Sample records for naadp mobilizes calcium

  1. Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals

    PubMed Central

    Patel, Sandip; Marchant, Jonathan; Brailoiu, Eugen

    2010-01-01

    NAADP is a potent regulator of cytosolic calcium levels. Much evidence suggests that NAADP activates a novel channel located on an acidic (lysosomal-like) calcium store, the mobilisation of which results in further calcium release from the endoplasmic reticulum. Here, we discuss the recent identification of a family of poorly characterized ion channels (the two-pore channels) as endo-lysosomal NAADP receptors. The generation of calcium signals by these channels is likened to those evoked by depolarisation during excitation-contraction coupling in muscle. We discuss the idea that two pore-channels can mediate a trigger release of calcium which is then amplified by calcium-induced calcium release from the endoplasmic reticulum. This is similar to the activation of voltage-sensitive calcium channels and subsequent mobilisation of sarcoplasmic reticulum calcium stores in cardiac tissue. We suggest that two-pore channels may physically interact with ryanodine receptors to account for more direct release of calcium from the endoplasmic reticulum in analogy with the conformational coupling of voltage-sensitive calcium channels and ryanodine receptors in skeletal muscle. Interaction of two-pore channels with other calcium release channels likely occurs between stores “trans-chatter” and possibly within the same store “cis-chatter”. We also speculate that trafficking of two-pore channels through the endolysosomal system facilitates interactions with calcium entry channels. Strategic placing of two-pore channels thus provides a versatile means of generating spatiotemporally complex cellular calcium signals. PMID:20621760

  2. NAADP and the two-pore channel protein 1 participate in the acrosome reaction in mammalian spermatozoa

    PubMed Central

    Arndt, Lilli; Castonguay, Jan; Arlt, Elisabeth; Meyer, Dorke; Hassan, Sami; Borth, Heike; Zierler, Susanna; Wennemuth, Gunther; Breit, Andreas; Biel, Martin; Wahl-Schott, Christian; Gudermann, Thomas; Klugbauer, Norbert; Boekhoff, Ingrid

    2014-01-01

    The functional relationship between the formation of hundreds of fusion pores during the acrosome reaction in spermatozoa and the mobilization of calcium from the acrosome has been determined only partially. Hence, the second messenger NAADP, promoting efflux of calcium from lysosome-like compartments and one of its potential molecular targets, the two-pore channel 1 (TPC1), were analyzed for its involvement in triggering the acrosome reaction using a TPCN1 gene–deficient mouse strain. The present study documents that TPC1 and NAADP-binding sites showed a colocalization at the acrosomal region and that treatment of spermatozoa with NAADP resulted in a loss of the acrosomal vesicle that showed typical properties described for TPCs: Registered responses were not detectable for its chemical analogue NADP and were blocked by the NAADP antagonist trans-Ned-19. In addition, two narrow bell-shaped dose-response curves were identified with maxima in either the nanomolar or low micromolar NAADP concentration range, where TPC1 was found to be responsible for activating the low affinity pathway. Our finding that two convergent NAADP-dependent pathways are operative in driving acrosomal exocytosis supports the concept that both NAADP-gated cascades match local NAADP concentrations with the efflux of acrosomal calcium, thereby ensuring complete fusion of the large acrosomal vesicle. PMID:24451262

  3. Characterization of NAADP-mediated calcium signaling in human spermatozoa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Tusie, A.A.; Vasudevan, S.R.; Churchill, G.C.

    Highlights: •Human sperm cells synthesize NAADP. •NAADP-AM mediates [Ca{sup 2+}]{sub i} increases in human sperm in the absence of [Ca{sup 2+}]{sub o}. •Human sperm have two acidic compartments located in the head and midpiece. -- Abstract: Ca{sup 2+} signaling in spermatozoa plays a crucial role during processes such as capacitation and release of the acrosome, but the underlying molecular mechanisms still remain unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca{sup 2+}-releasing second messenger in a variety of cellular processes. The presence of a NAADP synthesizing enzyme in sea urchin sperm has been previously reported, suggesting a possiblemore » role of NAADP in sperm Ca{sup 2+} signaling. In this work we used in vitro enzyme assays to show the presence of a novel NAADP synthesizing enzyme in human sperm, and to characterize its sensitivity to Ca{sup 2+} and pH. Ca{sup 2+} fluorescence imaging studies demonstrated that the permeable form of NAADP (NAADP-AM) induces intracellular [Ca{sup 2+}] increases in human sperm even in the absence of extracellular Ca{sup 2+}. Using LysoTracker®, a fluorescent probe that selectively accumulates in acidic compartments, we identified two such stores in human sperm cells. Their acidic nature was further confirmed by the reduction in staining intensity observed upon inhibition of the endo-lysosomal proton pump with Bafilomycin, or after lysosomal bursting with glycyl-L-phenylalanine-2-naphthylamide. The selective fluorescent NAADP analog, Ned-19, stained the same subcellular regions as LysoTracker®, suggesting that these stores are the targets of NAADP action.« less

  4. Triazine dyes are agonists of the NAADP receptor

    PubMed Central

    Billington, Richard A; Bak, Judit; Martinez-Coscolla, Ana; Debidda, Marcella; Genazzani, Armando A

    2004-01-01

    NAADP has been shown to be a potent calcium-releasing second messenger in a wide variety of cell types to date. However, research has been hampered by a lack of pharmacological agents, with which to investigate NAADP-induced calcium release, and by the molecular identity of its cellular target protein being unknown.In the present paper, the sea urchin egg model was used to investigate whether triazine dyes, which can act as nucleotide mimetics, can bind to the NAADP receptor, induce Ca2+ release and be used for affinity chromatography of the receptor.Indeed, all the triazine dyes tested (Reactive Red 120 (RR120), Reactive Green 19 (RG19), Reactive Green 5 (RG5), Cibacron Blue 3GA and Reactive Yellow 86) displayed micromolar affinities, except for Reactive Orange 14. Furthermore, unlike NAADP, RR120, RG19 and RG5 did not bind in an irreversible manner.The compound that displayed the highest affinity, RR120, was tested in a 45Ca2+ efflux assay. This compound released Ca2+ via the NAADP receptor, as shown by the ability of subthreshold NAADP concentrations to inhibit this release. Furthermore, heparin and ruthenium red were unable to block RR120-induced Ca2+ release.We have also shown that RG5 and RG19, immobilised on resins, retain the ability to bind to the receptor, and that this interaction can be disrupted by high salt concentrations. As a proof of principle, we have shown that this can be used to partially purify the NAADP receptor by at least 75-fold.In conclusion, triazine dyes interact with the NAADP receptor, and this could be exploited in future to create a new generation of pharmacological tools to investigate this messenger and, in combination with other techniques, to purify the receptor. PMID:15265807

  5. SIDT2 is involved in the NAADP-mediated release of calcium from insulin secretory granules.

    PubMed

    Chang, Guoying; Yang, Rui; Cao, Yanan; Nie, Aifang; Gu, Xuefan; Zhang, Huiwen

    2016-04-01

    The Sidt2 global knockout mouse (Sidt2(-/-)) has impaired insulin secretion. The aim of this study was to assess the role of SIDT2 protein in glucose-induced insulin secretion in primary cultured mouse β-cells. The major metabolic and electrophysiological steps of glucose-induced insulin secretion of primary cultured β-cells from Sidt2(-/-) mice were investigated. The β-cells from Sidt2(-/-) mice had normal NAD(P)H responses and KATP and KV currents. However, they exhibited a lower [Ca(2+)]i peak height when stimulated with 20mM glucose compared with those from WT mice. Furthermore, it took a longer time for the [Ca(2+)]i of β-cell from Sidt2(-/-) mice to reach the peak. Pretreatment with ryanodine or 2-aminoethoxydiphenyl borate (2-APB) did not change [Ca(2+)]i the response pattern to glucose in Sidt2(-/-) cells. Extraordinarily, pretreatment with bafilomycin A1(Baf-A1) led to a comparable [Ca(2+)]i increase pattern between these two groups, suggesting that calcium traffic from the intracellular acidic compartment is defective in Sidt2(-/-) β-cells. Bath-mediated application of 50nM nicotinic acid adenine dinucleotide phosphate (NAADP) normalized the [Ca(2+)]i response of Sidt2(-/-) β-cells. Finally, glucose-induced CD38 expression increased to a comparable level between Sidt2(-/-) and WT islets, suggesting that Sidt2(-/-) islets generated NAADP normally. We conclude that Sidt2 is involved in NAADP-mediated release of calcium from insulin secretory granules and thus regulates insulin secretion. © 2016 Society for Endocrinology.

  6. Calcium pathway machinery at fertilization in echinoderms

    PubMed Central

    Ramos, Isabela; Wessel, Gary M.

    2016-01-01

    Calcium signaling in cells directs diverse physiological processes. The calcium waves triggered by fertilization is a highly conserved calcium signaling event essential for egg activation, and has been documented in every egg tested. This activity is one of the few highly conserved events of egg activation through the course of evolution. Echinoderm eggs, as well as many other cell types, have three main intracellular Ca2+ mobilizing messengers – IP3, cADPR and NAADP. Both cADPR and NAADP were identified as Ca2+ mobilizing messengers using the sea urchin egg homogenate, and this experimental system, along with the intact urchin and starfish oocyte/egg, continues to be a vital tool for investigating the mechanism of action of calcium signals. While many of the major regulatory steps of the IP3 pathway are well resolved, both cADPR and NAADP remain understudied in terms of our understanding of the fundamental process of egg activation at fertilization. Recently, NAADP has been shown to trigger Ca2+ release from acidic vesicles, separately from the ER, and a new class of calcium channels, the two-pore channels (TPCs), was identified as the likely targets for this messenger. Moreover, it was found that both cADPR and NAADP can be synthesized by the same family of enzymes, the ADP-rybosyl cyclases (ARCs). In this context of increasing amount of information, the potential coupling and functional roles of different messengers, intracellular stores and channels in the formation of the fertilization calcium wave in echinoderms will be critically evaluated. PMID:23218671

  7. 3'-NADP and 3'-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1.

    PubMed

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-10-28

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3'-hydroxyl group. Both products of AvrRxo1, 3'-NADP and 3'-nicotinic acid adenine dinucleotide phosphate (3'-NAADP), are substantially different from the ubiquitous co-enzyme 2'-NADP and the calcium mobilizer 2'-NAADP. Interestingly, 3'-NADP and 3'-NAADP have previously been used as inhibitors or signaling molecules but were regarded as "artificial" compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3'-phosphorylated NAD derivatives. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Questioning regulation of two-pore channels by NAADP

    PubMed Central

    Marchant, Jonathan S.; Patel, Sandip

    2014-01-01

    NAADP is a potent Ca2+ mobilizing messenger [1–3]. Since its discovery in 1995 [4] a considerable volume of literature has shown that NAADP couples cell stimulation to endolysosomal Ca2+ release and thereby the regulation of many cellular functions [5]. However definition of its molecular mechanism of action has proved far from easy. Since 2009, a consensus emerged as several independent groups coalesced upon the two-pore channel (TPC) family as NAADP-activated channels essential for Ca2+ release from endolysosomal Ca2+ stores [6–8]. However this view has been recently challenged by data clearly showing that TPCs function as Na+-selective channels apparently insensitive to NAADP [9;10]. Given the two fundamental characteristics defining an ion channel comprise the opening stimulus and the nature of the permeant ions, scrutiny of these seeming irreconcilable viewpoints is essential. The purpose of this commentary is to distil the remaining consensus while interrogating these divergent viewpoints. From this analysis, critical experimental needs are identified. PMID:24829847

  9. 3′-NADP and 3′-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1*♦

    PubMed Central

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-01-01

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3′-hydroxyl group. Both products of AvrRxo1, 3′-NADP and 3′-nicotinic acid adenine dinucleotide phosphate (3′-NAADP), are substantially different from the ubiquitous co-enzyme 2′-NADP and the calcium mobilizer 2′-NAADP. Interestingly, 3′-NADP and 3′-NAADP have previously been used as inhibitors or signaling molecules but were regarded as “artificial” compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3′-phosphorylated NAD derivatives. PMID:27621317

  10. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Activates Global and Heterogeneous Local Ca2+ Signals from NAADP- and Ryanodine Receptor-gated Ca2+ Stores in Pulmonary Arterial Myocytes*

    PubMed Central

    Jiang, Yong-Liang; Lin, Amanda H. Y.; Xia, Yang; Lee, Suengwon; Paudel, Omkar; Sun, Hui; Yang, Xiao-Ru; Ran, Pixin; Sham, James S. K.

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-mobilizing messenger that releases Ca2+ from endolysosomal organelles. Recent studies showed that NAADP-induced Ca2+ release is mediated by the two-pore channels (TPCs) TPC1 and TPC2. However, the expression of TPCs and the NAADP-induced local Ca2+ signals have not been examined in vascular smooth muscle. Here, we found that both TPC1 and TPC2 are expressed in rat pulmonary arterial smooth muscle cells (PASMCs), with TPC1 being the major subtype. Application of membrane-permeant NAADP acetoxymethyl ester to PASMCs elicited a biphasic increase in global [Ca2+]i, which was independent of extracellular Ca2+ and blocked by the NAADP antagonist Ned-19 or the vacuolar H+-ATPase inhibitor bafilomycin A1, indicating Ca2+ release from acidic endolysosomal Ca2+ stores. The Ca2+ response was unaffected by xestospongin C but was partially blocked by ryanodine or thapsigargin. NAADP triggered heterogeneous local Ca2+ signals, including a diffuse increase in cytosolic [Ca2+], Ca2+ sparks, Ca2+ bursts, and regenerative Ca2+ release. The diffuse Ca2+ increase and Ca2+ bursts were ryanodine-insensitive, presumably arising from different endolysosomal sources. Ca2+ sparks and regenerative Ca2+ release were inhibited by ryanodine, consistent with cross-activation of loosely coupled ryanodine receptors. Moreover, Ca2+ release stimulated by endothelin-1 was inhibited by Ned-19, ryanodine, or xestospongin C, suggesting that NAADP-mediated Ca2+ signals interact with both ryanodine and inositol 1,4,5-trisphosphate receptors during agonist stimulation. Our results show that NAADP mediates complex global and local Ca2+ signals. Depending on the physiological stimuli, these diverse Ca2+ signals may serve to regulate different cellular functions in PASMCs. PMID:23443655

  11. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Calcium Signaling and Arrhythmias in the Heart Evoked by β-Adrenergic Stimulation*♦

    PubMed Central

    Nebel, Merle; Schwoerer, Alexander P.; Warszta, Dominik; Siebrands, Cornelia C.; Limbrock, Ann-Christin; Swarbrick, Joanna M.; Fliegert, Ralf; Weber, Karin; Bruhn, Sören; Hohenegger, Martin; Geisler, Anne; Herich, Lena; Schlegel, Susan; Carrier, Lucie; Eschenhagen, Thomas; Potter, Barry V. L.; Ehmke, Heimo; Guse, Andreas H.

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-releasing second messenger known to date. Here, we report a new role for NAADP in arrhythmogenic Ca2+ release in cardiac myocytes evoked by β-adrenergic stimulation. Infusion of NAADP into intact cardiac myocytes induced global Ca2+ signals sensitive to inhibitors of both acidic Ca2+ stores and ryanodine receptors and to NAADP antagonist BZ194. Furthermore, in electrically paced cardiac myocytes BZ194 blocked spontaneous diastolic Ca2+ transients caused by high concentrations of the β-adrenergic agonist isoproterenol. Ca2+ transients were recorded both as increases of the free cytosolic Ca2+ concentration and as decreases of the sarcoplasmic luminal Ca2+ concentration. Importantly, NAADP antagonist BZ194 largely ameliorated isoproterenol-induced arrhythmias in awake mice. We provide strong evidence that NAADP-mediated modulation of couplon activity plays a role for triggering spontaneous diastolic Ca2+ transients in isolated cardiac myocytes and arrhythmias in the intact animal. Thus, NAADP signaling appears an attractive novel target for antiarrhythmic therapy. PMID:23564460

  12. Purified TPC Isoforms Form NAADP Receptors with Distinct Roles for Ca2+ Signaling and Endolysosomal Trafficking

    PubMed Central

    Ruas, Margarida; Rietdorf, Katja; Arredouani, Abdelilah; Davis, Lianne C.; Lloyd-Evans, Emyr; Koegel, Heidi; Funnell, Timothy M.; Morgan, Anthony J.; Ward, John A.; Watanabe, Keiko; Cheng, Xiaotong; Churchill, Grant C.; Zhu, Michael X.; Platt, Frances M.; Wessel, Gary M.; Parrington, John; Galione, Antony

    2010-01-01

    Summary Intracellular Ca2+ signals constitute key elements in signal transduction. Of the three major Ca2+ mobilizing messengers described, the most potent, nicotinic acid adenine dinucleotide phosphate (NAADP) is the least well understood in terms of its molecular targets [1]. Recently, we showed that heterologous expression of two-pore channel (TPC) proteins enhances NAADP-induced Ca2+ release, whereas the NAADP response was abolished in pancreatic beta cells from Tpcn2 gene knockout mice [2]. However, whether TPCs constitute native NAADP receptors is unclear. Here we show that immunopurified endogenous TPC complexes possess the hallmark properties ascribed to NAADP receptors, including nanomolar ligand affinity [3–5]. Our study also reveals important functional differences between the three TPC isoforms. Thus, TPC1 and TPC2 both mediate NAADP-induced Ca2+ release, but the subsequent amplification of this trigger Ca2+ by IP3Rs is more tightly coupled for TPC2. In contrast, TPC3 expression suppressed NAADP-induced Ca2+ release. Finally, increased TPC expression has dramatic and contrasting effects on endolysosomal structures and dynamics, implicating a role for NAADP in the regulation of vesicular trafficking. We propose that NAADP regulates endolysosomal Ca2+ storage and release via TPCs and coordinates endoplasmic reticulum Ca2+ release in a role that impacts on Ca2+ signaling in health and disease [6]. PMID:20346675

  13. Purified TPC isoforms form NAADP receptors with distinct roles for Ca(2+) signaling and endolysosomal trafficking.

    PubMed

    Ruas, Margarida; Rietdorf, Katja; Arredouani, Abdelilah; Davis, Lianne C; Lloyd-Evans, Emyr; Koegel, Heidi; Funnell, Timothy M; Morgan, Anthony J; Ward, John A; Watanabe, Keiko; Cheng, Xiaotong; Churchill, Grant C; Zhu, Michael X; Platt, Frances M; Wessel, Gary M; Parrington, John; Galione, Antony

    2010-04-27

    Intracellular Ca(2+) signals constitute key elements in signal transduction. Of the three major Ca(2+) mobilizing messengers described, the most potent, nicotinic acid adenine dinucleotide phosphate (NAADP) is the least well understood in terms of its molecular targets [1]. Recently, we showed that heterologous expression of two-pore channel (TPC) proteins enhances NAADP-induced Ca(2+) release, whereas the NAADP response was abolished in pancreatic beta cells from Tpcn2 gene knockout mice [2]. However, whether TPCs constitute native NAADP receptors is unclear. Here we show that immunopurified endogenous TPC complexes possess the hallmark properties ascribed to NAADP receptors, including nanomolar ligand affinity [3-5]. Our study also reveals important functional differences between the three TPC isoforms. Thus, TPC1 and TPC2 both mediate NAADP-induced Ca(2+) release, but the subsequent amplification of this trigger Ca(2+) by IP(3)Rs is more tightly coupled for TPC2. In contrast, TPC3 expression suppressed NAADP-induced Ca(2+) release. Finally, increased TPC expression has dramatic and contrasting effects on endolysosomal structures and dynamics, implicating a role for NAADP in the regulation of vesicular trafficking. We propose that NAADP regulates endolysosomal Ca(2+) storage and release via TPCs and coordinates endoplasmic reticulum Ca(2+) release in a role that impacts on Ca(2+) signaling in health and disease [6]. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. NAADP Activates Two-Pore Channels on T Cell Cytolytic Granules to Stimulate Exocytosis and Killing

    PubMed Central

    Davis, Lianne C.; Morgan, Anthony J.; Chen, Ji-Li; Snead, Charlotte M.; Bloor-Young, Duncan; Shenderov, Eugene; Stanton-Humphreys, Megan N.; Conway, Stuart J.; Churchill, Grant C.; Parrington, John; Cerundolo, Vincenzo; Galione, Antony

    2012-01-01

    Summary A cytotoxic T lymphocyte (CTL) kills an infected or tumorigenic cell by Ca2+-dependent exocytosis of cytolytic granules at the immunological synapse formed between the two cells. Although inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum activates the store-operated Ca2+-influx pathway that is necessary for exocytosis, it is not a sufficient stimulus [1–4]. Here we identify the Ca2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and its recently identified molecular target, two-pore channels (TPCs) [5–7], as being important for T cell receptor signaling in CTLs. We demonstrate that cytolytic granules are not only reservoirs of cytolytic proteins but are also the acidic Ca2+ stores mobilized by NAADP via TPC channels on the granules themselves, so that TPCs migrate to the immunological synapse upon CTL activation. Moreover, NAADP activates TPCs to drive exocytosis in a way that is not mimicked by global Ca2+ signals induced by IP3 or ionomycin, suggesting that critical, local Ca2+ nanodomains around TPCs stimulate granule exocytosis. Hence, by virtue of the NAADP/TPC pathway, cytolytic granules generate Ca2+ signals that lead to their own exocytosis and to cell killing. This study highlights a selective role for NAADP in stimulating exocytosis crucial for immune cell function and may impact on stimulus-secretion coupling in wider cellular contexts. PMID:23177477

  15. Expression of Ca2+-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells

    PubMed Central

    Ruas, Margarida; Davis, Lianne C; Chen, Cheng-Chang; Morgan, Anthony J; Chuang, Kai-Ting; Walseth, Timothy F; Grimm, Christian; Garnham, Clive; Powell, Trevor; Platt, Nick; Platt, Frances M; Biel, Martin; Wahl-Schott, Christian; Parrington, John; Galione, Antony

    2015-01-01

    The second messenger NAADP triggers Ca2+ release from endo-lysosomes. Although two-pore channels (TPCs) have been proposed to be regulated by NAADP, recent studies have challenged this. By generating the first mouse line with demonstrable absence of both Tpcn1 and Tpcn2 expression (Tpcn1/2−/−), we show that the loss of endogenous TPCs abolished NAADP-dependent Ca2+ responses as assessed by single-cell Ca2+ imaging or patch-clamp of single endo-lysosomes. In contrast, currents stimulated by PI(3,5)P2 were only partially dependent on TPCs. In Tpcn1/2−/− cells, NAADP sensitivity was restored by re-expressing wild-type TPCs, but not by mutant versions with impaired Ca2+-permeability, nor by TRPML1. Another mouse line formerly reported as TPC-null likely expresses truncated TPCs, but we now show that these truncated proteins still support NAADP-induced Ca2+ release. High-affinity [32P]NAADP binding still occurs in Tpcn1/2−/− tissue, suggesting that NAADP regulation is conferred by an accessory protein. Altogether, our data establish TPCs as Ca2+-permeable channels indispensable for NAADP signalling. PMID:25872774

  16. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells*

    PubMed Central

    Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C.; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J.; Lewis, Alexander M.; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M.; Tynan, Patricia W.; Bellomo, Elisa A.; Rutter, Guy A.; Rorsman, Patrik; Churchill, Grant C.; Parrington, John; Galione, Antony

    2015-01-01

    Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells. PMID:26152717

  17. TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+.

    PubMed

    Pitt, Samantha J; Funnell, Tim M; Sitsapesan, Mano; Venturi, Elisa; Rietdorf, Katja; Ruas, Margarida; Ganesan, A; Gosain, Rajendra; Churchill, Grant C; Zhu, Michael X; Parrington, John; Galione, Antony; Sitsapesan, Rebecca

    2010-11-05

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca(2+) required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca(2+) from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca(2+) release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca(2+) that will enable it to act as a Ca(2+) release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca(2+)] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca(2+) release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca(2+) release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μM but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.

  18. Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore

    PubMed Central

    Davidson, Sean M.; Foote, Kirsty; Kunuthur, Suma; Gosain, Raj; Tan, Noah; Tyser, Richard; Zhao, Yong Juan; Graeff, Richard; Ganesan, A.; Duchen, Michael R.; Patel, Sandip; Yellon, Derek M.

    2015-01-01

    Aims In the heart, a period of ischaemia followed by reperfusion evokes powerful cytosolic Ca2+ oscillations that can cause lethal cell injury. These signals represent attractive cardioprotective targets, but the underlying mechanisms of genesis are ill-defined. Here, we investigated the role of the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP), which is known in several cell types to induce Ca2+ oscillations that initiate from acidic stores such as lysosomes, likely via two-pore channels (TPCs, TPC1 and 2). Methods and results An NAADP antagonist called Ned-K was developed by rational design based on a previously existing scaffold. Ned-K suppressed Ca2+ oscillations and dramatically protected cardiomyocytes from cell death in vitro after ischaemia and reoxygenation, preventing opening of the mitochondrial permeability transition pore. Ned-K profoundly decreased infarct size in mice in vivo. Transgenic mice lacking the endo-lysosomal TPC1 were also protected from injury. Conclusion NAADP signalling plays a major role in reperfusion-induced cell death and represents a potent pathway for protection against reperfusion injury. PMID:26395965

  19. Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore.

    PubMed

    Davidson, Sean M; Foote, Kirsty; Kunuthur, Suma; Gosain, Raj; Tan, Noah; Tyser, Richard; Zhao, Yong Juan; Graeff, Richard; Ganesan, A; Duchen, Michael R; Patel, Sandip; Yellon, Derek M

    2015-12-01

    In the heart, a period of ischaemia followed by reperfusion evokes powerful cytosolic Ca(2+) oscillations that can cause lethal cell injury. These signals represent attractive cardioprotective targets, but the underlying mechanisms of genesis are ill-defined. Here, we investigated the role of the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP), which is known in several cell types to induce Ca(2+) oscillations that initiate from acidic stores such as lysosomes, likely via two-pore channels (TPCs, TPC1 and 2). An NAADP antagonist called Ned-K was developed by rational design based on a previously existing scaffold. Ned-K suppressed Ca(2+) oscillations and dramatically protected cardiomyocytes from cell death in vitro after ischaemia and reoxygenation, preventing opening of the mitochondrial permeability transition pore. Ned-K profoundly decreased infarct size in mice in vivo. Transgenic mice lacking the endo-lysosomal TPC1 were also protected from injury. NAADP signalling plays a major role in reperfusion-induced cell death and represents a potent pathway for protection against reperfusion injury. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  20. VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2–dependent Ca2+ signaling

    PubMed Central

    Favia, Annarita; Desideri, Marianna; Gambara, Guido; D’Alessio, Alessio; Ruas, Margarida; Esposito, Bianca; Del Bufalo, Donatella; Parrington, John; Ziparo, Elio; Palombi, Fioretta; Galione, Antony; Filippini, Antonio

    2014-01-01

    Vascular endothelial growth factor (VEGF) and its receptors VEGFR1/VEGFR2 play major roles in controlling angiogenesis, including vascularization of solid tumors. Here we describe a specific Ca2+ signaling pathway linked to the VEGFR2 receptor subtype, controlling the critical angiogenic responses of endothelial cells (ECs) to VEGF. Key steps of this pathway are the involvement of the potent Ca2+ mobilizing messenger, nicotinic acid adenine-dinucleotide phosphate (NAADP), and the specific engagement of the two-pore channel TPC2 subtype on acidic intracellular Ca2+ stores, resulting in Ca2+ release and angiogenic responses. Targeting this intracellular pathway pharmacologically using the NAADP antagonist Ned-19 or genetically using Tpcn2−/− mice was found to inhibit angiogenic responses to VEGF in vitro and in vivo. In human umbilical vein endothelial cells (HUVECs) Ned-19 abolished VEGF-induced Ca2+ release, impairing phosphorylation of ERK1/2, Akt, eNOS, JNK, cell proliferation, cell migration, and capillary-like tube formation. Interestingly, Tpcn2 shRNA treatment abolished VEGF-induced Ca2+ release and capillary-like tube formation. Importantly, in vivo VEGF-induced vessel formation in matrigel plugs in mice was abolished by Ned-19 and, most notably, failed to occur in Tpcn2−/− mice, but was unaffected in Tpcn1−/− animals. These results demonstrate that a VEGFR2/NAADP/TPC2/Ca2+ signaling pathway is critical for VEGF-induced angiogenesis in vitro and in vivo. Given that VEGF can elicit both pro- and antiangiogenic responses depending upon the balance of signal transduction pathways activated, targeting specific VEGFR2 downstream signaling pathways could modify this balance, potentially leading to more finely tailored therapeutic strategies. PMID:25331892

  1. Carbon nanopipettes characterize calcium release pathways in breast cancer cells

    NASA Astrophysics Data System (ADS)

    Schrlau, Michael G.; Brailoiu, Eugen; Patel, Sandip; Gogotsi, Yury; Dun, Nae J.; Bau, Haim H.

    2008-08-01

    Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements.

  2. Carbon nanopipettes characterize calcium release pathways in breast cancer cells.

    PubMed

    Schrlau, Michael G; Brailoiu, Eugen; Patel, Sandip; Gogotsi, Yury; Dun, Nae J; Bau, Haim H

    2008-08-13

    Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements.

  3. Convergent regulation of the lysosomal two-pore channel-2 by Mg2+, NAADP, PI(3,5)P2 and multiple protein kinases

    PubMed Central

    Jha, Archana; Ahuja, Malini; Patel, Sandip; Brailoiu, Eugen; Muallem, Shmuel

    2014-01-01

    Lysosomal Ca2+ homeostasis is implicated in disease and controls many lysosomal functions. A key in understanding lysosomal Ca2+ signaling was the discovery of the two-pore channels (TPCs) and their potential activation by NAADP. Recent work concluded that the TPCs function as a PI(3,5)P2 activated channels regulated by mTORC1, but not by NAADP. Here, we identified Mg2+ and the MAPKs, JNK and P38 as novel regulators of TPC2. Cytoplasmic Mg2+ specifically inhibited TPC2 outward current, whereas lysosomal Mg2+ partially inhibited both outward and inward currents in a lysosomal lumen pH-dependent manner. Under controlled Mg2+, TPC2 is readily activated by NAADP with channel properties identical to those in response to PI(3,5)P2. Moreover, TPC2 is robustly regulated by P38 and JNK. Notably, NAADP-mediated Ca2+ release in intact cells is regulated by Mg2+, PI(3,5)P2, and P38/JNK kinases, thus paralleling regulation of TPC2 currents. Our data affirm a key role for TPC2 in NAADP-mediated Ca2+ signaling and link this pathway to Mg2+ homeostasis and MAP kinases, pointing to roles for lysosomal Ca2+ in cell growth, inflammation and cancer. PMID:24502975

  4. Frontrunners of T cell activation: Initial, localized Ca2+ signals mediated by NAADP and the type 1 ryanodine receptor.

    PubMed

    Wolf, Insa M A; Diercks, Björn-Philipp; Gattkowski, Ellen; Czarniak, Frederik; Kempski, Jan; Werner, René; Schetelig, Daniel; Mittrücker, Hans-Willi; Schumacher, Valéa; von Osten, Manuel; Lodygin, Dimitri; Flügel, Alexander; Fliegert, Ralf; Guse, Andreas H

    2015-10-13

    The activation of T cells is the fundamental on switch for the adaptive immune system. Ca(2+) signaling is essential for T cell activation and starts as initial, short-lived, localized Ca(2+) signals. The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) forms rapidly upon T cell activation and stimulates early Ca(2+) signaling. We developed a high-resolution imaging technique using multiple fluorescent Ca(2+) indicator dyes to characterize these early signaling events and investigate the channels involved in NAADP-dependent Ca(2+) signals. In the first seconds of activation of either primary murine T cells or human Jurkat cells with beads coated with an antibody against CD3, we detected Ca(2+) signals with diameters close to the limit of detection and that were close to the activation site at the plasma membrane. In Jurkat cells in which the ryanodine receptor (RyR) was knocked down or in primary T cells from RyR1(-/-) mice, either these early Ca(2+) signals were not detected or the number of signals was markedly reduced. Local Ca(2+) signals observed within 20 ms upon microinjection of Jurkat cells with NAADP were also sensitive to RyR knockdown. In contrast, TRPM2 (transient receptor potential channel, subtype melastatin 2), a potential NAADP target channel, was not required for the formation of initial Ca(2+) signals in primary T cells. Thus, through our high-resolution imaging method, we characterized early Ca(2+) release events in T cells and obtained evidence for the involvement of RyR and NAADP in such signals. Copyright © 2015, American Association for the Advancement of Science.

  5. Convergent regulation of the lysosomal two-pore channel-2 by Mg²⁺, NAADP, PI(3,5)P₂ and multiple protein kinases.

    PubMed

    Jha, Archana; Ahuja, Malini; Patel, Sandip; Brailoiu, Eugen; Muallem, Shmuel

    2014-03-03

    Lysosomal Ca(2+) homeostasis is implicated in disease and controls many lysosomal functions. A key in understanding lysosomal Ca(2+) signaling was the discovery of the two-pore channels (TPCs) and their potential activation by NAADP. Recent work concluded that the TPCs function as a PI(3,5)P2 activated channels regulated by mTORC1, but not by NAADP. Here, we identified Mg(2+) and the MAPKs, JNK and P38 as novel regulators of TPC2. Cytoplasmic Mg(2+) specifically inhibited TPC2 outward current, whereas lysosomal Mg(2+) partially inhibited both outward and inward currents in a lysosomal lumen pH-dependent manner. Under controlled Mg(2+), TPC2 is readily activated by NAADP with channel properties identical to those in response to PI(3,5)P2. Moreover, TPC2 is robustly regulated by P38 and JNK. Notably, NAADP-mediated Ca(2+) release in intact cells is regulated by Mg(2+), PI(3,5)P2, and P38/JNK kinases, thus paralleling regulation of TPC2 currents. Our data affirm a key role for TPC2 in NAADP-mediated Ca(2+) signaling and link this pathway to Mg(2+) homeostasis and MAP kinases, pointing to roles for lysosomal Ca(2+) in cell growth, inflammation and cancer.

  6. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins.

    PubMed

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-02-01

    In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Two-pore channels function in calcium regulation in sea star oocytes and embryos

    PubMed Central

    Ramos, Isabela; Reich, Adrian; Wessel, Gary M.

    2014-01-01

    Egg activation at fertilization is an excellent process for studying calcium regulation. Nicotinic acid adenine dinucleotide-phosphate (NAADP), a potent calcium messenger, is able to trigger calcium release, likely through two-pore channels (TPCs). Concomitantly, a family of ectocellular enzymes, the ADP-ribosyl cyclases (ARCs), has emerged as being able to change their enzymatic mode from one of nucleotide cyclization in formation of cADPR to a base-exchange reaction in the generation of NAADP. Using sea star oocytes we gain insights into the functions of endogenously expressed TPCs and ARCs in the context of the global calcium signals at fertilization. Three TPCs and one ARC were found in the sea star (Patiria miniata) that were localized in the cortex of the oocytes and eggs. PmTPCs were localized in specialized secretory organelles called cortical granules, and PmARCs accumulated in a different, unknown, set of vesicles, closely apposed to the cortical granules in the egg cortex. Using morpholino knockdown of PmTPCs and PmARC in the oocytes, we found that both calcium regulators are essential for early embryo development, and that knockdown of PmTPCs leads to aberrant construction of the fertilization envelope at fertilization and changes in cortical granule pH. The calcium signals at fertilization are not significantly altered when individual PmTPCs are silenced, but the timing and shape of the cortical flash and calcium wave are slightly changed when the expression of all three PmTPCs is perturbed concomitantly, suggesting a cooperative activity among TPC isoforms in eliciting calcium signals that may influence localized physiological activities. PMID:25377554

  8. Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A

    PubMed Central

    Fernández, Belén; Fdez, Elena; Gómez-Suaga, Patricia; Gil, Fernando; Molina-Villalba, Isabel; Ferrer, Isidro; Patel, Sandip; Churchill, Grant C.; Hilfiker, Sabine

    2016-01-01

    ABSTRACT Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage, cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when overexpressing active, but not inactive TPCNs, indicating that these channels can modulate endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies for neurodegenerative disorders associated with increased intracellular iron load. PMID:27383256

  9. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism

    PubMed Central

    Petrou, Terry; Olsen, Hervør L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.

    2017-01-01

    Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. PMID:27980039

  10. Effect of ticlopidine ex vivo on platelet intracellular calcium mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derian, C.K.; Friedman, P.A.

    1988-04-01

    The antiplatelet compound ticlopidine exerts its potent inhibitory activity through an as yet undetermined mechanism(s). The goal of this study was to determine the effect, if any, of ticlopidine ex vivo on platelet calcium mobilization. Ticlopidine inhibited ADP-induced platelet aggregation by 50-80%. In the presence of 1 mM EGTA, ticlopidine inhibited ADP- and thrombin-stimulated increases in (Ca2+)i in fura-2 loaded platelets. We evaluated further the effect of ticlopidine on calcium mobilization by examining both agonist-stimulated formation of inositol trisphosphate in intact platelets and the ability of inositol trisphosphate to release /sup 45/Ca from intracellular sites in permeabilized cells. We showmore » here that while ticlopidine significantly affected agonist-induced intracellular calcium mobilization in intact platelets, the drug was without effect on agonist-stimulated formation of inositol trisphosphate in intact platelets and on inositol trisphosphate-induced /sup 45/Ca release in saponin-permeabilized platelets. Our study demonstrates that ticlopidine exerts at least part of its effect via inhibition of intracellular calcium mobilization but that its site of action remains to be determined.« less

  11. Calcium mobilization in HeLa cells induced by nitric oxide.

    PubMed

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-01-01

    Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis. © Wiley Periodicals, Inc.

  12. Critical Role for CD38-mediated Ca2+ Signaling in Thrombin-induced Procoagulant Activity of Mouse Platelets and Hemostasis*

    PubMed Central

    Mushtaq, Mazhar; Nam, Tae-Sik; Kim, Uh-Hyun

    2011-01-01

    CD38, a multifunctional enzyme that catalyzes the synthesis of intracellular Ca2+ messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), is known to be expressed on platelets. However, the role of CD38 in platelets remains unclear. Our present results show that treatment of platelets with thrombin results in a rapid and sustained Ca2+ signal, resulting from a coordinated interplay of Ca2+-mobilizing messengers, inositol 1,4,5-trisphosphate, cADPR, and NAADP. By dissecting the signaling pathway using various agents, we delineated that cADPR and NAADP are sequentially produced through CD38 internalization by protein kinase C via myosin heavy chain IIA following phospholipase C activation in thrombin-induced platelets. An inositol 1,4,5-trisphosphate receptor antagonist blocked the thrombin-induced formation of cADPR and NAADP as well as Ca2+ signals. An indispensable response of platelets relying on cytosolic calcium is the surface exposure of phosphatidylserine (PS), which implicates platelet procoagulant activity. Scrutinizing this parameter reveals that CD38+/+ platelets fully express PS on the surface when stimulated with thrombin, whereas this response was decreased on CD38−/− platelets. Similarly, PS exposure and Ca2+ signals were attenuated when platelets were incubated with 8-bromo-cADPR, bafilomycin A1, and a PKC inhibitor. Furthermore, in vivo, CD38-deficient mice exhibited longer bleeding times and unstable formation of thrombus than wild type mice. These results demonstrate that CD38 plays an essential role in thrombin-induced procoagulant activity of platelets and hemostasis via Ca2+ signaling mediated by its products, cADPR and NAADP. PMID:21339289

  13. Dietary calcium attenuates platelet aggregation and intracellular Ca2+ mobilization in spontaneously hypertensive rats

    NASA Technical Reports Server (NTRS)

    Otsuka, K.; Watanabe, M.; Yue, Q.; McCarron, D. A.; Hatton, D.

    1997-01-01

    Spontaneously hypertensive rats (SHR) are known to be blood pressure sensitive to dietary calcium. The effects of dietary calcium on platelet aggregation and intracellular Ca2+ mobilization were assessed by turbidimetric methods and fura-2 methods, respectively, in washed platelets of SHR. Ca2+ ATPase activity was examined in aortic membrane fractions. Six weeks of dietary calcium supplementation attenuated the increase of systolic blood pressure (SBP 199 +/- 16 v 170 +/- 9 mm Hg, P < .001) and thrombin-induced platelet aggregation (84.5 +/- 3.7 v 73.7 +/- 7.4%, P < .004) at 9 weeks of age. The ionomycin-induced intracellular calcium ([Ca2+]i) peak in the absence of external Ca2+, which reflects [Ca2+]i storage size, and thrombin-evoked [Ca2+]i release from [Ca2+]i storage were decreased by 2.0% Ca diet (472 +/- 55 v 370 +/- 23 nmol/L, P < .001, 339 +/- 29 v 278 +/- 33 nmol/L, P < .002). In addition, SBP was positively correlated with platelet aggregation (r = 0.703, P = .0088), thrombin-evoked [Ca2+]i (r = 0.739, P = .0044), and ionomycin-induced [Ca2+]i (r = 0.591, P = .0415), respectively. However, there was no significant effect of dietary calcium on Ca2+-ATPase activity in aortic membranes. These results suggest that dietary calcium supplementation had a beneficial effect on platelets of SHR by attenuating [Ca2+]i mobilization from [Ca2+]i storage. The hypotensive effect of dietary calcium might be associated with attenuated [Ca2+]i mobilization in SHR.

  14. Effects of inositol trisphosphate on calcium mobilization in high-voltage and saponin-permeabilized platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gear, A.R.L.; Hallam, T.J.

    1986-03-01

    Interest in phosphatidylinositol metabolism has been greatly stimulated by the findings that diglyceride and inositol phosphates may serve as second messengers in modulating cellular function. Formation of 1,4,5-inositol trisphosphate (IP/sub 3/), in particular, has been linked to mobilization of intracellular calcium in a number of cell types. The authors have examined the ability of IP/sub 3/ to mobilize calcium in human platelets permeabilized by either saponin or high-voltage discharge. Saponin at 15 ..mu..g/ml effectively permeabilized platelets to exogenous inositol 1,4,5-trisphosphate which released bound (/sup 45/Ca) within 1 min and with a Ka of 7.4 +/- 4.1 ..mu..M. A small (25%)more » azide-sensitive pool was also responsive to inositol trisphosphate. The calcium pools were completely discharged by A-23187 and the ATP-dependent uptake was prevented by dinitrophenol. In contrast to the result with saponin, platelets accessed by high-voltage discharge were insensitive to challenge by inositol 1,4,5-trisphosphate. The data suggest that while inositol 1,4,5-trisphosphate can rapidly mobilize platelet calcium, the ability to demonstrate this depends on the method of permeabilization.« less

  15. Multiple receptors mobilize calcium through a pertussis toxin (PT) sensitive GTP-binding protein in human neutrophils (PMN's)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lad, P.M.; Olson, C.V.; Grewal, I.S.

    1986-03-05

    Treatment of PMN's with PT causes an abolition of chemotaxis, enzyme release, superoxide generation and aggregation caused by f-met-leu-phe (FMLP),C5a and platelet activating factor (PAF). Lectin (Con-A) induced capping and receptor induced shape change are abolished, but phagocytosis is unaltered. In whole cells, calcium mobilization induced by FMLP, PAF and Con-A inhibited by PT although the FMLP-mediated effect is more susceptible to PT's effects. Treatment of PMN's with phorbol 12-myristate 13 acetate (PMA) causes an abolition of calcium mobilization by all agents in a range which also inhibits cap formation. Investigation of calcium uptake reveals PT sensitive and insensitive components.more » Reciprocal interactions between Ns and Ni proteins are also observed since pretreatment with FMLP and PAF causes a stimulation of Ns-mediated cyclic AMP enhancement while pretreatment with Ns linked receptors (PGE/sub 1/ and beta receptor agonists) inhibits calcium mobilization. Comparative peptide mapping studies indicate substantial similarity between Ni proteins in PMN's, platelets and human erythrocytes. The authors results suggest that the Ni linked calcium mobilization sensitive to PMA is important to the regulation of the human neutrophil.« less

  16. Calcium mobilization and phosphoinositide turnover in fluoride-activated human neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strnad, C.F.; Wong, K.

    1986-05-01

    Fluoride ion, at concentrations above 10 mM, has been found to activate a superoxide production response in human neutrophils which is strongly dependent on the presence of extracellular calcium. In an attempt to further explore the calcium requirement of fluoride-induced neutrophil activation, intracellular calcium concentrations were monitored through use of the fluorescent calcium probe, Quin 2. Fluoride ion, at concentrations between 10 and 20 mM, was found to elicit a rise in intracellular calcium levels which was characterized by a lag period of 4 to 10 min and a prolonged duration of action (greater than 20 min). In contrast, themore » chemotactic peptide, formylmethionyl-leucyl-phenylalanine (FMLP), induced a rise in intracellular calcium concentration which peaked within 1 min. Preincubation of cells with 1 ..mu..g/ml pertussis toxin resulted in inhibition of the FMLP-induced response, but not that elicited by fluoride. Furthermore, anion exchange chromatography indicated that inositol phosphate accumulation occurred in fluoride-treated cells in association with calcium mobilization. Recent evidence suggests that the FMLP receptor is coupled to phospholipase C and phosphoinositide turnover through a guanine nucleotide binding protein susceptible to inhibition by pertussis toxin. Present results suggest that fluoride ion may serve to activate this protein in a manner resistant to inhibition by pertussis toxin.« less

  17. Datasets depicting mobility retardation of NCS proteins observed upon incubation with calcium, but not with magnesium, barium or strontium.

    PubMed

    Viviano, Jeffrey; Krishnan, Anuradha; Scully, Jenna; Wu, Hao; Venkataraman, Venkat

    2016-06-01

    In this data article we show the specificity of the Ca(2+)-induced mobility shift in three proteins that belong to the neuronal calcium sensor (NCS) protein family: Hippocalcin, GCAP1 and GCAP2. These proteins did not display a shift in mobility in native gels when incubated with divalent cations other than Ca(2+) - such as Mg(2+), Ba(2+), and Sr(2+), even at 10× concentrations. The data is similar to that obtained with another NCS protein, neurocalcin delta (Viviano et al., 2016, "Electrophoretic Mobility Shift in Native Gels Indicates Calcium-dependent Structural Changes of Neuronal Calcium Sensor Proteins", [1]).

  18. Ned-19 inhibition of parasite growth and multiplication suggests a role for NAADP mediated signalling in the asexual development of Plasmodium falciparum.

    PubMed

    Suárez-Cortés, Pablo; Gambara, Guido; Favia, Annarita; Palombi, Fioretta; Alano, Pietro; Filippini, Antonio

    2017-09-12

    Although malaria is a preventable and curable human disease, millions of people risk to be infected by the Plasmodium parasites and to develop this illness. Therefore, there is an urgent need to identify new anti-malarial drugs. Ca 2+ signalling regulates different processes in the life cycle of Plasmodium falciparum, representing a suitable target for the development of new drugs. This study investigated for the first time the effect of a highly specific inhibitor of nicotinic acid adenine dinucleotide phosphate (NAADP)-induced Ca 2+ release (Ned-19) on P. falciparum, revealing the inhibitory effect of this compound on the blood stage development of this parasite. Ned-19 inhibits both the transition of the parasite from the early to the late trophozoite stage and the ability of the late trophozoite to develop to the multinucleated schizont stage. In addition, Ned-19 affects spontaneous intracellular Ca 2+ oscillations in ring and trophozoite stage parasites, suggesting that the observed inhibitory effects may be associated to regulation of intracellular Ca 2+ levels. This study highlights the inhibitory effect of Ned-19 on progression of the asexual life cycle of P. falciparum. The observation that Ned-19 inhibits spontaneous Ca 2+ oscillations suggests a potential role of NAADP in regulating Ca 2+ signalling of P. falciparum.

  19. Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem.

    PubMed

    Martínez-Villegas, Nadia; Briones-Gallardo, Roberto; Ramos-Leal, José A; Avalos-Borja, Miguel; Castañón-Sandoval, Alan D; Razo-Flores, Elías; Villalobos, Mario

    2013-05-01

    An As-contaminated perched aquifer under an urban area affected by mining was studied over a year to determine the contamination source species and the mechanism of As mobilization. Results show that the dissolution of calcium arsenates in residues disposed on an inactive smelter has caused high levels of As pollution in the adjoining downgradient 6-km perched aquifer, reaching up to 158 mg/L of dissolved As, and releasing a total of ca. 7.5 tons of As in a year. Furthermore, free calcium ion availability was found to control As mobility in the aquifer through the diagenetic precipitation of calcium arsenates (Ca5H2(AsO4)4·cH2O) preventing further mobilization of As. Results shown here represent a model for understanding a highly underreported mechanism of retention of arsenate species likely to dominate in calcium-rich environments, such as those in calcareous sediments and soils, where the commonly reported mechanism of adsorption to iron(III) oxyhydroxides is not the dominant process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells*

    PubMed Central

    Ali, Ramadan A.; Camick, Christina; Wiles, Katherine; Walseth, Timothy F.; Slama, James T.; Bhattacharya, Sumit; Giovannucci, David R.; Wall, Katherine A.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca2+ mobilizing second messenger discovered to date, has been implicated in Ca2+ signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca2+ signaling or the identity of the Ca2+ stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca2+ signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca2+ signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca2+ stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca2+ signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca2+ release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. PMID:26728458

  1. Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity.

    PubMed Central

    Cook-Mills, Joan M; Johnson, Jacob D; Deem, Tracy L; Ochi, Atsuo; Wang, Lei; Zheng, Yi

    2004-01-01

    VCAM-1 (vascular cell adhesion molecule-1) plays an important role in the regulation of inflammation in atherosclerosis, asthma, inflammatory bowel disease and transplantation. VCAM-1 activates endothelial cell NADPH oxidase, and this oxidase activity is required for VCAM-1-dependent lymphocyte migration. We reported previously that a mouse microvascular endothelial cell line promotes lymphocyte migration that is dependent on VCAM-1, but not on other known adhesion molecules. Here we have investigated the signalling mechanisms underlying VCAM-1 function. Lymphocyte binding to VCAM-1 on the endothelial cell surface activated an endothelial cell calcium flux that could be inhibited with anti-alpha4-integrin and mimicked by anti-VCAM-1-coated beads. VCAM-1 stimulation of calcium responses could be blocked by an inhibitor of intracellular calcium mobilization, a calcium channel inhibitor or a calcium chelator, resulting in the inhibition of NADPH oxidase activity. Addition of ionomycin overcame the calcium channel blocker suppression of VCAM-1-stimulated NADPH oxidase activity, but could not reverse the inhibitory effect imposed by intracellular calcium blockage, indicating that both intracellular and extracellular calcium mobilization are required for VCAM-1-mediated activation of NADPH oxidase. Furthermore, VCAM-1 specifically activated the Rho-family GTPase Rac1, and VCAM-1 activation of NADPH oxidase was blocked by a dominant negative Rac1. Thus VCAM-1 stimulates the mobilization of intracellular and extracellular calcium and Rac1 activity that are required for the activation of NADPH oxidase. PMID:14594451

  2. Better functional mobility in community-dwelling elderly is related to D-hormone serum levels and to daily calcium intake.

    PubMed

    Dukas, L; Staehelin, H B; Schacht, E; Bischoff, H A

    2005-01-01

    The influence of calcitropic hormones on functional mobility has been studied in vitamin D (calcidiol) deficient elderly or elderly with a history of falls, however, data in community-dwelling independent vitamin D replete elderly are missing. We therefore assessed in an observational survey the association of calcidiol (25(OH)D3) and calcitriol (D-hormone / 1,25(OH)2D3) status as well as of daily calcium intake on functional mobility in older subjects We evaluated 192 women and 188 men, aged superior 70 years and living independently. Average Timed-up and go test (TUG-test) in seconds was taken as measure of functional mobility. Calcidiol and D-hormone serum concentrations and daily calcium intake were studied in multivariate controlled linear regression models with TUG-test performance as the dependent variable and/or as dichotomous variables (deficient vs. non-deficient, above vs. below the median, respectively). Subjects with low D-hormone serum concentrations took significantly more time to perform the TUG-test (low = 7.70s +/- 2.52 SD ; high = 6.70s +/- 1.29 SD; p = 0.004). In the linear multivariate controlled regression model increased D-hormone serum concentrations predicted better TUG-test performance (estimate -0.0007, p = 0.044). Participants with a calcium intake of > or =512 mg/day were significantly faster to perform the TUG-test than participants with a daily calcium intake of <512 mg/day (estimate:-0.43, p = 0.007). Other significant predictors of better TUG-test performance in both models were: male gender, less comorbid conditions, younger age, lower BMI, iPTH serum levels and creatinine clearance. Calcidiol serum levels were not associated with TUG-test performance. Higher D-hormone status and a calcium intake of > or =512 mg/day in community-dwelling independent older persons are significant determinants of better functional mobility. Therefore, to ensure optimal functional mobility, the care of older persons should address correction of D

  3. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells.

    PubMed

    Ali, Ramadan A; Camick, Christina; Wiles, Katherine; Walseth, Timothy F; Slama, James T; Bhattacharya, Sumit; Giovannucci, David R; Wall, Katherine A

    2016-02-26

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+) mobilizing second messenger discovered to date, has been implicated in Ca(2+) signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca(2+) signaling or the identity of the Ca(2+) stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca(2+) signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca(2+) signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca(2+) stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca(2+) signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca(2+) release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Effect of mood stabilizing agents on agonist-induced calcium mobilization in human platelets.

    PubMed Central

    Kusumi, I; Koyama, T; Yamashita, I

    1994-01-01

    The effect of mood stabilizing agents such as lithium, carbamazepine, valproic acid and clonazepam on serotonin(5-HT)- or thrombin-induced intracellular calcium (Ca) mobilization was studied in the platelets of healthy subjects using the fluorescent Ca indicator fura-2. After incubating platelet-rich plasma with these drugs for one or four hours, there was no significant difference in either basal Ca2+ concentration or 5-HT-stimulated Ca response between each agent treatment and control. 5-HT- or thrombin-induced Ca mobilization was not altered by four weeks of lithium carbonate administration in healthy volunteers. These results indicate that these mood stabilizers fail to affect the agonist-stimulated intracellular Ca mobilizing pathway either in vitro or ex vivo in the platelets of healthy subjects. Images Fig. 1 PMID:8031747

  5. Data on the calcium-induced mobility shift of myristoylated and non-myristoylated forms of neurocalcin delta.

    PubMed

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-06-01

    This data article presents the differences observed between the myristoylated and non-myristoylated forms of the neuronal calcium sensor protein, neurocalcin delta (NCALD). Analysis of the myristoylated and non-myristoylated versions of the protein by mass spectrometry provided difference in mass values consistent with addition of myristoyl group. In the presence of calcium, mobility retardation was observed upon electrophoresis of the protein in native gels. The retardation was dose-dependent and was exhibited by both the myristoylated and non-myristoylated forms of the protein.

  6. Transient Receptor Potential Mucolipin 1 (TRPML1) and Two-pore Channels Are Functionally Independent Organellar Ion Channels*

    PubMed Central

    Yamaguchi, Soichiro; Jha, Archana; Li, Qin; Soyombo, Abigail A.; Dickinson, George D.; Churamani, Dev; Brailoiu, Eugen; Patel, Sandip; Muallem, Shmuel

    2011-01-01

    NAADP is a potent second messenger that mobilizes Ca2+ from acidic organelles such as endosomes and lysosomes. The molecular basis for Ca2+ release by NAADP, however, is uncertain. TRP mucolipins (TRPMLs) and two-pore channels (TPCs) are Ca2+-permeable ion channels present within the endolysosomal system. Both have been proposed as targets for NAADP. In the present study, we probed possible physical and functional association of these ion channels. Exogenously expressed TRPML1 showed near complete colocalization with TPC2 and partial colocalization with TPC1. TRPML3 overlap with TPC2 was more modest. TRPML1 and to some extent TRPML3 co-immunoprecipitated with TPC2 but less so with TPC1. Current recording, however, showed that TPC1 and TPC2 did not affect the activity of wild-type TRPML1 or constitutively active TRPML1(V432P). N-terminally truncated TPC2 (TPC2delN), which is targeted to the plasma membrane, also failed to affect TRPML1 and TRPML1(V432P) channel function or TRPML1(V432P)-mediated Ca2+ influx. Whereas overexpression of TPCs enhanced NAADP-mediated Ca2+ signals, overexpression of TRPML1 did not, and the dominant negative TRPML1(D471K) was without affect on endogenous NAADP-mediated Ca2+ signals. Furthermore, the single channel properties of NAADP-activated TPC2delN were not affected by TRPML1. Finally, NAADP-evoked Ca2+ oscillations in pancreatic acinar cells were identical in wild-type and TRPML1−/− cells. We conclude that although TRPML1 and TPCs are present in the same complex, they function as two independent organellar ion channels and that TPCs, not TRPMLs, are the targets for NAADP. PMID:21540176

  7. Characterization of Two-Pore Channel 2 by Nuclear Membrane Electrophysiology

    PubMed Central

    Lee, Claire Shuk-Kwan; Tong, Benjamin Chun-Kit; Cheng, Cecily Wing-Hei; Hung, Harry Chun-Hin; Cheung, King-Ho

    2016-01-01

    Lysosomal calcium (Ca2+) release mediated by NAADP triggers signalling cascades that regulate many cellular processes. The identification of two-pore channel 2 (TPC2) as the NAADP receptor advances our understanding of lysosomal Ca2+ signalling, yet the lysosome is not amenable to traditional patch-clamp electrophysiology. Previous attempts to record TPC2 single-channel activity put TPC2 outside its native environment, which not reflect TPC2’s true physiological properties. To test the feasibility of using nuclear membrane electrophysiology for TPC2 channel characterization, we constructed a stable human TPC2-expressing DT40TKO cell line that lacks endogenous InsP3R and RyR (DT40TKO-hTPC2). Immunostaining revealed hTPC2 expression on the ER and nuclear envelope. Intracellular dialysis of NAADP into Fura-2-loaded DT40TKO-hTPC2 cells elicited cytosolic Ca2+ transients, suggesting that hTPC2 was functionally active. Using nuclear membrane electrophysiology, we detected a ~220 pS single-channel current activated by NAADP with K+ as the permeant ion. The detected single-channel recordings displayed a linear current-voltage relationship, were sensitive to Ned-19 inhibition, were biphasically regulated by NAADP concentration, and regulated by PKA phosphorylation. In summary, we developed a cell model for the characterization of the TPC2 channel and the nuclear membrane patch-clamp technique provided an alternative approach to rigorously investigate the electrophysiological properties of TPC2 with minimal manipulation. PMID:26838264

  8. Two Pore Channel 2 (TPC2) Inhibits Autophagosomal-Lysosomal Fusion by Alkalinizing Lysosomal pH*

    PubMed Central

    Lu, Yingying; Hao, Bai-Xia; Graeff, Richard; Wong, Connie W. M.; Wu, Wu-Tian; Yue, Jianbo

    2013-01-01

    Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca2+ mobilizing messengers, elicits Ca2+ release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca2+ signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression. PMID:23836916

  9. Development and Testing of a Mobile Phone App for Self-Monitoring of Calcium Intake in Young Women

    PubMed Central

    Tay, Ilona

    2017-01-01

    Background Interventions to prevent osteoporosis by increasing dairy intake or physical activity in young women have been limited to increasing osteoporosis knowledge and awareness. However, findings have shown that this does not always lead to a change in behaviors. Self-monitoring using mobile devices in behavioral interventions has yielded significant and positive outcomes. Yet, to our knowledge, mobile self-monitoring has not been used as an intervention strategy to increase calcium intake, particularly in young women, for better bone health outcomes. Objective As development and testing of mobile app–based interventions requires a sequence of steps, our study focused on testing the acceptability and usability of Calci-app, a dietary app to self-monitor calcium consumption, before it is used in a behavioral change intervention in young women aged 18-25 years. Methods Calci-app development followed 4 steps: (1) conceptualization, (2) development and pretesting, (3) pilot testing, and (4) mixed methods evaluation. Results We present the development process of Calci-app and evaluation of the acceptability and usability of the app in young women. Overall, 78% (31/40) of study participants completed the 5-day food record with high compliance levels (defined as more than 3 days of full or partial completion). There was a significant reduction in the proportion of participants completing all meal entries over the 5 days (P=.01). Participants generally found Calci-app easy and convenient to use, but it was time-consuming and they expressed a lack of motivation to use the app. Conclusions We present a detailed description of the development process of Calci-app and an evaluation of its usability and acceptability to self-monitor dietary calcium intake. The findings from this preliminary study demonstrated acceptable use of Calci-app to self-monitor calcium consumption. However, for regular and long-term use the self-monitoring function in Calci-app could be expanded

  10. Analysis of carbon functional groups in mobile humic acid and recalcitrant calcium humate extracted from eight US soils

    USDA-ARS?s Scientific Manuscript database

    Solid state 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to study the structure of soil humic fractions; however, knowledge regarding carbon structural relationships in humic fractions is limited. In this study, mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fr...

  11. Development and Testing of a Mobile Phone App for Self-Monitoring of Calcium Intake in Young Women.

    PubMed

    Tay, Ilona; Garland, Suzanne; Gorelik, Alexandra; Wark, John Dennis

    2017-03-07

    Interventions to prevent osteoporosis by increasing dairy intake or physical activity in young women have been limited to increasing osteoporosis knowledge and awareness. However, findings have shown that this does not always lead to a change in behaviors. Self-monitoring using mobile devices in behavioral interventions has yielded significant and positive outcomes. Yet, to our knowledge, mobile self-monitoring has not been used as an intervention strategy to increase calcium intake, particularly in young women, for better bone health outcomes. As development and testing of mobile app-based interventions requires a sequence of steps, our study focused on testing the acceptability and usability of Calci-app, a dietary app to self-monitor calcium consumption, before it is used in a behavioral change intervention in young women aged 18-25 years. Calci-app development followed 4 steps: (1) conceptualization, (2) development and pretesting, (3) pilot testing, and (4) mixed methods evaluation. We present the development process of Calci-app and evaluation of the acceptability and usability of the app in young women. Overall, 78% (31/40) of study participants completed the 5-day food record with high compliance levels (defined as more than 3 days of full or partial completion). There was a significant reduction in the proportion of participants completing all meal entries over the 5 days (P=.01). Participants generally found Calci-app easy and convenient to use, but it was time-consuming and they expressed a lack of motivation to use the app. We present a detailed description of the development process of Calci-app and an evaluation of its usability and acceptability to self-monitor dietary calcium intake. The findings from this preliminary study demonstrated acceptable use of Calci-app to self-monitor calcium consumption. However, for regular and long-term use the self-monitoring function in Calci-app could be expanded to allow participants to view their total daily

  12. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions.

    PubMed

    Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla

    2016-03-15

    The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    PubMed Central

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944

  14. Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607

  15. TPC Proteins Are Phosphoinositide-activated Sodium-selective Ion Channels in Endosomes and Lysosomes

    PubMed Central

    Wang, Xiang; Zhang, Xiaoli; Dong, Xian-ping; Samie, Mohammad; Li, Xinran; Cheng, Xiping; Goschka, Andrew; Shen, Dongbiao; Zhou, Yandong; Harlow, Janice; Zhu, Michael X.; Clapham, David E.; Ren, Dejian; Xu, Haoxing

    2012-01-01

    Summary Mammalian Two-Pore Channels (TPC1, 2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P2, and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na+, not K+, as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes, and may explain the specificity of PI(3,5)P2 in regulating the fusogenic potential of intracellular organelles. PMID:23063126

  16. Pinoresinol-4,4'-di-O-beta-D-glucoside from Valeriana officinalis root stimulates calcium mobilization and chemotactic migration of mouse embryo fibroblasts.

    PubMed

    Do, Kee Hun; Choi, Young Whan; Kim, Eun Kyoung; Yun, Sung Ji; Kim, Min Sung; Lee, Sun Young; Ha, Jung Min; Kim, Jae Ho; Kim, Chi Dae; Son, Beung Gu; Kang, Jum Soon; Khan, Ikhlas A; Bae, Sun Sik

    2009-06-01

    Lignans are major constituents of plant extracts and have important pharmacological effects on mammalian cells. Here we showed that pinoresinol-4,4'-di-O-beta-D-glucoside (PDG) from Valeriana officinalis induced calcium mobilization and cell migration through the activation of lysophosphatidic acid (LPA) receptor subtypes. Stimulation of mouse embryo fibroblast (MEF) cells with 10 microM PDG resulted in strong stimulation of MEF cell migration and the EC(50) was about 2 microM. Pretreatment with pertussis toxin (PTX), an inhibitor of G(i) protein, completely blocked PDG-induced cell migration demonstrating that PDG evokes MEF cell migration through the activation of the G(i)-coupled receptor. Furthermore, pretreatment of MEF cells with Ki16425 (10 microM), which is a selective antagonist for LPA(1) and LPA(3) receptors, completely blocked PDG-induced cell migration. Likewise, PDG strongly induced calcium mobilization, which was also blocked by Ki16425 in a dose-dependent manner. Prior occupation of the LPA receptor with LPA itself completely blocked PDG-induced calcium mobilization. Finally, PDG-induced MEF cell migration was attenuated by pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor such as LY294002. Cells lacking downstream mediator of PI3K such as Akt1 and Akt2 (DKO cells) showed loss of PDG-induced migration. Re-expression of Akt1 (but not Akt2) completely restored PDG-induced DKO cell migration. Given these results, we conclude that PDG is a strong inducer of cell migration. We suggest that the pharmacological action of PDG may occur through the activation of an LPA receptor whereby activation of PI3K/Akt signaling pathway mediates PDG-induced MEF cell migration.

  17. In Vivo Epithelial Wound Repair Requires Mobilization of Endogenous Intracellular and Extracellular Calcium*

    PubMed Central

    Aihara, Eitaro; Hentz, Courtney L.; Korman, Abraham M.; Perry, Nicholas P. J.; Prasad, Vikram; Shull, Gary E.; Montrose, Marshall H.

    2013-01-01

    We report that a localized intracellular and extracellular Ca2+ mobilization occurs at the site of microscopic epithelial damage in vivo and is required to mediate tissue repair. Intravital confocal/two-photon microscopy continuously imaged the surgically exposed stomach mucosa of anesthetized mice while photodamage of gastric epithelial surface cells created a microscopic lesion that healed within 15 min. Transgenic mice with an intracellular Ca2+-sensitive protein (yellow cameleon 3.0) report that intracellular Ca2+ selectively increases in restituting gastric epithelial cells adjacent to the damaged cells. Pretreatment with U-73122, indomethacin, 2-aminoethoxydiphenylborane, or verapamil inhibits repair of the damage and also inhibits the intracellular Ca2+ increase. Confocal imaging of Fura-Red dye in luminal superfusate shows a localized extracellular Ca2+ increase at the gastric surface adjacent to the damage that temporally follows intracellular Ca2+ mobilization. Indomethacin and verapamil also inhibit the luminal Ca2+ increase. Intracellular Ca2+ chelation (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid/acetoxymethyl ester, BAPTA/AM) fully inhibits intracellular and luminal Ca2+ increases, whereas luminal calcium chelation (N-(2-hydroxyetheyl)-ethylendiamin-N,N,N′-triacetic acid trisodium, HEDTA) blocks the increase of luminal Ca2+ and unevenly inhibits late-phase intracellular Ca2+ mobilization. Both modes of Ca2+ chelation slow gastric repair. In plasma membrane Ca-ATPase 1+/− mice, but not plasma membrane Ca-ATPase 4−/− mice, there is slowed epithelial repair and a diminished gastric surface Ca2+ increase. We conclude that endogenous Ca2+, mobilized by signaling pathways and transmembrane Ca2+ transport, causes increased Ca2+ levels at the epithelial damage site that are essential to gastric epithelial cell restitution in vivo. PMID:24121509

  18. In vivo epithelial wound repair requires mobilization of endogenous intracellular and extracellular calcium.

    PubMed

    Aihara, Eitaro; Hentz, Courtney L; Korman, Abraham M; Perry, Nicholas P J; Prasad, Vikram; Shull, Gary E; Montrose, Marshall H

    2013-11-22

    We report that a localized intracellular and extracellular Ca(2+) mobilization occurs at the site of microscopic epithelial damage in vivo and is required to mediate tissue repair. Intravital confocal/two-photon microscopy continuously imaged the surgically exposed stomach mucosa of anesthetized mice while photodamage of gastric epithelial surface cells created a microscopic lesion that healed within 15 min. Transgenic mice with an intracellular Ca(2+)-sensitive protein (yellow cameleon 3.0) report that intracellular Ca(2+) selectively increases in restituting gastric epithelial cells adjacent to the damaged cells. Pretreatment with U-73122, indomethacin, 2-aminoethoxydiphenylborane, or verapamil inhibits repair of the damage and also inhibits the intracellular Ca(2+) increase. Confocal imaging of Fura-Red dye in luminal superfusate shows a localized extracellular Ca(2+) increase at the gastric surface adjacent to the damage that temporally follows intracellular Ca(2+) mobilization. Indomethacin and verapamil also inhibit the luminal Ca(2+) increase. Intracellular Ca(2+) chelation (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxymethyl ester, BAPTA/AM) fully inhibits intracellular and luminal Ca(2+) increases, whereas luminal calcium chelation (N-(2-hydroxyetheyl)-ethylendiamin-N,N,N'-triacetic acid trisodium, HEDTA) blocks the increase of luminal Ca(2+) and unevenly inhibits late-phase intracellular Ca(2+) mobilization. Both modes of Ca(2+) chelation slow gastric repair. In plasma membrane Ca-ATPase 1(+/-) mice, but not plasma membrane Ca-ATPase 4(-/-) mice, there is slowed epithelial repair and a diminished gastric surface Ca(2+) increase. We conclude that endogenous Ca(2+), mobilized by signaling pathways and transmembrane Ca(2+) transport, causes increased Ca(2+) levels at the epithelial damage site that are essential to gastric epithelial cell restitution in vivo.

  19. CD38 Mediates Angiotensin II–Induced Intracellular Ca2+ Release in Rat Pulmonary Arterial Smooth Muscle Cells

    PubMed Central

    Lee, Suengwon; Paudel, Omkar; Jiang, Yongliang; Yang, Xiao-Ru

    2015-01-01

    CD38 is a multifunctional enzyme that catalyzes the formation of the endogenous Ca2+-mobilizing messengers cyclic ADP-ribose (cADPR) and nicotinic acid adenosine dinucleotide phosphate (NAADP) for the activation of ryanodine receptors (RyRs) of sarcoplasmic reticulum and NAADP-sensitive Ca2+ release channels in endolysosomes, respectively. It plays important roles in systemic vascular functions, but there is little information on CD38 in pulmonary arterial smooth muscle cells (PASMCs). Earlier studies suggested a redox-sensing role of CD38 in hypoxic pulmonary vasoconstriction. This study sought to characterize its roles in angiotensin II (Ang II)–induced Ca2+ release (AICR) in PASMCs. Examination of CD38 expression in various rat arteries found high levels of CD38 mRNA and protein in pulmonary arteries. The Ang II–elicited Ca2+ response consisted of extracellular Ca2+ influx and intracellular Ca2+ release in PASMCs. AICR activated in the absence of extracellular Ca2+ was reduced by pharmacological or siRNA inhibition of CD38, by the cADPR antagonist 8-bromo-cADPR or ryanodine, and by the NAADP antagonist Ned-19 or disruption of endolysosomal Ca2+ stores with the vacuolar H+-ATPase inhibitor bafilomycin A1. Suppression of AICR by the inhibitions of cADPR- and NAADP-dependent pathways were nonadditive, indicating interdependence of RyR- and NAADP-gated Ca2+ release. Furthermore, AICR was inhibited by the protein kinase C inhibitor staurosporine, the nonspecific NADPH oxidase (NOX) inhibitors apocynin and diphenyleneiodonium, the NOX2-specific inhibitor gp91ds-tat, and the scavenger of reactive oxygen species (ROS) tempol. These results provide the first evidence that Ang II activates CD38-dependent Ca2+ release via the NOX2-ROS pathway in PASMCs. PMID:25078456

  20. Ca2+ release triggered by nicotinate adenine dinucleotide phosphate in intact sea urchin eggs.

    PubMed Central

    Perez-Terzic, C M; Chini, E N; Shen, S S; Dousa, T P; Clapham, D E

    1995-01-01

    Nicotinate adenine dinucleotide phosphate (NAADP) was recently identified [Lee and Aarhus (1995) J. Biol. Chem. 270, 2152-2157; Chini, Beers and Dousa (1995) J. Biol. Chem. 270, 3116-3223] as a potent Ca(2+)-releasing agent in sea urchin egg homogenates. NAADP triggered Ca2+ release by a mechanism that was distinct from inositol 1,4,5-trisphosphate (InsP3)- and cyclic ADP-ribose (cADPR)-induced Ca2+ release. When NAADP was microinjected into intact sea urchin eggs it induced a dose-dependent increase in cytoplasmic free Ca2+ which was independent of the extracellular [Ca2+]. The Ca2+ waves elicited by microinjections of NAADP originated at the site of injection and swept across the cytosol. As previously found in sea urchin egg homogenates, NAADP-induced Ca2+ release in intact eggs was not blocked by heparin or by prior desensitization to InsP3 or cADPR. Thio-NADP, a specific inhibitor of the NAADP-induced Ca2+ release in sea urchin homogenates [Chini, Beers and Dousa (1995) J. Biol. Chem. 270, 3116-3223] blocked NAADP (but not InsP3 or cADPR) injection-induced Ca2+ release in intact sea urchin eggs. Finally, fertilization of sea urchin eggs abrogated subsequent NAADP-induced Ca2+ release, suggesting that the NAADP-sensitive Ca2+ pool may participate in the fertilization response. This study demonstrates that NAADP acts as a selective Ca(2+)-releasing agonist in intact cells. Images Figure 2 PMID:8554544

  1. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  2. Myo-Inositol trisphosphate mobilizes calcium from fusogenic carrot (Daucus carota L. ) protoplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rincon, M.; Boss, W.F.

    1987-02-01

    To determine whether or not inositol trisphosphate (IP/sub 3/) mobilizes calcium in higher plant cells; they investigated the effect of IP/sub 3/ on Ca/sup 2 +/ fluxes in fusogenic carrot (Daucus carota L.) protoplasts. The protoplasts were incubated in /sup 45/Ca/sup 2 +/-containing medium and the /sup 45/Ca/sup 2 +/ associated with the protoplasts was monitored with time. Addition of IP/sub 3/ (20 micromolar) caused a 17% net loss of the accumulated /sup 45/Ca/sup 2 +/ within 4 minutes. There was a reuptake of /sup 45/Ca/sup 2 +/ and the protoplasts recovered to their initial value by 10 minutes. Phyticmore » acid (IP/sub 6/), also stimulated /sup 45/Ca/sup 2 +/ efflux from the protoplasts. Both the IP/sub 3/- and the IP/sub 6/-induced /sup 45/Ca/sup 2 +/ efflux were inhibited by the calmodulin antagonist, trifluoperazine.« less

  3. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    PubMed

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner. Published by Elsevier Ltd.

  4. The use of flow cytometry to examine calcium signalling by TRPV1 in mixed cell populations.

    PubMed

    Assas, Bakri M; Abdulaal, Wesam H; Wakid, Majed H; Zakai, Haytham A; Miyan, J; Pennock, J L

    2017-06-15

    Flow cytometric analysis of calcium mobilisation has been in use for many years in the study of specific receptor engagement or isolated cell:cell communication. However, calcium mobilisation/signaling is key to many cell functions including apoptosis, mobility and immune responses. Here we combine multiplex surface staining of whole spleen with Indo-1 AM to visualise calcium mobilisation and examine calcium signaling in a mixed immune cell culture over time. We demonstrate responses to a TRPV1 agonist in distinct cell subtypes without the need for cell separation. Multi parameter staining alongside Indo-1 AM to demonstrate calcium mobilization allows the study of real time calcium signaling in a complex environment. Copyright © 2017. Published by Elsevier Inc.

  5. Acidosis and Urinary Calcium Excretion: Insights from Genetic Disorders

    PubMed Central

    Cordat, Emmanuelle; Chambrey, Régine; Dimke, Henrik; Eladari, Dominique

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibition of calcium transport processes within the renal tubule. The mechanisms whereby acid alters the integrity and stability of bone have been examined extensively in the published literature. Here, after briefly reviewing this literature, we consider the effects of acid on calcium transport in the renal tubule and then discuss why not all gene defects that cause renal tubular acidosis are associated with hypercalciuria and nephrocalcinosis. PMID:27468975

  6. Effect of calcium supplementation in pregnancy on maternal bone outcomes in women with a low calcium intake123

    PubMed Central

    Jarjou, Landing MA; Laskey, M Ann; Sawo, Yankuba; Goldberg, Gail R; Cole, Timothy J

    2010-01-01

    Background: Mobilization of maternal bone mineral partly supplies calcium for fetal and neonatal bone growth and development. Objective: We investigated whether pregnant women with low calcium intakes may have a more extensive skeletal response postpartum that may compromise their short- or long-term bone health. Design: In a subset of participants (n = 125) in a double-blind, randomized, placebo-controlled trial (International Trial Registry: ISRCTN96502494) in pregnant women in The Gambia, West Africa, with low calcium intakes (≈350 mg Ca/d), we measured bone mineral status of the whole body, lumbar spine, and hip by using dual-energy X-ray absorptiometry and measured bone mineral status of the forearm by using single-photon absorptiometry at 2, 13, and 52 wk lactation. We collected blood and urine from the subjects at 20 wk gestation and at 13 wk postpartum. Participants received calcium carbonate (1500 mg Ca/d) or a matching placebo from 20 wk gestation to parturition; participants did not consume supplements during lactation. Results: Women who received the calcium supplement in pregnancy had significantly lower bone mineral content (BMC), bone area (BA), and bone mineral density (BMD) at the hip throughout 12 mo lactation (mean ± SE difference: BMC = −10.7 ± 3.7%, P = 0.005; BA = −3.8 ± 1.9%, P = 0.05; BMD = −6.9 ± 2.6%, P = 0.01). The women also experienced greater decreases in bone mineral during lactation at the lumbar spine and distal radius and had biochemical changes consistent with greater bone mineral mobilization. Conclusions: Calcium supplementation in pregnant women with low calcium intakes may disrupt metabolic adaptation and may not benefit maternal bone health. Further study is required to determine if such effects persist long term or elicit compensatory changes in bone structure. PMID:20554790

  7. Nicotinic Acid Adenine Dinucleotide Phosphate Analogs Substituted on the Nicotinic Acid and Adenine Ribosides. Effects on Receptor-Mediated Ca2+ release

    PubMed Central

    Trabbic, Christopher J.; Zhang, Fan; Walseth, Timothy F.; Slama, James T.

    2015-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+ releasing intracellular second messenger in both mammals and echinoderms. We report that large functionalized substituents introduced at the nicotinic acid 5-position are recognized by the sea urchin receptor, albeit with a 20–500 fold loss in agonist potency. 5-(3-Azidopropyl)-NAADP was shown to release Ca2+ with an EC50 of 31 µM and to compete with NAADP for receptor binding with an IC50 of 56 nM. Attachment of charged groups to the nicotinic acid of NAADP is associated with loss of activity, suggesting that the nicotinate riboside moiety is recognized as a neutral zwitterion. Substituents (Br- and N3-) can be introduced at the 8-adenosyl position of NAADP while preserving high potency and agonist efficacy and an NAADP derivative substituted at both the 5-position of the nicotinic acid and at the 8-adenosyl position was also recognized although the agonist potency was significantly reduced. PMID:25826221

  8. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    PubMed

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Feeding 5-hydroxy-l-tryptophan during the transition from pregnancy to lactation increases calcium mobilization from bone in rats.

    PubMed

    Laporta, J; Peters, T L; Weaver, S R; Merriman, K E; Hernandez, L L

    2013-05-01

    An increasing demand for calcium during pregnancy and lactation can result in both clinical and subclinical hypocalcemia during the early lactation period in several mammalian species, in particular the dairy cow. Serotonin (5-HT) was recently identified as a regulator of lactation and bone turnover. The purpose of this study was to determine whether supplementation of the maternal diet with a 5-HT precursor would increase maternal bone turnover and calcium mobilization to maintain appropriate circulating maternal concentrations of ionized calcium during lactation. Female Sprague-Dawley rats (n = 30) were fed either a control diet (n = 15) or a diet supplemented with the 5-HT precursor 5-hydroxytryptophan (5-HTP, 0.2%; n = 15) from day 13 of pregnancy through day 9 of lactation. Maternal serum and plasma (day 1 and day 9 of lactation), milk and pup weight (daily), mammary gland and bone tissue (day 9 of lactation) were collected for analysis. The 5-HTP diet elevated circulating maternal concentrations of 5-HT on day 1 and day 9 of lactation and parathyroid hormone related-protein (PTHrP) on day 9 of lactation (P < 0.033). In addition, 5-HTP supplementation increased total serum calcium concentrations on day 1 of lactation and total milk calcium concentration on day 9 of lactation (P < 0.032). Supplemental 5-HTP did not alter milk yield, maternal body weight, mammary gland structure, or pup litter weights (P > 0.05). Supplemental 5-HTP also resulted in increased concentrations of mammary 5-HT and PTHrP, as well as increased mRNA expression of rate-limiting enzyme in 5-HT synthesis, tryptophan hydroxylase 1, and Pthrp mRNA on day 9 of lactation (P < 0.028). In addition, supplementation of 5-HTP resulted in increased mRNA expression of maternal mammary calcium transporters and resorption of bone in the femur, indicated by increase osteoclast number and diameter as well as mRNA expression of classical markers of bone resorption on day 9 of lactation (P < 0

  10. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells.

    PubMed

    Vatsa, Parul; Chiltz, Annick; Luini, Estelle; Vandelle, Elodie; Pugin, Alain; Roblin, Gabriel

    2011-07-01

    The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca²⁺](cyt) which intensity depends on ergosterol concentration in the range 0.002-10 μM. Among sterols, this calcium mobilization was specific for ergosterol and, ergosterol-induced pH and [Ca²⁺](cyt) changes were specifically desensitized after two subsequent applications of ergosterol. Specific modulators allowed elucidating some events in the signalling pathway triggered by ergosterol. The action of BAPTA, LaCl₃, nifedipine, verapamil, neomycin, U73122 and ruthenium red suggested that the first phase was linked to calcium influx from external medium which subsequently triggered the second phase linked to calcium release from internal stores. The calcium influx and the [Ca²⁺](cyt) increase depended on upstream protein phosphorylation. The extracellular alkalinization and ROS production depended on calcium influx but, the ergosterol-induced MAPK activation was calcium-independent. ROS were not involved in cytosolic calcium rise as described in other models, indicating that ROS do not systematically participate in the amplification of calcium signalling. Interestingly, ergosterol-induced ROS production is not linked to cell death and ergosterol does not induce any calcium elevation in the nucleus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Effects of nicergoline on calcium and magnesium deposition in the central nervous system tissues of rats maintained on low-calcium diets.

    PubMed

    Yasui, M; Kihira, T; Tsujimoto, M; Ota, K

    1992-11-01

    Reduction of calcium intake leads to the mobilization of calcium and magnesium from the bone pool and to calcium deposition in the soft tissues, especially in the central nervous system (CNS). The effects of 10 alpha-methoxy-1,6-dimethylergoline-8 beta-methanol 5-bromonicotinate (nicergoline), an ameliorator of cerebral circulation and metabolism, on the deposition of calcium and magnesium in the CNS, heart, liver, kidney, muscle, abdominal aorta and bones were studied in rats maintained on standard and low-calcium diets. Rats were fed the following diets for 90 days: standard calcium (12.5 g/kg); standard calcium with 60 mg/kg nicergoline; low-calcium (30 mg/kg); and low-calcium with 60 mg/kg nicergoline. The presence of nicergoline did not affect blood chemistry but magnesium concentrations in the liver were significantly (P < 0.05) higher in rats fed standard diet with nicergoline. Magnesium concentrations in the occipital cortex, pons, cerebellum, liver, kidney, muscle and femur of nicergoline-treated rats fed low-calcium diet were significantly (P < 0.01-0.05) higher compared with those in the corresponding controls, whereas the calcium concentrations in the femur of nicergoline-treated rats fed both standard and low-calcium diets were significantly (P < 0.05) higher than those in the corresponding controls. In general, nicergoline tended to preserve the calcium content in the bone of rats fed a standard diet. Nicergoline may be implicated in calcium metabolism in rats fed low-calcium diets and may activate cerebral metabolism through the maintenance of magnesium concentrations in the CNS and soft tissues.

  12. On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.

    PubMed

    Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias

    2008-09-01

    The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.

  13. A Methylene Group on C-2 of 24,24-Difluoro-19-nor-1α,25-Dihydroxyvitamin D3 Markedly Increases Bone Calcium Mobilization in vivo

    PubMed Central

    Flores, Agnieszka; Massarelli, Ilaria; Thoden, James B.; Plum, Lori A.; DeLuca, Hector F.

    2015-01-01

    Four side chain fluorinated analogues of 1α,25-dihydroxy-19-norvitamin D have been prepared in convergent syntheses using the Wittig-Horner reaction as a key step. Structures and absolute configurations of analogues 3 and 5 were confirmed by X-ray crystallography. All analogues showed high potency in HL-60 cell differentiation and vitamin D-24-hydroxylase (24-OHase) transcription as compared to 1α,25-dihydroxyvitamin D3 (1). Most important is that all of the 20S-configured derivatives (4 and 6) had high bone mobilizing activity in vivo. However, in the 20R series, a 2-methylene group was required for high bone mobilizing activity. A change in positioning of the 20R molecule in the vitamin D receptor when the 2-methylene group is present may provide new insight into the molecular basis of bone calcium mobilization induced by vitamin D. PMID:26630444

  14. Regulation of Cellular Calcium in Vestibular Supporting Cells by Otopetrin 1

    PubMed Central

    Kim, Euysoo; Hyrc, Krzysztof L.; Speck, Judith; Lundberg, Yunxia W.; Salles, Felipe T.; Kachar, Bechara; Goldberg, Mark P.; Warchol, Mark E.

    2010-01-01

    Otopetrin 1 (OTOP1) is a multitransmembrane domain protein, which is essential for mineralization of otoconia, the calcium carbonate biominerals required for vestibular function, and the normal sensation of gravity. The mechanism driving mineralization of otoconia is poorly understood, but it has been proposed that supporting cells and a mechanism to maintain high concentrations of calcium are critical. Using Otop1 knockout mice and a utricular epithelial organ culture system, we show that OTOP1 is expressed at the apex of supporting cells and functions to increase cytosolic calcium in response to purinergic agonists, such as adenosine 5′-triphosphate (ATP). This is achieved by blocking mobilization of calcium from intracellular stores in an extracellular calcium-dependent manner and by mediating influx of extracellular calcium. These data support a model in which OTOP1 acts as a sensor of the extracellular calcium concentration near supporting cells and responds to ATP in the endolymph to increase intracellular calcium levels during otoconia mineralization. PMID:20554841

  15. Multi-omics Analysis of Serum Samples Demonstrates Reprogramming of Organ Functions Via Systemic Calcium Mobilization and Platelet Activation in Metastatic Melanoma*

    PubMed Central

    Muqaku, Besnik; Eisinger, Martin; Meier, Samuel M.; Tahir, Ammar; Pukrop, Tobias; Haferkamp, Sebastian; Slany, Astrid; Reichle, Albrecht

    2017-01-01

    Pathophysiologies of cancer-associated syndromes such as cachexia are poorly understood and no routine biomarkers have been established, yet. Using shotgun proteomics, known marker molecules including PMEL, CRP, SAA, and CSPG4 were found deregulated in patients with metastatic melanoma. Targeted analysis of 58 selected proteins with multiple reaction monitoring was applied for independent data verification. In three patients, two of which suffered from cachexia, a tissue damage signature was determined, consisting of nine proteins, PLTP, CD14, TIMP1, S10A8, S10A9, GP1BA, PTPRJ, CD44, and C4A, as well as increased levels of glycine and asparagine, and decreased levels of polyunsaturated phosphatidylcholine concentrations, as determined by targeted metabolomics. Remarkably, these molecules are known to be involved in key processes of cancer cachexia. Based on these results, we propose a model how metastatic melanoma may lead to reprogramming of organ functions via formation of platelet activating factors from long-chain polyunsaturated phosphatidylcholines under oxidative conditions and via systemic induction of intracellular calcium mobilization. Calcium mobilization in platelets was demonstrated to alter levels of several of these marker molecules. Additionally, platelets from melanoma patients proved to be in a rather exhausted state, and platelet-derived eicosanoids implicated in tumor growth were found massively increased in blood from three melanoma patients. Platelets were thus identified as important source of serum protein and lipid alterations in late stage melanoma patients. As a result, the proposed model describes the crosstalk between lipolysis of fat tissue and muscle wasting mediated by oxidative stress, resulting in the metabolic deregulations characteristic for cachexia. PMID:27879288

  16. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    PubMed

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Disruption of Calcium Homeostasis During Exercise as a Mediator of Bone Metabolism

    DTIC Science & Technology

    2015-10-01

    Meeting of the American College of Sports Medicine (Appendix A). 15. SUBJECT TERMS calcium homeostasis, exercise, bone resorption, parathyroid hormone ... hormone (PTH). PTH can defend serum Ca by reducing urinary Ca excretion, increasing intestinal Ca absorption, and increasing mobilization of skeletal Ca...certain conditions. It is our contention that disruptions in calcium homeostasis during exercise lead to increases in parathyroid hormone (PTH) and

  18. Cellular calcium mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, E.E.

    1984-01-01

    In vascular and other smooth muscles, occurrence of intracellular Ca stores which can be mobilized to support contraction may be a general phenomenon. The Ca stores are characterized by the requirement for release by high concentrations of agonists acting on plasma membrane receptors, by the failure of the released Ca2+ to recycle to the store, by the occurrence of rapid refilling of the store from the extracellular space, and by disappearance of the store when the plasma membrane is made leaky by saponin. In contrast to agonist-released Ca stores, those released by caffeine to support contraction in Ca2+-free solutions aremore » more slowly lost and refilled, are not always emptied when the agonist-related store is emptied, and do not disappear after saponin treatment. Stores released by agonists have been suggested to be in the endoplasmic reticulum near the plasma membrane or at the inner aspect of the plasma membrane related to high affinity, pH-dependent Ca-binding sites. Caffeine-released stores are assumed to be in endoplasmic reticulum. Continued exposure of some tissues to Ca2+-free solutions unmasks what is considered to be a recycling Ca store releasable by agonists. Release of Ca2+ and its reaccumulation in this store appear to be slower than at the nonrecycling store. The contractions which persist for many hours in Ca2+-free solution are inhibited temporarily by Ca2+ restoration. Existence of a recycling store of releasable Ca2+ requires occurrence of mechanisms to abolish Ca2+ extrusion or leak-out of the cell and to ensure recycling to the same store.« less

  19. Hypochlorhydria-induced calcium malabsorption does not affect fracture healing but increases post-traumatic bone loss in the intact skeleton.

    PubMed

    Haffner-Luntzer, Melanie; Heilmann, Aline; Heidler, Verena; Liedert, Astrid; Schinke, Thorsten; Amling, Michael; Yorgan, Timur Alexander; Vom Scheidt, Annika; Ignatius, Anita

    2016-11-01

    Efficient calcium absorption is essential for skeletal health. Patients with impaired gastric acidification display low bone mass and increased fracture risk because calcium absorption is dependent on gastric pH. We investigated fracture healing and post-traumatic bone turnover in mice deficient in Cckbr, encoding a gastrin receptor that affects acid secretion by parietal cells. Cckbr-/- mice display hypochlorhydria, calcium malabsorption, and osteopenia. Cckbr-/- and wildtype (WT) mice received a femur osteotomy and were fed either a standard or calcium-enriched diet. Healed and intact bones were assessed by biomechanical testing, histomorphometry, micro-computed tomography, and quantitative backscattering. Parathyroid hormone (PTH) serum levels were determined by enzyme-linked immunosorbent assay. Fracture healing was unaffected in Cckbr-/- mice. However, Cckbr-/- mice displayed increased calcium mobilization from the intact skeleton during bone healing, confirmed by significantly elevated PTH levels and osteoclast numbers compared to WT mice. Calcium supplementation significantly reduced secondary hyperparathyroidism and bone resorption in the intact skeleton in both genotypes, but more efficiently in WT mice. Furthermore, calcium administration improved bone healing in WT mice, indicated by significantly increased mechanical properties and bone mineral density of the fracture callus, whereas it had no significant effect in Cckbr-/- mice. Therefore, under conditions of hypochlorhydria-induced calcium malabsorption, calcium, which is essential for callus mineralization, appears to be increasingly mobilized from the intact skeleton in favor of fracture healing. Calcium supplementation during fracture healing prevented systemic calcium mobilization, thereby maintaining bone mass and improving fracture healing in healthy individuals whereas the effect was limited by gastric hypochlorhydria. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J

  20. Microelectrophoretic study of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1987-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopolysaccharides have greater affinity for the COM surface than the proteins. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  1. Inhibition of Sphingosine Kinase 1 Ameliorates Angiotensin II-Induced Hypertension and Inhibits Transmembrane Calcium Entry via Store-Operated Calcium Channel

    PubMed Central

    Wilson, Parker C.; Fitzgibbon, Wayne R.; Garrett, Sara M.; Jaffa, Ayad A.; Luttrell, Louis M.; Brands, Michael W.

    2015-01-01

    Angiotensin II (AngII) plays a critical role in the regulation of vascular tone and blood pressure mainly via regulation of Ca2+ mobilization. Several reports have implicated sphingosine kinase 1 (SK1)/sphingosine 1-phosphate (S1P) in the mobilization of intracellular Ca2+ through a yet-undefined mechanism. Here we demonstrate that AngII-induces biphasic calcium entry in vascular smooth muscle cells, consisting of an immediate peak due to inositol tris-phosphate-dependent release of intracellular calcium, followed by a sustained transmembrane Ca2+ influx through store-operated calcium channels (SOCs). Inhibition of SK1 attenuates the second phase of transmembrane Ca2+ influx, suggesting a role for SK1 in AngII-dependent activation of SOC. Intracellular S1P triggers SOC-dependent Ca2+ influx independent of S1P receptors, whereas external application of S1P stimulated S1P receptor-dependent Ca2+ influx that is insensitive to inhibitors of SOCs, suggesting that the SK1/S1P axis regulates store-operated calcium entry via intracellular rather than extracellular actions. Genetic deletion of SK1 significantly inhibits both the acute hypertensive response to AngII in anaesthetized SK1 knockout mice and the sustained hypertensive response to continuous infusion of AngII in conscious animals. Collectively these data implicate SK1 as the missing link that connects the angiotensin AT1A receptor to transmembrane Ca2+ influx and identify SOCs as a potential intracellular target for SK1. PMID:25871850

  2. Role of calcium in the regulation of theca cell androstenedione production in the domestic hen.

    PubMed

    Levorse, J M; Tilly, J L; Johnson, A L

    1991-05-01

    Theca cells were collected from the second largest preovulatory follicle. Chelation of extracellular calcium with EGTA attenuated LH (10 ng)-induced androstenedione production by theca cells, and this effect was more pronounced in calcium-deficient than in calcium-replete incubation medium. Incubation of theca cells with steroidogenic agonists in the presence of the calcium channel blocker verapamil (100 microM) suppressed androstenedione production stimulated by LH (a 57% decrease), the adenylate cyclase activator forskolin (a 59% decrease) and the cyclic adenosine monophosphate (cAMP) analog 8-bromo-cAMP (a 61% decrease). Furthermore, 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8), a putative inhibitor of intracellular calcium mobilization, suppressed LH-induced androstenedione production in a dose-dependent fashion. The calmodulin inhibitors trifluoperazine (100 microM) and R24571 (50 microM) inhibited androstenedione production stimulated by hormonal (LH) and non-hormonal (forskolin, 8-bromo-cAMP) agonists (decreases ranging from 76 to 98%). While increasing the intracellular calcium ion concentrations with the calcium ionophore A23187 did not affect basal concentrations of androstenedione, treatment of LH-stimulated cells with the ionophore caused dose-dependent inhibition of androstenedione production; these effects were enhanced by coincubation with phorbol 12-myristate 13-acetate (a known activator of protein kinase C). We conclude that the mobilization of calcium is critical for agonist-stimulated steroidogenesis in hen theca cells, apparently requiring the interaction of calcium with its binding protein, calmodulin. Furthermore, increased cytosolic calcium concentrations may be involved in the suppression of androstenedione production, possibly as a result of an interaction with protein kinase C.

  3. The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification

    PubMed Central

    Starkus, John G; Fleig, Andrea; Penner, Reinhold

    2010-01-01

    TRPM2 is a calcium-permeable non-selective cation channel expressed in the plasma membrane and in lysosomes that is critically involved in aggravating reactive oxygen species (ROS)-induced inflammatory processes and has been implicated in cell death. TRPM2 is gated by ADP-ribose (ADPR) and modulated by physiological processes that produce peroxide, cyclic ADP-ribose (cADPR), nicotinamide adenine dinucleotide phosphate (NAADP) and Ca2+. We investigated the role of extra- and intracellular acidification on heterologously expressed TRPM2 in HEK293 cells. Our results show that TRPM2 is inhibited by external acidification with an IC50 of pH 6.5 and is completely suppressed by internal pH of 6. Current inhibition requires channel opening and is strongly voltage dependent, being most effective at negative potentials. In addition, increased cytosolic pH buffering capacity or elevated [Ca2+]i reduces the rate of current inactivation elicited by extracellular acidification, and Na+ and Ca2+ influence the efficacy of proton-induced inactivation. Together, these results suggest that external protons permeate TRPM2 channels to gain access to an intracellular site that regulates channel activity. Consistent with this notion, single-channel measurements in HEK293 cells reveal that internal protons induce channel closure without affecting single-channel conductance, whereas external protons affect channel open probability as well as single-channel conductance of native TRPM2 in neutrophils. We conclude that protons compete with Na+ and Ca2+ for channel permeation and channel closure results from a competitive antagonism of protons at an intracellular Ca2+ binding site. PMID:20194125

  4. The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification.

    PubMed

    Starkus, John G; Fleig, Andrea; Penner, Reinhold

    2010-04-15

    TRPM2 is a calcium-permeable non-selective cation channel expressed in the plasma membrane and in lysosomes that is critically involved in aggravating reactive oxygen species (ROS)-induced inflammatory processes and has been implicated in cell death. TRPM2 is gated by ADP-ribose (ADPR) and modulated by physiological processes that produce peroxide, cyclic ADP-ribose (cADPR), nicotinamide adenine dinucleotide phosphate (NAADP) and Ca(2+). We investigated the role of extra- and intracellular acidification on heterologously expressed TRPM2 in HEK293 cells. Our results show that TRPM2 is inhibited by external acidification with an IC(50) of pH 6.5 and is completely suppressed by internal pH of 6. Current inhibition requires channel opening and is strongly voltage dependent, being most effective at negative potentials. In addition, increased cytosolic pH buffering capacity or elevated [Ca(2+)](i) reduces the rate of current inactivation elicited by extracellular acidification, and Na(+) and Ca(2+) influence the efficacy of proton-induced inactivation. Together, these results suggest that external protons permeate TRPM2 channels to gain access to an intracellular site that regulates channel activity. Consistent with this notion, single-channel measurements in HEK293 cells reveal that internal protons induce channel closure without affecting single-channel conductance, whereas external protons affect channel open probability as well as single-channel conductance of native TRPM2 in neutrophils. We conclude that protons compete with Na(+) and Ca(2+) for channel permeation and channel closure results from a competitive antagonism of protons at an intracellular Ca(2+) binding site.

  5. Calcium spikes, waves and oscillations in a large, patterned epithelial tissue

    PubMed Central

    Balaji, Ramya; Bielmeier, Christina; Harz, Hartmann; Bates, Jack; Stadler, Cornelia; Hildebrand, Alexander; Classen, Anne-Kathrin

    2017-01-01

    While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells. The spatiotemporal characteristics of intercellular waves and oscillations arise as emergent properties of calcium mobilization within a sheet of gap-junction coupled cells and are influenced by cell size and environmental history. While the in vivo function of spikes, waves and oscillations requires further characterization, our genetic experiments suggest that core calcium signaling components guide actomyosin organization. Our study thus suggests a possible role for calcium signaling in epithelia but importantly, introduces a model epithelium enabling the dissection of cellular mechanisms supporting the initiation, transmission and regeneration of long-range intercellular calcium waves and the emergence of oscillations in a highly coupled multicellular sheet. PMID:28218282

  6. Systems Biology Approach Reveals a Calcium-Dependent Mechanism for Basal Toxicity in Daphnia magna.

    PubMed

    Antczak, Philipp; White, Thomas A; Giri, Anirudha; Michelangeli, Francesco; Viant, Mark R; Cronin, Mark T D; Vulpe, Chris; Falciani, Francesco

    2015-09-15

    The expanding diversity and ever increasing amounts of man-made chemicals discharged to the environment pose largely unknown hazards to ecosystem and human health. The concept of adverse outcome pathways (AOPs) emerged as a comprehensive framework for risk assessment. However, the limited mechanistic information available for most chemicals and a lack of biological pathway annotation in many species represent significant challenges to effective implementation of this approach. Here, a systems level, multistep modeling strategy demonstrates how to integrate information on chemical structure with mechanistic insight from genomic studies, and phenotypic effects to define a putative adverse outcome pathway. Results indicated that transcriptional changes indicative of intracellular calcium mobilization were significantly overrepresented in Daphnia magna (DM) exposed to sublethal doses of presumed narcotic chemicals with log Kow ≥ 1.8. Treatment of DM with a calcium ATPase pump inhibitor substantially recapitulated the common transcriptional changes. We hypothesize that calcium mobilization is a potential key molecular initiating event in DM basal (narcosis) toxicity. Heart beat rate analysis and metabolome analysis indicated sublethal effects consistent with perturbations of calcium preceding overt acute toxicity. Together, the results indicate that altered calcium homeostasis may be a key early event in basal toxicity or narcosis induced by lipophilic compounds.

  7. Two-pore channels at the intersection of endolysosomal membrane traffic

    PubMed Central

    Marchant, Jonathan S.; Patel, Sandip

    2016-01-01

    Two-pore channels (TPCs) are ancient members of the voltage-gated ion channel superfamily that localize to acidic organelles such as lysosomes. The TPC complex is the proposed target of the Ca2 +-mobilizing messenger NAADP, which releases Ca2 + from these acidic Ca2 + stores. Whereas details of TPC activation and native ion permeation remain unclear, a consensus has emerged around their function in regulating endolysosomal trafficking. This role is supported by recent proteomic data showing that TPCs interact with proteins controlling membrane organization and dynamics, including Rab GTPases and components of the fusion apparatus. Regulation of TPCs by PtdIns(3,5)P2 and/or NAADP (nicotinic acid adenine dinucleotide phosphate) together with their functional and physical association with Rab proteins provides a mechanism for coupling phosphoinositide and trafficking protein cues to local ion fluxes. Therefore, TPCs work at the regulatory cross-roads of (patho)physiological cues to co-ordinate and potentially deregulate traffic flow through the endolysosomal network. This review focuses on the native role of TPCs in trafficking and their emerging contributions to endolysosomal trafficking dysfunction. PMID:26009187

  8. Green fluorescent genetically encoded calcium indicator based on calmodulin/M13-peptide from fungi.

    PubMed

    Barykina, Natalia V; Subach, Oksana M; Piatkevich, Kiryl D; Jung, Erica E; Malyshev, Aleksey Y; Smirnov, Ivan V; Bogorodskiy, Andrey O; Borshchevskiy, Valentin I; Varizhuk, Anna M; Pozmogova, Galina E; Boyden, Edward S; Anokhin, Konstantin V; Enikolopov, Grigori N; Subach, Fedor V

    2017-01-01

    Currently available genetically encoded calcium indicators (GECIs) utilize calmodulins (CaMs) or troponin C from metazoa such as mammals, birds, and teleosts, as calcium-binding domains. The amino acid sequences of the metazoan calcium-binding domains are highly conserved, which may limit the range of the GECI key parameters and cause undesired interactions with the intracellular environment in mammalian cells. Here we have used fungi, evolutionary distinct organisms, to derive CaM and its binding partner domains and design new GECI with improved properties. We applied iterative rounds of molecular evolution to develop FGCaMP, a novel green calcium indicator. It includes the circularly permuted version of the enhanced green fluorescent protein (EGFP) sandwiched between the fungal CaM and a fragment of CaM-dependent kinase. FGCaMP is an excitation-ratiometric indicator that has a positive and an inverted fluorescence response to calcium ions when excited at 488 and 405 nm, respectively. Compared with the GCaMP6s indicator in vitro, FGCaMP has a similar brightness at 488 nm excitation, 7-fold higher brightness at 405 nm excitation, and 1.3-fold faster calcium ion dissociation kinetics. Using site-directed mutagenesis, we generated variants of FGCaMP with improved binding affinity to calcium ions and increased the magnitude of FGCaMP fluorescence response to low calcium ion concentrations. Using FGCaMP, we have successfully visualized calcium transients in cultured mammalian cells. In contrast to the limited mobility of GCaMP6s and G-GECO1.2 indicators, FGCaMP exhibits practically 100% molecular mobility at physiological concentrations of calcium ion in mammalian cells, as determined by photobleaching experiments with fluorescence recovery. We have successfully monitored the calcium dynamics during spontaneous activity of neuronal cultures using FGCaMP and utilized whole-cell patch clamp recordings to further characterize its behavior in neurons. Finally, we used FGCa

  9. Altering the level of calcium changes the physical properties and digestibility of casein-based emulsion gels.

    PubMed

    McIntyre, Irene; O Sullivan, Michael; O Riordan, Dolores

    2017-04-19

    Casein-based emulsion gels prepared with different types of lipid (i.e. milk fat or rapeseed oil) were formulated with high (774 mg Ca per 100 g) or low (357 mg Ca per 100 g) calcium levels by blending acid and rennet casein. Their physicochemical characteristics (i.e. composition, texture, microstructure & water mobility) and in vitro digestibility were compared to conventionally formulated high-calcium (723 mg Ca per 100 g) emulsion gels made from rennet casein with calcium chelating salts (CCS). CCS-free, high-calcium emulsion gels were significantly (p ≤ 0.05) softer than those with low calcium levels (possibly due to their shorter manufacture time and higher pH) and showed the highest rates of disintegration during simulated gastric digestion. Despite having a higher moisture to protein ratio, the high-calcium emulsion gels containing CCS had broadly similar hardness values to those of high-calcium concentration prepared without CCS, but had higher cohesiveness. The high-calcium matrices containing CCS had quite a different microstructure and increased water mobility compared to those made without CCS and showed the slowest rate (p ≤ 0.05) of disintegration in the gastric environment. Gastric resistance was not affected by the type of lipid phase. Conversely, fatty acid release was similar for all emulsion gels prepared from milk fat, however, high-calcium emulsion gels (CCS-free) prepared from rapeseed oil showed higher lipolysis. Results suggest that food matrix physical properties can be modified to alter resistance to gastric degradation which may have consequences for the kinetics of nutrient release and delivery of bioactives sensitive to the gastric environment.

  10. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes.

    PubMed

    Bartlett, Paula J; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L; Combettes, Laurent; Hoek, Jan B; Gaspers, Lawrence D

    2017-05-15

    Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca 2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca 2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca 2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) production and does not involve changes in the sensitivity of the IP 3 receptor or size of internal Ca 2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca 2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca 2+ ] i ) increases, which can adversely affect mitochondrial Ca 2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca 2+ -mobilizing hormones resulting in more sustained and prolonged [Ca 2+ ] i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca 2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) accumulation and phospholipase C

  11. Lipid body accumulation alters calcium signaling dynamics in immune cells

    PubMed Central

    Greineisen, William E.; Speck, Mark; Shimoda, Lori M.N.; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J.; Turner, Helen

    2014-01-01

    Summary There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcεRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signalling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcεRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signalling pathway and its downstream targets. PMID:25016314

  12. Achieving high field-effect mobility in amorphous indium-gallium-zinc oxide by capping a strong reduction layer.

    PubMed

    Zan, Hsiao-Wen; Yeh, Chun-Cheng; Meng, Hsin-Fei; Tsai, Chuang-Chuang; Chen, Liang-Hao

    2012-07-10

    An effective approach to reduce defects and increase electron mobility in a-IGZO thin-film transistors (a-IGZO TFTs) is introduced. A strong reduction layer, calcium, is capped onto the back interface of a-IGZO TFT. After calcium capping, the effective electron mobility of a-IGZO TFT increases from 12 cm(2) V(-1) s(-1) to 160 cm(2) V(-1) s(-1). This high mobility is a new record, which implies that the proposed defect reduction effect is key to improve electron transport in oxide semiconductor materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    PubMed Central

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172

  14. Departure gate of acidic Ca2+ confirmed

    PubMed Central

    Jentsch, Thomas J; Hoegg-Beiler, Maja B; Vogt, Janis

    2015-01-01

    More potent, but less known than IP3 that liberates Ca2+ from the ER, NAADP releases Ca2+ from acidic stores. The notion that TPC channels mediate this Ca2+ release was questioned recently by studies suggesting that TPCs are rather PI(3,5)P2-activated Na+ channels. Ruas et al (2015) now partially reconcile these views by showing that TPCs significantly conduct both cations and confirm their activation by both NAADP and PI(3,5)P2. They attribute the failure of others to observe TPC-dependent NAADP-induced Ca2+ release in vivo to inadequate mouse models that retain partial TPC function. PMID:26022292

  15. Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats.

    PubMed

    Cai, Jianwei; Zhang, Qinmin; Wastney, Meryl E; Weaver, Connie M

    2004-01-01

    The objective was to investigate the bioavailability and mechanism of calcium absorption of calcium ascorbate (ASC) and calcium acetate (AC). A series of studies was performed in adult Sprague-Dawley male rats. In the first study, each group of rats (n = 10/group) was assigned to one of the five test meals labeled with (45)Ca: (i) 25 mg calcium as heated ASC or (ii) unheated ASC, (iii) 25 mg calcium as unheated AC, (iv) 3.6 mg Ca as unheated ASC, or (v) unheated AC. Femur uptake indicated better calcium bioavailability from ASC than AC at both calcium loads. A 5-min heat treatment partly reduced bioavailability of ASC. Kinetic studies were performed to further investigate the mechanism of superior calcium bioavailability from ASC. Two groups of rats (n = 10/group) received oral doses of 25 mg Ca as ASC or AC. Each dose contained 20 micro Ci (45)Ca. Two additional groups of rats (n = 10/group) received an intravenous injection (iv) of 10 micro Ci (45)Ca after receiving an unlabeled oral dose of 25 mg calcium as ASC or AC. Sequential blood samples were collected over 48 hrs. Urine and fecal samples were collected every 12 hrs for 48 hrs and were analyzed for total calcium and (45)Ca content. Total calcium and (45)Ca from serum, urine, and feces were fitted by a compartment kinetics model with saturable and nonsaturable absorption pathways by WinSAAM (Windows-based Simulation Analysis and Modeling). The difference in calcium bioavailability between the two salts was due to differences in saturable rather than passive intestinal absorption and not to endogenous secretion or calcium deposition rate. The higher bioavailability of calcium ascorbate was due to a longer transit time in the small intestine compared with ASC.

  16. Calcium-responsive contractility during fertilization in sea urchin eggs.

    PubMed

    Stack, Christianna; Lucero, Amy J; Shuster, Charles B

    2006-04-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins, there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both before and after fertilization and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed by and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. (c) 2006 Wiley-Liss, Inc.

  17. Calcium-Responsive Contractility During Fertilization in Sea Urchin Eggs

    PubMed Central

    Stack, Christianna; Lucero, Amy J.; Shuster, Charles B.

    2008-01-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both prior to- and following fertilization, and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed- and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs, but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. PMID:16470603

  18. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia

    PubMed Central

    Wilson, Rosamund J; Copley, J Brian

    2017-01-01

    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent-to-treat population (N=2520), 752 patients with recorded dose data for calcium acetate (n=551)/calcium carbonate (n=201) at baseline and lanthanum carbonate at week 16 were studied. Elemental calcium intake, serum phosphate, corrected serum calcium, and serum intact parathyroid hormone levels were analyzed. Findings Of the 551 patients with calcium acetate dose data, 271 (49.2%) had an elemental calcium intake of at least 1.5 g/day at baseline, and 142 (25.8%) had an intake of at least 2.0 g/day. Mean (95% confidence interval [CI]) serum phosphate levels were 6.1 (5.89, 6.21) mg/dL at baseline and 6.2 (6.04, 6.38) mg/dL at 16 weeks; mean (95% CI) corrected serum calcium levels were 9.3 (9.16, 9.44) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Of the 201 patients with calcium carbonate dose data, 117 (58.2%) had an elemental calcium intake of at least 1.5 g/day, and 76 (37.8%) had an intake of at least 2.0 g/day. Mean (95% CI) serum phosphate levels were 5.8 (5.52, 6.06) mg/dL at baseline and 5.8 (5.53, 6.05) mg/dL at week 16; mean (95% CI) corrected serum calcium levels were 9.7 (9.15, 10.25) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Conclusion Calcium acetate/calcium carbonate phosphate binders, taken to control serum phosphate levels, may result in high levels of elemental calcium intake. This may lead to complications related to calcium balance. PMID:28182142

  19. Chronic alcohol feeding potentiates hormone‐induced calcium signalling in hepatocytes

    PubMed Central

    Bartlett, Paula J.; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L.; Combettes, Laurent; Hoek, Jan B.

    2017-01-01

    Key points Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined.We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca2+‐mobilizing hormones resulting in a leftward shift in the concentration–response relationship and the transition from oscillatory to more sustained and prolonged Ca2+ increases.Our data demonstrate that alcohol‐dependent adaptation in the Ca2+ signalling pathway occurs at the level of hormone‐induced inositol 1,4,5 trisphosphate (IP3) production and does not involve changes in the sensitivity of the IP3 receptor or size of internal Ca2+ stores.We suggest that prolonged and aberrant hormone‐evoked Ca2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol‐induced hepatocyte injury. Abstract ‘Adaptive’ responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide‐dependent cytosolic calcium ([Ca2+]i) increases, which can adversely affect mitochondrial Ca2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose–response for Ca2+‐mobilizing hormones resulting in more sustained and prolonged [Ca2+]i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone‐induced calcium increases in control livers, but not after chronic alcohol‐feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone‐induced inositol 1,4,5 trisphosphate (IP3) accumulation and

  20. Tansley Review No. 104, Calcium Physiology and Terrestrial Ecosystem Processes

    Treesearch

    S.B. McLaughlin; R. Wimmer

    1999-01-01

    Calcium occupies a unique position among plant nutrients both chemically and functionally. Its chemical properties allow it to exist in a wide range of binding states and to serve in both structural and messenger roles. Despite its importance in many plant processes, Ca mobility is low, making Ca uptake and distribution rate a limiting process for many key plant...

  1. Calcium

    MedlinePlus

    ... You'll also find calcium in broccoli and dark green, leafy vegetables (especially collard and turnip greens, ... can enjoy good sources of calcium such as dark green, leafy vegetables, broccoli, chickpeas, and calcium-fortified ...

  2. A Monte Carlo Simulation of Vesicle Exocytosis in the Buffered Diffusion of Calcium Channel Currents

    NASA Astrophysics Data System (ADS)

    Dimcovic, Z.; Eagan, T. P.; Brown, R. W.; Petschek, R. G.; Eppell, S. J.; Yunker, A. M. R.; Sharp, A. H.; McEnery, M. W.

    2001-04-01

    The voltage-dependent opening of calcium channels results in an influx of calcium ions that leads to the fusion of synaptic vesicles with the cell membrane, resulting in the release of neurotransmitters. This allows nerve impulses to be transmitted from one neuron to another. A Monte Carlo model of the three-dimensional diffusion of calcium following a channel opening is employed to estimate the space and time dependence of the calcium density. The effects of fixed and mobile calcium buffers are included, and a tethered nearby vesicle is considered. The importance of the size and location of the vesicle is studied. When the vesicle is ignored, these results are compared with the analytical calculations of Naraghi and Neher and the Monte Carlo calculations of Bennett et al. The finite-vesicle-size analysis offers new insights into the process of neurosecretion. Support: NIH MH55747, AHA 96001250, NSF 0086643, and CWRU Presidential Research Initiative grants.

  3. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  4. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique

    NASA Astrophysics Data System (ADS)

    Deepa, Manchala; Sudhakar, Palagiri; Nagamadhuri, Kandula Venkata; Balakrishna Reddy, Kota; Giridhara Krishna, Thimmavajjula; Prasad, Tollamadugu Naga Venkata Krishna Vara

    2015-06-01

    Nanoscale materials, whose size typically falls below 100 nm, exhibit novel chemical, physical and biological properties which are different from their bulk counterparts. In the present investigation, we demonstrated that nanoscale calcium oxide particles (n-CaO) could transport through phloem tissue of groundnut unlike the corresponding bulk materials. n-CaO particles are prepared using sol-gel method. The size of the as prepared n-CaO measured (69.9 nm) using transmission electron microscopic technique (TEM). Results of the hydroponics experiment using solution culture technique revealed that foliar application of n-CaO at different concentrations (10, 50, 100, 500, 1,000 ppm) on groundnut plants confirmed the entry of calcium into leaves and stems through phloem compared to bulk source of calcium sprayed (CaO and CaNO3). After spraying of n-CaO, calcium content in roots, shoots and leaves significantly increased. Based on visual scoring of calcium deficiency correction and calcium content in plant parts, we may establish the fact that nanoscale calcium oxide particles (size 69.9 nm) could move through phloem tissue in groundnut. This is the first report on phloem transport of nanoscale calcium oxide particles in plants and this result points to the use of nanoscale calcium oxide particles as calcium source to the plants through foliar application, agricultural crops in particular, as bulk calcium application through foliar nutrition is restricted due to its non-mobility in phloem.

  5. "An estimate of the probability of vesicle exocytosis in a Monte Carlo model of buffered diffusion of calcium channel currents"

    NASA Astrophysics Data System (ADS)

    Dimcovic, Z. M.; Eagan, T. P.; Kidane, T. K.; Brown, R. W.; Petschek, R. G.; McEnery, M. W.

    2001-10-01

    The opening of voltage-dependent calcium channels results in an influx of calcium ions promoting the fusion of synaptic vesicles. The fusion leads to release of neurotransmitters, which in turn allow the propagation of nerve impulses. A Monte Carlo model of the diffusion of calcium following its surge into the cell is used to estimate the probability for exocytosis. Besides the calcium absorption by fixed and mobile buffers, key ingredients are the physical size and position of the tethered vesicle and a sensing model for the interaction of the vesicle and calcium. The release probability is compared to previously published studies where the finite vesicle size was not considered. (Supported by NIH MH55747, AHA 96001250, NSF0086643, and a CWRU Presidential Research Initiative grant.)

  6. Calcium Balance in Mature Rats Exposed to a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Wolinsky, Ira

    1996-01-01

    Negative calcium balances are seen in humans during spaceflight and bed rest, an analog of space flight. Due to the infrequency and costliness of space flight and the difficulties, cost, and restraints in using invasive procedures in bed rest studies, several ground based animal models of space flight have been employed. The most useful and well developed of these models is hind limb unloading in the rat. In this model the hind limbs are non-weight bearing (unloaded) but still mobile; there is a cephalad fluid shift similar to that seen in astronauts in flight; the animals are able to feed, groom and locomote using their front limbs; the procedure is reversible; and, importantly, the model has been validated by comparison to space flight. Several laboratories have studied calcium balance using rats in hind limb unweighting. Roer and Dillaman used young male rats to study calcium balance in this model for 25 days. They found no differences in dietary calcium intake, percent calcium absorption, urinary and fecal excretion, hence indicating no differences in calcium balance between control and unloaded rats. In another study, employing 120 day old females, rats' hind limbs were unloaded for 28 days. While negative calcium balances were observed during a 25 day recovery period no balance measurements were possible during unweighting since the researchers did not employ appropriate metabolic cages. In a recent study from this laboratory, using 200 g rats in the space flight model for two weeks, we found depressed intestinal calcium absorption and increased fecal calcium excretion (indicating less positive calcium balances) and lower circulating 1,25-dihydroxyvitamin D. The above studies indicate that there remains a dearth of information on calcium balance during the hind limb unloading rat space flight model, especially in mature rats, whose use is a better model for planned manned space flight than juvenile or growing animals. With the aid of a newly designed

  7. The role of calcium signalling in the chondrogenic response of mesenchymal stem cells to hydrostatic pressure.

    PubMed

    Steward, A J; Kelly, D J; Wagner, D R

    2014-10-28

    The object of this study was to elucidate the role of Ca++ signalling in the chondrogenic response of mesenchymal stem cells (MSCs) to hydrostatic pressure (HP). MSCs were seeded into agarose hydrogels, subjected to HP or kept in free swelling conditions, and were cultured either with or without pharmacological inhibitors of Ca++ mobility and downstream targets. Chelating free Ca++, inhibiting voltage-gated calcium channels, and depleting intracellular calcium storessuppressed the beneficial effect of HP on chondrogenesis, indicating that Ca++ mobility may play an important role in the mechanotransduction of HP. However, inhibition of stretch-activated calcium channels in the current experiment yielded similar results to the control group, suggesting that mechanotransduction of HP is distinct from loads that generate cell deformations. Inhibition of the downstream targets calmodulin, calmodulin kinase II, and calcineurin all knocked down the effect of HP on chondrogenesis, implicating these targets in MSCs response to HP. All of the pharmacological inhibitors that abolished the chondrogenic response to HP also maintained a punctate vimentin organisation in the presence of HP, as opposed to the mechanoresponsive groups where the vimentin structure became more diffuse. These results suggest that Ca++ signalling may transduce HP via vimentin adaptation to loading.

  8. The probability of quantal secretion near a single calcium channel of an active zone.

    PubMed Central

    Bennett, M R; Farnell, L; Gibson, W G

    2000-01-01

    A Monte Carlo analysis has been made of calcium dynamics and quantal secretion at microdomains in which the calcium reaches very high concentrations over distances of <50 nm from a channel and for which calcium dynamics are dominated by diffusion. The kinetics of calcium ions in microdomains due to either the spontaneous or evoked opening of a calcium channel, both of which are stochastic events, are described in the presence of endogenous fixed and mobile buffers. Fluctuations in the number of calcium ions within 50 nm of a channel are considerable, with the standard deviation about half the mean. Within 10 nm of a channel these numbers of ions can give rise to calcium concentrations of the order of 100 microM. The temporal changes in free calcium and calcium bound to different affinity indicators in the volume of an entire varicosity or bouton following the opening of a single channel are also determined. A Monte Carlo analysis is also presented of how the dynamics of calcium ions at active zones, after the arrival of an action potential and the stochastic opening of a calcium channel, determine the probability of exocytosis from docked vesicles near the channel. The synaptic vesicles in active zones are found docked in a complex with their calcium-sensor associated proteins and a voltage-sensitive calcium channel, forming a secretory unit. The probability of quantal secretion from an isolated secretory unit has been determined for different distances of an open calcium channel from the calcium sensor within an individual unit: a threefold decrease in the probability of secretion of a quantum occurs with a doubling of the distance from 25 to 50 nm. The Monte Carlo analysis also shows that the probability of secretion of a quantum is most sensitive to the size of the single-channel current compared with its sensitivity to either the binding rates of the sites on the calcium-sensor protein or to the number of these sites that must bind a calcium ion to trigger

  9. Multiple, disparate roles for calcium signaling in apoptosis of human prostate and cervical cancer cells exposed to diindolylmethane.

    PubMed

    Savino, John A; Evans, Jodi F; Rabinowitz, Dorianne; Auborn, Karen J; Carter, Timothy H

    2006-03-01

    Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, causes growth arrest and apoptosis of cancer cells in vitro. DIM also induces endoplasmic reticulum (ER) stress, and thapsigargin, a specific inhibitor of the sarcoplasmic reticulum/ER calcium-dependent ATPase, enhances this effect. We asked whether elevated cytosolic free calcium [Ca2+]i is required for cytotoxicity of DIM and thapsigargin in two cancer cells lines (C33A, from cervix, and DU145, from prostate). [Ca2+]i was measured in real-time by FURA-2 fluorescence. We tested whether DIM, thapsigargin, and DIM + thapsigargin cause apoptosis, measured by nucleosome release, under conditions that prevented elevation of [Ca2+]i, using both cell-permeable and cell-impermeable forms of the specific calcium chelator BAPTA. DIM, like thapsigargin, rapidly mobilized ER calcium. C33A and DU145 responded differently to perturbations in Ca2+ homeostasis, suggesting that DIM induces apoptosis by different mechanisms in these two cell lines and/or that calcium mobilization also activates different survival pathways in C33A and DU145. Apoptosis in C33A was independent of increased [Ca2+]i, suggesting that depletion of ER Ca2+ stores may be sufficient for cell killing, whereas apoptosis in DU145 required elevated [Ca2+]i for full response. Inhibitor studies using cyclosporin A and KN93 showed that Ca2+ signaling is important for cell survival but the characteristics of this response also differed in the two cell lines. Our results underscore the complex and variable nature of cellular responses to disrupted Ca2+ homeostasis and suggest that alteration Ca2+ homeostasis in the ER can induce cellular apoptosis by both calcium-dependent and calcium-independent mechanisms.

  10. Calcium deprivation increases the palatability of calcium solutions in rats.

    PubMed

    McCaughey, Stuart A; Forestell, Catherine A; Tordoff, Michael G

    2005-02-15

    Calcium-deprived rats have elevated intakes of CaCl2, other calcium salts, and some non-calcium compounds. We used taste reactivity to examine the effects of calcium deprivation on the palatability of CaCl2 and other solutions. Nine male Sprague-Dawley rats were calcium-deprived by maintenance on a low-calcium diet, and eight replete rats were used as controls. All rats were videotaped during intraoral infusion of the following solutions: 30 and 300 mM CaCl2, 30 mM calcium lactate, 100 and 600 mM NaCl, 30 mM MgCl2, 1 mM quinine.HCl, 2.5 mM sodium saccharin, and deionized water. We counted individual orofacial and somatic movements elicited by the infusions and used them to calculate total ingestive and aversive scores. Relative to controls, calcium-deprived rats gave a significantly larger number of tongue protrusions and had higher total ingestive scores for CaCl2, calcium lactate, NaCl, and MgCl2. Our results suggest that CaCl2, calcium lactate, NaCl, and MgCl2 taste more palatable to rats when they are calcium-deprived than replete, and this may be responsible for the increased intake of these solutions following calcium deprivation.

  11. The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1988-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  12. Hexamethyldisilazane Removal with Mesoporous Materials Prepared from Calcium Fluoride Sludge.

    PubMed

    Kao, Ching-Yang; Lin, Min-Fa; Nguyen, Nhat-Thien; Tsai, Hsiao-Hsin; Chang, Luh-Maan; Chen, Po-Han; Chang, Chang-Tang

    2018-05-01

    A large amount of calcium fluoride sludge is generated by the semiconductor industry every year. It also requires a high amount of fuel consumption using rotor concentrators and thermal oxidizers to treat VOCs. The mesoporous adsorbent prepared by calcium fluoride sludge was used for VOCs treatment. The semiconductor industry employs HMDS to promote the adhesion of photo-resistant material to oxide(s) due to the formation of silicon dioxide, which blocks porous adsorbents. The adsorption of HMDS (Hexamethyldisiloxane) was tested with mesoporous silica materials synthesized from calcium fluoride (CF-MCM). The resulting samples were characterized by XRD, XRF, FTIR, N2-adsorption-desorption techniques. The prepared samples possessed high specific surface area, large pore volume and large pore diameter. The crystal patterns of CF-MCM were similar with Mobil composite matter (MCM-41) from TEM image. The adsorption capacity of HMDS with CF-MCM was 40 and 80 mg g-1, respectively, under 100 and 500 ppm HMDS. The effects of operation parameters, such as contact time and mixture concentration, on the performance of CF-MCM were also discussed in this study.

  13. Calcium ionization balance and argon/calcium abundance in solar flares

    NASA Astrophysics Data System (ADS)

    Antonucci, E.; Marocchi, D.; Gabriel, A. H.; Doschek, G. A.

    1987-12-01

    An earlier analysis of solar flare calcium spectra from XRP and P78-1 aimed at measuring the calcium ionization balance resulted in an ambiguity due to a line blend between the calcium q line and an Ar XVII line. In the present work the calcium line 'r' is included in the analysis in order to resolve this problem. It is shown that the correct calcium ionization balance is that indicated in the earlier paper as corresponding to an argon/calcium abundance ratio of 0.2. The argon/calcium abundance ratio in the group of solar flares studied is shown to be 0.2 + or - 0.2. It is further argued that while the abundance of heavy elements may be enhanced in energetic flare events, this enhancement is less for argon than for calcium, leading to an argon/calcium ratio smaller than that present in the quiet sun.

  14. Calcium Carbonate

    MedlinePlus

    ... Maalox® (as a combination product containing Calcium Carbonate, Simethicone) ... Relief (as a combination product containing Calcium Carbonate, Simethicone) ... Plus (as a combination product containing Calcium Carbonate, Simethicone)

  15. Systems Modeling of Ca2+ Homeostasis and Mobilization in Platelets Mediated by IP3 and Store-Operated Ca2+ Entry

    PubMed Central

    Dolan, Andrew T.; Diamond, Scott L.

    2014-01-01

    Resting platelets maintain a stable level of low cytoplasmic calcium ([Ca2+]cyt) and high dense tubular system calcium ([Ca2+]dts). During thrombosis, activators cause a transient rise in inositol trisphosphate (IP3) to trigger calcium mobilization from stores and elevation of [Ca2+]cyt. Another major source of [Ca2+]cyt elevation is store-operated calcium entry (SOCE) through plasmalemmal calcium channels that open in response to store depletion as [Ca2+]dts drops. A 34-species systems model employed kinetics describing IP3-receptor, DTS-plasmalemma puncta formation, SOCE via assembly of STIM1 and Orai1, and the plasmalemma and sarco/endoplasmic reticulum Ca2+-ATPases. Four constraints were imposed: calcium homeostasis before activation; stable in zero extracellular calcium; IP3-activatable; and functional SOCE. Using a Monte Carlo method to sample three unknown parameters and nine initial concentrations in a 12-dimensional space near measured or expected values, we found that model configurations that were responsive to stimuli and demonstrated significant SOCE required high inner membrane electric potential (>−70 mV) and low resting IP3 concentrations. The absence of puncta in resting cells was required to prevent spontaneous store depletion in calcium-free media. Ten-fold increases in IP3 caused saturated calcium mobilization. This systems model represents a critical step in being able to predict platelets’ phenotypes during hemostasis or thrombosis. PMID:24806937

  16. Risk of calcium oxalate nephrolithiasis in postmenopausal women supplemented with calcium or combined calcium and estrogen.

    PubMed

    Domrongkitchaiporn, Somnuek; Ongphiphadhanakul, Boonsong; Stitchantrakul, Wasana; Chansirikarn, Sirinthorn; Puavilai, Gobchai; Rajatanavin, Rajata

    2002-02-26

    Recent studies showed that postmenopausal women lost less bone mass when supplemented with calcium or estrogen therapy. However, the safety of the treatments in terms of the risk of calcium oxalate stone formation is unknown. We therefore conducted this study to determine the alteration in calcium oxalate supersaturation after calcium supplement or after combined calcium and estrogen therapy in postmenopausal osteoporotic women. Fifty-six postmenopausal women were enrolled in this study. All subjects were more than 10 years postmenopausal with vertebral or femoral osteoporosis by bone mineral density criteria. They were randomly allocated to receive either 625 mg of calcium carbonate (250 mg of elemental calcium) at the end of a meal three times a day (group A, n=26) or calcium carbonate in the same manner plus 0.625 mg/day of conjugated equine estrogen and 5 mg medrogestone acetate from day 1-12 each month (group B, n=30). The age (mean +/- S.E.M.) was 66.3 +/- 1.2 and 65.1 +/- 1.1 years, weight 54.1 +/- 1.2 and 55.3 +/- 2.1 kg, in group A and group B, respectively. Urine specimens (24-h) were collected at baseline and 3 months after treatment for the determination of calcium oxalate saturation by using Tiselius's index (AP(CaOx)) and calcium/citrate ratio. After 3 months of treatment, there was no significant alteration from baseline for urinary excretion of calcium, citrate and oxalate. Urinary phosphate excretion was significantly reduced (6.3 +/- 0.7 vs. 5.1 +/- 0.7 mmol/day for group A and 8.2 +/- 0.9 vs. 5.8 +/- 0.7 mmol/day for group B, P<0.05), whereas net alkaline absorption was significantly elevated (10.1 +/- 3.6 vs. 20.1 +/- 4.4 meq/day for group A and 4.8 +/- 3.2 vs. 19.9 +/- 3.6 meq/day for group B, P<0.05). Calcium/citrate ratio and AP(CaOx) determined at baseline were not different from the corresponding values after treatment in both groups; calcium/citrate: 10.1 +/- 3.1 vs. 10.1 +/- 2.5 for group A and 9.3 +/- 1.8 vs. 11.9 +/- 2.5 for group B and

  17. Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini.

    PubMed

    Metz, D C; Patto, R J; Mrozinski, J E; Jensen, R T; Turner, R J; Gardner, J D

    1992-10-15

    In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing calcium from inositol 1,4,5-trisphosphate-sensitive intracellular stores and by increasing influx of extracellular calcium. TG also caused a small increase in basal amylase secretion, inhibited the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate, and potentiated the stimulation of amylase secretion caused by 12-O-tetradecanoylphorbol-13-acetate or secretagogues that increase cyclic adenosine 3',5'-monophosphate. Bombesin, which like TG increased free cytoplasmic calcium, also potentiated the stimulation of amylase secretion caused by secretagogues that increase cyclic adenosine 3',5'-monophosphate, but did not inhibit the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate. Finally, TG inhibited the sustained phase of cholecystokinin-stimulated amylase secretion and potentiated the time course of vasoactive intestinal peptide-stimulated amylase secretion. The present findings indicate that stimulation of amylase secretion by secretagogues that increase inositol 1,4,5-trisphosphate does not depend on increased free cytoplasmic calcium per se. In contrast, TG-induced potentiation of the stimulation of secretagogues that increase cellular cyclic adenosine 3',5'-monophosphate appears to result from increased free cytoplasmic calcium per se.

  18. Divergent calcium signaling in RBCs from Tropidurus torquatus (Squamata--Tropiduridae) strengthen classification in lizard evolution.

    PubMed

    Beraldo, Flávio H; Garcia, Célia R S

    2007-08-23

    We have previously reported that a Teiid lizard red blood cells (RBCs) such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER) pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs), for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracellular medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.

  19. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  20. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  1. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  2. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  3. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT OF CENTER WITH TOP OF SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  4. Impact of calcium signaling during infection of Neisseria meningitidis to human brain microvascular endothelial cells.

    PubMed

    Asmat, Tauseef M; Tenenbaum, Tobias; Jonsson, Ann-Beth; Schwerk, Christian; Schroten, Horst

    2014-01-01

    The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells.

  5. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may be safely used in foods for special...

  6. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows.

    PubMed

    Hernandez, L L

    2017-12-01

    The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium

  7. Calcium waves.

    PubMed

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  8. Calcium - urine

    MedlinePlus

    Urinary Ca+2; Kidney stones - calcium in urine; Renal calculi - calcium in your urine; Parathyroid - calcium in urine ... A 24-hour urine sample is most often needed: On day 1, urinate into the toilet when you wake up in the morning. ...

  9. Genetically Encoded Calcium Indicators For Studying Long-Term Calcium Dynamics During Apoptosis

    PubMed Central

    Garcia, M. Iveth; Chen, Jessica J.; Boehning, Darren

    2017-01-01

    Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. PMID:28073595

  10. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D–induced inhibition of bone mineralization

    PubMed Central

    Lieben, Liesbet; Masuyama, Ritsuko; Torrekens, Sophie; Van Looveren, Riet; Schrooten, Jan; Baatsen, Pieter; Lafage-Proust, Marie-Hélène; Dresselaers, Tom; Feng, Jian Q.; Bonewald, Lynda F.; Meyer, Mark B.; Pike, J. Wesley; Bouillon, Roger; Carmeliet, Geert

    2012-01-01

    Serum calcium levels are tightly controlled by an integrated hormone-controlled system that involves active vitamin D [1,25(OH)2D], which can elicit calcium mobilization from bone when intestinal calcium absorption is decreased. The skeletal adaptations, however, are still poorly characterized. To gain insight into these issues, we analyzed the consequences of specific vitamin D receptor (Vdr) inactivation in the intestine and in mature osteoblasts on calcium and bone homeostasis. We report here that decreased intestinal calcium absorption in intestine-specific Vdr knockout mice resulted in severely reduced skeletal calcium levels so as to ensure normal levels of calcium in the serum. Furthermore, increased 1,25(OH)2D levels not only stimulated bone turnover, leading to osteopenia, but also suppressed bone matrix mineralization. This resulted in extensive hyperosteoidosis, also surrounding the osteocytes, and hypomineralization of the entire bone cortex, which may have contributed to the increase in bone fractures. Mechanistically, osteoblastic VDR signaling suppressed calcium incorporation in bone by directly stimulating the transcription of genes encoding mineralization inhibitors. Ablation of skeletal Vdr signaling precluded this calcium transfer from bone to serum, leading to better preservation of bone mass and mineralization. These findings indicate that in mice, maintaining normocalcemia has priority over skeletal integrity, and that to minimize skeletal calcium storage, 1,25(OH)2D not only increases calcium release from bone, but also inhibits calcium incorporation in bone. PMID:22523068

  11. The effect of variable calcium and very low calcium diets on human calcium metabolism. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Chu, J.

    1971-01-01

    The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.

  12. The activity of calcium in calcium-metal-fluoride fluxes

    NASA Astrophysics Data System (ADS)

    Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo

    1995-08-01

    The standard Gibbs energy of reaction Ca (1) + O (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: Δ G° = -64,300(±700) + 19.8(±3.5) T J/mol (1373 to 1623 K) The activities of calcium in the CaOsatd-Ca- MF2 ( M: Ca, Ba, Mg) and CaOsatd-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF2, BaF2, and MgF2 at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.

  13. Calcium binding to an elastic portion of connectin/titin filaments.

    PubMed

    Tatsumi, R; Maeda, K; Hattori, A; Takahashi, K

    2001-01-01

    Alpha-connectin/titin-1 exists as an elastic filament that links a thick filament with the Z-disk, keeping thick filaments centered within the sarcomere during force generation. We have shown that the connectin filament has an affinity for calcium ions and its binding site(s) is restricted to the beta-connectin/titin-2 portion. We now report the localization and the characterization of calcium-binding sites on beta-connectin. Purified beta-connectin was digested by trypsin into 1700- and 400-kDa fragments. which were then subjected to fluorescence calcium-binding assays. The 400-kDa fragment possesses calcium-binding activity; the binding constant was 1.0 x 10(7) M(-1) and the molar ratio of bound calcium ions to the 400-kDa fragment reached a maximum of 12 at a free calcium ion concentration of approximately 1.0 microM. Antibodies against the 400-kDa fragment formed a sharp dense stripe at the boundary of the A and the I bands, indicating that the calcium-binding domain constitutes the N-terminal region of beta-connectin, that is, the elastic portion of connectin filaments. Furthermore, we estimated the N-terminal location of beta-connectin of various origins (n = 26). Myofibrils were treated with a solution containing 0.1 mM CaCl2 and 70 microM leupeptin to split connectin filaments into beta-connectin and a subfragment, and chain weights of these polypeptides were estimated according to their mobility in 2% polyacrylamide slab gels. The subfragment exhibited a similar chain weight of 1200+/-33 kDa (mean+/-SD), while alpha- and beta-connectins were variable in size according to their origin. These results suggest that the apparent length of the 1200-kDa subfragment portion is almost constant in all instances, about 0.34 microm at the slack condition, therefore that the C-terminus of the 1200-kDa subfragment, that is, the N-terminus of the calcium-binding domain, is at the N2 line region of parent filaments in situ. Because the secondary structure of the 400-k

  14. Divergent calcium signaling in RBCs from Tropidurus torquatus (Squamata – Tropiduridae) strengthen classification in lizard evolution

    PubMed Central

    Beraldo, Flávio H; Garcia, Célia RS

    2007-01-01

    Background We have previously reported that a Teiid lizard red blood cells (RBCs) such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Results Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER) pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. Conclusion T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs), for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracelullar medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs. PMID:17716375

  15. Genetically encoded calcium indicators for studying long-term calcium dynamics during apoptosis.

    PubMed

    Garcia, M Iveth; Chen, Jessica J; Boehning, Darren

    2017-01-01

    Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Differential impacts of calcium and aluminum treatments on sugar maple and American beech growth dynamics

    Treesearch

    Joshua M. Halman; Paul G. Schaberg; Gary J. Hawley; Christopher F. Hansen; Timothy J. Fahey

    2015-01-01

    Acid deposition induced losses of calcium (Ca) from northeastern forests have had negative effects on forest health for decades, including the mobilization of potentially phytotoxic aluminum (Al) from soils. To evaluate the impact of changes in Ca and Al availability on sugar maple (Acer saccharum Marsh.) and American beech (Fagus...

  17. Calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744

  18. Calcium

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of calcium: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for calcium ( ...

  19. Calcium dynamics and signaling in vascular regulation: computational models

    PubMed Central

    Tsoukias, Nikolaos Michael

    2013-01-01

    Calcium is a universal signaling molecule with a central role in a number of vascular functions including in the regulation of tone and blood flow. Experimentation has provided insights into signaling pathways that lead to or affected by Ca2+ mobilization in the vasculature. Mathematical modeling offers a systematic approach to the analysis of these mechanisms and can serve as a tool for data interpretation and for guiding new experimental studies. Comprehensive models of calcium dynamics are well advanced for some systems such as the heart. This review summarizes the progress that has been made in modeling Ca2+ dynamics and signaling in vascular cells. Model simulations show how Ca2+ signaling emerges as a result of complex, nonlinear interactions that cannot be properly analyzed using only a reductionist's approach. A strategy of integrative modeling in the vasculature is outlined that will allow linking macroscale pathophysiological responses to the underlying cellular mechanisms. PMID:21061306

  20. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells

    PubMed Central

    Freitas, Hercules R.; Ferraz, Gabriel; Ferreira, Gustavo C.; Ribeiro-Resende, Victor T.; Chiarini, Luciana B.; do Nascimento, José Luiz M.; Matos Oliveira, Karen Renata H.; Pereira, Tiago de Lima; Ferreira, Leonardo G. B.; Kubrusly, Regina C.; Faria, Robson X.

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1–10mM) showed that 5–10mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50mM KCl (labeled as βIII tubulin positive cells). BBG 100nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70μM and MK-801 20μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  1. Aluminum hydroxide, calcium carbonate and calcium acetate in chronic intermittent hemodialysis patients.

    PubMed

    Janssen, M J; van der Kuy, A; ter Wee, P M; van Boven, W P

    1996-02-01

    Prevention of secondary hyperparathyroidism in uremia necessitates correction of hyperphosphatemia and hypocalcemia. In order to avoid aluminum toxicity, calcium containing phosphate binders are used increasingly, instead of aluminium hydroxide. Recent studies have shown that calcium acetate has many characteristics of an ideal phosphate binder. It is, for instance, a more readily soluble salt compared with calcium carbonate. This advantage might, however, disappear if calcium carbonate is taken on an empty stomach, a few minutes before meals. We examined the efficacy of three different phosphate binding agents in a randomized prospective study of 53 patients on regular hemodialysis. Bicarbonate dialyses were performed with a dialysate calcium concentration of 1.75 mmol/l. After a three-week wash-out period, patients received either aluminum hydroxide (control group), calcium acetate, or calcium carbonate as their phosphate binder. Patients were instructed to take the calcium salts a few minutes before meals on an empty stomach, and aluminum hydroxide during meals. Serum calcium, phosphate, intact parathormone, and alkaline phosphatase levels were determined every month. Patient compliance was estimated every month by asking the patients which phosphate binder and what daily dose they had used. Aluminum hydroxide tended to be the most effective phosphate binder. The mean +/- SEM required daily dose of calcium acetate at 12 months was 5.04 +/- 0.60 g, corresponding to 10.1 +/- 1.20 tablets of 500 mg. Co-medication with aluminum hydroxide, however, was needed (1.29 +/- 0.54 g per day, corresponding to 2.6 +/- 1.08 tablets of 500 mg). The required daily calcium carbonate dose appeared to be 2.71 +/- 0.48 g, corresponding to 5.4 +/- 0.95 capsules of 500 mg, with an adjuvant daily aluminum hydroxide dose of 0.69 +/- 0.27 g, corresponding to 1.4 +/- 0.55 tablets of 500 mg (p = 0.0055). Thus, the mean daily doses of elemental calcium were comparable between the calcium

  2. A Human Platelet Calcium Calculator Trained by Pairwise Agonist Scanning

    PubMed Central

    Lee, Mei Yan; Diamond, Scott L.

    2015-01-01

    Since platelet intracellular calcium mobilization [Ca(t)]i controls granule release, cyclooxygenase-1 and integrin activation, and phosphatidylserine exposure, blood clotting simulations require prediction of platelet [Ca(t)]i in response to combinatorial agonists. Pairwise Agonist Scanning (PAS) deployed all single and pairwise combinations of six agonists (ADP, convulxin, thrombin, U46619, iloprost and GSNO used at 0.1, 1, and 10xEC50; 154 conditions including a null condition) to stimulate platelet P2Y1/P2Y12 GPVI, PAR1/PAR4, TP, IP receptors, and guanylate cyclase, respectively, in Factor Xa-inhibited (250 nM apixaban), diluted platelet rich plasma that had been loaded with the calcium dye Fluo-4 NW. PAS of 10 healthy donors provided [Ca(t)]i data for training 10 neural networks (NN, 2-layer/12-nodes) per donor. Trinary stimulations were then conducted at all 0.1x and 1xEC50 doses (160 conditions) as was a sampling of 45 higher ordered combinations (four to six agonists). The NN-ensemble average was a calcium calculator that accurately predicted [Ca (t)]i beyond the single and binary training set for trinary stimulations (R = 0.924). The 160 trinary synergy scores, a normalized metric of signaling crosstalk, were also well predicted (R = 0.850) as were the calcium dynamics (R = 0.871) and high-dimensional synergy scores (R = 0.695) for the 45 higher ordered conditions. The calculator even predicted sequential addition experiments (n = 54 conditions, R = 0.921). NN-ensemble is a fast calcium calculator, ideal for multiscale clotting simulations that include spatiotemporal concentrations of ADP, collagen, thrombin, thromboxane, prostacyclin, and nitric oxide. PMID:25723389

  3. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma

    PubMed Central

    Yarova, Polina L.; Stewart, Alecia L.; Sathish, Venkatachalem; Britt, Rodney D; Thompson, Michael A.; Lowe, Alexander P. P.; Freeman, Michelle; Aravamudan, Bharathi; Kita, Hirohito; Brennan, Sarah C.; Schepelmann, Martin; Davies, Thomas; Yung, Sun; Cholisoh, Zakky; Kidd, Emma J.; Ford, William R.; Broadley, Kenneth J.; Rietdorf, Katja; Chang, Wenhan; Khayat, Mohd E. Bin; Ward, Donald T.; Corrigan, Christopher J.; Ward, Jeremy P. T.; Kemp, Paul J.; Pabelick, Christina M.; Prakash, Y. S.; Riccardi, Daniela

    2016-01-01

    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyper-reactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics. PMID:25904744

  4. Serotonin and calcium homeostasis during the transition period.

    PubMed

    Weaver, S R; Laporta, J; Moore, S A E; Hernandez, L L

    2016-07-01

    The transition from pregnancy to lactation puts significant, sudden demands on maternal energy and calcium reserves. Although most mammals are able to effectively manage these metabolic adaptations, the lactating dairy cow is acutely susceptible to transition-related disorders because of the high amounts of milk being produced. Hypocalcemia is a common metabolic disorder that occurs at the onset of lactation. Hypocalcemia is also known to result in poor animal welfare conditions. In addition, cows that develop hypocalcemia are more susceptible to a host of other negative health outcomes. Different feeding tactics, including manipulating the dietary cation-anion difference and administering low-calcium diets, are commonly used preventative strategies. Despite these interventions, the incidence of hypocalcemia in the subclinical form is still as high as 25% to 30% in the United States dairy cow population, with a 5% to 10% incidence of clinical hypocalcemia. In addition, although there are various effective treatments in place, they are administered only after the cow has become noticeably ill, at which point there is already significant metabolic damage. This emphasizes the need for developing alternative prevention strategies, with the monoamine serotonin implicated as a potential therapeutic target. Our research in rodents has shown that serotonin is critical for the induction of mammary parathyroid hormone-related protein, which is necessary for the mobilization of bone tissue and subsequent restoration of maternal calcium stores during lactation. We have shown that circulating serotonin concentrations are positively correlated with serum total calcium on the first day of lactation in dairy cattle. Administration of serotonin's immediate precursor through feeding, injection, or infusion to various mammalian species has been shown to increase circulating serotonin concentrations, with positive effects on other components of maternal metabolism. Most recently

  5. Simultaneous determination of atorvastatin calcium and ramipril in capsule dosage forms by high-performance liquid chromatography and high-performance thin layer chromatography.

    PubMed

    Panchal, Hiral J; Suhagia, Bhanubhai N

    2010-01-01

    Two simple and accurate methods to determine atorvastatin calcium and ramipril in capsule dosage forms were developed and validated using HPLC and HPTLC. The HPLC separation was achieved on a Phenomenex Luna C18 column (250 x 4.6 mm id, 5 microm) in the isocratic mode using 0.1% phosphoric acid-acetonitrile (38 + 62, v/v), pH 3.5 +/- 0.05, mobile phase at a flow rate of 1 ml/min. The retention times were 6.42 and 2.86 min for atorvastatin calcium and ramipril, respectively. Quantification was achieved with a photodiode array detector set at 210 nm over the concentration range of 0.5-5 microg/mL for each, with mean recoveries (at three concentration levels) of 100.06 +/- 0.49% and 99.95 +/- 0.63% RSD for atorvastatin calcium and ramipril, respectively. The HPTLC separation was achieved on silica gel 60 F254 HPTLC plates using methanol-benzene-glacial acetic acid (19.6 + 80.0 + 0.4, v/v/v) as the mobile phase. The Rf values were 0.40 and 0.20 for atorvastatin calcium and ramipril, respectively. Quantification was achieved with UV densitometry at 210 nm over the concentration range of 50-500 ng/spot for each, with mean recoveries (at three concentration levels) of 99.98 +/- 0.75% and 99.87 +/- 0.83% RSD for atorvastatin calcium and ramipril, respectively. Both methods were validated according to International Conference on Harmonization guidelines and found to be simple, specific, accurate, precise, and robust. The mean assay percentages for atorvastatin calcium and ramipril were 99.90 and 99.55% for HPLC and 99.91 and 99.47% for HPTLC, respectively. The methods were successfully applied for the determination of atorvastatin calcium and ramipril in capsule dosage forms without any interference from common excipients.

  6. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    ERIC Educational Resources Information Center

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  7. Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants.

    PubMed

    Rohrback, Suzanne E; Wheatly, Michele G; Gillen, Christopher M

    2015-01-01

    Sarcoplasmic calcium binding protein (SCP) is a high-affinity calcium buffering protein expressed in muscle of crayfish and other invertebrates. In previous work, we identified three splice variants of Procambarus clarkii SCP (pcSCP1a, pcSCP1b, and pcSCP1c) that differ in a 37 amino acid region that lies mainly between the 2nd and 3ed EF-hand calcium binding domain. To evaluate the function of the proteins encoded by the pcSCP1 transcripts, we produced recombinant pcSCP1 and used tryptophan fluorescence to characterize calcium binding. Tryptophan fluorescence of pcSCP1a decreased in response to increased calcium, while tryptophan fluorescence of the pcSCP1b and pcSCP1c variants increased. We estimated calcium binding constants and Hill coefficients with two different equations: the standard Hill equation and a modified Hill equation that accounts for contributions from two different tryptophans. The approaches gave similar results. Steady-state calcium binding constants (Kd) ranged from 2.7±0.7×10(-8)M to 5.6±0.1×10(-7)M, consistent with previous work. Variants displayed significantly different apparent calcium affinities, which were decreased in the presence of magnesium. Calcium Kd was lowest for pcSCP1a and highest for pcSCP1c. Site-directed mutagenesis of pcSCP1c residues to the amino acids of pcSCP1b decreased the calcium Kd, identifying residues outside the EF-hand domains that contribute to calcium binding in crayfish SCP. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Why Calcium? How Calcium Became the Best Communicator*

    PubMed Central

    Carafoli, Ernesto; Krebs, Joachim

    2016-01-01

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these “calcium sensors” are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. PMID:27462077

  9. Calcium

    MedlinePlus

    ... and enzymes and to send messages through the nervous system. It is important to get plenty of calcium in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as ...

  10. Calcium Domains around Single and Clustered IP3 Receptors and Their Modulation by Buffers

    PubMed Central

    Rüdiger, S.; Nagaiah, Ch.; Warnecke, G.; Shuai, J.W.

    2010-01-01

    Abstract We study Ca2+ release through single and clustered IP3 receptor channels on the ER membrane under presence of buffer proteins. Our computational scheme couples reaction-diffusion equations and a Markovian channel model and allows our investigating the effects of buffer proteins on local calcium concentrations and channel gating. We find transient and stationary elevations of calcium concentrations around active channels and show how they determine release amplitude. Transient calcium domains occur after closing of isolated channels and constitute an important part of the channel's feedback. They cause repeated openings (bursts) and mediate increased release due to Ca2+ buffering by immobile proteins. Stationary domains occur during prolonged activity of clustered channels, where the spatial proximity of IP3Rs produces a distinct [Ca2+] scale (0.5–10 μM), which is smaller than channel pore concentrations (>100 μM) but larger than transient levels. While immobile buffer affects transient levels only, mobile buffers in general reduce both transient and stationary domains, giving rise to Ca2+ evacuation and biphasic modulation of release amplitude. Our findings explain recent experiments in oocytes and provide a general framework for the understanding of calcium signals. PMID:20655827

  11. Antibacterial action of calcium hydroxide vehicles and calcium hydroxide pastes.

    PubMed

    Pacios, María Gabriela; Silva, Clara; López, María Elena; Cecilia, Marta

    2012-11-01

    To evaluate the in vitro action of vehicles alone and with calcium hydroxide against different bacterial species. Agar plates were inoculated with the microbial suspensions, and wells were made and filled with the calcium hydroxide pastes and the vehicles used to prepare the pastes. The zones of inhibited bacterial growth were recorded, and the resulting measurements were statistically analyzed. Enterococcus faecalis was the most resistant microorganism to all medicaments. Calcium hydroxide + p-monochlorophenol; calcium hydroxide + p-monochlorophenol-propylene glycol pastes; and p-monochlorophenol, p-monochlorophenol-propylene glycol, and chlorhexidine gluconate gel alone showed the largest zones of inhibition against all the tested microorganisms. The vehicle used to prepare the calcium hydroxide paste might contribute to its antibacterial action. Chlorhexidine gluconate gel used alone, and camphorated p-monochlorophenol and camphorated p-monochlorophenol-propylene glycol as vehicles of calcium hydroxide, could be recommended, in an antimicrobial sense. © 2012 Wiley Publishing Asia Pty Ltd.

  12. Calcium and Calcium Supplements: Achieving the Right Balance

    MedlinePlus

    ... soy products, cereal and fruit juices, and milk substitutes To absorb calcium, your body also needs vitamin ... Nutrition/default.asp. Accessed June 25, 2015. Calcium. Natural Medicines Comprehensive Database. http://www.naturaldatabase.com. Accessed ...

  13. Calcium content of different compositions of gallstones and pathogenesis of calcium carbonate gallstones.

    PubMed

    Yu, Ji-Kuen; Pan, Huichin; Huang, Shing-Moo; Huang, Nan-Lan; Yao, Chung-Chin; Hsiao, Kuang-Ming; Wu, Chew-Wun

    2013-01-01

    Our aim was to investigate the calcium content of different gallstone compositions and the pathogenic mechanisms of calcium carbonate gallstones. Between August 2001 and July 2007, gallstones from 481 patients, including 68 calcium carbonate gallstones, were analyzed for total calcium content. Gallbladder bile samples from 33 cases and six controls were analyzed for pH, carbonate anion level, free-ionized calcium concentration and saturation index for calcium carbonate. Total calcium content averaged 75.6 %, 11.8 %, and 4.2 % for calcium carbonate, calcium bilirubinate and cholesterol gallstones. In 29.4 % of patients, chronic and/or intermittent cystic duct obstructions were caused by polypoid lesions in the neck region and 70.6 % were caused by stones. A total of 82 % of patients had chronic low-grade inflammation of the gallbladder wall and 18.0 % had acute inflammatory exacerbations. In the bile, we found the mean pH, mean carbonate anion, free-ionized calcium concentrations, and mean saturation index for calcium carbonate to be elevated in comparison to controls. From our study, we found chronic and/or intermittent cystic duct obstructions and low-grade GB wall inflammation lead to GB epithelium hydrogen secretion dysfunction. Increased calcium ion efflux into the GB lumen combined with increased carbonate anion presence increases SI_CaCO(3) from 1 to 22.4. Thus, in an alkaline milieu with pH 7.8, calcium carbonate begins to aggregate and precipitate. Copyright © 2012. Published by Elsevier B.V.

  14. Calcium source (image)

    MedlinePlus

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  15. The effect of habitat geology on calcium intake and calcium status of wild rodents.

    PubMed

    Shore, R F; Balment, R J; Yalden, D W

    1991-12-01

    Calcium is essential for normal physiological function, reproduction and growth in mammals but its distribution in the natural environment is heterogeneous. Spatial variation in calcium soil content is especially marked in the Peak District, United Kingdom, where both calcium-rich limestone and calcium-poor gritstone rock types occur. Wood mice Apodemus sylvaticus (L) and bank voles Clethrionomys glareolus (Schreber 1780) from limestone areas had significantly higher calcium concentrations in stomach contents and in faeces compared with their counterparts from gritstone areas. Calcium status was assessed from serum calcium concentration, femur weight, ash content of the body, calcium concentration in the femur and body ash. There was no significant difference in serum calcium concentration, femur calcium concentration and body ash calcium concentration between animals from the limestone and the gritstone. However, on the limestone, bank voles, but not wood mice, had significantly heavier femora and a greater proportion of ash in the body compared with their gritstone counterparts.

  16. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce

    Treesearch

    Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison

    2009-01-01

    Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...

  17. Why Calcium? How Calcium Became the Best Communicator.

    PubMed

    Carafoli, Ernesto; Krebs, Joachim

    2016-09-30

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A validated densitometric method for analysis of atorvastatin calcium and metoprolol tartarate as bulk drugs and in combined capsule dosage forms.

    PubMed

    Patole, Sm; Khodke, As; Potale, Lv; Damle, Mc

    2011-01-01

    A simple, accurate and precise high-performance thin-layer chromatographic method has been developed for the estimation of Atorvastatin Calcium and Metoprolol Tartarate simultaneously from a capsule dosage form. The method employed Silica gel 60F (254s)precoated plates as stationary phase and a mixture of Chloroform: Methanol: Glacial acetic acid (dil.) :: (9:1.5:0.2 ml %v/v) as mobile phase. Densitometric scanning was performed at 220 nm using Camag TLC scanner 3. The method was linear in the drug concentrations' range of 500 to 2500 ng/spot for Atorvastatin Calcium, also for Metoprolol Tartarate with correlation coefficient of 0.984 for Atorvastatin Calcium and 0.995 for Metoprolol Tartarate respectively. The retention factor for Atorvastatin Calcium was 0.45 ± 0.04 and for Metoprolol Tartarate was 0.25 ± 0.02. The method was validated as per ICH (International Conference on Harmonisation) Guidelines, proving its utility in estimation of Atorvastatin Calcium and Metoprolol Tartarate in combined dosage form.

  19. Calcium-induced conformational changes of Thrombospondin-1 signature domain: implications for vascular disease.

    PubMed

    Gupta, Akanksha; Agarwal, Rahul; Singh, Ashutosh; Bhatnagar, Sonika

    2017-06-01

    Thrombospondin1 (TSP1) participates in numerous signaling pathways critical for vascular physiology and disease. The conserved signature domain of thrombospondin 1 (TSP1-Sig1) comprises three epidermal growth factor (EGF), 13 calcium-binding type 3 thrombospondin (T3) repeats, and one lectin-like module arranged in a stalk-wire-globe topology. TSP1 is known to be present in both calcium-replete (Holo-) and calcium-depleted (Apo-) state, each with distinct downstream signaling effects. To prepare a homology model of TSP1-Sig1 and investigate the effect of calcium on its dynamic structure and interactions. A homology model of Holo-TSP1-Sig1 was prepared with TSP2 as template in Swissmodel workspace. The Apo-form of the model was obtained by omitting the bound calcium ions from the homology model. Molecular dynamics (MD) simulation studies (100 ns) were performed on the Holo- and Apo- forms of TSP1 using Gromacs4.6.5. After simulation, Holo-TSP1-Sig1 showed significant reorientation at the interface of the EGF1-2 and EGF2-3 modules. The T3 wire is predicted to show the maximum mobility and deviation from the initial model. In Apo-TSP1-Sig1 model, the T3 repeats unfolded and formed coils with predicted increase in flexibility. Apo-TSP1-Sig1model also predicted the exposure of the binding sites for neutrophil elastase, integrin and fibroblast growth factor 2. We present a structural model and hypothesis for the role of TSP1-Sig1 interactions in the development of vascular disorders. The simulated model of the fully calcium-loaded and calcium-depleted TSP1-Sig1 may enable the development of its interactions as a novel therapeutic target for the treatment of vascular diseases.

  20. Naringenin Impairs Two-Pore Channel 2 Activity And Inhibits VEGF-Induced Angiogenesis.

    PubMed

    Pafumi, Irene; Festa, Margherita; Papacci, Francesca; Lagostena, Laura; Giunta, Cristina; Gutla, Vijay; Cornara, Laura; Favia, Annarita; Palombi, Fioretta; Gambale, Franco; Filippini, Antonio; Carpaneto, Armando

    2017-07-11

    Our research introduces the natural flavonoid naringenin as a novel inhibitor of an emerging class of intracellular channels, Two-Pore Channel 2 (TPC2), as shown by electrophysiological evidence in a heterologous system, i.e. Arabidopsis vacuoles lacking endogenous TPCs. In view of the control exerted by TPC2 on intracellular calcium signaling, we demonstrated that naringenin dampens intracellular calcium responses of human endothelial cells stimulated with VEGF, histamine or NAADP-AM, but not with ATP or Angiopoietin-1 (negative controls). The ability of naringenin to impair TPC2-dependent biological activities was further explored in an established in vivo model, in which VEGF-containing matrigel plugs implanted in mice failed to be vascularized in the presence of naringenin. Overall, the present data suggest that naringenin inhibition of TPC2 activity and the observed inhibition of angiogenic response to VEGF are linked by impaired intracellular calcium signaling. TPC2 inhibition is emerging as a key therapeutic step in a range of important pathological conditions including the progression and metastatic potential of melanoma, Parkinson's disease, and Ebola virus infection. The identification of naringenin as an inhibitor of TPC2-mediated signaling provides a novel and potentially relevant tool for the advancement of this field of research.

  1. Association of Urinary Calcium Excretion with Serum Calcium and Vitamin D Levels

    PubMed Central

    Rathod, Anita; Bonny, Olivier; Guessous, Idris; Suter, Paolo M.; Conen, David; Erne, Paul; Binet, Isabelle; Gabutti, Luca; Gallino, Augusto; Muggli, Franco; Hayoz, Daniel; Péchère-Bertschi, Antoinette; Paccaud, Fred

    2015-01-01

    Background and objectives Population-based data on urinary calcium excretion are scarce. The association of serum calcium and circulating levels of vitamin D [25(OH)D2 or D3] with urinary calcium excretion in men and women from a population-based study was explored. Design, settings, participants, & measurements Multivariable linear regression was used to explore factors associated with square root–transformed 24-hour urinary calcium excretion (milligrams per 24 hours) taken as the dependent variable with a focus on month-specific vitamin D tertiles and serum calcium in the Swiss Survey on Salt Study. Results In total, 624 men and 669 women were studied with mean ages of 49.2 and 47.0 years, respectively (age range=15–95 years). Mean urinary calcium excretion was higher in men than in women (183.05 versus 144.60 mg/24 h; P<0.001). In adjusted models, the association (95% confidence interval) of square root urinary calcium excretion with protein–corrected serum calcium was 1.78 (95% confidence interval, 1.21 to 2.34) mg/24 h per milligram per deciliter in women and 0.59 (95% confidence interval, −0.11 to 1.29) mg/24 h per milligram per deciliter in men. Men in the third 25(OH)D3 tertile had higher square root urinary calcium excretion than men in the first tertile (0.99; 95% confidence interval, 0.36 to 1.63 mg/24 h per nanogram per milliliter), and the corresponding association was 0.32 (95% confidence interval, −0.22 to 0.85) mg/24 h per nanogram per milliliter in women. These sex differences were more marked under conditions of high urinary sodium or urea excretions. Conclusions There was a positive association of serum calcium with urinary calcium excretion in women but not men. Vitamin 25(OH)D3 was associated with urinary calcium excretion in men but not women. These results suggest important sex differences in the hormonal and dietary control of urinary calcium excretion. PMID:25518946

  2. Association of urinary calcium excretion with serum calcium and vitamin D levels.

    PubMed

    Rathod, Anita; Bonny, Olivier; Guessous, Idris; Suter, Paolo M; Conen, David; Erne, Paul; Binet, Isabelle; Gabutti, Luca; Gallino, Augusto; Muggli, Franco; Hayoz, Daniel; Péchère-Bertschi, Antoinette; Paccaud, Fred; Burnier, Michel; Bochud, Murielle

    2015-03-06

    Population-based data on urinary calcium excretion are scarce. The association of serum calcium and circulating levels of vitamin D [25(OH)D2 or D3] with urinary calcium excretion in men and women from a population-based study was explored. Multivariable linear regression was used to explore factors associated with square root-transformed 24-hour urinary calcium excretion (milligrams per 24 hours) taken as the dependent variable with a focus on month-specific vitamin D tertiles and serum calcium in the Swiss Survey on Salt Study. In total, 624 men and 669 women were studied with mean ages of 49.2 and 47.0 years, respectively (age range=15-95 years). Mean urinary calcium excretion was higher in men than in women (183.05 versus 144.60 mg/24 h; P<0.001). In adjusted models, the association (95% confidence interval) of square root urinary calcium excretion with protein-corrected serum calcium was 1.78 (95% confidence interval, 1.21 to 2.34) mg/24 h per milligram per deciliter in women and 0.59 (95% confidence interval, -0.11 to 1.29) mg/24 h per milligram per deciliter in men. Men in the third 25(OH)D3 tertile had higher square root urinary calcium excretion than men in the first tertile (0.99; 95% confidence interval, 0.36 to 1.63 mg/24 h per nanogram per milliliter), and the corresponding association was 0.32 (95% confidence interval, -0.22 to 0.85) mg/24 h per nanogram per milliliter in women. These sex differences were more marked under conditions of high urinary sodium or urea excretions. There was a positive association of serum calcium with urinary calcium excretion in women but not men. Vitamin 25(OH)D3 was associated with urinary calcium excretion in men but not women. These results suggest important sex differences in the hormonal and dietary control of urinary calcium excretion. Copyright © 2015 by the American Society of Nephrology.

  3. Calcium and Mitosis

    NASA Technical Reports Server (NTRS)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  4. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase.

    PubMed

    Swainsbury, David J K; Zhou, Liang; Oldroyd, Giles E D; Bornemann, Stephen

    2012-09-04

    A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.

  5. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken.

    PubMed

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-09-15

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels ( approximately 100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current-voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 +/- 0.18 s (mean +/- s.e.m., n = 12) at 20-22 degrees C, while recovery occurred with a half-time of approximately 10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (-50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in

  6. An overview of techniques for the measurement of calcium distribution, calcium fluxes, and cytosolic free calcium in mammalian cells.

    PubMed Central

    Borle, A B

    1990-01-01

    An array of techniques can be used to study cell calcium metabolism that comprises several calcium compartments and many types of transport systems such as ion channels, ATP-dependent pumps, and antiporters. The measurement of total cell calcium brings little information of value since 60 to 80% of total cell calcium is actually bound to the extracellular glycocalyx. Cell fractionation and differential centrifugation have been used to study intracellular Ca2+ compartmentalization, but the methods suffer from the possibility of Ca2+ loss or redistribution among cell fractions. Steady-state kinetic analyses of 45Ca uptake or desaturation curves have been used to study the distribution of Ca2+ among various kinetic pools in living cells and their rate of Ca2+ exchange, but the analyses are constrained by many limitations. Nonsteady-state tracer studies can provide information about rapid changes in calcium influx or efflux in and out of the cell. Zero-time kinetics of 45Ca uptake can detect instantaneous changes in calcium influx, while 45Ca fractional efflux ratio, can detect rapid stimulations or inhibitions of calcium efflux out of cells. Permeabilized cells have been successfully used to gauge the relative role of intracellular organelles in controlling [Ca2+]i. The measurement of the cytosolic ionized calcium ([Ca2+]i) is undoubtedly the most important and, physiologically, the most relevant method available. The choice of the appropriate calcium indicator, fluorescent, bioluminescent, metallochromic, or Ca2(+)-sensitive microelectrodes depends on the cell type and the magnitude and time constant of the event under study. Each probe has specific assets and drawbacks. The study of plasma membrane vesicles derived from baso-lateral or apical plasmalemma can also bring important information on the (Ca2(+)-Mg2+) ATPase-dependent calcium pump and on the kinetics and stoichiometry of the Na(+)-Ca2+ antiporter. The best strategy to study cell calcium metabolism is to

  7. Calcium Blood Test

    MedlinePlus

    ... Your health care provider may order a calcium test if you have a pre-existing condition that may affect your calcium levels. These include: Kidney disease Thyroid disease Malnutrition Certain types of cancer What happens during a calcium blood test? A health care professional will take a blood ...

  8. High-Throughput Screening of Myometrial Calcium-Mobilization to Identify Modulators of Uterine Contractility

    PubMed Central

    Herington, Jennifer L.; Swale, Daniel R.; Brown, Naoko; Shelton, Elaine L.; Choi, Hyehun; Williams, Charles H.; Hong, Charles C.; Paria, Bibhash C.; Denton, Jerod S.; Reese, Jeff

    2015-01-01

    The uterine myometrium (UT-myo) is a therapeutic target for preterm labor, labor induction, and postpartum hemorrhage. Stimulation of intracellular Ca2+-release in UT-myo cells by oxytocin is a final pathway controlling myometrial contractions. The goal of this study was to develop a dual-addition assay for high-throughput screening of small molecular compounds, which could regulate Ca2+-mobilization in UT-myo cells, and hence, myometrial contractions. Primary murine UT-myo cells in 384-well plates were loaded with a Ca2+-sensitive fluorescent probe, and then screened for inducers of Ca2+-mobilization and inhibitors of oxytocin-induced Ca2+-mobilization. The assay exhibited robust screening statistics (Z´ = 0.73), DMSO-tolerance, and was validated for high-throughput screening against 2,727 small molecules from the Spectrum, NIH Clinical I and II collections of well-annotated compounds. The screen revealed a hit-rate of 1.80% for agonist and 1.39% for antagonist compounds. Concentration-dependent responses of hit-compounds demonstrated an EC50 less than 10μM for 21 hit-antagonist compounds, compared to only 7 hit-agonist compounds. Subsequent studies focused on hit-antagonist compounds. Based on the percent inhibition and functional annotation analyses, we selected 4 confirmed hit-antagonist compounds (benzbromarone, dipyridamole, fenoterol hydrobromide and nisoldipine) for further analysis. Using an ex vivo isometric contractility assay, each compound significantly inhibited uterine contractility, at different potencies (IC50). Overall, these results demonstrate for the first time that high-throughput small-molecules screening of myometrial Ca2+-mobilization is an ideal primary approach for discovering modulators of uterine contractility. PMID:26600013

  9. The influence of electromagnetic radiation generated by a mobile phone on the skeletal system of rats.

    PubMed

    Sieroń-Stołtny, Karolina; Teister, Łukasz; Cieślar, Grzegorz; Sieroń, Dominik; Śliwinski, Zbigniew; Kucharzewski, Marek; Sieroń, Aleksander

    2015-01-01

    The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture), it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones.

  10. The Influence of Electromagnetic Radiation Generated by a Mobile Phone on the Skeletal System of Rats

    PubMed Central

    Sieroń-Stołtny, Karolina; Teister, Łukasz; Cieślar, Grzegorz; Sieroń, Dominik; Śliwinski, Zbigniew; Sieroń, Aleksander

    2015-01-01

    The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture), it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones. PMID:25705697

  11. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics.

    PubMed

    Ueda, Yukari; Taira, Zenei

    2013-01-01

    We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intestinal absorption process was significantly different among the four calcium salts. The rank of absolute bioavailability of calcium was calcium ascorbate > calcium L-lactate ≥ calcium acetate > calcium chloride. The mean residence time (MRTab) of calcium from calcium ascorbate (32.2 minutes) in the intestinal tract was much longer than that from calcium L-lactate (9.5 minutes), calcium acetate (15.0 minutes) and calcium chloride (13.6 minutes). Furthermore, the foods di-D-fructo-furanose-1,2':2,3'-dianhydride, sudachi (Citrus sudachi) juice, and moromi-su (a Japanese vinegar) increased the absolute bioavailability of calcium from calcium chloride by 2.46-fold, 2.86-fold, and 1.23-fold, respectively, and prolonged MRTab by 48.5 minutes, 43.1 minutes, and 44.9 minutes, respectively. In conclusion, the prolonged MRTab of calcium in the intestinal tract by anion or food might cause the increased absorbability of calcium.

  12. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics

    PubMed Central

    Ueda, Yukari; Taira, Zenei

    2013-01-01

    We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intestinal absorption process was significantly different among the four calcium salts. The rank of absolute bioavailability of calcium was calcium ascorbate > calcium L-lactate ≥ calcium acetate > calcium chloride. The mean residence time (MRTab) of calcium from calcium ascorbate (32.2 minutes) in the intestinal tract was much longer than that from calcium L-lactate (9.5 minutes), calcium acetate (15.0 minutes) and calcium chloride (13.6 minutes). Furthermore, the foods di-D-fructo-furanose-1,2′:2,3′-dianhydride, sudachi (Citrus sudachi) juice, and moromi-su (a Japanese vinegar) increased the absolute bioavailability of calcium from calcium chloride by 2.46-fold, 2.86-fold, and 1.23-fold, respectively, and prolonged MRTab by 48.5 minutes, 43.1 minutes, and 44.9 minutes, respectively. In conclusion, the prolonged MRTab of calcium in the intestinal tract by anion or food might cause the increased absorbability of calcium. PMID:27186137

  13. Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism.

    PubMed

    Campion, Katherine L; McCormick, Wanda D; Warwicker, Jim; Khayat, Mohd Ezuan Bin; Atkinson-Dell, Rebecca; Steward, Martin C; Delbridge, Leigh W; Mun, Hee-Chang; Conigrave, Arthur D; Ward, Donald T

    2015-09-01

    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo. Copyright © 2015 by the American Society of

  14. Calcium - ionized

    MedlinePlus

    ... diuretics Thrombocytosis (high platelet count) Tumors Vitamin A excess Vitamin D excess Lower-than-normal levels may be due to: Hypoparathyroidism Malabsorption Osteomalacia Pancreatitis Renal failure Rickets Vitamin D deficiency Alternative Names Free calcium; Ionized calcium ...

  15. A comparative study of calcium absorption following a single serving administration of calcium carbonate powder versus calcium citrate tablets in healthy premenopausal women

    PubMed Central

    Wang, Haiyuan; Bua, Peter; Capodice, Jillian

    2014-01-01

    Background Calcium is an essential mineral often taken as a daily, long-term nutritional supplement. Data suggests that once-daily dosing is important with regard to long-term compliance of both drugs and nutritional supplements. Objective This study was undertaken to compare the bioavailability of a single serving of two calcium supplements in healthy, premenopausal women. Design A two-period, crossover bioavailability study of a single serving of calcium citrate tablets (two tablets=500 mg calcium) versus a single serving of calcium carbonate powder (one packet of powder=1,000 mg calcium) was performed in healthy women aged between 25 and 45. All subjects were on a calcium-restricted diet 7 days prior to testing and fasted for 12 h before being evaluated at 0, 1, 2, and 4 h after oral administration of the test agents. Blood measurements for total and ionized calcium and parathyroid hormone were performed and adverse events were monitored. Results Twenty-three women were evaluable with a mean age of 33.2±8.71. Results showed that administration of a single serving of a calcium carbonate powder resulted in greater absorption in total and ionized calcium versus a single serving of calcium citrate tablets at 4 h (4.25±0.21 vs. 4.16±0.16, p=0.001). There were minimal side effects and no reported serious adverse events. Conclusions This study shows that a single serving of a calcium carbonate powder is more bioavailable than a single serving of calcium citrate tablets. This may be beneficial for long-term compliance. PMID:24772062

  16. Measuring calcium dynamics in living cells with Genetically Encodable Calcium Indicators

    PubMed Central

    McCombs, Janet E.

    2008-01-01

    Genetically encoded calcium indicators (GECIs) allow researchers to measure calcium dynamics in specific targeted locations within living cells. Such indicators enable dissection of the spatial and temporal control of calcium signaling processes. Here we review recent progress in the development of GECIs, highlighting which indicators are most appropriate for measuring calcium in specific organelles and localized domains in mammalian tissue culture cells. An overview of recent approaches that have been undertaken to ensure that the GECIs are minimally perturbed by the cellular environment is provided. Additionally, the procedures for introducing GECIs into mammalian cells, conducting calcium imaging experiments, and analyzing data are discussed. Because organelle-targeted indicators often pose an additional challenge, we underscore strategies for calibrating GECIs in these locations. PMID:18848629

  17. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken

    PubMed Central

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-01-01

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels (∼100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current–voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 ± 0.18 s (mean ±s.e.m., n = 12) at 20–22°C, while recovery occurred with a half-time of ∼10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (−50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and

  18. Teaching Calcium-Induced Calcium Release in Cardiomyocytes Using a Classic Paper by Fabiato

    ERIC Educational Resources Information Center

    Liang, Willmann

    2008-01-01

    This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled "Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum." In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In…

  19. Structural and functional comparison of mobile and recalcitrant humic fractions from agricultural soils

    USDA-ARS?s Scientific Manuscript database

    Mobile humic acid (MHA) and calcium humate (CaHA) are humic fractions sequentially extracted from soil samples. MHA is extracted by dilute NaOH, and CaHA is subsequently extracted by dilute NaOH from the dilute HCl-washed soil residues of the first extraction. This chapter reviews the recent advance...

  20. Calcium-dependent mechanisms mediate the vasorelaxant effects of Tridax procumbens (Lin) aqueous leaf extract in rat aortic ring.

    PubMed

    Salahdeen, Hussein M; Idowu, Gbolahan O; Yemitan, Omoniyi K; Murtala, Babatunde A; Alada, Abdul-Rasak A

    2014-05-01

    Tridax procumbens leaf extract has a folk reputation as an antihypertensive agent in Nigeria. Evidence suggests that it has a relaxant effect on smooth muscles. The present study was designed to investigate the role of calcium in the vasorelaxant effect of this extract. Concentration-response studies with noradrenaline (NA), KCl and CaCl2 were carried out in rat aortic rings with and without the extract in physiological salt solution (PSS) (n=6 each). Also, the role of intracellular calcium mobilization was studied by measuring the phasic response to NA in Ca2+-free N,N-ethylene glycol tetraacetic acid (EGTA) PSS (n=6). The results showed that the contractile responses to either NA or KCl were attenuated (p<0.05) in the presence of the extract. Also, the extract attenuated the contractile response to CaCl2 in the presence of NA or KCl (p<0.05) in the Ca2+-free EGTA PSS, while the phasic response to NA was significantly (p<0.05) diminished. These results suggest that the vasorelaxant effect of T. procumbens leaf extract may be mediated by a non-specific, non-competitive inhibition of Ca2+ influx as well as by inhibition of Ca2+ mobilization from intracellular stores. This implies that it may contain vasorelaxant agents that may have calcium antagonistic potential.

  1. Calcium absorption from fortified ice cream formulations compared with calcium absorption from milk.

    PubMed

    van der Hee, Regine M; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S M J E; Rietveld, Anton G; Wilkinson, Joy E; Quail, Patricia J; Berry, Mark J; Dainty, Jack R; Teucher, Birgit; Fairweather-Tait, Susan J

    2009-05-01

    Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Effects on calcium absorption were evaluated by analysis of variance. Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%+/-8%, 28%+/-5%, and 31%+/-9%, respectively, and did not differ significantly (P=0.159). Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium.

  2. Calcium Absorption from Fortified Ice Cream Formulations Compared with Calcium Absorption from Milk

    PubMed Central

    van der Hee, Regine M.; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S.M.J.E.; Rietveld, Anton G.; Wilkinson, Joy E.; Quail, Patricia J.; Berry, Mark J.; Dainty, Jack R.; Teucher, Birgit; Fairweather-Tait, Susan J.

    2009-01-01

    Objective Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Subjects/setting Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Statistical analysis Effects on calcium absorption were evaluated by analysis of variance. Results Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%±8%, 28%±5%, and 31%±9%, respectively, and did not differ significantly (P=0.159). Conclusions Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium. PMID:19394469

  3. Effects of adrenalectomy on the alpha-adrenergic regulation of cytosolic free calcium in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freudenrich, C.C.; Borle, A.B.

    1988-06-25

    We have previously published that bilateral adrenalectomy in the rat reduces the Ca2+-mediated alpha-adrenergic activation of hepatic glycogenolysis, while it increases the cellular calcium content of hepatocytes. In the experiments presented here, the concentration of cytosolic free calcium (Ca2+i) at rest and in response to epinephrine was measured in aequorin-loaded hepatocytes isolated from sham and adrenalectomized male rats. We found that in adrenalectomized rats the resting Ca2+i was elevated, the rise in Ca2+i evoked by epinephrine was reduced, and the rise in /sup 45/Ca efflux that follows such stimulation was depressed. Furthermore, the slope of the relationship between Ca2+i andmore » calcium efflux was decreased 60% in adrenalectomized. Adrenalectomy did not change Ca2+ release from intracellular calcium pools in response to IP3 in saponin-permeabilized hepatocytes. The EC50 for inositol 1,4,5-triphosphate and the maximal Ca2+ released were similar in both sham and adrenalectomized animals. Finally, the liver calmodulin content determined by radioimmunoassay was not significantly different between sham and adrenalectomized rats. These results suggest that 1) adrenalectomy reduces calcium efflux from the hepatocyte, probably by an effect on the plasma membrane (Ca2+-Mg2+)-ATPase-dependent Ca2+ pump and thus alters cellular calcium homeostasis; 2) adrenalectomy decreases the rise in Ca2+i in response to epinephrine; 3) this decreased rise in Ca2+i is not due to defects in the intracellular Ca2+ storage and mobilization processes; and 4) the effects of adrenalectomy on cellular calcium metabolism and on alpha-adrenergic activation of glycogenolysis are not caused by a reduction in soluble calmodulin.« less

  4. Simultaneous determination of atorvastatin calcium, ezetimibe, and fenofibrate in a tablet formulation by HPLC.

    PubMed

    Patel, Archita; Macwana, Chhaya; Parmar, Vishal; Patel, Samir

    2012-01-01

    An accurate, simple, reproducible, and sensitive HPLC method was developed and validated for the simultaneous determination of atorvastatin calcium, ezetimibe, and fenofibrate in a tablet formulation. The analyses were performed on an RP C18 column, 150 x 4.60 mm id, 5 pm particle size. The mobile phase methanol-acetonitrile-water (76 + 13 + 11, v/v/v), was pumped at a constant flow rate of 1 mL/min. UV detection was performed at 253 nm. Retention times of atorvastatin calcium, ezetimibe, and fenofibrate were found to be 2.25, 3.68, and 6.41 min, respectively. The method was validated in terms of linearity, precision, accuracy, LOD, LOQ, and robustness. The response was linear in the range 2-10 microg/mL (r2 = 0.998) for atorvastatin calcium, 2-10 microg/mL (r2 = 0.998) for ezetimibe, and 40-120 microg/mL (r2 = 0.998) for fenofibrate. The developed method can be used for routine quality analysis of the drugs in the tablet formulation.

  5. Calcium acetate or calcium carbonate for hyperphosphatemia of hemodialysis patients: a meta-analysis.

    PubMed

    Wang, Yong; Xie, Guoqiang; Huang, Yuanhang; Zhang, Han; Yang, Bo; Mao, Zhiguo

    2015-01-01

    High levels of serum phosphorus both at baseline and during follow-up are associated with increased mortality in dialysis patients, and administration of phosphate binders was independently associated with improved survival among hemodialysis population. Calcium-based phosphate binders are the most commonly used phosphate binders in developing countries for their relatively low costs. To compare the efficacy and safety between calcium carbonate and calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients. PubMed, EMBASE, Cochrane Library, Google scholar and Chinese databases (Wanfang, Weipu, National Knowledge Infrastructure of China) were searched for relevant studies published before March 2014. Reference lists of nephrology textbooks and review articles were checked. A meta-analysis of randomized controlled trials (RCTs) and quasi-RCTs that assessed the effects and adverse events of calcium acetate and calcium carbonate in adult patients with MHD was performed using Review Manager 5.0. A total of ten studies (625 participants) were included in this meta-analysis. There was insufficient data in all-cause mortality and cardiovascular events for meta-analysis. Compared with calcium carbonate group, the serum phosphorus was significantly lower in calcium acetate group after4 weeks' administration (MD -0.15 mmol/L, 95% CI -0.28 to -0.01) and after 8 weeks' administration (MD -0.25 mmol/L, 95% CI -0.40 to -0.11). There was no difference in serum calcium levels or the incidence of hypercalcemia between two groups at 4 weeks and 8 weeks. No statistical difference was found in parathyroid hormone (PTH) levels or serum calcium by phosphorus (Ca x P) product. There was significantly higher risk of intolerance with calcium acetate treatment (RR 3.46, 95% CI 1.48 to 8.26). For hyperphosphatemia treatment, calcium acetate showed better efficacy and with a higher incidence of intolerance compared with calcium carbonate. There are insufficient data to

  6. Calcium Acetate or Calcium Carbonate for Hyperphosphatemia of Hemodialysis Patients: A Meta-Analysis

    PubMed Central

    Zhang, Han; Yang, Bo; Mao, Zhiguo

    2015-01-01

    Background High levels of serum phosphorus both at baseline and during follow-up are associated with increased mortality in dialysis patients, and administration of phosphate binders was independently associated with improved survival among hemodialysis population. Calcium-based phosphate binders are the most commonly used phosphate binders in developing countries for their relatively low costs. Objectives To compare the efficacy and safety between calcium carbonate and calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients. Methods PubMed, EMBASE, Cochrane Library, Google scholar and Chinese databases (Wanfang, Weipu, National Knowledge Infrastructure of China) were searched for relevant studies published before March 2014. Reference lists of nephrology textbooks and review articles were checked. A meta-analysis of randomized controlled trials (RCTs) and quasi-RCTs that assessed the effects and adverse events of calcium acetate and calcium carbonate in adult patients with MHD was performed using Review Manager 5.0. Results A total of ten studies (625 participants) were included in this meta-analysis. There was insufficient data in all-cause mortality and cardiovascular events for meta-analysis. Compared with calcium carbonate group, the serum phosphorus was significantly lower in calcium acetate group after4 weeks’ administration (MD -0.15 mmol/L, 95% CI -0.28 to -0.01) and after 8 weeks’ administration (MD -0.25 mmol/L, 95% CI -0.40 to -0.11). There was no difference in serum calcium levels or the incidence of hypercalcemia between two groups at 4 weeks and 8 weeks. No statistical difference was found in parathyroid hormone (PTH) levels or serum calcium by phosphorus (Ca x P) product. There was significantly higher risk of intolerance with calcium acetate treatment (RR 3.46, 95% CI 1.48 to 8.26). Conclusions For hyperphosphatemia treatment, calcium acetate showed better efficacy and with a higher incidence of intolerance compared with

  7. Intrinsic attenuation of post-irradiation calcium and ER stress imparts significant radioprotection to lepidopteran insect cells.

    PubMed

    Guleria, Ayushi; Thukral, Neha; Chandna, Sudhir

    2018-04-15

    Sf9 lepidopteran insect cells are 100-200 times more radioresistant than mammalian cells. This distinctive feature thus makes them suitable for studies exploring radioprotective molecular mechanisms. It has been established from previous studies of our group that downstream mitochondrial apoptotic signaling pathways in Sf9 cells are quite similar to mammalian cells, implicating the upstream signaling pathways in their extensive radioresistance. In the present study, intracellular and mitochondrial calcium levels remained unaltered in Sf9 cells in response to radiation, in sharp contrast to human (HEK293T) cells. The isolated mitochondria from Sf9 cells exhibited nearly 1.5 times greater calcium retention capacity than mammalian cells, highlighting their inherent stress resilience. Importantly, UPR/ER stress marker proteins (p-eIF2α, GRP4 and SERCA) remained unaltered by radiation and suggested highly attenuated ER and calcium stress. Lack of SERCA induction further corroborates the lack of radiation-induced calcium mobilization in these cells. The expression of CaMKII, an important effector molecule of calcium signaling, did not alter in response to radiation. Inhibiting CaMKII by KN-93 or suppressing CaM by siRNA failed to alter Sf9 cells response to radiation and suggests CaM-CaMKII independent radiation signaling. Therefore, this study suggests that attenuated calcium signaling/ER stress is an important determinant of lepidopteran cell radioresistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xuerun, E-mail: xuerunli@163.com; Zhang, Yu; Shen, Xiaodong, E-mail: xdshen@njut.edu.cn

    The formation kinetics of tricalcium aluminate (C{sub 3}A) and calcium sulfate yielding calcium sulfoaluminate (C{sub 4}A{sub 3}more » $$) and the decomposition kinetics of calcium sulfoaluminate were investigated by sintering a mixture of synthetic C{sub 3}A and gypsum. The quantitative analysis of the phase composition was performed by X-ray powder diffraction analysis using the Rietveld method. The results showed that the formation reaction 3Ca{sub 3}Al{sub 2}O{sub 6} + CaSO{sub 4} → Ca{sub 4}Al{sub 6}O{sub 12}(SO{sub 4}) + 6CaO was the primary reaction < 1350 °C with and activation energy of 231 ± 42 kJ/mol; while the decomposition reaction 2Ca{sub 4}Al{sub 6}O{sub 12}(SO{sub 4}) + 10CaO → 6Ca{sub 3}Al{sub 2}O{sub 6} + 2SO{sub 2} ↑ + O{sub 2} ↑ primarily occurred beyond 1350 °C with an activation energy of 792 ± 64 kJ/mol. The optimal formation region for C{sub 4}A{sub 3}$$ was from 1150 °C to 1350 °C and from 6 h to 1 h, which could provide useful information on the formation of C{sub 4}A{sub 3}$ containing clinkers. The Jander diffusion model was feasible for the formation and decomposition of calcium sulfoaluminate. Ca{sup 2+} and SO{sub 4}{sup 2−} were the diffusive species in both the formation and decomposition reactions. -- Highlights: •Formation and decomposition of calcium sulphoaluminate were studied. •Decomposition of calcium sulphoaluminate combined CaO and yielded C{sub 3}A. •Activation energy for formation was 231 ± 42 kJ/mol. •Activation energy for decomposition was 792 ± 64 kJ/mol. •Both the formation and decomposition were controlled by diffusion.« less

  9. An Exploration of the Calcium-Binding Mode of Egg White Peptide, Asp-His-Thr-Lys-Glu, and In Vitro Calcium Absorption Studies of Peptide-Calcium Complex.

    PubMed

    Sun, Na; Jin, Ziqi; Li, Dongmei; Yin, Hongjie; Lin, Songyi

    2017-11-08

    The binding mode between the pentapeptide (DHTKE) from egg white hydrolysates and calcium ions was elucidated upon its structural and thermodynamics characteristics. The present study demonstrated that the DHTKE peptide could spontaneously bind calcium with a 1:1 stoichiometry, and that the calcium-binding site corresponded to the carboxyl oxygen, amino nitrogen, and imidazole nitrogen atoms of the DHTKE peptide. Moreover, the effect of the DHTKE-calcium complex on improving the calcium absorption was investigated in vitro using Caco-2 cells. Results showed that the DHTKE-calcium complex could facilitate the calcium influx into the cytosol and further improve calcium absorption across Caco-2 cell monolayers by more than 7 times when compared to calcium-free control. This study facilitates the understanding about the binding mechanism between peptides and calcium ions as well as suggests a potential application of egg white peptides as nutraceuticals to improve calcium absorption.

  10. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease

    PubMed Central

    Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro

    2014-01-01

    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder. PMID:23254903

  11. The calcium-sensing receptor regulates mammary gland parathyroid hormone–related protein production and calcium transport

    PubMed Central

    VanHouten, Joshua; Dann, Pamela; McGeoch, Grace; Brown, Edward M.; Krapcho, Karen; Neville, Margaret; Wysolmerski, John J.

    2004-01-01

    The transfer of calcium from mother to milk during lactation is poorly understood. In this report, we demonstrate that parathyroid hormone–related protein (PTHrP) production and calcium transport in mammary epithelial cells are regulated by extracellular calcium acting through the calcium-sensing receptor (CaR). The CaR becomes expressed on mammary epithelial cells at the transition from pregnancy to lactation. Increasing concentrations of calcium, neomycin, and a calcimimetic compound suppress PTHrP secretion by mammary epithelial cells in vitro, whereas in vivo, systemic hypocalcemia increases PTHrP production, an effect that can be prevented by treatment with a calcimimetic. Hypocalcemia also reduces overall milk production and calcium content, while increasing milk osmolality and protein concentrations. The changes in milk calcium content, milk osmolality, and milk protein concentration were mitigated by calcimimetic infusions. Finally, in a three-dimensional culture system that recapitulates the lactating alveolus, activation of the basolateral CaR increases transcellular calcium transport independent of its effect on PTHrP. We conclude that the lactating mammary gland can sense calcium and adjusts its secretion of calcium, PTHrP, and perhaps water in response to changes in extracellular calcium concentration. We believe this defines a homeostatic system that helps to match milk production to the availability of calcium. PMID:14966569

  12. Skin Barrier and Calcium.

    PubMed

    Lee, Sang Eun; Lee, Seung Hun

    2018-06-01

    Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca 2+ ) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca 2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca 2+ release from intracellular stores, such as the ER and Ca 2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.

  13. Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization.

    PubMed

    Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H

    2007-09-01

    Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. We tested the effect of HC on platelet aggregation, thromboxane B(2) (TXB(2)) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB(2) production. HC inhibited the thrombin-induced TXB(2) production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB(2) production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca(2+) mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB(2) production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions.

  14. Calcium Signaling in Taste Cells

    PubMed Central

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  15. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease.

    PubMed

    Hill, Kathleen M; Martin, Berdine R; Wastney, Meryl E; McCabe, George P; Moe, Sharon M; Weaver, Connie M; Peacock, Munro

    2013-05-01

    Patients with chronic kidney disease (CKD) are given calcium carbonate to bind dietary phosphorus, reduce phosphorus retention, and prevent negative calcium balance; however, data are limited on calcium and phosphorus balance during CKD to support this. Here, we studied eight patients with stage 3 or 4 CKD (mean estimated glomerular filtration rate 36 ml/min) who received a controlled diet with or without a calcium carbonate supplement (1500 mg/day calcium) during two 3-week balance periods in a randomized placebo-controlled cross-over design. All feces and urine were collected during weeks 2 and 3 of each balance period and fasting blood, and urine was collected at baseline and at the end of each week. Calcium kinetics were determined using oral and intravenous (45)calcium. Patients were found to be in neutral calcium and phosphorus balance while on the placebo. Calcium carbonate supplementation produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance, suggesting soft-tissue deposition. Fasting blood and urine biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. Thus, the positive calcium balance produced by calcium carbonate treatment within 3 weeks cautions against its use as a phosphate binder in patients with stage 3 or 4 CKD, if these findings can be extrapolated to long-term therapy.

  16. Novel calcium recognition constructions in proteins: Calcium blade and EF-hand zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denesyuk, Alexander I., E-mail: adenesyu@abo.fi; Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino 142290; Permyakov, Sergei E.

    Metal ions can regulate various cell processes being first, second or third messengers, and some of them, especially transition metal ions, take part in catalysis in many enzymes. As an intracellular ion, Ca{sup 2+} is involved in many cellular functions from fertilization and contraction, cell differentiation and proliferation, to apoptosis and cancer. Here, we have identified and described two novel calcium recognition environments in proteins: the calcium blade zone and the EF-hand zone, common to 12 and 8 different protein families, respectively. Each of the two environments contains three distinct structural elements: (a) the well-known characteristic Dx[DN]xDG motif; (b) anmore » adjacent structurally identical segment, which binds metal ion in the same way between the calcium blade zone and the EF-hand zone; and (c) the following structurally variable segment, which distinguishes the calcium blade zone from the EF-hand zone. Both zones have sequence insertions between the last residue of the zone and calcium-binding residues in positions V or VI. The long insertion often connects the active and the calcium-binding sites in proteins. Using the structurally identical segments as an anchor, we were able to construct the classical calmodulin type EF-hand calcium-binding site out of two different calcium-binding motifs from two unrelated proteins.« less

  17. Calcium and bones (image)

    MedlinePlus

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  18. Antenatal calcium intake in Malaysia.

    PubMed

    Mahdy, Zaleha Abdullah; Basri, Hashimah; Md Isa, Zaleha; Ahmad, Shuhaila; Shamsuddin, Khadijah; Mohd Amin, Rahmah

    2014-04-01

    To determine the adequacy of antenatal calcium intake in Malaysia, and the influencing factors. A cross-sectional study was conducted among postnatal women who delivered in two tertiary hospitals. Data were collected from antenatal cards, hospital documents and diet recall on daily milk and calcium intake during pregnancy. SPSS version 19.0 was used for statistical analyses. A total of 150 women were studied. The total daily calcium intake was 834 ± 43 mg (mean ± standard error of the mean), but the calcium intake distribution curve was skewed to the right with a median intake of 725 mg daily. When calcium intake from milk and calcium supplements was excluded, the daily dietary calcium intake was only 478 ± 25 mg. Even with inclusion of milk and calcium supplements, more than a third (n=55 or 36.7%) of the women consumed less than 600 mg calcium in their daily diet. The adequacy of daily calcium intake was not influenced by maternal age, ethnicity, income or maternal job or educational status as well as parity. The daily dietary calcium intake of the Malaysian antenatal population is far from adequate without the addition of calcium supplements and milk. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  19. Calcium metabolism in health and disease.

    PubMed

    Peacock, Munro

    2010-01-01

    This brief review focuses on calcium balance and homeostasis and their relationship to dietary calcium intake and calcium supplementation in healthy subjects and patients with chronic kidney disease and mineral bone disorders (CKD-MBD). Calcium balance refers to the state of the calcium body stores, primarily in bone, which are largely a function of dietary intake, intestinal absorption, renal excretion, and bone remodeling. Bone calcium balance can be positive, neutral, or negative, depending on a number of factors, including growth, aging, and acquired or inherited disorders. Calcium homeostasis refers to the hormonal regulation of serum ionized calcium by parathyroid hormone, 1,25-dihydroxyvitamin D, and serum ionized calcium itself, which together regulate calcium transport at the gut, kidney, and bone. Hypercalcemia and hypocalcemia indicate serious disruption of calcium homeostasis but do not reflect calcium balance on their own. Calcium balance studies have determined the dietary and supplemental calcium requirements needed to optimize bone mass in healthy subjects. However, similar studies are needed in CKD-MBD, which disrupts both calcium balance and homeostasis, because these data in healthy subjects may not be generalizable to this patient group. Importantly, increasing evidence suggests that calcium supplementation may enhance soft tissue calcification and cardiovascular disease in CKD-MBD. Further research is needed to elucidate the risks and mechanisms of soft tissue calcification with calcium supplementation in both healthy subjects and CKD-MBD patients.

  20. The Hepatitis B Virus X Protein Elevates Cytosolic Calcium Signals by Modulating Mitochondrial Calcium Uptake

    PubMed Central

    Yang, Bei

    2012-01-01

    Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication. PMID:22031934

  1. Dietary Calcium Intake, Serum Calcium Level, and their Association with Preeclampsia in Rural North India

    PubMed Central

    Gupta, Anant; Kant, Shashi; Pandav, Chandrakant S.; Gupta, Sanjeev K.; Rai, Sanjay K.; Misra, Puneet

    2016-01-01

    Background: Preeclampsia in pregnancy has been shown to be associated with low serum calcium level. Though the evidence is abundant, it is equivocal. Objectives: The study aimed to estimate the dietary calcium intake and serum calcium status among pregnant women, and to document the association of the dietary calcium intake and serum calcium status with incidence of preeclampsia in the 3rd trimester of pregnancy. Materials and Methods: A community-based cross-sectional study was conducted in the Health and Demographic Surveillance System (HDSS) site, Ballabgarh, Haryana, India. All pregnant women between 28 weeks and 36 weeks of gestation were interviewed. A semi-structured interview schedule and a 24-h dietary recall questionnaire were administered to assess the dietary calcium intake. AutoAnalyser (Biolis 24i) was used for measuring serum calcium. Results: We enrolled 217 pregnant women. The mean [standard deviation (SD)] dietary calcium intake was 858 (377) mg/day. The mean (SD) serum calcium level was 9.6 mg/dL (0.56). Incidence of preeclampsia was 13.4%. Preeclampsia was not associated with hypocalcemia [odds ratio (OR) = 1.2 95% confidence interval (CI); 0.27-3.98]. Conclusion: The majority of pregnant women had inadequate dietary calcium intake. The prevalence of hypocalcemia was low. Low serum calcium level was not associated with preeclampsia. Calcium supplementation may not reduce preeclampsia in this population. PMID:27385877

  2. Fruit Calcium: Transport and Physiology

    PubMed Central

    Hocking, Bradleigh; Tyerman, Stephen D.; Burton, Rachel A.; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  3. A Closer look at calcium absorption and the benefits and risks of dietary versus supplemental calcium.

    PubMed

    Booth, Anna; Camacho, Pauline

    2013-11-01

    To perform a thorough search of the literature on calcium research and specifically address the topic of calcium absorption. PubMed and Ovid were the main engines used for primary literature searches; textbooks, review articles, and book chapters are examples of the other sources used for supplemental information. Regarding calcium absorption, it seems apparent that the absorption efficiency of all calcium salts, regardless of solubility, is fairly equivalent and not significantly less than the absorption efficiency of dietary calcium. However, dietary calcium has been shown to have greater impact in bone building than supplemental calcium. This is likely due to improved absorption with meals and the tendency of people to intake smaller amounts more frequently, which is more ideal for the body's method of absorption. In addition, the cardiovascular risks of excessive calcium intake appear to be more closely related to calcium supplements than dietary calcium; this relationship continues to be controversial in the literature. We conclude that further studies are needed for direct comparison of supplemental and dietary calcium to fully establish if one is superior to the other with regard to improving bone density. We also propose further studies on the cardiovascular risk of long-term increased calcium intake and on physician estimates of patients' daily calcium intake to better pinpoint those patients who require calcium supplementation.

  4. Voltage-Gated Calcium Channels

    NASA Astrophysics Data System (ADS)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  5. Calcium and Vitamin D

    MedlinePlus

    ... A calcium-rich diet (including dairy, nuts, leafy greens and fish) helps to build and protect your bones. Calcium is a mineral that is necessary for life. In addition to building bones and keeping them healthy, calcium enables our ...

  6. The Association Between Calcium, Magnesium, and Ratio of Calcium/Magnesium in Seminal Plasma and Sperm Quality.

    PubMed

    Liang, Hong; Miao, Maohua; Chen, Jianping; Chen, Kanglian; Wu, Bin; Dai, Qi; Wang, Jian; Sun, Fei; Shi, Huijuan; Yuan, Wei

    2016-11-01

    The study aimed to examine the relationships between calcium, magnesium, and calcium/magnesium ratio in semen plasma and sperm quality. It was a cross-sectional study based on a program aiming at promoting the reproductive health in less-developed areas. A total of 515 men aged between 18 and 55 years provided semen specimens at family planning clinics in Sandu County, Guizhou Province, China. Total calcium and magnesium concentrations in semen plasma were measured with flame atomic absorption spectrometry. Sperm quality, including sperm motility and concentration, was evaluated by using a computer-assisted sperm analysis method. The medians of seminal plasma calcium, magnesium, and zinc concentrations were 9.61, 4.41, and 2.23 mmol/l, respectively. Calcium concentration and calcium/magnesium ratio were negatively associated with sperm concentrations (β = -0.47, P = 0.0123 for calcium; β = -0.25, P = 0.0393 for calcium/magnesium ratio) after adjusting for zinc and other covariates. In stratified analyses, the association between calcium and sperm concentrations only persisted among subjects with a calcium/magnesium ratio of ≤2.5 (β = -0.71, P = 0.0268). In the same stratum, magnesium was associated with increased sperm concentration (β = 0.73, P = 0.0386). Among subjects with a calcium/magnesium ratio of >2.5, neither calcium nor magnesium was associated with sperm concentration. In conclusion, total calcium and magnesium concentrations were associated with sperm concentration among subjects with a lower calcium/magnesium ratio. The calcium and magnesium ratio had a modifying effect on the associations of calcium and magnesium with sperm concentration.

  7. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.

    PubMed

    Onireti, Olaronke O; Lin, Chuxia

    2016-03-01

    A batch experiment was conducted to investigate the mobilization of soil-borne arsenic by three common low-molecular-weight organic acids with a focus on dosage and time effects. The results show that oxalic acid behaved differently from citric acid and malic acid in terms of mobilizing As that was bound to iron compounds. At an equivalent molar concentration, reactions between oxalic acid and soil-borne Fe were kinetically more favourable, as compared to those between either citric acid or malic acid and the soil-borne Fe. It was found that reductive dissolution of soil-borne Fe played a more important role in liberating As, as compared to non-reductive reactions. Prior to the 7th day of the experiment, As mobility increased with increasing dose of oxalic acid while there was no significant difference (P > 0.05) in mobilized As among the treatments with different doses of citric acid or malic acid. The dosage effect on soil-borne As mobilization in the citric acid and malic acid treatments became clear only after the 7th day of the experiment. Soluble Ca present in the soils could cause re-immobilization of As by competing with solution-borne Fe for available organic ligands to form practically insoluble organic compounds of calcium (i.e. calcium oxalate). This resulted in transformation of highly soluble organic complexes of iron (i.e. iron oxalate complexes) into slightly soluble organic compounds of iron (i.e. iron oxalate) or free ferric ion, which then reacted with the solution-borne arsenate ions to form practically insoluble iron arsenates in the latter part of the experiment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Lattice model for calcium dynamics

    NASA Astrophysics Data System (ADS)

    Guisoni, Nara; de Oliveira, Mario José

    2005-06-01

    We present a simplified lattice model to study calcium dynamics in the endoplasmic reticulum membrane. Calcium channels and calcium ions are placed in two interpenetrating square lattices which are connected in two ways: (i) via calcium release and (ii) because transitions between channel states are calcium dependent. The opening or closing of a channel is a stochastic process controlled by two functions which depend on the calcium density on the channel neighborhood. The model is studied through mean field calculations and simulations. We show that the critical behavior of the model changes drastically depending on the opening/closing functions. For certain choices of these functions, all channels are closed at very low and high calcium densities and the model presents one absorbing state.

  9. Calcium metabolism in birds.

    PubMed

    de Matos, Ricardo

    2008-01-01

    Calcium is one of the most important plasma constituents in mammals and birds. It provides structural strength and support (bones and eggshell) and plays vital roles in many of the biochemical reactions in the body. The control of calcium metabolism in birds is highly efficient and closely regulated in a number of tissues, primarily parathyroid gland, intestine, kidney, and bone. The hormones with the greatest involvement in calcium regulation in birds are parathyroid hormone, 1,25-dihydroxyvitamin D(3) (calcitriol), and estrogen, with calcitonin playing a minor and uncertain role. The special characteristics of calcium metabolism in birds, mainly associated with egg production, are discussed, along with common clinical disorders secondary to derangements in calcium homeostasis.

  10. Lead in calcium supplements.

    PubMed Central

    Scelfo, G M; Flegal, A R

    2000-01-01

    Intercalibrated measurements of lead in calcium supplements indicate the importance of rigorous analytical techniques to accurately quantify contaminant exposures in complex matrices. Without such techniques, measurements of lead concentrations in calcium supplements may be either erroneously low, by as much as 50%, or below the detection limit needed for new public health criteria. In this study, we determined the lead content of 136 brands of supplements that were purchased in 1996. The calcium in the products was derived from natural sources (bonemeal, dolomite, or oyster shell) or was synthesized and/or refined (chelated and nonchelated calcium). The dried products were acid digested and analyzed for lead by high resolution-inductively coupled plasma-mass spectrometry. The method's limit of quantitation averaged 0.06 microg/g, with a coefficient of variation of 1.7% and a 90-100% lead recovery of a bonemeal standard reference material. Two-thirds of those calcium supplements failed to meet the 1999 California criteria for acceptable lead levels (1.5 microg/daily dose of calcium) in consumer products. The nonchelated synthesized and/or refined calcium products, specifically antacids and infant formulas, had the lowest lead concentrations, ranging from nondetectable to 2.9 microg Pb/g calcium, and had the largest proportion of brands meeting the new criteria (85% of the antacids and 100% of the infant formulas). Images Figure 1 Figure 2 PMID:10753088

  11. Free-calcium distribution and calcium pulses in rat peripheral macrophages

    NASA Astrophysics Data System (ADS)

    Yu, Yanhua; Xing, Da; Tang, Yonghong; Jin, Ying

    2000-10-01

    With Laser Confocal Scanning Microscope (LCSM) system, three aspects of characteristics of free cytoplasmic calcium in rat peripheral macrophages are studied. One is the Ca2+ concentration in different area in the same cell. Second is the Ca2+ concentration in the same area in different dividing stage. Third is the feature of calcium pulses evoked by Kcl or pH changing. The results show that even in one cell, the evolution of the Ca2+ concentration is not the same in a different area. In the same area, the nucleolus Ca2+ concentration in division breaking stage is much higher than that in division stage. From the experiment phenomena, we conclude that Kcl itself can not evoke calcium pulses in the unexcitable macrophage, but the change of pH can trig calcium pulses in the same cells.

  12. Calcium Balance in Chronic Kidney Disease.

    PubMed

    Hill Gallant, Kathleen M; Spiegel, David M

    2017-06-01

    The kidneys play a critical role in the balance between the internal milieu and external environment. Kidney failure is known to disrupt a number of homeostatic mechanisms that control serum calcium and normal bone metabolism. However, our understanding of calcium balance throughout the stages of chronic kidney disease is limited and the concept of balance itself, especially with a cation as complex as calcium, is often misunderstood. Both negative and positive calcium balance have important implications in patients with chronic kidney disease, where negative balance may increase risk of osteoporosis and fracture and positive balance may increase risk of vascular calcification and cardiovascular events. Here, we examine the state of current knowledge about calcium balance in adults throughout the stages of chronic kidney disease and discuss recommendations for clinical strategies to maintain balance as well as future research needs in this area. Recent calcium balance studies in adult patients with chronic kidney disease show that neutral calcium balance is achieved with calcium intake near the recommended daily allowance. Increases in calcium through diet or supplements cause high positive calcium balance, which may put patients at risk for vascular calcification. However, heterogeneity in calcium balance exists among these patients. Given the available calcium balance data in this population, it appears clinically prudent to aim for recommended calcium intakes around 1000 mg/day to achieve neutral calcium balance and avoid adverse effects of either negative or positive calcium balance. Assessment of patients' dietary calcium intake could further equip clinicians to make individualized recommendations for meeting recommended intakes.

  13. Lack of voltage-dependent calcium channel opening during the calcium influx induced by progesterone in human sperm. Effect of calcium channel deactivation and inactivation.

    PubMed

    Guzmán-Grenfell, Alberto Martín; González-Martínez, Marco T

    2004-01-01

    Progesterone induces calcium influx and acrosomal exocytosis in human sperm. Pharmacologic evidence suggests that voltage-dependent calcium channels (VDCCs) are involved. In this study, membrane potential (Vm) and intracellular calcium concentration ([Ca(2+)](i)) were monitored simultaneously to assess the effect of VDCC gating on the calcium influx triggered by progesterone. Holding the Vm to values that maintained VDCCs in a deactivated (-71 mV) closed state inhibited the calcium influx induced by progesterone by approximately 40%. At this Vm, the acrosomal reaction induced by progesterone, but not by A23187, was inhibited. However, when the Vm was held at -15 mV (which maintains VDCCs in an inactivated closed state), the progesterone-induced calcium influx was stimulated. Furthermore, the progesterone and voltage-dependent calcium influxes were additive. These findings indicate that progesterone does not produce VDCC gating in human sperm.

  14. Comparison of the Absorption of Calcium Carbonate and Calcium Citrate after Roux-en-Y Gastric Bypass

    PubMed Central

    Tondapu, P.; Provost, D.; Adams-Huet, B.; Sims, T.; Chang, C.; Sakhaee, K.

    2015-01-01

    Introduction Roux-en-Y gastric bypass (RYGB) restricts food intake. Consequently, patients consume less calcium. In addition, food no longer passes through the duodenum, the main site of calcium absorption. Therefore, calcium absorption is significantly impaired. The goal of this study is to compare two common calcium supplements in gastric bypass patients. Method Nineteen patients were enrolled in a randomized, double-blinded, crossover study comparing the absorption of calcium from calcium carbonate and calcium citrate salts. Serum and urine calcium levels were assessed for peak values (Cmax) and cumulative calcium increment (area under the curve [AUC]). Serum PTH was assessed for minimum values (PTHmin) and cumulative PTH decrement (AUC). Statistical analysis was performed using a repeated analysis of variance model. Results Eighteen subjects completed the study. Calcium citrate resulted in a significantly higher serum Cmax (9.4+0.4 mg/dl vs. 9.2+0.3 mg/dl, p=0.02) and serum AUC (55+2 mg/dl vs. 54+2 mg/dl, p=0.02). Calcium citrate resulted in a significantly lower PTHmin (24+11 pg/ml vs. 30+13 pg/ml, p=0.01) and a higher AUC (−32+51 pg/ml vs. −3+56 pg/ml, p=0.04). There was a non-significant trend for higher urinary AUC in the calcium citrate group (76.13+36.39 mg/6 h vs. 66.04+40.82, p=0.17). Conclusion Calcium citrate has superior bioavailability than calcium carbonate in RYGB patients. PMID:19437082

  15. Calcium-Induced Calcium Release during Action Potential Firing in Developing Inner Hair Cells

    PubMed Central

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J.

    2015-01-01

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  16. Helix A Stabilization Precedes Amino-terminal Lobe Activation upon Calcium Binding to Calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Baowei; Lowry, David; Mayer, M. Uljana

    2008-08-09

    The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)-resorufin (ReAsH), which upon binding to an engineered tetracysteine binding motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the 1H- 15N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH.more » Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe (Kd = 0.36 ± 0.04 μM), which results in a reduction in the rate of ReAsH binding from 4900 M -1 sec -1 to 370 M -1 sec -1. In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe requires calcium-occupancy of amino-terminal sites (Kd = 18 ± 3 μM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces secondary structural changes within the interdomain

  17. Fenoprofen calcium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  18. Effect of oral calcium and calcium + fluoride treatments on mouse bone properties during suspension

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Luttges, M. W.; Allen, K. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The bone effects of oral dosages of calcium chloride with or without supplementary sodium fluoride were assessed in antiorthostatically suspended mice. Two calcium dosages were used to replace half (3.1 mM) or all(6.3 mM) of the dietary calcium lost due to reduced food intake by the suspended mice. Two groups of 6.3 mM CaCl2-treated mice were additionally treated with 0.25 or 2.5 mM NaF. The results indicate that supplementation of the mouse drinking water with calcium salts prevents bone changes induced by short-term suspension, while calcium salts in combination with fluoride are less effective as fluoride dosage increases. However, the calcium supplements change the relationship between the femur mechanical properties and the mineral composition of the bone. Because of this, it appears that oral calcium supplements are effective through a mechanism other than simple dietary supplementation and may indicate a dependence of bone consistency on systemic and local fluid conditions.

  19. Imaging extracellular calcium in endolymph

    NASA Astrophysics Data System (ADS)

    Strimbu, C. Elliott; Fridberger, Anders

    2018-05-01

    Hair cell mechanoelectrical transduction and adaptation are believed to be regulated by extracellular calcium. However, the majority of experiments addressing calcium's role have been performed on reduced preparations in conditions that do not mimic those present in vivo. We used confocal microscopy and a low affinity (kd ˜11 µM) ratiometric fluorescent indicator to measure the extracellular calcium concentration in scala media in an in vitro preparation of the guinea pig cochlea. Microelectrodes were used to measure the cochlear microphonic potential during acoustic stimulation. The mean calcium concentration is significantly higher in the tectorial membrane (TM) than the surrounding endolymph, suggesting that the membrane acts as a calcium sink. We also observe calcium hot spots along the underside of the TM, near the outer hair cell bundles and near Hensens stripe close to the inner hair cell bundle. This suggests that the local calcium concentration near the hair bundles exceeds 100 µM, significantly higher than the bulk endolymph. These results were corroborated with fluorescence correlation spectroscopy using a second calcium sensitive dye, Oregon Green 488-BAPTA. Following a brief exposure to loud sound, TM calcium drops dramatically and shows recovery on a similar timescale as the microphonic potential. Our results suggest that the extracellular calcium concentration near the hair bundles is much higher than previously believed and may also serve as a partial control parameter for temporary threshold shifts.

  20. Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells

    NASA Technical Reports Server (NTRS)

    Allen, G. J.; Kwak, J. M.; Chu, S. P.; Llopis, J.; Tsien, R. Y.; Harper, J. F.; Schroeder, J. I.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Cytoplasmic free calcium ([Ca2+]cyt) acts as a stimulus-induced second messenger in plant cells and multiple signal transduction pathways regulate [Ca2+]cyt in stomatal guard cells. Measuring [Ca2+]cyt in guard cells has previously required loading of calcium-sensitive dyes using invasive and technically difficult micro-injection techniques. To circumvent these problems, we have constitutively expressed the pH-independent, green fluorescent protein-based calcium indicator yellow cameleon 2.1 in Arabidopsis thaliana (Miyawaki et al. 1999; Proc. Natl. Acad. Sci. USA 96, 2135-2140). This yellow cameleon calcium indicator was expressed in guard cells and accumulated predominantly in the cytoplasm. Fluorescence ratio imaging of yellow cameleon 2.1 allowed time-dependent measurements of [Ca2+]cyt in Arabidopsis guard cells. Application of extracellular calcium or the hormone abscisic acid (ABA) induced repetitive [Ca2+]cyt transients in guard cells. [Ca2+]cyt changes could be semi-quantitatively determined following correction of the calibration procedure for chloroplast autofluorescence. Extracellular calcium induced repetitive [Ca2+]cyt transients with peak values of up to approximately 1.5 microM, whereas ABA-induced [Ca2+]cyt transients had peak values up to approximately 0.6 microM. These values are similar to stimulus-induced [Ca2+]cyt changes previously reported in plant cells using ratiometric dyes or aequorin. In some guard cells perfused with low extracellular KCl concentrations, spontaneous calcium transients were observed. As yellow cameleon 2.1 was expressed in all guard cells, [Ca2+]cyt was measured independently in the two guard cells of single stomates for the first time. ABA-induced, calcium-induced or spontaneous [Ca2+]cyt increases were not necessarily synchronized in the two guard cells. Overall, these data demonstrate that that GFP-based cameleon calcium indicators are suitable to measure [Ca2+]cyt changes in guard cells and enable the pattern of [Ca

  1. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium bindingmore » triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.« less

  2. Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx

    PubMed Central

    Yamagishi, Yuya; Tessier-Lavigne, Marc

    2015-01-01

    Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled

  3. Calcium in diet

    MedlinePlus

    ... best source. Milk and dairy products such as yogurt, cheeses, and buttermilk contain a form of calcium ... the amount of calcium in a dairy product. Yogurt, most cheeses, and buttermilk are excellent sources of ...

  4. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates.

    PubMed

    Skulan, J; DePaolo, D J

    1999-11-23

    Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the (44)Ca/(40)Ca isotopic ratio, the total range of variation observed is 5.5 per thousand, and as much as 4 per thousand variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers.

  5. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates

    PubMed Central

    Skulan, Joseph; DePaolo, Donald J.

    1999-01-01

    Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the 44Ca/40Ca isotopic ratio, the total range of variation observed is 5.5‰, and as much as 4‰ variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers. PMID:10570137

  6. Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization

    PubMed Central

    Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H

    2007-01-01

    Background and purpose: Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. Experimental approach: We tested the effect of HC on platelet aggregation, thromboxane B2 (TXB2) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. Key results: HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB2 production. HC inhibited the thrombin-induced TXB2 production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB2 production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca2+ mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. Conclusions and implications: HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB2 production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions. PMID:17641677

  7. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Wastney, Meryl E.; OBrien, Kimberly O.; Lane, Helen W.

    1999-01-01

    Bone loss is one of the most detrimental effects of space flight, threatening to limit the duration of human space missions. The ability to understand and counteract this loss will be critical for crew health and safety during and after extended-duration missions. The hypotheses to be tested in this project are that space flight alters calcium homeostasis and bone mineral metabolism, and that calcium homeostasis and bone mineral metabolism will return to baseline within days to weeks of return to Earth. These hypotheses will be evidenced by elevated rates of bone mineral resorption and decreased bone mineral deposition, decreased absorption of dietary calcium, altered calcitropic endocrine profiles, elevated excretion of calcium in urine and feces, and elevated excretion of markers of bone resorption. The second hypothesis will be evidenced by return of indices of calcium homeostasis and bone metabolism to preflight levels within days to weeks of return to Earth. Studies will be conducted on International Space Station astronauts before, during, and after extended-duration flights. Measurements of calcium kinetics, bone mass, and endocrine/biochemical markers of bone and calcium homeostasis will be conducted. Kinetic studies utilizing dual isotope tracer kinetic studies and mathematical modeling techniques will allow for determination of bone calcium deposition, bone calcium resorption, dietary calcium absorption and calcium excretion (both urinary and endogenous fecal excretion). These studies will build upon preliminary work conducted on the Russian Mir space station. The results from this project will be critical for clarifying how microgravity affects bone and calcium homeostasis, and will provide an important control point for assessment of countermeasure efficacy. These results are expected to aid in developing countermeasures for bone loss, both for space crews and for individuals on Earth who have metabolic bone diseases.

  8. Calcium distribution in Amoeba proteus

    PubMed Central

    1979-01-01

    A preliminary investigation of the distribution of cellular calcium in Amoeba proteus was undertaken. Total cellular calcium under control conditions was found to be 4.59 mmol/kg of cells. When the external Ca++ concentration is increased from the control level of 0.03 to 20 mM, a net Ca++ influx results with a new steady-state cellular calcium level being achieved in integral of 3 h. At steady state the amount of calcium per unit weight of cells is higher than the amount of calcium per unit weight of external solution when the external concentration of Ca++ is below 10 mM. At external Ca++ concentrations above this level, total cellular calcium approaches the medium level of Ca++. Steady- state calcium exchange in Amoeba proteus was determined with 45Ca. There is an immediate and rapid exchange of integral of 0.84 mmol/kg of cells or 18% of the total cellular calcium with the labelled Ca++. Following this initial exchange, there was very little if any further exchange observed. Most of this exchanged calcium could be eliminated from the cell with 1 mM La+++, suggesting that the exchanged calcium is associated with the surface of the cell. Increase in either the external Ca++ concentration of pH raise the amount of exchangeable calcium associated with the cell. Calcium may be associated with the cell surface as a co-ion in the diffuse double layer or bound to fixed negative sites on the surface of the cell. If Ca++-binding sites do exist on the cell surface, there may be more than one type and they may have different dissociation constants. The cytoplasmic Ca++ ion activity is probably maintained at very low levels. PMID:512628

  9. SECONDARY HYPERPARATHYROIDISM AFTER BARIATRIC SURGERY: TREATMENT IS WITH CALCIUM CARBONATE OR CALCIUM CITRATE?

    PubMed Central

    BARETTA, Giorgio Alfredo Pedroso; CAMBI, Maria Paula Carlini; RODRIGUES, Arieli Luz; MENDES, Silvana Aparecida

    2015-01-01

    Background : Bariatric surgery, especially Roux-en-Y gastric bypass, can cause serious nutritional complications arising from poor absorption of essential nutrients. Secondary hyperparathyroidism is one such complications that leads to increased parathyroid hormone levels due to a decrease in calcium and vitamin D, which may compromise bone health. Aim : To compare calcium carbonate and calcium citrate in the treatment of secondary hyperparathyroidism. Method : Patients were selected on the basis of their abnormal biochemical test and treatment was randomly done with citrate or calcium carbonate. Results : After 60 days of supplementation, biochemical tests were repeated, showing improvement in both groups. Conclusion : Supplementation with calcium (citrate or carbonate) and vitamin D is recommended after surgery for prevention of secondary hyperparathyroidism. PMID:26537273

  10. Calcium homeostasis in intraerythrocytic malaria parasites.

    PubMed

    Garcia, C R; Dluzewski, A R; Catalani, L H; Burting, R; Hoyland, J; Mason, W T

    1996-12-01

    The fluorescent indicator, fura-2, AM, was used to measure free calcium concentrations in the intraerythrocytic malaria parasites of Plasmodium chabaudi and Plasmodium falciparum. In both species the free cytosolic calcium concentration was maintained at low levels (between 40 and 100 nM throughout the maturation process. Digital image analysis of the indicator fluorescence was performed on parasites and evaluated with the aid of a calibration of the calcium response, based on permeabilized parasites, exposed to calcium buffers. This again revealed that free calcium concentrations in the intact parasite are maintained at a predetermined level, regardless of the free calcium in the surrounding milieu. Both species of parasites are thus capable of regulating their internal free calcium levels with high precision, presumably by means of calcium pump ATPases. A small but significant elevation of the cytosolic free calcium concentration by the tumor promoter, thapsigargin, may be taken to reflect the presence of calcium stores in the endoplasmic reticulum in P. falciparum.

  11. Protective effect of T-type calcium channel blocker flunarizine on cisplatin-induced death of auditory cells.

    PubMed

    So, Hong-Seob; Park, Channy; Kim, Hyung-Jin; Lee, Jung-Han; Park, Sung-Yeol; Lee, Jai-Hyung; Lee, Zee-Won; Kim, Hyung-Min; Kalinec, Federico; Lim, David J; Park, Raekil

    2005-06-01

    Changes in intracellular Ca2+ level are involved in a number of intracellular events, including triggering of apoptosis. The role of intracellular calcium mobilization in cisplatin-induced hair cell death, however, is still unknown. In this study, the effect of calcium channel blocker flunarizine (Sibelium), which is used to prescribe for vertigo and tinnitus, on cisplatin-induced hair cell death was investigated in a cochlear organ of Corti-derived cell line, HEI-OC1, and the neonatal (P2) rat organ of Corti explant. Cisplatin induced apoptotic cell death showing nuclear fragmentation, DNA ladder, and TUNEL positive in both HEI-OC1 and primary organ of Corti explant. Flunarizine significantly inhibited the cisplatin-induced apoptosis. Unexpectedly, flunarizine increased the intracellular calcium ([Ca2+]i) levels of HEI-OC1. However, the protective effect of flunarizine against cisplatin was not mediated by modulation of intracellular calcium level. Treatment of cisplatin resulted in ROS generation and lipid peroxidation in HEI-OC1. Flunarizine did not attenuate ROS production but inhibited lipid peroxidation and mitochondrial permeability transition in cisplatin-treated cells. This result suggests that the protective mechanism of flunarizine on cisplatin-induced cytotoxicity is associated with direct inhibition of lipid peroxidation and mitochondrial permeability transition.

  12. 21 CFR 184.1212 - Calcium pantothenate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pantothenate. 184.1212 Section 184.1212... Listing of Specific Substances Affirmed as GRAS § 184.1212 Calcium pantothenate. (a) Calcium pantothenate... and the DL-racemic mixture of calcium pantothenate are used in food. Commercial calcium pantothenate...

  13. Dietary Calcium Intake and Calcium Supplementation in Hungarian Patients with Osteoporosis

    PubMed Central

    Szamosujvári, Pál; Dombai, Péter; Csóré, Katalin; Mikófalvi, Kinga; Steindl, Tímea; Streicher, Ildikó; Tarsoly, Júlia; Zajzon, Gergely; Somogyi, Péter; Szamosújvári, Pál; Lakatos, Péter

    2013-01-01

    Purpose. Adequate calcium intake is the basis of osteoporosis therapy—when this proves insufficient, even specific antiosteoporotic agents cannot exert their actions properly. Methods. Our representative survey analyzed the dietary intake and supplementation of calcium in 8033 Hungarian female and male (mean age: 68 years) (68.01 (CI95: 67.81–68.21)) patients with osteoporosis. Results. Mean intake from dietary sources was 665 ± 7.9 mg (68.01 (CI95: 67.81–68.21)) daily. A significant positive relationship could be detected between total dietary calcium intake and lumbar spine BMD (P = 0.045), whereas such correlation could not be demonstrated with femoral T-score. Milk consumption positively correlated with femur (P = 0.041), but not with lumbar BMD. The ingestion of one liter of milk daily increased the T-score by 0.133. Average intake from supplementation was 558 ± 6.2 mg (68.01 (CI95: 67.81–68.21)) daily. The cumulative dose of calcium—from both dietary intake and supplementation—was significantly associated with lumbar (r = 0.024, P = 0.049), but not with femur BMD (r = 0.021, P = 0.107). The currently recommended 1000–1500 mg total daily calcium intake was achieved in 34.5% of patients only. It was lower than recommended in 47.8% of the cases and substantially higher in 17.7% of subjects. Conclusions. We conclude that calcium intake in Hungarian osteoporotic patients is much lower than the current recommendation, while routinely applied calcium supplementation will result in inappropriately high calcium intake in numerous patients. PMID:23737777

  14. [The fasting calcium/creatinine ratio in patients with calcium stones and the relation with hypercalciuria and phosphocalcium metabolism].

    PubMed

    Arrabal-Polo, Miguel Ángel; del Carmen Cano-García, María; Arrabal-Martín, Miguel

    2016-04-01

    To determine the importance of fasting calcium/creatinine ratio in patients with calcium stones and its relation with hypercalciuria and phospho-calcium metabolism. Cross-sectional study including 143 patients divided into two groups according to fasting calcium/creatinine. Group 1: 66 patients (calcium/ creatinine<0.11); Group 2: 77 patients (calcium/ creatinine>0.11). A comparative study is performed between groups including phospho-calcium metabolism parameters and excretion of urinary lithogenic markers. Linear correlation studying calciuria and fasting calcium/ creatinine was performed. SPSS 17.0 statistical analysis software was used, considering p≤0.05. It is noteworthy that group 2 had increased 24 h urine calcium excretion in comparison to group 1 (229.3 vs 158.1; p=0.0001) and calcium/citrate (0.47 vs 0.34; p=0.001). There is a positive and significant correlation between calcium levels in 24 h urine and fasting calcium/creatinine (R=0.455; p=0.0001) and a cutoff is set at 0.127 (sensitivity 72%, specificity 66%) to determine hypercalciuria (>260 mg in 24 h). Increased fasting calcium/creatinine determines increased 24 hours calcium excretion, although the sensitivity and specificity to determine hypercalciuria is not high.

  15. PRESENILIN-NULL CELLS HAVE ALTERED TWO-PORE CALCIUM CHANNEL EXPRESSION AND LYSOSOMAL CALCIUM; IMPLICATIONS FOR LYSOSOMAL FUNCTION

    PubMed Central

    Kayala, Kara M Neely; Dickinson, George D; Minassian, Anet; Walls, Ken C; Green, Kim N; LaFerla, Frank M

    2012-01-01

    Presenilins are necessary for calcium homeostasis and also for efficient proteolysis through the autophagy/lysosome system. Presenilin regulates both endoplasmic reticulum calcium stores and autophagic proteolysis in a γ-secretase independent fashion. The endo-lysosome system can also act as a calcium store, with calcium efflux channels being recently identified as two-pore channels 1 and 2. Here we investigated lysosomal calcium content and the channels that mediate calcium release from these acidic stores in presenilin knockout cells. We report that presenilin loss leads to a lower total lysosomal calcium store despite the buildup of lysosomes found in these cells. Additionally, we find alterations in two-pore calcium channel protein expression, with loss of presenilin preventing the formation of a high molecular weight species of TPC1 and TPC2. Finally, we find that treatments that disturb lysosomal calcium release lead to a reduction in autophagy function yet lysosomal inhibitors do not alter two-pore calcium channel expression. These data indicate that alterations in lysosomal calcium in the absence of presenilins might be leading to disruptions in autophagy. PMID:23103503

  16. Effects of Hydration and Calcium Supplementation on Urine Calcium Concentration in Healthy Postmenopausal Women.

    PubMed

    Harris, Susan S; Dawson-Hughes, Bess

    2015-01-01

    The aim of this study was to determine whether calcium supplementation, compared with placebo, increases urine calcium concentrations to levels indicative of increased renal stone risk, and the role that fluid intake, as indicated by urine volume, may play in mitigating this risk. This is a secondary analysis of data from a randomized placebo-controlled trial of 500 mg/d calcium supplementation to prevent bone loss. Subjects were 240 white postmenopausal women age 40 to 70 years in good general health. Effects of supplementation on 1-year changes in 24h urine calcium concentration and urine volume were examined. Both treatment group and urine volume were strong independent predictors of urine calcium concentration (p < 0.001). Among subjects with urine volume under 2 L/24 h, more than half of placebo subjects were at lowest risk for renal stones compared with less than 35% of calcium-supplemented subjects. Among those with higher urine volumes, all placebo subjects and more than 80% of calcium supplemented subjects were at lowest risk. The increased risk of renal stones with calcium supplement use may be largely eliminated with adequate fluid intake, but older adults may not spontaneously consume adequate fluids to minimize this risk and should be counseled to do so.

  17. Calcium revisited, part III: effect of dietary calcium on BMD and fracture risk

    PubMed Central

    Burckhardt, Peter

    2015-01-01

    Food can be an excellent source of calcium. Dietary calcium is in general as well absorbed as calcium supplements, and exerts the same effects on bone. The main sources are dairy products, but also some vegetables and fruits contain considerable amounts of calcium. Mineral water can serve as a supplement. Cross-sectional, longitudinal and some interventional trials have shown positive effects on bone metabolism, bone density and bone loss. But the effect on fracture incidence is less certain, and that of milk, the most studied dairy product, still unproven. PMID:26331006

  18. Use of Genetically-encoded Calcium Indicators for Live Cell Calcium Imaging and Localization in Virus-infected Cells

    PubMed Central

    Perry, Jacob L.; Ramachandran, Nina K.; Utama, Budi; Hyser, Joseph M.

    2015-01-01

    Calcium signaling is a ubiquitous and versatile process involved in nearly every cellular process, and exploitation of host calcium signals is a common strategy used by viruses to facilitate replication and cause disease. Small molecule fluorescent calcium dyes have been used by many to examine changes in host cell calcium signaling and calcium channel activation during virus infections, but disadvantages of these dyes, including poor loading and poor long-term retention, complicate analysis of calcium imaging in virus-infected cells due to changes in cell physiology and membrane integrity. The recent expansion of genetically-encoded calcium indicators (GECIs), including blue and red-shifted color variants and variants with calcium affinities appropriate for calcium storage organelles like the endoplasmic reticulum (ER), make the use of GECIs an attractive alternative for calcium imaging in the context of virus infections. Here we describe the development and testing of cell lines stably expressing both green cytoplasmic (GCaMP5G and GCaMP6s) and red ER-targeted (RCEPIAer) GECIs. Using three viruses (rotavirus, poliovirus and respiratory syncytial virus) previously shown to disrupt host calcium homeostasis, we show the GECI cell lines can be used to detect simultaneous cytoplasmic and ER calcium signals. Further, we demonstrate the GECI expression has sufficient stability to enable long-term confocal imaging of both cytoplasmic and ER calcium during the course of virus infections. PMID:26344758

  19. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    PubMed

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  20. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Calcium alginate is prepared by...

  1. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium carbonate. 184.1191 Section 184.1191 Food... GRAS § 184.1191 Calcium carbonate. (a) Calcium carbonate (CaCO3, CAS Reg. No. 471-34-1) is prepared by... of calcium carbonate from calcium hydroxide in the “Carbonation process”; or (3) By precipitation of...

  2. CALCIUM BINDING TO INTESTINAL MEMBRANES

    PubMed Central

    Oschman, James L.; Wall, Betty J.

    1972-01-01

    Flame photometry reveals that glutaraldehyde and buffer solutions in routine use for electron microscopy contain varying amounts of calcium. The presence of electron-opaque deposits adjacent to membranes in a variety of tissues can be correlated with the presence of calcium in the fixative. In insect intestine (midgut), deposits occur adjacent to apical and lateral plasma membranes. The deposits are particularly evident in tissues fixed in glutaraldehyde without postosmication. They are also observed in osmicated tissue if calcium is added to wash and osmium solutions. Deposits are absent when calcium-free fixatives are used, but are present when traces of CaCl2 (as low as 5 x 10-5 M) are added. The deposits occur at regular intervals along junctional membranes, providing images strikingly similar to those obtained by other workers who have used pyroantimonate in an effort to localize sodium. Other divalent cations (Mg++, Sr++, Ba++, Mn++, Fe++) appear to substitute for calcium, while sodium, potassium, lanthanum, and mercury do not. After postfixing with osmium with calcium added, the deposits can be resolved as patches along the inner leaflet of apical and lateral plasma membranes. The dense regions may thus localize membrane constituents that bind calcium. The results are discussed in relation to the role of calcium in control of cell-to-cell communication, intestinal calcium uptake, and the pyroantimonate technique for ion localization. PMID:4569411

  3. Calcium-induced calcium release in rod photoreceptor terminals boosts synaptic transmission during maintained depolarization

    PubMed Central

    Cadetti, Lucia; Bryson, Eric J.; Ciccone, Cory A.; Rabl, Katalin; Thoreson, Wallace B.

    2008-01-01

    We examined the contribution of calcium-induced calcium release (CICR) to synaptic transmission from rod photoreceptor terminals. Whole-cell recording and confocal calcium imaging experiments were conducted on rods with intact synaptic terminals in a retinal slice preparation from salamander. Low concentrations of ryanodine stimulated calcium increases in rod terminals, consistent with the presence of ryanodine receptors. Application of strong depolarizing steps (−70 to −10 mV) exceeding 200 ms or longer in duration evoked a wave of calcium that spread across the synaptic terminals of voltage-clamped rods. This secondary calcium increase was blocked by high concentrations of ryanodine, indicating it was due to CICR. Ryanodine (50 μM) had no significant effect on rod calcium current (Ica) although it slightly diminished rod light-evoked voltage responses. Bath application of 50 μM ryanodine strongly inhibited light-evoked currents in horizontal cells. Whether applied extracellularly or delivered into the rod cell through the patch pipette, ryanodine (50 μM) also inhibited excitatory post-synaptic currents (EPSCs) evoked in horizontal cells by depolarizing steps applied to rods. Ryanodine caused a preferential reduction in the later portions of EPSCs evoked by depolarizing steps of 200 ms or longer. These results indicate that CICR enhances calcium increases in rod terminals evoked by sustained depolarization, which in turn acts to boost synaptic exocytosis from rods. PMID:16819987

  4. Calcium and bones

    MedlinePlus

    ... as you get older. This can result in brittle, fragile bones that can break easily, even without a fall or other injury. The digestive system is normally very bad at absorbing calcium. Most people absorb only 15% to 20% of the calcium ...

  5. Impact of calcium intake and intestinal calcium absorption on kidney stones in older women: the study of osteoporotic fractures.

    PubMed

    Sorensen, Mathew D; Eisner, Brian H; Stone, Katie L; Kahn, Arnold J; Lui, Li-Yung; Sadetsky, Natalia; Stoller, Marshall L

    2012-04-01

    Intestinal calcium absorption is thought to have a critical role in nephrolithiasis. However, to our knowledge no study has directly assessed this association. Therefore, we explored the relationship among intestinal fractional calcium absorption, calcium intake and nephrolithiasis. The Study of Osteoporotic Fractures is a prospective cohort of 9,704 postmenopausal women recruited from population based listings in 1986 and followed for more than 20 years. Secondary analyses were performed of 7,982 women who reported their history of nephrolithiasis, of which 5,452 (68%) underwent an oral radioactive calcium assay (45Ca). The impact of dietary and supplemental calcium on intestinal fractional calcium absorption was evaluated, and factors independently associated with nephrolithiasis were determined. Fractional calcium absorption decreased with increased calcium intake, with no difference between dietary and supplemental calcium. Fractional calcium absorption was higher in women with a nephrolithiasis history among all calcium intake groups. Increased dietary calcium intake reduced the likelihood of nephrolithiasis by 45% to 54% (p=0.03). Women with a history of nephrolithiasis were less likely to supplement calcium (p<0.001). In adjusted analyses women who supplemented calcium were 21% to 38% less likely to have a nephrolithiasis history (p=0.007) and there was a 24% increased risk of kidney stones for each 10% increase in fractional calcium absorption (p=0.008). Fractional calcium absorption is higher in women with a history of nephrolithiasis. Higher intestinal fractional calcium absorption is associated with a greater risk of historical nephrolithiasis. Dietary and supplemental calcium decrease fractional calcium absorption, and may protect against nephrolithiasis. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. α-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels

    PubMed Central

    Li, Peiyao; Miao, Yong; Dani, Adish; Vig, Monika

    2016-01-01

    Orai1 forms a highly calcium-selective pore of the calcium release activated channel, and α-SNAP is necessary for its function. Here we show that α-SNAP regulates on-site assembly of Orai1 dimers into calcium-selective multimers. We find that Orai1 is a dimer in resting primary mouse embryonic fibroblasts but displays variable stoichiometry in the plasma membrane of store-depleted cells. Remarkably, α-SNAP depletion induces formation of higher-order Orai1 oligomers, which permeate significant levels of sodium via Orai1 channels. Sodium permeation in α-SNAP–deficient cells cannot be corrected by tethering multiple Stim1 domains to Orai1 C-terminal tail, demonstrating that α-SNAP regulates functional assembly and calcium selectivity of Orai1 multimers independently of Stim1 levels. Fluorescence nanoscopy reveals sustained coassociation of α-SNAP with Stim1 and Orai1, and α-SNAP–depleted cells show faster and less constrained mobility of Orai1 within ER-PM junctions, suggesting Orai1 and Stim1 coentrapment without stable contacts. Furthermore, α-SNAP depletion significantly reduces fluorescence resonance energy transfer between Stim1 and Orai1 N-terminus but not C-terminus. Taken together, these data reveal a unique role of α-SNAP in the on-site functional assembly of Orai1 subunits and suggest that this process may, in part, involve enabling crucial low-affinity interactions between Orai1 N-terminus and Stim1. PMID:27335124

  7. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium citrate. 184.1195 Section 184.1195 Food... GRAS § 184.1195 Calcium citrate. (a) Calcium citrate (Ca3(C6H5O7)2·4H2O, CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric acid with calcium hydroxide or...

  8. Calcium metabolism and cardiovascular function after spaceflight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Dierickx, Jacqueline; Roullet, Chantal; Otsuka, Keiichi; Watanabe, Mitsuaki; Coste, Sarah; Roullet, Jean Baptiste; Phanouvang, Thongchan; Orwoll, Eric; hide

    2002-01-01

    To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P < 0.001), elevated parathyroid hormone levels (P < 0.001), reduced calcitonin levels (P < 0.05), unchanged 1,25(OH)(2)D(3) levels, and elevated skull (P < 0.01) and reduced femur bone mineral density. Basal and thrombin-stimulated platelet free calcium (intracellular calcium concentration) were also reduced (P < 0.05). There was a tendency for indirect systolic BP to be reduced in conscious flight animals (P = 0.057). However, mean arterial pressure was elevated (P < 0.001) after anesthesia. Dietary calcium altered all aspects of calcium metabolism (P < 0.001), as well as BP (P < 0.001), but the only interaction with flight was a relatively greater increase in ionized calcium in flight animals fed low- compared with high-calcium diets (P < 0.05). The results indicate that 1) flight-induced disruptions of calcium metabolism are relatively impervious to dietary calcium in the short term, 2) increased ionized calcium did not normalize low-calcium-induced elevations of BP, and 3) parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.

  9. Calcium signaling in taste cells: regulation required.

    PubMed

    Medler, Kathryn F

    2010-11-01

    Peripheral taste receptor cells depend on distinct calcium signals to generate appropriate cellular responses that relay taste information to the central nervous system. Some taste cells have conventional chemical synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release from stores to formulate an output signal through a hemichannel. Despite the importance of calcium signaling in taste cells, little is known about how these signals are regulated. This review summarizes recent studies that have identified 2 calcium clearance mechanisms expressed in taste cells, including mitochondrial calcium uptake and sodium/calcium exchangers (NCXs). These studies identified a unique constitutive calcium influx that contributes to maintaining appropriate calcium homeostasis in taste cells and the role of the mitochondria and exchangers in this process. The additional role of NCXs in the regulation of evoked calcium responses is also discussed. Clearly, calcium signaling is a dynamic process in taste cells and appears to be more complex than has previously been appreciated.

  10. Calcium binding properties of calcium dependent protein kinase 1 (CaCDPK1) from Cicer arietinum.

    PubMed

    Dixit, Ajay Kumar; Jayabaskaran, Chelliah

    2015-05-01

    Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca(2+) ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 μM and 120 μM indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 μM and 1.7 μM. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a α-helical rich protein. Calcium binding further increased the α-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    The use of (35)S-labeled calmodulin (CaM) to screen a corn root cDNA expression library has led to the isolation of a CaM-binding protein, encoded by a cDNA with sequence similarity to small auxin up RNAs (SAURs), a class of early auxin-responsive genes. The cDNA designated as ZmSAUR1 (Zea mays SAURs) was expressed in Escherichia coli, and the recombinant protein was purified by CaM affinity chromatography. The CaM binding assay revealed that the recombinant protein binds to CaM in a calcium-dependent manner. Deletion analysis revealed that the CaM binding site was located at the NH(2)-terminal domain. A synthetic peptide of amino acids 20-45, corresponding to the potential CaM binding region, was used for calcium-dependent mobility shift assays. The synthetic peptide formed a stable complex with CaM only in the presence of calcium. The CaM affinity assay indicated that ZmSAUR1 binds to CaM with high affinity (K(d) approximately 15 nM) in a calcium-dependent manner. Comparison of the NH(2)-terminal portions of all of the characterized SAURs revealed that they all contain a stretch of the basic alpha-amphiphilic helix similar to the CaM binding region of ZmSAUR1. CaM binds to the two synthetic peptides from the NH(2)-terminal regions of Arabidopsis SAUR-AC1 and soybean 10A5, suggesting that this is a general phenomenon for all SAURs. Northern analysis was carried out using the total RNA isolated from auxin-treated corn coleoptile segments. ZmSAUR1 gene expression began within 10 min, increased rapidly between 10 and 60 min, and peaked around 60 min after 10 microM alpha-naphthaleneacetic acid treatment. These results indicate that ZmSAUR1 is an early auxin-responsive gene. The CaM antagonist N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride inhibited the auxin-induced cell elongation but not the auxin-induced expression of ZmSAUR1. This suggests that calcium/CaM do not regulate ZmSAUR1 at the transcriptional level. CaM binding to ZmSAUR1 in a calcium

  12. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  13. Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1.

    PubMed

    Heidarsson, Pétur O; Naqvi, Mohsin M; Otazo, Mariela R; Mossa, Alessandro; Kragelund, Birthe B; Cecconi, Ciro

    2014-09-09

    Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use single-molecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration.

  14. Defective Store-Operated Calcium Entry Causes Partial Nephrogenic Diabetes Insipidus

    PubMed Central

    Mamenko, Mykola; Dhande, Isha; Tomilin, Viktor; Zaika, Oleg; Boukelmoune, Nabila; Zhu, Yaming; Gonzalez-Garay, Manuel L.

    2016-01-01

    Store-operated calcium entry (SOCE) is the mechanism by which extracellular signals elicit prolonged intracellular calcium elevation to drive changes in fundamental cellular processes. Here, we investigated the role of SOCE in the regulation of renal water reabsorption, using the inbred rat strain SHR-A3 as an animal model with disrupted SOCE. We found that SHR-A3, but not SHR-B2, have a novel truncating mutation in the gene encoding stromal interaction molecule 1 (STIM1), the endoplasmic reticulum calcium (Ca2+) sensor that triggers SOCE. Balance studies revealed increased urine volume, hypertonic plasma, polydipsia, and impaired urinary concentrating ability accompanied by elevated circulating arginine vasopressin (AVP) levels in SHR-A3 compared with SHR-B2. Isolated, split-open collecting ducts (CD) from SHR-A3 displayed decreased basal intracellular Ca2+ levels and a major defect in SOCE. Consequently, AVP failed to induce the sustained intracellular Ca2+ mobilization that requires SOCE in CD cells from SHR-A3. This effect decreased the abundance of aquaporin 2 and enhanced its intracellular retention, suggesting impaired sensitivity of the CD to AVP in SHR-A3. Stim1 knockdown in cultured mpkCCDc14 cells reduced SOCE and basal intracellular Ca2+ levels and prevented AVP-induced translocation of aquaporin 2, further suggesting the effects in SHR-A3 result from the expression of truncated STIM1. Overall, these results identify a novel mechanism of nephrogenic diabetes insipidus and uncover a role of SOCE in renal water handling. PMID:26574044

  15. Defective Store-Operated Calcium Entry Causes Partial Nephrogenic Diabetes Insipidus.

    PubMed

    Mamenko, Mykola; Dhande, Isha; Tomilin, Viktor; Zaika, Oleg; Boukelmoune, Nabila; Zhu, Yaming; Gonzalez-Garay, Manuel L; Pochynyuk, Oleh; Doris, Peter A

    2016-07-01

    Store-operated calcium entry (SOCE) is the mechanism by which extracellular signals elicit prolonged intracellular calcium elevation to drive changes in fundamental cellular processes. Here, we investigated the role of SOCE in the regulation of renal water reabsorption, using the inbred rat strain SHR-A3 as an animal model with disrupted SOCE. We found that SHR-A3, but not SHR-B2, have a novel truncating mutation in the gene encoding stromal interaction molecule 1 (STIM1), the endoplasmic reticulum calcium (Ca(2+)) sensor that triggers SOCE. Balance studies revealed increased urine volume, hypertonic plasma, polydipsia, and impaired urinary concentrating ability accompanied by elevated circulating arginine vasopressin (AVP) levels in SHR-A3 compared with SHR-B2. Isolated, split-open collecting ducts (CD) from SHR-A3 displayed decreased basal intracellular Ca(2+) levels and a major defect in SOCE. Consequently, AVP failed to induce the sustained intracellular Ca(2+) mobilization that requires SOCE in CD cells from SHR-A3. This effect decreased the abundance of aquaporin 2 and enhanced its intracellular retention, suggesting impaired sensitivity of the CD to AVP in SHR-A3. Stim1 knockdown in cultured mpkCCDc14 cells reduced SOCE and basal intracellular Ca(2+) levels and prevented AVP-induced translocation of aquaporin 2, further suggesting the effects in SHR-A3 result from the expression of truncated STIM1. Overall, these results identify a novel mechanism of nephrogenic diabetes insipidus and uncover a role of SOCE in renal water handling. Copyright © 2016 by the American Society of Nephrology.

  16. Calcium/calmodulin-dependent serine protein kinase CASK modulates the L-type calcium current.

    PubMed

    Nafzger, Sabine; Rougier, Jean-Sebastien

    2017-01-01

    The L-type voltage-gated calcium channel Ca v 1.2 mediates the calcium influx into cells upon membrane depolarization. The list of cardiopathies associated to Ca v 1.2 dysfunctions highlights the importance of this channel in cardiac physiology. Calcium/calmodulin-dependent serine protein kinase (CASK), expressed in cardiac cells, has been identified as a regulator of Ca v 2.2 channels in neurons, but no experiments have been performed to investigate its role in Ca v 1.2 regulation. Full length or the distal C-terminal truncated of the pore-forming Ca v 1.2 channel (Ca v 1.2α1c), both present in cardiac cells, were expressed in TsA-201 cells. In addition, a shRNA silencer, or scramble as negative control, of CASK was co-transfected in order to silence CASK endogenously expressed. Three days post-transfection, the barium current was increased only for the truncated form without alteration of the steady state activation and inactivation biophysical properties. The calcium current, however, was increased after CASK silencing with both types of Ca v 1.2α1c subunits suggesting that, in absence of calcium, the distal C-terminal counteracts the CASK effect. Biochemistry experiments did not reveals neither an alteration of Ca v 1.2 channel protein expression after CASK silencing nor an interaction between Ca v 1.2α1c subunits and CASK. Nevertheless, after CASK silencing, single calcium channel recordings have shown an increase of the voltage-gated calcium channel Ca v 1.2 open probability explaining the increase of the whole-cell current. This study suggests CASK as a novel regulator of Ca v 1.2 via a modulation of the voltage-gated calcium channel Ca v 1.2 open probability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of extracellular calcium on calcium transport during hyperthermia of tumor cells.

    PubMed

    Anghileri, L J; Marcha, C; Crone-Escanyé, M C; Robert, J

    1985-08-01

    The effects of different concentrations of extracellular ion calcium on the transport of calcium by tumor cells have been studied by means of the uptake of radiocalcium. Tumor cells incubated at 45 degrees C take up 4-10 times the amount of radioactivity incorporated by cells incubated at 37 degrees C. The difference is still greater (up to 100 times) for the intracellular incorporation as assessed by elimination of the membrane-bound calcium by EGTA treatment. The possible mechanisms involved in this differential behavior are discussed.

  18. Calcium absorption is not increased by caseinophosphopeptides.

    PubMed

    Teucher, Birgit; Majsak-Newman, Gosia; Dainty, Jack R; McDonagh, David; FitzGerald, Richard J; Fairweather-Tait, Susan J

    2006-07-01

    One of the suggested health benefits of caseinophosphopeptides (CPPs) is their ability to enhance calcium absorption. This possibility is based on the assumption that they resist proteolysis in the upper gastrointestinal tract and maintain calcium in a soluble form at alkaline pH in the distal ileum. The effects of CPP-enriched preparations (containing candidate functional food ingredients) on calcium absorption from a calcium lactate drink were tested. A randomized crossover trial was undertaken in 15 adults in whom we measured the absorption of calcium from a calcium lactate drink (drink A: 400 mg Ca as lactate) and 2 preparations enriched with forms of CPP (1.7 g each; drinks B and C). Both drinks B and C contained 400 mg Ca as calcium lactate plus approximately 100 mg CPP-derived calcium). Each volunteer received the 3 drinks in random order. Absorption was measured by the dual-label calcium stable-isotope technique. The quantity of calcium absorbed was significantly lower from drink A (103 mg) than from drink B (117 mg; P = 0.012) or drink C (121 mg; P = 0.002), which indicated a positive effect of the CPPs. However, because the CPP preparations contributed additional calcium besides that found in the calcium lactate (drink A), fractional absorption of calcium from drink B (23%) was slightly but significantly (P = 0.015) lower than that from drink A (26%). The differences in calcium absorption are unlikely to have any biological significance. CPPs are unsuitable as candidate ingredients for functional foods that are designed to deliver improved calcium nutrition.

  19. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  20. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  1. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  2. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  3. Evaluation of pH and calcium ion diffusion from calcium hydroxide pastes and MTA.

    PubMed

    Sáez, María Del M; López, Gabriela L; Atlas, Diana; de la Casa, María L

    2017-04-01

    The aim of this ex vivo study was to evaluate changes in pH and calcium ion diffusion through root dentin from calcium hydroxide (Ca (OH) 2 ) and mineral trioxide aggregate (MTA) pastes at 7, 30 and 60 days; and the relationship between pH and ion diffusion. Thirty-two human premolars were used. Crowns were sectioned and root canals instrumented and filled in with the following preparations: 1) Ca(OH) 2 + distilled water (n=7); 2) Ca(OH) 2 + 0.1% chlorhexidine gluconate (n=7); 3) MTA + distilled water (n=7); 4) MTA + 0.1% chlorhexidine gluconate (CHX) (n=7); 5) distilled water (n=2) (control); 6) 0.1% chlorhexidine gluconate (n=2) (control). The apex and coronary opening were sealed with IRM. Roots were placed in Eppendorf tubes with 1 ml distilled water at 37°C and 100% humidity. At baseline, 7, 30 and 60 days, pH was measured with pH meter, and calcium ion content in the solution was analyzed by atomic absorption spectrophotometry. The data were statistically analyzed using ANOVA, simple linear regression analysis and Pearson's correlation test. The highest pH values were achieved with calcium hydroxide pastes at 60 days (p ≤ 0.05). Calcium ions were released in all groups. The calcium hydroxide paste with distilled water at 60 days had the highest calcium ion value (p ≤ 0.01). There was a positive correlation between calcium and pH values. Sociedad Argentina de Investigación Odontológica.

  4. The calcium paradox phenomenon: a flow rate and volume response study of calcium-free perfusion.

    PubMed

    Oksendal, A N; Jynge, P; Sellevold, O F; Rotevatn, S; Saetersdal, T

    1985-10-01

    A dose-response study concerning the importance of the flow rate (0.5 to 12 ml/min) and volume (2.5 to 60 ml) of calcium-free coronary perfusion (duration 5 min) in the induction of a calcium paradox on reperfusion (duration 15 min) with calcium-containing medium has been performed in the isolated rat heart (37 degrees C). On the basis of enzymatic, physiological, and metabolic assessments three different levels of tissue injury were identified: a minimal paradox at 1.0 ml/min or 5 ml, a subtotal paradox at 2 ml/min or 10 ml and a total paradox at 9 ml/min or 45 ml. Ultrastructural examination revealed that cellular injury following calcium repletion was always severe, and that an increase in the flow rate and volume of calcium-free perfusion increased the number of severely injured cells. During calcium-free perfusion the external lamina largely remained intact over the surface coat of the sarcolemma, but variable degrees of separation of intercalated discs were observed. It is concluded that the calcium paradox model of myocardial injury presents a rather sharp threshold related to the flow rate or volume of calcium-free coronary perfusion and that on trespassing this threshold there is a narrow zone characterized by a decreasing number of viable cells. Furthermore, the study indicates that a separation of the external lamina from the surface coat of the sarcolemma is not a prerequisite for the induction of a calcium paradox, and that cell injury may occur in the presence of intact intercalated discs.

  5. Cadmium and calcium uptake in the mollusc donax rugosus and effect of a calcium channel blocker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidoumou, Z.; Gnassia-Barelli, M.; Romeo, M.

    Donax rugosus, a common bivalve mollusc in the coastal waters of Mauritania, has been studied for trace metal concentrations as a function of sampling site (from South of Mauritania to the North of this country) and of season. In this paper, the uptake of cadmium was experimentally studied in the different organs of D. rugosus. Since metals such as cadmium, copper and mercury may alter calcium homeostasis, calcium uptake was also studied in the animals treated with cadmium. Since calcium is taken up through specific channels, it appears that metals inhibit Ca uptake by interacting with these channels in themore » plasma membrane. Cadmium and calcium have very similar atomic radii, thus cadmium may be taken up through the calcium channels, particularly through voltage-dependent channels. The uptake of cadmium and calcium by D. Rugosus was therefore also studied in the presence of the calcium channel blocker verapamil. 13 refs., 3 figs., 1 tab.« less

  6. The role of calcium in osteoporosis.

    PubMed

    Arnaud, C D; Sanchez, S D

    1990-01-01

    Calcium requirements may vary throughout the lifespan. During the growth years and up to age 25-30, it is important to maximize dietary intake of calcium to maintain positive calcium balance and achieve peak bone mass, thereby possibly decreasing the risk of fracture when bone is subsequently lost. The RDA for age 10-25 is 1200 mg/day. Calcium intake need not be greater than 800 mg/day during the relatively short period of time between the end of bone building and the onset of bone loss (30 to 40 years old). Starting at age 40-45, both men and women lose bone slowly, but women lose bone more rapidly around the menopause and for about 10 years after. Intestinal calcium absorption and the ability to adapt to low calcium diets are impaired in many postmenopausal women and elderly persons owing to a suspected functional or absolute decrease in the ability of the kidney to produce 1,25(OH)2D3. The bones then become more and more a source of calcium to maintain critical extracellular fluid calcium levels. Available evidence suggests that the impairments of intestinal calcium absorption observed during the menopause and aging can be overcome only by inordinately large calcium intakes (1500 to 2500 mg/day). Since this amount is difficult to derive from the diet, can cause constipation, and may not prevent trabecular bone loss, it should not be used as a substitute for sex hormone replacement. Women taking estrogen replacement should be provided the RDA for calcium of 800 mg/day at a minimum. Those who cannot or will not take estrogen should be asked to ingest at least 1000 to 1500 mg/day of calcium to delay cortical bone loss and prevent secondary hyperparathyroidism. It should be emphasized that up to 2000 mg/day of calcium is safe in teenaged children and adults. Excessive dietary intake of protein and fiber may induce significant negative calcium balance and thus increase dietary calcium requirements. It is also possible that excessive intakes of phosphate could have a

  7. Impact of Calcium Intake and Intestinal Calcium Absorption on Kidney Stones in Older Women: The Study of Osteoporotic Fractures (SOF)

    PubMed Central

    Sorensen, Mathew D.; Eisner, Brian H.; Stone, Katie L.; Kahn, Arnold J.; Lui, Li-Yung; Sadetsky, Natalia; Stoller, Marshall L.

    2013-01-01

    Purpose Intestinal calcium absorption is thought to play a critical role in nephrolithiasis; however, no study has directly assessed this association. The purpose of this study was to explore the relationship between intestinal fractional calcium absorption, calcium intake, and nephrolithiasis. Materials and Methods The Study of Osteoporotic Fractures is a prospective cohort of 9704 post-menopausal women recruited from population-based listings in 1986 and followed for more than 20 years. Secondary analyses were performed of 7982 women who reported their history of nephrolithiasis, of which 5452 (68%) underwent oral radioactive calcium assay (45Ca). The impact of dietary and supplemental calcium on intestinal fractional calcium absorption was evaluated and factors independently associated with nephrolithiasis were determined. Results Fractional calcium absorption decreased with increased calcium intake, with no difference between dietary and supplemental calcium. Fractional calcium absorption was higher in women with a nephrolithiasis history among all calcium intake groups. Increased dietary calcium intake reduced the likelihood of nephrolithiasis by 45–54% (p=0.03). Women with a history of nephrolithiasis were less likely to supplement calcium (p<0.001). In adjusted analyses, women who supplemented calcium were 21–38% less likely to have a nephrolithiasis history (p=0.007) and there was a 24% increased risk of kidney stones for each 10% increase in fractional calcium absorption (p=0.008). Conclusions Fractional calcium absorption is higher in women with a history of nephrolithiasis. Higher intestinal fractional calcium absorption is associated with a greater risk of historic nephrolithiasis. Dietary and supplemental calcium decrease fractional calcium absorption and may protect against nephrolithiasis. PMID:22341269

  8. 21 CFR 172.720 - Calcium lactobionate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium lactobionate. 172.720 Section 172.720 Food... Other Specific Usage Additives § 172.720 Calcium lactobionate. The food additive calcium lactobionate... additive is the calcium salt of lactobionic acid (4-(β,D-galactosido)-D-gluconic acid) produced by the...

  9. 21 CFR 172.720 - Calcium lactobionate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium lactobionate. 172.720 Section 172.720 Food... Other Specific Usage Additives § 172.720 Calcium lactobionate. The food additive calcium lactobionate... additive is the calcium salt of lactobionic acid (4-(β,D-galactosido)-D-gluconic acid) produced by the...

  10. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 172.410 Section 172.410 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used in food in accordance with the...

  11. The effects of excess calcium on the handling and mechanical properties of hydrothermal derived calcium phosphate bone cement

    NASA Astrophysics Data System (ADS)

    Razali, N. N.; Sukardi, M. A.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.

    2018-01-01

    The objective of this study is to determine the effects of excess calcium on the handling and mechanical properties of hydrothermal derived calcium phosphate cement (CPC) for bone filling applications. Hydroxyapatite powder was synthesized via hydrothermal method using calcium oxide, CaO and ammonium dihydrogen phosphate, NH4H2PO4 as the calcium and phosphorus precursors respectively. The effects of calcium excess were evaluated by varying the CaO content at 0, 5 and 15 mole %. The precursors were then refluxed in distilled water at 90-100°C and dried overnight until the calcium phosphate powder was formed. CPC was then produced by mixing the synthesized powder with distilled water at the powder-to-liquid (P/L) ratio of 1.5. The result from the morphological properties of CPC shows the increase in agglomeration and particles size with 5 mole % of calcium excess but decreased with 15 mole % of calcium excess in CPC. This result was in agreement with the compressive strength result where the CPC increased its strength with 5 mole % of calcium excess but reduced with 15 mole % of calcium excess. The excess in calcium precursor also significantly improved the setting time but reduced the injectability of CPC.

  12. Calcium supplementation does not augment bone gain in young women consuming diets moderately low in calcium.

    PubMed

    Barger-Lux, M Janet; Davies, K Michael; Heaney, Robert P

    2005-10-01

    In earlier observational work, the dietary calcium:protein ratio was directly related to bone accrual in healthy postadolescent women. In this study, we sought to test the hypothesis that augmented calcium intake would increase postadolescent skeletal consolidation, using a double-blind, randomized, placebo-controlled design. We recruited 152 healthy young women (age 23.1 +/- 2.7 y, BMI 22.5 +/- 3.0 kg/m2); their usual diets, as assessed by 7-d food diaries, were low in calcium (605 +/- 181 mg/d; 15.1 +/- 4.5 mmol/d) and in the calcium:protein ratio (10.1 +/- 2.0 mg/g). The subjects were randomly assigned to supplemental calcium [500 mg calcium (12.5 mmol) as the carbonate, 3 times/d, with meals] or placebo capsules identical in appearance; all participants also took a daily multivitamin, and they were followed for up to 36 mo with bone densitometry (dual energy X-ray absorptiometry; DXA) at 6-mo intervals. A total of 121 subjects remained in the study for at least 12 mo (median time in the study, 35 mo), with a mean compliance level (observed/expected tablet consumption) of 87.7%. DXA data for these 121 subjects indicated modest but significant mean rates of increase (i.e., 0.24 to 1.10%/y) in bone mineral content (BMC; total body, total hip, and lumbar spine) and in lumbar spine bone mineral density (BMD) but no change in total hip BMD. None of these rates of change differed by group, i.e., calcium supplementation did not have any measurable effect on bone mass accrual. By midstudy, the calcium content of the subjects' usual diets for both groups had risen by approximately 15%. The combined effect of improved intakes of dietary calcium and the small amount of calcium added by the multivitamin tablets resulted in a mean calcium intake for the control group > 800 mg (20 mmol)/d, possibly at or near the threshold beyond which additional calcium has no further effect on bone accrual.

  13. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells.

    PubMed Central

    Marengo, J J; Hidalgo, C; Bull, R

    1998-01-01

    The calcium dependence of ryanodine-sensitive single calcium channels was studied after fusing with planar lipid bilayers sarcoendoplasmic reticulum vesicles isolated from excitable tissues. Native channels from mammalian or amphibian skeletal muscle displayed three different calcium dependencies, cardiac (C), mammalian skeletal (MS), and low fractional open times (low Po), as reported for channels from brain cortex. Native channels from cardiac muscle presented only the MS and C dependencies. Channels with the MS or low Po behaviors showed bell-shaped calcium dependencies, but the latter had fractional open times of <0.1 at all [Ca2+]. Channels with C calcium dependence were activated by [Ca2+] < 10 microM and were not inhibited by increasing cis [Ca2+] up to 0.5 mM. After oxidation with 2,2'-dithiodipyridine or thimerosal, channels with low Po or MS dependencies increased their activity. These channels modified their calcium dependencies sequentially, from low Po to MS and C, or from MS to C. Reduction with glutathione of channels with C dependence (native or oxidized) decreased their fractional open times in 0.5 mM cis [Ca2+], from near unity to 0.1-0.3. These results show that all native channels displayed at least two calcium dependencies regardless of their origin, and that these changed after treatment with redox reagents. PMID:9512024

  14. Modification of the N-Terminus of a Calcium Carbonate Precipitating Peptide Affects Calcium Carbonate Mineralization.

    PubMed

    Usui, Kenji; Yokota, Shin-Ichiro; Ozaki, Makoto; Sakashita, Shungo; Imai, Takahito; Tomizaki, Kin-Ya

    2018-01-01

    A core sequence (the 9 C-terminal residues) of calcification-associated peptide (CAP- 1) isolated from the exoskeleton of the red swamp crayfish was previously shown to control calcium carbonate precipitation with chitin. In addition, a modified core sequence in which the phosphorylated serine at the N terminus is replaced with serine exhibits was also previously shown to alter precipitation characteristics with chitin. We focused on calcium carbonate precipitation and attempted to elucidate aspects of the mechanism underlying mineralization. We attempted to evaluate in detail the effects of modifying the N-terminus in the core sequence on calcium carbonate mineralization without chitin. The peptide modifications included phosphorylation, dephosphorylation, and a free or acetylated Nterminus. The peptides were synthesized manually on Wang resin using the DIPCI-DMAP method for the first residue, and Fmoc solid phase peptide synthesis with HBTU-HOBt for the subsequent residues. Prior to calcium carbonate precipitation, calcium carbonate was suspended in MilliQ water. Carbon dioxide gas was bubbled into the stirred suspension, then the remaining solid CaCO3 was removed by filtration. The concentration of calcium ions in the solution was determined by standard titration with ethylenediaminetetraacetate. Calcium carbonate precipitation was conducted in a micro tube for 3 h at 37°C. We used the micro-scale techniques AFM (atomic force microscopy) and TEM (transmission electron microscopy), and the macro-scale techniques chelate titration, HPLC, gel filtration, CD (circular dichroism) and DLS (dynamic light scattering). We determined the morphologies of the calcium carbonate deposits using AFM and TEM. The pS peptide provided the best control of the shape and size of the calcium carbonate round particles. The acetylated peptides (Ac-S and Ac-pS) provided bigger particles with various shapes. S peptide provided a mixture of bigger particles and amorphous particles. We

  15. Association of calcium sensing receptor polymorphisms at rs1801725 with circulating calcium in breast cancer patients.

    PubMed

    Wang, Li; Widatalla, Sarrah E; Whalen, Diva S; Ochieng, Josiah; Sakwe, Amos M

    2017-08-02

    Breast cancer (BC) patients with late-stage and/or rapidly growing tumors are prone to develop high serum calcium levels which have been shown to be associated with larger and aggressive breast tumors in post and premenopausal women respectively. Given the pivotal role of the calcium sensing receptor (CaSR) in calcium homeostasis, we evaluated whether polymorphisms of the CASR gene at rs1801725 and rs1801726 SNPs in exon 7, are associated with circulating calcium levels in African American and Caucasian control subjects and BC cases. In this retrospective case-control study, we assessed the mean circulating calcium levels, the distribution of two inactivating CaSR SNPs at rs1801725 and rs1801726 in 199 cases and 384 age-matched controls, and used multivariable regression analysis to determine whether these SNPs are associated with circulating calcium in control subjects and BC cases. We found that the mean circulating calcium levels in African American subjects were higher than those in Caucasian subjects (p < 0.001). As expected, the mean calcium levels were higher in BC cases compared to control subjects (p < 0.001), but the calcium levels in BC patients were independent of race. We also show that in BC cases and control subjects, the major alleles at rs1801725 (G/T, A986S) and at rs1801726 (C/G, Q1011E) were common among Caucasians and African Americans respectively. Compared to the wild type alleles, polymorphisms at the rs1801725 SNP were associated with higher calcium levels (p = 0.006) while those at rs1801726 were not. Using multivariable linear mixed-effects models and adjusting for age and race, we show that circulating calcium levels in BC cases were associated with tumor grade (p = 0.009), clinical stage (p = 0.003) and more importantly, with inactivating mutations of the CASR at the rs1801725 SNP (p = 0.038). These data suggest that decreased sensitivity of the CaSR to calcium due to inactivating polymorphisms at rs1801725, may predispose

  16. Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    Crystals of calcium oxalate often form in cells adjacent to the vascular bundles in the tissues along the xylem stream. This spatial crystal pattern suggests a role for calcium oxalate formation in regulating calcium transport and partitioning to edible organs such as seeds. To investigate this pote...

  17. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  18. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  19. Store-Operated Calcium Entries Control Neural Stem Cell Self-Renewal in the Adult Brain Subventricular Zone.

    PubMed

    Domenichini, Florence; Terrié, Elodie; Arnault, Patricia; Harnois, Thomas; Magaud, Christophe; Bois, Patrick; Constantin, Bruno; Coronas, Valérie

    2018-05-01

    The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774. © AlphaMed Press 2018.

  20. Role of Orai1 and store-operated calcium entry in mouse lacrimal gland signalling and function.

    PubMed

    Xing, Juan; Petranka, John G; Davis, Felicity M; Desai, Pooja N; Putney, James W; Bird, Gary S

    2014-03-01

    Lacrimal glands function to produce an aqueous layer, or tear film, that helps to nourish and protect the ocular surface. Lacrimal glands secrete proteins, electrolytes and water, and loss of gland function can result in tear film disorders such as dry eye syndrome, a widely encountered and debilitating disease in ageing populations. To combat these disorders, understanding the underlying molecular signalling processes that control lacrimal gland function will give insight into corrective therapeutic approaches. Previously, in single lacrimal cells isolated from lacrimal glands, we demonstrated that muscarinic receptor activation stimulates a phospholipase C-coupled signalling cascade involving the inositol trisphosphate-dependent mobilization of intracellular calcium and the subsequent activation of store-operated calcium entry (SOCE). Since intracellular calcium stores are finite and readily exhausted, the SOCE pathway is a critical process for sustaining and maintaining receptor-activated signalling. Recent studies have identified the Orai family proteins as critical components of the SOCE channel activity in a wide variety of cell types. In this study we characterize the role of Orai1 in the function of lacrimal glands using a mouse model in which the gene for the calcium entry channel protein, Orai1, has been deleted. Our data demonstrate that lacrimal acinar cells lacking Orai1 do not exhibit SOCE following activation of the muscarinic receptor. In comparison with wild-type and heterozygous littermates, Orai1 knockout mice showed a significant reduction in the stimulated tear production following injection of pilocarpine, a muscarinic receptor agonist. In addition, calcium-dependent, but not calcium-independent exocytotic secretion of peroxidase was eliminated in glands from knockout mice. These studies indicate a critical role for Orai1-mediated SOCE in lacrimal gland signalling and function.

  1. Calcium transport in turtle bladder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabatini, S.; Kurtzman, N.A.

    1987-12-01

    Unidirectional {sup 45}Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J{sup net}{sub Ca}) was secretory (serosa to mucosa). Ouabain reversed J{sup net}{sub Ca} to an absorptive flux. Amiloride reduced both fluxes such that J{sup net}{sub Ca} was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J{sup net}{sub Ca} decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J{sup net}{sub Ca} was similar inmore » magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue {sup 45}Ca content was {approx equal}30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca{sup 2+}-ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na{sup +}-K{sup +}-ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa.« less

  2. Calcium Carbonate.

    PubMed

    Al Omari, M M H; Rashid, I S; Qinna, N A; Jaber, A M; Badwan, A A

    2016-01-01

    Calcium carbonate is a chemical compound with the formula CaCO3 formed by three main elements: carbon, oxygen, and calcium. It is a common substance found in rocks in all parts of the world (most notably as limestone), and is the main component of shells of marine organisms, snails, coal balls, pearls, and eggshells. CaCO3 exists in different polymorphs, each with specific stability that depends on a diversity of variables. © 2016 Elsevier Inc. All rights reserved.

  3. Alcohol enhances oxysterol-induced apoptosis in human endothelial cells by a calcium-dependent mechanism.

    PubMed

    Spyridopoulos, I; Wischhusen, J; Rabenstein, B; Mayer, P; Axel, D I; Fröhlich, K U; Karsch, K R

    2001-03-01

    Controversy exists about the net effect of alcohol on atherogenesis. A protective effect is assumed, especially from the tannins and phenolic compounds in red wine, owing to their inhibition of low density lipoprotein (LDL) oxidation. However, increased atherogenesis occurs in subjects with moderate to heavy drinking habits. The purpose of this study was to investigate the influence of alcohol in combination with oxysterols on the endothelium. Cultured human arterial endothelial cells (HAECs) served as an in vitro model to test the cellular effects of various oxysterols. Oxysterols (7beta-hydroxycholesterol, 7-ketocholesterol, and cholesterol-5,6-epoxides), which are assumed to be the most toxic constituents of oxidized LDL, induced apoptosis in HAECs through calcium mobilization followed by activation of caspase-3. Ethanol, methanol, isopropanol, tert-butanol, and red wine all potentiated oxysterol-induced cell death up to 5-fold, paralleled by further induction of caspase-3. The alcohol effect occurred in a dose-dependent manner and reached a plateau at 0.05% concentration. Alcohol itself did not affect endothelial cell viability, nor did other solvents such as dimethyl sulfoxide mimic the alcohol effect. So far as the physiologically occurring oxysterols are concerned, this effect was apparent only for oxysterols oxidized at the steran ring. The possibility of alcohol facilitating the uptake of oxysterols into the cell was not supported by the data from an uptake study with radiolabeled compounds. Finally, alcohol in combination with oxysterols did cause a dramatic increase in cytosolic calcium influx. Blockage of calcium influx by the calcium channel blocker aurintricarboxylic acid or the calcium chelator ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid abrogated the alcohol-mediated enhancement of oxysterol toxicity. We describe for the first time a mechanistic concept explaining possible adverse effects of alcohol in conjunction with

  4. Isolation and identification of calcium-chelating peptides from Pacific cod skin gelatin and their binding properties with calcium.

    PubMed

    Wu, Wenfei; Li, Bafang; Hou, Hu; Zhang, Hongwei; Zhao, Xue

    2017-12-13

    A calcium-chelating peptide is considered to have the ability to improve calcium absorption. In this study, Pacific cod skin gelatin hydrolysates treated with trypsin for 120 min exhibited higher calcium-chelating activity. Sequential chromatography, involving hydroxyapatite affinity chromatography and reversed phase high performance liquid chromatography, was used for the purification of calcium-chelating peptides. Two novel peptides with the typical characteristics of collagen were sequenced as GDKGESGEAGER and GEKGEGGHR based on LC-HRMS/MS, which showed a high affinity to calcium. Calcium-peptide complexation was further characterized by ESI-MS (MS and MS/MS) and FTIR spectroscopy. The results showed that the complexation of the two peptides with calcium was conducted mainly at the ratio of 1 : 1. The amino terminal group and the peptide bond of the peptide backbone as well as the amino group of the lysine side chain and the carboxylate of the glutamate side chain were the possible calcium binding sites for the two peptides. Meanwhile, several amino acid side chain groups, including the hydroxyl (Ser) and carboxylate (Asp) of GDKGESGEAGER and the imine (His) of GEKGEGGHR, were crucial in the complexation. The arginine residue in GEKGEGGHR also participated in the calcium coordination. Additionally, several active fragments with calcium-chelating activity were obtained using MS/MS spectra, including GDKGESGEAGE, GEAGER, GEK, EKG and KGE. This study suggests that gelatin-derived peptides have the potential to be used as a calcium-chelating ingredient to combat calcium deficiency.

  5. 21 CFR 184.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium hydroxide. 184.1205 Section 184.1205 Food... Specific Substances Affirmed as GRAS § 184.1205 Calcium hydroxide. (a) Calcium hydroxide (Ca(OH)2, CAS Reg. No. 1305-62-0) is also known as slaked lime or calcium hydrate. It is produced by the hydration of...

  6. 21 CFR 184.1210 - Calcium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium oxide. 184.1210 Section 184.1210 Food and....1210 Calcium oxide. (a) Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. It is produced from calcium carbonate, limestone, or oyster shells by calcination...

  7. 21 CFR 184.1199 - Calcium gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium gluconate. 184.1199 Section 184.1199 Food... Specific Substances Affirmed as GRAS § 184.1199 Calcium gluconate. (a) Calcium gluconate ([CH2OH(CHOH)4COO]2Ca, CAS Reg. No. 299-28-5) is the calcium salt of gluconic acid which may be produced by...

  8. 21 CFR 184.1199 - Calcium gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium gluconate. 184.1199 Section 184.1199 Food... Specific Substances Affirmed as GRAS § 184.1199 Calcium gluconate. (a) Calcium gluconate ([CH2OH(CHOH)4COO]2Ca, CAS Reg. No. 299-28-5) is the calcium salt of gluconic acid which may be produced by...

  9. 21 CFR 184.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium hydroxide. 184.1205 Section 184.1205 Food... GRAS § 184.1205 Calcium hydroxide. (a) Calcium hydroxide (Ca(OH)2, CAS Reg. No. 1305-62-0) is also known as slaked lime or calcium hydrate. It is produced by the hydration of lime. (b) The ingredient...

  10. 21 CFR 184.1201 - Calcium glycerophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium glycerophosphate. 184.1201 Section 184... as GRAS § 184.1201 Calcium glycerophosphate. (a) Calcium glycerophosphate (C3H7CaO6P, CAS Reg. No... mixture of calcium β-, and D-, and L-α-glycerophosphate. (b) The ingredient meets the specifications of...

  11. Exopolysaccharides regulate calcium flow in cariogenic biofilms

    PubMed Central

    Varenganayil, Muth M.; Decho, Alan W.

    2017-01-01

    Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS) provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya’s agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC) by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR) spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC). Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries. PMID:29023506

  12. Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition

    PubMed Central

    Hockey, Leanne N.; Kilpatrick, Bethan S.; Eden, Emily R.; Lin-Moshier, Yaping; Brailoiu, G. Cristina; Brailoiu, Eugen; Futter, Clare E.; Schapira, Anthony H.; Marchant, Jonathan S.; Patel, Sandip

    2015-01-01

    ABSTRACT Two-pore channels (TPCs) are endolysosomal ion channels implicated in Ca2+ signalling from acidic organelles. The relevance of these ubiquitous proteins for human disease, however, is unclear. Here, we report that lysosomes are enlarged and aggregated in fibroblasts from Parkinson disease patients with the common G2019S mutation in LRRK2. Defects were corrected by molecular silencing of TPC2, pharmacological inhibition of TPC regulators [Rab7, NAADP and PtdIns(3,5)P2] and buffering local Ca2+ increases. NAADP-evoked Ca2+ signals were exaggerated in diseased cells. TPC2 is thus a potential drug target within a pathogenic LRRK2 cascade that disrupts Ca2+-dependent trafficking in Parkinson disease. PMID:25416817

  13. The Plasma Membrane Calcium Pump

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  14. The Role of Calcium in Osteoporosis

    NASA Technical Reports Server (NTRS)

    Arnaud, C. D.; Sanchez, S. D.

    1991-01-01

    Calcium requirements may vary throughout the lifespan. During the growth years and up to age 25 to 30, it is important to maximize dietary intake of calcium to maintain positive calcium balance and achieve peak bone mass, thereby possibly decreasing the risk of fracture when bone is subsequently lost. Calcium intake need not be greater than 800 mg/day during the relatively short period of time between the end of bone building and the onset of bone loss (30 to 40 years). Starting at age 40 to 50, both men and women lose bone slowly, but women lose bone more rapidly around the menopause and for about 10 years after. Intestinal calcium absorption and the ability to adapt to low calcium diets are impaired in many postmenopausal women and elderly persons owing to a suspected functional or absolute decrease in the ability of the kidney to produce 1,25(OH)2D2. The bones then become more and more a source of calcium to maintain critical extracellular fluid calcium levels. Excessive dietary intake of protein and fiber may induce significant negative calcium balance and thus increase dietary calcium requirements. Generally, the strongest risk factors for osteoporosis are uncontrollable (e.g., sex, age, and race) or less controllable (e.g., disease and medications). However, several factors such as diet, physical activity, cigarette smoking, and alcohol use are lifestyle related and can be modified to help reduce the risk of osteoporosis.

  15. Constant change: dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment.

    PubMed

    Kleist, Thomas J; Luan, Sheng

    2016-03-01

    Despite substantial variation and irregularities in their environment, plants must conform to spatiotemporal demands on the molecular composition of their cytosol. Cell membranes are the major interface between organisms and their environment and the basis for controlling the contents and intracellular organization of the cell. Membrane transport proteins (MTPs) govern the flow of molecules across membranes, and their activities are closely monitored and regulated by cell signalling networks. By continuously adjusting MTP activities, plants can mitigate the effects of environmental perturbations, but effective implementation of this strategy is reliant on precise coordination among transport systems that reside in distinct cell types and membranes. Here, we examine the role of calcium signalling in the coordination of membrane transport, with an emphasis on potassium transport. Potassium is an exceptionally abundant and mobile ion in plants, and plant potassium transport has been intensively studied for decades. Classic and recent studies have underscored the importance of calcium in plant environmental responses and membrane transport regulation. In reviewing recent advances in our understanding of the coding and decoding of calcium signals, we highlight established and emerging roles of calcium signalling in coordinating membrane transport among multiple subcellular locations and distinct transport systems in plants, drawing examples from the CBL-CIPK signalling network. By synthesizing classical studies and recent findings, we aim to provide timely insights on the role of calcium signalling networks in the modulation of membrane transport and its importance in plant environmental responses. © 2015 John Wiley & Sons Ltd.

  16. Vitamin D Status and Calcium Metabolism in Adolescent Black and White Girls on a Range of Controlled Calcium Intakes

    PubMed Central

    Weaver, Connie M.; McCabe, Linda D.; McCabe, George P.; Braun, Michelle; Martin, Berdine R.; DiMeglio, Linda A.; Peacock, Munro

    2008-01-01

    Background: There are limited data in adolescents on racial differences in relationships between dietary calcium intake, absorption, and retention and serum levels of calcium-regulating hormones. Objectives: The aim of this study was to investigate these relationships cross-sectionally in American White and Black adolescent girls. Methods: Calcium balance studies were conducted in 105 girls, aged 11–15 yr, on daily calcium intakes ranging from 760–2195 mg for 3-wk controlled feeding periods; 158 observations from 52 Black and 53 White girls were analyzed. Results: Black girls had lower serum 25-hydroxyvitamin D [25(OH)D], higher serum 1,25-dihydroxyvitamin D, and higher calcium absorption and retention than White girls. Calcium intake and race, but not serum 25(OH)D, predicted net calcium absorption and retention with Black girls absorbing calcium more efficiently at low calcium intakes than White girls. The relationship between serum 25(OH)D and serum PTH was negative only in White girls. Calcium intake, race, and postmenarcheal age explained 21% of the variation in calcium retention, and serum 25(OH)D did not contribute further to the variance. Conclusions: These results suggest that serum 25(OH)D does not contribute to the racial differences in calcium absorption and retention during puberty. PMID:18682505

  17. Calcium carbonate gallstones in children.

    PubMed

    Stringer, Mark D; Soloway, Roger D; Taylor, Donald R; Riyad, Kallingal; Toogood, Giles

    2007-10-01

    In the United States, cholesterol stones account for 70% to 95% of adult gallstones and black pigment stones for most of the remainder. Calcium carbonate stones are exceptionally rare. A previous analysis of a small number of pediatric gallstones from the north of England showed a remarkably high prevalence of calcium carbonate stones. The aims of this study were to analyze a much larger series of pediatric gallstones from our region and to compare their chemical composition with a series of adult gallstones from the same geographic area. A consecutive series of gallbladder stones from 63 children and 50 adults from the north of England were analyzed in detail using Fourier transform infrared microspectroscopy. Demographic and clinical data were collected on all patients. The relative proportions of each major stone component were assessed: cholesterol, protein and calcium salts of bilirubin, fatty acids, calcium carbonate, and hydroxyapatite. Thirty-nine (78%) adults had typical cholesterol stones, 7 (14%) had black pigment bilirubinate stones, and only 2 (4%) had calcium carbonate stones. In contrast, 30 (48%) children had black pigment stones, 13 (21%) had cholesterol stones, 15 (24%) had calcium carbonate stones, 3 (5%) had protein dominant stones, and 2 (3%) had brown pigment stones. In children, cholesterol stones were more likely in overweight adolescent girls with a family history of gallstones, whereas black pigment stones were equally common in boys and girls and associated with hemolysis, parenteral nutrition, and neonatal abdominal surgery. Calcium carbonate stones were more common in boys, and almost half had undergone neonatal abdominal surgery and/or required neonatal intensive care. The composition of pediatric gallstones differs significantly from that found in adults. In particular, one quarter of the children in this series had calcium carbonate stones, previously considered rare. Geographic differences are not the major reason for the high

  18. A Crash Course in Calcium Channels.

    PubMed

    Zamponi, Gerald W

    2017-12-20

    Much progress has been made in understanding the molecular physiology and pharmacology of calcium channels. Recently, there have been tremendous advances in learning about calcium channel structure and function through crystallography and cryo-electron microscopy studies. Here, I will give an overview of our knowledge about calcium channels, and highlight two recent studies that give important insights into calcium channel structure.

  19. 21 CFR 184.1221 - Calcium propionate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium propionate. 184.1221 Section 184.1221 Food... Specific Substances Affirmed as GRAS § 184.1221 Calcium propionate. (a) Calcium propionate (C6H10CaO4, CAS Reg. No. 4075-81-4) is the calcium salt of propionic acid. It occurs as white crystals or a...

  20. 21 CFR 184.1221 - Calcium propionate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium propionate. 184.1221 Section 184.1221 Food... Specific Substances Affirmed as GRAS § 184.1221 Calcium propionate. (a) Calcium propionate (C6H10CaO4, CAS Reg. No. 4075-81-4) is the calcium salt of propionic acid. It occurs as white crystals or a...

  1. 21 CFR 184.1210 - Calcium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium oxide. 184.1210 Section 184.1210 Food and... Substances Affirmed as GRAS § 184.1210 Calcium oxide. (a) Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. It is produced from calcium carbonate, limestone, or...

  2. 21 CFR 184.1210 - Calcium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium oxide. 184.1210 Section 184.1210 Food and... Substances Affirmed as GRAS § 184.1210 Calcium oxide. (a) Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. It is produced from calcium carbonate, limestone, or...

  3. 21 CFR 184.1221 - Calcium propionate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium propionate. 184.1221 Section 184.1221 Food... GRAS § 184.1221 Calcium propionate. (a) Calcium propionate (C6H10CaO4, CAS Reg. No. 4075-81-4) is the calcium salt of propionic acid. It occurs as white crystals or a crystalline solid, possessing not more...

  4. 21 CFR 184.1229 - Calcium stearate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium stearate. 184.1229 Section 184.1229 Food... GRAS § 184.1229 Calcium stearate. (a) Calcium stearate (Ca(C17H35COO)2, CAS Reg. No. 1529-23-0) is the calcium salt of stearic acid derived from edible sources. It is prepared as a white precipitate by mixing...

  5. 21 CFR 184.1221 - Calcium propionate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium propionate. 184.1221 Section 184.1221 Food... Specific Substances Affirmed as GRAS § 184.1221 Calcium propionate. (a) Calcium propionate (C6H10CaO4, CAS Reg. No. 4075-81-4) is the calcium salt of propionic acid. It occurs as white crystals or a...

  6. 21 CFR 184.1221 - Calcium propionate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium propionate. 184.1221 Section 184.1221 Food... Specific Substances Affirmed as GRAS § 184.1221 Calcium propionate. (a) Calcium propionate (C6H10CaO4, CAS Reg. No. 4075-81-4) is the calcium salt of propionic acid. It occurs as white crystals or a...

  7. 21 CFR 184.1229 - Calcium stearate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium stearate. 184.1229 Section 184.1229 Food... Specific Substances Affirmed as GRAS § 184.1229 Calcium stearate. (a) Calcium stearate (Ca(C17H35COO)2, CAS Reg. No. 1529-23-0) is the calcium salt of stearic acid derived from edible sources. It is prepared as...

  8. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  9. 21 CFR 184.1229 - Calcium stearate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium stearate. 184.1229 Section 184.1229 Food... Specific Substances Affirmed as GRAS § 184.1229 Calcium stearate. (a) Calcium stearate (Ca(C17H35COO)2, CAS Reg. No. 1529-23-0) is the calcium salt of stearic acid derived from edible sources. It is prepared as...

  10. 21 CFR 184.1199 - Calcium gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium gluconate. 184.1199 Section 184.1199 Food... GRAS § 184.1199 Calcium gluconate. (a) Calcium gluconate ([CH2OH(CHOH)4COO]2Ca, CAS Reg. No. 299-28-5) is the calcium salt of gluconic acid which may be produced by neutralization of gluconic acid with...

  11. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  12. Intracellular sphingosine releases calcium from lysosomes.

    PubMed

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-11-27

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.

  13. A “mix-and-match” approach to designing Ca2+ microdomains at membrane-contact sites

    PubMed Central

    Penny, Christopher J; Kilpatrick, Bethan S; Min Han, Jung; Sneyd, James; Patel, Sandip

    2014-01-01

    Ca2+ microdomains are critical for regulating cellular activity and often form at membrane contact sites. Such sites between lysosomes and the ER potentially provide a platform for signaling by the Ca2+ mobilizing messenger NAADP. However, at present we know little of how Ca2+ release events are coordinated at these experimentally intractable junctions. We therefore developed a computational model of lysosome-ER microdomains, which suggested that small leaks of Ca2+ from the lysosome couple to Ca2+-sensitive Ins(1,4,5)P3 receptors on the ER to generate global, microdomain-dependent Ca2+ signals. Here we discuss how the “mix-and-match” arrangement of different Ca2+ signaling proteins on the “source” and “target” membranes might generate functionally heterogeneous Ca2+ microdomains. PMID:25077010

  14. Vasopressin regulates renal calcium excretion in humans

    PubMed Central

    Hanouna, Guillaume; Haymann, Jean-Philippe; Baud, Laurent; Letavernier, Emmanuel

    2015-01-01

    Antidiuretic hormone or arginine vasopressin (AVP) increases water reabsorption in the collecting ducts of the kidney. Three decades ago, experimental models have shown that AVP may increase calcium reabsorption in rat kidney. The objective of this study was to assess whether AVP modulates renal calcium excretion in humans. We analyzed calcium, potassium, and sodium fractional excretion in eight patients affected by insipidus diabetes (nephrogenic or central) under acute vasopressin receptor agonist action and in 10 patients undergoing oral water load test affected or not by inappropriate antidiuretic hormone secretion (SIADH). Synthetic V2 receptor agonist (dDAVP) reduced significantly calcium fractional excretion from 1.71% to 0.58% (P < 0.05) in patients with central diabetes insipidus. In patients with nephrogenic diabetes insipidus (resistant to AVP), calcium fractional excretion did not change significantly after injection (0.48–0.68%, P = NS). In normal subjects undergoing oral water load test, calcium fractional excretion increased significantly from 1.02% to 2.54% (P < 0.05). Patients affected by SIADH had a high calcium fractional excretion at baseline that remained stable during test from 3.30% to 3.33% (P = NS), possibly resulting from a reduced calcium absorption in renal proximal tubule. In both groups, there was a significant correlation between urine output and calcium renal excretion. In humans, dDAVP decreases calcium fractional excretion in the short term. Conversely, water intake, which lowers AVP concentration, increases calcium fractional excretion. The correlation between urine output and calcium excretion suggests that AVP-related antidiuresis increases calcium reabsorption in collecting ducts. PMID:26620256

  15. Calcium: A novel and efficient inducer of differentiation of adipose-derived stem cells into neuron-like cells.

    PubMed

    Goudarzi, Farjam; Tayebinia, Heidar; Karimi, Jamshid; Habibitabar, Elahe; Khodadadi, Iraj

    2018-06-05

    This study comparatively investigated the effectiveness of calcium and other well-known inducers such as isobutylmethylxanthine (IBMX) and insulin in differentiating human adipose-derived stem cells (ADSCs) into neuronal-like cells. ADSCs were immunophenotyped and differentiated into neuron-like cells with different combinations of calcium, IBMX, and insulin. Calcium mobilization across the membrane was determined. Differentiated cells were characterized by cell cycle profiling, staining of Nissl bodies, detecting the gene expression level of markers such as neuronal nuclear antigen (NeuN), microtubule associated protein 2 (MAP2), neuron-specific enolase (NSE), doublecortin, synapsin I, glial fibrillary acidic protein (GFAP), and myelin basic protein (MBP) by quantitative real-time polymerase chain reaction (quantitative real-time polymerase chain reaction (qRT-PCR) and protein level by the immunofluorescence technique. Treatment with Ca + IBMX + Ins induced neuronal appearance and projection of neurite-like processes in the cells, accompanied with inhibition of proliferation and halt in the cell cycle. A significantly higher expression of MBP, GFAP, NeuN, NSE, synapsin 1, doublecortin, and MAP2 was detected in differentiated cells, confirming the advantages of Ca + IBMX + Ins to the other combinations of inducers. Here, we showed an efficient protocol for neuronal differentiation of ADSCs, and calcium fostered differentiation by augmenting the number of neuron-like cells and instantaneous increase in the expression of neuronal markers. © 2018 Wiley Periodicals, Inc.

  16. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium citrate. 184.1195 Section 184.1195 Food... Specific Substances Affirmed as GRAS § 184.1195 Calcium citrate. (a) Calcium citrate (Ca3(C6H5O7)2·4H2O, CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric...

  17. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It...

  18. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially obtained as a byproduct in...

  19. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be produced by the...

  20. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It...

  1. Fast Kinetics of Calcium Signaling and Sensor Design

    PubMed Central

    Tang, Shen; Reddish, Florence; Zhuo, You; Yang, Jenny J.

    2015-01-01

    Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal profiles which are currently measured by fluorescent calcium sensors. There is still a strong need to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium dynamics in the millisecond time frame. In this review, we summarize several major fast calcium signaling pathways and discuss the recent developments and application of genetically encoded calcium indicators to detect these pathways. A new class of genetically encoded calcium indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with significantly increased fluorescent lifetime change are advantageous in deep-field imaging with high light-scattering and notable morphology change. PMID:26151819

  2. Proteomic analysis of a rare urinary stone composed of calcium carbonate and calcium oxalate dihydrate: a case report.

    PubMed

    Kaneko, Kiyoko; Matsuta, Yosuke; Moriyama, Manabu; Yasuda, Makoto; Chishima, Noriharu; Yamaoka, Noriko; Fukuuchi, Tomoko; Miyazawa, Katsuhito; Suzuki, Koji

    2014-03-01

    The objective of the present study was to investigate the matrix protein of a rare urinary stone that contained calcium carbonate. A urinary stone was extracted from a 34-year-old male patient with metabolic alkalosis. After X-ray diffractometry and infrared analysis of the stone, proteomic analysis was carried out. The resulting mass spectra were evaluated with protein search software, and matrix proteins were identified. X-ray diffraction and infrared analysis confirmed that the stone contained calcium carbonate and calcium oxalate dihydrate. Of the identified 53 proteins, 24 have not been previously reported from calcium oxalate- or calcium phosphate-containing stones. The protease inhibitors and several proteins related to cell adhesion or the cytoskeleton were identified for the first time. We analyzed in detail a rare urinary stone composed of calcium carbonate and calcium oxalate dihydrate. Considering the formation of a calcium carbonate stone, the new identified proteins should play an important role on the urolithiasis process in alkaline condition. © 2013 The Japanese Urological Association.

  3. Timing of the calcium intake and effect of calcium deficiency on behaviour and egg laying in captive great tits, Parus major.

    PubMed

    Graveland, J; Berends, A E

    1997-01-01

    The calcium demand of egg-laying birds is much higher than in other vertebrates during reproduction. We showed elsewhere that a low level of calcium availability can greatly affect the eggshell quality and reproduction of free-living passerines. However, there are few data on calcium demand and calcium intake in relation to egg laying and behaviour and egg-laying performance under conditions of calcium shortage in nondomesticated birds. We examined these aspects in an experiment with captive great tits, Parus major, on a diet deficient in calcium, with or without snail shells as an additional calcium source. More than 90% of the calcium intake for egg production took place during the egg-laying period. Females ingested about 1.7 times as much calcium as they deposited in eggshells. Removing the snail shells after the first egg resulted in eggshell defects and interruptions of laying after 1-3 d. Females without snail shells doubled their searching effort and started to burrow in the soil and to eat sand, small stones, and their own eggs. Most calcium was consumed in the evening, probably to supplement the calcium available from the medullary bone with an additional calcium source in the gut during eggshell formation. The results demonstrated that eggshell formation requires accurate timing of the calcium intake and that obtaining sufficient calcium is time-consuming, even in calcium-rich environments. These factors pertaining to calcium intake greatly affect the ability of birds to collect sufficient calcium for eggshell formation in calcium-poor areas.

  4. Calcium requirements for Asian children and adolescents.

    PubMed

    Lee, Warren Tak Keung; Jiang, Ji

    2008-01-01

    Calcium is important for bone health. Over the last 15 years, reference calcium intakes in Western countries have been revised upwards for maximizing bone mass at skeletal maturity and for prevention of osteoporotic fractures. Some of these reference figures have also been adopted for use in Asian countries. However, the scientific data based on for revising reference calcium intakes in the West was largely based on Caucasians. Limited human studies relating to calcium requirements and bone mineralization have been conducted in Asians in Asia. In children and adolescents, a trial has confirmed no effects of calcium supplementation on bone gains in adolescent girls after 7 years. A meta-analysis has also revealed that calcium supplementation has little beneficial effects on bone gain. Given that genetic factors, hormonal status, body size, bone structure, diets, physical activity, vitamin D status and adaptation could modify calcium retention and bone integrity, these factors need to be considered collectively to promote bone health in Asian populations. Furthermore, studies to identify indigenous foods rich in calcium and high in bioavailability are needed to widen sources of dietary calcium. Ethnic differences in calcium retention, hormonal status, bone structure, bone mineral accretion and peak bone mass are evident among Asians, Caucasians and Blacks in USA. Hence, reference calcium intakes for Asians are likely to be unique and different from those of Caucasians. More research has to be conducted in Asian populations in order to develop appropriate reference calcium intakes for the region.

  5. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric acid with calcium hydroxide or calcium carbonate. It occurs as a fine white, odorless powder and...

  6. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric acid with calcium hydroxide or calcium carbonate. It occurs as a fine white, odorless powder and...

  7. Glucocorticoids suppress calcium mobilization and phospholipid hydrolysis in anti-Ig antibody-stimulated B cells.

    PubMed

    Dennis, G; June, C H; Mizuguchi, J; Ohara, J; Witherspoon, K; Finkelman, F D; McMillan, V; Mond, J J

    1987-10-15

    Glucocorticoids have been shown to play a major role in influencing the activation of B lymphocytes. In view of our recent observation that dexamethasone exerts a marked suppressive effect on an early event in B cell activation that is stimulated by anti-Ig antibody, we investigated its activity on other stimuli that induce intracellular events similar to those produced by anti-Ig antibody. Because the intracellular events that occur after B cell stimulation with phorbol myristate acetate and the calcium ionophore A23187 appear to mimic those that occur after B cell stimulation with anti-Ig antibody, we studied whether the cellular responses elicited by these activation stimuli are affected in a similar fashion by dexamethasone. Whereas anti-Ig antibody-stimulated entry of G0 B cells to the G1 and S phase of the cell cycle was markedly suppressed by dexamethasone, phorbol myristate acetate/A23187 stimulation of these events was resistant to dexamethasone. Our finding that anti-Ig-induced cross-linking of B cell surface Ig, as measured by surface Ig capping, was not inhibited by dexamethasone suggested that corticosteroids inhibit anti-Ig-induced B cell proliferation at a step distal to membrane Ig cross-linking and proximal to phosphatidylinositol bisphosphate hydrolysis. This hypothesis is supported by experiments presented in this manuscript which demonstrate that dexamethasone inhibits anti-Ig-stimulated phosphatidylinositol bisphosphate hydrolysis. We also found that dexamethasone markedly inhibited anti-Ig antibody-stimulated increases in intracellular ionized calcium concentrations. This dexamethasone-mediated suppression is time-dependent as it is not seen when B cells are cultured with dexamethasone for less than 6 hr. Our data suggest that the immunomodulatory activity of glucocorticoids is exerted by binding to its nuclear receptor, thereby preventing the generation of second messengers required for cell activation after agonist-receptor interaction.

  8. Impregnating Coal With Calcium Carbonate

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  9. 21 CFR 184.1195 - Calcium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium citrate. 184.1195 Section 184.1195 Food and... Substances Affirmed as GRAS § 184.1195 Calcium citrate. (a) Calcium citrate (Ca3(C6H5O7)2·4H2O, CAS Reg. No. 813-0994-095) is the calcium salt of citric acid. It is prepared by neutralizing citric acid with...

  10. Calcium carbonate and calcium sulfate in Martian meteorite EETA79001

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.; Wentworth, S. J.

    1987-01-01

    Chips of glassy Lithology C of EETA79001 were studied by scanning electron microscopy and energy dispersive X-ray spectroscopy to determine the mineralogy and petrogenesis of the glass that was shown by others to contain trapped Mars-like gases. Calcium carbonite was identified as massive to acicular crystals for which Ca, C, and O were the major elements. Calcium sulfate was identified as prismatic-acicular crystals with Ca and S as the major elements.

  11. Space-flight simulations of calcium metabolism using a mathematical model of calcium regulation

    NASA Technical Reports Server (NTRS)

    Brand, S. N.

    1985-01-01

    The results of a series of simulation studies of calcium matabolic changes which have been recorded during human exposure to bed rest and space flight are presented. Space flight and bed rest data demonstrate losses of total body calcium during exposure to hypogravic environments. These losses are evidenced by higher than normal rates of urine calcium excretion and by negative calcium balances. In addition, intestinal absorption rates and bone mineral content are assumed to decrease. The bed rest and space flight simulations were executed on a mathematical model of the calcium metabolic system. The purpose of the simulations is to theoretically test hypotheses and predict system responses which are occurring during given experimental stresses. In this case, hypogravity occurs through the comparison of simulation and experimental data and through the analysis of model structure and system responses. The model reliably simulates the responses of selected bed rest and space flight parameters. When experimental data are available, the simulated skeletal responses and regulatory factors involved in the responses agree with space flight data collected on rodents. In addition, areas within the model that need improvement are identified.

  12. Calcium at fertilization and in early development

    PubMed Central

    Whitaker, Michael

    2012-01-01

    Fertilization calcium waves are introduced and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypothesis put forward to explain the generation of the fertilization calcium wave are set out and it is concluded that initiation of the fertilization calcium wave can be most generally explained in inverterbrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signalling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signalling during resumption of meiosis. Changes to the calcium signalling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signalling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed

  13. Calcium silicate-based drug delivery systems.

    PubMed

    Zhu, Ying-Jie; Guo, Xiao-Xuan; Sham, Tsun-Kong

    2017-02-01

    Compared with other inorganic materials such as silica, metal oxides, noble metals and carbon, calcium silicate-based materials, especially nanostructured calcium silicate materials, have high biocompatibility, bioactivity and biodegradability, high specific surface area, nanoporous/hollow structure, high drug-loading capacity, pH-responsive drug release behavior and desirable drug release properties, and thus they are promising for the application in drug delivery. Calcium silicate-based drug delivery systems have a long drug-release time, which can significantly prolong the therapeutic effect of drugs. Another advantage of calcium silicate-based drug delivery systems is their pH-responsive drug release property, which can act as an ideal platform for targeted drug delivery. Areas covered: In recent years, studies have been carried out on calcium silicate-based drug delivery systems, and important results and insights have been documented. This article is not intended to offer a comprehensive review on the research on calcium silicate-based drug delivery systems, but presents some examples reported in the literature, and includes new insights obtained by tracking the interactions between drug molecules and calcium silicate carriers on the molecular level using the synchrotron-based X-ray spectroscopy. Expert opinion: Finally, our opinions on calcium silicate-based drug delivery systems are provided, and several research directions for the future studies are proposed.

  14. Intracellular sphingosine releases calcium from lysosomes

    PubMed Central

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  15. Signaling complexes of voltage-gated calcium channels

    PubMed Central

    Turner, Ray W; Anderson, Dustin

    2011-01-01

    Voltage-gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage-gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead form complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily. PMID:21832880

  16. Increased calcium absorption from synthetic stable amorphous calcium carbonate: Double-blind randomized crossover clinical trial in post-menopausal women

    USDA-ARS?s Scientific Manuscript database

    Calcium supplementation is a widely recognized strategy for achieving adequate calcium intake. We designed this blinded, randomized, crossover interventional trial to compare the bioavailability of a new stable synthetic amorphous calcium carbonate (ACC) with that of crystalline calcium carbonate (C...

  17. Calcium movements and the cellular basis of gravitropism

    NASA Astrophysics Data System (ADS)

    Roux, S. J.; Biro, R. L.; Hale, C. C.

    An early gravity-transduction event in oat coleoptiles which precedes any noticeable bending is the accumulation of calcium on their prospective slower-growing side. Sub-cellular calcium localization studies indicate that the gravity-stimulated redistribution of calcium results in an increased concentration of calcium in the walls of responding cells. Since calcium can inhibit the extension growth of plant cell walls, this selective accumulation of calcium in walls may play a role in inducing the asymmetry of growth which characterizes gravitropism. The active transport of calcium from cells into walls is performed by a calcium-dependent ATPase localized in the plasma membrane. Evidence is presented in support of the hypothesis that this calcium pump is regulated by a feed-back mechanism which includes the participation of calmodulin.

  18. Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.

    2015-12-01

    Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric

  19. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibilitymore » issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].« less

  20. Increased calcium absorption from synthetic stable amorphous calcium carbonate: double-blind randomized crossover clinical trial in postmenopausal women.

    PubMed

    Vaisman, Nachum; Shaltiel, Galit; Daniely, Michal; Meiron, Oren E; Shechter, Assaf; Abrams, Steven A; Niv, Eva; Shapira, Yami; Sagi, Amir

    2014-10-01

    Calcium supplementation is a widely recognized strategy for achieving adequate calcium intake. We designed this blinded, randomized, crossover interventional trial to compare the bioavailability of a new stable synthetic amorphous calcium carbonate (ACC) with that of crystalline calcium carbonate (CCC) using the dual stable isotope technique. The study was conducted in the Unit of Clinical Nutrition, Tel Aviv Sourasky Medical Center, Israel. The study population included 15 early postmenopausal women aged 54.9 ± 2.8 (mean ± SD) years with no history of major medical illness or metabolic bone disorder, excess calcium intake, or vitamin D deficiency. Standardized breakfast was followed by randomly provided CCC or ACC capsules containing 192 mg elemental calcium labeled with 44Ca at intervals of at least 3 weeks. After swallowing the capsules, intravenous CaCl2 labeled with 42Ca on was administered on each occasion. Fractional calcium absorption (FCA) of ACC and CCC was calculated from the 24-hour urine collection following calcium administration. The results indicated that FCA of ACC was doubled (± 0.96 SD) on average compared to that of CCC (p < 0.02). The higher absorption of the synthetic stable ACC may serve as a more efficacious way of calcium supplementation. © 2014 American Society for Bone and Mineral Research.

  1. Effect of calcium chloride treatments on calcium content, anthracnose severity and antioxidant activity in papaya fruit during ambient storage.

    PubMed

    Madani, Babak; Mirshekari, Amin; Yahia, Elhadi

    2016-07-01

    There have been no reports on the effects of preharvest calcium application on anthracnose disease severity, antioxidant activity and cellular changes during ambient storage of papaya, and therefore the objective of this study was to investigate these effects. Higher calcium concentrations (1.5 and 2% w/v) increased calcium concentration in the peel and pulp tissues, maintained firmness, and reduced anthracnose incidence and severity. While leakage of calcium-treated fruit was lower for 1.5 and 2% calcium treatments compared to the control, microscopic results confirmed that pulp cell wall thickness was higher after 6 days in storage, for the 2% calcium treatment compared to the control. Calcium-treated fruit also had higher total antioxidant activity and total phenolic compounds during storage. Calcium chloride, especially at higher concentrations, is effective in maintaining papaya fruit quality during ambient storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Biological and medical significance of calcium phosphates.

    PubMed

    Dorozhkin, Sergey V; Epple, Matthias

    2002-09-02

    The inorganic part of hard tissues (bones and teeth) of mammals consists of calcium phosphate, mainly of apatitic structure. Similarly, most undesired calcifications (i.e. those appearing as a result of various diseases) of mammals also contain calcium phosphate. For example, atherosclerosis results in blood-vessel blockage caused by a solid composite of cholesterol with calcium phosphate. Dental caries result in a replacement of less soluble and hard apatite by more soluble and softer calcium hydrogenphosphates. Osteoporosis is a demineralization of bone. Therefore, from a chemical point of view, processes of normal (bone and teeth formation and growth) and pathological (atherosclerosis and dental calculus) calcifications are just an in vivo crystallization of calcium phosphate. Similarly, dental caries and osteoporosis can be considered to be in vivo dissolution of calcium phosphates. On the other hand, because of the chemical similarity with biological calcified tissues, all calcium phosphates are remarkably biocompatible. This property is widely used in medicine for biomaterials that are either entirely made of or coated with calcium phosphate. For example, self-setting bone cements made of calcium phosphates are helpful in bone repair and titanium substitutes covered with a surface layer of calcium phosphates are used for hip-joint endoprostheses and tooth substitutes, to facilitate the growth of bone and thereby raise the mechanical stability. Calcium phosphates have a great biological and medical significance and in this review we give an overview of the current knowledge in this subject.

  3. Multiparameter imaging of calcium and abscisic acid and high-resolution quantitative calcium measurements using R-GECO1-mTurquoise in Arabidopsis.

    PubMed

    Waadt, Rainer; Krebs, Melanie; Kudla, Jörg; Schumacher, Karin

    2017-10-01

    Calcium signals occur in specific spatio-temporal patterns in response to various stimuli and are coordinated with, for example, hormonal signals, for physiological and developmental adaptations. Quantification of calcium together with other signalling molecules is required for correlative analyses and to decipher downstream calcium-decoding mechanisms. Simultaneous in vivo imaging of calcium and abscisic acid has been performed here to investigate the interdependence of the respective signalling processes in Arabidopsis thaliana roots. Advanced ratiometric genetically encoded calcium indicators have been generated and in vivo calcium calibration protocols were established to determine absolute calcium concentration changes in response to auxin and ATP. In roots, abscisic acid induced long-term basal calcium concentration increases, while auxin triggered rapid signals in the elongation zone. The advanced ratiometric calcium indicator R-GECO1-mTurquoise exhibited an increased calcium signal resolution compared to commonly used Förster resonance energy transfer-based indicators. Quantitative calcium measurements in Arabidopsis root tips using R-GECO1-mTurquoise revealed detailed maps of absolute calcium concentration changes in response to auxin and ATP. Calcium calibration protocols using R-GECO1-mTurquoise enabled high-resolution quantitative imaging of resting cytosolic calcium concentrations and their dynamic changes that revealed distinct hormonal and ATP responses in roots. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  4. Quantifying Calcium Intake in School Age Children: Development and Validation of the Calcium Counts!© Food Frequency Questionnaire

    PubMed Central

    ZEMEL, BABETTE S.; CAREY, LISA B.; PAULHAMUS, DONNA R.; STALLINGS, VIRGINIA A.; ITTENBACH, RICHARD F.

    2014-01-01

    Quantifying dietary behavior is difficult and can be intrusive. Calcium, an essential mineral for skeletal development during childhood, is difficult to assess. Few studies have examined the use of food frequency questionnaires (FFQs) for assessing calcium intake in school-age children. This study evaluated the validity and reliability of the Calcium Counts!© FFQ (CCFFQ) for estimating calcium intake in school children in the US. Healthy children, aged 7–10 years (n = 139) completed the CCFFQ and 7-day weighed food records. A subset of subjects completed a second CCFFQ within 3.6 months. Concurrent validity was determined using Pearson correlations between the CCFFQ and food record estimates of calcium intake, and the relationship between quintiles for the two measures. Predictive validity was determined using generalized linear regression models to explore the effects of age, race, and gender. Inter- and intra-individual variability in calcium intake was high (>300 mg/day). Calcium intake was ~300 mg/day higher by CCFFQ compared to food records. Concurrent validity was moderate (r = 0.61) for the entire cohort and higher for selected subgroups. Predictive validity estimates yielded significant relationships between CCFFQ and food record estimates of calcium intake alone and in the presence of such potential effect modifiers as age group, race, and gender. Test–retest reliability was high (r = 0.74). Although calcium intake estimated by the CCFFQ was greater than that measured by food records, the CCFFQ provides valid and reliable estimates of calcium intake in children. The CCFFQ is especially well-suited as a tool to identify children with low calcium intakes. PMID:19621431

  5. Protein-Mediated Precipitation of Calcium Carbonate

    PubMed Central

    Polowczyk, Izabela; Bastrzyk, Anna; Fiedot, Marta

    2016-01-01

    Calcium carbonate is an important component in exoskeletons of many organisms. The synthesis of calcium carbonate was performed by mixing dimethyl carbonate and an aqueous solution of calcium chloride dihydrate. The precipitation product was characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) measurements. In addition, the turbidity of the reaction solution was acquired to monitor the kinetics of the calcium carbonate structure’s growth in the investigated system. In this study, samples of CaCO3 particles obtained with individual proteins, such as ovalbumin, lysozyme, and a mixture of the proteins, were characterized and compared with a control sample, i.e., synthesized without proteins. The obtained data indicated that the addition of ovalbumin to the reaction changed the morphology of crystals from rhombohedral to ‘stack-like’ structures. Lysozyme, however, did not affect the morphology of calcium carbonate, yet the presence of the protein mixture led to the creation of more complex composites in which the calcium carbonate crystals were constructed in protein matrices formed by the ovalbumin-lysozyme interaction. It was also observed that in the protein mixture, ovalbumin has a major influence on the CaCO3 formation through a strong interaction with calcium ions, which leads to the coalescence and creation of a steric barrier reducing particle growth. The authors proposed a mechanism of calcium carbonate grain growth in the presence of both proteins, taking into account the interaction of calcium ions with the protein. PMID:28774065

  6. 21 CFR 582.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium hexametaphosphate. 582.6203 Section 582.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  7. 21 CFR 182.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium hexametaphosphate. 182.6203 Section 182.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  8. 21 CFR 182.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium hexametaphosphate. 182.6203 Section 182.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  9. 21 CFR 582.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium hexametaphosphate. 582.6203 Section 582.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  10. 21 CFR 582.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium hexametaphosphate. 582.6203 Section 582.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  11. 21 CFR 182.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium hexametaphosphate. 182.6203 Section 182.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  12. 21 CFR 582.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium hexametaphosphate. 582.6203 Section 582.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  13. 21 CFR 582.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium hexametaphosphate. 582.6203 Section 582.6203 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This...

  14. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping.

    PubMed

    Natale, L C; Rodrigues, M C; Xavier, T A; Simões, A; de Souza, D N; Braga, R R

    2015-01-01

    To compare the ion release and mechanical properties of a calcium hydroxide (Dycal) and two calcium silicate (MTA Angelus and Biodentine) cements. Calcium and hydroxyl ion release in water from 24-h set cements were calculated from titration with HCl (n = 3). Calcium release after 7, 14, 21 and 28 days at pH 5.5 and 7.0 was measured using ICP-OES (n = 6). Flexural strength (FS) and modulus (E) were tested after 48-h storage, and compressive strength (CS) was tested after 48 h and 7 days (n = 10). Ion release and mechanical data were subjected to anova/Tukey and Kruskal-Wallis/Mann-Whitney tests, respectively (α = 0.05). Titration curves revealed that Dycal released significantly fewer ions in solution than calcium silicates (P < 0.001). Calcium release remained constant at pH 7.0, whilst at pH 5.5, it dropped significantly by 24% after 21 days (P < 0.05). At pH 5.5, MTA Angelus released significantly more calcium than Dycal (P < 0.01), whilst Biodentine had superior ion release than Dycal at pH 7.0 (P < 0.01). Biodentine had superior flexural strength, flexural modulus and compressive strength than the other cements, whilst MTA Angelus had higher modulus than Dycal (P < 0.001). Immediate calcium and hydroxyl ion release in solution was significantly lower for Dycal. In general, all materials released constant calcium levels over 28 days, but release from Dycal was significantly lower than Biodentine and MTA Angelus depending on pH conditions. Biodentine had substantially higher strength and modulus than MTA Angelus and Dycal, both of which demonstrated low stress-bearing capabilities. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Calcium Intake in Elderly Australian Women Is Inadequate

    PubMed Central

    Meng, Xingqiong; Kerr, Deborah A.; Zhu, Kun; Devine, Amanda; Solah, Vicky; Binns, Colin W.; Prince, Richard L.

    2010-01-01

    The role of calcium in the prevention of bone loss in later life has been well established but little data exist on the adequacy of calcium intakes in elderly Australian women. The aim of this study was to compare the dietary intake including calcium of elderly Australian women with the Australian dietary recommendation, and to investigate the prevalence of calcium supplement use in this population. Community-dwelling women aged 70–80 years were randomly recruited using the Electoral Roll for a 2-year protein intervention study in Western Australia. Dietary intake was assessed at baseline by a 3-day weighed food record and analysed for energy, calcium and other nutrients. A total of 218 women were included in the analysis. Mean energy intake was 7,140 ± 1,518 kJ/day and protein provided 19 ± 4% of energy. Mean dietary calcium intake was 852 ± 298 mg/day, which is below Australian recommendations. Less than one quarter of women reported taking calcium supplements and only 3% reported taking vitamin D supplements. Calcium supplements by average provided calcium 122 ± 427 mg/day and when this was taken into account, total calcium intake increased to 955 ± 504 mg/day, which remained 13% lower than the Estimated Average Requirement (EAR, 1,100 mg/day) for women of this age group. The women taking calcium supplements had a higher calcium intake (1501 ± 573 mg) compared with the women on diet alone (813 ± 347 mg). The results of this study indicate that the majority of elderly women were not meeting their calcium requirements from diet alone. In order to achieve the recommended dietary calcium intake, better strategies for promoting increased calcium, from both diet and calcium supplements appears to be needed. PMID:22254072

  16. Self-Setting Calcium Orthophosphate Formulations

    PubMed Central

    Dorozhkin, Sergey V.

    2013-01-01

    In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided. PMID:24956191

  17. Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition.

    PubMed

    Hockey, Leanne N; Kilpatrick, Bethan S; Eden, Emily R; Lin-Moshier, Yaping; Brailoiu, G Cristina; Brailoiu, Eugen; Futter, Clare E; Schapira, Anthony H; Marchant, Jonathan S; Patel, Sandip

    2015-01-15

    Two-pore channels (TPCs) are endolysosomal ion channels implicated in Ca(2+) signalling from acidic organelles. The relevance of these ubiquitous proteins for human disease, however, is unclear. Here, we report that lysosomes are enlarged and aggregated in fibroblasts from Parkinson disease patients with the common G2019S mutation in LRRK2. Defects were corrected by molecular silencing of TPC2, pharmacological inhibition of TPC regulators [Rab7, NAADP and PtdIns(3,5)P2] and buffering local Ca(2+) increases. NAADP-evoked Ca(2+) signals were exaggerated in diseased cells. TPC2 is thus a potential drug target within a pathogenic LRRK2 cascade that disrupts Ca(2+)-dependent trafficking in Parkinson disease. © 2015. Published by The Company of Biologists Ltd.

  18. 21 CFR 182.8223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pyrophosphate. 182.8223 Section 182.8223... FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use. This substance is generally recognized...

  19. 7 CFR 58.434 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the Food...

  20. 21 CFR 182.8223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pyrophosphate. 182.8223 Section 182.8223... FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use. This substance is generally recognized...

  1. 21 CFR 172.720 - Calcium lactobionate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.720 Calcium lactobionate. The food additive calcium lactobionate... additive is the calcium salt of lactobionic acid (4-(β,D-galactosido)-D-gluconic acid) produced by the...

  2. 21 CFR 172.720 - Calcium lactobionate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.720 Calcium lactobionate. The food additive calcium lactobionate... additive is the calcium salt of lactobionic acid (4-(β,D-galactosido)-D-gluconic acid) produced by the...

  3. 21 CFR 172.720 - Calcium lactobionate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.720 Calcium lactobionate. The food additive calcium lactobionate may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is the calcium salt of lactobionic...

  4. 21 CFR 182.8223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium pyrophosphate. 182.8223 Section 182.8223 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8223 Calcium pyrophosphate. (a) Product. Calcium...

  5. 21 CFR 182.6203 - Calcium hexametaphosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium hexametaphosphate. 182.6203 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6203 Calcium hexametaphosphate. (a) Product. Calcium hexametaphosphate. (b) Conditions of use. This substance is generally recognized as safe when used...

  6. 7 CFR 58.434 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the Food...

  7. 21 CFR 582.5201 - Calcium glycerophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium glycerophosphate. 582.5201 Section 582.5201 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5201 Calcium glycerophosphate. (a) Product. Calcium glycerophosphate. (b...

  8. 21 CFR 582.5201 - Calcium glycerophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium glycerophosphate. 582.5201 Section 582.5201 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5201 Calcium glycerophosphate. (a) Product. Calcium glycerophosphate. (b...

  9. 21 CFR 582.5201 - Calcium glycerophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium glycerophosphate. 582.5201 Section 582.5201 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5201 Calcium glycerophosphate. (a) Product. Calcium glycerophosphate. (b...

  10. 21 CFR 582.5201 - Calcium glycerophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium glycerophosphate. 582.5201 Section 582.5201 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5201 Calcium glycerophosphate. (a) Product. Calcium glycerophosphate. (b...

  11. 21 CFR 582.5201 - Calcium glycerophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium glycerophosphate. 582.5201 Section 582.5201 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5201 Calcium glycerophosphate. (a) Product. Calcium glycerophosphate. (b...

  12. Seasonal Variations in Mercury's Dayside Calcium Exosphere

    NASA Technical Reports Server (NTRS)

    Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Merkel, Aimee W.; Vervack, Ronald J., Jr.; Cassidy, Timothy A.; Sarantos, Menelaos

    2014-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer on the MESSENGER spacecraft has observed calcium emission in Mercury's exosphere on a near-daily basis since March 2011. During MESSENGER's primary and first extended missions (March 2011 - March 2013) the dayside calcium exosphere was measured over eight Mercury years. We have simulated these data with a Monte Carlo model of exospheric source processes to show that (a) there is a persistent source of energetic calcium located in the dawn equatorial region, (b) there is a seasonal dependence in the calcium source rate, and (c) there are no obvious year-to-year variations in the near-surface dayside calcium exosphere. Although the precise mechanism responsible for ejecting the calcium has not yet been determined, the most likely process is the dissociation of Ca-bearing molecules produced in micrometeoroid impact plumes to form energetic, escaping calcium atoms.

  13. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis.

    PubMed

    Bro, S; Rasmussen, R A; Handberg, J; Olgaard, K; Feldt-Rasmussen, B

    1998-02-01

    The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main outcome measurements were plasma ionized calcium levels, plasma phosphate levels, plasma intact parathyroid hormone (PTH) levels, requirements for supplemental aluminum-aminoacetate therapy, patient tolerance, and cost of therapy. Nineteen patients on chronic hemodialysis were treated with a dialysate calcium concentration of 1.25 mmol/L and a fixed alfacalcidol dose for at least 2 months. All had previously tolerated therapy with calcium carbonate. Of the 19 patients included, 10 completed both treatment arms. After 12 weeks of therapy, the mean (+/-SEM) plasma ionized calcium level was significantly lower in the ketoglutarate arm compared with the calcium carbonate arm (4.8+/-0.1 mg/dL v 5.2+/-0.1 mg/dL; P = 0.004), whereas the mean plasma phosphate (4.5+/-0.3 mg/dL v 5.1+/-0.1 mg/dL) and PTH levels (266+/-125 pg/mL v 301+/-148 pg/mL) did not differ significantly between the two treatment arms. Supplemental aluminum-aminoacetate was not required during calcium ketoglutarate treatment, while two patients needed this supplement when treated with calcium carbonate. Five of 17 (29%) patients were withdrawn from calcium ketoglutarate therapy within 1 to 2 weeks due to intolerance (anorexia, vomiting, diarrhea, general uneasiness), whereas the remaining 12 patients did not experience any side effects at all. The five patients with calcium ketoglutarate intolerance all had pre-existing gastrointestinal symptoms; four of them had received treatment with cimetidine or omeprazol before inclusion into the study. Calculations based on median doses after 12 weeks showed that the cost of the therapy in Denmark was 10 times higher for calcium ketoglutarate compared with calcium

  14. Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity1[OPEN

    PubMed Central

    Bao, Yongmei; Yang, Ziyuan; Yu, Huiyun; Li, Yun; Wang, Shu; Zou, Baohong; Xu, Dachao; Ma, Zhiqi

    2017-01-01

    Calcium signaling is essential for environmental responses including immune responses. Here, we provide evidence that the evolutionarily conserved protein BONZAI1 (BON1) functions together with autoinhibited calcium ATPase10 (ACA10) and ACA8 to regulate calcium signals in Arabidopsis. BON1 is a plasma membrane localized protein that negatively regulates the expression of immune receptor genes and positively regulates stomatal closure. We found that BON1 interacts with the autoinhibitory domains of ACA10 and ACA8, and the aca10 loss-of-function (LOF) mutants have an autoimmune phenotype similar to that of the bon1 LOF mutants. Genetic evidences indicate that BON1 positively regulates the activities of ACA10 and ACA8. Consistent with this idea, the steady level of calcium concentration is increased in both aca10 and bon1 mutants. Most strikingly, cytosolic calcium oscillation imposed by external calcium treatment was altered in aca10, aca8, and bon1 mutants in guard cells. In addition, calcium- and pathogen-induced stomatal closure was compromised in the aca10 and bon1 mutants. Taken together, this study indicates that ACA10/8 and BON1 physically interact on plasma membrane and function in the generation of cytosol calcium signatures that are critical for stomatal movement and impact plant immunity. PMID:28701352

  15. Calcium Overload Accelerates Phosphate-Induced Vascular Calcification Via Pit-1, but not the Calcium-Sensing Receptor.

    PubMed

    Masumoto, Asuka; Sonou, Tomohiro; Ohya, Masaki; Yashiro, Mitsuru; Nakashima, Yuri; Okuda, Kouji; Iwashita, Yuko; Mima, Toru; Negi, Shigeo; Shigematsu, Takashi

    2017-07-01

    Vascular calcification (VC) is a risk factor of cardiovascular and all-cause mortality in patients with chronic kidney disease (CKD). CKD-mineral and bone metabolism disorder is an important problem in patients with renal failure. Abnormal levels of serum phosphate and calcium affect CKD-mineral and bone metabolism disorder and contribute to bone disease, VC, and cardiovascular disease. Hypercalcemia is a contributing factor in progression of VC in patients with CKD. However, the mechanisms of how calcium promotes intracellular calcification are still unclear. This study aimed to examine the mechanisms underlying calcium-induced calcification in a rat aortic tissue culture model. Aortic segments from 7-week-old male Sprague-Dawley rats were cultured in serum-supplemented medium for 10 days. We added high calcium (HiCa; calcium 3.0 mM) to high phosphate (HPi; phosphate 3.8 mM) medium to accelerate phosphate and calcium-induced VC. We used phosphonoformic acid and the calcimimetic R-568 to determine whether the mechanism of calcification involves Pit-1 or the calcium-sensing receptor. Medial VC was significantly augmented by HPi+HiCa medium compared with HPi alone (300%, p<0.05), and was associated with upregulation of Pit-1 protein. Pit-1 protein concentrations in HPi+HiCa medium were greater than those in HPi medium. Phosphonoformic acid completely negated the augmentation of medial VC induced by HPi+HiCa. R-568 had no additive direct effect on medial VC. These results indicated that exposure to HPi+HiCa accelerates medial VC, and this is mediated through Pit-1, not the calcium-sensing receptor.

  16. Calcium carbonate with magnesium overdose

    MedlinePlus

    The combination of calcium carbonate and magnesium is commonly found in antacids. These medicines provide heartburn relief. Calcium carbonate with magnesium overdose occurs when someone takes more than the ...

  17. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  18. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  19. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...

  20. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...

  1. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  2. 21 CFR 182.3225 - Calcium sorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium sorbate. 182.3225 Section 182.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  3. 21 CFR 582.3225 - Calcium sorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium sorbate. 582.3225 Section 582.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3225 Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  4. 21 CFR 582.6219 - Calcium phytate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phytate. 582.6219 Section 582.6219 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium phytate. (a) Product. Calcium phytate. (b) Conditions of use. This substance is generally...

  5. 21 CFR 582.6197 - Calcium diacetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium diacetate. 582.6197 Section 582.6197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 182.3225 - Calcium sorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium sorbate. 182.3225 Section 182.3225 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3225 Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally recognized as...

  7. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  8. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.6219 - Calcium phytate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phytate. 582.6219 Section 582.6219 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium phytate. (a) Product. Calcium phytate. (b) Conditions of use. This substance is generally...

  10. 21 CFR 582.3221 - Calcium propionate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium propionate. 582.3221 Section 582.3221 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3221 Calcium propionate. (a) Product. Calcium propionate. (b) Conditions of use. This substance is...

  11. 21 CFR 582.6197 - Calcium diacetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium diacetate. 582.6197 Section 582.6197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally...

  12. 21 CFR 582.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium hydroxide. 582.1205 Section 582.1205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This...

  13. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.1199 - Calcium gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium gluconate. 582.1199 Section 582.1199 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1199 Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This...

  15. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  16. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  17. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  18. 21 CFR 582.6199 - Calcium gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium gluconate. 582.6199 Section 582.6199 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally...

  19. 21 CFR 582.6199 - Calcium gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium gluconate. 582.6199 Section 582.6199 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally...

  20. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...

  1. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  2. 21 CFR 582.1191 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use. This...

  3. 21 CFR 582.3225 - Calcium sorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium sorbate. 582.3225 Section 582.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3225 Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  4. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...

  5. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 182.6197 - Calcium diacetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium diacetate. 182.6197 Section 182.6197 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6197 Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally recognized as...

  7. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  8. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  9. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  10. 21 CFR 582.3221 - Calcium propionate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium propionate. 582.3221 Section 582.3221 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3221 Calcium propionate. (a) Product. Calcium propionate. (b) Conditions of use. This substance is...

  11. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  12. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  13. 21 CFR 182.6197 - Calcium diacetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium diacetate. 182.6197 Section 182.6197 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6197 Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally recognized as...

  14. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono...

  15. 21 CFR 582.6199 - Calcium gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium gluconate. 582.6199 Section 582.6199 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  17. 21 CFR 582.6197 - Calcium diacetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium diacetate. 582.6197 Section 582.6197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally...

  18. 21 CFR 582.3225 - Calcium sorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium sorbate. 582.3225 Section 582.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3225 Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  19. 21 CFR 582.3221 - Calcium propionate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium propionate. 582.3221 Section 582.3221 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3221 Calcium propionate. (a) Product. Calcium propionate. (b) Conditions of use. This substance is...

  20. 21 CFR 582.3225 - Calcium sorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium sorbate. 582.3225 Section 582.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3225 Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  1. 21 CFR 582.6219 - Calcium phytate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phytate. 582.6219 Section 582.6219 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium phytate. (a) Product. Calcium phytate. (b) Conditions of use. This substance is generally...

  2. 21 CFR 182.6197 - Calcium diacetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium diacetate. 182.6197 Section 182.6197 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6197 Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally recognized as...

  3. 21 CFR 582.3225 - Calcium sorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium sorbate. 582.3225 Section 582.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3225 Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  4. 21 CFR 582.6199 - Calcium gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium gluconate. 582.6199 Section 582.6199 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally...

  5. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  6. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  7. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  8. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  10. 21 CFR 582.6199 - Calcium gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium gluconate. 582.6199 Section 582.6199 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium gluconate. (a) Product. Calcium gluconate. (b) Conditions of use. This substance is generally...

  11. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  12. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  13. 21 CFR 582.6219 - Calcium phytate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phytate. 582.6219 Section 582.6219 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium phytate. (a) Product. Calcium phytate. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  15. 21 CFR 582.6195 - Calcium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium citrate. 582.6195 Section 582.6195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 182.3225 - Calcium sorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium sorbate. 182.3225 Section 182.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3225 Calcium sorbate. (a) Product. Calcium sorbate...

  17. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2227 Calcium silicate. (a) Product. Calcium silicate...

  18. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  19. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  20. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  1. 21 CFR 582.3221 - Calcium propionate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium propionate. 582.3221 Section 582.3221 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3221 Calcium propionate. (a) Product. Calcium propionate. (b) Conditions of use. This substance is...

  2. 21 CFR 582.3221 - Calcium propionate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium propionate. 582.3221 Section 582.3221 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3221 Calcium propionate. (a) Product. Calcium propionate. (b) Conditions of use. This substance is...

  3. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  4. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  5. 21 CFR 582.6197 - Calcium diacetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium diacetate. 582.6197 Section 582.6197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  8. 21 CFR 182.6197 - Calcium diacetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium diacetate. 182.6197 Section 182.6197 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6197 Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally recognized as...

  9. 21 CFR 182.3225 - Calcium sorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium sorbate. 182.3225 Section 182.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  10. 21 CFR 182.3225 - Calcium sorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium sorbate. 182.3225 Section 182.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium sorbate. (a) Product. Calcium sorbate. (b) Conditions of use. This substance is generally...

  11. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  12. 21 CFR 582.6219 - Calcium phytate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phytate. 582.6219 Section 582.6219 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium phytate. (a) Product. Calcium phytate. (b) Conditions of use. This substance is generally...

  13. 21 CFR 582.6197 - Calcium diacetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium diacetate. 582.6197 Section 582.6197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium diacetate. (a) Product. Calcium diacetate. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  15. Genome-wide analysis of wheat calcium ATPases and potential role of selected ACAs and ECAs in calcium stress.

    PubMed

    Aslam, Roohi; Williams, Lorraine E; Bhatti, Muhammad Faraz; Virk, Nasar

    2017-10-27

    P 2 - type calcium ATPases (ACAs-auto inhibited calcium ATPases and ECAs-endoplasmic reticulum calcium ATPases) belong to the P- type ATPase family of active membrane transporters and are significantly involved in maintaining accurate levels of Ca 2+ , Mn 2+ and Zn 2+ in the cytosol as well as playing a very important role in stress signaling, stomatal opening and closing and pollen tube growth. Here we report the identification and possible role of some of these ATPases from wheat. In this study, ACA and ECA sequences of six species (belonging to Poaceae) were retrieved from different databases and a phylogenetic tree was constructed. A high degree of evolutionary relatedness was observed among P 2 sequences characterized in this study. Members of the respective groups from different plant species were observed to fall under the same clade. This pattern highlights the common ancestry of P 2- type calcium ATPases. Furthermore, qRT-PCR was used to analyse the expression of selected ACAs and ECAs from Triticum aestivum (wheat) under calcium toxicity and calcium deficiency. The data indicated that expression of ECAs is enhanced under calcium stress, suggesting possible roles of these ATPases in calcium homeostasis in wheat. Similarly, the expression of ACAs was significantly different in plants grown under calcium stress as compared to plants grown under control conditions. This gives clues to the role of ACAs in signal transduction during calcium stress in wheat. Here we concluded that wheat genome consists of nine P 2B and three P 2A -type calcium ATPases. Moreover, gene loss events in wheat ancestors lead to the loss of a particular homoeolog of a gene in wheat. To elaborate the role of these wheat ATPases, qRT-PCR was performed. The results indicated that when plants are exposed to calcium stress, both P 2A and P 2B gene expression get enhanced. This further gives clues about the possible role of these ATPases in wheat in calcium management. These findings can be

  16. In vitro calcium availability in bakery products fortified with tuna bone powder as a natural calcium source.

    PubMed

    Nemati, Mahnaz; Kamilah, Hanisah; Huda, Nurul; Ariffin, Fazilah

    2015-08-01

    Avoidance of dairy products due to lactose intolerance can lead to insufficiency of calcium (Ca) in the body. In an approach to address this problem, tuna bone powder (TBP) was formulated as a calcium supplement to fortify bakery products. In a study, TBP recovered by alkaline treatment contained 38.16 g/100 g of calcium and 23.31 g/100 g of phosphorus. The ratio of Ca:P that was close to 2:1 was hence comparable to that in human bones. The availability of calcium in TBP was 53.93%, which was significantly higher than most calcium salts, tricalcium phosphate (TCP) being the exception. In vitro availability of calcium in TBP-fortified cookies or TCP-fortified cookies were comparable at 38.9% and 39.5%, respectively. These values were higher than the readings from TBP-fortified bread (36.7%) or TCP-fortified bread (37.4%). Sensory evaluation of bakery products containing TBP or TCP elicited comparable scores for the two additives from test panels. Hence, TBP could be used in the production of high calcium bakery products that would enjoy consumer acceptance.

  17. Idiopathic hypercalciuria and formation of calcium renal stones

    PubMed Central

    Coe, Fredric L.; Worcester, Elaine M.; Evan, Andrew P.

    2018-01-01

    The most common presentation of nephrolithiasis is idiopathic calcium stones in patients without systemic disease. Most stones are primarily composed of calcium oxalate and form on a base of interstitial apatite deposits, known as Randall’s plaque. By contrast some stones are composed largely of calcium phosphate, as either hydroxyapatite or brushite (calcium monohydrogen phosphate), and are usually accompanied by deposits of calcium phosphate in the Bellini ducts. These deposits result in local tissue damage and might serve as a site of mineral overgrowth. Stone formation is driven by supersaturation of urine with calcium oxalate and brushite. The level of supersaturation is related to fluid intake as well as to the levels of urinary citrate and calcium. Risk of stone formation is increased when urine citrate excretion is <400 mg per day, and treatment with potassium citrate has been used to prevent stones. Urine calcium levels >200 mg per day also increase stone risk and often result in negative calcium balance. Reduced renal calcium reabsorption has a role in idiopathic hypercalciuria. Low sodium diets and thiazide-type diuretics lower urine calcium levels and potentially reduce the risk of stone recurrence and bone diseas PMID:27452364

  18. Induced calcium carbonate precipitation using Bacillus species.

    PubMed

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-12-01

    Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca 2+ ). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.

  19. The Effects of Annatto Tocotrienol on Bone Biomechanical Strength and Bone Calcium Content in an Animal Model of Osteoporosis Due to Testosterone Deficiency

    PubMed Central

    Chin, Kok-Yong; Gengatharan, Dhivakaran; Mohd Nasru, Fadlin Sakina; Khairussam, Rehan Amalia; Ern, Sherlyn Lai Hui; Aminuddin, Siti Aina Wahidah; Ima-Nirwana, Soelaiman

    2016-01-01

    Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content (p < 0.05) but it did not affect femoral biomechanical strength (p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength. PMID:27983628

  20. The Effects of Annatto Tocotrienol on Bone Biomechanical Strength and Bone Calcium Content in an Animal Model of Osteoporosis Due to Testosterone Deficiency.

    PubMed

    Chin, Kok-Yong; Gengatharan, Dhivakaran; Mohd Nasru, Fadlin Sakina; Khairussam, Rehan Amalia; Ern, Sherlyn Lai Hui; Aminuddin, Siti Aina Wahidah; Ima-Nirwana, Soelaiman

    2016-12-14

    Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content ( p < 0.05) but it did not affect femoral biomechanical strength ( p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength.

  1. The calcium-binding protein ALG-2 regulates protein secretion and trafficking via interactions with MISSL and MAP1B proteins.

    PubMed

    Takahara, Terunao; Inoue, Kuniko; Arai, Yumika; Kuwata, Keiko; Shibata, Hideki; Maki, Masatoshi

    2017-10-13

    Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6 ), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that M APK1- i nteracting and s pindle- s tabilizing (MISS)- l ike (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of se creted a lkaline p hosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. A microstructural study of the degradation and calcium release from hydroxyapatite-calcium oxide ceramics made by infiltration.

    PubMed

    Zhang, Qinghao; Schmelzer, Eva; Gerlach, Jörg C; Nettleship, Ian

    2017-04-01

    Hydroxyapatite pellets, partially densified in a low-temperature heat treatment, were infiltrated with calcium nitrate solution followed by in-situ precipitation of Ca(OH) 2 and CaCO 3 . The infiltrated bodies were then densified to high relative density and the calcium carbonate transformed to calcium oxide during sintering and resulted in biphasic hydroxyapatite-CaO ceramics. This work investigated the influence of the infiltration on surface morphology, weight change, and microstructural-level degradation caused by exposure to saline at pH=7.4 and a temperature of 20°C. The CaO rendered the materials more susceptible to degradation, and released calcium into the saline faster than single phase, calcium deficient hydroxyapatite (HA) that were used as a control. In consequence, these ceramics could be used to release calcium into the culture microenvironments of bone tissue or bone marrow cells next to a scaffold surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    PubMed Central

    Nebl, Thomas; Prieto, Judith Helena; Kapp, Eugene; Smith, Brian J.; Williams, Melanie J.; Yates, John R.; Cowman, Alan F.; Tonkin, Christopher J.

    2011-01-01

    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component. PMID:21980283

  4. Calcium signaling in immune cells

    PubMed Central

    Vig, Monika; Kinet, Jean-Pierre

    2010-01-01

    Calcium acts as a second messenger in many cell types, including lymphocytes. Resting lymphocytes maintain a low concentration of Ca2+. However, engagement of antigen receptors induces calcium influx from the extracellular space by several routes. A chief mechanism of Ca2+ entry in lymphocytes is through store-operated calcium (SOC) channels. The identification of two important molecular components of SOC channels, CRACM1 (the pore-forming subunit) and STIM1 (the sensor of stored calcium), has allowed genetic and molecular manipulation of the SOC entry pathway. In this review, we highlight advances in the understanding of Ca2+ signaling in lymphocytes with special emphasis on SOC entry. We also discuss outstanding questions and probable future directions of the field. PMID:19088738

  5. Dependency of Calcium Alternans on Ryanodine Receptor Refractoriness

    PubMed Central

    Alvarez-Lacalle, Enric; Cantalapiedra, Inma R.; Peñaranda, Angelina; Cinca, Juan; Hove-Madsen, Leif; Echebarria, Blas

    2013-01-01

    Background Rapid pacing rates induce alternations in the cytosolic calcium concentration caused by fluctuations in calcium released from the sarcoplasmic reticulum (SR). However, the relationship between calcium alternans and refractoriness of the SR calcium release channel (RyR2) remains elusive. Methodology/Principal Findings To investigate how ryanodine receptor (RyR2) refractoriness modulates calcium handling on a beat-to-beat basis using a numerical rabbit cardiomyocyte model. We used a mathematical rabbit cardiomyocyte model to study the beat-to-beat calcium response as a function of RyR2 activation and inactivation. Bi-dimensional maps were constructed depicting the beat-to-beat response. When alternans was observed, a novel numerical clamping protocol was used to determine whether alternans was caused by oscillations in SR calcium loading or by RyR2 refractoriness. Using this protocol, we identified regions of RyR2 gating parameters where SR calcium loading or RyR2 refractoriness underlie the induction of calcium alternans, and we found that at the onset of alternans both mechanisms contribute. At low inactivation rates of the RyR2, calcium alternans was caused by alternation in SR calcium loading, while at low activation rates it was caused by alternation in the level of available RyR2s. Conclusions/Significance We have mapped cardiomyocyte beat-to-beat responses as a function of RyR2 activation and inactivation, identifying domains where SR calcium load or RyR2 refractoriness underlie the induction of calcium alternans. A corollary of this work is that RyR2 refractoriness due to slow recovery from inactivation can be the cause of calcium alternans even when alternation in SR calcium load is present. PMID:23390511

  6. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food... GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance...

  7. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  8. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance is...

  9. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance...

  11. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  12. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  13. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  14. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  15. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  16. 21 CFR 582.1195 - Calcium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium citrate. 582.1195 Section 582.1195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1195 Calcium citrate. (a) Product. Calcium citrate. (b) Conditions of use. This substance is...

  17. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  18. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  19. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  20. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally...

  1. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  2. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  3. 21 CFR 182.6197 - Calcium diacetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium diacetate. 182.6197 Section 182.6197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6197 Calcium diacetate. (a) Product. Calcium diacetate. (b...

  4. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  5. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  6. Novel Peptide with Specific Calcium-Binding Capacity from Schizochytrium sp. Protein Hydrolysates and Calcium Bioavailability in Caco-2 Cells

    PubMed Central

    Cai, Xixi; Lin, Jiaping; Wang, Shaoyun

    2016-01-01

    Peptide-calcium can probably be a suitable supplement to improve calcium absorption in the human body. In this study, a specific peptide Phe-Tyr (FY) with calcium-binding capacity was purified from Schizochytrium sp. protein hydrolysates through gel filtration chromatography and reversed phase HPLC. The calcium-binding capacity of FY reached 128.77 ± 2.57 μg/mg. Results of ultraviolet spectroscopy, fluorescence spectroscopy, and infrared spectroscopy showed that carboxyl groups, amino groups, and amido groups were the major chelating sites. FY-Ca exhibited excellent thermal stability and solubility, which were beneficial to be absorbed and transported in the basic intestinal tract of the human body. Moreover, the calcium bioavailability in Caco-2 cells showed that FY-Ca could enhance calcium uptake efficiency by more than three times when compared with CaCl2, and protect calcium ions against dietary inhibitors, such as tannic acid, oxalate, phytate, and Zn2+. Our findings further the progress of algae-based peptide-calcium, suggesting that FY-Ca has the potential to be developed as functionally nutraceutical additives. PMID:28036002

  7. Calcium-Alkali Syndrome in the Modern Era

    PubMed Central

    Patel, Ami M.; Adeseun, Gbemisola A.; Goldfarb, Stanley

    2013-01-01

    The ingestion of calcium, along with alkali, results in a well-described triad of hypercalcemia, metabolic alkalosis, and renal insufficiency. Over time, the epidemiology and root cause of the syndrome have shifted, such that the disorder, originally called the milk-alkali syndrome, is now better described as the calcium-alkali syndrome. The calcium-alkali syndrome is an important cause of morbidity that may be on the rise, an unintended consequence of shifts in calcium and vitamin D intake in segments of the population. We review the pathophysiology of the calcium-alkali syndrome. PMID:24288027

  8. Transgenic plants with increased calcium stores

    NASA Technical Reports Server (NTRS)

    Robertson, Dominique (Inventor); Wyatt, Sarah (Inventor); Tsou, Pei-Lan (Inventor); Boss, Wendy (Inventor)

    2004-01-01

    The present invention provides transgenic plants over-expressing a transgene encoding a calcium-binding protein or peptide (CaBP). Preferably, the CaBP is a calcium storage protein and over-expression thereof does not have undue adverse effects on calcium homeostasis or biochemical pathways that are regulated by calcium. In preferred embodiments, the CaBP is calreticulin (CRT) or calsequestrin. In more preferred embodiments, the CaBP is the C-domain of CRT, a fragment of the C-domain, or multimers of the foregoing. In other preferred embodiments, the CaBP is localized to the endoplasmic reticulum by operatively associating the transgene encoding the CaBP with an endoplasmic reticulum localization peptide. Alternatively, the CaBP is targeted to any other sub-cellular compartment that permits the calcium to be stored in a form that is biologically available to the plant. Also provided are methods of producing plants with desirable phenotypic traits by transformation of the plant with a transgene encoding a CaBP. Such phenotypic traits include increased calcium storage, enhanced resistance to calcium-limiting conditions, enhanced growth and viability, increased disease and stress resistance, enhanced flower and fruit production, reduced senescence, and a decreased need for fertilizer production. Further provided are plants with enhanced nutritional value as human food or animal feed.

  9. 21 CFR 573.240 - Calcium periodate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used in... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium periodate. 573.240 Section 573.240 Food...

  10. 21 CFR 573.240 - Calcium periodate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used in... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium periodate. 573.240 Section 573.240 Food...

  11. 21 CFR 573.240 - Calcium periodate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used in... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium periodate. 573.240 Section 573.240 Food...

  12. 21 CFR 573.240 - Calcium periodate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used in... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium periodate. 573.240 Section 573.240 Food...

  13. 21 CFR 573.240 - Calcium periodate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used in... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium periodate. 573.240 Section 573.240 Food...

  14. Evaluation of calcium ion, hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments: An in vitro study

    PubMed Central

    Fulzele, Punit; Baliga, Sudhindra; Thosar, Nilima; Pradhan, Debaprya

    2011-01-01

    Aims: Evaluation of calcium ion and hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments. Objective: The purpose of this study was to evaluate calcium and hydroxyl ion release and pH levels of calcium hydroxide based products, namely, RC Cal, Metapex, calcium hydroxide with distilled water, along with the new gutta-percha points with calcium hydroxide. Materials and Methods: The materials were inserted in polyethylene tubes and immersed in deionized water. The pH variation, Ca++ and OH- release were monitored periodically for 1 week. Statistical Analysis Used: Statistical analysis was carried out using one-way analysis of variance and Tukey's post hoc tests with PASW Statistics version 18 software to compare the statistical difference. Results: After 1 week, calcium hydroxide with distilled water and RC Cal raised the pH to 12.7 and 11.8, respectively, while a small change was observed for Metapex, calcium hydroxide gutta-percha points. The calcium released after 1 week was 15.36 mg/dL from RC Cal, followed by 13.04, 1.296, 3.064 mg/dL from calcium hydroxide with sterile water, Metapex and calcium hydroxide gutta-percha points, respectively. Conclusions: Calcium hydroxide with sterile water and RC Cal pastes liberate significantly more calcium and hydroxyl ions and raise the pH higher than Metapex and calcium hydroxidegutta-percha points. PMID:22346155

  15. Bone Markers, Calcium Metabolism, and Calcium Kinetics During Extended-Duration Space Flight on the Mir Space Station

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Wastney, Meryl E.; O'Brien, Kimberly O.; Morukov, Boris V.; Larina, Irina M.; Abrams, Steven A.; Davis-Street, Janis E.; Oganov, Victor; Shackelford, Linda C.

    2005-01-01

    Bone loss is a current limitation for long-term space exploration. Bone markers, calcitropic hormones, and calcium kinetics of crew members on space missions of 4-6 months were evaluated. Spaceflight-induced bone loss was associated with increased bone resorption and decreased calcium absorption. INTRODUCTION: Bone loss is a significant concern for the health of astronauts on long-duration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract these losses during space flight and will have relevance for other clinical situations that impair weight-bearing activity. MATERIALS AND METHODS: We report here results from two studies conducted during the Shuttle-Mir Science Program. Study 1 was an evaluation of bone and calcium biochemical markers of 13 subjects before and after long-duration (4-6 months) space missions. In study 2, stable calcium isotopes were used to evaluate calcium metabolism in six subjects before, during, and after flight. Relationships between measures of bone turnover, biochemical markers, and calcium kinetics were examined. RESULTS: Pre- and postflight study results confirmed that, after landing, bone resorption was increased, as indicated by increases in urinary calcium (p < 0.05) and collagen cross-links (N-telopeptide, pyridinoline, and deoxypyridinoline were all increased >55% above preflight levels, p < 0.001). Parathyroid hormone and vitamin D metabolites were unchanged at landing. Biochemical markers of bone formation were unchanged at landing, but 2-3 weeks later, both bone-specific alkaline phosphatase and osteocalcin were significantly (p < 0.01) increased above preflight levels. In studies conducted during flight, bone resorption markers were also significantly higher than before flight. The calcium kinetic data also validated that bone resorption was increased during flight compared with preflight values (668 +/- 130 versus 427 +/- 153 mg/day; p < 0.001) and clearly documented that

  16. Calcium Orthophosphate Cements and Concretes

    PubMed Central

    Dorozhkin, Sergey V.

    2009-01-01

    In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  17. Air bubble contact with endothelial cells in vitro induces calcium influx and IP3-dependent release of calcium stores

    PubMed Central

    Sobolewski, Peter; Kandel, Judith; Klinger, Alexandra L.

    2011-01-01

    Gas embolism is a serious complication of decompression events and clinical procedures, but the mechanism of resulting injury remains unclear. Previous work has demonstrated that contact between air microbubbles and endothelial cells causes a rapid intracellular calcium transient and can lead to cell death. Here we examined the mechanism responsible for the calcium rise. Single air microbubbles (50–150 μm), trapped at the tip of a micropipette, were micromanipulated into contact with individual human umbilical vein endothelial cells (HUVECs) loaded with Fluo-4 (a fluorescent calcium indicator). Changes in intracellular calcium were then recorded via epifluorescence microscopy. First, we confirmed that HUVECs rapidly respond to air bubble contact with a calcium transient. Next, we examined the involvement of extracellular calcium influx by conducting experiments in low calcium buffer, which markedly attenuated the response, or by pretreating cells with stretch-activated channel blockers (gadolinium chloride or ruthenium red), which abolished the response. Finally, we tested the role of intracellular calcium release by pretreating cells with an inositol 1,4,5-trisphosphate (IP3) receptor blocker (xestospongin C) or phospholipase C inhibitor (neomycin sulfate), which eliminated the response in 64% and 67% of cases, respectively. Collectively, our results lead us to conclude that air bubble contact with endothelial cells causes an influx of calcium through a stretch-activated channel, such as a transient receptor potential vanilloid family member, triggering the release of calcium from intracellular stores via the IP3 pathway. PMID:21633077

  18. Discrete-State Stochastic Models of Calcium-Regulated Calcium Influx and Subspace Dynamics Are Not Well-Approximated by ODEs That Neglect Concentration Fluctuations

    PubMed Central

    Weinberg, Seth H.; Smith, Gregory D.

    2012-01-01

    Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10−17 liters) that local signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers. PMID:23509597

  19. Voltage-gated calcium flux mediates Escherichia coli mechanosensation.

    PubMed

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  20. Voltage-gated calcium flux mediates Escherichia coli mechanosensation

    PubMed Central

    Weekley, R. Andrew; Dodd, Benjamin J. T.

    2017-01-01

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli, including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings. PMID:28808010