S.; Mountford, P. J.; Shukri, A.; Evans, J.

    1996-05-01

    Members of this group have responded to a number of challenging health issues by attempting to devise sensitive XRF, NAA and low-kV radiographic measurement systems foboth in vivo and in vitro applications. These studies are generally either of toxicological importance, examine potential for diagnosing the presence of disease, or offer effective means for monitoring potentially harmful side-effects of therapy. Particular examples include the in vivo XRF investigation of human skeletal uptake of Pb in working and living environments, in vivo XRF monitoring of elevated levels of Fe in skin (indicating the presence of an undesirable side-effect of the treatment of thalassaemia), in vivo NAA monitoring of elevated levels of Al in bone (indicating an undesirable side-effect of the treatment of chronic renal failure) and in vitro characterization, by means of low-kV imaging, of a range of calcification parameters in healthy and diseased breast tissue. The latter investigation has been conducted in association with an in vitro NAA study of concentrations of trace elements in the same types of tissue. Figures of merit for the various measurement systems have been obtained in terms of minimum detectable levels and concentrations (MDL's and MDC's) and where applicable, image related parameters.

  7. A Critical Proton MR Spectroscopy Marker of Alzheimer's Disease Early Neurodegenerative Change: Low Hippocampal NAA/Cr Ratio Impacts APOE ɛ4 Mexico City Children and Their Parents.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Melo-Sánchez, Gastón; Rodríguez-Díaz, Joel; Torres-Jardón, Ricardo; Styner, Martin; Mukherjee, Partha S; Lin, Weili; Jewells, Valerie

    2015-01-01

    Severe air pollution exposures produce systemic, respiratory, myocardial, and brain inflammation and Alzheimer's disease (AD) hallmarks in clinically healthy children. We tested whether hippocampal metabolite ratios are associated with contrasting levels of air pollution, APOE, and body mass index (BMI) in paired healthy children and one parent sharing the same APOE alleles. We used 1H-MRS to interrogate bilateral hippocampal single-voxel in 57 children (12.45 ± 3.4 years) and their 48 parents (37.5 ± 6.78 years) from a low pollution city versus Mexico City (MC). NAA/Cr, Cho/Cr, and mI/Cr metabolite ratios were analyzed. The right hippocampus NAA/Cr ratio was significantly different between cohorts (p = 0.007). The NAA/Cr ratio in right hippocampus in controls versus APOE ɛ4 MC children and in left hippocampus in MC APOE ɛ4 parents versus their children was significantly different after adjusting for age, gender, and BMI (p = 0.027 and 0.01, respectively). The NAA/Cr ratio is considered reflective of neuronal density/functional integrity/loss of synapses/higher pTau burden, thus a significant decrease in hippocampal NAA/Cr ratios may constitute a spectral marker of early neurodegeneration in young urbanites. Decreases in NAA/Cr correlate well with cognitive function, behavioral symptoms, and dementia severity; thus, since the progression of AD starts decades before clinical diagnosis, our findings support the hypothesis that under chronic exposures to fine particulate matter and ozone above the standards, neurodegenerative processes start in childhood and APOE ɛ4 carriers are at higher risk. Gene and environmental factors are critical in the development of AD and the identification and neuroprotection of young urbanites at high risk must become a public health priority.

  8. NAA-Induced Direct Organogenesis from Female Immature Inflorescence Explants of Date Palm.

    PubMed

    Khierallah, Hussam S M; Bader, Saleh M; Al-Khafaji, Makki A

    2017-01-01

    Micropropagation has great potential for the multiplication of female and male date palms of commercially grown cultivars by using inflorescences. This approach is simple, convenient, and much faster than the conventional method of using shoot-tip explants. We describe here a stepwise micropropagation procedure using inflorescence explants of Iraqi date palm cultivar Maktoom. Cultured explants were derived from 0.5-cm-long spike segments excised from 8 to 10-cm-long spathes. About 70% formed adventitious buds on Murashige and Skoog (MS) medium supplemented with 2 mg/L naphthalene acetic acid (NAA), 4 mg/L benzylaminopurine (BAP), and 40 g/L sucrose and maintained in the dark for 16 weeks before transferring to normal light conditions. The best multiplication rate was achieved with 3 mg/L 2ip and 2 mg/L; for shoot elongation, the best medium is MS containing 0.5 mg/L BAP, 0.5 mg/L 2ip, and 1 mg/L GA 3 . Well-developed shoots were cultured for rooting in half MS medium amended with 1 mg/L NAA and 45 g/L sucrose. Plantlets with well-developed roots were successfully hardened in the greenhouse. Inflorescence explants proved to be a promising alternative explant source for micropropagation of date palm cultivars.

  9. Investigation of saliva of patients with periodontal disease using NAA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamboni, C. B.; Metairon, S.; Medeiros, I. M. M. A.

    In this study the non-stimulated whole saliva of 26 healthy subjects (mean age 33.9 {+-} 11.0 years, range: 26 to 49 years) and 11 patients with periodontal disease (mean age 41.7 {+-} 11.5 years; range 29 to 55 years) was investigated using Neutron Activation Analysis (NAA) technique. The samples were obtained from donors at Sao Paulo city (Brazil). The analyses were performed in the nuclear reactor IEA-R1 (3.5-4.5MW, pool type) at IPEN/CNEN-SP (Brazil). Considerable changes in Ca and S saliva's level were identified in patients with periodontal disease suggesting they can be used as monitors of periodontal diseases.

  10. Outer Planet Exploration with Advanced Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey; Benson, Scott; McAdams, Jim; Ostdiek, Paul

    2002-01-01

    In response to a request by the NASA Deep Space Exploration Technology Program, NASA Glenn Research Center conducted a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power systems was shown to allow the same or smaller launch vehicle class as the chemical 2004 baseline and allow a launch slip and still flyby in the 2014 to 2020 timeframe. With this promising result the study was expanded to use a radioisotope power source for small electrically propelled orbiter spacecraft for outer planet targets such as Uranus, Neptune, and Pluto.

  11. Miniaturized radioisotope solid state power sources

    NASA Astrophysics Data System (ADS)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  12. Moderate relationships between NAA and cognitive ability in healthy adults: implications for cognitive spectroscopy.

    PubMed

    Patel, Tulpesh; Blyth, Jacqueline C; Griffiths, Gareth; Kelly, Deirdre; Talcott, Joel B

    2014-01-01

    Proton Magnetic Resonance Spectroscopy ((1)H-MRS) is a non-invasive imaging technique that enables quantification of neurochemistry in vivo and thereby facilitates investigation of the biochemical underpinnings of human cognitive variability. Studies in the field of cognitive spectroscopy have commonly focused on relationships between measures of N-acetyl aspartate (NAA), a surrogate marker of neuronal health and function, and broad measures of cognitive performance, such as IQ. In this study, we used (1)H-MRS to interrogate single-voxels in occipitoparietal and frontal cortex, in parallel with assessments of psychometric intelligence, in a sample of 40 healthy adult participants. We found correlations between NAA and IQ that were within the range reported in previous studies. However, the magnitude of these effects was significantly modulated by the stringency of data screening and the extent to which outlying values contributed to statistical analyses. (1)H-MRS offers a sensitive tool for assessing neurochemistry non-invasively, yet the relationships between brain metabolites and broad aspects of human behavior such as IQ are subtle. We highlight the need to develop an increasingly rigorous analytical and interpretive framework for collecting and reporting data obtained from cognitive spectroscopy studies of this kind.

  13. Elaboration and characterization of solid materials of types zeolite NaA and faujasite NaY exchanged by zinc metallic ions Zn2+

    NASA Astrophysics Data System (ADS)

    Nibou, D.; Amokrane, S.; Mekatel, H.; Lebaili, N.

    2009-11-01

    The present work deals with the elaborated of NaA and faujasite NaY solid materials according to a hydrothermal crystallization of amorphous gels composed of solutions of silicon, aluminum and sodium. The process elaboration has been achieved in autoclaves made of steel lined in Teflon under different operating conditions of temperature of heating, time of contact and stirring. After crystallization, the samples were characterized by different techniques such as X ray diffraction, scanning electronic microscopy, infrared spectroscopy, thermal analysis, and chemical analysis. Pure solid materials NaA and NaY zeolites were obtained and were impregnated by (Zn2+) ions by ion exchange process. The effects of various parameters such as initial metal concentration, pH, solid-liquid ratio (R) and temperature on the exchange percentage are studied. The equilibrium isotherms of zinc ions sorption are also evaluated using Langmuir and Freundlich models. Thermodynamic parameters, i.e. enthalpy of adsorption ΔHads∘, entropy change ΔSads∘ and Gibbs free energy ΔGads∘ for the sorption of zinc ions on NaA and NaY zeolites were examined.

  14. Stirling Radioisotope Power System as an Alternative for NASAs Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Shaltens, R. K.; Mason, L. S.; Schreiber, J. G.

    2001-01-01

    The NASA Glenn Research Center (GRC) and the Department of Energy (DOE) are developing a free-piston Stirling convertor for a Stirling Radioisotope Power System (SRPS) to provide on-board electric power for future NASA deep space missions. The SRPS currently being developed provides about 100 watts and reduces the amount of radioisotope fuel by a factor of four over conventional Radioisotope Thermoelectric Generators (RTG). The present SRPS design has a specific power of approximately 4 W/kg which is comparable to an RTG. GRC estimates for advanced versions of the SRPS with improved heat source integration, lightweight Stirling convertors, composite radiators, and chip-packaged controllers improves the specific mass to about 8 W/kg. Additional information is contained in the original extended abstract.

  15. Analysis of the posterior cingulate cortex with [18F]FDG-PET and Naa/mI in mild cognitive impairment and Alzheimer's disease: Correlations and differences between the two methods.

    PubMed

    Coutinho, Artur M N; Porto, Fábio H G; Zampieri, Poliana F; Otaduy, Maria C; Perroco, Tíbor R; Oliveira, Maira O; Nunes, Rafael F; Pinheiro, Toulouse Leusin; Bottino, Cassio M C; Leite, Claudia C; Buchpiguel, Carlos A

    2015-01-01

    Reduction of regional brain glucose metabolism (rBGM) measured by [18F]FDG-PET in the posterior cingulate cortex (PCC) has been associated with a higher conversion rate from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Magnetic Resonance Spectroscopy (MRS) is a potential biomarker that has disclosed Naa/mI reductions within the PCC in both MCI and AD. Studies investigating the relationships between the two modalities are scarce. To evaluate differences and possible correlations between the findings of rBGM and NAA/mI in the PCC of individuals with AD, MCI and of cognitively normal volunteers. Patients diagnosed with AD (N=32) or MCI (N=27) and cognitively normal older adults (CG, N=28), were submitted to [18F]FDG-PET and MRS to analyze the PCC. The two methods were compared and possible correlations between the modalities were investigated. The AD group exhibited rBGM reduction in the PCC when compared to the CG but not in the MCI group. MRS revealed lower NAA/mI values in the AD group compared to the CG but not in the MCI group. A positive correlation between rBGM and NAA/mI in the PCC was found. NAA/mI reduction in the PCC differentiated AD patients from control subjects with an area under the ROC curve of 0.70, while [18F]FDG-PET yielded a value of 0.93. rBGM and Naa/mI in the PCC were positively correlated in patients with MCI and AD. [18F]FDG-PET had greater accuracy than MRS for discriminating AD patients from controls.

  16. Analysis of the posterior cingulate cortex with [18F]FDG-PET and Naa/mI in mild cognitive impairment and Alzheimer's disease: Correlations and differences between the two methods

    PubMed Central

    Coutinho, Artur M.N.; Porto, Fábio H.G.; Zampieri, Poliana F.; Otaduy, Maria C.; Perroco, Tíbor R.; Oliveira, Maira O.; Nunes, Rafael F.; Pinheiro, Toulouse Leusin; Bottino, Cassio M.C.; Leite, Claudia C.; Buchpiguel, Carlos A.

    2015-01-01

    Reduction of regional brain glucose metabolism (rBGM) measured by [18F]FDG-PET in the posterior cingulate cortex (PCC) has been associated with a higher conversion rate from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Magnetic Resonance Spectroscopy (MRS) is a potential biomarker that has disclosed Naa/mI reductions within the PCC in both MCI and AD. Studies investigating the relationships between the two modalities are scarce. Objective To evaluate differences and possible correlations between the findings of rBGM and NAA/mI in the PCC of individuals with AD, MCI and of cognitively normal volunteers. Methods Patients diagnosed with AD (N=32) or MCI (N=27) and cognitively normal older adults (CG, N=28), were submitted to [18F]FDG-PET and MRS to analyze the PCC. The two methods were compared and possible correlations between the modalities were investigated. Results The AD group exhibited rBGM reduction in the PCC when compared to the CG but not in the MCI group. MRS revealed lower NAA/mI values in the AD group compared to the CG but not in the MCI group. A positive correlation between rBGM and NAA/mI in the PCC was found. NAA/mI reduction in the PCC differentiated AD patients from control subjects with an area under the ROC curve of 0.70, while [18F]FDG-PET yielded a value of 0.93. Conclusion rBGM and Naa/mI in the PCC were positively correlated in patients with MCI and AD. [18F]FDG-PET had greater accuracy than MRS for discriminating AD patients from controls. PMID:29213988

  17. Systemic control of cell division and endoreduplication by NAA and BAP by modulating CDKs in root tip cells of Allium cepa.

    PubMed

    Tank, Jigna G; Thaker, Vrinda S

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.

  18. Systemic Control of Cell Division and Endoreduplication by NAA and BAP by Modulating CDKs in Root Tip Cells of Allium cepa

    PubMed Central

    Tank, Jigna G.; Thaker, Vrinda S.

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed. PMID:24955358

  19. Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs.

    PubMed

    Egieyeh, Samuel Ayodele; Syce, James; Malan, Sarel F; Christoffels, Alan

    2016-01-29

    A large number of natural products have shown in vitro antiplasmodial activities. Early identification and prioritization of these natural products with potential for novel mechanism of action, desirable pharmacokinetics and likelihood for development into drugs is advantageous. Chemo-informatic profiling of these natural products were conducted and compared to currently registered anti-malarial drugs (CRAD). Natural products with in vitro antiplasmodial activities (NAA) were compiled from various sources. These natural products were sub-divided into four groups based on inhibitory concentration (IC50). Key molecular descriptors and physicochemical properties were computed for these compounds and analysis of variance used to assess statistical significance amongst the sets of compounds. Molecular similarity analysis, estimation of drug-likeness, in silico pharmacokinetic profiling, and exploration of structure-activity landscape were also carried out on these sets of compounds. A total of 1040 natural products were selected and a total of 13 molecular descriptors were analysed. Significant differences were observed among the sub-groups of NAA and CRAD for at least 11 of the molecular descriptors, including number of hydrogen bond donors and acceptors, molecular weight, polar and hydrophobic surface areas, chiral centres, oxygen and nitrogen atoms, and shape index. The remaining molecular descriptors, including clogP, number of rotatable bonds and number of aromatic rings, did not show any significant difference when comparing the two compound sets. Molecular similarity and chemical space analysis identified natural products that were structurally diverse from CRAD. Prediction of the pharmacokinetic properties and drug-likeness of these natural products identified over 50% with desirable drug-like properties. Nearly 70% of all natural products were identified as potentially promiscuous compounds. Structure-activity landscape analysis highlighted compound pairs that

  20. Radioisotope Electric Propulsion for Fast Outer Planetary Orbiters

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Benson, Scott; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey

    2002-01-01

    Recent interest in outer planetary targets by the Office of Space Science has spurred the search for technology options to enable relatively quick missions to outer planetary targets. Several options are being explored including solar electric propelled stages combined with aerocapture at the target and nuclear electric propulsion. Another option uses radioisotope powered electric thrusters to reach the outer planets. Past work looked at using this technology to provide faster flybys. A better use for this technology is for outer planet orbiters. Combined with medium class launch vehicles and a new direct trajectory these small, sub-kilowatt ion thrusters and Stirling radioisotope generators were found to allow missions as fast as 5 to 12 years for objects from Saturn to Pluto, respectively. Key to the development is light spacecraft and science payload technologies.

  1. Clouds, airplanes, trucks and people: carrying radioisotopes to and across Mexico.

    PubMed

    Mateos, Gisela; Suárez-Díaz, Edna

    2015-01-01

    The aim of this paper is to describe the early stages of Mexican nuclearization that took place in contact with radioisotopes. This history requires a multilayered narrative with an emphasis in North-South asymmetric relations, and in the value of education and training in the creation of international asymmetrical networks. Radioisotopes were involved in exchanges with the United States since the late 1940s, but also with Canada. We also describe the context of implementation of Eisenhower's Atoms for Peace initiative in Mexico that opened the door to training programs at both the Comisión Nacional de Energía Nuclear and the Universidad Nacional Autónoma de México. Radioisotopes became the best example of the peaceful applications of atomic energy, and as such they fitted the Mexican nuclearization process that was and still is defined by its commitment to pacifism. In 1955 Mexico became one of the 16 members of the atomic fallout network established by the United Nations. As part of this network, the first generation of Mexican (women) radio-chemists was trained. By the end of the 1960s, radioisotopes and biological markers were being produced in a research reactor, prepared and distributed by the CNEN within Mexico. We end up this paper with a brief reflection on North-South nuclear exchanges and the particularities of the Mexican case.

  2. Investigation of saliva of patients with periodontal disease using NAA

    NASA Astrophysics Data System (ADS)

    Zamboni, C. B.; Metairon, S.; Medeiros, I. M. M. A.; Lewgoy, H. R.

    2013-05-01

    In this study the non-stimulated whole saliva of 26 healthy subjects (mean age 33.9 ± 11.0 years, range: 26 to 49 years) and 11 patients with periodontal disease (mean age 41.7 ± 11.5 years; range 29 to 55 years) was investigated using Neutron Activation Analysis (NAA) technique. The samples were obtained from donors at São Paulo city (Brazil). The analyses were performed in the nuclear reactor IEA-R1 (3.5-4.5MW, pool type) at IPEN/CNEN-SP (Brazil). Considerable changes in Ca and S saliva's level were identified in patients with periodontal disease suggesting they can be used as monitors of periodontal diseases.

  3. Emitted radiation characteristics of plutonium dioxide radioisotope thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.; Steyn, J. J.

    1971-01-01

    The nuclear and emitted radiation characteristics of the radioisotope elements and impurities in commercial grade plutonium dioxide are presented in detail. The development of the methods of analysis are presented. Radioisotope thermoelectric generators (RTG) of 1575, 3468 and 5679 thermal watts are characterized with respect to neutron and gamma photon source strength as well as spatial and number flux distribution. The results are presented as a function of detector position and light element contamination concentration for fuel age ranging from 'fresh' to 18 years. The data may be used to obtain results for given O-18 and Pu-236 concentrations. The neutron and gamma photon flux and dose calculations compare favorably with reported experimental values for SNAP-27.

  4. Investigation of Insulation Materials for Future Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power Systems (RPS) Technology Advancement Project is developing next generation high-temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  5. Radioisotope Sources of Electric Power

    DTIC Science & Technology

    1973-09-20

    u) watt/cm-3 O) specific activity f) curia/watt (curie/a) a) half-life c) specific power output h) years (capacity) 1) days d) watt/p Polonium - 210 ...AD/A-001 210 RADIOISOTOPE SOURCES OF ELECTRIC POWER G. M. Fradkin, et al Army Foreign Science and Technology Center Charlottesville, Virginia 20...ormed. 6v usino this effect , one may make small-sized 3ources of electrical eneruv. Batteries with direct charde collection may be used to create accel

  6. Effects of IAA, IBA, NAA, and GA3 on rooting and morphological features of Melissa officinalis L. stem cuttings.

    PubMed

    Sevik, Hakan; Guney, Kerim

    2013-01-01

    This study analyzed the potential of producing Melissa officinalis L. using stem cuttings. Four different hormones (IAA, IBA, NAA, and GA3) were applied to the cuttings, with and without buds, in two doses (1000 mg/L and 5000 mg/L), and after 60 days, 10 morphological characteristics of newly generated plants were detected, and a statistical analysis was carried out. The results of the study show that the cuttings with at least one bud must be used in order to produce M. officinalis using stem cuttings. Even though the auxin group hormones (IAA, IBA, and NAA) do not have an apparent effect on rooting percentage, these hormones were detected to affect the morphological characteristics of the newly generated plants, especially root generation. GA3 application has a considerable effect on stem height.

  7. Symptomatic rotator cuff tears show higher radioisotope uptake on bone scintigraphy compared with asymptomatic tears.

    PubMed

    Koike, Yoichi; Sano, Hirotaka; Kita, Atushi; Itoi, Eiji

    2013-09-01

    Some patients with rotator cuff tears complain of pain, whereas others are asymptomatic. Previous studies have pointed out the presence of active bone metabolism in the painful shoulder, identified with increased radioisotope uptake during bone scintigraphy. Shoulders with symptomatic rotator cuff tears will demonstrate higher radioisotope uptake than shoulders with asymptomatic tears with bone scintigraphy, reflecting active bone metabolism in symptomatic tears. Cross-sectional study; Level of evidence, 3. The study consisted of 3 groups: patients with symptomatic tears (symptomatic group), patients with asymptomatic tears (asymptomatic group), and controls (no tear group). The symptomatic group consisted of 28 shoulders from 28 patients with symptomatic rotator cuff tears (pain score ≤4 on the University of California, Los Angeles [UCLA] shoulder evaluation form) who underwent bone scintigraphy followed by rotator cuff repair. Of 70 volunteers who had previously undergone bone scintigraphy for diseases unrelated to their shoulder, 34 were selected for the asymptomatic group (pain score ≥8 on the UCLA shoulder form), and 32 were selected for the no tear group. The mean radioisotope uptake in the symptomatic group was significantly higher than that in the asymptomatic group (P = .02) and the no tear group (P = .02). Ten of 28 shoulders (36%) in the symptomatic group showed increased radioisotope uptake exceeding 2 standard deviations from the mean of the no tear group. This percentage was significantly higher when compared with the asymptomatic group (0%) (P < .01). Shoulders with a symptomatic rotator cuff tear showed higher radioisotope uptake on bone scintigraphy than those with an asymptomatic tear. The radioisotope uptake in shoulders with an asymptomatic tear was comparable with that in shoulders without a tear. Positive radioisotope uptake may be associated with pain in a subgroup of patients with rotator cuff tears.

  8. Moderate relationships between NAA and cognitive ability in healthy adults: implications for cognitive spectroscopy

    PubMed Central

    Patel, Tulpesh; Blyth, Jacqueline C.; Griffiths, Gareth; Kelly, Deirdre; Talcott, Joel B.

    2014-01-01

    Background: Proton Magnetic Resonance Spectroscopy (1H-MRS) is a non-invasive imaging technique that enables quantification of neurochemistry in vivo and thereby facilitates investigation of the biochemical underpinnings of human cognitive variability. Studies in the field of cognitive spectroscopy have commonly focused on relationships between measures of N-acetyl aspartate (NAA), a surrogate marker of neuronal health and function, and broad measures of cognitive performance, such as IQ. Methodology/Principal Findings: In this study, we used 1H-MRS to interrogate single-voxels in occipitoparietal and frontal cortex, in parallel with assessments of psychometric intelligence, in a sample of 40 healthy adult participants. We found correlations between NAA and IQ that were within the range reported in previous studies. However, the magnitude of these effects was significantly modulated by the stringency of data screening and the extent to which outlying values contributed to statistical analyses. Conclusions/Significance: 1H-MRS offers a sensitive tool for assessing neurochemistry non-invasively, yet the relationships between brain metabolites and broad aspects of human behavior such as IQ are subtle. We highlight the need to develop an increasingly rigorous analytical and interpretive framework for collecting and reporting data obtained from cognitive spectroscopy studies of this kind. PMID:24592224

  9. A single dose of a neuron-binding human monoclonal antibody improves brainstem NAA concentrations, a biomarker for density of spinal cord axons, in a model of progressive multiple sclerosis.

    PubMed

    Wootla, Bharath; Denic, Aleksandar; Watzlawik, Jens O; Warrington, Arthur E; Rodriguez, Moses

    2015-04-29

    Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in chronic demyelinating disease with progressive axonal loss and neurologic dysfunction similar to progressive forms of multiple sclerosis (MS). We previously showed that as the disease progresses, a marked decrease in brainstem N-acetyl aspartate (NAA; metabolite associated with neuronal integrity) concentrations, reflecting axon health, is measured. We also demonstrated stimulation of neurite outgrowth by a neuron-binding natural human antibody, IgM12. Treatment with either the serum-derived or recombinant human immunoglobulin M 12 (HIgM12) preserved functional motor activity in the TMEV model. In this study, we examined IgM-mediated changes in brainstem NAA concentrations and central nervous system (CNS) pathology. (1)H-magnetic resonance spectroscopy (MRS) showed that treatment with HIgM12 significantly increased brainstem NAA concentrations compared to controls in TMEV-infected mice. Pathologic analysis demonstrated a significant preservation of axons in the spinal cord of animals treated with HIgM12. This study links drug efficacy of slowing deficits with axon preservation and NAA concentrations in the brainstem in a model of progressive MS. HIgM12-mediated changes of NAA concentrations in the brainstem are a surrogate marker of axon injury/preservation throughout the spinal cord. This study provides proof-of-concept that a neuron-reactive human IgM can be therapeutic and provides a biomarker for clinical trials.

  10. An Adjunct Galilean Satellite Orbiter Using a Small Radioisotope Power Source

    NASA Technical Reports Server (NTRS)

    Abelson, Robert Dean; Randolph, J.; Alkalai, L.; Collins, D.; Moore, W.

    2005-01-01

    This is a conceptual mission study intended to demonstrate the range of possible missions and applications that could be enabled were a new generation of Small Radioisotope Power Systems to be developed by NASA and DOE. While such systems are currently being considered by NASA and DOE, they do not currently exist. This study is one of several small RPS-enabled mission concepts that were studied and presented in the NASA/JPL document "Enabling Exploration with Small Radioisotope Power Systems" available at: http://solarsystem.nasa.gov/multimedia/download-detail.cfm?DL_ID=82

  11. Radioisotope Power: A Key Technology for Deep Space Explorations

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Sutliff, Thomas J.; Duddzinski, Leonard

    2009-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  12. Radioisotope Power: A Key Technology for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, George; Sutliff, Tom; Dudzinski, Leonard

    2008-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  13. Radioisotope Electric Propulsion (REP) for Selected Interplanetary Science Missions

    NASA Technical Reports Server (NTRS)

    Oh, David; Bonfiglio, Eugene; Cupples, Mike; Belcher, Jeremy; Witzberger, Kevin; Fiehler, Douglas; Artis, Gwen

    2005-01-01

    This viewgraph presentation analyzes small body targets (Trojan Asteroids), Medium Outer Planet Class (Jupiter Polar Orbiter with Probes), and Main Belt Asteroids and Comets (Comet Surface Sample Return), for Radioisotope Electric Propulsion (REP).

  14. Joint Radioisotope Electric Propulsion Studies - Neptune System Explorer

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Amini, Rashied; Ervin, Joan; Lang, Jared; Landau, Damon; Oleson, Steven; Spilker, Thomas; Strange, Nathan

    2011-01-01

    The Neptune System Explorer (NSE) mission concept study assessed opportunities to conduct Cassini-like science at Neptune with a radioisotope electric propulsion (REP) based spacecraft. REP is based on powering an electric propulsion (EP) engine with a radioisotope power source (RPS). The NSE study was commissioned under the Joint Radioisotope Electric Propulsion Studies (JREPS) project, which sought to determine the technical feasibility of flagship class REP applications. Within JREPS, special emphasis was given toward identifying tall technology tent poles, as well as recommending any new RPS technology developments that would be required for complicated REP missions. Based on the goals of JREPS, multiple RPS (e.g. thermoelectric and Stirling based RPS) and EP (e.g. Hall and ion engines) technology combinations were traded during the NSE study to determine the most favorable REP design architecture. Among the findings from the study was the need for >400We RPS systems, which was driven by EP operating powers and the requirement for a long-lived mission in the deep solar system. Additionally multiple development and implementation risks were identified for the NSE concept, as well as REP missions in general. Among the strengths of the NSE mission would be the benefits associated with RPS and EP use, such as long-term power (approx. 2-3kW) at Neptune and flexible trajectory options for achieving orbit or tours of the Neptune system. Although there are still multiple issues to mitigate, the NSE concept demonstrated distinct advantages associated with using REP for deep space flagship-class missions.

  15. Planetary Protection Concerns During Pre-Launch Radioisotope Power System Final Integration Activities

    NASA Technical Reports Server (NTRS)

    Chen, Fei; McKay, Terri; Spry, James A.; Colozza, Anthony J.; DiStefano, Salvador

    2012-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a next-generation radioisotope-based power system that is currently being developed as an alternative to the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Power sources such as these may be needed for proposed missions to solar system planets and bodies that have challenging Planetary Protection (PP) requirements (e.g. Mars, Europa, Enceladus) that may support NASA s search for life, remnants of past life, and the precursors of life. One concern is that the heat from the ASRG could potentially create a region in which liquid water may occur. As advised by the NASA Planetary Protection Officer, when deploying an ASRG to Mars, the current COSPAR/NASA PP policy should be followed for Category IVc mission. Thus, sterilization processing of the ASRG to achieve bioburden reduction would be essential to meet the Planetary Protection requirements. Due to thermal constraints and associated low temperature limits of elements of the ASRG, vapor hydrogen peroxide (VHP) was suggested as a candidate alternative sterilization process to complement dry heat microbial reduction (DHMR) for the assembled ASRG. The following proposed sterilization plan for the ASRG anticipates a mission Category IVc level of cleanliness. This plan provides a scenario in which VHP is used as the final sterilization process. Keywords: Advanced Stirling Radioisotope Generator (ASRG), Planetary Protection (PP), Vapor hydrogen peroxide (VHP) sterilization.

  16. Accelerator Production of Isotopes for Medical Use

    NASA Astrophysics Data System (ADS)

    Lapi, Suzanne

    2014-03-01

    The increase in use of radioisotopes for medical imaging and therapy has led to the development of novel routes of isotope production. For example, the production and purification of longer-lived position emitting radiometals has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller medical cyclotrons at dedicated facilities. Recently, isotope harvesting from heavy ion accelerator facilities has also been suggested. The Facility for Rare Isotope Beams (FRIB) will be a new national user facility for nuclear science to be completed in 2020. Radioisotopes could be produced by dedicated runs by primary users or may be collected synergistically from the water in cooling-loops for the primary beam dump that cycle the water at flow rates in excess of hundreds of gallons per minute. A liquid water target system for harvesting radioisotopes at the National Superconducting Cyclotron Laboratory (NSCL) was designed and constructed as the initial step in proof-of-principle experiments to harvest useful radioisotopes in this manner. This talk will provide an overview of isotope production using both dedicated machines and harvesting from larger accelerators typically used for nuclear physics. Funding from Department of Energy under DESC0007352 and DESC0006862.

  17. In-situ preparation of NaA zeolite/chitosan porous hybrid beads for removal of ammonium from aqueous solution.

    PubMed

    Yang, Kai; Zhang, Xiang; Chao, Cong; Zhang, Bing; Liu, Jindun

    2014-07-17

    Inorganic/organic hybrid materials play important roles in removal of contaminants from wastewater. Herein, we used the natural materials of halloysite and chitosan to prepare a new adsorbent of NaA zeolite/chitosan porous hybrid beads by in-situ hydrothermal synthesis method. SEM indicated that the porous hybrid beads were composed of 6-8 μm sized cubic NaA zeolite particles congregated together with chitosan. The adsorption behavior of NH4(+) from aqueous solution onto hybrid beads was investigated at different conditions. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 47.62 mg/g at 298 K was achieved according to Langmuir model. The regenerated or reused experiments indicated that the adsorption capacity of the hybrid beads could maintain in 90% above after 10 successive adsorption-desorption cycles. The high adsorption and reusable ability implied potential application of the hybrid beads for removing NH4(+) pollutants from wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. APPswe/PS1dE9 mice with cortical amyloid pathology show a reduced NAA/Cr ratio without apparent brain atrophy: A MRS and MRI study.

    PubMed

    Kuhla, Angela; Rühlmann, Claire; Lindner, Tobias; Polei, Stefan; Hadlich, Stefan; Krause, Bernd J; Vollmar, Brigitte; Teipel, Stefan J

    2017-01-01

    Transgenic animal models of Aβ pathology provide mechanistic insight into some aspects of Alzheimer disease (AD) pathology related to Aβ accumulation. Quantitative neuroimaging is a possible aid to improve translation of mechanistic findings in transgenic models to human end phenotypes of brain morphology or function. Therefore, we combined MRI-based morphometry, MRS-based NAA-assessment and quantitative histology of neurons and amyloid plaque load in the APPswe/PS1dE9 mouse model to determine the interrelationship between morphological changes, changes in neuron numbers and amyloid plaque load with reductions of NAA levels as marker of neuronal functional viability. The APPswe/PS1dE9 mouse showed an increase of Aβ plaques, loss of neurons and an impairment of NAA/Cr ratio, which however was not accompanied with brain atrophy. As brain atrophy is one main characteristic in human AD, conclusions from murine to human AD pathology should be drawn with caution.

  19. Solid state radioisotopic energy converter for space nuclear power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.M.

    1993-01-10

    Recent developments in materials technology now make it possible to fabricate nonthermal thin-film radioisotopic energy converters (REC) with a specific power of 24 W/kg and a 10 year working life at 5 to 10 watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25% which is two to three times greater than the 6 to 8% capabilities of current thermoelectric systems. Radioisotopic energy converters have the potential to meet many future space power requirements for a wide variety of applications with less mass, bettermore » efficiency, and less total area than other power conversion options. These benefits result in significant dollar savings over the projected mission lifetime.« less

  20. Potential Applications for Radioisotope Power Systems in Support of Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.; Colozza, Anthony J.; Schmitz, Paul C.

    2013-01-01

    Radioisotope power systems (RPS) for space applications have powered over 27 U.S. space systems, starting with Transit 4A and 4B in 1961, and more recently with the successful landing of the Mars Science Laboratory rover Curiosity in August 2012. RPS enable missions with destinations far from the Sun with faint solar flux, on planetary surfaces with dense or dusty atmospheres, and at places with long eclipse periods where solar array sizes and energy storage mass become impractical. RPS could also provide an enabling capability in support of human exploration activities. It is envisioned that with the higher power needs of most human mission concepts, a high efficiency thermal-to-electric technology would be required such as the Advanced Stirling Radioisotope generator (ASRG). The ASRG should be capable of a four-fold improvement in efficiency over traditional thermoelectric RPS. While it may be impractical to use RPS as a main power source, many other applications could be considered, such as crewed pressurized rovers, in-situ resource production of propellants, back-up habitat power, drilling, any mobile or remote activity from the main base habitat, etc. This paper will identify potential applications and provide concepts that could be a practical extension of the current ASRG design in providing for robust and flexible use of RPS on human exploration missions.

  1. Determining Molar Combining Ratios Using Radioisotopes--A Student Experiment

    ERIC Educational Resources Information Center

    Sears, Jerry A.

    1976-01-01

    Outlines an experimental procedure in which an iodine radioisotope is used to determine molar combining ratios of lead and silver with the iodine. Tables and graphs show the definitive results that should be attainable. (CP)

  2. Investigation of Insulation Materials for Future Radioisotope Power Systems (RPS)

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power System (RPS) Technology Advancement Project is developing next generation high temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center (GRC) on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  3. Visualization of Radioisotope Detectability Over Time.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, Brady

    A radioactive isotope is an atom that has an unstable nucleus. The isotope can undergo radioactive decay, the process in which excessive nuclear energy is emitted from the nucleus in many different forms, such as gamma radiation, alpha particles, or beta particles. The important thing to note is that these emissions act as a signature for the isotope. Each radioisotope has a particular emission spectrum, emitting radiation at different energies and at different rates.

  4. Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis.

    PubMed

    Luo, Gang; Fotidis, Ioannis A; Angelidaki, Irini

    2016-01-01

    Biogas production is a very complex process due to the high complexity in diversity and interactions of the microorganisms mediating it, and only limited and diffuse knowledge exists about the variation of taxonomic and functional patterns of microbiomes across different biogas reactors, and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure. The results from metagenomic analysis showed that the dominant methanogenic pathway revealed by radioisotopic analysis was not always correlated with the taxonomic and functional compositions. It was found by radioisotopic experiments that the aceticlastic methanogenic pathway was dominant, while metagenomics analysis showed higher relative abundance of hydrogenotrophic methanogens. Principal coordinates analysis showed the sludge-based samples were clearly distinct from the manure-based samples for both taxonomic and functional patterns, and canonical correspondence analysis showed that the both temperature and free ammonia were crucial environmental variables shaping the taxonomic and functional patterns. The study further the overall patterns of functional genes were strongly correlated with overall patterns of taxonomic composition across different biogas reactors. The discrepancy between the metabolic patterns determined by metagenomic analysis and metabolic pathways determined by radioisotopic analysis was found. Besides, a clear correlation between taxonomic and functional patterns was demonstrated for biogas reactors, and also the environmental factors that shaping both taxonomic and functional genes patterns were identified.

  5. Nanoparticulate NaA zeolite composites for MRI: Effect of iron oxide content on image contrast

    NASA Astrophysics Data System (ADS)

    Gharehaghaji, Nahideh; Divband, Baharak; Zareei, Loghman

    2018-06-01

    In the current study, Fe3O4/NaA nanocomposites with various amounts of Fe3O4 (3.4, 6.8 & 10.2 wt%) were synthesized and characterized to study the effect of nano iron oxide content on the magnetic resonance (MR) image contrast. The cell viability of the nanocomposites was investigated by MTT assay method. T2 values as well as r2 relaxivities were determined with a 1.5 T MRI scanner. The results of the MTT assay confirmed the nanocomposites cytocompatibility up to 6.8% of the iron oxide content. Although the magnetization saturations and susceptibility values of the nanocomposites were increased as a function of the iron oxide content, their relaxivity was decreased from 921.78 mM-1 s-1 for the nanocomposite with the lowest iron oxide content to 380.16 mM-1 s-1 for the highest one. Therefore, Fe3O4/NaA nanocomposite with 3.4% iron oxide content led to the best MR image contrast. Nano iron oxide content and dispersion in the nanocomposites structure have important role in the nanocomposite r2 relaxivity and the MR image contrast. Aggregation of the iron oxide nanoparticles is a limiting factor in using of the high iron oxide content nanocomposites.

  6. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  7. Cytoplasmic Acidification and Secondary Metabolite Production in Different Plant Cell Suspensions (A Comparative Study).

    PubMed Central

    Hagendoorn, MJM.; Wagner, A. M.; Segers, G.; Van Der Plas, LHW.; Oostdam, A.; Van Walraven, H. S.

    1994-01-01

    In this study, a correlation is described between low cytoplasmic pH, measured with the fluorescent probes 2[prime],7[prime]-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (acetoxymethyl ester) and bis- [3-propyl-5-oxoisoxazol-4-yl]pentamethine oxonol, and the production of secondary metabolites for several plant cell-suspension systems. Anthraquinone production in Morinda citrifolia suspensions is negligible in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D), whereas with naphthalene acetic acid (NAA) a significant accumulation is realized. NAA-grown cells showed a lower cytoplasmic pH than did 2,4-D-grown cells. Addition of 2,4-D or parachlorophenoxy acetic acid to NAA-grown cells resulted in an inhibition of anthraquinone production and an increase of the cytoplasmic pH, whereas addition of parachlorophenyl acetic acid had no effect on either parameter. Lignin production in Petunia hybrida cells could be induced by subculturing them in a medium without iron. These cells showed a lower cytoplasmic pH than control cells. Addition of Fe3+ led to a decreased lignin content and an increased cytoplasmic pH. Two cell lines of Linum flavum showed a different level of coniferin and lignin concentration in their cells. Cells that accumulated coniferin and lignin had a lower cytoplasmic pH than cells that did not accumulate these secondary metabolites. Apparently, in different species and after different kinds of treatment there is a correlation between acidification of the cytoplasm and the production of different secondary metabolites. The possible role of this acidification in secondary metabolite production is discussed. PMID:12232364

  8. Cytoplasmic Acidification and Secondary Metabolite Production in Different Plant Cell Suspensions (A Comparative Study).

    PubMed

    Hagendoorn, MJM.; Wagner, A. M.; Segers, G.; Van Der Plas, LHW.; Oostdam, A.; Van Walraven, H. S.

    1994-10-01

    In this study, a correlation is described between low cytoplasmic pH, measured with the fluorescent probes 2[prime],7[prime]-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (acetoxymethyl ester) and bis- [3-propyl-5-oxoisoxazol-4-yl]pentamethine oxonol, and the production of secondary metabolites for several plant cell-suspension systems. Anthraquinone production in Morinda citrifolia suspensions is negligible in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D), whereas with naphthalene acetic acid (NAA) a significant accumulation is realized. NAA-grown cells showed a lower cytoplasmic pH than did 2,4-D-grown cells. Addition of 2,4-D or parachlorophenoxy acetic acid to NAA-grown cells resulted in an inhibition of anthraquinone production and an increase of the cytoplasmic pH, whereas addition of parachlorophenyl acetic acid had no effect on either parameter. Lignin production in Petunia hybrida cells could be induced by subculturing them in a medium without iron. These cells showed a lower cytoplasmic pH than control cells. Addition of Fe3+ led to a decreased lignin content and an increased cytoplasmic pH. Two cell lines of Linum flavum showed a different level of coniferin and lignin concentration in their cells. Cells that accumulated coniferin and lignin had a lower cytoplasmic pH than cells that did not accumulate these secondary metabolites. Apparently, in different species and after different kinds of treatment there is a correlation between acidification of the cytoplasm and the production of different secondary metabolites. The possible role of this acidification in secondary metabolite production is discussed.

  9. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Tranter, Troy J [Idaho Falls, ID; Horwitz, E Philip [Naperville, IL

    2009-10-06

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  10. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2007-01-02

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  11. Radioisotope Thermoelectric Generators Emplaced in the Deep Ocean, Recover or Dispose in Situ

    DTIC Science & Technology

    1986-03-01

    00 0 M! Technical Report 1106 Cll ) March 1986 Radioisotope Thermoelectric 00 Generators Emplaced in the Deep Ocean Recover or Dispose In Situ? 00...PROGRAM ELEMENT NO PROJECT NO8 TASK NO WORK UN IT NO NAV’COMPT 141 N� A8 WR00026 I I TITLE i,cmvd. Secunty CIaxssIoe,o’,) Radioisotope Thermoelectric ...disposal alternatives. . RTG DESCRIPTIONS Each RTG consists of a strontium-90 titanate heat source, thermoelectric generator, thermal insulation

  12. Reliability Issues in Stirling Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey; Shah, Ashwin

    2005-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  13. Reliability Issues in Stirling Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Schreiber, Jeffrey G.

    2004-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  14. Radioisotope thermophotovoltaic system design and its application to an illustrative space mission

    NASA Astrophysics Data System (ADS)

    Schock, A.; Kumar, V.

    1995-01-01

    The paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator (RTPV), to complement similar studies of Radioisotope Thermoelectric Generators (RTGs) and Stirling Generators (RSGs) previously published by the author. Instead of conducting a generic study, it was decided to focus the design effort by directing it at a specific illustrative space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a post-encounter cruise lasting up to one year. Because of Pluto's long distance from the sun (30-50 A.U.) and the mission's large energy demand, JPL has baselined the use of a radioisotope power system for the PFF spacecraft. TRGs have been tentatively selected, because they have been successfully flown on many space missions, and have demonstrated exceptional reliability and durability. The only reason for exploring the applicability of the far less mature RTPV systems is their potential for much higher conversion efficiencies, which would greatly reduce the mass and cost of the required radioisotope heat source. Those attributes are particularly important for the PFF mission, which—like all NASA missions under current consideration—is severely mass- and cost-limited. The paper describes the design of the radioisotope heat source, the thermophotovoltaic converter, and the heat rejection system; and depicts its integration with the PFF spacecraft. A companion paper presented at this conference presents the results of the thermal, electrical, and structural analysis and the design optimization of the integrated RTPV system. It also discusses the programmatic implications of the analytical results, which

  15. Phenotypic consequences of gene disruption by a balanced de novo translocation involving SLC6A1 and NAA15.

    PubMed

    Pesz, Karolina; Pienkowski, Victor Murcia; Pollak, Agnieszka; Gasperowicz, Piotr; Sykulski, Maciej; Kosińska, Joanna; Kiszko, Magdalena; Krzykwa, Bogusława; Bartnik-Głaska, Magdalena; Nowakowska, Beata; Rydzanicz, Małgorzata; Sasiadek, Maria Małgorzata; Płoski, Rafał

    2018-04-03

    Mapping of de novo balanced chromosomal translocations (BCTs) in patients with sporadic poorly characterized disease(s) is an unbiased method of finding candidate gene(s) responsible for the observed symptoms. We present a paediatric patient suffering from epilepsy, developmental delay (DD) and atrial septal defect IIº (ASD) requiring surgery. Karyotyping indicated an apparently balanced de novo reciprocal translocation 46,XX,t(3;4)(p25.3;q31.1), whereas aCGH did not reveal any copy number changes. Using shallow mate-pair whole genome sequencing and direct Sanger sequencing of breakpoint regions we found that translocation disrupted SLC6A1 and NAA15 genes. Our results confirm two previous reports indicating that loss of function of a single allele of SLC6A1 causes epilepsy. In addition, we extend existing evidence that disruption of NAA15 is associated with DD and with congenital heart defects. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Thermal Analysis of Step 2 GPHS for Next Generation Radioisotope Power Source Missions

    NASA Astrophysics Data System (ADS)

    Pantano, David R.; Hill, Dennis H.

    2005-02-01

    The Step 2 General Purpose Heat Source (GPHS) is a slightly larger and more robust version of the heritage GPHS modules flown on previous Radioisotope Thermoelectric Generator (RTG) missions like Galileo, Ulysses, and Cassini. The Step 2 GPHS is to be used in future small radioisotope power sources, such as the Stirling Radioisotope Generator (SRG110) and the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). New features include an additional central web of Fine Weave Pierced Fabric (FWPF) graphite in the aeroshell between the two Graphite Impact Shells (GIS) to improve accidental reentry and impact survivability and an additional 0.1-inch of thickness to the aeroshell broad faces to improve ablation protection. This paper details the creation of the thermal model using Thermal Desktop and AutoCAD interfaces and provides comparisons of the model to results of previous thermal analysis models of the heritage GPHS. The results of the analysis show an anticipated decrease in total thermal gradient from the aeroshell to the iridium clads compared to the heritage results. In addition, the Step 2 thermal model is investigated under typical SRG110 boundary conditions, with cover gas and gravity environments included where applicable, to provide preliminary guidance for design of the generator. Results show that the temperatures of the components inside the GPHS remain within accepted design limits during all envisioned mission phases.

  17. Diffusion and decay chain of radioisotopes in stagnant water in saturated porous media.

    PubMed

    Guzmán, Juan; Alvarez-Ramirez, Jose; Escarela-Pérez, Rafael; Vargas, Raúl Alejandro

    2014-09-01

    The analysis of the diffusion of radioisotopes in stagnant water in saturated porous media is important to validate the performance of barrier systems used in radioactive repositories. In this work a methodology is developed to determine the radioisotope concentration in a two-reservoir configuration: a saturated porous medium with stagnant water is surrounded by two reservoirs. The concentrations are obtained for all the radioisotopes of the decay chain using the concept of overvalued concentration. A methodology, based on the variable separation method, is proposed for the solution of the transport equation. The novelty of the proposed methodology involves the factorization of the overvalued concentration in two factors: one that describes the diffusion without decay and another one that describes the decay without diffusion. It is possible with the proposed methodology to determine the required time to obtain equal injective and diffusive concentrations in reservoirs. In fact, this time is inversely proportional to the diffusion coefficient. In addition, the proposed methodology allows finding the required time to get a linear and constant space distribution of the concentration in porous mediums. This time is inversely proportional to the diffusion coefficient. In order to validate the proposed methodology, the distributions in the radioisotope concentrations are compared with other experimental and numerical works. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Improvement of Nicotinic Acid and Nicotinamide Analysis in Meats and Meat Products by HPLC and LC-MS/MS with Solid-Phase Extraction.

    PubMed

    Hiki, Asako; Yamajima, Yukiko; Uematsu, Yoko

    2016-01-01

    A method for nicotinic acid (NA) and nicotinamide (NAA) analysis in meats was developed. NA and NAA were extracted from meats or meat products with metaphosphate aqueous solution. The extract was cleaned up with an Oasis MCX cartridge. The cartridge was washed with 2% acetic acid (v/v) and acetic acid-methanol solution. NA and NAA were eluted with ammonia-methanol solution. NA and NAA in the eluate were chromatographed on a Scherzo SM-C18 (3.0×150 mm, 3.0 μm) column with 20 mmol/L ammonium acetate containing 0.1% acetic acid-acetonitrile (97 : 3) as a mobile phase and were monitored at 261 nm. Quantification was performed by LC and LC-MS/MS. Calibration curves showed high linearity (correlation coefficient>0.998) between 1-25 μg/mL for LC and LC-MS/MS. Recoveries were 84-108% (CV≦5.8%) by HPLC and 79-105% (CV≦9.0%) by LC-MS/MS. The limit of quantitation for NA was 0.005-0.01 g/kg and that for NAA was 0.01-0.02 g/kg.

  19. [Impacts of electroacupuncture on left hippocampus NAA/Cr for patients of Uygur and Han nationality with mild cognitive impairment].

    PubMed

    Liu, Zhi-Yan; Guo, Hui; Zhang, Xiao-Lin; Liu, Juan; Qu, Hong-Yan; Peng, Wei; Bao, Yi-Mei; Yin, Li-Li; Song, Yi-Xing

    2011-09-01

    To observe the clinical efficacy of electroacupuncture (EA) on mild cognitive impairment (MCI) for patients of Uygur and Han nationality and explore the national diversity among the patients with MCI. Twenty-five cases were divided into Han nationality group (15 cases) and Uygur nationality group (10 cases) according to patient's nationality. In either group, EA was applied to Baihui (GV 20), Fengchi (GB 20), Xuanzhong (GB 39), Fuliu (KI 7), Sanyinjiao (SP 6) and Taixi (KI 3), once per day, 15 treatments made one session and there were 5 days at the interval among the sessions. Totally, 3 sessions of treatment were required. The proton magnetic resonance spectroscopy (1H-MRS) was used to observe the changes in the ratio of N-acetylaspartate and creatine (NAA/Cr) on the left hippocampus for the patients in two groups before and after treatment as well as the changes in the results of the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) separately. NAA/Cr in Uygur nationality group was higher than that in Han nationality group before treatment (1.659 +/- 0.418 vs 1.137 +/- 0.190, P < 0.05). After treatment, MMSE and MoCA scores all increased apparently as compared with those before treatment in two groups (P < 0.05, P < 0.01), and NAA/Cr on the left hippocampus in either group was up-regulated as compared with that before treatment (both P < 0.01). EA can improve the overall cognitive function for the patients with MCI. There is the national diversity in the partial brain metabolite level between Uygur patients and Han patients with MCI.

  20. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  1. Cancer-specific production of N-acetylaspartate via NAT8L overexpression in non-small cell lung cancer and its potential as a circulating biomarker

    PubMed Central

    Lou, Tzu-Fang; Sethuraman, Deepa; Dospoy, Patrick; Srivastva, Pallevi; Kim, Hyun Seok; Kim, Joongsoo; Ma, Xiaotu; Chen, Pei-Hsuan; Huffman, Kenneth E.; Frink, Robin E.; Larsen, Jill E.; Lewis, Cheryl; Um, Sang-Won; Kim, Duk-Hwan; Ahn, Jung-Mo; DeBerardinis, Ralph J.; White, Michael A.; Minna, John D.; Yoo, Hyuntae

    2015-01-01

    In order to identify new cancer-associated metabolites that may be useful for early detection of lung cancer, we performed a global metabolite profiling of a non-small cell lung cancer (NSCLC) line and immortalized normal lung epithelial cells from the same patient. Among several metabolites with significant cancer/normal differences, we identified a unique metabolic compound, N-acetylaspartate (NAA) in cancer cells — undetectable in normal lung epithelium. NAA’s cancer-specific detection was validated in additional cancer and control lung cells as well as selected NSCLC patient tumors and control tissues. NAA’s cancer-specificity was further supported in our analysis of NAA synthetase (gene symbol: NAT8L) gene expression levels in The Cancer Genome Atlas: elevated NAT8L expression in approximately 40% of adenocarcinoma and squamous cell carcinoma cases (N=577), with minimal expression in all non-malignant lung tissues (N=74). We then showed that NAT8L is functionally involved in NAA production of NSCLC cells through siRNA-mediated suppression of NAT8L, which caused selective reduction of intracellular and secreted NAA. Our cell culture experiments also indicated that NAA biosynthesis in NSCLC cells depends on glutamine availability. For preliminary evaluation of NAA’s clinical potential as a circulating biomarker, we developed a sensitive NAA blood assay and found that NAA blood levels were elevated in 46% of NSCLC patients (N=13) in comparison with age-matched healthy controls (N=21) among individuals aged 55 years or younger. Taken together, these results indicate that NAA is produced specifically in NSCLC tumors through NAT8L overexpression and its extracellular secretion can be detected in blood. PMID:26511490

  2. Single-walled carbon nanotube film-silicon heterojunction radioisotope betavoltaic microbatteries

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Chang, Yiyang; Zhang, Jinwen

    2014-05-01

    Ever since the appearance of nanomaterials and nanotechnologies, they have been used in almost every type of microbattery except for nuclear ones. Here we present a radioisotope betavoltaic (BV) microbattery based on a single-walled carbon nanotube (SWCNT) film that acts as a carrier separator. SWCNT film also provides a shortcut for carrier transportation. The energy conversion efficiency of a BV microbattery can reach up to 0.15% after the subtraction of the energy loss of beta particles in air and SWCNT film, proving that the SWCNT film-silicon heterojunction presents a promising configuration suitable for use in radioisotope BV microbatteries. Tracing the particle route, we achieved a charge collection rate of 59.9%, indicating that our device could potentially achieve higher performance. Primary strategies to improve the performance of the BV microbattery are discussed.

  3. Recoil-Implantation Of Multiple Radioisotopes Towards Wear Rate Measurements And Particle Tracing In Prosthetic Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Jacob A.; Timmers, Heiko; Smith, Paul N.

    2011-06-01

    This study demonstrates a new method of radioisotope labeling of ultra-high molecular weight polyethylene inserts in prosthetic joints for wear studies. The radioisotopes {sup 97}Ru, {sup 100}Pd, {sup 100}Rh, and {sup 101m}Rh are produced in fusion evaporation reactions induced by {sup 12}C ions in a {sup 92}Zr target foil. The fusion products recoil-implant into ultra-high molecular weight polyethylene plugs, machined to fit into the surface of the inserts. During laboratory simulations of the joint motion, a wear rate of the labeled polyethylene may be measured and the pathways of wear debris particles can be traced by detecting characteristic gamma-rays. Themore » concentration profiles of the radioisotopes extend effectively uniformly from the polyethylene surface to a depth of about 4 {mu}m. The multiplicity of labeling and the use of several gamma-ray lines aids with avoiding systematic measurement uncertainties. Two polyethylene plugs were labeled and one was fitted into the surface of the tibial insert of a knee prosthesis, which had been worn in. Actuation over close to 100,000 cycles with a 900 N axial load and a 24 deg. flexion angle removed (14{+-}1)% of the gamma-ray activity from the plug. Most of this activity dispersed into the serum lubricant identifying this as the important debris pathway. Less than 1% activity was transferred to the femoral component of the prosthesis and the measured activity on the tibial tray was insignificant. Assuming uniform wear across the superior surface of the insert, a wear rate of (12{+-}3) mm{sup 3}/Megacycle was determined. This is consistent with wear rate measurements under similar conditions using other techniques.« less

  4. Evaluation of neutron sources for ISAGE-in-situ-NAA for a future lunar mission.

    PubMed

    Li, X; Breitkreutz, H; Burfeindt, J; Bernhardt, H-G; Trieloff, M; Hopp, J; Jessberger, E K; Schwarz, W H; Hofmann, P; Hiesinger, H

    2011-11-01

    For a future Moon landing, a concept for an in-situ NAA involving age determination using the (40)Ar-(39)Ar method is developed. A neutron source (252)Cf is chosen for sample irradiation on the Moon. A special sample-in-source irradiation geometry is designed to provide a homogeneous distribution of neutron flux at the irradiation position. Using reflector, the neutron flux is likely to increase by almost 200%. Sample age of 1Ga could be determined. Elemental analysis using INAA is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Comparison of flow cytometry and immunohistochemistry in non-radioisotopic murine lymph node assay using bromodeoxyuridine.

    PubMed

    Jung, Kyoung-Mi; Bae, Il-Hong; Kim, Bae-Hwan; Kim, Wang-Ki; Chung, Jin-Ho; Park, Young-Ho; Lim, Kyung-Min

    2010-02-01

    Non-radioisotopic local lymph node assay (LLNA) employing 5-bromo-2'-deoxyuridine (BrdU) with flow cytometry (FACS) or immunohistochemistry (IHC) is gaining attention due to a regulatory issue of using radioisotope, (3)H-thymidine, in vivo in traditional LLNA. In this study, to compare the performance of these non-radioisotopic endpoints, 7 chemicals with known sensitizing potencies were examined in LLNA. Mice were topically treated with chemicals or vehicle on both ears for 3 days. After intraperitoneal injection of BrdU, bilateral lymph nodes were isolated separately and undergone respectively, FACS or IHC to determine BrdU incorporated lymph node cells (LNCs). Weight and histology of treated ears were also examined to evaluate chemical-induced edema and irritation. Both FACS and IHC could successively identify the skin sensitizers from non-sensitizers. Comparison of FACS and IHC with traditional LLNA revealed that FACS has a higher sensitivity although both assays produced comparable sensitivity and performance to traditional LLNA. In conclusion, non-radioisotopic LLNA using FACS and IHC can successfully detect sensitizers with a good correlation to traditional LLNA. Notably, FACS showed almost equivalent sensitivity and accuracy to traditional LLNA. 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Rhenium Radioisotopes for Therapeutic Radiopharmaceutical Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beets, A.L.; Knapp, F.F., Jr.; Kropp, J.

    The availability of therapeutic radioisotopes at reasonable costs is important for applications in nuclear medicine, oncology and interventional cardiology, Rhenium-186 (Re-186) and rhenium-1 88 (Re-188) are two reactor-produced radioisotope which are attractive for a variety of therapeutic applications, Rhenium-186 has a half-life of 90 hours and decays with emission of a &particle with a maximum energy of 1.08 MeV and a 135 keV (9Yo) gamma which permits imaging. In contrast, Re- 188 has a much shorter half-life of 16.9 hours and emits a p-particle with a much higher energy of 2.12 MeV (Em=) and a 155 keV gamma photon (15Yo)more » for imaging. While Re-186 is unavailable from a generator system and must be directly produced in a nuclear reactor, Re-188 can also be directly produced in a reactor with high specific activity, but is more conveniently and cost-effectively available as carrier-free sodium perrhenate by saline elution of the alumina-based tungsten-188 (W1 88)/Re-l 88 generator system [1-2]. Since a comprehensive overviewofRe-186 and Re-188 therapeutic agents is beyond the scope of this &tended Abstrac4 the goal is to provide key examples of various agents currently in clinical use and those which are being developed for important clinical applications.« less

  7. Radioisotope thermal photovoltaic application of the GaSb solar cell

    NASA Technical Reports Server (NTRS)

    Morgan, M. D.; Horne, W. E.; Day, A. C.

    1991-01-01

    An examination of a RTVP (radioisotopic thermophotovoltaic) conceptual design has shown a high potential for power densities well above those achievable with radioisotopic thermoelectric generator (RTG) systems. An efficiency of 14.4 percent and system specific power of 9.25 watts/kg were predicted for a system with sixteen GPHS (general purpose heat source) sources operating at 1100 C. The models also showed a 500 watt system power by the strontium-90 isotope at 1200 C at an efficiency of 17.0 percent and a system specific power of 11.8 watts/kg. The key to this level of performance is a high-quality photovoltaic cell with narrow bandgap and a reflective rear contact. Recent work at Boeing on GaSb cells and transparent back GaAs cells indicate that such a cell is well within reach.

  8. Radioisotope identification method for poorly resolved gamma-ray spectrum of nuclear security concern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninh, Giang Nguyen; Phongphaeth, Pengvanich, E-mail: phongphaeth.p@chula.ac.th; Nares, Chankow

    Gamma-ray signal can be used as a fingerprint for radioisotope identification. In the context of radioactive and nuclear materials security at the border control point, the detection task can present a significant challenge due to various constraints such as the limited measurement time, the shielding conditions, and the noise interference. This study proposes a novel method to identify the signal of one or several radioisotopes from a poorly resolved gamma-ray spectrum. In this method, the noise component in the raw spectrum is reduced by the wavelet decomposition approach, and the removal of the continuum background is performed using the baselinemore » determination algorithm. Finally, the identification of radioisotope is completed using the matrix linear regression method. The proposed method has been verified by experiments using the poorly resolved gamma-ray signals from various scenarios including single source, mixing of natural uranium with five of the most common industrial radioactive sources (57Co, 60Co, 133Ba, 137Cs, and 241Am). The preliminary results show that the proposed algorithm is comparable with the commercial method.« less

  9. Technology Development for a Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Qiu, Songgang; White, Maurice A.

    2000-01-01

    NASA Glenn Research Center and the Department of Energy are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA Glenn is addressing key technology issues through the use of two NASA Phase II SBIRs with Stirling Technology Company (STC) of Kennewick, WA. Under the first SBIR, STC demonstrated a synchronous connection of two thermodynamically independent free-piston Stirling convertors and a 40 to 50 fold reduction in vibrations compared to an unbalanced convertor. The second SBIR is for the development of an Adaptive Vibration Reduction System (AVRS) that will essentially eliminate vibrations over the mission lifetime, even in the unlikely event of a failed convertor. This paper presents the status and results for these two SBIR projects and also discusses a new NASA Glenn in-house project to provide supporting technology for the overall Stirling radioisotope power system development. Tasks for this new effort include convertor performance verification, controls development, heater head structural life assessment, magnet characterization and thermal aging tests, FEA analysis for a lightweight alternator concept, and demonstration of convertor operation under launch and orbit transfer load conditions.

  10. Utilizing Radioisotope Power Systems for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schreiner, Timothy M.

    2005-01-01

    The Vision for Space Exploration has a goal of sending crewed missions to the lunar surface as early as 2015 and no later than 2020. The use of nuclear power sources could aid in assisting crews in exploring the surface and performing In-Situ Resource Utilization (ISRU) activities. Radioisotope Power Systems (RPS) provide constant sources of electrical power and thermal energy for space applications. RPSs were carried on six of the crewed Apollo missions to power surface science packages, five of which still remain on the lunar surface. Future RPS designs may be able to play a more active role in supporting a long-term human presence. Due to its lower thermal and radiation output, the planned Stirling Radioisotope Generator (SRG) appears particularly attractive for manned applications. The MCNPX particle transport code has been used to model the current SRG design to assess its use in proximity with astronauts operating on the surface. Concepts of mobility and ISRU infrastructure were modeled using MCNPX to analyze the impact of RPSs on crewed mobility systems. Strategies for lowering the radiation dose were studied to determine methods of shielding the crew from the RPSs.

  11. Reversible emission evolution from Ag activated zeolite Na-A upon dehydration/hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hui, E-mail: linh8112@163.com, E-mail: fujii@eedept.kobe-u.ac.jp; Imakita, Kenji; Fujii, Minoru, E-mail: linh8112@163.com, E-mail: fujii@eedept.kobe-u.ac.jp

    2014-11-24

    Reversible emission evolution of thermally treated Ag activated zeolite Na-A upon dehydration/hydration in vacuum/water vapor was observed. The phenomenon was observed even for the sample with low Ag{sup +}-Na{sup +} exchanging (8.3%), indicating that the emission from Ag activated zeolites may not come from Ag clusters while from the surrounding coordinated Ag{sup +} ions or Ag{sup 0} atoms. It was disclosed that the characteristic yellow-green emission at ∼560 ± 15 nm is strongly associated with the coordinating water molecules to the Ag{sup +} ions or Ag{sup 0} atoms, which is clear evidence for that the efficient emission from Ag activated zeolites may notmore » originate from the quantum confinement effect.« less

  12. COMPASS Final Report: Radioisotope Electric Propulsion (REP) Centaur Orbiter New Frontiers Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    Radioisotope Electric Propulsion (REP) has been shown in past studies to enable missions to outer planetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass Radioisotope Power System (RPS) and light spacecraft (S/C) components. In order to determine the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers (NF) cost cap. The design shows that an orbiter using several long lived (approx.200 kg xenon (Xe) throughput), low power (approx.700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the NF cost cap. Optimal specific impulses (Isp) for the Hall thrusters were found to be around 2000 s with thruster efficiencies over 40 percent. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be used to enhance science and simplify communications. The mission design detailed in this report is a Radioisotope Power System (RPS) powered EP science orbiter to the Centaur Thereus with arrival 10 yr after launch, ending in a 1 yr science mapping mission. Along the trajectory, approximately 1.5 yr into the mission, the REP S/C does a flyby of the Trojan asteroid Tlepolemus. The total (Delta)V of the trajectory is 8.9 km/s. The REP S/C is delivered to orbit on an Atlas 551 class launch vehicle with a Star 48 B solid rocket stage

  13. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  14. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, Alfred

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Specialmore » Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 2 copies in the file.« less

  15. Anthropogenic radioisotopes to estimate rates of soil redistribution by wind

    USDA-ARS?s Scientific Manuscript database

    Erosion of soil by wind and water is a degrading process that affects millions of hectares worldwide. Atmospheric testing of nuclear weapons and the resulting fallout of anthropogenic radioisotopes, particularly Cesium 137, has made possible the estimation of mean soil redistribution rates. The pe...

  16. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  17. Analysis of a Radioisotope Thermal Rocket Engine

    NASA Technical Reports Server (NTRS)

    Machado-Rodriguez, Jonathan P.; Landis, Geoffrey A.

    2017-01-01

    The Triton Hopper is a concept for a vehicle to explore the surface of Neptunes moon Triton, which uses a radioisotope heated rocket engine and in-situ propellant acquisition. The initial Triton Hopper conceptual design stores pressurized Nitrogen in a spherical tank to be used as the propellant. The aim of the research was to investigate the benefits of storing propellant at ambient temperature and heating it through a thermal block during engine operation, as opposed to storing gas at a high temperature.

  18. INVESTIGATIONS ON BABIES AND EXPECTANT MOTHERS WITH REDUCED DOSES OF RADIOISOTOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosain, F.

    1960-02-01

    Sensitive instruments, low-level counting devices, and short-lived isotopes are recommended for diagnostic tracer studies with radioisotopes in babies and expectant, mothers. Results are tabulated from studies using iodine131 and iron-59. (C.H.)

  19. Radioisotope Concentration in Lake Sediments of Maracaibo, Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas, A. Rangel; Viloria, T.; Sajo-Bohus, L.

    2007-10-26

    Maracaibo Lake is one of the most important water basing and oil producing regions in Venezuela. Changes in the local environment have been monitored for chemical pollution in the past. For this study we selected a set of sediment samples collected in the shore and analyzed for its radioisotope content. Results show the gamma emitting isotopes distribution. Isotopes concentrations have been determined within the natural K, Th and U families.

  20. REDUCTION OF DOSES IN DIAGNOSTIC USES OF RADIOISOTOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosain, F.

    1960-03-01

    > A moderately low-level counting technique with anticoincidence gas- flow counter was developed for use in metabolic and diagnostic tracer studies with radioisotopes. Several important experiments and results were reported which have been carried out with reduced doses of tracer isotopes. A reduction of the tracer dose of ahout 1/30th of the present conventional doses was achieved which helps to minimize the chances of radiation hazards. (auth)

  1. The Synthesis of Proteins-A Simple Experiment To Show the Procedures and Problems of Using Radioisotopes in Biochemical Studies

    NASA Astrophysics Data System (ADS)

    Hawcroft, David M.

    1996-11-01

    Courses of organic chemistry frequently include studies of biochemistry and hence of biochemical techniques. Radioisotopes have played a major role in the understanding of metabolic pathways, transport, enzyme activity and other processes. The experiment described in this paper uses simple techniques to illustrate the procedures involved in working with radioisotopes when following a simplified metabolic pathway. Safety considerations are discussed and a list of safety rules is provided, but the experiment itself uses very low levels of a weak beta-emitting isotope (tritium). Plant material is suggested to reduce legal, financial and emotive problems, but the techniques are applicable to all soft-tissued material. The problems involved in data interpretation in radioisotope experiments resulting from radiation quenching are resolved by simple correction calculations, and the merits of using radioisotopes shown by a calculation of the low mass of material being measured. Suggestions for further experiments are given.

  2. High efficiency β radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics

    NASA Astrophysics Data System (ADS)

    Duggirala, Rajesh; Li, Hui; Lal, Amit

    2008-04-01

    We demonstrate a 5.1% energy conversion efficiency Ni63 radioisotope power generator by integrating silicon betavoltaic converters with radioisotope actuated reciprocating piezoelectric unimorph cantilever converters. The electromechanical energy converter efficiently utilizes both the kinetic energy and the electrical charge of the 0.94μW β radiation from a 9mCi Ni63 thin film source to generate maximum (1) continuous betavoltaic electrical power output of 22nW and (2) pulsed piezoelectric electrical power output of 750μW at 0.07% duty cycle. The electromechanical converters can be potentially used to realize 100year lifetime power sources for powering periodic sampling remote wireless sensor microsystems.

  3. NASA's Radioisotope Power Systems - Plans

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Mccallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2015-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements.

  4. Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, western interior Basin, USA

    USGS Publications Warehouse

    Meyers, S.R.; Siewert, S.E.; Singer, B.S.; Sageman, B.B.; Condon, D.J.; Obradovich, J.D.; Jicha, B.R.; Sawyer, D.A.

    2012-01-01

    We develop an intercalibrated astrochronologic and radioisotopic time scale for the Cenomanian-Turonian boundary (CTB) interval near the Global Stratotype Section and Point in Colorado, USA, where orbitally influenced rhythmic strata host bentonites that contain sanidine and zircon suitable for 40Ar/ 39Ar and U-Pb dating. Paired 40Ar/ 39Ar and U-Pb ages are determined from four bentonites that span the Vascoceras diartianum to Pseudaspidoceras flexuosum ammonite biozones, utilizing both newly collected material and legacy sanidine samples of J. Obradovich. Comparison of the 40Ar/ 39Ar and U-Pb results underscores the strengths and limitations of each system, and supports an astronomically calibrated Fish Canyon sanidine standard age of 28.201 Ma. The radioisotopic data and published astrochronology are employed to develop a new CTB time scale, using two statistical approaches: (1) a simple integration that yields a CTB age of 93.89 ?? 0.14 Ma (2??; total radioisotopic uncertainty), and (2) a Bayesian intercalibration that explicitly accounts for orbital time scale uncertainty, and yields a CTB age of 93.90 ?? 0.15 Ma (95% credible interval; total radioisotopic and orbital time scale uncertainty). Both approaches firmly anchor the floating orbital time scale, and the Bayesian technique yields astronomically recalibrated radioisotopic ages for individual bentonites, with analytical uncertainties at the permil level of resolution, and total uncertainties below 2???. Using our new results, the duration between the Cenomanian-Turonian and the Cretaceous-Paleogene boundaries is 27.94 ?? 0.16 Ma, with an uncertainty of less than one-half of a long eccentricity cycle. ?? 2012 Geological Society of America.

  5. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2014-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center (GRC). While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA GRC. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  6. Effect of Bilateral Prefrontal rTMS on Left Prefrontal NAA and Glx Levels in Schizophrenia Patients with Predominant Negative Symptoms: An Exploratory Study.

    PubMed

    Dlabac-de Lange, Jozarni J; Liemburg, Edith J; Bais, Leonie; van de Poel-Mustafayeva, Aida T; de Lange-de Klerk, Elly S M; Knegtering, Henderikus; Aleman, André

    Prefrontal repetitive Transcranial Magnetic Stimulation (rTMS) may improve negative symptoms in patients with schizophrenia, but few studies have investigated the underlying neural mechanism. This study aims to investigate changes in the levels of glutamate and glutamine (Glx, neurotransmitter and precursor) and N-Acetyl Aspartate (NAA) in the left dorsolateral prefrontal cortex of patients with schizophrenia treated with active bilateral prefrontal rTMS as compared to sham-rTMS, as measured with 1 H-Magnetic Resonance Spectroscopy ( 1 H-MRS). Patients were randomized to a 3-week course of active or sham high-frequency rTMS. Pre-treatment and post-treatment 1 H-MRS data were available for 24 patients with schizophrenia with moderate to severe negative symptoms (Positive and Negative Syndrome Scale (PANSS) negative subscale ≥ 15). Absolute metabolite concentrations were calculated using LCModel with the water peak as reference. To explore the association between treatment condition and changes in concentration of Glx and NAA, we applied a linear regression model. We observed an increase of Glx concentration in the active treatment group and a decrease of Glx concentration in the group receiving sham treatment. The association between changes in Glx concentration and treatment condition was significant. No significant associations between changes in NAA and treatment condition were found. Noninvasive neurostimulation with high-frequency bilateral prefrontal rTMS may influence Glx concentration in the prefrontal cortex of patients with schizophrenia. Larger studies are needed to confirm these findings and further elucidate the underlying neural working mechanism of rTMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Silicon Carbide Radioisotope Batteries

    NASA Technical Reports Server (NTRS)

    Rybicki, George C.

    2005-01-01

    The substantial radiation resistance and large bandgap of SiC semiconductor materials makes them an attractive candidate for application in a high efficiency, long life radioisotope battery. To evaluate their potential in this application, simulated batteries were constructed using SiC diodes and the alpha particle emitter Americium Am-241 or the beta particle emitter Promethium Pm-147. The Am-241 based battery showed high initial power output and an initial conversion efficiency of approximately 16%, but the power output decayed 52% in 500 hours due to radiation damage. In contrast the Pm-147 based battery showed a similar power output level and an initial conversion efficiency of approximately 0.6%, but no degradation was observed in 500 hours. However, the Pm-147 battery required approximately 1000 times the particle fluence as the Am-242 battery to achieve a similar power output. The advantages and disadvantages of each type of battery and suggestions for future improvements will be discussed.

  8. Peace propaganda and biomedical experimentation: influential uses of radioisotopes in endocrinology and molecular genetics in Spain (1947-1971).

    PubMed

    Santesmases, María Jesús

    2006-01-01

    A political discourse of peace marked the distribution and use of radioisotopes in biomedical research and in medical diagnosis and therapy in the post-World War II period. This occurred during the era of expansion and strengthening of the United States' influence on the promotion of sciences and technologies in Europe as a collaborative effort, initially encouraged by the policies and budgetary distribution of the Marshall Plan. This article follows the importation of radioisotopes by two Spanish research groups, one in experimental endocrinology and one in molecular biology. For both groups foreign funds were instrumental in the early establishment of their laboratories. The combination of funding and access to previously scarce radioisotopes helped position these groups at the forefront of research in Spain.

  9. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Geng, Steven M.; Schrieber, Jeffrey G.; Tobery, E. Wayne; Palko, Joseph L.

    2005-01-01

    One of the advantages of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used to maintain electronic components within a controlled temperature range, to warm propulsion tanks and mobility actuators, and to gasify liquid propellants. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated a very large quantity of waste heat due to the relatively low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-watt Stirling Radioisotope Generator (SRG110) will have much higher conversion efficiencies than their predecessors and therefore may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of approx. 6 to 7% and 200 C housing surface temperatures, would need to use large and heavy radiator heat exchangers to transfer the waste heat to the internal spacecraft components. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation by using the heat exchangers or additional shields. The SRG110, with an efficiency around 22% and 50 C nominal housing surface temperature, can use the available waste heat more efficiently by more direct heat transfer methods such as heat pipes, thermal straps, or fluid loops. The lower temperatures allow the SRG110 much more flexibility to the spacecraft designers in configuring the generator without concern of overheating nearby scientific instruments, thereby eliminating the need for thermal shields. This paper will investigate using a high efficiency SRG110 for spacecraft thermal management and outline potential methods in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander) to illustrate the advantages with regard to ease of assembly, less complex interfaces, and overall mass savings.

  10. Milliwatt radioisotope power supply for the PASCAL Mars surface stations

    NASA Astrophysics Data System (ADS)

    Allen, Daniel T.; Murbach, Marcus S.

    2001-02-01

    A milliwatt power supply is being developed based on the 1 watt Light-Weight Radioisotope Heater Unit (RHU), which has already been used to provide heating alone on numerous spacecraft. In the past year the power supply has been integrated into the design of the proposed PASCAL Mars Network Mission, which is intended to place 24 surface climate monitoring stations on Mars. The PASCAL Mars mission calls for the individual surface stations to be transported together in one spacecraft on a trajectory direct from launch to orbit around Mars. From orbit around Mars each surface station will be deployed on a SCRAMP (slotted compression ramp) probe and, after aerodynamic and parachute deceleration, land at a preselected location on the planet. During descent sounding data and still images will be accumulated, and, once on the surface, the station will take measurements of pressure, temperature and overhead atmospheric optical depth for a period of 10 Mars years (18.8 Earth years). Power for periodic data acquisition and transmission to orbital then to Earth relay will come from a bank of ultracapacitors which will be continuously recharged by the radioisotope power supply. This electronic system has been designed and a breadboard built. In the ultimate design the electronics will be arrayed on the exterior surface of the radioisotope power supply in order to take advantage of the reject heat. This assembly in turn is packaged within the SCRAMP, and that assembly comprises the surface station. An electrically heated but otherwise prototypical power supply was operated in combination with the surface station breadboard system, which included the ultracapacitors. Other issues addressed in this work have been the capability of the generator to withstand the mechanical shock of the landing on Mars and the effectiveness of the generator's multi-foil vacuum thermal insulation. .

  11. Analysis of ZDDP Content and Thermal Decomposition in Motor Oils Using NAA and NMR

    NASA Astrophysics Data System (ADS)

    Ferguson, S.; Johnson, J.; Gonzales, D.; Hobbs, C.; Allen, C.; Williams, S.

    Zinc dialkyldithiophosphates (ZDDPs) are one of the most common anti-wear additives present in commercially-available motor oils. The ZDDP concentrations of motor oils are most commonly determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). As part of an undergraduate research project, we have determined the Zn concentrations of eight commercially-available motor oils and one oil additive using neutron activation analysis (NAA), which has potential for greater accuracy and less sensitivity to matrix effects as compared to ICP-AES. The 31P nuclear magnetic resonance (31P-NMR) spectra were also obtained for several oil additive samples which have been heated to various temperatures in order to study the thermal decomposition of ZDDPs.

  12. Advanced Stirling Radioisotope Generator EU2 Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2016-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically-heated Stirling radioisotope generator built to date. NASA Glenn Research Center (GRC) completed the assembly of the ASRG EU2 in September, 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's ASC-E3 Stirling convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's Engineering Development Unit (EDU) 4 controller. After just 179 hours of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hours later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January, 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from GRC, Sunpower, and Lockheed Martin conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  13. Radioactive by-products of a self-shielded cyclotron and the liquid target system for F-18 routine production.

    PubMed

    Kambali, I; Suryanto, H; Parwanto

    2016-06-01

    Routine production of F-18 radionuclide using proton beams accelerated in a cyclotron could potentially generate residual radioisotopes in the cyclotron vicinity which eventually become major safety concerns over radiation exposure to the workers. In this investigation, a typical 11-MeV proton, self-shielded cyclotron has been assessed for its residual radiation sources in the cyclotron's shielding, tank/chamber, cave wall as well as target system. Using a portable gamma ray spectroscopy system, the radiation measurement in the cyclotron environment has been carried out. Experimental results indicate that relatively long-lived radioisotopes such as Mn-54, Zn-65 and Eu-152 are detected in the inner and outer surface of the cyclotron shielding respectively while Mn-54 spectrum is observed around the cyclotron chamber. Weak intensity of Eu-152 radioisotope is again spotted in the inner and outer surface of the cyclotron cave wall. Angular distribution measurement of the Eu-152 shows that the intensity slightly drops with increasing observation angle relative to the proton beam incoming angle. In the target system, gamma rays from Co-56, Mn-52, Co-60, Mn-54, Ag-110 m are identified. TALYS-calculated nuclear cross-section data are used to study the origins of the radioactive by-products.

  14. Status of the NASA Stirling Radioisotope Project

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2007-01-01

    Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines that used linkages and rotary alternators to convert heat to electricity. These systems were able to achieve long life by lightly loading the linkages; however, the live was nonetheless limited. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability based on wear-free operation. These features have consistently been recognized by teams that have studied technology options for radioisotope space power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: hardware that has demonstrated long-life and reliability, the success achieved by Stirling cryocoolers in space, and the overall developmental maturity of the technology for both space and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for space power, and for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status of development with regard to space power, and discuss the challenges that remain.

  15. Usage of Multi-Mission Radioisotope Thermoelectric Generators (MMRTGs) for Future Potential Missions

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Cairns-Gallimore, Dirk; Otting, Bill; Johnson, Steve; Woerner, Dave

    2016-01-01

    The goal of NASAs Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), evaluates the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This presentation focuses on the needs of the mission community and provides users a better understanding of how to integrate the MMRTG (Multi-Mission Radioisotope Thermoelectric Generator).

  16. Advantage of using CBA/N strain mice in a non-radioisotopic modification of the local lymph node assay.

    PubMed

    Takeyoshi, Masahiro; Noda, Shuji; Yamasaki, Kanji; Kimber, Ian

    2006-01-01

    The murine local lymph node assay (LLNA) is currently recognized as a stand-alone test method for determining the skin sensitizing potential of chemicals. It has been incorporated into the official test guidelines published by some authorities, including the OECD. To avoid the use of radioisotopes, efforts have been made recently to develop non-radioisotopic modifications of the LLNA. A non-radioisotopic modification of the LLNA was developed previously using 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA). However, the non-RI LLNA was found to be somewhat less sensitive than the standard assay. This study reports the advantage of using mice of the CBA/N strain in the non-RI LLNA to improve the sensitivity of this method. The non-RI LLNA was performed using CBA/JN and CBA/N mice exposed to one of four confirmed skin sensitizers, 2,4-dinitrochlorobenzene (DNCB), eugenol (EG), isoeugenol (IEG) or alpha-hexylcinnamic aldehyde (HCA), and to one non-sensitizer, propylene glycol (PG). The EC3 values for DNCB, IEG, EG, HCA and PG were calculated to be 0.1%, 9.6%, 40.6%, 45.5% and >50% in CBA/JN mice and 0.08%, 1.9%, 10.7%, 20.3% and >50% in CBA/N mice, respectively. The EC3 values for DNCB, IEG, EG, HCA and PG in the standard LLNA using CBA/Ca mice and radioisotopes were reported elsewhere as being 0.08%, 1.3%, 13.0%, 8.0% and >50%, respectively. The EC3 values derived from the CBA/N mice in the non-RI LLNA were nearly equivalent to the EC3 values obtained using the standard radioisotopic LLNA with CBA/Ca mice. These data suggest that the use of CBA/N mice may provide a realistic opportunity to develop a version of the LLNA that does not have a requirement for the use of radioisotopes, but which nevertheless has sensitivity approaching, or comparable to, the standard method. 2005 John Wiley & Sons, Ltd.

  17. RADIOISOTOPES USED IN PHARMACY. 5. IONIZING RADIATION IN PHARMACEUTICAL ANALYSIS (in Danish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristensen, K.

    1962-09-01

    The use of radioisotope methods for analyzing drugs is reviewed. It is pointed out that heretofore most methods have been based on isotope dilution principles whereas in the future radioactivation analysis, especially with neutron sources, offers great possibilities. (BBB)

  18. Naphthylacetic Acid and Tea Polyphenol Application Promote Biomass and Lipid Production of Nervonic Acid-Producing Microalgae.

    PubMed

    Xu, Feng; Fan, Yong; Miao, Fuhong; Hu, Guang-Rong; Sun, Juan; Yang, Guofeng; Li, Fu-Li

    2018-01-01

    Mychonastes afer HSO-3-1 is a potential producer of nervonic acid, which could be accumulated to 2-3% of dry cell weight. Improving the productivity of nervonic acid is critical to promote the commercialization of this product. In this study, 1-naphthylacetic acid (NAA) and tea polyphenol (TP) were selected as bioactive additives to stimulate the growth of M. afer . Supplementing NAA in the early growth stage and TP in the middle and late growth stage led to improved lipid accumulation in M. afer . The cultures supplemented with TP at the late growth stage maintained higher photosynthetic efficiency than the control groups without TP. Furthermore, the intracellular reactive oxygen species (ROS) accumulations in M. afer supplemented with 500 mg/L of TP was 63% lower than the control group. A linear relationship ( R 2 = 0.899) between the values of Fv/Fm and ROS accumulation was established. We hypothesize supplement of bioactive additives at different growth stage could promote the cell growth rate and nervonic acid productivity of M. afer by retrieving intracellular ROS level. Further analysis of photosynthetic system II (PSII) protein in M. afer cultured in presence of NAA and TP indicated the levels of D1 and D2 proteins, the core skeleton proteins of PSII, showed 33.3 and 25.6% higher than the control group. CP43 protein, a critical module in PSII repair cycle, decreased significantly. These implied that TP possesses the function of slowing down the damage of PSII by scavenging excess intracellular ROS.

  19. Target development for 67Cu, 82Sr radionuclide production at the RIC-80 facility

    NASA Astrophysics Data System (ADS)

    Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Krotov, S. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Volkov, Yu. M.

    2018-01-01

    A high-current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed and commissioned at PNPI (Petersburg Nuclear Physics Institute). One of the main goals of cyclotron C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. To date, the project development of a radioisotope facility RIC-80 (radioisotopes at cyclotron C-80) has been completed. The feature of the project is the use of a mass-separator combined with the ion-target device for obtaining ion beams of radioisotopes with a high purity of separation that is especially important for medical applications. The first results of a new high-temperature method for extracting 82Sr and 67Cu radioisotopes from irradiated targets have been presented.

  20. Radioisotope powered AMTEC systems

    NASA Astrophysics Data System (ADS)

    Ivanenok, Joseph F., III; Sievers, Robert K.

    1994-11-01

    Alkali metal thermal to electric converter (AMTEC) systems are being developed for high performance spacecraft power systems, including small, general purpose heat source (GPHS) powered systems. Several design concepts have been evaluated for the power range from 75 W to 1 kW. The specific power for these concepts has been found to be as high as 18-20 W/kg and 22 kW/m(exp 3). The projected area, including radiators, has been as low as 0.4 m(exp 2)/kW. AMTEC power systems are extremely attractive, relative to other current and projected power systems, because AMTEC offers high power density, low projected area, and low volume. Two AMTEC cell design types have been identified. A single-tube cell is already under development and a multitube cell design, to provide additional power system gains, has undergone proof-of-principle testing. Solar powered AMTEC (SAMTEC) systems are also being developed, and numerous terrestrial applications have been identified for which the same basic AMTEC cells being developed for radioisotope systems are also suitable.

  1. Radioisotope powered AMTEC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.

    1994-11-01

    Alkali metal thermal to electric converter (AMTEC) systems are being developed for high performance spacecraft power systems, including small, general purpose heat source (GPHS) powered systems. Several design concepts have been evaluated for the power range from 75 W to 1 kW. The specific power for these concepts has been found to be as high as 18-20 W/kg and 22 kW/m(exp 3). The projected area, including radiators, has been as low as 0.4 m(exp 2)/kW. AMTEC power systems are extremely attractive, relative to other current and projected power systems, because AMTEC offers high power density, low projected area, and lowmore » volume. Two AMTEC cell design types have been identified. A single-tube cell is already under development and a multitube cell design, to provide additional power system gains, has undergone proof-of-principle testing. Solar powered AMTEC (SAMTEC) systems are also being developed, and numerous terrestrial applications have been identified for which the same basic AMTEC cells being developed for radioisotope systems are also suitable. 35 refs.« less

  2. Lower Choline-Containing Metabolites/Creatine (Cr) Rise and Failure to Sustain NAA/Cr Levels in the Dorsolateral Prefrontal Cortex Are Associated with Depressive Episode Recurrence under Maintenance Therapy: A Proton Magnetic Resonance Spectroscopy Retrospective Cohort Study.

    PubMed

    Henigsberg, Neven; Šarac, Helena; Radoš, Marko; Radoš, Milan; Ozretić, David; Foro, Tamara; Erdeljić Turk, Viktorija; Hrabač, Pero; Bajs Janović, Maja; Rak, Benedict; Kalember, Petra

    2017-01-01

    The aim of this study was to evaluate the relationship between changes in proton magnetic resonance spectroscopy (1H-MRS) parameters at the start of the index episode recovery phase and at recurrence in patients with recurrent depression who were treated with prolonged maintenance therapy. 1H-MRS parameters were analyzed in 48 patients with recurrent depression who required maintenance therapy with antidepressant medication prescribed by a psychiatrist and who continued with the same antidepressant during the maintenance phase, either to recurrence of depression, completion of the 10-year observation period, or the start of the withdrawal phase (tapering-off antidepressant). N-acetylaspartate (NAA), choline-containing metabolites (Cho), creatine (Cr), and glutamine/glutamate were measured at the start of the recovery phase and 6 months later. Recurrent depressive episodes occurred in 20 patients. These individuals had a smaller increase in Cho/Cr after the beginning of the recovery phase compared to the non-recurrent patient group and also exhibited a decreased NAA/Cr ratio. Sustainable NAA and increased Cho levels at the onset of the recovery phase of the index episode are early markers of antidepressant effectiveness associated with a lower risk of major depressive disorder recurrence. The NAA and Cho changes in the non-recurrent group may be attributable to increased brain resilience, contrary to the transient temporal effect observed in subjects who experienced a depressive episode.

  3. RADIOISOTOPES IN MEDICINE AND HUMAN PHYSIOLOGY. A Selected List of References

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, J.A. comp.

    1958-08-01

    This bibliography contains 2862 references on uses of radioisotopes in diagnostic medicine, therapeutic medicine, clinical research, human physiology, general medical research, and immunology. The references were taken from the 1948 to 1956 open literature. A list of the journals from which the references were selected and an author index are included. (auth)'

  4. Radioisotope scanning in osseous sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, P.K.

    1980-01-01

    Technetium-99m (/sup 99m/Tc)-labeled pyrophosphate or diphosphonate compounds and gallium-67 citrate (/sup 67/Ga) are two radionuclide scanning agents that are in widespread use in clinical practice. Technetium-99m pyrophosphate is used extensively for bone scanning to detect metastatic bone disease, benign bone tumors, osteomyelitis, benign hypertrophic osteoarthropathy, and Paget's disease. Only two reports describe abnormal /sup 99m/Tc/ pyrophosphate bone scans in four patients with osseous sarcoidosis. Gallium-67 scans are used primarily to localize neoplastic or inflammatory lesions anywhere in the body. In recent years /sup 67/Ga scans have also been used to detect the presence of both pulmonary and extrapulmonary sarcoidosis, butmore » there are no reports describing abnormal uptake of gallium in patients with osseous sarcoidosis. This report describes experience with radioisotope scanning in two patients with osseous sarcoidosis.« less

  5. Method for fabricating .sup.99 Mo production targets using low enriched uranium, .sup.99 Mo production targets comprising low enriched uranium

    DOEpatents

    Wiencek, Thomas C.; Matos, James E.; Hofman, Gerard L.

    1997-01-01

    A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.

  6. Method for fabricating {sup 99}Mo production targets using low enriched uranium, {sup 99}Mo production targets comprising low enriched uranium

    DOEpatents

    Wiencek, T.C.; Matos, J.E.; Hofman, G.L.

    1997-03-25

    A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate. 3 figs.

  7. Method for fabricating .sup.99 Mo production targets using low enriched uranium, .sup.99 Mo production targets comprising low enriched uranium

    DOEpatents

    Wiencek, Thomas C [Orland Park, IL; Matos, James E [Oak Park, IL; Hofman, Gerard L [Downers Grove, IL

    2000-12-12

    A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.

  8. Science Instrument Sensitivities to Radioisotope Power System Environment

    NASA Technical Reports Server (NTRS)

    Bairstow, Brian; Lee, Young; Smythe, William; Zakrajsek, June

    2016-01-01

    Radioisotope Power Systems (RPS) have been and will be enabling or significantly enhancing for many missions, including several concepts identified in the 2011 Planetary Science Decadal Survey. Some mission planners and science investigators might have concerns about possible impacts from RPS-induced conditions upon the scientific capabilities of their mission concepts. To alleviate these concerns, this paper looks at existing and potential future RPS designs, and examines their potential radiation, thermal, vibration, electromagnetic interference (EMI), and magnetic fields impacts on representative science instruments and science measurements. Radiation impacts from RPS on science instruments are of potential concern for instruments with optical detectors and instruments with high-voltage electronics. The two main areas of concern are noise effects on the instrument measurements, and long-term effects of instrument damage. While RPS by their nature will contribute to total radiation dose, their addition for most missions should be relatively small. For example, the gamma dose rate from one Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) would be an order of magnitude lower than the environmental dose rate at Mars, and would have a correspondingly lower contribution to instrument noise and to any permanent damage to payload sensors. Increasing the number of General Purpose Heat Source (GPHS) modules used in an RPS would be expected to increase the generated radiation proportionally; however, the effect of more GPHS modules is mitigated from a strictly linear relationship by self-shielding effects. The radiation field of an RPS is anisotropic due to the deviation of the modules from a point-source-geometry. For particularly sensitive instruments the total radiation dose could be mitigated with separation or application of spot shielding. Though a new, higher-power RPS could generate more heat per unit than current designs, thermal impact to the flight

  9. NaK Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2008-01-01

    In a Stirling radioisotope power system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides most of this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending use of that convertor for the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling convertor. In the design of the VCHP for the Advanced Stirling Radioisotope Generator, the VCHP reservoir temperature can vary between 40 and 120 C. While sodium, potassium, or cesium could be used as the working fluid, their melting temperatures are above the minimum reservoir temperature, allowing working fluid to freeze in the reservoir. In contrast, the melting point of NaK is -12 C, so NaK can't freeze in the reservoir. One potential problem with NaK as a working fluid is that previous tests with NaK heat pipes have shown that NaK heat pipes can develop temperature non-uniformities in the evaporator due to NaK's binary composition. A NaK heat pipe was fabricated to measure the temperature non-uniformities in a scale model of the VCHP for the Stirling Radioisotope system. The temperature profiles in the evaporator and condenser were measured as a function of operating temperature and power. The largest delta T across the condenser was 2S C. However, the condenser delta T decreased to 16 C for the 775 C vapor temperature at the highest heat flux applied, 7.21 W/ square cm. This decrease with increasing heat flux was caused by the increased mixing of the sodium and potassium in the vapor. This temperature differential is similar to the temperature variation in this ASRG heat transfer interface without a heat pipe, so NaK can be used as the VCHP working fluid.

  10. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.

    2005-01-01

    An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of

  11. A new monitor set for the determination of neutron flux parameters in short-time k0-NAA

    NASA Astrophysics Data System (ADS)

    Kubešová, Marie; Kučera, Jan; Fikrle, Marek

    2011-11-01

    Multipurpose research reactors such as LVR-15 in Řež require monitoring of the neutron flux parameters (f, α) in each batch of samples analyzed when k0 standardization in NAA is to be used. The above parameters may change quite unpredictably, because experiments in channels adjacent to those used for NAA require an adjustment of the reactor operation parameters and/or active core configuration. For frequent monitoring of the neutron flux parameters the bare multi-monitor method is very convenient. The well-known Au-Zr tri-isotopic monitor set that provides a good tool for determining f and α after long-time irradiation is not optimal in case of short-time irradiation because only a low activity of the 95Zr radionuclide is formed. Therefore, several elements forming radionuclides with suitable half-lives and Q0 and Ēr parameters in a wide range of values were tested, namely 198Au, 56Mn, 88Rb, 128I, 139Ba, and 239U. As a result, an optimal mixture was selected consisting of Au, Mn, and Rb to form a well suited monitor set for irradiation at a thermal neutron fluence rate of 3×1017 m-2 s-1. The procedure of short-time INAA with the new monitor set for k0 standardization was successfully validated using the synthetic reference material SMELS 1 and several matrix reference materials (RMs) representing matrices of sample types frequently analyzed in our laboratory. The results were obtained using the Kayzero for Windows program.

  12. Installation and calibration of Kayzero-assisted NAA in three Central European countries via a Copernicus project.

    PubMed

    De Corte, F; van Sluijs, R; Simonits, A; Kucera, J; Smodis, B; Byrne, A R; De Wispelaere, A; Bossus, D; Frána, J; Horák, Z; Jaćimović, R

    2001-09-01

    An account is given of the installation and calibration of k0-based NAA--assisted by the DSM Kayzero/Solcoi software package--at the KFKI-AEKI, Budapest, the NPI, Rez and the IJS, Ljubljana. Not only the calibration of the Ge-detectors and the irradiation facilities are discussed, but also other important topics such as gamma-spectrometric hard- and software, QC/QA of the IRMM-530 Al-Au flux monitor and the upgrade of the Kayzero/Solcoi code. The work was performed in the framework of a European Copernicus JRP, coordinated by the Laboratory of Analytical Chemistry, Gent, with DSM Research, Geleen, as the industrial partner.

  13. Developing a Free-Piston Stirling Convertor for advanced radioisotope space power systems

    NASA Astrophysics Data System (ADS)

    Qiu, Songgang; Augenblick, John E.; White, Maurice A.; Peterson, Allen A.; Redinger, Darin L.; Petersen, Stephen L.

    2002-01-01

    The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. This paper provides a description of the Flight Prototype (FP) Stirling convertor design as compared to the previous TDC design. The initial flight prototype units are already undergoing performance tuning at STC. The new design will be hermetically scaled and will provide a weight reduction from approximately 4.8 kg to approximately 3.9 kg. .

  14. Advanced Stirling Radioisotope Generator Engineering Unit 2 Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2018-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically heated Stirling radioisotope generator built to date. NASA Glenn Research Center completed the assembly of the ASRG EU2 in September 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's Advanced Stirling Convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's (LM's) Engineering Development Unit (EDU) 4 controller. After just 179 hr of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hr later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from Glenn, Sunpower, and LM conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  15. Characterization of the Advanced Stirling Radioisotope Generator EU2

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Nicholas A.

    2015-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA GRC recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's ASC-E3 Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included: measurement of convertor, controller, and generator performance and efficiency, quantification of control authority of the controller, disturbance force measurement with varying piston phase and piston amplitude, and measurement of the effect of spacecraft DC bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  16. Application of Box-Behnken design for modeling of lead adsorption onto unmodified and NaCl-modified zeolite NaA obtained from biosilica.

    PubMed

    Terzioğlu, Pinar; Yücel, Sevil; Öztürk, Mehmet

    2017-01-01

    The main objective of the present study was to optimize lead adsorption onto zeolite NaA. For this purpose, to synthesize zeolite NaA under hydrothermal conditions, local wheat husk was precleaned with chemical treatment using hydrochloric acid solution. The unmodified (ZU) and NaCl-modified (ZN) zeolites were characterized by Brunauer-Emmett-Teller, scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray diffraction. The optimization of adsorption process was examined using Box-Behnken Experimental Design in response surface methodology by Design Expert Version 7.0.0 (Stat-Ease, USA). The effects of initial lead (II) concentration, temperature, and time were selected as independent variables. Lack of fit test indicates that the quadratic regression model was significant with the high coefficients of determination values for both adsorbents. Optimum process conditions for lead (II) adsorption onto ZU and ZN were found to be 64.40°C and 64.80°C, respectively, and 90.80 min, and 350 mg L -1 initial lead(II) concentration for both adsorbents. Under these conditions, maximum adsorption capacities of ZU and ZN for lead (II) were 293.38 mg g -1 and 321.85 mg g -1 , respectively.

  17. Vibration Testing of the Pluto/New Horizons Radioisotope Thermoelectric Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles D. Griffin

    The Radioisotopic Thermal Generator (RTG) for the Pluto/New Horizons spacecraft was subjected to a flight dynamic acceptance test to demonstrate that it would perform successfully following launch. Seven RTGs of this type had been assembled and tested at Mound, Ohio from 1984 to 1997. This paper chronicles major events in establishing a new vibration test laboratory at the Idaho National Laboratory and the nineteen days of dynamic testing.

  18. Features of morfological changes in primary thyroid gland CTLL cultures of rats descendants prenatally exposed by radioisotopes of iodine-131.

    PubMed

    Boiko, O A; Lavrenchuk, H Yo; Lypska, A I; Talko, V V; Asmolkov, V S

    2017-12-01

    to investigate morphological changes in the primary thyroid cell culture of rat infants whose parents were prenatally exposed by radioisotope iodine 131. obtaining and culturing of thyroid tissue primary cell cultures of newborn rats, cytological (receipt and analysis of cell cultures agents for optical microscopy), biophysical (flow cytometry), statistics. It was shown that cells in thyroid primary culture of offspring rats prenatally exposed by radioisotopes of iodine 131 signs of destructive degenerative changes were observed mostly when animals of both sexes were irra diated. Increased number of two and three nuclear cells and induction of ring like cells is an evidence of signifi cant genotoxic violation and points to the genome instability in offspring of animals exposed by radioisotope iodine 131. Analysis and quantitative morphological parameters of cells in thyroid primary culture of newborn rats whose parents were exposed prenatally by radioisotopes of iodine 131 showed that upon exposure to radiation thy roid undergoes destructive changes at the cellular level and, even in the second generation of offspring, leads to disruption of its functions. O. A. Boiko, H. Yo. Lavrenchuk, A. I. Lypska, V. V. Talko, V. S. Asmolkov.

  19. Miniature Radioisotope Thermoelectric Power Cubes

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey; Caillat, Thierry

    2004-01-01

    Cube-shaped thermoelectric devices energized by a particles from radioactive decay of Cm-244 have been proposed as long-lived sources of power. These power cubes are intended especially for incorporation into electronic circuits that must operate in dark, extremely cold locations (e.g., polar locations or deep underwater on Earth, or in deep interplanetary space). Unlike conventional radioisotope thermoelectric generators used heretofore as central power sources in some spacecraft, the proposed power cubes would be small enough (volumes would range between 0.1 and 0.2 cm3) to play the roles of batteries that are parts of, and dedicated to, individual electronic-circuit packages. Unlike electrochemical batteries, these power cubes would perform well at low temperatures. They would also last much longer: given that the half-life of Cm-244 is 18 years, a power cube could remain adequate as a power source for years, depending on the power demand in its particular application.

  20. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Astrophysics Data System (ADS)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ΔT of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ΔT was roughly 70 °C, due to distillation of the NaK in the evaporator.

  1. Cost Comparison in 2015 Dollars for Radioisotope Power Systems -- Cassini and Mars Science Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, James Elmer; Johnson, Stephen Guy; Dwight, Carla Chelan

    Radioisotope power systems (RPSs) have enabled missions requiring reliable, long-lasting power in remote, harsh environments such as space since the early 1960s. Costs for RPSs are high, but are often misrepresented due to the complexity of space missions and inconsistent charging practices among the many and changing participant organizations over the years. This paper examines historical documentation associated with two past successful flight missions, each with a different RPS design, to provide a realistic cost basis for RPS production and deployment. The missions and their respective RPSs are Cassini, launched in 1997, that uses the general purpose heat source (GPHS)more » radioisotope thermoelectric generator (RTG), and Mars Science Laboratory (MSL), launched in 2011, that uses the multi-mission RTG (MMRTG). Actual costs in their respective years are discussed for each of the two RTG designs and the missions they enabled, and then present day values to 2015 are computed to compare the costs. Costs for this analysis were categorized into two areas: development of the specific RTG technology, and production and deployment of an RTG. This latter category includes material costs for the flight components (including Pu-238 and fine weave pierced fabric (FWPF)); manufacturing of flight components; assembly, testing, and transport of the flight RTG(s); ground operations involving the RTG(s) through launch; nuclear safety analyses for the launch and for the facilities housing the RTG(s) during all phases of ground operations; DOE’s support for NEPA analyses; and radiological contingency planning. This analysis results in a fairly similar 2015 normalized cost for the production and deployment of an RTG—approximately $118M for the GPHS-RTG and $109M for the MMRTG. In addition to these two successful flight missions, the costs for development of the MMRTG are included to serve as a future reference. Note that development costs included herein for the MMRTG do not

  2. Automated detection of radioisotopes from an aircraft platform by pattern recognition analysis of gamma-ray spectra.

    PubMed

    Dess, Brian W; Cardarelli, John; Thomas, Mark J; Stapleton, Jeff; Kroutil, Robert T; Miller, David; Curry, Timothy; Small, Gary W

    2018-03-08

    A generalized methodology was developed for automating the detection of radioisotopes from gamma-ray spectra collected from an aircraft platform using sodium-iodide detectors. Employing data provided by the U.S Environmental Protection Agency Airborne Spectral Photometric Environmental Collection Technology (ASPECT) program, multivariate classification models based on nonparametric linear discriminant analysis were developed for application to spectra that were preprocessed through a combination of altitude-based scaling and digital filtering. Training sets of spectra for use in building classification models were assembled from a combination of background spectra collected in the field and synthesized spectra obtained by superimposing laboratory-collected spectra of target radioisotopes onto field backgrounds. This approach eliminated the need for field experimentation with radioactive sources for use in building classification models. Through a bi-Gaussian modeling procedure, the discriminant scores that served as the outputs from the classification models were related to associated confidence levels. This provided an easily interpreted result regarding the presence or absence of the signature of a specific radioisotope in each collected spectrum. Through the use of this approach, classifiers were built for cesium-137 ( 137 Cs) and cobalt-60 ( 60 Co), two radioisotopes that are of interest in airborne radiological monitoring applications. The optimized classifiers were tested with field data collected from a set of six geographically diverse sites, three of which contained either 137 Cs, 60 Co, or both. When the optimized classification models were applied, the overall percentages of correct classifications for spectra collected at these sites were 99.9 and 97.9% for the 60 Co and 137 Cs classifiers, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Differential effects of NAA and 2,4-D in reducing floret abscission in cestrum (Cestrum elegans) cut flowers are associated with their differential activation of Aux/IAA homologous genes.

    PubMed

    Abebie, Bekele; Lers, Amnon; Philosoph-Hadas, Sonia; Goren, Raphael; Riov, Joseph; Meir, Shimon

    2008-01-01

    A previous study showed that the relative effectiveness of 2,4-dichlorophenoxyacetic acid (2,4-D) compared with that of 1-naphthaleneacetic acid (NAA) in reducing floret bud abscission in cestrum (Cestrum elegans) cut flowers was due to its acropetal transport. The aim of the present study was to examine if the differential effect of these auxins on floret abscission is reflected in the expression of Aux/IAA genes in the floret abscission zone (AZ). cDNAs were isolated by PCR-based cloning from the floret AZ of auxin-treated cut flowers. The expression patterns of the cDNAs in various tissues and the effect of indole-3-acetic acid (IAA), applied with or without cycloheximide, on their expression in the floret AZ were examined by northern blot analysis. The regulation of transcript accumulation in the floret AZ in response to NAA or 2,4-D was measured by real-time PCR during auxin pulsing of cut flowers and vase life, concomitantly with floret abscission. Six isolated cDNAs were identified to represent Aux/IAA homologous genes, designated as Cestrum elegans (Ce)-IAA1 to Ce-IAA6. Four Ce-IAA genes were characterized as early auxin-responsive genes (ARGs), and two (Ce-IAA1 and Ce-IAA5) as late ARGs. Only Ce-IAA5 was AZ-specific in floret buds. A temporal regulation of Ce-IAA transcript levels in the floret AZ was found, with 2,4-D inducing higher expression levels than NAA in floret buds. These Ce-IAA expression levels were negatively correlated with floret abscission. The differential transport characteristics of NAA and 2,4-D in cestrum cut flowers were reflected in differential activation of the Ce-IAA genes identified in the floret AZ. Therefore, Aux/IAA genes can be used as molecular markers to measure auxin activity, which reflects free auxin level in the AZ. Two of the identified genes, Ce-IAA1 and Ce-IAA5, may also have a regulatory role in abscission.

  4. Comparative analysis of 11 different radioisotopes for palliative treatment of bone metastases by computational methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra Liberal, Francisco D. C., E-mail: meb12020@fe.up.pt, E-mail: adriana-tavares@msn.com; Tavares, Adriana Alexandre S., E-mail: meb12020@fe.up.pt, E-mail: adriana-tavares@msn.com; Tavares, João Manuel R. S., E-mail: tavares@fe.up.pt

    Purpose: Throughout the years, the palliative treatment of bone metastases using bone seeking radiotracers has been part of the therapeutic resources used in oncology, but the choice of which bone seeking agent to use is not consensual across sites and limited data are available comparing the characteristics of each radioisotope. Computational simulation is a simple and practical method to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aims to evaluate and compare 11 different radioisotopes currently in use or under research for the palliative treatment of bonemore » metastases using computational methods. Methods: Computational models were used to estimate the percentage of deoxyribonucleic acid (DNA) damage (fast Monte Carlo damage algorithm), the probability of correct DNA repair (Monte Carlo excision repair algorithm), and the radiation-induced cellular effects (virtual cell radiobiology algorithm) post-irradiation with selected particles emitted by phosphorus-32 ({sup 32}P), strontium-89 ({sup 89}Sr), yttrium-90 ({sup 90}Y ), tin-117 ({sup 117m}Sn), samarium-153 ({sup 153}Sm), holmium-166 ({sup 166}Ho), thulium-170 ({sup 170}Tm), lutetium-177 ({sup 177}Lu), rhenium-186 ({sup 186}Re), rhenium-188 ({sup 188}Re), and radium-223 ({sup 223}Ra). Results: {sup 223}Ra alpha particles, {sup 177}Lu beta minus particles, and {sup 170}Tm beta minus particles induced the highest cell death of all investigated particles and radioisotopes. The cell survival fraction measured post-irradiation with beta minus particles emitted by {sup 89}Sr and {sup 153}Sm, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice, was higher than {sup 177}Lu beta minus particles and {sup 223}Ra alpha particles. Conclusions: {sup 223}Ra and {sup 177}Lu hold the highest potential for palliative treatment of bone metastases of

  5. [Sentinel node detection using optonuclear probe (gamma and fluorescence) after green indocyanine and radio-isotope injections].

    PubMed

    Poumellec, M-A; Dejode, M; Figl, A; Darcourt, J; Haudebourg, J; Sabah, Y; Voury, A; Martaens, A; Barranger, E

    2016-04-01

    Assess the biopsy's feasibility of the sentinel lymph node biopsy (SLNB) using optonuclear probe after of indocyanine green (ICG) and radio-isotope (RI) injections. Twenty-one patients with a localized breast cancer and unsuspicious axillary nodes underwent a SLNB after both injections of ICG and radio-isotope. One or more SLN were identified on the 21 patients (identification rate of 100%). The median number SLN was 2 (1-3). Twenty SLN were both radio-actives and fluorescents (54.1%), 11 fluorescent only (29.7%) and 6 were only radio-actives (16.2%). Seven patients had a metastatic SLN (8 SLN overall). Among them, only one had a micrometastasic SLN, 5 others had a macrometastatic SLN and one patient had two macrometastatic SLNs. Among the 8 metastatic SLN, 5 were both fluorescent and radioactive, 2 were only fluorescent and 1 was only radioactive. Detection SLN using optonuclear probe after indocyanine green and radio-isotope injections is effective and could be, after validation by randomized trial, a reliable alternative to the blue dye injection for teams who consider that combined detection as the reference. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  7. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2014-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 watt thermal) modules as the thermal building block around which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component and system level trades.

  8. GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2008-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.

  9. Parametric Study of Radiator Concepts for a Stirling Radioisotope Power System Applicable to Deep Space Mission

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Tew, Roy C.; Thieme, Lanny G.

    2000-01-01

    The Department of Energy (DOE) and the NASA Glenn Research Center are developing a Stirling converter for an advanced radioisotope power system to provide spacecraft onboard electric power for NASA deep space missions. This high-efficiency converter is being evaluated as an alternative to replace the much lower efficiency radioisotope thermoelectric generator (RTG). The current power requirement (six years after beginning of mission (BOM) for a mission to Jupiter) is 210 W(sub e) (watts electric) to be generated by two separate power systems, one on each side of the spacecraft. Both two-converter and four-converter system designs are being considered, depending on the amount of required redundancy.

  10. Analysis of soil samples from Gebeng area using NAA technique

    NASA Astrophysics Data System (ADS)

    Elias, Md Suhaimi; Wo, Yii Mei; Hamzah, Mohd Suhaimi; Shukor, Shakirah Abd; Rahman, Shamsiah Ab; Salim, Nazaratul Ashifa Abdullah; Azman, Muhamad Azfar; Hashim, Azian

    2017-01-01

    Rapid development and urbanization will increase number of residence and industrial area. Without proper management and control of pollution, these will give an adverse effect to environment and human life. The objective of this study to identify and quantify key contaminants into the environment of the Gebeng area as a result of industrial and human activities. Gebeng area was gazetted as one of the industrial estate in Pahang state. Assessment of elemental pollution in soil of Gebeng area base on level of concentration, enrichment factor and geo-accumulation index. The enrichment factors (EFs) were determined by the elemental rationing method, whilst the geo-accumulation index (Igeo) by comparing of current to continental crustal average concentration of element. Twenty-seven of soil samples were collected from Gebeng area. Soil samples were analysed by using Neutron Activation Analyses (NAA) technique. The obtained data showed higher concentration of iron (Fe) due to abundance in soil compared to other elements. The results of enrichment factor showed that Gebeng area have enrich with elements of As, Br, Hf, Sb, Th and U. Base on the geo-accumulation index (Igeo) classification, the soil quality of Gebeng area can be classified as class 0, (uncontaminated) to Class 3, (moderately to heavily contaminated).

  11. Assessment of the skin sensitization potency of eugenol and its dimers using a non-radioisotopic modification of the local lymph node assay.

    PubMed

    Takeyoshi, Masahiro; Noda, Shuji; Yamazaki, Shunsuke; Kakishima, Hiroshi; Yamasaki, Kanji; Kimber, Ian

    2004-01-01

    Allergic contact dermatitis is a serious health problem. There is a need to identify and characterize skin sensitization hazards, particularly with respect to relative potency, so that accurate risk assessments can be developed. For these purposes the murine local lymph node assay (LLNA) was developed. Here, we have investigated further a modi fi cation of this assay, non-radioisotopic LLNA, which in place of tritiated thymidine to measure lymph node cell proliferation employs incorporation of 5-bromo-2'-deoxyuridine. Using this method we have examined the skin sensitizing activity of eugenol, a known human contact allergen, and its dimers 2,2'-dihydroxyl-3,3'-dimethoxy-5,5'-diallyl-biphenyl (DHEA) and 4,5'-diallyl-2'-hydroxy-2,3'-dimethoxy phenyl ether (DHEB). Activity in the guinea pig maximization test (GPMT) also measured. On the basis of GPMT assays, eugenol was classified as a mild skin sensitizer, DHEA as a weak skin sensitizer and DHEB as an extreme skin sensitizer. In the non-radioisotopic LLNA all chemicals were found to give positive responses insofar as each was able to provoke a stimulation index (SI) of >or=3 at one or more test concentrations. The relative skin sensitizing potency of these chemicals was evaluated in the non-radioisotopic LLNA by derivation of an ec(3) value (the concentration of chemical required to provoke an SI of 3). The ec(3) values calculated were 25.1% for eugenol, >30% for DHEA and 2.3% for DHEB. Collectively these data suggest that assessments of relative potency deriving from non-radioisotopic LLNA responses correlate well with evaluations based on GPMT results. These investigations provide support for the proposal that the non-radioisotopic LLNA may serve as an effective alternative to the GPMT where there is a need to avoid the use of radioisotopes. Copyright 2004 John Wiley & Sons, Ltd.

  12. Space radioisotope power source requirements update and technology status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondt, J.F.

    1998-07-01

    The requirements for a space advanced radioisotope power source are based on potential deep space missions being investigated for the NASA Advanced Space Systems Development Program. Since deep space missions have not been approved, updating requirements is a continuos parallel process of designing the spacecraft and the science instruments to accomplish the potential missions and developing the power source technology to meet changing requirements. There are at least two potential missions, Pluto/Kuiper Express and Europa Orbiter, which may require space advanced radioisotope power sources. The Europa Orbiter has been selected as the preferred first potential mission. However the final decisionmore » will depend on the technology readiness of all the subsystems and the project must be able to switch to Pluto Kuiper Express as the first mission as late as the beginning of fiscal year 2000. Therefore the requirements for the power source will cover both potential missions. As the deep space spacecraft design evolves to meet the science requirements and the Alkali Metal Thermal to Electric (AMTEC) technology matures the advanced radioisotope power source design requirements are updated The AMTEC technology developed to date uses stainless steel for the sodium containment material. The higher efficiency required for the space power system dictates that the AMTEC technology must operate at a higher temperature than possible with stainless steel. Therefore refractory materials have been selected as the baseline material for the AMTEC cell. These refractory materials are Nb1Zr for the hot side and Nb1Zr or Nb10Hf1Ti for the cold side. These materials were selected so the AMTEC cell can operate at 1150K to 1350K hot side temperature and 600K to 700K cold side temperature and meet the present power and mass requirements using four to six general purpose heat source modules as the heat source. The new containment materials and brazes will be evaluated as to lifetime

  13. N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology

    PubMed Central

    Moffett, John R.; Ross, Brian; Arun, Peethambaran; Madhavarao, Chikkathur N.; Namboodiri, M. A. A.

    2007-01-01

    The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal CNS development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research

  14. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  15. Radioisotope Thermoelectric Generator Options for Pluto Fast Flyby Mission

    NASA Astrophysics Data System (ADS)

    Schock, Alfred

    1994-07-01

    A small spacecraft design for the Pluto Fast Flyby (PFF) mission is under study by the Jet Propulsion Laboratory (PL) for the National Aeronautics and Space Administration (NASA), for a possible launch as early as 1998. JPL's 1992 baseline design calls for a power source able to furnish an energy output of 3963 kWh and a power output of 69 Watts(e) at the end of the 9.2-year mission. Satisfying those demands is made difficult because NASA management has set a goal of reducing the spacecraft mass from a baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for the power source. To support the ongoing NASA/JPL studies, the Department of Energy's Office of Special Applications (DOE/OSA) commissioned Fairchild Space to prepare and analyze conceptual designs of radioisotope power systems for the PFF mission. Thus far, a total of eight options employing essentially the same radioisotope heat source modules were designed and subjected to thermal, electrical, structural, and mass analyses by Fairchild. Five of these - employing thermoelectric converters - are described in the present paper, and three - employing free-piston Stirling converters - are described in the companion paper presented next. The system masses of the thermoelectric options ranged from 19.3 kg to 10.2 kg. In general, the options requiring least development are the heaviest, and the lighter options require more development with greater programmatic risk.

  16. Rhenium-188 Labeled Tungsten Disulfide Nanoflakes for Self-Sensitized, Near-Infrared Enhanced Radioisotope Therapy.

    PubMed

    Chao, Yu; Wang, Guanglin; Liang, Chao; Yi, Xuan; Zhong, Xiaoyan; Liu, Jingjing; Gao, Min; Yang, Kai; Cheng, Liang; Liu, Zhuang

    2016-08-01

    Radioisotope therapy (RIT), in which radioactive agents are administered or implanted into the body to irradiate tumors from the inside, is a clinically adopted cancer treatment method but still needs improvement to enhance its performances. Herein, it is found that polyethylene glycol (PEG) modified tungsten disulfide (WS2 ) nanoflakes can be easily labeled by (188) Re, a widely used radioisotope for RIT, upon simple mixing. Like other high-Z elements acting as radiosensitizers, tungsten in the obtained (188) Re-WS2 -PEG would be able to absorb ionization radiation generated from (188) Re, enabling ''self-sensitization'' to enhance the efficacy of RIT as demonstrated in carefully designed in vitro experiments of this study. In the meanwhile, the strong NIR absorbance of WS2 -PEG could be utilized for NIR light-induced photothermal therapy (PTT), which if applied on tumors would be able to greatly relieve their hypoxia state and help to overcome hypoxia-associated radioresistance of tumors. Therefore, with (188) Re-WS2 -PEG as a multifunctional agent, which shows efficient passive tumor homing after intravenous injection, in vivo self-sensitized, NIR-enhanced RIT cancer treatment is realized, achieving excellent tumor killing efficacy in a mouse tumor model. This work presents a new concept of applying nanotechnology in RIT, by delivering radioisotopes into tumors, self-sensitizing the irradiation-induced cell damage, and modulating the tumor hypoxia state to further enhance the therapeutic outcomes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Novel Seeding Method of Interfacial Polymerization-Assisted Dip Coating for the Preparation of Zeolite NaA Membranes on Ceramic Hollow Fiber Supports.

    PubMed

    Cao, Yue; Wang, Ming; Xu, Zhen-Liang; Ma, Xiao-Hua; Xue, Shuang-Mei

    2016-09-28

    A novel seeding method combining interfacial polymerization (IP) technique with dip-coating operation was designed for directly coating nanosized NaA seed crystals (150 nm) onto the micrometer-sized α-Al2O3 hollow fiber support, in which the polyamide (PA) produced by IP acted as an effective medium to freeze and fix seed crystals at the proper position so that the controlled seed layer could be accomplished. While a coating suspension with only 0.5 wt % seed content was used, a very thin seed layer with high quality and good adhesion was achieved through dip coating twice without drying between, and the whole seeding process was operated at ambient conditions. The resulting zeolite NaA membranes not only exhibited high pervaporation (PV) performance with an average separation factor above 10000 and flux nearly 9.0 kg/m(2)·h in dehydration of 90 wt % ethanol aqueous solution at 348 K but also demonstrated great reproducibility by testing more than eight batches of zeolite membranes. In addition, this seeding strategy could be readily extended to the preparation of other supported zeolite membranes for a wide range of separation applications.

  18. Determination of inorganic elements in blood of mice immunized with Bothrops Snake venom using XRF and NAA

    NASA Astrophysics Data System (ADS)

    Lopes da Silva, L. F. F.; Zamboni, C. B.; Bahovschi, V.; Metairon, S.; Suzuki, M. F.; Sant'Anna, O. A.; Rizzutto, M. A.

    2015-07-01

    In this work, mice genetically modified [HIII line] were immunized against different Bothrops snake venoms to produce anti-Bothrops serum (antivenom). The Neutron Activation Analysis (NAA) and Energy Dispersive X-Ray Fluorescence (EDXRF) techniques were used to evaluate Ca and Fe concentrations in blood of these immunized mice in order to establish a potential correlation between both phenotypes: antibody response and blood constituents after Bothrops venom administration. The results were compared with the control group (mice not immunized) and with human being estimative. These data are important for clinical screening of patients submitted to immunological therapy as well as the understanding of the envenoming mechanisms.

  19. Radioisotope imaging for the evaluation of thyroid neoplasia and hypothyroidism in a dog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branam, J.E.; Leighton, R.L.; Hornof, W.J.

    1982-05-01

    An 11-year-old dog was diagnosed as having concurrent unilateral follicular thyroid carcinoma and hypothyroidism. Radioisotope imaging with /SUP 99m/Tc as sodium pertechnatate identified the extent of thyroid tissue involvement. A combination of surgical resection and hormonal supplementation resulted in a favorable clinical response.

  20. Reducing Error Bars through the Intercalibration of Radioisotopic and Astrochronologic Time Scales for the Cenomanian/Turonian Boundary Interval, Western Interior Basin, USA

    NASA Astrophysics Data System (ADS)

    Meyers, S. R.; Siewert, S. E.; Singer, B. S.; Sageman, B. B.; Condon, D. J.; Obradovich, J. D.; Jicha, B.; Sawyer, D. A.

    2010-12-01

    We develop a new intercalibrated astrochronologic and radioisotopic time scale for the Cenomanian/Turonian (C/T) boundary interval near the GSSP in Colorado, where orbitally-influenced rhythmic strata host bentonites that contain sanidine and zircon suitable for 40Ar/39Ar and U-Pb dating. This provides a rare opportunity to directly intercalibrate two independent radioisotopic chronometers against an astrochronologic age model. We present paired 40Ar/39Ar and U-Pb ages from four bentonites spanning the Vascoceras diartianum to Pseudaspidoceras flexuosum biozones, utilizing both newly collected material and legacy sanidine samples of Obradovich (1993). Full 2σ uncertainties (decay constant, standard age, analytical sources) for the 40Ar/39Ar ages, using a weighted mean of 33-103 concordant age determinations and an age of 28.201 Ma for Fish Canyon sanidine (FCs), range from ±0.15 to 0.19 Ma, with ages from 93.67 to 94.43 Ma. The traditional FCs age of 28.02 Ma yields ages from 93.04 to 93.78 Ma with full uncertainties of ±1.58 Ma. Using the ET535 tracer, single zircon CA-TIMS 206Pb/238U ages determined from each bentonite record a range of ages (up to 2.1 Ma), however, in three of the four bentonites the youngest single crystal ages are statistically indistinguishable from the 40Ar/39Ar ages calculated relative to 28.201 Ma FCs, supporting this calibration. Using the new radioisotopic data and published astrochronology (Sageman et al., 2006) we develop an integrated C/T boundary time scale using a Bayesian statistical approach that builds upon the strength of each geochronologic method. Whereas the radioisotopic data provide an age with a well-defined uncertainty for each bentonite, the orbital time scale yields a more highly resolved estimate of the duration between stratigraphic horizons, including the radioisotopically dated beds. The Bayesian algorithm yields a C/T time scale that is statistically compatible with the astrochronologic and radioisotopic data

  1. Stirling Convertor Technologies Being Developed for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    2003-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and the NASA Glenn Research Center are developing a high-efficiency Stirling Radioisotope Generator (SRG) for NASA space science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. On Mars, rovers with SRGs would be used for missions that might not be able to use photovoltaic power systems, such as exploration at high Martian latitudes and missions of long duration. The projected SRG system efficiency of 23 percent will reduce the required amount of radioisotope by a factor of 4 or more in comparison to currently used Radioisotope Thermoelectric Generators. The Department of Energy recently named Lockheed Martin as the system integration contractor. Lockheed Martin has begun to develop the SRG engineering unit under contract to the Department of Energy, and has contract options to develop the qualification unit and the first flight units. The developers expect the SRG to produce about 114 Wdc at the beginning of mission, using two opposed Stirling convertors and two General Purpose Heat Source modules. STC previously developed the Stirling convertor under contract to the Department of Energy and is now providing further development as a subcontractor to Lockheed Martin. Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. A key milestone was recently reached with the accumulation of 12 000 hr of long-term aging on two types of neodymium-iron boron permanent magnets. These tests are characterizing any possible aging in the strength or demagnetization resistance of the magnets used in the linear alternator. Preparations are underway for a thermal/vacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. In addition, Glenn is developing a

  2. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    NASA Astrophysics Data System (ADS)

    Adkins, Harold E.; Bearden, Thomas E.

    The present transportation system for radioisotope thermoelectric generators and heater units is being developed to comply with all applicable U.S. DOT regulations, including a doubly-contained 'bell jar' concept for the required double-containment of plutonium. Modifications in handling equipment and procedures are entailed by this novel packaging design, and will affect high-capacity forklifts, overhead cranes, He-backfilling equipment, etc. Attention is given to the design constraints involved, and to the Federal procurement process.

  3. Radioisotope powered alkali metal thermoelectric converter design for space systems

    NASA Technical Reports Server (NTRS)

    Sievers, R. K.; Bankston, C. P.

    1988-01-01

    The design concept of an alkali-metal thermoelectric converter (AMTEC) for 15-30-percent-efficient conversion of heat from the General Purpose (radioisotope) Heat Source (GPHS) on spacecraft is presented. The basic physical principles of the conversion cycle are outlined; a theoretical model is derived; a modular design is described and illustrated with drawings; and the overall AMTEC/GPHS system design is characterized. Predicted performance data are presented in extensive tables and graphs and discussed in detail.

  4. Radioisotope Power Systems Program: A Program Overview

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    2016-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan, mature research in energy conversion, and partners with the Department of Energy (DOE) to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. Recent programs responsibilities include providing investment recommendations to NASA stakeholders on emerging thermoelectric and Stirling energy conversion technologies and insight on NASA investments at DOE in readying a generator for the Mars 2020 mission. This presentation provides an overview of the RPS Program content and status and the approach used to maintain the readiness of RPS to support potential future NASA missions.

  5. Radioisotope Power Systems Reference Book for Mission Designers and Planners

    NASA Technical Reports Server (NTRS)

    Lee, Young; Bairstow, Brian

    2015-01-01

    The RPS Program's Program Planning and Assessment (PPA) Office commissioned the Mission Analysis team to develop the Radioisotope Power Systems (RPS) Reference Book for Mission Planners and Designers to define a baseline of RPS technology capabilities with specific emphasis on performance parameters and technology readiness. The main objective of this book is to provide RPS technology information that could be utilized by future mission concept studies and concurrent engineering practices. A progress summary from the major branches of RPS technology research provides mission analysis teams with a vital tool for assessing the RPS trade space, and provides concurrent engineering centers with a consistent set of guidelines for RPS performance characteristics. This book will be iterated when substantial new information becomes available to ensure continued relevance, serving as one of the cornerstone products of the RPS PPA Office. This book updates the original 2011 internal document, using data from the relevant publicly released RPS technology references and consultations with RPS technologists. Each performance parameter and RPS product subsection has been reviewed and cleared by at least one subject matter representative. A virtual workshop was held to reach consensus on the scope and contents of the book, and the definitions and assumptions that should be used. The subject matter experts then reviewed and updated the appropriate sections of the book. The RPS Mission Analysis Team then performed further updates and crosschecked the book for consistency. Finally, a second virtual workshop was held to ensure all subject matter experts and stakeholders concurred on the contents.

  6. Cu-67 Photonuclear Production

    NASA Astrophysics Data System (ADS)

    Starovoitova, Valeriia; Foote, Davy; Harris, Jason; Makarashvili, Vakhtang; Segebade, Christian R.; Sinha, Vaibhav; Wells, Douglas P.

    2011-06-01

    Cu-67 is considered as one of the most promising radioisotopes for cancer therapy with monoclonal antibodies. Current production schemes using high-flux reactors and cyclotrons do not meet potential market need. In this paper we discuss Cu-67 photonuclear production through the reaction Zn-68(γ,p)Cu-67. Computer simulations were done together with experiments to study and optimize Cu-67 yield in natural Zn target. The data confirms that the photonuclear method has potential to produce large quantities of the isotope with sufficient purity to be used in medical field.

  7. Accreditation experience of radioisotope metrology laboratory of Argentina.

    PubMed

    Iglicki, A; Milá, M I; Furnari, J C; Arenillas, P; Cerutti, G; Carballido, M; Guillén, V; Araya, X; Bianchini, R

    2006-01-01

    This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the (alpha/beta)-gamma coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved.

  8. Radioisotope bone scanning in a case of sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinti, D.C.; Hawkins, H.B.; Slavin, J.D. Jr.

    1985-03-01

    The application of radioisotope scanning to osseous involvement from systemic sarcoidosis has been infrequently described in the scientific literature. Most commonly, the small bones of the hands and feet are affected if sarcoidosis involves the skeleton. Nonetheless, there are also occasional manifestations of sarcoid in the skull, long bones, and vertebral bodies. This paper describes a case of sarcoid involving the lung parenchyma with multiple lesions in the skull and ribs demonstrated by bone scanning with Tc-99m MDP. Following treatment with steroids, the bone scan showed complete resolution of the rib lesions and almost complete resolution of the lesions inmore » the calvarium.« less

  9. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Steven Howe; Nathan Jerred; Troy Howe

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizingmore » an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized

  10. Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes.

    PubMed

    Ziliotto, Fiorenza; Corso, Massimiliano; Rizzini, Fabio Massimo; Rasori, Angela; Botton, Alessandro; Bonghi, Claudio

    2012-10-09

    Auxins act as repressors of ripening inception in grape (véraison), while ethylene and abscisic acid (ABA) play a positive role as inducers of the syndrome. Despite the increasing amount of information made available on this topic, the complex network of interactions among these hormones remains elusive. In order to shed light on these aspects, a holistic approach was adopted to evaluate, at the transcriptomic level, the crosstalk between hormones in grape berries, whose ripening progression was delayed by applying naphtalenacetic acid (NAA) one week before véraison. The NAA treatment caused significant changes in the transcription rate of about 1,500 genes, indicating that auxin delayed grape berry ripening also at the transcriptional level, along with the recovery of a steady state of its intracellular concentration. Hormone indices analysis carried out with the HORMONOMETER tool suggests that biologically active concentrations of auxins were achieved throughout a homeostatic recovery. This occurred within 7 days after the treatment, during which the physiological response was mainly unspecific and due to a likely pharmacological effect of NAA. This hypothesis is strongly supported by the up-regulation of genes involved in auxin conjugation (GH3-like) and action (IAA4- and IAA31-like). A strong antagonistic effect between auxin and ethylene was also observed, along with a substantial 'synergism' between auxins and ABA, although to a lesser extent. This study suggests that, in presence of altered levels of auxins, the crosstalk between hormones involves diverse mechanisms, acting at both the hormone response and biosynthesis levels, creating a complex response network.

  11. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  12. Estimation of the operating parameters of miniature radioisotope thermoelectric power unit based on the Th-228 isotope

    NASA Astrophysics Data System (ADS)

    Fetisov, V. V.; Vasilyev, O. S.; Borisyuk, P. V.; YuLebedinskii, Yu

    2017-12-01

    The paper considersthe construction of a miniature radioisotope power unit based on thermoelectric conversion of thermal energy released during nuclear decay. It is proposed to use thin fluoropolymer films (membranes) as a dielectric heat-insulating material. The results of numerical simulation of a prototype of a miniature radioisotope thermoelectric battery unit based on the thorium-228 isotope in the ANSYS program are presented. The geometry of the system has been optimized. It was established that the temperature of the source can reach about 1033 K, and the efficiency of the considered battery unit can reach 16.8%, which corresponds to modern power supplies of this type.

  13. DIFFERENTIAL KILLING EFFECT IN JUTE BY X-RAYS AND RADIOISOTOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, R.K.

    1962-01-01

    Treatments with x rays and BETA rays from P/sup 32/ and S/sup 35/ on dry and pure line seeds of three varieties of Corchorus olitorius L. and two varieties of C. capsularis L. produced differential killing effect. 0ver the range of dosages applied treatments with P/sup 32/ and S/sup 35/ showed lesser killing effect than treatments with x rays. From the counts of survivals at maturity, the LD/sub 50/with x rays was found to lie between 64000 and r0000 r for the varieties of C. olitorius and between 80000 and 90000 r for the varieties of C. capsularis. While themore » usual relationship of decrease in survival with increase in dosage was established with x rays, treatments with P/sup 32/ and S/ sup 35/ often showed increased survival compared to the control. The differential killing effect of the three mutagens is discussed as a consequence of difference in ion density. The obscure effects of radioisotopes may be due to production of substances reacting in the form of stimulation or protective agents. The differential radiosensitivity of the two species may be due to difference in factors like seed size and thickness of seed coat, which influence the non- genetical effects of irradiation. (auth)« less

  14. RADIOISOTOPE TECHNIQUES FOR INSTRUCTION IN THE BIOLOGICAL SCIENCES, A LIST OF ANNOTATED REFERENCES.

    ERIC Educational Resources Information Center

    HURLBURT, EVELYN M.

    REFERENCES TO BIOLOGICAL EXPERIMENTS THAT EMPHASIZE THE USE OF RADIOISOTOPES AS TRACERS ARE INCLUDED IN THIS ANNOTATED BIBLIOGRAPHY. MATERIALS INCLUDED ARE CONSIDERED TO BE READILY AVAILABLE AND WERE PUBLISHED AFTER 1960. SECTION I IS COMPOSED OF SELECTED SOURCES. ENTRIES INCLUDE (1) COMPLETE CITATIONS, (2) A BRIEF ANNOTATION, AND (3) LISTS OF…

  15. Radioisotopes present in building materials of workplaces

    NASA Astrophysics Data System (ADS)

    Del Claro, F.; Paschuk, S. A.; Corrêa, J. N.; Denyak, V.; Kappke, J.; Perna, A. F. N.; Martins, M. R.; Santos, T. O.; Rocha, Z.; Schelin, H. R.

    2017-11-01

    The isotope 222Rn is responsible for approximately half of the effective annual dose received by the world population. The decay products of 222Rn interacting with the cells of biological tissue of lungs have very high probability to induce cancer. The present survey was focused in the evaluation of activity concentration of 222Rn and other radioisotopes related to the building materials at workplaces at Curitiba - Paraná State. For this purpose, the instant radon detector AlphaGUARD (Saphymo GmbH) was used to measure the average concentrations of 222Rn in building materials, which were also submitted to gamma spectrometry analysis for qualitative and quantitative evaluation of the radionuclides present in samples of sand, mortar, blue crushed stone (Gneissic rock), red crushed stone (Granite), concrete and red bricks. The main radionuclides evaluated by gamma spectrometry in building material samples were 238U/226Ra, 232Th and 40K. These measurements were performed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology - Paraná in collaboration with the Center of Nuclear Technology Development (CDTN - CNEN). The results of the survey present the concentration values of 222Rn related to construction materials in a range from 427±40.52 Bq/m³ to 2053±90.06 Bq/m³. The results of gamma spectroscopy analysis show that specific activity values for the mentioned isotopes are similar to the results indicated by the literature. Nevertheless, the present survey is showing the need of further studies and indicates that building materials can contribute significantly to indoor concentration of 222Rn.

  16. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Robert J.; /SLAC; Amini, Rashied

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving themmore » unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.« less

  17. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.

    2014-01-01

    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  18. Study on the occurrence of platinum in Xinjie CuNi sulfide deposits by a combination of SPM and NAA

    NASA Astrophysics Data System (ADS)

    Li, Xiaolin; Zhu, Jieqing; Lu, Rongrong; Gu, Yingmei; Wu, Xiankang; Chen, Youhong

    1997-07-01

    A combination of neutron-activation analysis (NAA) and scanning proton microprobe (SPM) was used to study the distribution of platinum-group elements (PGEs) in rocks and ores from Xinjie CuNi deposit. The minimum detection limits of PGEs by NAA had been much improved by means of a nickel-sulfide fire-assay technique for pre-concentration of PGEs in the ore samples. A simple and effective method was developed for true element mapping in SPM experiments. A pair of moveable absorption filters was set up in the target chamber for high sensitivities of both major and trace elements. The bulk analysis results by NNA indicated that the PGE mineralization occurred at the base of Xinjie layered intrusion in clinopyroxenite rocks and the CuNi sulfide minerals disseminated within the rocks had high abundance level of PGEs. However, the micro-PIXE analysis of the CuNi sulfide mineral grains did not find PGEs above the MDL of 6-9 ppm for Rh, Ru and Pd, and 60 ppm for Pt. The search for platinum occurrence in sulfide minerals was followed by scanning analysis of SPM when some smaller platinum enriched grains were found in the sulfide minerals. The microscopic analysis results suggested that platinum occurred in the CuNi sulfide matrix as independent arsenide mineral grains. The chemical formula of the arsenide sperrylite was PtAs 2. The information of the platinum occurrence was helpful to future mineralogical research and mineral processing and beneficiation of the CuNi deposit.

  19. Calculated Energy Deposits from the Decay of Tritium and Other Radioisotopes Incorporated into Bacteria

    PubMed Central

    Bockrath, Richard; Person, Stanley; Funk, Fred

    1968-01-01

    Transmutation of the radioisotope tritium occurs with the production of a low energy electron, having a range in biological material similar to the dimensions of a bacterium. A computer program was written to determine the radiation dose distributions which may be expected within a bacterium as a result of tritium decay, when the isotope has been incorporated into specific regions of the bacterium. A nonspherical model bacterium was used, represented by a cylinder with hemispherical ends. The energy distributions resulting from a wide variety of simulated labeled regions were determined; the results suggested that the nuclear region of a bacterium receives on the average significantly different per decay doses, if the labeled regions were those conceivably produced by the incorporation of thymidine-3H, uracil-3H, or 3H-amino acids. Energy distributions in the model bacterium were also calculated for the decay of incorporated 14carbon, 35sulfur, and 32phosphorous. PMID:5678319

  20. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  1. AMTEC radioisotope power system design and analysis for Pluto Express Fly-By

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.; Sievers, R.K.

    1997-12-31

    The Pluto Express Fly-By program requires a Radioisotope Power System (RPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, high-efficiency RPS to power the Pluto Express Fly-By spacecraft. An AMTEC-based RPS using the General Purpose Heat Source (GPHS) has been conceptually designed to satisfy the Pluto Express power requirements. Integrated AMTEC cell and system thermal/electrical design analyses, structural design analyses, and mass analyses were performed to define an optimum system design. Using fresh radioisotope fuel at beginning of mission, the RPS producesmore » 102 watts of power, has a mass of 8.35 kg (specific power density = 12.2 watts/kg), with a system conversion efficiency of 20.3%. Mass/power scale-up estimates have also been generated, indicating that a 150-watt version of this RPS would weigh approximately 11.3 kg. This paper presents and discusses the key features of this RPS design, the design and analysis methodology, and the numerous system and AMTEC cell tradeoff studies establishing the optimum AMTEC-based RPS.« less

  2. Radioisotopic cardiac pacemaker report on safety tests: crush, internal pressure, cremation; Stimulateur cardiaque radioisotopique. Essais de securite (ecrasement, pression interne, incineration) (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrard, C.; Milet, C.

    1973-03-15

    Following the results presented at the Second International Symposium on Power from Radioisotopes [Madrid, 29th May-1st June 1973] the present report describes the various tests: crush and internal pressures resistance of the radioisotopic sources as well as cremation at 1300 deg C (3370 deg F) performed on the sources, the thermoelectric batteries and the whole cardiac pacemaker.

  3. Radioisotope Heater Unit-Based Stirling Power Convertor Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Geng, Steven M.; Penswick, Lawrence; Schmitz, Paul C.

    2017-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A variety of mission concepts have been studied by NASA and the U. S. Department of Energy that would utilize RPS for landers, probes, and rovers and only require milliwatts to tens of watts of power. These missions would contain science measuring instruments that could be distributed across planetary surfaces or near objects of interest in space solar flux insufficient for using solar cells. A low power Stirling convertor is being developed to provide an RPS option for future low power applications. Initial concepts convert heat available from several Radioisotope Heater Units to electrical power for spacecraft instruments and communication. Initial development activity includes defining and evaluating a variety of Stirling configurations and selecting one for detailed design, research of advanced manufacturing methods that could simplify fabrication, evaluating thermal interfaces, characterizing components and subassemblies to validate design codes, and preparing for an upcoming demonstration of proof of concept in a laboratory environment.

  4. Equipment for nuclear medical centers, production capabilities of Rosatom enterprises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrish, Yu. N., E-mail: gavrish@luts.niiefa.spb.su; Koloskov, S. A.; Smirnov, V. P.

    2015-12-15

    Analysis of the capabilities of the State Corporation Rosatom enterprises on the development and production of diagnostic and therapeutic equipment for nuclear medicine centers is presented. Prospects of the development of accelerator equipment for the production of a wide range of radioisotope products are shown, and the trends of its development are determined. A comparative analysis of the technical parameters of domestic tomographs and devices for brachytherapy with foreign counterparts is given.

  5. Analysis, optimization, and assessment of radioisotope thermophotovoltaic system design for an illustrative space mission

    NASA Astrophysics Data System (ADS)

    Schock, A.; Mukunda, M.; Or, C.; Summers, G.

    1995-01-01

    A companion paper presented at this conference described the design of a Radioisotope Thermophotovoltaic (RTPV) Generator for an illustrative space mission (Pluto Fast Flyby). It presented a detailed design of an integrated system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system. The present paper describes the thermal, electrical, and structural analyses which led to that optimized design, and compares the computed RTPV performance to that of a Radioisotope Thermoelectric Generator (RTG) designed for the same mission. RTPVs are of course much less mature than RTGs, but our results indicate that—when fully developed—they could result in a 60% reduction of the heat source's mass, cost, and fuel loading, a 50% reduction of generator mass, a tripling of the power system's specific power, and a quadrupling of its efficiency. The paper concludes by briefly summarizing the RTPV's current technology status and assessing its potential applicability for the PFF mission. For other power systems (e.g., RTGs), demonstrating their flight readiness for a long mission is a very time-consuming process to determine the long-term effect of temperature-induced degradation mechanisms. But for the case of the described RTPV design, the paper lists a number of factors, primarily its cold (0 to 10 °C) converter temperature, that may greatly reduce the need for long-term tests to demonstrate generator lifetime. In any event, our analytical results suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the Pluto mission but also for other future missions requiring small, long-lived, low-mass generators.

  6. Nano-technology contributions towards the development of high performance radioisotope generators: The future promise to meet the continuing clinical demand.

    PubMed

    Sakr, Tamer M; Nawar, Mohamed F; Fasih, T W; El-Bayoumy, S; Abd El-Rehim, H A

    2017-11-01

    Nanostructured materials attracted considerable attention because of its high surface area to volume ratio resulting from their nano-scale dimensions. This class of sorbents is expected to have a potential impact on enhancement the efficacy of radioisotope generators for diagnostic and therapeutic applications in nuclear medicine. This review provides a summary on the importance of nanostructured materials as effective sorbents for the development of clinical-scale radioisotope generators and outlining the assessment of recent developments, key challenges and promising access to the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Radioisotopic Purity of Sodium Pertechnetate 99mTc Produced with a Medium-Energy Cyclotron: Implications for Internal Radiation Dose, Image Quality, and Release Specifications.

    PubMed

    Selivanova, Svetlana V; Lavallée, Éric; Senta, Helena; Caouette, Lyne; Sader, Jayden A; van Lier, Erik J; Zyuzin, Alexander; van Lier, Johan E; Guérin, Brigitte; Turcotte, Éric; Lecomte, Roger

    2015-10-01

    Cyclotron production of 99mTc is a promising route to supply 99mTc radiopharmaceuticals. Higher 99mTc yields can be obtained with medium-energy cyclotrons in comparison to those dedicated to PET isotope production. To take advantage of this capability, evaluation of the radioisotopic purity of 99mTc produced at medium energy (20-24 MeV) and its impact on image quality and dosimetry was required. Thick 100Mo (99.03% and 99.815%) targets were irradiated with incident energies of 20, 22, and 24 MeV for 2 or 6 h. The targets were processed to recover an effective thickness corresponding to approximately 5-MeV energy loss, and the resulting sodium pertechnetate 99mTc was assayed for chemical, radiochemical, and radionuclidic purity. Radioisotopic content in final formulation was quantified using γ-ray spectrometry. The internal radiation dose for 99mTc-pertechnetate was calculated on the basis of experimentally measured values and biokinetic data in humans. Planar and SPECT imaging were performed using thin capillary and water-filled Jaszczak phantoms. Extracted sodium pertechnetate 99mTc met all provisional quality standards. The formulated solution for injection had a pH of 5.0-5.5, contained greater than 98% of radioactivity in the form of pertechnetate ion, and was stable for at least 24 h after formulation. Radioisotopic purity of 99mTc produced with 99.03% enriched 100Mo was greater than 99.0% decay corrected to the end of bombardment (EOB). The radioisotopic purity of 99mTc produced with 99.815% enriched 100Mo was 99.98% or greater (decay corrected to the EOB). The estimated dose increase relative to 99mTc without any radionuclidic impurities was below 10% for sodium pertechnetate 99mTc produced from 99.03% 100Mo if injected up to 6 h after the EOB. For 99.815% 100Mo, the increase in effective dose was less than 2% at 6 h after the EOB and less than 4% at 15 h after the EOB when the target was irradiated at an incident energy of 24 MeV. Image spatial resolution

  8. Calibration and operational data for a compact photodiode detector useful for monitoring the location of moving sources of positron emitting radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsland, M. G.; Dehnel, M. P.; Theroux, J.

    2013-04-19

    D-Pace has developed a compact cost-effective gamma detector system based on technology licensed from TRIUMF. These photodiode detectors are convenient for detecting the presence of positron emitting radioisotopes, particularly for the case of transport of radioisotopes from a PET cyclotron to hotlab, or from one location to another in an automated radiochemistry processing unit. This paper describes recent calibration experiments undertaken at the Turku PET Centre for stationary and moving sources of F18 and C11 in standard setups. The practical diagnostic utility of using several of these devices to track the transport of radioisotopes from the cyclotron to hotlab ismore » illustrated. For example, such a detector system provides: a semi-quantitative indication of total activity, speed of transport, location of any activity lost en route and effectiveness of follow-up system flushes, a means of identifying bolus break-up, feedback useful for deciding when to change out tubing.« less

  9. .sup.82 Sr-.sup.82 Rb Radioisotope generator

    DOEpatents

    Grant, Patrick M.; Erdal, Bruce R.; O'Brien, Harold A.

    1976-01-01

    An improved .sup.82 Sr-.sup.82 Rb radioisotope generator system, based upon the complexing ion exchange resin Chelex-100, has been developed. Columns of this material can be easily and rapidly milked, and the Rb-Sr separation factor for a fresh generator was found to be > 10.sup.7. Approximately 80 percent of the .sup.82 Rb present was delivered in a 15-ml volume of aqueous 0.2 M NH.sub.4 Cl solution. After more than 6 liters of eluant had been put through the generator, the Rb-Sr separation factor was still observed to be > 10.sup.5, and no unusual strontium breakthrough behavior was seen in the system over nearly three .sup.82 Sr half lives.

  10. Radioisotope cisternography in acute viral encephalitis. A reappraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuyama, H.; Kawamura, J.

    1982-05-01

    Five cases of presumed acute viral encephalitis with convulsions were examined with radioisotope (RI) cisternography six and 24 hours after an intrathecal injection of 1 mCi of pentetic acid labeled with either /sup 169/Yb or /sup 111/In. All cases showed abnormalities with this study. The cold areas observed with RI cisternography were well correlated with abnormal foci on the EEG. Although the findings are nonspecific, the CSF dynamics and patency of the subarachnoid space are easily examined by RI cisternography without appreciable complications. It is a useful supplementary diagnostic method to depict the extent of lobar abnormalities of cerebral cortex,more » particularly at an early stage, that either narrow or obliterate subarachnoid space and CSF pathways.« less

  11. Comparative study of inorganic elements determined in whole blood from Dmd(mdx)/J mice strain by EDXRF and NAA analytical techniques.

    PubMed

    Redígolo, M M; Sato, I M; Metairon, S; Zamboni, C B

    2016-04-01

    Several diseases can be diagnosed observing the variation of specific elements concentration in body fluids. In this study the concentration of inorganic elements in blood samples of dystrophic (Dmd(mdx)/J) and C57BL/6J (control group) mice strain were determined. The results obtained from Energy Dispersive X-ray Fluorescence (EDXRF) were compared with Neutron Activation Analysis (NAA) technique. Both analytical techniques showed to be appropriate and complementary offering a new contribution for veterinary medicine as well as detailed knowledge of this pathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Temperature dependence of the Henry's law constant for hydrogen storage in NaA zeolites: a Monte Carlo simulation study.

    PubMed

    Sousa, João Miguel; Ferreira, António Luís; Fagg, Duncan Paul; Titus, Elby; Krishna, Rahul; Gracio, José

    2012-08-01

    Grand canonical Monte Carlo simulations of hydrogen adsorption in zeolites NaA were carried out for a wide range of temperatures between 77 and 300 K and pressures up to 180 MPa. A potential model was used that comprised of three main interactions: van der Waals, coulombic and induced polarization by the electric field in the system. The computed average number of adsorbed molecules per unit cell was compared with available results and found to be in agreement in the regime of moderate to high pressures. The particle insertion method was used to calculate the Henry coefficient for this model and its dependence on temperature.

  13. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  14. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.

  15. Radioisotope penile plethysmography: A technique for evaluating corpora cavernosal blood flow during early tumescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, A.N.; Graham, M.M.; Ferency, G.F.

    1989-04-01

    Radioisotope penile plethysmography is a nuclear medicine technique which assists in the evaluation of patients with erectile dysfunction. This technique attempts to noninvasively quantitate penile corpora cavernosal blood flow during early penile tumescence using technetium-99m-labeled red blood cells. Penile images and counts were acquired in a steady-state blood-pool phase prior to and after the administration of intracorporal papaverine. Penile counts, images, and time-activity curves were computer analyzed in order to determine peak corporal flow and volume changes. Peak corporal flow rates were compared to arterial integrity (determined by angiography) and venosinusoidal corporal leak (determined by cavernosometry). Peak corporal flow correlatedmore » well with arterial integrity (r = 0.91) but did not correlate with venosinusoidal leak parameters (r = 0.01). This report focuses on the methodology and the assumptions which form the foundation of this technique. The strong correlation of peak corporal flow and angiography suggests that radioisotope penile plethysmography could prove useful in the evaluation of arterial inflow disorders in patients with erectile dysfunction.« less

  16. Production of platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP)

    DOE PAGES

    Smith, Suzanne V.; Mccutchan, Elizabeth; Gurdal, Gulhan; ...

    2017-09-13

    The accelerator production of platinum isotopes was investigated at the Brookhaven Linac Isotope Producer (BLIP). In this paper high purity natural platinum foils were irradiated at 53.2, 65.7, 105.2, 151.9, 162.9 and 173.3 MeV. The irradiated foils were digested in aqua regia and then converted to their hydrochloride salt with concentrated hydrochloric acid before analyzing by gamma spectrometry periodically for at least 10 days post end of bombardment. A wide range of platinum (Pt), gold (Au) and iridiu m (Ir) isotopes were identified. Effective cross sections at BLIP for Pt-188, Pt-189, Pt-191 and Pt-195m were compared to literature and theoreticalmore » cross sections determined using Empire-3.2. The majority of the effective cross sections (<70 MeV) confirm those reported in the literature. While the absolute values of the theoretical cross sections were up to a factor of 3 lower, Empire 3.2 modeled thresholds and maxima correlated well with experimental values. Preliminary evaluation into a rapid separation of Pt isotopes from high levels of Ir and Au isotopes proved to be a promising approach for large scale production. In conclusion, this study demonstrated that with the use of isotopically enriched target material accelerator production of selected platinum isotopes is feasible over a wide proton energy range.« less

  17. Production of platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP)

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne V.; McCutchan, Elizabeth; Gürdal, Gülhan; Lister, Christopher; Muench, Lisa; Nino, Michael; Sonzogni, Alexandro; Herman, Michal; Nobre, Gustavo; Cullen, Chris; Chillery, Thomas; Chowdury, Partha; Harding, Robert

    2017-09-01

    The accelerator production of platinum isotopes was investigated at the Brookhaven Linac Isotope Producer (BLIP). In this study high purity natural platinum foils were irradiated at 53.2, 65.7, 105.2, 151.9, 162.9 and 173.3.MeV. The irradiated foils were digested in aqua regia and then converted to their hydrochloride salt with concentrated hydrochloric acid before analyzing by gamma spectrometry periodically for at least 10 days post end of bombardment. A wide range of platinum (Pt), gold (Au) and iridium (Ir) isotopes were identified. Effective cross sections at BLIP for Pt-188, Pt-189, Pt-191 and Pt-195m were compared to literature and theoretical cross sections determined using Empire-3.2. The majority of the effective cross sections (<70 MeV) confirm those reported in the literature. While the absolute values of the theoretical cross sections were up to a factor of 3 lower, Empire 3.2 modeled thresholds and maxima correlated well with experimental values. Preliminary evaluation into a rapid separation of Pt isotopes from high levels of Ir and Au isotopes proved to be a promising approach for large scale production. In conclusion, this study demonstrated that with the use of isotopically enriched target material accelerator production of selected platinum isotopes is feasible over a wide proton energy range.

  18. Radioisotope Power Sources for MEMS Devices,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, J.P.

    2001-06-17

    Microelectromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an on-board power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. A junction-type battery was constructed using silicon and a {sup 63}Ni liquidmore » source. A source volume containing 64 {micro}Ci provided a power of {approx}0.07 nW. A more novel application of nuclear sources for MEMS applications involves the creation of a resonator that is driven by charge collection in a cantilever beam. Preliminary results have established the feasibility of this concept, and future work will optimize the design for various applications.« less

  19. A Comparison of the Performance Capabilities of Radioisotope Energy Conversion Systems, Betavoltaic Cells, and other Nuclear Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinfelds, Eric V; Prelas, Mark A.; Sudarshan, Loyalka K.

    2006-07-01

    In this paper we compare the potential performance capabilities of several types of nuclear batteries to the Radioisotope Thermocouple Generators (RTG's) currently in use. There have been theoretical evaluations of, and some experimental testing of, several types of nuclear batteries including Radioisotope Energy Conversion Systems (RECS), Direct Energy Conversion (DEC) systems, and Betavoltaic Power Cells (BPC's). It has been theoretically shown, and to some extent experimentally demonstrated, that RECS, capacitive DEC systems, and possibly BPC's are all potentially capable of efficiencies well above the 9% maximum efficiency demonstrated to date in RTG's customized for deep space probe applications. Even thoughmore » RTG's have proven their reliability and have respectable power to mass ratios, it is desirable to attain efficiencies of at least 25% in typical applications. High fuel efficiency is needed to minimize the quantities of radioisotopic or nuclear fuels in the systems, to maximize power to mass ratios, and to minimize housing requirements. It has been shown that RECS can attain electric power generation efficiencies greater than 18% for devices which use Sr-90 fuel and where the accompanying material is less than roughly twice the mass of the Sr-90 fuel. Other radioisotopic fuels such as Pu-238 or Kr-85 can also be placed into RECS in order to attain efficiencies over 18%. With the likely exception of one fuel investigated by the authors, all of the promising candidates for RECS fuels can attain electric power to mass ratios greater than 15 W kg{sup -1}. It has been claimed recently [1] that the efficiency of tritium-fueled BPC's can be as high as 25%. While this is impressive and tritium has the benefit of being a 'soft' radioisotopic fuel, the silicon wafer that holds the tritium would have to be considerably more massive than the tritium contained within it and immediately adjacent to the wafer. Considering realistic mass requirements for the

  20. Nuclear and Radioisotope Propulsion and Power in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Widdicombe, T.

    A brief history of the use of nuclear fuelled powerplant in space is given along with some working principles of the technology, and recent proposals for spacecraft for the exploration of Titan utilising radioisotope generators are surveyed. Nuclear reaction engines are studied with specific consideration given to their use in Titan's atmosphere, and speculative modifications to one particular spacecraft concept originally conceived of for the exploration of Mars are proposed. A hybrid device producing mechanical power from nuclear decay heat is also suggested for future investigation.

  1. INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART.

    PubMed

    Huffman, Fred N.; Hagen, Kenneth G.; Whalen, Robert L.; Fuqua, John M.; Norman, John C.

    1974-01-01

    The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm.

  2. Experimental results and model calculations of excitation functions relevant to the production of specific radioisotopes for metabolic radiotherapy and for pet

    NASA Astrophysics Data System (ADS)

    Menapace, E.; Birattari, C.; Bonardi, M. L.; Groppi, F.

    2004-10-01

    First results are given from the comparison of experimental values and model calculations on accelerator-produced high specific activity radionuclides in no-carrier-added (NCA) form. The relevant radioisotopes are: 64Cu, produced by natZn(d, αxn) and natZn(d,2p) reactions, for simultaneous positron/negatron metabolic radiotherapy and PET imaging; 66Ga high-energy positron emitter (4.2 MeV), produced by natZn(d, xn) reactions, for metabolic radiotherapy and for PET; 186gRe, produced by 186W(p,n) and 186W(d,2n) reactions, for negatron (1.1 MeV) metabolic radiotherapy; 211At/ 211Po, produced by 209Bi( α,2n) reaction (with spike of gamma emitter 210At produced by 209Bi( α,3n) reaction) and 225Ac/ 213Bi/ 213Po, produced by 226Ra(p,2n) reaction, both for high-LET radiotherapy.

  3. Test and evaluation of the Navy half-watt RTG. [Radioisotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Rosell, F. E., Jr.; Lane, S. D.; Eggers, P. E.; Gawthrop, W. E.; Rouklove, P. G.; Truscello, V. C.

    1976-01-01

    The radioisotope thermoelectric generator (RTG) considered is to provide a continuous minimum power output of 0.5 watt at 6.0 to 8.5 volts for a minimum period of 15 years. The mechanical-electrical evaluation phase discussed involved the conduction of shock and vibration tests. The thermochemical-physical evaluation phase consisted of an analysis of the materials and the development of a thermal model. The thermoelectric evaluation phase included the accelerated testing of the thermoelectric modules.

  4. Concept for a radioisotope powered dual mode lunar rover

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Schriener, Timothy M.; Coste, Keith

    2006-01-01

    Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.

  5. Concept for a Radioisotope Powered Dual Mode Lunar Rover

    NASA Astrophysics Data System (ADS)

    Elliott, John O.; Schriener, Timothy M.; Coste, Keith

    2006-01-01

    Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.

  6. The production of [124I]iodine and [86Y]yttrium.

    PubMed

    Schmitz, Jochen

    2011-05-01

    The use of paired tracers such as (124)I/(131)I and (86)Y/(90)Y allows pretherapy PET imaging with positron emitting radioisotopes of the same element as used for therapy. Whereas nowadays most therapy nuclides are produced by reactors or generators, the production of the corresponding PET isotopes requires the irradiation of adequate targets using particle accelerators such as cyclotrons. This paper describes the production routes for (124)I and (86)Y.

  7. Deletion of beta-2-microglobulin ameliorates spinal cord lesion load and promotes recovery of brainstem NAA levels in a murine model of multiple sclerosis.

    PubMed

    Denic, Aleksandar; Pirko, Istvan; Wootla, Bharath; Bieber, Allan; Macura, Slobodan; Rodriguez, Moses

    2012-09-01

    We used genetic deletion of β2-microglobulin to study the influence of CD8(+) T cells on spinal cord demyelination, remyelination, axonal loss and brainstem N-acetyl aspartate levels during the acute and chronic phases of Theiler's murine encephalomyelitis virus (TMEV) infection. We used β2m(-/-) and β2m(+/+) B10.Q mice (of H-2(q) background) normally susceptible to TMEV-induced demyelination. Over the disease course, β2m(+/+) mice had increasing levels of demyelination and minimal late-onset remyelination. In contrast, β2m(-/-) mice had steady levels of demyelination from 45-390 dpi and remyelination was extensive and more complete. Early in the disease, brainstem NAA levels drop in both strains, but accordingly with remyelination and axonal preservation, NAA recover in β2m(-/-) mice despite equivalent brainstem pathology. At 270 dpi, β2m(+/+) mice had significantly fewer spinal cord axons than β2m(-/-) mice (up to 28% less). In addition, β2m(+/+) mice lost axons of all calibers, whereas β2m(-/-) mice had a modest loss of only medium- and large-caliber axons. This study further supports the hypothesis that CD8(+) T cells are involved in demyelination, and axonal loss following Theiler's virus-induced demyelination. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  8. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes

    PubMed Central

    Prokesch, A.; Pelzmann, H. J.; Pessentheiner, A. R.; Huber, K.; Madreiter-Sokolowski, C. T.; Drougard, A.; Schittmayer, M.; Kolb, D.; Magnes, C.; Trausinger, G.; Graier, W. F.; Birner-Gruenberger, R.; Pospisilik, J. A.; Bogner-Strauss, J. G.

    2016-01-01

    Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes. PMID:27045997

  9. Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. using growth regulators and sucrose.

    PubMed

    Modarres, Masoomeh; Esmaeilzadeh Bahabadi, Sedigheh; Taghavizadeh Yazdi, Mohammad Ehsan

    2018-04-01

    Salvia leriifolia Benth. (Lamiaceae) is an endangered medicinal plant with hypoglycemic, anti-inflammatory and analgesic properties. Many of the beneficial effects of Salvia spp. are attributed to the phenolic compounds. In the present study, an efficient procedure has been developed for establishment of cell suspension culture of S. leriifolia as a strategy to obtain an in vitro phenolic acids producing cell line for the first time. The effect of growth regulators and various concentrations of sucrose have been analyzed, to optimize biomass growth and phenolic acids production. The callus used for this purpose was obtained from leaves of 15-day-old in vitro seedlings, on Murashige and Skoog (MS) basal medium supplemented with different hormone balances including benzylaminopurine (BAP) and indole butyric acid (IBA); 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KIN); naphthaleneacetic acid (NAA) and BAP. Modified MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA was the optimal condition for callus formation with the highest induction rate (100%), the best callus growth and the highest phenolic acids content. No callus induction was observed in combinations of IBA and BAP. Cell suspension cultures were established by transferring 0.5 g of callus to 30 mL liquid MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA. Dynamics of phenolic acids production has been investigated during the growth cycle of the suspension cultures. The maximum content of caffeic acid and salvianolic acid B were observed on the 15th day of the cultivation cycle while the highest amount of rosmarinic acid was observed on the first day. In response to various sucrose concentrations, cell cultures with 40 g/L sucrose not only produced the highest dry biomass but also the highest induction of caffeic acid and salvianolic acid B. The highest amount of rosmarinic acid was observed in media containing 50 g/L sucrose. These prepared cell suspension cultures provided a useful

  10. Reliability Demonstration Approach for Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Ha, CHuong; Zampino, Edward; Penswick, Barry; Spronz, Michael

    2010-01-01

    Developed for future space missions as a high-efficiency power system, the Advanced Stirling Radioisotope Generator (ASRG) has a design life requirement of 14 yr in space following a potential storage of 3 yr after fueling. In general, the demonstration of long-life dynamic systems remains difficult in part due to the perception that the wearout of moving parts cannot be minimized, and associated failures are unpredictable. This paper shows a combination of systematic analytical methods, extensive experience gained from technology development, and well-planned tests can be used to ensure a high level reliability of ASRG. With this approach, all potential risks from each life phase of the system are evaluated and the mitigation adequately addressed. This paper also provides a summary of important test results obtained to date for ASRG and the planned effort for system-level extended operation.

  11. Computational modeling of Radioisotope Thermoelectric Generators (RTG) for interplanetary and deep space travel

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus; Nejat, Narsis; Nejat, Najmeh

    2014-06-01

    This research project is part of Narsis Nejat Master of Science thesis project that it is done at Shiraz University. The goals of this research are to make a computer model to evaluate the thermal power, electrical power, amount of emitted/absorbed dose, and amount of emitted/absorbed dose rate for static Radioisotope Thermoelectric Generators (RTG)s that is include a comprehensive study of the types of RTG systems and in particular RTG’s fuel resulting from both natural and artificial isotopes, calculation of the permissible dose radioisotope selected from the above, and conceptual design modeling and comparison between several NASA made RTGs with the project computer model pointing out the strong and weakness points for using this model in nuclear industries for simulation. The heat is being converted to electricity by two major methods in RTGs: static conversion and dynamic conversion. The model that is created for this project is for RTGs that heat is being converted to electricity statically. The model approximates good results as being compared with SNAP-3, SNAP-19, MHW, and GPHS RTGs in terms of electrical power, efficiency, specific power, and types of the mission and amount of fuel mass that is required to accomplish the mission.

  12. Routes for the production of isotopes for PET with high intensity deuteron accelerators

    NASA Astrophysics Data System (ADS)

    Arias de Saavedra, F.; Porras, I.; Praena, J.

    2018-04-01

    Recent advances in accelerator science are opening new possibilities in different fields of physics. In particular, the development of compact linear accelerators that can provide charged particles of low-medium energy (few MeV) with high current (above mA) allows for the study of new possibilities in neutron production and for new routes for the production of radioisotopes. Keeping in mind how radioisotopes are actually produced in dedicated facilities, we have performed a study of alternative reactions to produce PET isotopes induced by low-energy deuterons. We have fitted the EXFOR cross sections data, used the fitted values of the stopping power by Andersen and Ziegler and calculated by numerical integration the production rate of isotopes for charged particles up to 20 MeV. The results for deuterons up to 3 MeV are compared with the ones from cyclotrons, which are able to provide higher energies to the charged projectiles but with lower intensities. Our results indicate that using linear accelerators may be a good alternative for producing PET isotopes, reducing the problem of neutron activation.

  13. Novel approach for classifying chemicals according to skin sensitizing potency by non-radioisotopic modification of the local lymph node assay.

    PubMed

    Takeyoshi, Masahiro; Iida, Kenji; Shiraishi, Keiji; Hoshuyama, Satsuki

    2005-01-01

    The murine local lymph node assay (LLNA) is currently recognized as a stand-alone sensitization test for determining the sensitizing potential of chemicals, and it has the advantage of yielding a quantitative endpoint that can be used to predict the sensitization potency of chemicals. The EC3 has been proposed as a parameter for classifying chemicals according to the sensitization potency. We previously developed a non-radioisotopic endpoint for the LLNA based on 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA), and we are proposing a new procedure to predict the sensitization potency of chemicals based on comparisons with known human contact allergens. Nine chemicals (i.e. diphencyclopropenone, p-phenylenediamine, glutaraldehyde, cinnamicaldehyde, citral, eugenol, isopropyl myristate, propyleneglycol and hexane) categorized as human contact allergen classes 1-5 were tested by the non-RI LLNA with the following reference allergens: 2,4-dinitrochlorobenzene (DNCB) as a class 1 human contact allergen, isoeugenol as a class 2 human contact allergen and alpha-hexylcinnamic aldehyde (HCA) as a class 3 human contact allergen. Consequently, nine test chemicals were almost assigned to their correct allergen class. The results suggested that the new procedure for non-RI LLNA can provide correct sensitization potency data. Sensitization potency data are useful for evaluating the sensitization risk to humans of exposure to new chemical products. Accordingly, this approach would be an effective modification of LLNA with regard to its experimental design. Moreover, this procedure can be applied also to the standard LLNA with radioisotopes and to other modifications of the LLNA. Copyright 2005 John Wiley & Sons, Ltd.

  14. InfuShield: a shielded enclosure for administering therapeutic radioisotope treatments using standard syringe pumps

    PubMed Central

    Pratt, Brenda E.; Chittenden, Sarah J.; Murray, Iain S.; Causer, Louise; Grey, Matthew J.; Gear, Jonathan I.; Du, Yong; Flux, Glenn D.

    2017-01-01

    The administration of radionuclide therapies presents significant radiation protection challenges. The aim of this work was to develop a delivery system for intravenous radioisotope therapies to substantially moderate radiation exposures to staff and operators. A novel device (InfuShield) was designed and tested before being used clinically. The device consists of a shielded enclosure which contains the therapeutic activity and, through the hydraulic action of back-to-back syringes, allows the activity to be administered using a syringe pump external to the enclosure. This enables full access to the pump controls while simultaneously reducing dose to the operator. The system is suitable for use with all commercially available syringe pumps and does not require specific consumables, maximising both the flexibility and economy of the system. Dose rate measurements showed that at key stages in an 131I mIBG treatment procedure, InfuShield can reduce dose to operators by several orders of magnitude. Tests using typical syringes and infusion speeds show no significant alteration in administered flow rates (maximum of 1.2%). The InfuShield system provides a simple, safe and low cost method of radioisotope administration. PMID:28187040

  15. Development of a Multi-bus, Multi-source Reconfigurable Stirling Radioisotope Power System Test Bed

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) has typically used Radioisotope Thermoelectric Generators (RTG) as their source of electric power for deep space missions. A more efficient and potentially more cost effective alternative to the RTG, the high efficiency 110 watt Stirling Radioisotope Generator 110 (SRG110) is being developed by the Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC) and NASA Glenn Research Center (GRC). The SRG110 consists of two Stirling convertors (Stirling Engine and Linear Alternator) in a dual-opposed configuration, and two General Purpose Heat Source (GPHS) modules. Although Stirling convertors have been successfully operated as a power source for the utility grid and as a stand-alone portable generator, demonstration of the technology required to interconnect two Stirling convertors for a spacecraft power system has not been attempted. NASA GRC is developing a Power System Test Bed (PSTB) to evaluate the performance of a Stirling convertor in an integrated electrical power system application. This paper will describe the status of the PSTB and on-going activities pertaining to the PSTB in the NASA Thermal-Energy Conversion Branch of the Power and On-Board Propulsion Technology Division.

  16. Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.

    2000-10-17

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.

  17. NASA's Radioisotope Power Systems Program Overview - A Focus on RPS Users

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; McCallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. To meet this goal, the RPS Program manages investments in RPS technologies and RPS system development, working closely with the Department of Energy. This paper provides an overview of the RPS Program content and status, its collaborations with potential RPS users, and the approach employed to maintain the readiness of RPS to support future NASA mission concepts.

  18. Sodium VCHP with Carbon-Carbon Radiator for Radioisotope Stirling Systems

    NASA Astrophysics Data System (ADS)

    Tarau, Calin; Anderson, William G.; Miller, William O.; Ramirez, Rogelio

    2010-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling converter normally provides this cooling. If the Stirling convertor stops in the current system the insulation is designed to spoil, preventing damage to the GPHS at the cost of an earlier termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to allow multiple stops and restarts of the Stirling convertor. A sodium VCHP with a Haynes 230 envelope was designed and fabricated for the Advanced Stirling Radioisotope Generator (ASRG), with a baseline 850° C heater head temperature. When the Stirling convertor is stopped, the heat from the GPHS is rejected to the Cold Side Adapter Flange using a low-mass, carbon-carbon radiator. The VCHP is designed to activate with a AT of 30° C. The 880° C temperature when the Stirling convertor is stopped is high enough to avoid risking standard ASRG operation, but low enough to save most of the heater head life. The VCHP has low mass and low thermal losses for normal operation. The design has been modified from an earlier, stainless steel prototype with a nickel radiator. In addition to replacing the nickel radiator with a low mass carbon-carbon radiator, the radiator location has been moved from the ASRG case to the cold side adapter flange. This flange already removes two-thirds of the heat during normal operation, so it is optimized to transfer heat to the case. The VCHP was successfully tested with a turn-on ΔT of 30° C in three orientations: horizontal, gravity-aided, and against gravity.

  19. Small Radioisotope Power System at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Fraeman, Martin; Frankford, David P.; Duven, Dennis; Shamkovich, Andrei; Ambrose, Hollis; Meer, David W.

    2012-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer for possible use by the International Lunar Network (ILN) program. The ILN program is studying the feasibility of implementing a multiple node seismometer network to investigate the internal lunar structure. A single ASC produces approximately 80 W(sub e) and could potentially supply sufficient power for that application. The IPT consists of Sunpower, Inc., to provide the single ASC with balancer, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to design an engineering model Single Convertor Controller (SCC) for an ASC with balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. A controller maintains stable operation of an ASC. It regulates the alternating current produced by the linear alternator of the convertor, provides a specified output voltage, and maintains operation at a steady piston amplitude and hot end temperature. JHU/APL also designed an ASC dynamic engine/alternator simulator to aid in the testing and troubleshooting of the SCC. This paper describes the requirements, design, and development of the SCC, including some of the key challenges and the solutions chosen to overcome those issues. In addition, it describes the plans to analyze the effectiveness of a passive balancer to minimize vibration from the ASC, characterize the effect of ASC vibration on a lunar lander, characterize the performance of the SCC, and integrate the single ASC, SCC, and lunar lander test stand to characterize performance of the overall system.

  20. Testing to Characterize the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward; Schreiber, Jeffrey

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. Lockheed Martin designed and fabricated an engineering unit (EU), the ASRG EU, under contract to the Department of Energy. This unit is currently undergoing extended operation testing at the NASA Glenn Research Center to generate performance data and validate life and reliability predictions for the generator and the Stirling convertors. It has also undergone performance tests to characterize generator operation while varying control parameters and system inputs. This paper summarizes and explains test results in the context of designing operating strategies for the generator during a space mission and notes expected differences between the EU performance and future generators.

  1. G-189A analytical simulation of the integrated waste management-water system using radioisotopes for thermal energy

    NASA Technical Reports Server (NTRS)

    Coggi, J. V.; Loscutoff, A. V.; Barker, R. S.

    1973-01-01

    An analytical simulation of the RITE-Integrated Waste Management and Water Recovery System using radioisotopes for thermal energy was prepared for the NASA-Manned Space Flight Center (MSFC). The RITE system is the most advanced concept water-waste management system currently under development and has undergone extended duration testing. It has the capability of disposing of nearly all spacecraft wastes including feces and trash and of recovering water from usual waste water sources: urine, condensate, wash water, etc. All of the process heat normally used in the system is produced from low penalty radioisotope heat sources. The analytical simulation was developed with the G189A computer program. The objective of the simulation was to obtain an analytical simulation which can be used to (1) evaluate the current RITE system steady state and transient performance during normal operating conditions, and also during off normal operating conditions including failure modes; and (2) evaluate the effects of variations in component design parameters and vehicle interface parameters on system performance.

  2. ARAS: an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes

    DOE PAGES

    Dooraghi, Alex A.; Carroll, Lewis; Collins, Jeffrey; ...

    2016-03-09

    Automated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing a safe environment for radiation workers but also to ensure accuracy of dispensed radioactivity and an efficient workflow. For this purpose, we have designed ARAS, an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes with particular focus on fluorine-18 (18F). The key to the system is the combination of a radiation detector measuring radioactivity concentration, in line with a peristaltic pump dispensing known volumes. Results show the combined system demonstrates volume variation to be within 5 % for dispensing volumes of 20 μLmore » or greater. When considering volumes of 20 μL or greater, the delivered radioactivity is in agreement with the requested amount as measured independently with a dose calibrator to within 2 % on average. In conclusion, the integration of the detector and pump in an in-line system leads to a flexible and compact approach that can accurately dispense solutions containing radioactivity concentrations ranging from the high values typical of [18F]fluoride directly produced from a cyclotron (~0.1-1 mCi μL -1) to the low values typical of batches of [18F]fluoride-labeled radiotracers intended for preclinical mouse scans (~1-10 μCi μL -1).« less

  3. Feasibility Study and System Architecture of Radioisotope Thermoelectric Generation Power Systems for USMC Forward Operating Bases

    DTIC Science & Technology

    2013-06-01

    isotopes decay primarily through alpha particle emission, a small critical mass will cause sustained nuclear chain reaction, emitting gamma neutron...viii 1. Strontium-90 (Example) ....................................................................33 a. Pure Radioisotope Mass to Produce 300W...Power .................33 b. Compound Mass to Produce 300W Power .............................33 c. Estimated cost to Produce 300W power at BOL

  4. Reversible hydronephrosis in the rat: a new surgical technique assessed by radioisotopic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flam, T.; Venot, A.; Bariety, J.

    1984-04-01

    A new technique for experimental reversible hydronephrosis in the rat was developed. A noninvasive radioisotopic investigation, using Tc-99m dimercaptosuccinic acid, permitted sequential assessment of the separate renal function at different stages of the study. After 1 week of unilateral ureteral obstruction, reversibility was obtained by the removal of the obstructive device. Ten days after the obstruction release, the ipsilateral kidney had returned to 71 per cent of its preligation uptake value. Histological findings demonstrated the reversibility of the surgical obstruction.

  5. MEASUREMENTS OF GAMMA-RAY DOSES OF DIFFERENT RADIOISOTOPES BY THE TEST-FILM METHOD (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domanus, J.; Halski, L.

    The test-film method seems to be most suitable for systematic, periodical measurements of individual doses of ionizing radiation. Persons handling radioisotopes are irradiated with gamma rays of different energies. The energy of gamma radiation lies within much broader limits than is the case with x rays. Therefore it was necessary to check whether the test-film method is suitable for measuring doses of gamma-rays of such different energies and to choose the proper combination of film and screen to reach the necessary measuring range. Polish films, Foton Rentgen and Foton Rentgen Super and films from the German Democratic Republic, Agfa Texomore » R and Agfa Texo S were tested. Expositions were made without intensifying screens as well as with lead and fluorescent screens. The investigations showed that for dosimetric purposes the Foton Rentgen Super films are most suitable. However, not one of the film-screen combinations gave satisfactory results for radioisotopes with radiation of different energies. In such a case the test-film method gives only approximate results. If, on the contrary, gamma energies do not differ greatly, the test- film method proves to be quite good. (auth)« less

  6. Design and performance of radioisotope space power systems based on OSC multitube AMTEC converter designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, A.; Noravian, H.; Or, C.

    1997-12-31

    This paper extends the analytical procedure described in another paper in these proceedings to analyze a variety of compact and light-weight OSC-designed radioisotope-heated generators. Those generators employed General Purpose Heat Source (GPHS) modules and a converter containing sixteen AMTEC cells of OSC`s revised five-tube design with enhanced cell wall reflectivity described in a companion paper in these proceedings. OSC found that the performance of the generator is primarily a function of the thermal insulation between the outside of the generator`s 16 cells and the inside of its wall. After examining a variety of insulation options, it was found that themore » generator`s performance is optimized by employing a hybrid insulation system, in which the space between the cells is filled with fibrous Min-K insulation, and the generator walls are lined with tapered (i.e., graded-length) multifoil insulation. The OSC design results in a very compact generator, with eight AMTEC cells on each end of the heat source stack. The choice of the five-tube cells makes it possible to expand the BASE tube diameter without increasing the cell diameter. This is important because the eight cells mate well with the stacked GPHS modules. The OSC generator design includes a compliant heat source support and preload arrangement, to hold the heat source modules together during launch, and to maintain thermal contact conductance at the generator`s interfaces despite creep relaxation of its housing. The BOM and EOM (up to 15 years) performances of the revised generators were analyzed for two and three GPHS modules, both for fresh fuel and for aged fuel left over from a spare RTG (Radioisotope Thermoelectric Generator) fueled in 1982. The resulting power outputs were compared with JPL`s latest EOM power demand goals for the Pluto Express and Europa Orbiter missions, and with the generic goals of DOE`s Advanced Radioisotope Power System (ARPS) study. The OSC AMTEC designs yielded

  7. AMTEC radioisotope power system for the Pluto Express mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.

    1995-12-31

    The Alkali Metal Thermal to Electric Converter (AMTEC) technology has made substantial advances in the last 3 years through design improvements and technical innovations. In 1993 programs began to produce an AMTEC cell specifically for the NASA Pluto Express Mission. A set of efficiency goals was established for this series of cells to be developed. According to this plan, cell {number_sign}8 would be 17% efficient but was actually 18% efficient. Achieving this goal, as well as design advances that allow the cell to be compact, has resulted in pushing the cell from an unexciting 2 W/kg and 2% efficiency tomore » very attractive 40 W/kg and 18% measured efficiency. This paper will describe the design and predict the performance of a radioisotope powered AMTEC system for the Pluto Express mission.« less

  8. Development and Buildup of a Stirling Radioisotope Generator Electrical Simulator

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.; Krasowski, Michael J.; Greer, Lawrence C.; Flatico, Joseph M.; Spina, Dan C.

    2008-01-01

    This paper describes the development of a Stirling Radioisotope Generator (SRG) Simulator for use in a prototype lunar robotic rover. The SRG developed at NASA Glenn Research Center (GRC) is a promising power source for the robotic exploration of the sunless areas of the moon. The simulator designed provides a power output similar to the SRG output of 5.7 A at 28 Vdc, while using ac wall power as the input power source. The designed electrical simulator provides rover developers the physical and electrical constraints of the SRG supporting parallel development of the SRG and rover. Parallel development allows the rover design team to embrace the SRG s unique constraints while development of the SRG is continued to a flight qualified version.

  9. Radioisotope tracer studies in the NASA Skylab ethothermic brazing experiment M-552

    NASA Technical Reports Server (NTRS)

    Braski, D. N.; Adair, H. L.; Kobisk, E. H.

    1974-01-01

    The first use of radioisotope tracer for mapping flow patterns during brazing of metal components in a space environment (near-zero gravity) proved successful. A nickel ferrule was brazed to a nickel tube with Lithobraze BT (71.8% Ag, 28% Cu, 0.2% Li) which contained a trace amount of radioactive Ag-110. Mapping of the flow of the braze alloy in the annulus formed between the tube and the concentric ferrule was determined by counting the radiation intensity as a function of position in the braze joint. Significant information concerning the thermal history of the braze was determined.

  10. Reliability of Radioisotope Stirling Convertor Linear Alternator

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin; Korovaichuk, Igor; Geng, Steven M.; Schreiber, Jeffrey G.

    2006-01-01

    Onboard radioisotope power systems being developed and planned for NASA s deep-space missions would require reliable design lifetimes of up to 14 years. Critical components and materials of Stirling convertors have been undergoing extensive testing and evaluation in support of a reliable performance for the specified life span. Of significant importance to the successful development of the Stirling convertor is the design of a lightweight and highly efficient linear alternator. Alternator performance could vary due to small deviations in the permanent magnet properties, operating temperature, and component geometries. Durability prediction and reliability of the alternator may be affected by these deviations from nominal design conditions. Therefore, it is important to evaluate the effect of these uncertainties in predicting the reliability of the linear alternator performance. This paper presents a study in which a reliability-based methodology is used to assess alternator performance. The response surface characterizing the induced open-circuit voltage performance is constructed using 3-D finite element magnetic analysis. Fast probability integration method is used to determine the probability of the desired performance and its sensitivity to the alternator design parameters.

  11. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    PubMed

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Alkaloid production in Vernonia cinerea: Callus, cell suspension and root cultures.

    PubMed

    Maheshwari, Priti; Songara, Bharti; Kumar, Shailesh; Jain, Prachi; Srivastava, Kamini; Kumar, Anil

    2007-08-01

    Fast-growing callus, cell suspension and root cultures of Vernonia cinerea, a medicinal plant, were analyzed for the presence of alkaloids. Callus and root cultures were established from young leaf explants in Murashige and Skoog (MS) basal media supplemented with combinations of auxins and cytokinins, whereas cell suspension cultures were established from callus cultures. Maximum biomass of callus, cell suspension and root cultures were obtained in the medium supplemented with 1 mg/L alpha-naphthaleneacetic acid (NAA) and 5 mg/L benzylaminopurine (BA), 1.0 mg/L NAA and 0.1 mg/L BA and 1.5 mg/L NAA, respectively. The 5-week-old callus cultures resulted in maximum biomass and alkaloid contents (750 microg/g). Cell suspension growth and alkaloid contents were maximal in 20-day-old cultures and alkaloid contents were 1.15 mg/g. A 0.2-g sample of root tissue regenerated in semi-solid medium upon transfer to liquid MS medium containing 1.5 mg/L NAA regenerated a maximum increase in biomass of 6.3-fold over a period of 5 weeks. The highest root growth and alkaloid contents of 2 mg/g dry weight were obtained in 5-week-old cultures. Maximum alkaloid contents were obtained in root cultures in vitro compared to all others including the alkaloid content of in vivo obtained with aerial parts and roots (800 microg/g and 1.2 mg/g dry weight, respectively) of V. cinerea.

  13. Stirling Convertor Performance Mapping Test Results for Future Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Qiu, Songgang; Peterson, Allen A.; Faultersack, Franklyn D.; Redinger, Darin L.; Augenblick, John E.

    2004-02-01

    Long-life radioisotope-fueled generators based on free-piston Stirling convertors are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been performance-testing its Stirling generators to provide data for potential system integration contractors. This paper describes the most recent test results from the STC RemoteGen™ 55 W-class Stirling generators (RG-55). Comparisons are made between the new data and previous Stirling thermodynamic simulation models. Performance-mapping tests are presented including variations in: internal charge pressure, cold end temperature, hot end temperature, alternator temperature, input power, and variation of control voltage.

  14. Mission Steering Profiles of Outer Planetary Orbiters Using Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Oleson, Steven

    2004-01-01

    Radioisotope Electric Propulsion (REP) has the potential to enable small spacecraft to orbit outer planetary targets with trip times comparable to flyby missions. The ability to transition from a flyby to an orbiter mission lies in the availability of continuous low power electric propulsion along the entire trajectory. The electric propulsion system s role is to add and remove energy from the spacecraft s trajectory to bring it in and out of a heliocentric hyperbolic escape trajectory for the outermost target bodies. Energy is added and the trajectory is reshaped to rendezvous with the closer-in target bodies. Sample REP trajectories will be presented for missions ranging for distances from Jupiter orbit to the Pluto-Kuiper Belt.

  15. The Mars Hopper: a radioisotope powered, impulse driven, long-range, long-lived mobile platform for exploration of Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven D. Howe; Robert C. O'Brien; William Taitano

    Planetary exploration mission requirements are becoming more demanding. Due to the increasing cost, the missions that provide mobile platforms that can acquire data at multiple locations are becoming more attractive. Wheeled vehicles such as the MER rovers have proven extremely capable but have very limited range and cannot traverse rugged terrain. Flying vehicles such as balloons and airplanes have been proposed but are problematic due to the very thin atmospheric pressure and the strong, dusty winds present on Mars. The Center for Space Nuclear Research has designed an instrumented platform that can acquire detailed data at hundreds of locations duringmore » its lifetime - a Mars Hopper. The Mars Hopper concept utilizes energy from radioisotopic decay in a manner different from any existing radioisotopic power sources—as a thermal capacitor. By accumulating the heat from radioisotopic decay for long periods, the power of the source can be dramatically increased for short periods. The platform will be able to "hop" from one location to the next every 5-7 days with a separation of 5-10 km per hop. Preliminary designs show a platform that weighs around 52 kgs unfueled which is the condition at deployment. Consequently, several platforms may be deployed on a single launch from Earth. With sufficient lifetime, the entire surface of Mars can be mapped in detail by a couple dozen platforms. In addition, Hoppers can collect samples from all over the planet, including gorges, mountains and crevasses, and deliver them to a central location for eventual pick-up by a Mars Sample Return mission. The status of the Mars Hopper development project at the CSNR is discussed.« less

  16. 2'-O-methyl-5-formylcytidine (f5Cm), a new modified nucleotide at the 'wobble' of two cytoplasmic tRNAs Leu (NAA) from bovine liver.

    PubMed Central

    Païs de Barros, J P; Keith, G; El Adlouni, C; Glasser, A L; Mack, G; Dirheimer, G; Desgrès, J

    1996-01-01

    The nucleotide analysis of a cytoplasmic tRNA(Leu) isolated from bovine liver revealed the presence of an unknown modified nucleotide N. The corresponding N nucleoside was isolated by different enzymatic and chromatographic protocols from a partially purified preparation of this tRNA(Leu). Its chemical characterization was determined from its chromatographic properties, UV-absorption spectroscopy and mass spectrometric measurements, as well as from those of the borohydride reduced N nucleoside and its etheno-trimethylsilyl derivative. The structure of N was established as 2'-O-methyl-5-formylcytidine (f5CM), and its reduced derivative as 2'-O-methyl-5-hydroxy-methylcytidine (om5Cm). By sequencing the bovine liver tRNA(Leu), the structure of the anticodon was determined as f5CmAA. In addition, the nucleotide sequence showed two primary structures differing only by the nucleotide 47c which is either uridine or adenosine. The two slightly differing bovine liver tRNAs-Leu(f5CmAA) are the only tRNAs so far sequenced which contain f5Cm. The role of such a modified cytidine at the first position of the anticodon is discussed in terms of decoding properties for the UUG and UUA leucine codons. Recently, precise evidence was obtained for the presence of f5Cm at the same position in tRNAs(Leu)(NAA) isolated from rabbit and lamb liver. Therefore, the 2'-O-methyl-5-formyl modification of cytidine at position 34 could be a general feature of cytoplasmic tRNAs(Leu)(NAA) in mammals. PMID:8628682

  17. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    NASA Astrophysics Data System (ADS)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  18. A new approach for simple radioisotope cisternography examination in cerebrospinal fluid leakage detection.

    PubMed

    Hoshino, Hiromitsu; Higuchi, Tetsuya; Achmad, Arifudin; Taketomi-Takahashi, Ayako; Fujimaki, Hiroya; Tsushima, Yoshito

    2016-01-01

    We developed a new quantitative interpretation technique of radioisotope cisternography (RIC) for the diagnosis of spontaneous cerebrospinal fluid hypovolemia (SCH). RIC studies performed for suspected SCH were evaluated. (111)In-DTPA RIC images were taken at 0, 1, 3, 6, and 24-h after radioisotope injection following the current protocol. Regions of interest (ROI) were selected on 3-h images to include brain, spine, bladder or the whole body. The accumulative radioactivity counts were calculated for quantitative analysis. Final diagnoses of SCH were established based on the diagnostic criteria recently proposed by Schievink and colleagues. Thirty-five patients were focused on. Twenty-one (60.0%) patients were diagnosed as having SCH according to the Schievink criteria. On the 3-h images, direct cerebrospinal fluid leakage sign was detected in nine of 21 SCH patients (42.9%), as well as three patients with suspected iatrogenic leakage. Compared to non-SCH patients, SCH patients showed higher bladder accumulation at 3-h images (P = 0.0002), and higher brain clearance between the 6- and 24-h images (P < 0.0001). In particular, the 24-h brain clearance was more conclusive for the diagnosis than 24-h whole cistern clearance. The combination of direct sign and 24-h brain accumulation resulted in 100% of accuracy in the 32 patients in whom iatrogenic leakage was not observed. 1- and 6-h images did not provide any additional information in any patients. A new simple ROI setting method, in which only the 3-h whole body and 24-h brain images were necessary, was sufficient to diagnose SCH.

  19. Effect of inert cover gas on performance of radioisotope Stirling space power system

    NASA Astrophysics Data System (ADS)

    Carpenter, R.; Kumar, V.; Or, C.; Schock, A.

    2001-02-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched on missions to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al., 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission. .

  20. Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Robert; Kumar, V; Ore, C

    2001-01-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Companymore » (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.« less

  1. AlGaAs 55Fe X-ray radioisotope microbattery

    PubMed Central

    Butera, S.; Whitaker, M. D. C.; Lioliou, G.; Barnett, A. M.

    2016-01-01

    This paper describes the performance of a fabricated prototype Al0.2Ga0.8As 55Fe radioisotope microbattery photovoltaic cells over the temperature range −20 °C to 50 °C. Two 400 μm diameter p+-i-n+ (3 μm i-layer) Al0.2Ga0.8As mesa photodiodes were used as conversion devices in a novel X-ray microbattery prototype. The changes of the key microbattery parameters were analysed in response to temperature: the open circuit voltage, the maximum output power and the internal conversion efficiency decreased when the temperature was increased. At −20 °C, an open circuit voltage and a maximum output power of 0.2 V and 0.04 pW, respectively, were measured per photodiode. The best internal conversion efficiency achieved for the fabricated prototype was only 0.95% at −20 °C. PMID:27922093

  2. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  3. Deployable Mini-Payload Missions Enabled by Small Radioisotope Power Systems (RPSs)

    NASA Technical Reports Server (NTRS)

    Abelson, Robert D.; Satter, Celeste M.

    2005-01-01

    Deployable mini-payloads are envisioned as small, simple, standalone instruments that could be deployed from a mother vehicle such as a rover or the proposed Jupiter Icy Moons Orbiter to key points of interest within the solar system. Used in conjunction with a small radioisotope power system (RPS), these payloads could potentially be used for long-duration science missions or as positional beacons for rovers or other spacecraft. The RPS power source would be suitable for deployable mini-payload missions that would take place anywhere there is limited, intermittent, or no solar insolation. This paper introduces two such concepts: (1) a seismic monitoring station deployed by a rover or aerobot, and (2) a passive fields and particles station delivered by a mother spacecraft to Jupiter.

  4. Increased production of azadirachtin from an improved method of androgenic cultures of a medicinal tree Azadirachta indica A. Juss.

    PubMed

    Srivastava, Priyanka; Chaturvedi, Rakhi

    2011-07-01

    Present report is the first direct evidence of azadirachtin production in androgenic haploid cultures of Azadirachta indica, a woody medicinal tree. Anther cultures at early-late-uninucleate stage of microspores were established on MS medium with BAP (5 μM), 2,4-D (1 μM) and NAA (1 μM) containing 12% sucrose. The calli, induced, were further multiplied on 2,4-D and Kinetin media. Shoots, differentiated on BAP (2.2 μM) + NAA (0.05 μM) medium, were elongated on MS + BAP (0.5 μM) and multiplied on MS + BAP (1 μM) + CH (250 mg/l). Thereafter, the shoots were rooted on ¼ MS + IBA (0.5 μM). Cytological analysis of the calli and regenerants have confirmed their haploid status with the chromosome number as 2n = x = 12. The haploid cell lines and leaves from in vitro grown plantlets were analyzed for azadirachtin by RP-HPLC and mass spectroscopy. Maximum azadirachtin (728.41 μg/g DW) was detected in calli supporting best shoot proliferation while least (49 μg/g DW) was observed in an undifferentiated line from maintenance medium. This study has brought us a step closer to develop genetically pure lines that could serve as new and attractive alternative ways of homogeneous controlled production of high value compounds, round the year, independent of geographical and climatic barrier.

  5. Increased production of azadirachtin from an improved method of androgenic cultures of a medicinal tree Azadirachta indica A. Juss

    PubMed Central

    Srivastava, Priyanka

    2011-01-01

    Present report is the first direct evidence of azadirachtin production in androgenic haploid cultures of Azadirachta indica, a woody medicinal tree. Anther cultures at early-late-uninucleate stage of microspores were established on MS medium with BAP (5 µM), 2,4-D (1 µM) and NAA (1 µM) containing 12% sucrose. The calli, induced, were further multiplied on 2,4-D and Kinetin media. Shoots, differentiated on BAP (2.2 µM) + NAA (0.05 µM) medium, were elongated on MS + BAP (0.5 µM) and multiplied on MS + BAP (1 µM) + CH (250 mg/l). Thereafter, the shoots were rooted on ¼ MS + IBA (0.5 µM). Cytological analysis of the calli and regenerants have confirmed their haploid status with the chromosome number as 2n = x = 12. The haploid cell lines and leaves from in vitro grown plantlets were analyzed for azadirachtin by RP-HPLC and mass spectroscopy. Maximum azadirachtin (728.41 µg/g DW) was detected in calli supporting best shoot proliferation while least (49 µg/g DW) was observed in an undifferentiated line from maintenance medium. This study has brought us a step closer to develop genetically pure lines that could serve as new and attractive alternative ways of homogeneous controlled production of high value compounds, round the year, independent of geographical and climatic barrier. PMID:21701249

  6. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Justin J.; Ferrier, Maryline; Radchenko, Valery

    The use of α-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope ²¹³Bi is a nuclide that has found substantial use for targeted α-therapy (TAT). The relatively unexplored aqueous chemistry of Bi³⁺, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (L py), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (L pyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (L pyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (L pz), were prepared by a previously reported method and investigatedmore » here for their abilities to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[ (R)-2-amino-3-( p-isothiocyanato-phenyl)propyl]- trans-(S,S)- cyclohexane-1,2-diamine- N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ²⁰⁷Bi (t 1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi³⁺ and the generator parent ion Ac³⁺.In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi³⁺ in the presence of the parent isotope Ac³⁺. Among the four tested, L py was found to exhibit optimal Bi³⁺-binding kinetics and complex stability. L py complexes Bi³⁺ more rapidly than DOTA, yet the resulting complexes are of similar stability

  7. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

    DOE PAGES

    Wilson, Justin J.; Ferrier, Maryline; Radchenko, Valery; ...

    2015-05-01

    The use of α-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope ²¹³Bi is a nuclide that has found substantial use for targeted α-therapy (TAT). The relatively unexplored aqueous chemistry of Bi³⁺, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (L py), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (L pyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (L pyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (L pz), were prepared by a previously reported method and investigatedmore » here for their abilities to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[ (R)-2-amino-3-( p-isothiocyanato-phenyl)propyl]- trans-(S,S)- cyclohexane-1,2-diamine- N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ²⁰⁷Bi (t 1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi³⁺ and the generator parent ion Ac³⁺.In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi³⁺ in the presence of the parent isotope Ac³⁺. Among the four tested, L py was found to exhibit optimal Bi³⁺-binding kinetics and complex stability. L py complexes Bi³⁺ more rapidly than DOTA, yet the resulting complexes are of similar stability

  8. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  9. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center (GRC) developed a non-nuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASC), a Dual Convertor Controller (DCC) EM (engineering model) 2 & 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University/Applied Physics Laboratory (JHU/APL) to actively control a pair of Advanced Stirling Convertors (ASC). The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS) which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASC's in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and supercapacitor. A load profile, created based on data from several missions, tested the RPS and RSIL ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 V or exceeded 36 V. Once operation was verified with the DASCS, the tests were repeated with actual operating ASC's. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  10. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, T. L.; Luo, S.; Goldstein, S. J.

    2009-06-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leadsmore » to a linear relationship between reciprocal U concentration and {sup 234}U/{sup 238}U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and {alpha}-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced {sup 234}U/{sup 238}U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using {sup 234}U/{sup 238}U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.« less

  11. Novel Synthesis Method of Micronized Ti-Zeolite Na-A and Cytotoxic Activity of Its Silver Exchanged Form

    PubMed Central

    Youssef, H. F.; Hegazy, W. H.; Abo-almaged, H. H.; El-Bassyouni, G. T.

    2015-01-01

    The core-shell method is used as a novel synthetic process of micronized Ti-Zeolite Na-A which involves calcination at 700°C of coated Egyptian Kaolin with titanium tetrachloride in acidic medium as the first step. The produced Ti-coated metakaolinite is subjected to microwave irradiation at low temperature of 80°C for 2 h. The prepared micronized Ti-containing Zeolites-A (Ti-Z-A) is characterized by FTIR, XRF, XRD, SEM, and EDS elemental analysis. Ag-exchanged form of Ti-Z-Ag is also prepared and characterized. The Wt% of silver exchanged onto the Ti-Zeolite structure was determined by atomic absorption spectra. The in vitro cytotoxic activity of Ti-Z-Ag against human hepatocellular carcinoma cell line (HePG2), colon cell line carcinoma (HCT116), lung carcinoma cell line (A549), and human Caucasian breast adenocarcinoma (MCF7) is reported. The results were promising and revealed that the exchanged Ag form of micronized Ti-Zeolite-A can be used as novel antitumor drug. PMID:25705142

  12. Determination of 129I in environmental samples by AMS and NAA using an anion exchange resin disk

    NASA Astrophysics Data System (ADS)

    Suzuki, Takashi; Banba, Shigeru; Kitamura, Toshikatsu; Kabuto, Shoji; Isogai, Keisuke; Amano, Hikaru

    2007-06-01

    We have developed a new extraction method for the measurement of 129I by accelerator mass spectrometry (AMS) utilizing an anion exchange resin disk. In comparison to traditional methods such as solvent extraction and ion exchange, this method provides for simple and quick sample handling. This extraction method was tested on soil, seaweed and milk samples, but because of disk clogging, the milk samples and some of the seaweed could not be applied successfully. Using this new extraction method to prepare samples for AMS analysis produced isotope ratios of iodine in good agreement with neutron activation analysis (NAA). The disk extraction method which take half an hour is faster than previous techniques, such as solvent extraction or ion exchange which take a few hours. The combination of the disk method and the AMS measurement is a powerful tool for the determination of 129I. Furthermore, these data will be available for the environmental monitoring before and during the operation of a new nuclear fuel reprocessing plant in Japan.

  13. Methane production from bicarbonate and acetate in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Crill, P. M.; Martens, C. S.

    1986-01-01

    Methane production from C-14 labeled bicarbonate and acetate was measured over the top 28 cm of anoxic Cape Lookout Bight sediments during the summer of 1983. The depth distribution and magnitude of summed radioisotopically determined rates compare well with previous measurements of total methane production and the sediment-water methane flux. Methane production from CO2 reduction and acetate fermentation accounts for greater than 80 percent of the total production rate and sediment-water flux. Methane production from bicarbonate was found to occur in all depth intervals sampled except those in the top 2 cm, whereas significant methane production from acetate only occurred at depths below 10 cm where sulfate was exhausted. Acetate provided 20 to 29 percent of the measured methane production integrated over the top 30 cm of the sediments.

  14. Synthesis of Radioisotope Mn-56@SiO2, Sm-153@SiO2, and Dy-165@SiO2 Hybrid Nanoparticles for Use as Radiotracer.

    PubMed

    Seo, Sang-Ei; Kang, Yun Ok; Jung, Sung-Hee; Choi, Seong-Ho

    2015-09-01

    Radioisotope hybrid nanoparticles (NPs) of Mn-56@SiO2, Sm-153@SiO2, and Dy-165@SiO2 were synthesized by neutron irradiation of Mn-55@SiO2, Sm-150@SiO2, and Dy-163@SiO2 NPs respectively using the HANARO research reactor. The Mn-55@SiO2, Sm-150@SiO2, and Dy-163@SiO2 NPs were synthesized by calcination in air flow at 500 degrees C for 8 h of the hybrid NPs that has been prepared by the sol-gel reaction of tetraethyl silicate in the presence of the complex precursors. Mn-55, Sm-150, and Dy-163 were selected for use as radiotracers were selected because these elements can be easily gamma-activated by neutrons (activation limits: 1 picogram (Dy), 1-10 picogram (Mn), 10-100 picogram (Sm)). The successful synthesis of the radioisotope hybrid NPs was confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectrometry (EDS), Scanning Electron Microscopy (SEM), and Gamma Spectroscopy analysis. The synthesized the radioisotope hybrid NPs could be used as radiotracers in the scientific, environmental, engineering, and industrial fields.

  15. Small Radioisotope Power System Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  16. COMPASS Final Report: Saturn Moons Orbiter Using Radioisotope Electric Propulsion (REP): Flagship Class Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) team was approached by the NASA Glenn Research Center (GRC) In-Space Project to perform a design session to develop Radioisotope Electric Propulsion (REP) Spacecraft Conceptual Designs (with cost, risk, and reliability) for missions of three different classes: New Frontier s Class Centaur Orbiter (with Trojan flyby), Flagship, and Discovery. The designs will allow trading of current and future propulsion systems. The results will directly support technology development decisions. The results of the Flagship mission design are reported in this document

  17. Neptune Orbiters Utilizing Solar and Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas I.; Oleson, Steven R.

    2004-01-01

    In certain cases, Radioisotope Electric Propulsion (REP), used in conjunction with other propulsion systems, could be used to reduce the trip times for outer planetary orbiter spacecraft. It also has the potential to improve the maneuverability and power capabilities of the spacecraft when the target body is reached as compared with non-electric propulsion spacecraft. Current missions under study baseline aerocapture systems to capture into a science orbit after a Solar Electric Propulsion (SEP) stage is jettisoned. Other options under study would use all REP transfers with small payloads. Compared to the SEP stage/Aerocapture scenario, adding REP to the science spacecraft as well as a chemical capture system can replace the aerocapture system but with a trip time penalty. Eliminating both the SEP stage and the aerocapture system and utilizing a slightly larger launch vehicle, Star 48 upper stage, and a combined REP/Chemical capture system, the trip time can nearly be matched while providing over a kilowatt of science power reused from the REP maneuver. A Neptune Orbiter mission is examined utilizing single propulsion systems and combinations of SEP, REP, and chemical systems to compare concepts.

  18. Use of radioisotopic esophageal transit in the assessment of patients with symptoms of reflux and non-specific esophageal motor disorders.

    PubMed

    Iascone, C; Di Giulio, E; Maffi, C; Ruperto, M

    2004-01-01

    The purposes of this study were to assess the esophageal clearance of a radioisotopic bolus in patients with symptoms of reflux and evaluate the impact of manometric abnormalities on scintigraphic esophageal transit. Esophageal clearance was assessed in a supine position and indicated by the retained radioactivity in the esophagus at 10, 20, 30 and 40 s after the ingestion of a liquid bolus labeled with 2 mCi 99 mTc-SC. The study included 214 consecutive patients with symptoms of reflux and 11 normal controls. The results were compared to the motility findings detected on manometry performed on a separate occasion. Esophageal manometry was normal in 93 patients. Nonspecific esophageal motor disorders were identified in 121 patients and were classified into: 'predominantly nonpropagated activity', 'predominantly low-amplitude peristaltic contractions' and 'miscellaneous disorders' diagnosed in 27, 47 and 47 patients, respectively. The radionuclide clearance was significantly delayed in the overall group of patients compared with that of normal controls (P < 0.001); in patients with reflux symptoms and nonspecific esophageal motor disorders compared with patients with reflux symptoms and 'normal manometry' (P < 0.01 at 20 s); and in patients with reflux symptoms and 'normal manometry' compared with the control group (P < 0.01 at 20 s). Abnormal radioisotope clearances were detected in 88% of patients with 'predominantly nonpropagated activity', in 70% of patients with 'predominantly low-amplitude peristaltic contractions' and in 57% of patients with 'miscellaneous disorders'. Radioisotopic esophageal clearance abnormalities are frequently observed in patients with reflux symptoms and are more likely to be associated to hypomotility disorders, i.e. nonpropagated motor activity or low-amplitude contractions.

  19. Radioisotope Electric Propulsion Missions Utilizing a Common Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Oleson, Steven

    2004-01-01

    A study was conducted that shows how a single Radioisotope Electric Propulsion (REP) spacecraft design could be used for various missions throughout the solar system. This spacecraft design is based on a REP feasibility design from a study performed by NASA Glenn Research Center and the Johns Hopkins University Applied Physics Laboratory. The study also identifies technologies that need development to enable these missions. The mission baseline for the REP feasibility design study is a Trojan asteroid orbiter. This mission sends an REP spacecraft to Jupiter s leading Lagrange point where it would orbit and examine several Trojan asteroids. The spacecraft design from the REP feasibility study would also be applicable to missions to the Centaurs, and through some change of payload configuration, could accommodate a comet sample-return mission. Missions to small bodies throughout the outer solar system are also within reach of this spacecraft design. This set of missions, utilizing the common REP spacecraft design, is examined and required design modifications for specific missions are outlined.

  20. Thermal vacuum life test facility for radioisotope thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Deaton, R. L.; Goebel, C. J.; Amos, W. R.

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG and G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al., (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met.

  1. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    PubMed

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  2. Accelerator Mass Spectrometry for Measurement of Long-Lived Radioisotopes

    NASA Astrophysics Data System (ADS)

    Elmore, David; Phillips, Fred M.

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes 10Be, 14C, 26Al, 36Cl, and 129I can now be measured in small natural samples having isotopic abundances in the range 10-12 to 10-15 and as few as 105 atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of half-lives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  3. The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs.

    PubMed

    Liu, Tingting; Liu, Fei; Wang, Chao; Wang, Zhenyao; Li, Yuqin

    2017-05-01

    This study attempted at maximizing biomass and lipid accumulation in Chlorella vulgaris by supplementation of natural abscisic acid (ABA) or synthetic 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) hormone analogs. Amongst three tested additives, NAA-treatment performed remarkable promoting effect on cell growth and lipid biosynthesis. The favorable lipid productivity (418.6mg/L/d) of NAA-treated cells showed 1.48 and 2.24 times more than that of 2,4-D and ABA. NAA-treatment also positively modified the proportions of saturated (C16:0 and C18:0) and monounsaturated fatty acids (C18:1) which were prone to high-quality biofuels-making. Further, NAA-treatment manipulated endogenous phytohormones metabolism leading to the elevated levels of indole-3-acetic acid, jasmonic acid, and salicylic acid and such hormone accumulation might be indispensable for signal transduction in regulating cell growth and lipid biosynthesis in microalgae. In addition, the economic-feasibility and eco-friendly estimation of NAA additive indicated the higher possibilities in developing affordable and scalable microalgal lipids for biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Multipurpose insulation system for a radioisotope fueled Mini-Brayton Heat Source Assembly

    NASA Technical Reports Server (NTRS)

    Aller, P.; Saylor, W.; Schmidt, G.; Wein, D.

    1976-01-01

    The Mini-Brayton Heat Source Assembly (HSA) consists of a radioisotope fueled heat source, a heat exchanger, a multifoil thermal insulation blanket, and a hermetically sealed housing. The thermal insulation blanket is a multilayer wrap of thin metal foil separated by a sparsely coated oxide. The objectives of the insulation blanket are related to the effective insulation of the HSA during operation, the transfer of the full thermal inventory to the housing when the primary coolant is not flowing, and the transfer of the full thermal inventory to the housing in the event of a flow stoppage of the primary coolant. A description is given of the approaches which have been developed to make it possible for the insulation blanket to meet these requirements.

  5. Theoretical Study of the Endogenous Production of N-13 in 115 kJ Plasma Focus Device Using Methane Gas

    NASA Astrophysics Data System (ADS)

    Faghih Haghani, Saeedeh; Sadighzadeh, A.; Talaei, A.; Zaeem, A. A.; Sadat Kiai, S. M.; Heydarnia, A.; Damideh, V.

    2013-08-01

    Mather type plasma focus device with the bank energy of 115 kJ (40 kV, 144μF) was studied for induced activity of N-13; a short-lived radioisotope β+ emitter with 511 keV of gamma rays and has a half-life of t1/2 = 9.93 min through 12C (d, n)13N nuclear reaction. N-13 radioisotope is used in Positron Emission Tomography (PET) for imaging and treatment. In this paper endogenous production of 13N is considered. It is shown by adding 3-4 % CH4 to the chamber, the induced activity of N-13 has increased about 4 %. Our study is representative of producing 106 - 109 Bq induced activity of this SLR in IR-MPF-100 device.

  6. Commissioning and initial operation of the Isotope Production Facility at the Los Alamos Neutron Science Center (LANSCE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K. F.; Alvestad, H. W.; Barkley, W. C.

    The recently completed 100-MeV H{sup +} Isotope Production Facility (IPF) at the LANSCE will provide radioisotopes for medical research and diagnosis, for basic research and for commercial use. A change to the LANSCE accelerator facility allowed for the installation of the IPF. Three components make up the LANSCE accelerator: an injector that accelerates the H{sup +} beam to 750-KeV, a drift-tube linac (DTL) that increases the beam energy to 100-MeV, and a side-coupled cavity linac (SCCL) that accelerates the beam to 800-MeV. The transition region, a space between the DTL and the SCCL, was modified to permit the insertion ofmore » a kicker magnet (23{sup o} kick angle) for the purpose of extracting a portion of the 100-MeV H{sup +} beam. A new beam line was installed to transport the extracted H{sup +} beam to the radioisotope production target chamber. This paper will describe the commissioning and initial operating experiences of IPF.« less

  7. Guidance on individual monitoring programmes for radioisotopic techniques in molecular and cellular biology.

    PubMed

    Macías, M T; Navarro, T; Lavara, A; Robredo, L M; Sierra, I; Lopez, M A

    2003-01-01

    The radioisotope techniques used in molecular and cellular biology involve external and internal irradiation risk. The personal dosemeter may be a reasonable indicator for external irradiation. However, it is necessary to control the possible internal contamination associated with the development of these techniques. The aim of this project is to analyse the most usual techniques and to establish programmes of internal monitoring for specific radionuclides (32P, 35S, 14C, 3H, 125I and 131I). To elaborate these programmes it was necessary to analyse the radioisotope techniques. Two models have been applied (NRPB and IAEA) to the more significant techniques, according to the physical and chemical nature of the radionuclides, their potential importance in occupational exposure and the possible injury to the genetic material of the cell. The results allowed the identification of the techniques with possible risk of internal contamination. It was necessary to identify groups of workers that require individual monitoring. The risk groups have been established among the professionals exposed, according to different parameters: the general characteristics of receptor, the radionuclides used (the same user can work with one, two or three radionuclides at the same time) and the results of the models applied. Also a control group was established. The study of possible intakes in these groups has been made by urinalysis and whole-body counter. The theoretical results are coherent with the experimental results. They have allowed guidance to individual monitoring to be proposed. Basically, the document shows: (1) the analysis of the radiosotopic techniques, taking into account the special containment equipment; (2) the establishment of the need of individual monitoring; and (3) the required frequency of measurements in a routine programme.

  8. Modeling non-steady state radioisotope transport in the vadose zone - A case study using uranium isotopes at Peña Blanca, Mexico

    NASA Astrophysics Data System (ADS)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-10-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234U/ 238U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Peña Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234U/ 238U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234U/ 238U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  9. Effects of antineoplastic drugs on Lactobacillus casei and radioisotopic assays for serum folate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmel, R.

    1978-02-01

    Microbiologic assay, usually employing Lactobacillus casei, remains the standard assay for serum folate to date. Among its disadvantages have been falsely low results in patients receiving bacteriostatic agents such as antibiotics. This study examined whether commonly used antineoplastic drugs had similar effect. Methotrexate and 5-fluorouracil depressed microbiologic serum folate levels. No effect was found for adriamycin, bleomycin, BCNU, cyclophosphamide, cytosine arabinoside, vincristine, vinblastine, mechlorethamine, mithramycin, hydroxyurea, and hydrocortisone. None of the drugs affected radioassay except methotrexate, which produced falsely high folate results. Thus, it appears that L. casei assay for folate becomes unreliable in patients receiving 5-fluorouracil and radioisotopic assaymore » becomes unreliable in those receiving methotrexate.« less

  10. Combined technetium radioisotope penile plethysmography and xenon washout: A technique for evaluating corpora cavernosal inflow and outflow during early tumescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, A.N.; Graham, M.M.

    1991-03-01

    Combined technetium radioisotope penile plethysmography and xenon washout is a new technique that measures both corporal arterial inflow and venous sinusoidal outflow during early tumescence in patients with erectile dysfunction. Fourteen patients were studied using 99mTc-RBCs to measure inflow and 133Xe or 127Xe in saline to measure outflow. Tumescence was induced by injecting papaverine intracorporally. Peak corporal rates corrected for inflow (r = 0.88) and uncorrected for outflow (r = 0.91) and change in volume over 2 min centered around peak inflow (r = 0.96) all correlated with angiography. Outflow measurements did not correlate with intracorporal resistance. Thus, outflow ratesmore » alone could not be used to predict venous sinusoidal competence. Normal inflow rate is greater than 20 ml/min; probable normal 12-20; indeterminate inflow 7-12; and abnormal inflow less than 7 ml/min. Technetium-99m radioisotope penile plethysmography and xenon washout can be performed together and both provide a method for simultaneously evaluating the relationship between corporal inflow and outflow rates in patients with erectile dysfunction.« less

  11. Evaluation of radioisotope tracer and activation analysis techniques for contamination monitoring in space environment simulation chambers

    NASA Technical Reports Server (NTRS)

    Smathers, J. B.; Kuykendall, W. E., Jr.; Wright, R. E., Jr.; Marshall, J. R.

    1973-01-01

    Radioisotope measurement techniques and neutron activation analysis are evaluated for use in identifying and locating contamination sources in space environment simulation chambers. The alpha range method allows the determination of total contaminant concentration in vapor state and condensate state. A Cf-252 neutron activation analysis system for detecting oils and greases tagged with stable elements is described. While neutron activation analysis of tagged contaminants offers specificity, an on-site system is extremely costly to implement and provides only marginal detection sensitivity under even the most favorable conditions.

  12. Sediment radioisotope dating across a stratigraphic discontinuity in a mining-impacted lake.

    PubMed

    McDonald, C P; Urban, N R

    2007-01-01

    Application of radioisotope sediment dating models to lakes subjected to large anthropogenic sediment inputs can be problematic. As a result of copper mining activities, Torch Lake received large volumes of sediment, the characteristics of which were dramatically different from those of the native sediment. Commonly used dating models (CIC-CSR, CRS) were applied to Torch Lake, but assumptions of these methods are violated, rendering sediment geochronologies inaccurate. A modification was made to the CRS model, utilizing a distinct horizon separating mining from post-mining sediment to differentiate between two focusing regimes. (210)Pb inventories in post-mining sediment were adjusted to correspond to those in mining-era sediment, and a sediment geochronology was established and verified using independent markers in (137)Cs accumulation profiles and core X-rays.

  13. Radioisotope fueled pulsed power generation system for propulsion and electrical power for deep space missions

    NASA Astrophysics Data System (ADS)

    Howe, Troy

    Space exploration missions to the moon, Mars, and other celestial bodies have allowed for great scientific leaps to enhance our knowledge of the universe; yet the astronomical cost of these missions limits their utility to only a few select agencies. Reducing the cost of exploratory space travel will give rise to a new era of exploration, where private investors, universities, and world governments can send satellites to far off planets and gather important data. By using radioisotope power sources and thermal storage devices, a duty cycle can be introduced to extract large amounts of energy in short amounts of time, allowing for efficient space travel. The same device can also provide electrical power for subsystems such as communications, drills, lasers, or other components that can provide valuable scientific information. This project examines the use of multiple radioisotope sources combined with a thermal capacitor using Phase Change Materials (PCMs) which can collect energy over a period of time. The result of this design culminates in a variety of possible spacecraft with their own varying costs, transit times, and objectives. Among the most promising are missions to Mars which cost less than 17M, missions that can provide power to satellite constellations for decades, or missions that can deliver large, Opportunity-sized (185kg) payloads to mars for less than 53M. All made available to a much wider range of customer with commercially available satellite launches from earth. The true cost of such progress though lies in the sometimes substantial increase in transit times for these missions.

  14. Final Results for the GRC Supporting Technology Development Project for the 110-Watt Stirling Radioisotope Generator (SRG110)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2007-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported the development of a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions, Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contract to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling convertor, first as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced convertor from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included convertor extended-duration testing in air and thermal vacuum environments, heater head life assessment, materials studies, permanent magnet aging characterization, linear alternator evaluations, structural dynamics testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characterization, organic materials evaluations, reliability studies, and development of an end-to-end system dynamic model. Related efforts are now continuing in many of these areas to support ASRG development.

  15. Final Results for the GRC Supporting Technology Development Project for the 110-Watt Stirling Radioisotope Generator (SRG110)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2007-01-01

    From 1999-2006, the NASA Glenn Research Center (GRC) supported the development of a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions, Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contract to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling convertor, first as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced convertor from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included convertor extended-duration testing in air and thermal vacuum environments, heater head life assessment, materials studies, permanent magnet aging characterization, linear alternator evaluations, structural dynamics testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characterization, organic materials evaluations, reliability studies, and development of an end-to-end system dynamic model. Related efforts are now continuing in many of these areas to support ASRG development.

  16. Production of 92Y via the 92Zr(n,p) reaction using the C(d,n) accelerator neutron source

    NASA Astrophysics Data System (ADS)

    Kin, Tadahiro; Sanzen, Yukimasa; Kamida, Masaki; Watanabe, Yukinobu; Itoh, Masatoshi

    2017-09-01

    We have proposed a new method of producing medical radioisotope 92Y as a candidate of alternatives of 111In bioscan prior to 90Y ibritumomab tiuxetan treatment. The 92Y isotope is produced via the 92Zr (n,p) reaction using accelerator neutrons generated by the interaction of deuteron beams with carbon. A feasibility experiment was performed at Cyclotron and Radioisotope Center, Tohoku University. A carbon thick target was irradiated by 20-MeV deuterons to produce accelerator neutrons. The thick target neutron yield (TTNY) was measured by using the multiple foils activation method. The foils were made of Al, Fe, Co, Ni, Zn, Zr, Nb, and Au. The production amount of 92Y and induced impurities were estimated by simulation with the measured TTNY and the JENDL-4.0 nuclear data.

  17. Methods for producing Cu-67 radioisotope with use of a ceramic capsule for medical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehst, David A.; Willit, James L.

    The present invention provides a method for producing Cu67 radioisotope suitable for use in medical applications. The method comprises irradiating a metallic zinc-68 (Zn68) target within a sealed ceramic capsule with a high energy gamma ray beam. After irradiation, the Cu67 is isolated from the Zn68 by any suitable method (e.g. chemical and or physical separation). In a preferred embodiment, the Cu67 is isolated by sublimation of the zinc in a ceramic sublimation tube to afford a copper residue containing Cu67. The Cu67 can be further purified by chemical means.

  18. 7 CFR 3201.7 - Determining biobased content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... International Radioisotope Standard Method D 6866. ASTM International Radioisotope Standard Method D 6866... the weight (mass) of the total organic carbon in the material or product. (d) Products with the same...

  19. BREAD PRODUCTION WITH RADIOACTIVE CONTAMINATION OF RAW MATERIALS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocker, H.-D.

    Protective precautions against radioactive fallout on food materials used for bread production are reviewed. Preventive measures such as dust screening and packing, appeared to be most promising. The decontamination of many concerned foods is either not possible or at this time still not investigated enough. Grain is freed, probably with a good prospect of success, from the dangerous radioisotopes /sup 90/Sr and /sup 137/Cs by precautionary milling methods, so that in times of urgency the provision of radiohygienically unobjectionable bread seems possible. (tr-auth)

  20. Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel

    2017-01-01

    Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical

  1. Assessment of statistic analysis in non-radioisotopic local lymph node assay (non-RI-LLNA) with alpha-hexylcinnamic aldehyde as an example.

    PubMed

    Takeyoshi, Masahiro; Sawaki, Masakuni; Yamasaki, Kanji; Kimber, Ian

    2003-09-30

    The murine local lymph node assay (LLNA) is used for the identification of chemicals that have the potential to cause skin sensitization. However, it requires specific facility and handling procedures to accommodate a radioisotopic (RI) endpoint. We have developed non-radioisotopic (non-RI) endpoint of LLNA based on BrdU incorporation to avoid a use of RI. Although this alternative method appears viable in principle, it is somewhat less sensitive than the standard assay. In this study, we report investigations to determine the use of statistical analysis to improve the sensitivity of a non-RI LLNA procedure with alpha-hexylcinnamic aldehyde (HCA) in two separate experiments. Consequently, the alternative non-RI method required HCA concentrations of greater than 25% to elicit a positive response based on the criterion for classification as a skin sensitizer in the standard LLNA. Nevertheless, dose responses to HCA in the alternative method were consistent in both experiments and we examined whether the use of an endpoint based upon the statistical significance of induced changes in LNC turnover, rather than an SI of 3 or greater, might provide for additional sensitivity. The results reported here demonstrate that with HCA at least significant responses were, in each of two experiments, recorded following exposure of mice to 25% of HCA. These data suggest that this approach may be more satisfactory-at least when BrdU incorporation is measured. However, this modification of the LLNA is rather less sensitive than the standard method if employing statistical endpoint. Taken together the data reported here suggest that a modified LLNA in which BrdU is used in place of radioisotope incorporation shows some promise, but that in its present form, even with the use of a statistical endpoint, lacks some of the sensitivity of the standard method. The challenge is to develop strategies for further refinement of this approach.

  2. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. An engineering unit, the ASRG engineering unit (EU), was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently under extended operation test at the NASA Glenn Research Center (GRC) to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for the ASRG EU. This paper summarizes details of the test facility design, including the mechanical mounting, heat-rejection system, argon system, control systems, and maintenance. The effort proceeded from requirements definition through design, analysis, build, and test. Initial testing and facility performance results are discussed.

  3. Cerium neodymium oxide solid solution synthesis as a potential analogue for substoichiometric AmO2 for radioisotope power systems

    NASA Astrophysics Data System (ADS)

    Watkinson, E. J.; Ambrosi, R. M.; Williams, H. R.; Sarsfield, M. J.; Stephenson, K.; Weston, D. P.; Marsh, N.; Haidon, C.

    2017-04-01

    The European Space Agency (ESA) is sponsoring a research programme on the development of americium oxides for radioisotope generators and heater units. Cubic AmO2-(x/2) with an O/Am ratio between 1.65 and 1.75 is a potentially suitable compound for pellet sintering. C-type (Ia-3) Ce1-xNdxO2-(x/2) oxides with 0.5 < x < 0.7 could be used as a surrogate for some Ia-3 AmO2-(x/2). A new Ce1-xNdxO2-(x/2) production process has been investigated where a nominally selected x value of 0.6 was targeted: Ce and Nd nitrates and oxalic acid were added drop-wise into a vessel, where they continuously reacted to create oxalate precipitates. The effect of temperature (25 °C, 60 °C) of the reactants (mixed at 250 revolutions per minute) on oxalate particle shape and size were investigated. Oxalates were calcined at 900 °C to produce oxide particles. Oxalate particle properties were characterised as these are expected to influence oxides particle properties and fuel pellet sintering.

  4. [Particle size determination by radioisotope x-ray absorptiometry with sedimentation method].

    PubMed

    Matsui, Y; Furuta, T; Miyagawa, S

    1976-09-01

    The possibility of radioisotope X-ray absorptiometry to determine the particle size of powder in conjunction with sedimentation was investigated. The experimental accuracy was primarily determined by Cow and X-ray intensity. where Co'=weight concentration of the particle in the suspension w'=(micron/rho)l/(mu/rho)s-rhol/rhos rho; density micron/rho; mass absorption coefficient, suffix l and s indicate dispersion and particle, respectively. The radiosiotopes, Fe-55, Pu-238 and Cd-109 have high w-values over the wide range of the atomic number. However, a source of high micron value such as Fe-55 is not suitable because the optimal X-ray transmission length, Lopt is decided by the expression, micronlLopt approximately 2/(1+C'ow') by using Cd-109 AgKX-ray source, the weight size distribution of particles from the heavy elements such as PbO2 to light elements such as Al2O3 or flyash was determined.

  5. A compact DD neutron generator-based NAA system to quantify manganese (Mn) in bone in vivo.

    PubMed

    Liu, Yingzi; Byrne, Patrick; Wang, Haoyu; Koltick, David; Zheng, Wei; Nie, Linda H

    2014-09-01

    A deuterium-deuterium (DD) neutron generator-based neutron activation analysis (NAA) system has been developed to quantify metals, including manganese (Mn), in bone in vivo. A DD neutron generator with a flux of up to 3*10(9) neutrons s(-1) was set up in our lab for this purpose. Optimized settings, including moderator, reflector, and shielding material and thickness, were selected based on Monte Carlo (MC) simulations conducted in our previous work. Hand phantoms doped with different Mn concentrations were irradiated using the optimized DD neutron generator irradiation system. The Mn characteristic γ-rays were collected by an HPGe detector system with 100% relative efficiency. The calibration line of the Mn/calcium (Ca) count ratio versus bone Mn concentration was obtained (R(2) = 0.99) using the hand phantoms. The detection limit (DL) was calculated to be about 1.05 μg g(-1) dry bone (ppm) with an equivalent dose of 85.4 mSv to the hand. The DL can be reduced to 0.74 ppm by using two 100% HPGe detectors. The whole body effective dose delivered to the irradiated subject was calculated to be about 17 μSv. Given the average normal bone Mn concentration of 1 ppm in the general population, this system is promising for in vivo bone Mn quantification in humans.

  6. Radioisotope contaminations from releases of the Tomsk-Seversk nuclear facility (Siberia, Russia).

    PubMed

    Gauthier-Lafaye, F; Pourcelot, L; Eikenberg, J; Beer, H; Le Roux, G; Rhikvanov, L P; Stille, P; Renaud, Ph; Mezhibor, A

    2008-04-01

    Soils have been sampled in the vicinity of the Tomsk-Seversk facility (Siberia, Russia) that allows us to measure radioactive contaminations due to atmospheric and aquatic releases. Indeed soils exhibit large inventories of man-made fission products including 137Cs (ranging from 33,000 to 68,500 Bq m(-2)) and actinides such as plutonium (i.e. 239+240Pu from 420 to 5900 Bq m(-2)) or 241Am (160-1220 Bq m(-2)). Among all sampling sites, the bank of the Romashka channel exhibits the highest radioisotope concentrations. At this site, some short half-life gamma emitters were detected as well indicating recent aquatic discharge in the channel. In comparison, soils that underwent atmospheric depositions like peat and forest soils exhibit lower activities of actinides and 137Cs. Soil activities are too high to be related solely to global fallout and thus the source of plutonium must be discharges from the Siberian Chemical Combine (SCC) plant. This is confirmed by plutonium isotopic ratios measured by ICP-MS; the low 241Pu/239Pu and 240Pu/239Pu atomic ratios with respect to global fallout ratio or civil nuclear fuel are consistent with weapons grade signatures. Up to now, the influence of Tomsk-Seversk plutonium discharges was speculated in the Ob River and its estuary. Isotopic data from the present study show that plutonium measured in SCC probably constitutes a significant source of plutonium in the aquatic environment, together with plutonium from global fallout and other contaminated sites including Tomsk, Mayak (Russia) and Semipalatinsk (Republic of Kazakhstan). It is estimated that the proportion of plutonium from SCC source can reach 45% for 239Pu and 60% for 241Pu in the sediments.

  7. Validity of the Aboriginal children's health and well-being measure: Aaniish Naa Gegii?

    PubMed

    Young, Nancy L; Wabano, Mary Jo; Usuba, Koyo; Pangowish, Brenda; Trottier, Mélanie; Jacko, Diane; Burke, Tricia A; Corbiere, Rita G

    2015-09-17

    Aboriginal children experience challenges to their health and well-being, yet also have unique strengths. It has been difficult to accurately assess their health outcomes due to the lack of culturally relevant measures. The Aboriginal Children's Health and Well-Being Measure (ACHWM) was developed to address this gap. This paper describes the validity of the new measure. We recruited First Nations children from one First Nation reserve in Canada. Participants were asked to complete the ACHWM independently using a computer tablet. Participants also completed the PedsQL. The ACHWM total score and 4 Quadrant scores were expected to have a moderate correlation of between 0.4 and 0.6 with the parallel PedsQL total score, domains (scale scores), and summary scores. Paired ACHWM and PedsQL scores were available for 48 participants. They had a mean age of 14.6 (range of 7 to 19) years and 60.4 % were girls. The Pearson's correlation between the total ACHWM score and a total PedsQL aggregate score was 0.52 (p = 0.0001). The correlations with the Physical Health Summary Scores and the Psychosocial Health Summary Scores were slightly lower range (r = 0.35 p = 0.016; and r = 0.51 p = 0.0002 respectively) and approached the expected range. The ACHWM Quadrant scores were moderately correlated with the parallel PedsQL domains ranging from r = 0.45 to r = 0.64 (p ≤ 0.001). The Spiritual Quadrant of the ACHWM did not have a parallel domain in the PedsQL. These results establish the validity of the ACHWM. The children gave this measure an Ojibway name, Aaniish Naa Gegii, meaning "how are you?". This measure is now ready for implementation, and will contribute to a better understanding of the health of Aboriginal children.

  8. Feasibility study for production of I-131 radioisotope using MNSR research reactor.

    PubMed

    Elom Achoribo, A S; Akaho, Edward H K; Nyarko, Benjamin J B; Osae Shiloh, K D; Odame Duodu, Godfred; Gibrilla, Abass

    2012-01-01

    A feasibility study for (131)I production using a Low Power Research Reactor was conducted to predict the yield of (131)I by cyclic activation technique. A maximum activity of 5.1GBq was achieved through simulation using FORTRAN 90, for an irradiation of 6h. But experimentally only 4h irradiation could be done, which resulted in an activity of 4.0×10(5)Bq. The discrepancy in the activities was due to the fact that beta decays released during the process could not be considered. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Elicitation of Medicinally Important Antioxidant Secondary Metabolites with Silver and Gold Nanoparticles in Callus Cultures of Prunella vulgaris L.

    PubMed

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Mohammad

    2016-11-01

    Prunella vulgaris L. (P. vulgaris) is an important medicinal plant with a wide range of antiviral properties. Traditionally, it is known as self-heal because of its faster effects on wound healing. It is commonly known as a natural antiseptic due to the presence of various polyphenols. There is lack of research efforts on its propagation and production of bioactive compounds under field and in vitro conditions. In this study, the effects of different ratios (1:2, 1:3, 2:1, and 3:1) of silver (Ag) and gold (Au) nanoparticles (NPs) alone or in combination with naphthalene acetic acid (NAA) were investigated for callus culture development and production of secondary metabolites. The Ag (30 μg l -1 ), AgAu (1:2), and AgAu (2:1) NPs in combination with NAA (2.0 mg l -1 ) enhanced callus proliferation (100 %) as compared to the control (95 %). Among the different NPs tested, AuNPs with or without NAA produced higher biomass in log phases (35-42 days) of growth kinetics. Furthermore, AgAu (1:3) and AuNPs alone enhanced total protein content (855 μg-BSAE/mg-fresh weight (FW)), superoxide dismutase (0.54 nM/min/mg-FW), and peroxidase (0.39 nM/min/mg-FW) enzymes in callus cultures. The AgAuNPs (1:3) in combination with NAA induced maximum accumulation of phenolics (TPC 9.57 mg/g-dry weight (DW)) and flavonoid (6.71 mg/g-DW) content. Moreover, AgAuNPs (3:1) without NAA enhanced antioxidant activity (87.85 %). This study provides the first evidence of NP effect on callus culture development and production of natural antioxidants in P. vulgaris.

  10. Efficient robust reconstruction of dynamic PET activity maps with radioisotope decay constraints.

    PubMed

    Gao, Fei; Liu, Huafeng; Shi, Pengcheng

    2010-01-01

    Dynamic PET imaging performs sequence of data acquisition in order to provide visualization and quantification of physiological changes in specific tissues and organs. The reconstruction of activity maps is generally the first step in dynamic PET. State space Hinfinity approaches have been proved to be a robust method for PET image reconstruction where, however, temporal constraints are not considered during the reconstruction process. In addition, the state space strategies for PET image reconstruction have been computationally prohibitive for practical usage because of the need for matrix inversion. In this paper, we present a minimax formulation of the dynamic PET imaging problem where a radioisotope decay model is employed as physics-based temporal constraints on the photon counts. Furthermore, a robust steady state Hinfinity filter is developed to significantly improve the computational efficiency with minimal loss of accuracy. Experiments are conducted on Monte Carlo simulated image sequences for quantitative analysis and validation.

  11. Extending the maximum operation time of the MNSR reactor.

    PubMed

    Dawahra, S; Khattab, K; Saba, G

    2016-09-01

    An effective modification to extend the maximum operation time of the Miniature Neutron Source Reactor (MNSR) to enhance the utilization of the reactor has been tested using the MCNP4C code. This modification consisted of inserting manually in each of the reactor inner irradiation tube a chain of three polyethylene-connected containers filled of water. The total height of the chain was 11.5cm. The replacement of the actual cadmium absorber with B(10) absorber was needed as well. The rest of the core structure materials and dimensions remained unchanged. A 3-D neutronic model with the new modifications was developed to compare the neutronic parameters of the old and modified cores. The results of the old and modified core excess reactivities (ρex) were: 3.954, 6.241 mk respectively. The maximum reactor operation times were: 428, 1025min and the safety reactivity factors were: 1.654 and 1.595 respectively. Therefore, a 139% increase in the maximum reactor operation time was noticed for the modified core. This increase enhanced the utilization of the MNSR reactor to conduct a long time irradiation of the unknown samples using the NAA technique and increase the amount of radioisotope production in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Production of 64Cu and 67Cu radiopharmaceuticals using zinc target irradiated with accelerator neutrons

    NASA Astrophysics Data System (ADS)

    Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki

    2014-09-01

    Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.

  13. Alkamid database: Chemistry, occurrence and functionality of plant N-alkylamides.

    PubMed

    Boonen, Jente; Bronselaer, Antoon; Nielandt, Joachim; Veryser, Lieselotte; De Tré, Guy; De Spiegeleer, Bart

    2012-08-01

    N-Alkylamides (NAAs) are a promising group of bioactive compounds, which are anticipated to act as important lead compounds for plant protection and biocidal products, functional food, cosmeceuticals and drugs in the next decennia. These molecules, currently found in more than 25 plant families and with a wide structural diversity, exert a variety of biological-pharmacological effects and are of high ethnopharmacological importance. However, information is scattered in literature, with different, often unstandardized, pharmacological methodologies being used. Therefore, a comprehensive NAA database (acronym: Alkamid) was constructed to collect the available structural and functional NAA data, linked to their occurrence in plants (family, tribe, species, genus). For loading information in the database, literature data was gathered over the period 1950-2010, by using several search engines. In order to represent the collected information about NAAs, the plants in which they occur and the functionalities for which they have been examined, a relational database is constructed and implemented on a MySQL back-end. The database is supported by describing the NAA plant-, functional- and chemical-space. The chemical space includes a NAA classification, according to their fatty acid and amine structures. The Alkamid database (publicly available on the website http://alkamid.ugent.be/) is not only a central information point, but can also function as a useful tool to prioritize the NAA choice in the evaluation of their functionality, to perform data mining leading to quantitative structure-property relationships (QSPRs), functionality comparisons, clustering, plant biochemistry and taxonomic evaluations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Analysis of SMELS and reference materials for validation of the k0-based internal monostandard NAA method using in-situ detection efficiency

    NASA Astrophysics Data System (ADS)

    Acharya, R.; Swain, K. K.; Reddy, A. V. R.

    2010-10-01

    Three synthetic multielement standards (SMELS I, II and III) and two reference materials (RMs), SL-3 and Soil-7 of IAEA were analyzed for validation of the k0-based internal monostandard neutron activation analysis (IM-NAA) method utilizing in-situ relative detection efficiency. The internal monostandards used in SMELS and RMs were Au and Sc, respectively. The samples were irradiated in Apsara and Dhruva reactors, BARC and radioactive assay was carried out using a 40% relative efficiency HPGe detector coupled to an 8 k MCA. Concentrations of 23 elements were determined in both SMELS and RMs. In the case of RMs, concentrations of a few elements, whose certified values are not available, could also be determined. The % deviations for the elements determined in SMELS with respect to the assigned values and RMs with respect to certified values were within ±8%. The Z-score values at 95% confidence level for most of the elements in both the materials were within ±1.

  15. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  16. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP turns on with a delta T of 30 C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator delta T was roughly 70 C, due to distillation of the NaK in the evaporator.

  17. Advanced Stirling Radioisotope Generator Thermal Power Model in Thermal Desktop SINDA/FLUINT Analyzer

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Fabanich, William A.; Schmitz, Paul C.

    2012-01-01

    This paper presents a three-dimensional Advanced Stirling Radioisotope Generator (ASRG) thermal power model that was built using the Thermal Desktop SINDA/FLUINT thermal analyzer. The model was correlated with ASRG engineering unit (EU) test data and ASRG flight unit predictions from Lockheed Martin's Ideas TMG thermal model. ASRG performance under (1) ASC hot-end temperatures, (2) ambient temperatures, and (3) years of mission for the general purpose heat source fuel decay was predicted using this model for the flight unit. The results were compared with those reported by Lockheed Martin and showed good agreement. In addition, the model was used to study the performance of the ASRG flight unit for operations on the ground and on the surface of Titan, and the concept of using gold film to reduce thermal loss through insulation was investigated.

  18. Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Explorer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110 We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced-Stirling and Brayton RPSs are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  19. Electrode performance parameters for a radioisotope-powered AMTEC for space power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, M.L.; O'Connor, D.; Williams, R.M.

    1992-08-01

    The alkali metal thermoelastic converter (AMTEC) is a device for the direct conversion of heat to electricity. Recently a design of an AMTEC using a radioisotope heat source was described, but the optimum condenser temperature was hotter than the temperatures used in the laboratory to develop the electrode performance model. Now laboratory experiments have confirmed the dependence of two model parameters over a broader range of condenser and electrode temperatures for two candidate electrode compositions. One parameter, the electrochemical exchange current density at the reaction interface, is independent of the condenser temperature, and depends only upon the collision rate ofmore » sodium at the reaction zone. The second parameter, a morphological parameter, which measures the mass transport resistance through the electrode, is independent of condenser and electrode temperatures for molybdenum electrodes. For rhodium-tungsten electrodes, however, this parameter increases for decreasing electrode temperature, indicating an activated mass transport mechanism such as surface diffusion. 21 refs.« less

  20. Technology Development for a Stirling Radioisotope Power System for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Qiu, Songgang; White, Maurice A.

    2000-01-01

    NASA Glenn Research Center and the Department of Energy (DOE) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA Glenn is addressing key technology issues through the use of two NASA Phase 2 SBIRs with Stirling Technology Company (STC) of Kennewick, WA. Under the first SBIR, STC demonstrated a 40 to 50 fold reduction in vibrations, compared to an unbalanced convertor, with a synchronous connection of two thermodynamically independent free-piston Stirling convertors. The second SBIR is for the development of an Adaptive Vibration Reduction System (AVRS) that will essentially eliminate vibrations over a mission lifetime, even in the unlikely event of a failed convertor. This paper discusses the status and results for these two SBIR projects and also presents results for characterizing the friction factor of high-porosity random fiber regenerators that are being used for this application.