Sample records for naca 64a010 airfoil

  1. An experimental low Reynolds number comparison of a Wortmann FX67-K170 airfoil, a NACA 0012 airfoil and a NACA 64-210 airfoil in simulated heavy rain

    NASA Technical Reports Server (NTRS)

    Craig, Anthony P.; Hansman, R. John

    1987-01-01

    Wind tunnel experiments were conducted on Wortmann FX67-K170, NACA 0012, and NACA 64-210 airfoils at rain rates of 1000 mm/hr and Reynolds numbers of 310,000 to compare the aerodynamic performance degradation of the airfoils and to attempt to identify the various mechanisms which affect performance in heavy rain conditions. Lift and drag were measured in dry and wet conditions, a variety of flow visualization techniques were employed, and a computational code which predicted airfoil boundary layer behavior was used. At low angles of attack, the lift degradation in wet conditions varied significantly between the airfoils. The Wortmann section had the greatest overall lift degradation and the NACA 64-210 airfoil had the smallest. At high angles of attack, the NACA 64-210 and 0012 airfoils had improved aerodynamic performance in rain conditions due to an apparent reduction of the boundry layer separation. Performance degradation in heavy rain for all three airfoils at low angles of attack could be emulated by forced boundary layer transition near the leading edge. The secondary effect occurs at time scales consistent with top surface water runback times. The runback layer is thought to effectively alter the airfoil geometry. The severity of the performance degradation for the airfoils varied. The relative differences appeared to be related to the susceptibility of each airfoil to premature boundary layer transition.

  2. Pressure data from a 64A010 airfoil at transonic speeds in heavy gas media of ratio of specific heats from 1.67 to 1.12

    NASA Technical Reports Server (NTRS)

    Gross, A. R.; Steinle, F. W., Jr.

    1975-01-01

    A NACA 64A010 pressure-instrumented airfoil was tested at transonic speeds over a range of angle of attack from -1 to 12 degrees at various Reynolds numbers ranging from 2 to 6 million in air, argon, Freon 12, and a mixture of argon and Freon 12 having a ratio of specific heats corresponding to air. Good agreement of results is obtained for conditions where compressibility is not significant and for the air and comparable argon-Freon 12 mixture. Comparison of heavy gas results with air, when adjusted for transonic similarity, show improved, but less than desired agreement.

  3. Computation of viscous transonic flow about a lifting airfoil

    NASA Technical Reports Server (NTRS)

    Walitt, L.; Liu, C. Y.

    1976-01-01

    The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.

  4. Experimental and calculated characteristics of three wings of NACA 64-210 and 65-210 airfoil sections with and without 2 degree washout

    NASA Technical Reports Server (NTRS)

    Sivells, James C

    1947-01-01

    Report presents the results of an investigation conducted to determine some of the effects of airfoil section and washout on the experimental and calculated characteristics of 10-percent-thick wings. Three wings of aspect ratio 9 and ratio of root chord to tip chord 2.5 were tested. One wing had NACA 64-210 sections and 2 degree washout, the second had NACA 65-210 sections and 2 degree washout, and the third had NACA 65-210 sections and 0 degree washout. It was found that the experimental characteristics of the wings could be satisfactorily predicted from calculations based upon two-dimensional data when the airfoil contours of the wings conformed to the true airfoil sections with the same high degree of accuracy as the two-dimensional models.

  5. Pressure distribution over an NACA 23012 airfoil with an NACA 23012 external-airfoil flap

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J

    1938-01-01

    Report presents the results of pressure-distribution tests of an NACA 23012 airfoil with an NACA 23012 external airfoil flap made in the 7 by 10-foot wind tunnel. The pressures were measured on the upper and lower surfaces at one chord section on both the main airfoil and on the flap for several different flap deflections and at several angles of attack. A test installation was used in which the airfoil was mounted horizontally in the wind tunnel between vertical end planes so that two-dimensional flow was approximated. The data are presented in the form of pressure-distribution diagrams and as graphs of calculated coefficients for the airfoil-and-flap combination and for the flap alone.

  6. Investigation in the Langley 19-foot Pressure Tunnel of Two Wings of NACA 65-210 and 64-210 Airfoil Sections with Various Type Flaps

    NASA Technical Reports Server (NTRS)

    Sivells, James C; Spooner, Stanley H

    1949-01-01

    Report presents the results of an investigation conducted in the Langley 19-foot pressure tunnel to determine the maximum lift and stalling characteristics of two thin wings equipped with several types of flaps. Split, single slotted, and double slotted flaps were tested on one wing which had NACA 65-210 airfoil sections and split and double slotted flaps were tested on the other, which had NACA 64-210 airfoil sections. Both wings were zero sweep, an aspect ratio of 9, and a taper ratio of 0.4.

  7. An investigation on the effect of second-order additional thickness distributions to the upper surface of an NACA 64-206 airfoil. [using flow equations and a CDC 7600 digital computer

    NASA Technical Reports Server (NTRS)

    Merz, A. W.; Hague, D. S.

    1975-01-01

    An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of an NACA 64-206 airfoil. Additional thickness distributions employed were in the form of two second-order polynomial arcs which have a specified thickness at a given chordwise location. The forward arc disappears at the airfoil leading edge, the aft arc disappears at the airfoil trailing edge. At the juncture of the two arcs, x = x, continuity of slope is maintained. The effect of varying the maximum additional thickness and its chordwise location on airfoil lift coefficient, pitching moment, and pressure distribution was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic NACA 64-206 airfoil, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.

  8. An investigation on the effect of second-order additional thickness distributions to the upper surface of an NACA 64 sub 1-212 airfoil. [using flow equations and a CDC 7600 digital computer

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Merz, A. W.

    1975-01-01

    An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of an NACA 64 sub 1 - 212 airfoil. Additional thickness distributions employed were in the form of two second-order polynomial arcs which have a specified thickness at a given chordwise location. The forward arc disappears at the airfoil leading edge, the aft arc disappears at the airfoil trailing edge. At the juncture of the two arcs, x = x, continuity of slope is maintained. The effect of varying the maximum additional thickness and its chordwise location on airfoil lift coefficient, pitching moment, and pressure distribution was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic NACA 64 sub 1 - 212 airfoil, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.

  9. Wind-tunnel Tests of the NACA 45-125 Airfoil: A Thick Airfoil for High-Speed Airplanes

    NASA Technical Reports Server (NTRS)

    Delano, James B.

    1940-01-01

    Investigations of the pressure distribution, the profile drag, and the location of transition for a 30-inch-chord 25-percent-thick N.A,C.A. 45-125 airfoil were made in the N.A.C.A 8-foot high-speed wind tunnel for the purpose of aiding in the development of a thick wing for high-speed airplanes. The tests were made at a lift coefficient of 0.1 for Reynolds Numbers from 1,750,000 to 8,690,000, corresponding to speeds from 80 to 440 miles per hour at 59 F. The effect on the profile drag of fixing the transition point was also investigated. The effect of compressibility on the rate of increase of pressure coefficients was found to be greater than that predicted by a simplified theoretical expression for thin wings. The results indicated that, for a lift coefficient of 0.1, the critical speed of the N.A.C,A. 45-125 airfoil was about 460 miles per hour at 59 F,. The value of the profile-drag coefficient at a Reynolds Number of 4,500,000 was 0.0058, or about half as large as the value for the N.A,C,A. 0025 airfoil. The increase in the profile-drag coefficient for a given movement of the transition point was about three times as large as the corresponding increase for the N.A.C,A. 0012 airfoil. Transition determinations indicated that, for Reynolds Numbers up to ?,000,000, laminar boundary 1ayers were maintained over approximately 40 percent of the upper and the lower surfaces of the airfoil.

  10. The effects of NACA 0012 airfoil modification on aerodynamic performance improvement and obtaining high lift coefficient and post-stall airfoil

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci

    2018-02-01

    In this study, aerodynamic performances of NACA 0012 airfoils with distinct modification are numerically investigated to obtain high lift coefficient and post-stall airfoils. NACA 0012 airfoil is divided into two part thought chord line then suction sides kept fixed and by changing the thickness of the pressure side new types of airfoil are created. Numerical experiments are then conducted by varying thickness of NACA 0012 from lower surface and different relative thicknesses asymmetrical airfoils are modified and NACA 0012-10, 0012-08, 0012-07, 0012-06, 0012-04, 0012-03, 0012-02, 0012-01 are created and simulated by using COMSOL software.

  11. Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines

    NASA Astrophysics Data System (ADS)

    Migliore, P. G.

    1983-08-01

    The aerodynamic efficiency of Darrieus wind turbines as effected by blade airfoil geometry was investigated. Analysis was limited to curved-bladed machines having rotor solidities of 7-21 percent and operating at a Reynolds number of 3 x 10 to the 6th. Ten different airfoils, having thickness-to-chord ratios of 12, 15, and 18 percent, were studied. Performance estimates were made using a blade element/momentum theory approach. Results indicated that NACA 6-series airfoils yield peak power coefficients as great as NACA 4-digit airfoils and have broader and flatter power coefficient-tip speed ratio curves. Sample calculations for an NACA 63(2)-015 airfoil showed an annual energy output increase of 17-27 percent, depending on rotor solidity, compared to an NACA 0015 airfoil.

  12. A harmonic analysis method for unsteady transonic flow and its application to the flutter of airfoils

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Weatherill, W. H.

    1982-01-01

    A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. A study is presented of the shock motion associated with an oscillating airfoil and its representation by the harmonic procedure. The effects of the shock motion and the resulting pressure pulse are shown to be included in the harmonic pressure distributions and the corresponding generalized forces. Analytical and experimental pressure distributions for the NACA 64A010 airfoil are compared for Mach numbers of 0.75, 0.80 and 0.842. A typical section, two-degree-of-freedom flutter analysis of a NACA 64A010 airfoil is performed. The results show a sharp transonic bucket in one case and abrupt changes in instability modes.

  13. A comparative analysis between NACA 4412 airfoil and it's modified form with tubercles

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Jonayed; Islam, Md. Tazul; Hassan, Md. Mehedi

    2017-06-01

    The effect of tubercles on the leading edge of an airfoil become more vivid at high angle of attacks. The effect of tubercles with large wavelength and small amplitude on the leading edge of a NACA 4412 airfoil section was investigated numerically and experimentally. The phenomena of improving the airfoil performance by modifying the contours drove our interest to do this analysis. The models were developed & numerical simulations were carried out with both NACA 4412 airfoil and modified airfoil model at Re=1.03×106 and angles of attack ranging from 0° to 20°. Flow separation was analyzed with vector profiles. CL, CD at different angle of attacks was developed and it gave down noticeable pre-stall & post-stall behavior. The airfoils were studied experimentally in a low speed wind tunnel. Pressure distribution over the two airfoils was obtained. It was evident from the pressure distributions that the modified airfoil exhibits significant aerodynamic performance at high angles of attack. We can infer that these effects will be advantageous for maneuverability and post-stall behavior.

  14. Aerodynamic data banks for Clark-Y, NACA 4-digit and NACA 16-series airfoil families

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Camba, J., III; Morris, P. M.

    1986-01-01

    With the renewed interest in propellers as means of obtaining thrust and fuel efficiency in addition to the increased utilization of the computer, a significant amount of progress was made in the development of theoretical models to predict the performance of propeller systems. Inherent in the majority of the theoretical performance models to date is the need for airfoil data banks which provide lift, drag, and moment coefficient values as a function of Mach number, angle-of-attack, maximum thickness to chord ratio, and Reynolds number. Realizing the need for such data, a study was initiated to provide airfoil data banks for three commonly used airfoil families in propeller design and analysis. The families chosen consisted of the Clark-Y, NACA 16 series, and NACA 4 digit series airfoils. The various component of each computer code, the source of the data used to create the airfoil data bank, the limitations of each data bank, program listing, and a sample case with its associated input-output are described. Each airfoil data bank computer code was written to be used on the Amdahl Computer system, which is IBM compatible and uses Fortran.

  15. Computational Investigations of a NACA 0012 Airfoil in Low Reynolds Number Flows

    DTIC Science & Technology

    1992-09-01

    11 D . RESULTS .................................... 13 1. Eppler E585 Airfoil ............................. 13 2. NACA 0012 Airfoil ...function in FORTRAN should also be used to calculate/3. D. RESULTS 1. Eppler E585 Airfoil The first investigation was conducted for an Eppler E585...The velocities match the given distribution well except for slight deviations at the trailing edge. This Figure 2.3 Eppler E585 Airfoil difference can

  16. An experimental study of transonic flow about a supercritical airfoil. Static pressure and drag data obtained from tests of a supercritical airfoil and an NACA 0012 airfoil at transonic speeds, supplement

    NASA Technical Reports Server (NTRS)

    Spaid, F. W.; Dahlin, J. A.; Roos, F. W.; Stivers, L. S., Jr.

    1983-01-01

    Surface static-pressure and drag data obtained from tests of two slightly modified versions of the original NASA Whitcomb airfoil and a model of the NACA 0012 airfoil section are presented. Data for the supercritical airfoil were obtained for a free-stream Mach number range of 0.5 to 0.9, and a chord Reynolds number range of 2 x 10 to the 6th power to 4 x 10 to the 6th power. The NACA 0012 airfoil was tested at a constant chord Reynolds number of 2 x 10 to the 6th power and a free-stream Mach number range of 0.6 to 0.8.

  17. Impingement of Water Droplets on NACA 65A004 Airfoil and Effect of Change in Airfoil Thickness from 12 to 4 Percent at 4 deg Angle of Attack

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Gallagher, Helen M.; Vogt, Dorothea E.

    1953-01-01

    The trajectories of droplets in the air flowing past an NACA 65A004 a irfoil at an angle of attack of 4 deg were determined. The amount of water in droplet form impinging on the airfoil, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and presented to cover a large range of flight and atmospheric conditions. The effect of a change in airfoil thickness from 12 to 4 percent at 4 deg angle of attack is presented by comparing the impingement calculations for the NACA 65A004 airfoil with those for the NACA 65(sub 1)-208 and 65(sub 1)-212 airfoils. The rearward limit of impingement on the upper surface decreases as the airfoil thickness decreases. The rearward limit of impingement on the lower surface increases with a decrease in airfoil t hickness. The total water intercepted decreases as the airfoil thickness is decreased.

  18. Buffeting of NACA 0012 airfoil at high angle of attack

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Dowell, Earl

    2014-11-01

    Buffeting is a fluid instability caused by flow separation or shock wave oscillations in the flow around a bluff body. Typically there is a dominant frequency of these flow oscillations called Strouhal or buffeting frequency. In prior work several researchers at Duke University have noted the analogy between the classic Von Karman Vortex Street behind a bluff body and the flow oscillations that occur for flow around a NACA 0012 airfoil at sufficiently large angle of attack. Lock-in is found for certain combinations of airfoil oscillation (pitching motion) frequencies and amplitudes when the frequency of the airfoil motion is sufficiently close to the buffeting frequency. The goal of this paper is to explore the flow around a static and an oscillating airfoil at high angle of attack by developing a method for computing buffet response. Simulation results are compared with experimental data. Conditions for the onset of buffeting and lock-in of a NACA 0012 airfoil at high angle of attack are determined. Effects of several parameters on lift coefficient and flow response frequency are studied including Reynolds number, angle of attack and blockage ratio of the airfoil size to the wind tunnel dimensions. Also more detailed flow field characteristics are determined. For a static airfoil, a universal Strouhal number scaling has been found for angles of attack from 30° to 90°, where the flow around airfoil is fully separated. For an oscillating airfoil, conditions for lock-in are discussed. Differences between the lock-in case and the unlocked case are also studied. The second affiliation: Duke University.

  19. Comparative wind tunnel test at high Reynolds numbers of NACA 64 621 airfoils with two aileron configurations

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.

    1995-01-01

    An experimental program to measure the aerodynamic characteristics of the NACA 64-621 airfoil when equipped with plain ailerons of 0.38 chord and 0.30 chord and with 0.38 chord balanced aileron has been conducted in the pressurized O.S.U. 6 x 12 ft High Reynolds Number Wind Tunnel. Surface pressures were measured and integrated to yield lift and pressure drag coefficients for angles of attack from -3 to +42 deg and for selected aileron deflections from 0 to -90 deg at nominal Mach and Reynolds numbers of 0.25 and 5 x 10(exp 6). When resolved into thrust coefficient for wind turbine aerodynamic control applications, the data indicated the anticipated decrease in thrust coefficient with negative aileron deflection at low angles of attack; however, as angle of attack increased, thrust coefficients eventually became positive. All aileron configurations, even at -90 deg deflections showed this trend. Hinge moments for each configuration complete the data set.

  20. Computer investigations of the turbulent flow around a NACA2415 airfoil wind turbine

    NASA Astrophysics Data System (ADS)

    Driss, Zied; Chelbi, Tarek; Abid, Mohamed Salah

    2015-12-01

    In this work, computer investigations are carried out to study the flow field developing around a NACA2415 airfoil wind turbine. The Navier-Stokes equations in conjunction with the standard k-ɛ turbulence model are considered. These equations are solved numerically to determine the local characteristics of the flow. The models tested are implemented in the software "SolidWorks Flow Simulation" which uses a finite volume scheme. The numerical results are compared with experiments conducted on an open wind tunnel to validate the numerical results. This will help improving the aerodynamic efficiency in the design of packaged installations of the NACA2415 airfoil type wind turbine.

  1. Separation control of NACA0015 airfoil using plasma actuators

    NASA Astrophysics Data System (ADS)

    Harada, Daisuke; Sakakibara, Jun

    2017-11-01

    Separation control of NACA0015 airfoil by means of plasma actuators was investigated. Plasma actuators in spanwise intermittent layout on the suction surface of the airfoil were activated with spanwise phase difference φ = 0 or φ = π in the case of dimensionless burst frequencyF+ = 6 and F+ = 0.5 at Re = 6.3 ×104 . The lift and drag of the airfoil were measured using a two component force balance. The flow around the airfoil was measured by PIV analysis. In the condition of F+ = 6 and φ = π at around stall angle, which is 10 degrees, the lift-to-drag ratio was higher than that ofF+ = 6 and φ = 0 . Therefore, it was confirmed that aerodynamic characteristics of the airfoil improved by disturbances with temporal and spatial phase difference.

  2. Comparing Ns-DBD vs Ac-DBD plasma actuation mechanisms on a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Durasiewicz, Claudia; Little, Jesse

    2017-11-01

    A NACA 0012 airfoil is used to study ns-DBD and ac-DBD plasma actuators at a Reynolds number of 740,000 (U∞=40 m/s). Ns-DBD plasma actuators are hypothesized to work on the principle of joule heating whereas ac-DBD actuators add momentum to the flow. Short duration forcing at a time scale much smaller than the convective time based on model chord is employed to study the control mechanism and flow field response. 2-D PIV carried out over a convective time range of 0-10 is used to study the flow structure. The results show the breakup of shear layer vorticity at the point of actuation followed by reattachment to the suction side of the airfoil and finally stall again. These events are very similar between the two actuators and indicate a similar flow response to different perturbation types. The pulse energies are varied and the response shows little change. The results are compared to other transitory separation control studies using more conventional actuators. The detailed study of these two control mechanisms with the separated flow over an airfoil helps to shed light on the evolution of the flow control process. Additional results on a simplified model problem (low speed mixing layer) are included to provide context. Supported by U.S. Army Research Office (W911NF-14-1-0662).

  3. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge

    PubMed Central

    2017-01-01

    The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil. PMID:28850622

  4. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.

    PubMed

    Aftab, S M A; Ahmad, K A

    2017-01-01

    The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.

  5. Wind-tunnel investigation of an N.A.C.A. 23012 airfoil with two arrangements of a wide-chord slotted flap

    NASA Technical Reports Server (NTRS)

    Harris, Thomas A

    1939-01-01

    An investigation has been made in the N.A.C.A. 7- by 10-foot wind tunnel of a large-chord N.A.C.A. 23012 airfoil with several arrangements of a 40-percent-chord slotted flap to determine the section aerodynamic characteristics of the airfoil as affected by slot shape, flap location, and flap deflection. The flap positions for maximum lift, the polar for arrangements considered favorable for take-off and climb, and the complete section aerodynamic characteristics for selected optimum arrangements were determined. A discussion is given of the relative merits of the various arrangements. A comparison is made of slotted flaps of different chords on the N.A.C.A. 23012 airfoil. The best 40-percent-chord slotted flap is only slightly superior to the 25-percent-chord slotted flap from considerations of maximum lift coefficient and low drag for take-off and initial climb.

  6. Wind-Tunnel Investigation of an NACA 23021 Airfoil with a 0.32-Airfoil-Chord Double Slotted Flap

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Riebe, John M

    1944-01-01

    An investigation was made in the LMAL 7- by 10-foot wind tunnel of a NACA 23021 airfoil with a double slotted flap having a chord 32 percent of the airfoil chord (0.32c) to determine the aerodynamic section characteristics with the flaps deflected at various positions. The effects of moving the fore flap and rear flap as a unit and of deflecting or removing the lower lip of the slot were also determined. Three positions were selected for the fore flap and at each position the maximum lift of the airfoil was obtained with the rear flap at the maximum deflection used at that fore-flap position. The section lift of the airfoil increased as the fore flap was extended and maximum lift was obtained with the fore flap deflected 30 deg in the most extended position. This arrangement provided a maximum section lift coefficient of 3.31, which was higher than the value obtained with either a 0.2566c or a 0.40c single-slotted-flap arrangement and 0.25 less than the value obtained with a 0.4c double-slotted-flap arrangement on the same airfoil. The values of the profile-drag coefficient obtained with the 0.32c double slotted flap were larger than those for the 0.2566c or 0.40c single slotted flaps for section lift coefficients between 1.0 and approximately 2.7. At all values of the section lift coefficient above 1.0, the 0.40c double slotted flap had a lower profile drag than the 0.32c double slotted flap. At various values of the maximum section lift coefficient produced by various flap defections, the 0.32c double slotted flap gave negative section pitching-moment coefficients that were higher than those of other slotted flaps on the same airfoil. The 0.32c double slotted flap gave approximately the same maximum section lift coefficient as, but higher profile-drag coefficients over the entire lift range than, a similar arrangement of a 0.30c double slotted flap on an NACA 23012 airfoil.

  7. Linear Strength Vortex Panel Method for NACA 4412 Airfoil

    NASA Astrophysics Data System (ADS)

    Liu, Han

    2018-03-01

    The objective of this article is to formulate numerical models for two-dimensional potential flow over the NACA 4412 Airfoil using linear vortex panel methods. By satisfying the no penetration boundary condition and Kutta condition, the circulation density on each boundary points (end point of every panel) are obtained and according to which, surface pressure distribution and lift coefficients of the airfoil are predicted and validated by Xfoil, an interactive program for the design and analysis of airfoil. The sensitivity of results to the number of panels is also investigated in the end, which shows that the results are sensitive to the number of panels when panel number ranges from 10 to 160. With the increasing panel number (N>160), the results become relatively insensitive to it.

  8. Impingement of Water Droplets on NACA 65A004 Airfoil at 8 deg Angle of Attack

    NASA Technical Reports Server (NTRS)

    Brun, R. J.; Gallagher, H. M.; Vogt, D. E.

    1954-01-01

    The trajectories of droplets in the air flowing past an NACA 65AO04 airfoil at an angle of attack of 8 deg were determined.. The amount of water in droplet form impinging on the airfoil, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and presented to cover a large range of flight and atmospheric conditions. These impingement characteristics are compared briefly with those previously reported for the same airfoil at an angle of attack of 4 deg.

  9. Ice Roughness and Thickness Evolution on a Swept NACA 0012 Airfoil

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching

    2017-01-01

    Several recent studies have been performed in the Icing Research Tunnel (IRT) at NASA Glenn Research Center focusing on the evolution, spatial variations, and proper scaling of ice roughness on airfoils without sweep exposed to icing conditions employed in classical roughness studies. For this study, experiments were performed in the IRT to investigate the ice roughness and thickness evolution on a 91.44-cm (36-in.) chord NACA 0012 airfoil, swept at 30-deg with 0deg angle of attack, and exposed to both Appendix C and Appendix O (SLD) icing conditions. The ice accretion event times used in the study were less than the time required to form substantially three-dimensional structures, such as scallops, on the airfoil surface. Following each ice accretion event, the iced airfoils were scanned using a ROMER Absolute Arm laser-scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger to determine the spatial roughness variations along the surfaces of the iced airfoils. The resulting measurements demonstrate linearly increasing roughness and thickness parameters with ice accretion time. Further, when compared to dimensionless or scaled results from unswept airfoil investigations, the results of this investigation indicate that the mechanisms for early stage roughness and thickness formation on swept wings are similar to those for unswept wings.

  10. Evaluation of Icing Scaling on Swept NACA 0012 Airfoil Models

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Lee, Sam

    2012-01-01

    Icing scaling tests in the NASA Glenn Icing Research Tunnel (IRT) were performed on swept wing models using existing recommended scaling methods that were originally developed for straight wing. Some needed modifications on the stagnation-point local collection efficiency (i.e., beta(sub 0) calculation and the corresponding convective heat transfer coefficient for swept NACA 0012 airfoil models have been studied and reported in 2009, and the correlations will be used in the current study. The reference tests used a 91.4-cm chord, 152.4-cm span, adjustable sweep airfoil model of NACA 0012 profile at velocities of 100 and 150 knot and MVD of 44 and 93 mm. Scale-to-reference model size ratio was 1:2.4. All tests were conducted at 0deg angle of attack (AoA) and 45deg sweep angle. Ice shape comparison results were presented for stagnation-point freezing fractions in the range of 0.4 to 1.0. Preliminary results showed that good scaling was achieved for the conditions test by using the modified scaling methods developed for swept wing icing.

  11. Bimodal SLD Ice Accretion on a NACA 0012 Airfoil Model

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark; Tsao, Jen-Ching; King-Steen, Laura

    2016-01-01

    This presentation describes the results of ice accretion measurements on a NACA 0012 airfoil model, from the NASA Icing Research Tunnel, using an icing cloud composed of a bimodal distribution of Supercooled Large Droplets. The data consists of photographs, laser scans of the ice surface, and measurements of the mass of ice for each icing condition. The results of ice shapes accumulated as a result of exposure to an icing cloud with a bimodal droplet distribution were compared to the ice shapes resulting from an equivalent cloud composed of a droplet distribution with a standard bell curve shape.

  12. Estimation of supersonic fighter jet airfoil data and low speed aerodynamic analysis of airfoil section at the Mach number 0.15

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci

    2018-02-01

    In this paper, some of the NACA 64A series airfoils data are estimated and aerodynamic properties are calculated to facilitate great understandings effect of relative thickness on the aerodynamic performance of the airfoil by using COMSOL software. 64A201-64A204 airfoils data are not available in literature therefore 64A210 data are used as reference data to estimate 64A201, 64A202, 64A203, 64A204 airfoil configurations. Numerical calculations are then conducted with the angle of attack from -12° to +16° by using k-w turbulence model based on the finite-volume approach. The lift and drag coefficient are one of the most important parameters in studying the airplane performance. Therefore lift, drag and pressure coefficient around selected airfoil are calculated and compared at the Reynolds numbers of 6 × 106 and also stalling characteristics of airfoil section are investigated and presented numerically.

  13. Ordered roughness effects on NACA 0026 airfoil

    NASA Astrophysics Data System (ADS)

    Harun, Z.; Abbas, A. A.; Dheyaa, R. Mohammed; Ghazali, M. I.

    2016-10-01

    The effects of highly-ordered rough surface - riblets, applied onto the surface of a NACA 0026 airfoil, are investigated experimentally using wind tunnel. The riblets are arranged in directionally converging - diverging pattern with dimensions of height, h = 1 mm, pitch or spacing, s = 1 mm, yaw angle α = 0o and 10o The airfoil with external geometry of 500 mm span, 600 mm chord and 156 mm thickness has been built using mostly woods and aluminium. Turbulence quantities are collected using hotwire anemometry. Hotwire measurements show that flows past converging and diverging pattern inherit similar patterns in the near-wall region for both mean velocity and turbulence intensities profiles. The mean velocity profiles in logarithmic regions for both flows past converging and diverging riblet pattern are lower than that with yaw angle α = 0o. Converging riblets cause the boundary layer to thicken and the flow with yaw angle α = 0o produces the thinnest boundary layer. Both the converging and diverging riblets cause pronounced outer peaks in the turbulence intensities profiles. Most importantly, flows past converging and diverging pattern experience 30% skin friction reductions. Higher order statistics show that riblet surfaces produce similar effects due to adverse pressure gradient. It is concluded that a small strip of different ordered roughness features applied at a leading edge of an airfoil can change the turbulence characteristics dramatically.

  14. Development of a computer program to obtain ordinates for NACA 4-digit, 4-digit modified, 5-digit, and 16 series airfoils

    NASA Technical Reports Server (NTRS)

    Ladson, C. L.; Brooks, Cuyler W., Jr.

    1975-01-01

    A computer program developed to calculate the ordinates and surface slopes of any thickness, symmetrical or cambered NACA airfoil of the 4-digit, 4-digit modified, 5-digit, and 16-series airfoil families is presented. The program produces plots of the airfoil nondimensional ordinates and a punch card output of ordinates in the input format of a readily available program for determining the pressure distributions of arbitrary airfoils in subsonic potential viscous flow.

  15. Comparative assessment of turbulence model in predicting airflow over a NACA 0010 airfoil

    NASA Astrophysics Data System (ADS)

    Panday, Shoyon; Khan, Nafiz Ahmed; Rasel, Md; Faisal, Kh. Md.; Salam, Md. Abdus

    2017-06-01

    Nowadays the role of computational fluid dynamics to predict the flow behavior over airfoil is quite prominent. Most often a 2-D subsonic flow simulation is carried out over an airfoil at a certain Reynolds number and various angles of attack obtained by different turbulence models those are based on governing equations. The commonly used turbulence models are K-ɛpsilon, K-omega, Spalart Allmaras etc. Variation in turbulence model effectively influences the result of analysis. Here a comparative study is represented to show the effect of different turbulence models for a 2-D flow analysis over a National Advisory Committee for Aeronautics (NACA) airfoil 0010. This airfoil was analysed at 200000 Re number in 10 different angle of attacks at a constant speed of 21.6 m/s. Numbers of two dimensional flow simulation was run by changing the turbulence model, for each AOA. In accordance with the variation of result for different turbulence model, it was also found that for which model, attained result is close enough to experimental outcome from a low subsonic wind tunnel AF100. This paper also documents the effect of high and low angle of attack on the flow behaviour over an airfoil.

  16. Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed

    1999-01-01

    Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

  17. CFD Study of NACA 0018 Airfoil with Flow Control

    NASA Technical Reports Server (NTRS)

    Eggert, Christopher A.; Rumsey, Christopher L.

    2017-01-01

    The abilities of two different Reynolds-Averaged Navier-Stokes codes to predict the effects of an active flow control device are evaluated. The flow control device consists of a blowing slot located on the upper surface of an NACA 0018 airfoil, near the leading edge. A second blowing slot present on the airfoil near mid-chord is not evaluated here. Experimental results from a wind tunnel test show that a slot blowing with high momentum coefficient will increase the lift of the airfoil (compared to no blowing) and delay flow separation. A slot with low momentum coefficient will decrease the lift and induce separation even at low angles of attack. Two codes, CFL3D and FUN3D, are used in two-dimensional computations along with several different turbulence models. Two of these produced reasonable results for this flow, when run fully turbulent. A more advanced transition model failed to predict reasonable results, but warrants further study using different inputs. Including inviscid upper and lower tunnel walls in the simulations was found to be important in obtaining pressure distributions and lift coefficients that best matched experimental data. A limited number of three-dimensional computations were also performed.

  18. Boundary-Layer Transition on the N.A.C.A. 0012 and 23012 Airfoils in the 8-Foot High-Speed Wind Tunnel, Special Report

    NASA Technical Reports Server (NTRS)

    Becker, John V.

    1940-01-01

    Determinations of boundary-layer transition on the NACA 0012 and 2301 airfoils were made in the 8-foot high-speed wind tunnel over a range of Reynolds Numbers from 1,600,000 to 16,800,000. The results are of particular significance as compared with flight tests and tests in wind tunnels of appreciable turbulence because of the extremely low turbulence in the high-speed tunnel. A comparison of the results obtained on NACA 0012 airfoils of 2-foot and 5-foot chord at the same Reynolds Number permitted an evaluation of the effect of compressibility on transition. The local skin friction along the surface of the NACA 0012 airfoil was measured at a Reynolds Number of 10,000,000. For all the lift coefficient at which tests were made, transition occurred in the region of estimated laminar separation at the low Reynolds Numbers and approach the point of minimum static pressure as a forward limit at the high Reynolds Numbers. The effect of compressibility on transition was slight. None of the usual parameters describing the local conditions in the boundary layer near the transition point served as an index for locating the transition point. As a consequence of the lower turbulence in the 8-foot high-speed tunnel, the transition points occurred consistently farther back along the chord than those measured in the NACA full-scale tunnel. An empirical relation for estimating the location of the transition point for conventional airfoils on the basis of static-pressure distribution and Reynolds Number is presented.

  19. NACA Conference on Helicopters

    DTIC Science & Technology

    1954-05-01

    Louis S., Jr.: Summary of Airfoil Data. NACA Rep. 824, 1945. (Supersedes NACA WR L-560.) 2. Loftin, Laurence K., Jr., and Smith , Hamilton, A...F., and Smith , Hamilton A.: Aerodynamic Character- istics of the NACA 8-H-12 Airfoil Section at Six Reynold Numbers From 1.8 x 1u6 to 11.0 X 106...NACA TN 1998, 1949. 4. Smith , Hamilton A., and Schaefer, Raymond F.: Aerodynamic Character- 0 istics at Reynolds Numbers of 3.0 X 106 and 6.0 x 106 of

  20. An experimental study of the aerodynamics of a NACA 0012 airfoil with a simulated glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.

    1986-01-01

    An experimental study was conducted in the Ohio State University subsonic wind tunnel to measure the detailed aerodynamic characteristics of an airfoil with a simulated glaze ice accretion. A NACA 0012 model with interchangeable leading edges and pressure taps every one percent chord was used. Surface pressure and wake data were taken on the airfoil clean, with forced transition and with a simulated glaze ice shape. Lift and drag penalties due to the ice shape were found and the surface pressure clearly showed that large separation bubbles were present. Both total pressure and split-film probes were used to measure velocity profiles, both for the clean model and for the model with a simulated ice accretion. A large region of flow separation was seen in the velocity profiles and was correlated to the pressure measurements. Clean airfoil data were found to compare well to existing airfoil analysis methods.

  1. Active Flow Control at Low Reynolds Numbers on a NACA 0015 Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Hannon, Judith; Yao, Chung-Sheng; Harris, Jerome

    2008-01-01

    Results from a low Reynolds number wind tunnel experiment on a NACA 0015 airfoil with a 30% chord trailing edge flap tested at deflection angles of 0, 20, and 40 are presented and discussed. Zero net mass flux periodic excitation was applied at the ap shoulder to control flow separation for flap deflections larger than 0. The primary objective of the experiment was to compare force and moment data obtained from integrating surface pressures to data obtained from a 5-component strain-gage balance in preparation for additional three-dimensional testing of the model. To achieve this objective, active flow control is applied at an angle of attack of 6 where published results indicate that oscillatory momentum coefficients exceeding 1% are required to delay separation. Periodic excitation with an oscillatory momentum coefficient of 1.5% and a reduced frequency of 0.71 caused a significant delay of separation on the airfoil with a flap deflection of 20. Higher momentum coefficients at the same reduced frequency were required to achieve a similar level of flow attachment on the airfoil with a flap deflection of 40. There was a favorable comparison between the balance and integrated pressure force and moment results.

  2. Darrieus wind-turbine airfoil configurations

    NASA Astrophysics Data System (ADS)

    Migliore, P. G.; Fritschen, J. R.

    1982-06-01

    The purpose was to determine what aerodynamic performance improvement, if any, could be achieved by judiciously choosing the airfoil sections for Darrieus wind turbine blades. Ten different airfoils, having thickness to chord ratios of twelve, fifteen and eighteen percent, were investigated. Performance calculations indicated that the NACA 6-series airfoils yield peak power coefficients at least as great as the NACA. Furthermore, the power coefficient-tip speed ratio curves were broader and flatter for the 6-series airfoils. Sample calculations for an NACA 63 sub 2-015 airfoil showed an annual energy output increase of 17 to 27% depending upon rotor solidity, compared to an NACA 0015 airfoil. An attempt was made to account for the flow curvature effects associated with Darrieus turbines by transforming the NACA 63 sub 2-015 airfoil to an appropriate shape.

  3. Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.; Malcolm, Gerald N.

    1980-01-01

    Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.

  4. Virtual Shaping of a Two-dimensional NACA 0015 Airfoil Using Synthetic Jet Actuator

    NASA Technical Reports Server (NTRS)

    Chen, Fang-Jenq; Beeler, George B.

    2002-01-01

    The Aircraft Morphing Program at NASA Langley envisions an aircraft without conventional control surfaces. Instead of moving control surfaces, the vehicle control systems may be implemented with a combination of propulsive forces, micro surface effectors, and fluidic devices dynamically operated by an intelligent flight control system to provide aircraft maneuverability over each mission segment. As a part of this program, a two-dimensional NACA 0015 airfoil model was designed to test mild maneuvering capability of synthetic jets in a subsonic wind tunnel. The objective of the experiments is to assess the applicability of using unsteady suction and blowing to alter the aerodynamic shape of an airfoil with a purpose to enhance lift and/or to reduce drag. Synthetic jet actuation at different chordwise locations, different forcing frequencies and amplitudes, under different freestream velocities are investigated. The effect of virtual shape change is indicated by a localized increase of surface pressure in the neighborhood of synthetic jet actuation. That causes a negative lift to the airfoil with an upper surface actuation. When actuation is applied near the airfoil leading edge, it appears that the stagnation line is shifted inducing an effect similar to that caused by a small angle of attack to produce an overall lift change.

  5. The influence of sweep on the aerodynamic loading of an oscillating NACA 0012 airfoil. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    St.hilaire, A. O.; Carta, F. O.; Fink, M. R.; Jepson, W. D.

    1979-01-01

    Aerodynamic experiments were performed on an oscillating NACA 0012 airfoil utilizing a tunnel-spanning wing in both unswept and 30 degree swept configurations. The airfoil was tested in steady state and in oscillatory pitch about the quarter chord. The unsteady aerodynamic loading was measured using pressure transducers along the chord. Numerical integrations of the unsteady pressure transducer responses were used to compute the normal force, chord force, and moment components of the induced loading. The effects of sweep on the induced aerodynamic load response was examined. For the range of parameters tested, it was found that sweeping the airfoil tends to delay the onset of dynamic stall. Sweeping was also found to reduce the magnitude of the unsteady load variation about the mean response. It was determined that at mean incidence angles greater than 9 degrees, sweep tends to reduce the stability margin of the NACA 0012 airfoil; however, for all cases tested, the airfoil was found to be stable in pure pitch. Turbulent eddies were found to convect downstream above the upper surface and generate forward-moving acoustic waves at the trailing edge which move upstream along the lower surface.

  6. Summary of Airfoil Data

    NASA Technical Reports Server (NTRS)

    Abbott, Ira H; Von Doenhoff, Albert E; Stivers, Louis, Jr

    1945-01-01

    The historical development of NACA airfoils is briefly reviewed. New data are presented that permit the rapid calculation of the approximate pressure distributions for the older NACA four-digit and five-digit airfoils by the same methods used for the NACA 6-series airfoils. The general methods used to derive the basic thickness forms for NACA 6 and 7-series airfoils together with their corresponding pressure distributions are presented. Detail data necessary for the application of the airfoils to wing design are presented in supplementary figures placed at the end of the paper. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed, together with aerodynamic problems of application. (author)

  7. Determination of Boundary-Layer Transition on Three Symmetrical Airfoils in the NACA Full-Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Becker, John V

    1938-01-01

    For the purpose of studying the transition from laminar to turbulent flow, boundary-layer measurements were made in the NACA full-scale wind tunnel on three symmetrical airfoils of NACA 0009, 0012, and 0018 sections. The effects of variations in lift coefficient, Reynolds number, and airfoil thickness on transition were investigated. Air speed in the boundary layer was measured by total-head tubes and by hot wires; a comparison of transition as indicated by the two techniques was obtained. The results indicate no unique value of Reynolds number for the transition, whether the Reynolds number is based upon the distance along the chord or upon the thickness of the boundary layer at the transition point. In general, the transition is not abrupt and occurs in a region that varies in length as a function of the test conditions.

  8. Summary of Airfoil Data

    NASA Technical Reports Server (NTRS)

    Stivers, Louis S.; Abbott, Ira H.; von Doenhoff, Albert E.

    1945-01-01

    Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from

  9. Wind Tunnel Tests of Ailerons at Various Speeds I : Ailerons of 0.20 Airfoil Chord and True Contour with 0.35 Aileron-chord Extreme Blunt Nose Balance on the NACA 66,2-216 Airfoil

    NASA Technical Reports Server (NTRS)

    Letko, W; Denaci, H. G.; Freed, C

    1943-01-01

    Hinge-moment, lift, and pressure-distribution measurements were made in the two-dimensional test section of the NACA stability tunnel on a blunt-nose balance-type aileron on an NACA 66,2-216 airfoil at speeds up to 360 miles per hour corresponding to a Mach number of 0.475. The tests were made primarily to determine the effect of speed on the action of this type of aileron. The balance-nose radii of the aileron were varied from 0 to 0.02 of the airfoil chord and the gap width was varied from 0.0005 to 0.0107 of the airfoil chord. Tests were also made with the gap sealed.

  10. Wind-tunnel investigation of an NACA 23012 airfoil with 30 percent-chord venetian-blind flaps

    NASA Technical Reports Server (NTRS)

    Rogallo, F M; Spano, Bartholomew S

    1942-01-01

    Report presents the results of an investigation made in the NACA 7 by 10-foot wind tunnel of a NACA 23012 airfoil with 30-percent-chord venetian-blind flaps having one, two, three, and four slats of Clark y section. The three-slat arrangements was aerodynamically the best of those tested but showed practically no improvement over the comparable arrangement used in the preliminary tests published in NACA Technical Report No. 689. The multiple-slat flaps gave slightly higher lift coefficients than the one-slat (Fowler) flap but gave considerably greater pitching-moment coefficients. An analysis of test data indicates that substitution of a thicker and more cambered section for the Clark y slats should improve the aerodynamic and the structural characteristics of the venetian-blind flap.

  11. Dynamic stall experiments on the NACA 0012 airfoil

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Carr, L. W.; Mccroskey, W. J.

    1978-01-01

    The flow over a NACA 0012 airfoil undergoing large oscillations in pitch was experimentally studied at a Reynolds number of and over a range of frequencies and amplitudes. Hot-wire probes and surface-pressure transducers were used to clarify the role of the laminar separation bubble, to delineate the growth and shedding of the stall vortex, and to quantify the resultant aerodynamic loads. In addition to the pressure distributions and normal force and pitching moment data that have often been obtained in previous investigations, estimates of the unsteady drag force during dynamic stall have been derived from the surface pressure measurements. Special characteristics of the pressure response, which are symptomatic of the occurrence and relative severity of moment stall, have also been examined.

  12. Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames High Reynolds Number Facility

    NASA Technical Reports Server (NTRS)

    Mcdevitt, J. B.; Okuno, A. F.

    1985-01-01

    The supercritical flows at high subsonic speeds over a NACA 0012 airfoil were studied to acquire aerodynamic data suitable for evaluating numerical-flow codes. The measurements consisted primarily of static and dynamic pressures on the airfoil and test-channel walls. Shadowgraphs were also taken of the flow field near the airfoil. The tests were performed at free-stream Mach numbers from approximately 0.7 to 0.8, at angles of attack sufficient to include the onset of buffet, and at Reynolds numbers from 1 million to 14 million. A test action was designed specifically to obtain two-dimensional airfoil data with a minimum of wall interference effects. Boundary-layer suction panels were used to minimize sidewall interference effects. Flexible upper and lower walls allow test-channel area-ruling to nullify Mach number changes induced by the mass removal, to correct for longitudinal boundary-layer growth, and to provide contouring compatible with the streamlines of the model in free air.

  13. Preliminary wind-tunnel investigation of an NACA 23012 airfoil with various arrangements of venetian-blind flaps

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Harris, Thomas A

    1940-01-01

    Report presents the results of an investigation made in the NACA 7 by 10-foot wind tunnel of a large-chord NACA 23012 airfoil with several arrangements of venetian-blind flaps to determine the aerodynamic section characteristics as affected by the over-all flap chord, the chords of the slats used to form the flap, the slat spacing, the number of slats and the position of the flap with respect to the wing. Complete section data are given in the form of graphs for all the combinations tested.

  14. A study on high subsonic airfoil flows in relatively high Reynolds number by using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Nakao, Shinichiro; Kashitani, Masashi; Miyaguni, Takeshi; Yamaguchi, Yutaka

    2014-04-01

    In the present study, numerical calculations of the flow-field around the airfoil model are performed by using the OpenFOAM in high subsonic flows. The airfoil model is NACA 64A010. The maximum thickness is 10 % of the chord length. The SonicFOAM and the RhoCentralFOAM are selected as the solver in high subsonic flows. The grid point is 158,000 and the Mach numbers are 0.277 and 0.569 respectively. The CFD data are compared with the experimental data performed by the cryogenic wind tunnel in the past. The results are as follows. The numerical results of the pressure coefficient distribution on the model surface calculated by the SonicFOAM solver showed good agreement with the experimental data measured by the cryogenic wind tunnel. And the data calculated by the SonicFOAM have the capability for the quantitative comparison of the experimental data at low angle of attack.

  15. Low-speed wind-tunnel results for symmetrical NASA LS(1)-0013 airfoil

    NASA Technical Reports Server (NTRS)

    Ferris, James C.; Mcghee, Robert J.; Barnwell, Richard W.

    1987-01-01

    A wind-tunnel test has been conducted in the Langley Low-Turbulence Pressure Tunnel to evaluate the performance of a symmetrical NASA LS(1)-0013 airfoil which is a 13-percent-thick, low-speed airfoil. The airfoil contour was obtained from the thickness distribution of a 13-percent-thick, high-performance airfoil developed for general aviation airplanes. The tests were conducted at Mach numbers from 0.10 tp 0.37 over a Reynolds number range from about 0.6 to 12.0 X 10 to the 6th power. The angle of attack varied from about -8 to 20 degrees. The results indicate that the aerodynamic characteristics of the present airfoil are similar to, but slightly better than, those of the NACA 0012 airfoil.

  16. The effect of electrohydrodynamic force on the lift coefficient of a NACA 0015 airfoil

    NASA Astrophysics Data System (ADS)

    Yusof, Y.; Hossain, A.; Abdullah, A. H.; Nasir, Rizal M. E.; Hamid, A.; Muthmainnah, N.; N, M.

    2017-11-01

    Lift, the force component that is perpendicular to the line of flight, is generated when a small aircraft moves through the air. With the help of the sets of flaps and slats on its wing, the pilot controls his aircraft manoeuvring in the air. In this study, we preferred to cut the drawbacks of the flaps system by introducing the electrohydrodynamic actuator. Widely known as plasma actuator, it is able to improve the induced lift force as well as the efficiency of a small aircraft system. A dielectric-barrier-discharge actuator using a 6 kV AC power supply was developed and tested on a NACA 0015 airfoil using copper as the electrodes and kapton as its dielectric component. The experimental results showed that it was successful in presenting a positive effect of the plasma actuator on the lift coefficient of the airfoil at smaller angle of attack, where enhancements ranged between 0.7% and 1.8%. However, at a higher angle, the results were not as swayed as it was desired since the energy exerted by the plasma actuator on the lift performance of the airfoil was inadequate. Further tests are needed using higher rated voltage supply and other equipment to improve the capability of the actuator in refining the aerodynamic performance of the airfoil.

  17. The Effectiveness at High Speeds of a 20-Percent-chord Plain Trailing-edge Flap on the NACA 65-210 Airfoil Section

    NASA Technical Reports Server (NTRS)

    Stivers, Louis S., Jr.

    1947-01-01

    An analysis has been made of the lift-control effectiveness of a 20-percent-chord plain trailing-edge flap on the NACA 65-210 airfoil section from section lift-coefficient data obtained at Mach numbers from 0.3 to 0.875. In addition, the effectiveness of the plain flap as a lift-control device has been compared with the corresponding effectiveness of both a spoiler and a dive-recovery flag on the INCA 65-210 airfoil section.

  18. Tests of a NACA 65(sub 1)-213 airfoil in the NASA Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Plentovich, E. B.; Ladson, C. L.; Hill, A. S.

    1984-01-01

    A wind-tunnel investigation was conducted to study the two dimensional aerodynamic characteristics of the NACA 65 sub 1-213 airfoil over a wide range of Reynolds numbers. Test temperature ranged from ambient to about 100K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from 0.22 to 0.80 and Reynolds number (based on airfoil chord) from 3 million to 40 million. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics of the airfoil. A sample of data showing the effects of angle of attack on the pressure distribution is also given. The data are presented in an uncorrected form with no analysis.

  19. Performance of NACA Eight-stage Axial-flow Compressor Designed on the Basis of Airfoil Theory

    NASA Technical Reports Server (NTRS)

    Sinnette, John T; Schey, Oscar W; King, J Austin

    1943-01-01

    The NACA has conducted an investigation to determine the performance that can be obtained from a multistage axial-flow compressor based on airfoil research. A theory was developed; an eight-stage axial-flow compressor was designed, constructed, and tested. The performance of the compressor was determined for speeds from 5000 to 14,000 r.p.m with varying air flow at each speed. Most of the tests were made with air at room temperature. The performance was determined in accordance with the Committee's recommended procedure for testing superchargers. The expected performance was obtained, showing that a multistage compressor of high efficiency can be designed by the application of airfoil theory.

  20. Ice Accretions and Full-Scale Iced Aerodynamic Performance Data for a Two-Dimensional NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Guffond, Didier; Montreuil, Emmanuel; Moens, Frederic

    2016-01-01

    This report documents the data collected during the large wind tunnel campaigns conducted as part of the SUNSET project (StUdies oN Scaling EffecTs due to ice) also known as the Ice-Accretion Aerodynamics Simulation study: a joint effort by NASA, the Office National d'Etudes et Recherches Aérospatiales (ONERA), and the University of Illinois. These data form a benchmark database of full-scale ice accretions and corresponding ice-contaminated aerodynamic performance data for a two-dimensional (2D) NACA 23012 airfoil. The wider research effort also included an analysis of ice-contaminated aerodynamics that categorized ice accretions by aerodynamic effects and an investigation of subscale, low- Reynolds-number ice-contaminated aerodynamics for the NACA 23012 airfoil. The low-Reynolds-number investigation included an analysis of the geometric fidelity needed to reliably assess aerodynamic effects of airfoil icing using artificial ice shapes. Included herein are records of the ice accreted during campaigns in NASA Glenn Research Center's Icing Research Tunnel (IRT). Two different 2D NACA 23012 airfoil models were used during these campaigns; an 18-in. (45.7-cm) chord (subscale) model and a 72-in. (182.9-cm) chord (full-scale) model. The aircraft icing conditions used during these campaigns were selected from the Federal Aviation Administration's (FAA's) Code of Federal Regulations (CFR) Part 25 Appendix C icing envelopes. The records include the test conditions, photographs of the ice accreted, tracings of the ice, and ice depth measurements. Model coordinates and pressure tap locations are also presented. Also included herein are the data recorded during a wind tunnel campaign conducted in the F1 Subsonic Pressurized Wind Tunnel of ONERA. The F1 tunnel is a pressured, high- Reynolds-number facility that could accommodate the full-scale (72-in. (182.9-cm) chord) 2D NACA 23012 model. Molds were made of the ice accreted during selected test runs of the full-scale model

  1. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  2. Calculation of unsteady aerodynamics for four AGARD standard aeroelastic configurations

    NASA Technical Reports Server (NTRS)

    Bland, S. R.; Seidel, D. A.

    1984-01-01

    Calculated unsteady aerodynamic characteristics for four Advisory Group for Aeronautical Research Development (AGARD) standard aeroelastic two-dimensional airfoils and for one of the AGARD three-dimensional wings are reported. Calculations were made using the finite-difference codes XTRAN2L (two-dimensional flow) and XTRAN3S (three-dimensional flow) which solve the transonic small disturbance potential equations. Results are given for the 36 AGARD cases for the NACA 64A006, NACA 64A010, and NLR 7301 airfoils with experimental comparisons for most of these cases. Additionally, six of the MBB-A3 airfoil cases are included. Finally, results are given for three of the cases for the rectangular wing.

  3. Correlations Among Ice Measurements, Impingement Rates Icing Conditions, and Drag Coefficients for Unswept NACA 65A004 Airfoil

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H.

    1958-01-01

    An empirical relation has been obtained by which the change in drag coefficient caused by ice formations on an unswept NACA 65AO04 airfoil section can be determined from the following icing and operating conditions: icing time, airspeed, air total temperature, liquid-water content, cloud droplet impingement efficiencies, airfoil chord length, and angles of attack. The correlation was obtained by use of measured ice heights and ice angles. These measurements were obtained from a variety of ice formations, which were carefully photographed, cross-sectioned, and weighed. Ice weights increased at a constant rate with icing time in a rime icing condition and at progressively increasing rates in glaze icing conditions. Initial rates of ice collection agreed reasonably well with values predicted from droplet impingement data. Experimental droplet impingement rates obtained on this airfoil section agreed with previous theoretical calculations for angles of attack of 40 or less. Disagreement at higher angles of attack was attributed to flow separation from the upper surface of the experimental airfoil model.

  4. A critical assessment of wind tunnel results for the NACA 0012 airfoil

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1987-01-01

    A large body of experimental results, obtained in more than 40 wind tunnels on a single, well-known two-dimensional configuration, has been critically examined and correlated. An assessment of some of the possible sources of error has been made for each facility, and data which are suspect have been identified. It was found that no single experiment provided a complete set of reliable data, although one investigation stands out as superior in many respects. However, from the aggregate of data the representative properties of the NACA 0012 airfoil can be identified with reasonable confidence over wide ranges of Mach number, Reynolds number, and angles of attack. This synthesized information can now be used to assess and validate existing and future wind tunnel results and to evaluate advanced Computational Fluid Dynamics codes.

  5. Experimental investigation of trailing edge noise from stationary and rotating airfoils.

    PubMed

    Zajamsek, Branko; Doolan, Con J; Moreau, Danielle J; Fischer, Jeoffrey; Prime, Zebb

    2017-05-01

    Trailing edge noise from stationary and rotating NACA 0012 airfoils is characterised and compared with a noise prediction based on the semi-empirical Brooks, Pope, and Marcolini (BPM) model. The NACA 0012 is symmetrical airfoil with no camber and 12% thickness to chord length ratio. Acoustic measurements were conducted in an anechoic wind tunnel using a stationary NACA 0012 airfoil at 0° pitch angle. Airfoil self-noise emissions from rotating NACA 0012 airfoils mounted at 0° and 10° pitch angles on a rotor-rig are studied in an anechoic room. The measurements were carried out using microphone arrays for noise localisation and magnitude estimation using beamforming post-processing. Results show good agreement between peak radiating trailing edge noise emissions of stationary and rotating NACA 0012 airfoils in terms of the Strouhal number. Furthermore, it is shown that noise predictions based on the BPM model considering only two dimensional flow effects, are in good agreement with measurements for rotating airfoils, at these particular conditions.

  6. The effects of variations in Reynolds number between 3.0 x 10sub6 and 25.0 x 10sub6 upon the aerodynamic characteristics of a number of NACA 6-series airfoil sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K, Jr; Bursnall, William J

    1950-01-01

    Results are presented of an investigation made to determine the two-dimensional lift and drag characteristics of nine NACA 6-series airfoil section at Reynolds numbers of 15.0 x 10sub6, 20.0 x 10sub6, and 25.0 x 10sub6. Also presented are data from NACA Technical Report 824 for the same airfoils at Reynolds numbers of 3.0 x 10sub6, 6.0 x 10sub6, and 9.0 x 10sub6. The airfoils selected represent sections having variations in the airfoil thickness, thickness form, and camber. The characteristics of an airfoil with a split flap were determined in one instance, as was the effect of surface roughness. Qualitative explanations in terms of flow behavior are advanced for the observed types of scale effect.

  7. Experimental investigation of trailing edge noise from stationary and rotating airfoils

    PubMed Central

    Zajamsek, Branko; Doolan, Con J.; Moreau, Danielle J.; Fischer, Jeoffrey; Prime, Zebb

    2017-01-01

    Trailing edge noise from stationary and rotating NACA 0012 airfoils is characterised and compared with a noise prediction based on the semi-empirical Brooks, Pope, and Marcolini (BPM) model. The NACA 0012 is symmetrical airfoil with no camber and 12% thickness to chord length ratio. Acoustic measurements were conducted in an anechoic wind tunnel using a stationary NACA 0012 airfoil at 0° pitch angle. Airfoil self-noise emissions from rotating NACA 0012 airfoils mounted at 0° and 10° pitch angles on a rotor-rig are studied in an anechoic room. The measurements were carried out using microphone arrays for noise localisation and magnitude estimation using beamforming post-processing. Results show good agreement between peak radiating trailing edge noise emissions of stationary and rotating NACA 0012 airfoils in terms of the Strouhal number. Furthermore, it is shown that noise predictions based on the BPM model considering only two dimensional flow effects, are in good agreement with measurements for rotating airfoils, at these particular conditions. PMID:28599535

  8. Effect of Ice Formations on Section Drag of Swept NACA 63A-009 Airfoil with Partical-span Leading-edge Slat for Various Modes of Thermal Ice Protection

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe H; Gray, Vernon H

    1954-01-01

    Studies were made to determine the effect of ice formations on the section drag of a 6.9-foot-chord 36 degree swept NACA 63A-009 airfoil with partial-span leading-edge slat. In general, the icing of a thin swept airfoil will result in greater aerodynamic penalties than for a thick unswept airfoil. Glaze-ice formations at the leading edge of the airfoil caused large increases in section drag even at liquid-water content of 0.39 gram per cubic meter. The use of an ice-free parting strip in the stagnation region caused a negligible change in drag compared with a completely unheated airfoil. Cyclic de-icing when properly applied caused the drag to decrease almost to the bare-airfoil drag value.

  9. Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Jun, GaRam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching

    2014-01-01

    The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Centers Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.

  10. Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Jun, Garam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching

    2014-01-01

    The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Center's Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.

  11. The Influence of Sweep on the Aerodynamic Loading of an Oscillating NACA0012 Airfoil. Volume 2: Data Report

    NASA Technical Reports Server (NTRS)

    St.hilaire, A. O.; Carta, F. O.

    1979-01-01

    The effect of sweep on the dynamic response of the NACA 0012 airfoil was investigated. Unsteady chordwise distributed pressure data were obtained from a tunnel spanning wing equipped with 21 single surface transducers (13 on the suction side and 8 on the pressure side of the airfoil). The pressure data were obtained at pitching amplitudes of 8 and 10 degrees over a tunnel Mach number range of 0.10 to 0.46 and a pitching frequency range of 2.5 to 10.6 cycles per second. The wing was oscillated in the unswept and swept positions about the quarter-chord pivot axis relative to mean incidence angle settings of 0, 9, 12, and 15 degrees. A compilation of all the response data obtained during the test program is presented. These data are in the form of normal force, chord force, lift force, pressure drag, and moment hysteresis loops derived from chordwise integrations of the unsteady pressure distributions. The hysteresis loops are organized in two main sections. In the first section, the loop data are arranged to show the effect of sweep (lambda = 0 and 30 deg) for all available combinations of mean incidence angle, pitching amplitude, reduced frequency, and chordwise Mach number. The second section shows the effect of chordwise Mach number (MC = 0.30 and MC = 0.40) on the swept wing response for all available combinations of mean incidence angle, pitching amplitude, and reduced frequency.

  12. The S407, S409, and S410 Airfoils

    DTIC Science & Technology

    2010-08-01

    problem of transforming the pressure distributions into airfoil shapes. The Eppler Airfoil Design and Analysis Code (refs. 8 and 9) was used because of...Summary of Airfoil Data. NACA Rep. 824, 1945. (Supersedes NACA WR L-560.) 4. Eppler , Richard; and Somers, Dan M.: Airfoil Design for Reynolds...8. Eppler , Richard: Airfoil Design and Data. Springer-Verlag (Berlin), 1990. 9. Eppler , Richard: Airfoil Program System “PROFIL07.” User’s Guide

  13. Theoretical effect of modifications to the upper surface of two NACA airfoils using smooth polynomial additional thickness distributions which emphasize leading edge profile and which vary quadratically at the trailing edge. [using flow equations and a CDC 7600 computer

    NASA Technical Reports Server (NTRS)

    Merz, A. W.; Hague, D. S.

    1975-01-01

    An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of the NACA 64-206 and 64 sub 1 - 212 airfoils. The additional thickness distribution had the form of a continuous mathematical function which disappears at both the leading edge and the trailing edge. The function behaves as a polynomial of order epsilon sub 1 at the leading edge, and a polynomial of order epsilon sub 2 at the trailing edge. Epsilon sub 2 is a constant and epsilon sub 1 is varied over a range of practical interest. The magnitude of the additional thickness, y, is a second input parameter, and the effect of varying epsilon sub 1 and y on the aerodynamic performance of the airfoil was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic airfoils, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.

  14. Steady Aerodynamic Characteristics of Two-Dimensional NACA0012 Airfoil for One Revolution Angle of Attack

    NASA Astrophysics Data System (ADS)

    Park, Byung Ho; Han, Yong Oun

    2018-04-01

    Steady variations in aerodynamic forces and flow behaviors of two-dimensional NACA0012 airfoil were investigated using a numerical method for One Revolution Angle of Attack (AOA) at Reynolds number of 105 . The profiles of lift coefficients, drag coefficients, and pressure coefficients were compared with those of the experimental data. The AERODAS model was used to analyze the profiles of lift and drag coefficients. Wake characteristics were given along with the deficit profiles of incoming velocity components. Both the characteristics of normal and reverse airfoil models were compared with the basic aerodynamic data for the same range of AOA. The results show that two peaks of the lift coefficients appeared at 11.5{°} and 42{°} and are in good agreement with the pre-stall and post-stall models, respectively. Counter-rotating vortex flows originated from the leading and trailing edges at a high AOA, which formed an impermeable zone over the suction surface and made reattachments in the wake. Moreover, the acceleration of inflow along the boundary of the vortex wrap appeared in the profile of the wake velocity. The drag profile was found to be independent of the airfoil mode, but the lift profile was quite sensitive to the airfoil mode.

  15. Experimental Studies of Flow Separation of the NACA 2412 Airfoil at Low Speeds

    NASA Technical Reports Server (NTRS)

    Seetharam, H. C.; Rodgers, E. J.; Wentz, W. H., Jr.

    1997-01-01

    Wind tunnel tests have been conducted on an NACA 2412 airfoil section at Reynolds number of 2.2 x 10(exp 6) and Mach number of 0.13. Detailed measurements of flow fields associated with turbulent boundary layers have been obtained at angles of attack of 12.4 degrees, 14.4 degrees, and 16.4 degrees. Pre- and post-separated velocity and pressure survey results over the airfoil and in the associated wake are presented. Extensive force, pressure, tuft survey, hot-film survey, local skin friction, and boundary layer data are also included. Pressure distributions and separation point locations show good agreement with theory for the two layer angles of attack. Boundary layer displacement thickness, momentum thickness, and shape factor agree well with theory up to the point of separation. There is considerable disparity between extent of flow reversal in the wake as measured by pressure and hot-film probes. The difference is attributed to the intermittent nature of the flow reversal.

  16. High Cycle Fatigue Prediction for Mistuned Bladed Disks with Fully Coupled Fluid-Structural Interaction

    DTIC Science & Technology

    2006-06-01

    response (time domain) structural vibration model for mistuned rotor bladed disk based on the efficient SNM model has been developed. The vi- bration...airfoil and 3D wing, unsteady vortex shedding of a stationary cylinder, induced vibration of a cylinder, forced vibration of a pitching airfoil, induced... vibration and flutter boundary of 2D NACA 64A010 transonic airfoil, 3D plate wing structural response. The predicted results agree well with benchmark

  17. A restored NACA P-51D Mustang in flight

    NASA Image and Video Library

    2000-09-15

    A white plate on the top of the wing of a restored National Advisory Committee for Aeronautics (NACA) P-51D Mustang mounts scale airfoil shapes as used by the NACA in the late 1940s for high-speed research. This former NACA testbed Mustang was rebuilt by John Muszala for Bill Allmon of Las Vegas, Nevada, who has been flying it since 1998. Allmon flew the vintage fighter to NASA's Dryden Flight Research Center at Edwards, California, Sept. 15, 2000 for a reunion of former NACA employees.

  18. Direct Numerical Simulation of Flows over an NACA-0012 Airfoil at Low and Moderate Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2017-01-01

    Direct numerical simulations (DNS) of flow over an NACA-0012 airfoil are performed at a low and a moderate Reynolds numbers of Re(sub c)=50 times10(exp 3) and 1times 10(exp 6). The angles of attack are 5 and 15 degrees at the low and the moderate Reynolds number cases respectively. The three-dimensional unsteady compressible Navier-Stokes equations are solved using higher order compact schemes. The flow field in the low Reynolds number case consists of a long separation bubble near the leading-edge region and an attached boundary layer on the aft part of the airfoil. The shear layer that formed in the separated region persisted up to the end of the airfoil. The roles of the turbulent diffusion, advection, and dissipation terms in the turbulent kinetic-energy balance equation change as the boundary layer evolves over the airfoil. In the higher Reynolds number case, the leading-edge separation bubble is very small in length and in height. A fully developed turbulent boundary layer is observed in a short distance downstream of the reattachment point. The boundary layer velocity near the wall gradually decreases along the airfoil. Eventually, the boundary layer separates near the trailing edge. The Reynolds stresses peak in the outer part of the boundary layer and the maximum amplitude also gradually increases along the chord.

  19. The effects of rotational flow, viscosity, thickness, and shape on transonic flutter dip phenomena

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, Rakesh; Kaza, Krishna Rao V.

    1988-01-01

    The transonic flutter dip phenomena on thin airfoils, which are employed for propfan blades, is investigated using an integrated Euler/Navier-Stokes code and a two degrees of freedom typical section structural model. As a part of the code validation, the flutter characteristics of the NACA 64A010 airfoil are also investigated. In addition, the effects of artificial dissipation models, rotational flow, initial conditions, mean angle of attack, viscosity, airfoil thickness and shape on flutter are investigated. The results obtained with a Euler code for the NACA 64A010 airfoil are in reasonable agreement with published results obtained by using transonic small disturbance and Euler codes. The two artificial dissipation models, one based on the local pressure gradient scaled by a common factor and the other based on the local pressure gradient scaled by a spectral radius, predicted the same flutter speeds except in the recovery region for the case studied. The effects of rotational flow, initial conditions, mean angle of attack, and viscosity for the Reynold's number studied seem to be negligible or small on the minima of the flutter dip.

  20. Optimization of Wind Turbine Airfoils/Blades and Wind Farm Layouts

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin

    Shape optimization is widely used in the design of wind turbine blades. In this dissertation, a numerical optimization method called Genetic Algorithm (GA) is applied to address the shape optimization of wind turbine airfoils and blades. In recent years, the airfoil sections with blunt trailing edge (called flatback airfoils) have been proposed for the inboard regions of large wind-turbine blades because they provide several structural and aerodynamic performance advantages. The FX, DU and NACA 64 series airfoils are thick airfoils widely used for wind turbine blade application. They have several advantages in meeting the intrinsic requirements for wind turbines in terms of design point, off-design capabilities and structural properties. This research employ both single- and multi-objective genetic algorithms (SOGA and MOGA) for shape optimization of Flatback, FX, DU and NACA 64 series airfoils to achieve maximum lift and/or maximum lift to drag ratio. The commercially available software FLUENT is employed for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a two-equation Shear Stress Transport (SST) turbulence model and a three equation k-kl-o turbulence model. The optimization methodology is validated by an optimization study of subsonic and transonic airfoils (NACA0012 and RAE 2822 airfoils). In this dissertation, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given B and lambda and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated

  1. The Effectiveness at High Speeds of a 20-Percent-Chord Plain Trailing-Edge Flap on the NACA 65-210 Airfoil

    NASA Technical Reports Server (NTRS)

    Stivers, Louis S., Jr.

    1947-01-01

    An analysis has been made of the lift control effectiveness of a 20-percent-chord plain trailing-edge flap on the NACA 65-210 airfoil section from section lift-coefficient data obtained at Mach numbers from 0.3 to 0.875. In addition, the effectiveness of the plain flap as a lift-control device has been compared with the corresponding effectiveness of both a spoiler and a dive-recovery flap on the NACA 65-210 airfoil section. The analysis indicates that the plain trailing-edge flap employed on the 10-percent-thick airfoil at Mach numbers as high as 0.875 retains at least 50-percent of its low-speed lift-control effectiveness, and is sufficiently effective in lateral control application, assuming a rigid wing, to provide adequate airplane rolling characteristics. The plain trailing-edge flap, as compared to the spoiler and the dive-recovery flap, appears to afford the most favorable characteristics as a device for controlling lift continuously throughout the range of Mach numbers from 0.3 to 0.875. At Mach numbers above those for lift divergence of the wing, either a plain flap or a dive-recovery flap may be used on a thin airplane wing to provide auxiliary wing lift when the airplane is to be controlled in flight, other than in dives, at these Mach numbers. The choice of a lift-control device for this use, however, should include the consideration of other factors such as the increments of drag and pitching moment accompanying the use of the device, and the structural and high-speed aerodynamic characteristics of the airplane which is to employ the device.

  2. Effect of High-Fidelity Ice Accretion Simulations on the Performance of a Full-Scale Airfoil Model

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Bragg, Michael B.; Addy, Harold E., Jr.; Lee, Sam; Moens, Frederic; Guffond, Didier

    2010-01-01

    The simulation of ice accretion on a wing or other surface is often required for aerodynamic evaluation, particularly at small scale or low-Reynolds number. While there are commonly accepted practices for ice simulation, there are no established and validated guidelines. The purpose of this article is to report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database. This research was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils. Airfoil performance testing was carried out at the ONERA F1 pressurized wind tunnel using a 72-in. (1828.8-mm) chord NACA 23012 airfoil over a Reynolds number range of 4.5x10(exp 6) to 16.0 10(exp 6) and a Mach number range of 0.10 to 0.28. The high-fidelity, ice-casting simulations had a significant impact on the aerodynamic performance. A spanwise-ridge ice shape resulted in a maximum lift coefficient of 0.56 compared to the clean value of 1.85 at Re = 15.9x10(exp 6) and M = 0.20. Two roughness and streamwise shapes yielded maximum lift values in the range of 1.09 to 1.28, which was a relatively small variation compared to the differences in the ice geometry. The stalling characteristics of the two roughness and one streamwise ice simulation maintained the abrupt leading-edge stall type of the clean NACA 23012 airfoil, despite the significant decrease in maximum lift. Changes in Reynolds and Mach number over the large range tested had little effect on the iced-airfoil performance.

  3. Technology for pressure-instrumented thin airfoil models

    NASA Technical Reports Server (NTRS)

    Wigley, David A.

    1988-01-01

    A novel method of airfoil model construction was developed. This Laminated Sheet technique uses 0.8 mm thick sheets of A286 containing a network of pre-formed channels which are vacuum brazed together to form the airfoil. A 6.25 percent model of the X29A canard, which has a 5 percent thick section, was built using this technique. The model contained a total of 96 pressure orifices, 56 in three chordwise rows on the upper surface and 37 in three similar rows on the lower surface. It was tested in the NASA Langley 0.3 m Transonic Cryogenic Tunnel. Unique aerodynamic data was obtained over the full range of temperature and pressure. Part of the data was at transonic Mach numbers and flight Reynolds number. A larger two dimensional model of the NACA 64a-105 airfoil section was also fabricated. Scale up presented some problems, but a testable airfoil was fabricated.

  4. Validation of the CQU-DTU-LN1 series of airfoils

    NASA Astrophysics Data System (ADS)

    Shen, W. Z.; Zhu, W. J.; Fischer, A.; Garcia, N. R.; Cheng, J. T.; Chen, J.; Madsen, J.

    2014-12-01

    The CQU-DTU-LN1 series of airfoils were designed with an objective of high lift and low noise emission. In the design process, the aerodynamic performance is obtained using XFOIL while noise emission is obtained with the BPM model. In this paper we present some validations of the designed CQU-DTU-LN118 airfoil by using wind tunnel measurements in the acoustic wind tunnel located at Virginia Tech and numerical computations with the inhouse Q3uic and EllipSys 2D/3D codes. To show the superiority of the new airfoils, comparisons with a NACA64618 airfoil are made. For the aerodynamic features, the designed Cl and Cl/Cd agrees well with the experiment and are in general higher than those of the NACA airfoil. For the acoustic features, the noise emission of the LN118 airfoil is compared with the acoustic measurements and that of the NACA airfoil. Comparisons show that the BPM model can predict correctly the noise changes.

  5. Some calculations of transonic potential flow for the NACA 64A006 airfoil with oscillating flap

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Bland, S. R.

    1978-01-01

    A method for calculating the transonic flow over steady and oscillating airfoils was developed by Isogai. It solves the full potential equation with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. In this paper the method is described in general terms, and results are compared with experimental data for both steady flow and for oscillations at several values of reduced frequency. Good agreement for static pressures is shown for subcritical speeds, with increasing deviation as Mach number is increased into the supercritical speed range. Fair agreement with experiment was obtained at high reduced frequencies with larger deviations at low reduced frequencies.

  6. Convective heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip E.; Vanfossen, G. James; Dewitt, Kenneth J.

    1989-01-01

    Local heat transfer coefficients were measured on a smooth and roughened NACA 0012 airfoil. Heat transfer measurements on the 0.533 m chord airfoil were made both in flight on the NASA Lewis Twin Otter Icing Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of uniform 2 mm diameter hemispheres to the airfoil surface in 4 distinct patterns. Flight data were taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range 1.24 to 2.50 x 10(exp 6) and at various angles of attack up to 4 deg. During these flight tests, the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). Wind tunnel data were acquired in the Reynolds number range 1.20 to 4.25 x 10(exp 6) and at angles of attack from -4 to 8 deg. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud generating sprays off. A direct comparison was made between the results obtained in flight and in the IRT. The higher level of turbulence in the IRT vs. flight had little effect on the heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the high Reynolds numbers. Roughness generally increased the heat transfer.

  7. Using resolvent analysis for the design of separation control on a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-An; Taira, Kunihiko

    2017-11-01

    A combined effort based on large-eddy simulation and resolvent analysis on the separated flow over a NACA 0012 airfoil is conducted to design active flow control for suppression of separation. This study considers the the airfoil at 6 deg. angle-of-attack and Reynolds number of 23000. The response mode obtained from the resolvent analysis about the baseline turbulent mean flow reveals modal structures that can be categorized into three families when sweeping through the resonant frequency: (1) von Karman wake structure for low frequency; (2) Kelvin-Helmholtz structure in the separation bubble for high frequency; (3) blended structure of (1) and (2) for the intermediate frequency. Leveraging the insights from resolvent analysis, unsteady thermal actuation is introduced to the flow near the leading-edge to examine the use of the frequencies from three families for separation control in LES. As indicated by the resolvent response modes, we find that the use of intermediate frequencies are most effective in suppressing the flow separation, since the shear layer over the separation bubble and the wake are both receptive to the perturbation at the these frequencies. The resolvent-analysis-based control strategy achieves 35% drag reduction and 9% lift increase with effective frequency. This work was supported by Office of Naval Research (N00014-15-R-FO13) and Army Research Office (W911NF-14-1-0224).

  8. Effect of Full-Chord Porosity on Aerodynamic Characteristics of the NACA 0012 Airfoil

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Hartwich, Peter M.

    1996-01-01

    A test was conducted on a model of the NACA 0012 airfoil section with a solid upper surface or a porous upper surface with a cavity beneath for passive venting. The purposes of the test were to investigate the aerodynamic characteristics of an airfoil with full-chord porosity and to assess the ability of porosity to provide a multipoint or self-adaptive design. The tests were conducted in the Langley 8-Foot Transonic Pressure Tunnel over a Mach number range from 0.50 to 0.82 at chord Reynolds numbers of 2 x 10(exp 6), 4 x 10(exp 6), and 6 x 10(exp 6). The angle of attack was varied from -1 deg to 6 deg. At the lower Mach numbers, porosity leads to a dependence of the drag on the normal force. At subcritical conditions, porosity tends to flatten the pressure distribution, which reduces the suction peak near the leading edge and increases the suction over the middle of the chord. At supercritical conditions, the compression region on the porous upper surface is spread over a longer portion of the chord. In all cases, the pressure coefficient in the cavity beneath the porous surface is fairly constant with a very small increase over the rear portion. For the porous upper surface, the trailing edge pressure coefficients exhibit a creep at the lower section normal force coefficients, which suggests that the boundary layer on the rear portion of the airfoil is significantly thickening with increasing normal force coefficient.

  9. The Development of Cambered Airfoil Sections Having Favorable Lift Characteristics at Supercritical Mach Numbers

    NASA Technical Reports Server (NTRS)

    Graham, Donald J

    1948-01-01

    Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined, from two-dimensional windtunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NPiCA 6-series airfoils. The experimental results confirm the design expectations in demonstrating for the NACA S-series airfoils either no variation, or an Increase from the low-speed design value, In the lift coefficient at a constant angle of attack with increasing Mach number above the critical. It was not found possible to improve the variation with Mach number of the slope of the lift curve for these airfoils above that for the NACA 6-series airfoils. The drag characteristics of the new airfoils are somewhat inferior to those of the NACA 6- series with respect to divergence with Mach number, but the pitching-moment characteristics are more favorable for the thinner new sections In demonstrating somewhat smaller variations of moment coefficient with both angle of attack and Mach number. The effect on the aero&ynamic characteristics at high Mach numbers of removing the cusp from the trailing-edge regions of two 10-percent-chord-thick NACA 6-series airfoils is determined to be negligible.

  10. Preliminary Investigation in the NACA Low-Turbulence Tunnel of Low-drag Airfoil Sections Suitable for Admitting Air at the Leading Edge

    NASA Technical Reports Server (NTRS)

    von Doenhoff, Albert E.; Horton, Elmer A.

    1942-01-01

    An investigation was carried out in the NACA low-turbulence tunnel to develop low-drag airfoil sections suitable for admitting air at the leading edge. A thickness distribution having the desired type of pressure distribution was found from tests of a flexible model. Other airfoil shapes were derived from this original shape by varying the thickness, the camper, the leading-edge radius, and the size of the leading-edge opening. Data are presented giving the characteristics of the airfoil shapes in the range of lift coefficients for high-speed and cruising flight. Shapes have been developed which show no substantial increases in drag over that of the same position along the chord. Many of these shapes appear to have higher critical compressibility speeds than plain airfoils of the same thickness. Low-drag airfoil sections have been developed with openings in the leading edge as large as 41.5 percent of the maximum thickness. The range of lift coefficients for low drag in several cases is nearly as large as that of the corresponding plain airfoil sections. Preliminary measurements of maximum lift characteristics indicate that nose-opening sections of the type herein considered may not produce any marked effects on the maximum lift coefficient.

  11. 2D CFD Airfoil Analysis

    NASA Astrophysics Data System (ADS)

    Babb, Grace

    2017-11-01

    This work aims to produce a higher fidelity model of the blades for NASA's X-57 all electric propeller driven experimental aircraft. This model will, in turn, allow for more accurate calculations of the thrust each propeller can generate. This work uses computational fluid dynamics (CFD) to first analyze the propeller blades as a series of 11 differently shaped airfoils and calculate, among other things, the coefficients for lift and drag associated with each airfoil at different angles of attack. OpenFOAM-a C + + library that can be used to create series of applications for pre-processing, solving, and post-processing-is one of the primary tools utilized in these calculations. By comparing the data OpenFOAM generates about the NACA 23012 airfoil with existing experimental data about the NACA 23012 airfoil, the reliability of our model is measured and verified. A trustworthy model can then be used to generate more data and sent to NASA to aid in the design of the actual aircraft.

  12. Direct numerical simulation of broadband trailing edge noise from a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Mehrabadi, Mohammad; Bodony, Daniel

    2016-11-01

    Commercial jet-powered aircraft produce unwanted noise at takeoff and landing when they are close to near-airport communities. Modern high-bypass-ratio turbofan engines have reduced jet exhaust noise sufficiently such that noise from the main fan is now significant. In preparation for a large-eddy simulation of the NASA/GE Source Diagnostic Test Fan, we study the broadband noise due to the turbulent flow on a NACA 0012 airfoil at zero degree angle-of-attack, a chord-based Reynolds number of 408,000 and a Mach number of 0.115 using direct numerical simulation (DNS) and wall-modeled large-eddy simulation (WMLES). The flow conditions correspond to existing experimental data. We investigate the roughness-induced transition-to-turbulence and sound generation from a DNS perspective as well as examine how these two features are captured by a wall model. Comparisons between the DNS- and WMLES-predicted noise are made and provide guidance on the use of WMLES for broadband fan noise prediction. AeroAcoustics Research Consortium.

  13. Laser holographic interferometry for an unsteady airfoil in dynamic stall

    NASA Technical Reports Server (NTRS)

    Lee, G.; Buell, D. A.; Licursi, J. P.; Craig, J. E.

    1983-01-01

    Laser holographic interferometry was used to study a two-dimensional NACA 0012 airfoil undergoing dynamic stall. The airfoil, fabricated from graphite fiber and epoxy, was tested at Mach numbers of 0.3 to 0.6, at Reynolds numbers of 500,000-2,000,000, at reduced frequencies of 0.015 to 0.15, and at mean angles of attack of 0-10 deg with amplitudes of 10 deg. Density and pressure fields were obtained from dual-plate interferograms. Double-pulse interferograms, which seemed to show the wake boundaries better, were also taken. Comparisons of pressures with orifice pressures were good for the attached flow cases. For the separated flow cases, which had a vortex enbedded in the flow, the comparisons were poor. Vortices, wake structures, and the dynamic stall process can be seen by holographic interferometry.

  14. Pressure Distribution Over Airfoils with Fowler Flaps

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Anderson, Walter B

    1938-01-01

    Report presents the results of tests made of a Clark y airfoil with a Clark y Fowler flap and of an NACA 23012 airfoil with NACA Fowler flaps. Some of the tests were made in the 7 by 10-foot wind tunnel and others in the 5-foot vertical wind tunnel. The pressures were measured on the upper and lower surfaces at one chord section both on the main airfoils and on the flaps for several angles of attack with the flaps located at the maximum-lift settings. A test installation was used in which the model was mounted in the wind tunnel between large end planes so that two-dimensional flow was approximated. The data are given in the form of pressure-distribution diagrams and as plots of calculated coefficients for the airfoil-and-flap combinations and for the flaps alone.

  15. Design analysis of vertical wind turbine with airfoil variation

    NASA Astrophysics Data System (ADS)

    Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad

    2016-03-01

    With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.

  16. Data for Design of Entrance Vanes from Two-Dimensional Tests of Airfoils in Cascade

    NASA Technical Reports Server (NTRS)

    Zimmey, Charles M.; Lappi, Viola M.

    1945-01-01

    As a part of a program of the NACA directed toward increasing the efficiency of compressors and turbines, data were obtained for application to the design of entrance vanes for axfax-flow compressors or turbines. A series of blower-blade sections with relatively high critical speeds have been developed for turning air efficiently from 0 deg to 80 deg starting with an axial direction. Tests were made of five NACA 65-series blower blades (modified NACA 65(216)-010 airfoils) and of four experimentally designed blower blades in a stationary cascade at low Mach numbers. The turning effectiveness and the pressure distributions of these blade sections at various angles of attack were evaluated over a range of solidities near 1. Entrance-vane design charts are presented that give a blade section and angle of attack for any desired turning angle. The blades thus obtained operate with peak-free pressure distributions. Approximate critical Mach numbers were calculated from the pressure distributions.

  17. Analysis of high-incidence separated flow past airfoils

    NASA Technical Reports Server (NTRS)

    Chia, K. N.; Osswald, G. A.; Chia, U.

    1989-01-01

    An unsteady Navier-Stokes (NS) analysis is developed and used to carefully examine high-incidence aerodynamic separated flows past airfoils. Clustered conformal C-grids are employed for the 12 percent thick symmetric Joukowski airfoil as well as for the NACA 0012 airfoil with a sharp trailing edge. The clustering is controlled by appropriate one-dimensional stretching transformations. An attempt is made to resolve many of the dominant scales of an unsteady flow with massive separation, while maintaining the transformation metrics to be smooth and continuous in the entire flow field. A fully implicit time-marching alternating-direction implicit-block Gaussian elimination (ADI-BGE) method is employed, in which no use is made of any explicit artificial dissipation. Detailed results are obtained for massively separated, unsteady flow past symmetric Joukowski and NACA 0012 airfoils.

  18. Prediction of ice accretion on a swept NACA 0012 airfoil and comparisons to flight test results

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    1992-01-01

    In the winter of 1989-90, an icing research flight project was conducted to obtain swept wing ice accretion data. Utilizing the NASA Lewis Research Center's DHC-6 DeHavilland Twin Otter aircraft, research flights were made into known icing conditions in Northeastern Ohio. The icing cloud environment and aircraft flight data were measured and recorded by an onboard data acquisition system. Upon entry into the icing environment, a 24 inch span, 15 inch chord NACA 0012 airfoil was extended from the aircraft and set to the desired sweep angle. After the growth of a well defined ice shape, the airfoil was retracted into the aircraft cabin for ice shape documentation. The ice accretions were recorded by ice tracings and photographs. Ice accretions were mostly of the glaze type and exhibited scalloping. The ice was accreted at sweep angles of 0, 30, and 45 degrees. A 3-D ice accretion prediction code was used to predict ice profiles for five selected flight test runs, which include sweep angle of zero, 30, and 45 degrees. The code's roughness input parameter was adjusted for best agreement. A simple procedure was added to the code to account for 3-D ice scalloping effects. The predicted ice profiles are compared to their respective flight test counterparts. This is the first attempt to predict ice profiles on swept wings with significant scalloped ice formations.

  19. Experimental Investigation of Stall Cells on NACA0015 Airfoils

    NASA Astrophysics Data System (ADS)

    Dell'Orso, Haley

    A particular type of 3-D separation, known as a stall cell, was investigated experimentally on two NACA0015 airfoils with aspect ratios of AR = 4 and 2.67. A parametric map of the angles of attack and Reynolds number conditions under which stall cells form was created using oil flow visualization. It was observed that stalls cells form naturally under specific conditions when the Reynolds number exceeds a critical Reynolds number, Re c ≥ Recrit. Based on the work of Weihs & Katz, the formation of a stall cell requires sufficient 3-dimensionality in the flow field. Next, full and partial span trips (composed of either zig-zag tape or an artificial step) were added to the airfoil and it was found that the introduction of additional 3-dimensional disturbances reduced the value of Recrit. For full-span step trips, where no additional 3-dimensionalities were introduced to the flow field, a stall cell was not formed at conditions where one was otherwise not present. However, a partial step trip did cause the formation of a stall cell (under specific conditions) through the introduction of three dimensionalities associated with the trip's ends. These results confirm that three dimensionalities need to be present in order for a stall cell to form. Flow field data were used to explore stall cell characteristics with and without external trips. Under conditions where a stall cell was present, two recirculation regions (i.e., stall cell foci) were observed, outboard of which flow abruptly reattached due to entrainment by the foci. Within the stall cell, flow was funneled away from the middle of the stall cell and into the associated focus point. In addition, at mid-span, the separated flow rotated about the spanwise direction. Outboard, the structure also began to rotate about the chord-normal direction; near the foci, all rotation occurred about the chord-normal direction. The fluctuating flow field was also considered, and elevated levels of chordwise (u'u'/Uinfinity 2

  20. Aerodynamic Characteristics of a Two-blade NACA 10-(3)(062)-045 Propeller and of a Two-blade NACA 10-(3)(08)-045 Propeller

    NASA Technical Reports Server (NTRS)

    Solomon, William

    1953-01-01

    Characteristics are given for the two-blade NACA 10-(3)(062)-045 propeller and for the two-blade NACA 10-(3)(08)-045 propeller over a range of advance ratio from 0.5 to 3.8, through a blade-angle range from 20 degrees to 55 degrees measured at the 0.75 radius. Maximum efficiencies of the order of 91.5 to 92 percent were obtained for the propellers. The propeller with the thinner airfoil sections over the outboard portion of the blades, the NACA 10-(3)(062)-045 propeller, had lower losses at high tip speeds, the difference amounting to about 5 percent at a helical tip Mach number of 1.10.

  1. Effect of Ice Formations on Section Drag of Swept NACA 63A-009 Airfoil with Partial-Span Leading-Edge Slat for Various Modes of Thermal Ice Protection

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe H.; Gray, Vernon H.

    1954-01-01

    The effects of primary and runback ice formations on the section drag of a 36 deg swept NACA 63A-009 airfoil section with a partial-span leading-edge slat were studied over a range of angles of attack from 2 to 8 deg and airspeeds up to 260 miles per hour for icing conditions with liquid-water contents ranging from 0.39 to 1.23 grams per cubic meter and datum air temperatures from 10 to 25 F. The results with slat retracted showed that glaze-ice formations caused large and rapid increases in section drag coefficient and that the rate of change in section drag coefficient for the swept 63A-009 airfoil was about 2-1 times that for an unswept 651-212 airfoil. Removal of the primary ice formations by cyclic de-icing caused the drag to return almost to the bare-airfoil drag value. A comprehensive study of the slat icing and de-icing characteristics was prevented by limitations of the heating system and wake interference caused by the slat tracks and hot-gas supply duct to the slat. In general, the studies showed that icing on a thin swept airfoil will result in more detrimental aerodynamic characteristics than on a thick unswept airfoil.

  2. 3-D Stall Cell Inducement Using Static Trips on a NACA0015 Airfoil

    NASA Astrophysics Data System (ADS)

    Dell'Orso, Haley; Amitay, Michael

    2015-11-01

    Stall cells typically occur at high angles of attack and moderate to high Reynolds numbers (105 to 106) , which are applicable to High Altitude Long Endurance (HALE) vehicles. Under certain conditions stall cells can form abruptly and have a severe and detrimental impact on flight. In order to better understand this phenomenon, stall cell formation is studied using oil flow visualization and SPIV on a NACA0015 airfoil with AR = 2.67. It was shown that there is a critical Reynolds number above which stall cells begin to form, and that Recrit varies with angle of attack. Zig-zag tape and balsa wood trips were used to induce stall cells at lower Reynolds numbers than they would otherwise be present. This will aid in understanding the formation mechanism of these cells. It was also demonstrated that, in the case of full span trips, stall cells are induced by the 3-D nature of zig-zag trips and did not appear when balsa wood trips were used. This suggests that the formation of the stall cell might be due to 3-D disturbances that are naturally present in a flow field. AFOSR Grant Number FA9550-13-1-0059.

  3. High-speed imaging of the transient ice accretion process on a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Waldman, Rye; Hu, Hui

    2014-11-01

    Ice accretion on aircraft wings poses a performance and safety threat as aircraft encounter supercooled droplets suspended in the cloud layer. The details of the ice accretion depend on the atmospheric conditions and the fight parameters. We present the measurement results of the experiments conducted in the Iowa State icing wind tunnel on a NACA 0012 airfoil to study the transient ice accretion process under varying icing conditions. The icing process on the wing consists of a complex interaction of water deposition, surface water transport, and freezing. The aerodynamics affects the water deposition, the heat and mass transport, and ice accumulation; meanwhile, the accumulating ice also affects the aerodynamics. High-speed video of the unsteady icing accretion process was acquired under controlled environmental conditions to quantitatively measure the transient water run back, rivulet formation, and accumulated ice growth, and the experiments show how varying the environmental conditions modifies the ice accretion process. Funding support from the Iowa Energy Center with Grant No. 14-008-OG and National Science Foundation (NSF) with Grant No. CBET-1064196 and CBET-1438099 is gratefully acknowledged.

  4. The development of cambered airfoil sections having favorable lift characteristics at supercritical Mach numbers

    NASA Technical Reports Server (NTRS)

    Graham, Donald J

    1949-01-01

    Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined from two-dimensional wind-tunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NACA 6-series airfoils.

  5. Tests of three tapered airfoils based on the N.A.C.A. 2200, the N.A.C.A.-M6, and the Clark Y sections

    NASA Technical Reports Server (NTRS)

    Anderson, Raymond F

    1934-01-01

    Three tapered airfoils based on the N.A.C.A. 2200, the N.A.C.A.-M6, and the Clark Y sections were tested in the variable-density wind tunnel at a Reynolds Number of approximately 3,100,000. The models, which were of aspect ratio 6, had constant core center sections and rounded tips, and tapered in thickness from 18 percent at the roots to 9 percent at the tips. The aerodynamic characteristics are given by the usual dimensionless coefficients plotted for both positive and negative angles of attack and by effective profile-drag coefficients plotted against lift coefficients.

  6. Pressure distributions from high Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ladson, Charles L.; Hill, Acquilla S.; Johnson, William G., Jr.

    1987-01-01

    Tests were conducted in the 2-D test section of the Langley 0.3-meter Transonic Cryogenic Tunnel on a NACA 0012 airfoil to obtain aerodynamic data as a part of the Advanced Technology Airfoil Test (ATAT) program. The test program covered a Mach number range of 0.30 to 0.82 and a Reynolds number range of 3.0 to 45.0 x 10 to the 6th power. The stagnation pressure was varied between 1.2 and 6.0 atmospheres and the stagnation temperature was varied between 300 K and 90 K to obtain these test conditions. Tabulated pressure distributions and integrated force and moment coefficients are presented as well as plots of the surface pressure distributions. The data are presented uncorrected for wall interference effects and without analysis.

  7. Wall-interference assessment and corrections for transonic NACA 0012 airfoil data from various wind tunnels. M.S. Thesis - George Washington Univ., 1988

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Newman, Perry A.

    1991-01-01

    A nonlinear, four wall, post-test wall interference assessment/correction (WIAC) code was developed for transonic airfoil data from solid wall wind tunnels with flexibly adaptable top and bottom walls. The WIAC code was applied over a broad range of test conditions to four sets of NACA 0012 airfoil data, from two different adaptive wall wind tunnels. The data include many test points for fully adapted walls, as well as numerous partially adapted and unadapted test points, which together represent many different model/tunnel configurations and possible wall interference effects. Small corrections to the measured Mach numbers and angles of attack were obtained from the WIAC code even for fully adapted data; these corrections generally improve the correlation among the various sets of airfoil data and simultaneously improve the correlation of the data with calculations for a 2-D, free air, Navier-Stokes code. The WIAC corrections for airfoil data taken in fully adapted wall test sections are shown to be significantly smaller than those for comparable airfoil data from straight, slotted wall test sections. This indicates, as expected, a lesser degree of wall interference in the adapted wall tunnels relative to the slotted wall tunnels. Application of the WIAC code to this data was, however, somewhat more difficult and time consuming than initially expected from similar previous experience with WIAC applications to slotted wall data.

  8. The aerodynamic characteristics of airfoils at negative angles of attack

    NASA Technical Reports Server (NTRS)

    Anderson, Raymond F

    1932-01-01

    A number of airfoils, including 14 commonly used airfoils and 10 NACA airfoils, were tested through the negative angle-of-attack range in the NACA variable-density wind tunnel at a Reynolds Number of approximately 3,000,000. The tests were made to supply data to serve as a basis for the structural design of airplanes in the inverted flight condition. In order to make the results immediately available for this purpose they are presented herein in preliminary form, together with results of previous tests of the airfoils at positive angles of attack. An analysis of the results made to find the variation of the ratio of the maximum negative lift coefficient to the maximum positive lift coefficient led to the following conclusions: 1) For airfoils of a given thickness, the ratio -C(sub L max) / +C(sub L max) tends to decrease as the mean camber is increased. 2) For airfoils of a given mean camber, the ratio -C(sub L max) / +C(sub L max) tends to increase as the thickness increases.

  9. Analysis of crossover between local and massive separation on airfoils

    NASA Technical Reports Server (NTRS)

    Barnett, Mark

    1987-01-01

    The occurrence of massive separation on airfoils operating at high Reynolds number poses an important problem to the aerodynamicist. In the present study, the phenomenon of crossover, induced by airfoil thickness, between local separation and massive separation is investigated for low speed (incompressible), symmetric flow past realistic airfoil geometries. This problem is studied both for the infinite Reynolds number asymptotic limit using triple-deck theory and for finite Reynolds number using interacting boundary-layer theory. Numerical results are presented which illustrate how the flow evolves from local to massive separation as the airfoil thickness is increased. The results of the triple-deck and the interacting boundary-layer analyses are found to be in qualitative agreement for the NACA four digit series and an uncambered supercritical airfoil. The effect of turbulence on the evolution of the flow is also considered. Solutions are presented for turbulent flows past a NACA 0014 airfoil and a circular cylinder. For the latter case, the calculated surface pressure distribution is found to agree well with experimental data if the proper eddy pressure level is specified.

  10. Suction and Blowing Flow Control on Airfoil for Drag Reduction in Subsonic Flow

    NASA Astrophysics Data System (ADS)

    Baljit, S. S.; Saad, M. R.; Nasib, A. Z.; Sani, A.; Rahman, M. R. A.; Idris, A. C.

    2017-10-01

    Lift force is produced from a pressure difference between the pressures acting in upper and lower surfaces. Therefore, flow becomes detached from the surface of the airfoil at separation point and form vortices. These vortices affect the aerodynamic performance of the airfoil in term of lift and drag coefficient. Therefore, this study is investigating the effect of suction and jet blowing in boundary layer separation control on NACA 0012 airfoil in a subsonic wind tunnel. The experiment examined both methods at the position of 25% of the chord-length of the airfoil at Reynolds number 1.2 × 105. The findings show that suction and jet blowing affect the aerodynamic performance of NACA 0012 airfoil and can be an effective means for boundary layer separation control in subsonic flow.

  11. Large-eddy simulation of flow around an airfoil on a structured mesh

    NASA Technical Reports Server (NTRS)

    Kaltenbach, Hans-Jakob; Choi, Haecheon

    1995-01-01

    The diversity of flow characteristics encountered in a flow over an airfoil near maximum lift taxes the presently available statistical turbulence models. This work describes our first attempt to apply the technique of large-eddy simulation to a flow of aeronautical interest. The challenge for this simulation comes from the high Reynolds number of the flow as well as the variety of flow regimes encountered, including a thin laminar boundary layer at the nose, transition, boundary layer growth under adverse pressure gradient, incipient separation near the trailing edge, and merging of two shear layers at the trailing edge. The flow configuration chosen is a NACA 4412 airfoil near maximum lift. The corresponding angle of attack was determined independently by Wadcock (1987) and Hastings & Williams (1984, 1987) to be close to 12 deg. The simulation matches the chord Reynolds number U(sub infinity)c/v = 1.64 x 10(exp 6) of Wadcock's experiment.

  12. Lyapunov spectrum of the separated flow around the NACA 0012 airfoil and its dependence on numerical discretization

    NASA Astrophysics Data System (ADS)

    Fernandez, P.; Wang, Q.

    2017-12-01

    We investigate the impact of numerical discretization on the Lyapunov spectrum of separated flow simulations. The two-dimensional chaotic flow around the NACA 0012 airfoil at a low Reynolds number and large angle of attack is considered to that end. Time, space and accuracy-order refinement studies are performed to examine each of these effects separately. Numerical results show that the time discretization has a small impact on the dynamics of the system, whereas the spatial discretization can dramatically change them. Also, the finite-time Lyapunov exponents associated to unstable modes are shown to be positively skewed, and quasi-homoclinic tangencies are observed in the attractor of the system. The implications of these results on flow physics and sensitivity analysis of chaotic flows are discussed.

  13. An Experimental Comparison Between Flexible and Rigid Airfoils at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Uzodinma, Jaylon; Macphee, David

    2017-11-01

    This study uses experimental and computational research methods to compare the aerodynamic performance of rigid and flexible airfoils at a low Reynolds number throughout varying angles of attack. This research can be used to improve the design of small wind turbines, micro-aerial vehicles, and any other devices that operate at low Reynolds numbers. Experimental testing was conducted in the University of Alabama's low-speed wind tunnel, and computational testing was conducted using the open-source CFD code OpenFOAM. For experimental testing, polyurethane-based (rigid) airfoils and silicone-based (flexible) airfoils were constructed using acrylic molds for NACA 0012 and NACA 2412 airfoil profiles. Computer models of the previously-specified airfoils were also created for a computational analysis. Both experimental and computational data were analyzed to examine the critical angles of attack, the lift and drag coefficients, and the occurrence of laminar boundary separation for each airfoil. Moreover, the computational simulations were used to examine the resulting flow fields, in order to provide possible explanations for the aerodynamic performances of each airfoil type. EEC 1659710.

  14. Broadband Noise Predictions for an Airfoil in a Turbulent Stream

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.; Mish, P. F.; Devenport, W. J.

    2003-01-01

    Loading noise is predicted from unsteady surface pressure measurements on a NACA 0015 airfoil immersed in grid-generated turbulence. The time-dependent pressure is obtained from an array of synchronized transducers on the airfoil surface. Far field noise is predicted by using the time-dependent surface pressure as input to Formulation 1A of Farassat, a solution of the Ffowcs Williams - Hawkings equation. Acoustic predictions are performed with and without the effects of airfoil surface curvature. Scaling rules are developed to compare the present far field predictions with acoustic measurements that are available in the literature.

  15. Time-marching transonic flutter solutions including angle-of-attack effects

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Bennett, R. M.; Whitlow, W., Jr.; Seidel, D. A.

    1982-01-01

    Transonic aeroelastic solutions based upon the transonic small perturbation potential equation were studied. Time-marching transient solutions of plunging and pitching airfoils were analyzed using a complex exponential modal identification technique, and seven alternative integration techniques for the structural equations were evaluated. The HYTRAN2 code was used to determine transonic flutter boundaries versus Mach number and angle-of-attack for NACA 64A010 and MBB A-3 airfoils. In the code, a monotone differencing method, which eliminates leading edge expansion shocks, is used to solve the potential equation. When the effect of static pitching moment upon the angle-of-attack is included, the MBB A-3 airfoil can have multiple flutter speeds at a given Mach number.

  16. An Experimental Study of Airfoil Icing Characteristics

    NASA Technical Reports Server (NTRS)

    Shaw, R. J.; Sotos, R. G.; Solano, F. R.

    1982-01-01

    A full scale general aviation wing with a NACA 63 sub 2 A415 airfoil section was tested to determine icing characteristics for representative rime and glaze icing conditions. Measurements were made of ice accretion shapes and resultant wing section drag coefficient levels. It was found that the NACA 63 sub 2 A415 wing section was less sensitive to rime and glaze icing encounters for climb conditions.

  17. Implicit and Multigrid Method for Ideal Multigrid Convergence: Direct Numerical Simulation of Separated Flow Around NACA 0012 Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Chao-Qun; Shan, H.; Jiang, L.

    1999-01-01

    Numerical investigation of flow separation over a NACA 0012 airfoil at large angles of attack has been carried out. The numerical calculation is performed by solving the full Navier-Stokes equations in generalized curvilinear coordinates. The second-order LU-SGS implicit scheme is applied for time integration. This scheme requires no tridiagonal inversion and is capable of being completely vectorized, provided the corresponding Jacobian matrices are properly selected. A fourth-order centered compact scheme is used for spatial derivatives. In order to reduce numerical oscillation, a sixth-order implicit filter is employed. Non-reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible non-physical wave reflection. Complex flow separation and vortex shedding phenomenon have been observed and discussed.

  18. Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil

    NASA Astrophysics Data System (ADS)

    Munday, Phillip M.

    The objective of this computational study is to examine and quantify the influence of fundamental flow control inputs in suppressing flow separation over a canonical airfoil. Most flow control studies to this date have relied on the development of actuator technology, and described the control input based on specific actuators. Taking advantage of a computational framework, we generalize the inputs to fundamental perturbations without restricting inputs to a particular actuator. Utilizing this viewpoint, generalized control inputs aim to aid in the quantification and support the design of separation control techniques. This study in particular independently introduces wall-normal momentum and angular momentum to the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. By closely studying different variables, the influence of the wall-normal and angular momentum injections on separated flow is identified. As an example, open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at alpha = 6° and 9° with Re = 23,000 is examined with large-eddy simulations. For the shallow angle of attack alpha = 6°, the small recirculation region is primarily affected by wall-normal momentum injection. For a larger separation region at alpha = 9°, it is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Reducing the size of the separated flow region significantly impacts the forces, and in particular reduces drag and increases lift on the airfoil. It was found that the influence of flow control on the small recirculation region (alpha = 6°) can be sufficiently quantified with the traditional coefficient of momentum. At alpha = 9°, the effects of wall-normal and angular momentum inputs are captured by modifying the standard

  19. Heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis icing research tunnel. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip E.

    1990-01-01

    Local heat transfer coefficients from a smooth and roughened NACA 0012 airfoil were measured using a steady state heat flux method. Heat transfer measurements on the specially constructed 0.533 meter chord airfoil were made both in flight on the NASA Lewis Twin Otter Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of small, 2 mm diameter, hemispheres of uniform size to the airfoil surface in four distinct patterns. The flight data was taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range of 1.24x10(exp 6) to 2.50x10(exp 6) and at various angles of attack up to 4 degrees. During these flight tests the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). The wind tunnel data was taken in the Reynolds number range of 1.20x10(exp 6) to 4.52x10(exp 6) and at angles of attack from -4 degrees to +8 degrees. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud making spray off. Results for both the flight and tunnel tests are presented as Frossling number based on chord versus position on the airfoil surface for various roughnesses and angle of attack. A table of power law curve fits of Nusselt number as a function of Reynolds number is also provided. The higher level of turbulence in the IRT versus flight had little effect on heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the higher Reynolds numbers. Turning on the cloud making spray air in the IRT did not alter the heat transfer. Roughness generally increased the heat transfer by locally disturbing the boundary layer flow. Finally, the present data was not only compared with previous airfoil data where applicable, but also with leading edge cylinder and flat plate heat transfer values which are often used to estimate airfoil heat transfer in computer codes.

  20. A Wind-Tunnel Investigation of the Application of the NASA Supercritical Airfoil to a Variable-Wing-Sweep Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Ayers, T. G.

    1973-01-01

    An investigation was conducted in the Langley 8 foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel to evaluate the effectiveness of three variations of the NASA supercritical airfoil as applied to a model of a variable wing sweep fighter airplane. Wing panels incorporating conventional NACA 64A series airfoil with 0.20 and 0.40 camber were used as bases of reference for this evaluation. Static force and moment measurements were obtained for wing leading edge sweep angles of 26, 33, 39, and 72.5 degrees. Fluctuating wing root bending moment data were obtained at subsonic speeds to determine buffet characteristics. Subsonic data were also obtained for determining the effects of wing transition location and spoiler deflection. Limited lateral directional data are included for the conventional 0.20 cambered wing and the supercritical wing.

  1. Design modification of airfoil by integrating sinusoidal leading edge and dimpled surface

    NASA Astrophysics Data System (ADS)

    Masud, M. H.; Naim-Ul-Hasan, Arefin, Amit Md. Estiaque; Joardder, Mohammad U. H.

    2017-06-01

    Airfoil is widely used for aircraft wings and blades of helicopters, turbines, propellers, fans and compressors. Many researches have been conducted on focusing the leading edge, surface and trailing edge of airfoil in order to maximize airfoil lift and to reduce drag. Literature shows that using protuberances along the leading edge of NACA 2412, it is possible to attain better performance from the baseline. Besides, the inward dimpled surface of NACA 0018 produces lesser drag at a positive angle of attacks. However, there is no literature that integrates sinusoidal leading edge and dimpled to attain the benefits of the both. In this study, simulation has been done for design improvement of airfoil by integrating sinusoidal leading edge and dimpled surface. Simulations have been run using finite element method environment. Significant improvement has been observed from the simulation results.

  2. Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul; Fagan, Amy; Mankbadi, Mina

    2016-01-01

    An experimental investigation of tip vortex flow from a NACA0012 airfoil, pitched periodically at various frequencies, is conducted in a low-speed wind tunnel. Initially, data for stationary airfoil held fixed at various angles-of-attack are gathered. Flow visualization pictures as well as detailed cross-sectional properties areobtained at various streamwise locations using hot-wire anemometry. Data include mean velocity, streamwise vorticity as well as various turbulent stresses. Preliminary data are also acquired for periodically pitched airfoil. These results are briefly presented in this extended abstract.

  3. Pressure measurements on a rectangular wing with a NACA0012 airfoil during conventional flutter

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA LaRC has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. The first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Two wind-tunnel tests were conducted with the first model. Several dynamic instability boundaries were investigated such as a conventional flutter boundary, a transonic plunge instability region near Mach = 0.90, and stall flutter. In addition, wing surface unsteady pressure data were acquired along two model chords located at the 60 to 95-percent span stations during these instabilities. At this time, only the pressure data for the conventional flutter boundary is presented. The conventional flutter boundary and the wing surface unsteady pressure measurements obtained at the conventional flutter boundary test conditions in pressure coefficient form are presented. Wing surface steady pressure measurements obtained with the model mount system rigidized are also presented. These steady pressure data were acquired at essentially the same dynamic pressure at which conventional flutter had been encountered with the mount system flexible.

  4. An analytical study for the design of advanced rotor airfoils

    NASA Technical Reports Server (NTRS)

    Kemp, L. D.

    1973-01-01

    A theoretical study has been conducted to design and evaluate two airfoils for helicopter rotors. The best basic shape, designed with a transonic hodograph design method, was modified to meet subsonic criteria. One airfoil had an additional constraint for low pitching-moment at the transonic design point. Airfoil characteristics were predicted. Results of a comparative analysis of helicopter performance indicate that the new airfoils will produce reduced rotor power requirements compared to the NACA 0012. The hodograph design method, written in CDC Algol, is listed and described.

  5. Characteristics of merging shear layers and turbulent wakes of a multi-element airfoil

    NASA Technical Reports Server (NTRS)

    Adair, Desmond; Horne, W. Clifton

    1988-01-01

    Flow characteristics in the vicinity of the trailing edge of a single-slotted airfoil flap are presented and analyzed. The experimental arrangement consisted of a NACA 4412 airfoil equipped with a NACA 4415 flap whose angle of deflection was 21.8 deg. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The flow was complicated by the presence of a strong, initially inviscid jet emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer. Downstream of the flap, the airfoil and flap wakes fully merged to form an asymmetrical curved wake. The airfoil configuration was tested at an angle of attack of 8.2 deg, at a Mach number of 0.09, and a chord based Reynolds number of 1.8 x 10 to the 6th power in the Ames Research Center 7- by 10-Foot Wind Tunnel. Surface pressure measurements were made on the airfoil and flap and on the wind tunnel roof and floor. It was estimated that the wall interference increased the C sub L by 7 percent and decreased the C sub M by 4.5 percent. Velocity characteristics were quantified using hot-wire anemometry in regions of flow with preferred direction and low turbulence intensity. A 3-D laser velocimeter was used in regions of flow recirculation and relatively high turbulence intensity.

  6. Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section

    NASA Technical Reports Server (NTRS)

    Ladson, Charles L.

    1988-01-01

    A comprehensive data base is given for the low speed aerodynamic characteristics of the NACA 0012 airfoil section. The Langley low-turbulence pressure tunnel is the facility used to obtain the data. Included in the report are the effects of Mach number and Reynolds number and transition fixing on the aerodynamic characteristics. Presented are also comparisons of some of the results with previously published data and with theoretical estimates. The Mach number varied from 0.05 to 0.36. The Reynolds number, based on model chord, varied from 3 x 10 to the 6th to 12 x 10 to the 6th power.

  7. The Influence of Heat Transfer on the Drag of Airfoils.

    DTIC Science & Technology

    1981-04-01

    OF STANDARDS-1963-A LL b AFWAL-TR-81- 3030 THE INFLUENCE OF HEAT TRANSFER ON THE DRAG OF AIRFOILS DR. JOHN D. LEE The Aeronautical and Astronautical...if necReary mid identify by block number) Airfoils , Subsonic, Transonic, Supercritical, Laminar Flow, Transition, Drag Reduction, Heat Transfer...determine the effects of surface temperature on the drag of airfoils . Models of an aft- loaded profile and of a NACA 65A413 were tested with separate models

  8. The Effects of Blowing Over Various Trailing-edge Flaps on an NACA 0006 Airfoil Section, Comparisons with Various Types of Flaps on other Airfoil Sections, and an Analysis of Flow and Power Relationships for Blowing Systems

    NASA Technical Reports Server (NTRS)

    Dods, J. B., Jr.; Watson, E. C.

    1976-01-01

    The results are presented of a two-dimensional investigation conducted to determine the effect of blowing over various types of trailing-edge flaps on a wing having the NACA 0006 airfoil section and a drooped-nose flap. The position and profile of the trailing-edge flap, the nozzle height, and the location of the flap with respect to the nozzle were found to be important variables. Data from many investigations were used to make an evaluation of the effects of blowing on lift. An analysis was made of flow and power relationships for blowing systems.

  9. Characteristics of an Airfoil as Affected by Fabric Sag

    NASA Technical Reports Server (NTRS)

    Ward, Kenneth E

    1932-01-01

    This report presents the results of tests made at a high value of the Reynolds Number in the N.A.C.A. variable-density wind tunnel to determine the aerodynamic characteristics of an airfoil as affected by fabric sag. Tests were made of two Gottingen 387 airfoils, one having the usual smooth surface and the other having a surface modified to simulate two types of fabric sag. The results of these tests indicate that the usual sagging of the wind covering between ribs has a very small effect on the aerodynamic characteristics of an airfoil.

  10. Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications

    NASA Technical Reports Server (NTRS)

    Somers, D. M.

    1981-01-01

    A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.

  11. Investigation of a Low-Drag Gun Port in the NACA Two-Dimensional Low-Turbulence Tunnel

    NASA Technical Reports Server (NTRS)

    Horton, Elmer A.; Woolard, Henry W.

    1942-01-01

    Tests were made in the NACA two-dimensional low-turbulence tunnel of three gun ports with a height of approximately 4 percent of the chord faired into an NACA 66,2-213 low-drag-airfoil section by bulging the section at the gun port. Gun ports faired in this manner had practically no effect on the maximum lift and the critical compressibility speed of the section and showed only small increase in the drag in the range of lift coefficients for high-speed and cruising-flight conditions.

  12. Airfoil section characteristics as affected by protuberances

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N

    1934-01-01

    The drag and interference caused by protuberance from the surface of an airfoil have been determined in the NACA variable-density wind tunnel at a Reynolds number approximately 3,100,000. The effects of variations of the fore-and-aft position, height, and shape of the protuberance were measured by determining how the airfoil section characteristics were affected by the addition of the various protuberances extending along the entire span of the airfoil. The results provide fundamental data on which to base the prediction of the effects of actual short-span protuberances. The data may also be applied to the design of air brakes and spoilers.

  13. A compressible solution of the Navier-Stokes equations for turbulent flow about an airfoil

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Gibeling, H. J.

    1979-01-01

    A compressible time dependent solution of the Navier-Stokes equations including a transition turbulence model is obtained for the isolated airfoil flow field problem. The equations are solved by a consistently split linearized block implicit scheme. A nonorthogonal body-fitted coordinate system is used which has maximum resolution near the airfoil surface and in the region of the airfoil leading edge. The transition turbulence model is based upon the turbulence kinetic energy equation and predicts regions of laminar, transitional, and turbulent flow. Mean flow field and turbulence field results are presented for an NACA 0012 airfoil at zero and nonzero incidence angles of Reynolds number up to one million and low subsonic Mach numbers.

  14. Vortex scale of unsteady separation on a pitching airfoil.

    PubMed

    Fuchiwaki, Masaki; Tanaka, Kazuhiro

    2002-10-01

    The streaklines of unsteady separation on two kinds of pitching airfoils, the NACA65-0910 and a blunt trailing edge airfoil, were studied by dye flow visualization and by the Schlieren method. The latter visualized the discrete vortices shed from the leading edge. The results of these visualization studies allow a comparison between the dynamic behavior of the streakline of unsteady separation and that of the discrete vortices shed from the leading edge. The influence of the airfoil configuration on the flow characteristics was also examined. Furthermore, the scale of a discrete vortex forming the recirculation region was investigated. The non-dimensional pitching rate was k = 0.377, the angle of attack alpha(m) = 16 degrees and the pitching amplitude was fixed to A = +/-6 degrees for Re = 4.0 x 10(3) in this experiment.

  15. Design and experimental results for a flapped natural-laminar-flow airfoil for general aviation applications

    NASA Technical Reports Server (NTRS)

    Somers, D. M.

    1981-01-01

    A flapped natural laminar flow airfoil for general aviation applications, the NLF(1)-0215F, has been designed and analyzed theoretically and verified experimentally in the Langley Low Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low speed airfoils with the low cruise drag of the NACA 6 series airfoils has been achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge has also been met. Comparisons of the theoretical and experimental results show generally good agreement.

  16. Tests of N.A.C.A. airfoils in the variable-density wind tunnel Series 24

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; WARD KENNETH E

    1932-01-01

    This note is the fifth of a series covering an investigation of a number of related airfoils. It presents the results obtained from tests of a group of six low-cambered airfoils in the variable-density wind tunnel. The mean camber lines are identical for the six airfoils and are of such a form that the maximum mean camber is 2 per cent of the chord and is at a position 0.4 of the chord behind the loading edge. The airfoils differ in thickness only, the maximum-thickness/chord ratios being 0.06, 0.09, 0.12, 0.15, 0.18, and 0.21. The results have been presented in the form of both infinite and finite aspect-ratio characteristics. The values of C(sub L) max/C(sub d) degrees min for this group of airfoils are among the highest thus far obtained, the minimum profile drags being approximately equal to those for the symmetrical series of corresponding thickness, while the maximum lift coefficients are considerably higher.

  17. Oscillatory Excitation of Unsteady Compressible Flows over Airfoils at Flight Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack, LaTunia G.

    1999-01-01

    An experimental investigation, aimed at delaying flow separation due to the occurrence of a shock-wave-boundary-layer interaction, is reported. The experiment was performed using a NACA 0012 airfoil and a NACA 0015 airfoil at high Reynolds number incompressible and compressible flow conditions. The effects of Mach and Reynolds numbers were identified, using the capabilities of the cryogenic-pressurized facility to maintain one parameter fixed and change the other. Significant Reynolds number effects were identified in the baseline compressible flow conditions even at Reynolds number of 10 and 20 million. The main objectives of the experiment were to study the effects of periodic excitation on airfoil drag-divergence and to alleviate the severe unsteadiness associated with shock-induced separation (known as "buffeting"). Zero-mass-flux oscillatory blowing was introduced through a downstream directed slot located at 10% chord on the upper surface of the NACA 0015 airfoil. The effective frequencies generated 2-4 vortices over the separated region, regardless of the Mach number. Even though the excitation was introduced upstream of the shock-wave, due to experimental limitations, it had pronounced effects downstream of it. Wake deficit (associated with drag) and unsteadiness (associated with buffeting) were significantly reduced. The spectral content of the wake pressure fluctuations indicates of steadier flow throughout the frequency range when excitation was applied. This is especially important at low frequencies which are more likely to interact with the airframe.

  18. A validation of LTRAN2 with high frequency extensions by comparisons with experimental measurements of unsteady transonic flows

    NASA Technical Reports Server (NTRS)

    Hessenius, K. A.; Goorjian, P. M.

    1981-01-01

    A high frequency extension of the unsteady, transonic code LTRAN2 was created and is evaluated by comparisons with experimental results. The experimental test case is a NACA 64A010 airfoil in pitching motion at a Mach number of 0.8 over a range of reduced frequencies. Comparisons indicate that the modified code is an improvement of the original LTRAN2 and provides closer agreement with experimental lift and moment coefficients. A discussion of the code modifications, which involve the addition of high frequency terms of the boundary conditions of the numerical algorithm, is included.

  19. An abbreviated Reynolds stress turbulence model for airfoil flows

    NASA Technical Reports Server (NTRS)

    Gaffney, R. L., Jr.; Hassan, H. A.; Salas, M. D.

    1990-01-01

    An abbreviated Reynolds stress turbulence model is presented for solving turbulent flow over airfoils. The model consists of two partial differential equations, one for the Reynolds shear stress and the other for the turbulent kinetic energy. The normal stresses and the dissipation rate of turbulent kinetic energy are computed from algebraic relationships having the correct asymptotic near wall behavior. This allows the model to be integrated all the way to the wall without the use of wall functions. Results for a flat plate at zero angle of attack, a NACA 0012 airfoil and a RAE 2822 airfoil are presented.

  20. Lock-in of elastically mounted airfoils at a 90° angle of attack

    NASA Astrophysics Data System (ADS)

    Ehrmann, R. S.; Loftin, K. M.; Johnson, S.; White, E. B.

    2014-01-01

    Reducing vortex-induced vibration (VIV) of elastically mounted cylinders has applications to petroleum, nuclear, and civil engineering. One simple method is streamlining the cylinder into an airfoil shape. However, if flow direction changes, an elastic airfoil could experience similar oscillations with even more drag. To better understand a general airfoil's response, three elastically mounted airfoil shapes are tested at a 90° angle of attack in a 3 ft by 4 ft wind tunnel. The shapes are a NACA 0018, a sharp leading- and trailing-edge (sharp-sharp) model, and a round leading- and trailing-edge (round-round) model. Mass-damping ranges from 0.96 to 1.44. For comparison to canonical VIV research, a cylinder is also tested. Since lock-in occurs near Rec=125×103, the models are also tested with a trip strip. The NACA 0018 and sharp-sharp configuration show nearly identical responses. The cylinder and round-round airfoil have responses five to eight times larger. Thus, the existence of a single sharp edge is sufficient to greatly reduce VIV at 90° angle of attack. Whereas the cylinder and round-round maximum response amplitudes are similar, cylinder lock-in occurs over a velocity range three times larger than the round-round. The tripped cylinder and round-round models' response is attenuated by 70% compared to their respective clean configurations. Hysteresis is only observed in the circular cylinder and round-round models. Hotwire data indicates the clean cylinder has a unique vortex pattern compared to the other configurations.

  1. Analysis of viscous transonic flow over airfoil sections

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Wu, Jiunn-Chi; Sankar, L. N.

    1987-01-01

    A full Navier-Stokes solver has been used to model transonic flow over three airfoil sections. The method uses a two-dimensional, implicit, conservative finite difference scheme for solving the compressible Navier-Stokes equations. Results are presented as prescribed for the Viscous Transonic Airfoil Workshop to be held at the AIAA 25th Aerospace Sciences Meeting. The NACA 0012, RAE 2822 and Jones airfoils have been investigated for both attached and separated transonic flows. Predictions for pressure distributions, loads, skin friction coefficients, boundary layer displacement thickness and velocity profiles are included and compared with experimental data when possible. Overall, the results are in good agreement with experimental data.

  2. Application of the Program Profile for the Design of Low-Speed, Low- Observable Configuration Airfoils

    DTIC Science & Technology

    1992-12-01

    112 61 . Airfoil T503 - t/c = 3.79% .... ........... .. 113 62. Airfoil T503 Leading-Edge - t/c = 3.79% ..... ... 114 63. Pressure...points on C unit circle, 6 slope of airfoil surface near trailing edge 61 boundary-layer displacement thickness 62 boundary-layer momentum thickness 63...equivalent thickness NACA 4-digit airfoils . 4 II. Theory Potential-Flow Design Method This section will overview the basic theory used in PROFILE. Eppler

  3. A new algebraic turbulence model for accurate description of airfoil flows

    NASA Astrophysics Data System (ADS)

    Xiao, Meng-Juan; She, Zhen-Su

    2017-11-01

    We report a new algebraic turbulence model (SED-SL) based on the SED theory, a symmetry-based approach to quantifying wall turbulence. The model specifies a multi-layer profile of a stress length (SL) function in both the streamwise and wall-normal directions, which thus define the eddy viscosity in the RANS equation (e.g. a zero-equation model). After a successful simulation of flat plate flow (APS meeting, 2016), we report here further applications of the model to the flow around airfoil, with significant improvement of the prediction accuracy of the lift (CL) and drag (CD) coefficients compared to other popular models (e.g. BL, SA, etc.). Two airfoils, namely RAE2822 airfoil and NACA0012 airfoil, are computed for over 50 cases. The results are compared to experimental data from AGARD report, which shows deviations of CL bounded within 2%, and CD within 2 counts (10-4) for RAE2822 and 6 counts for NACA0012 respectively (under a systematic adjustment of the flow conditions). In all these calculations, only one parameter (proportional to the Karmen constant) shows slight variation with Mach number. The most remarkable outcome is, for the first time, the accurate prediction of the drag coefficient. The other interesting outcome is the physical interpretation of the multi-layer parameters: they specify the corresponding multi-layer structure of turbulent boundary layer; when used together with simulation data, the SED-SL enables one to extract physical information from empirical data, and to understand the variation of the turbulent boundary layer.

  4. An Experimental Investigation of an Airfoil Traversing Across a Shear Flow

    NASA Astrophysics Data System (ADS)

    Hamedani, Borhan A.; Naguib, Ahmed; Koochesfahani, Manoochehr

    2017-11-01

    While the aerodynamics of an airfoil in a uniform approach flow is well understood, less attention has been paid to airfoils in non-uniform flows. An aircraft encounters such flow, for example, during landing through the air wake of an aircraft carrier. The present work is focused on investigating the fundamental aerodynamics of airfoils in such an environment using canonical flow experiments. To generate a shear approach flow, a shaped honeycomb block is employed in a wind tunnel setup. Direct force measurements are performed on a NACA 0012 airfoil, with an aspect ratio of 1.8, as the airfoil traverses steadily across the shear region. Measurements are conducted at a chord Reynolds number Rec 75k, based on the mean approach stream velocity at the center of the shear zone, for a range of airfoil traverse velocities and angles of attack (0 - 12 degree). The results are compared to those obtained for the same airfoil when placed statically at different points along the traverse path inside the shear zone. The comparison enables examination of the applicability of quasi-steady analysis in computing the forces on the moving airfoil. This work is supported by ONR Grant Number N00014-16-1-2760.

  5. Prediction of broadband trailing edge noise from a NACA0012 airfoil using wall-modeled large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Mehrabadi, Mohammad; Bodony, Daniel

    2017-11-01

    In modern high-bypass ratio turbofan engines, the reduction of jet exhaust noise through engine design has increased the acoustic importance of the main fan to the point where it can be the primary source of noise in the fight direction of an airplane. While fan noise has been reduced by improved fan designs, its broadband component, originating from the interaction of turbulent flow with a solid surface, still remains an issue. Broadband fan noise is generated by several mechanisms, usually involving a turbulent boundary layer interacting with a solid surface. To prepare for a wall modeled large eddy simulation (WMLES) of the NASA/GE source diagnostic test fan, we study the broadband noise due to the turbulent flow on a NACA0012 airfoil at zero degree angle-of-attack, a chord-based Reynolds number of 408,000, and a Mach number of 0.115 using WMLES. We investigate the prediction of transition-to-turbulence and sound generation from the WMLES and examine its predictability compared with available experimental and DNS datasets for the same flow conditions. Verification of WMLES for such a canonical problem is crucial since it provides useful insight about the WMLES approach before using it for broadband fan noise prediction. AeroAcoustics Research Consortium.

  6. Implementation of different turbulence model to find proper model to estimate aerodynamic properties of airfoils

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci; Bozkurt, Ismail

    2018-02-01

    In this paper, aerodynamic calculations of NACA 4 series airfoil of 0012 are performed by using Finite-Volume Method and obtained results are compared with experimental data to correlate the numerical accuracy of CFD approximation. Then other airfoils are simulated with k-ɛ, k-w Spalart-Allmaras and SST model. The governing equations are the Reynolds-Averaged-Navier-Stokes (RANS) equations. The performance of different airfoils (NACA 0008, 0009, 0010, 0012, 0015, 0018, 0021, 0024) at different angle of attack are investigated and compared with most used turbulence models for industrial applications. According to the results of the comparison of numerical calculations and experimental data, k-w and SST models are considered to be closest to experimental results for the calculation of the lift coefficient.

  7. The Aerodynamic Characteristics of Six Full-Scale Propellers Having Different Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Biermann, David; Hartman, Edwin P

    1939-01-01

    Wind-tunnel tests are reported of six 3-blade 10-foot propellers operated in front of a liquid-cooled engine nacelle. The propellers were identical except for blade airfoil sections, which were: Clark y, R.A.F. 6, NACA 4400, NACA 2400-34, NACA 2rsub200, and NACA 6400. The range of blade angles investigated extended for 15 degrees to 40 degrees for all propellers except the Clark y, for which it extended to 45 degrees. The results showed that the range in maximum efficiency between the highest and lowest values was about 3 percent. The highest efficiencies were for the low-camber sections.

  8. Analysis of In-Flight Structural Failures of P-3C Wing Leading Edge Segments

    DTIC Science & Technology

    1992-06-01

    with published empirical data for tangential velocity and/or pressure coefficient distributions for the NACA 0012 and Eppler E64 airfoils before its use...tangential velocity distribution for the Eppler airfoil . No difference from the NACA 0012 Cp data could be identified. 5. Flight Regime Selection It was...37 1. P-3 Airfoil Section ...... ............ .. 37 2. Program Inputs and Outputs .. ........ .. 37 3. Program Operation

  9. Unsteady flow past an airfoil pitched at constant rate

    NASA Technical Reports Server (NTRS)

    Lourenco, L.; Vandommelen, L.; Shib, C.; Krothapalli, A.

    1992-01-01

    The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching up motion is investigated experimentally by the PIDV technique in a water towing tank. The Reynolds number is 5000, based upon the airfoil's chord and the free-stream velocity. The airfoil is pitching impulsively from 0 to 30 deg. with a dimensionless pitch rate alpha of 0.131. Instantaneous velocity and associated vorticity data have been acquired over the entire flow field. The primary vortex dominates the flow behavior after it separates from the leading edge of the airfoil. Complete stall emerges after this vortex detaches from the airfoil and triggers the shedding of a counter-rotating vortex near the trailing edge. A parallel computational study using the discrete vortex, random walk approximation has also been conducted. In general, the computational results agree very well with the experiment.

  10. Two-dimensional aerodynamic characteristics of several rotorcraft airfoils at Mach numbers from 0.35 to 0.90

    NASA Technical Reports Server (NTRS)

    Noonan, K. W.; Bingham, G. J.

    1977-01-01

    An investigation was conducted in the Langley 6- by 28-inch transonic tunnel and the 6- by 19-inch transonic tunnel to determine the two-dimensional aerodynamic characteristics of several rotorcraft airfoils at Mach numbers from 0.35 to 0.90. The airfoils differed in thickness, thickness distribution, and camber. The FX69-H-098, the BHC-540, and the NACA 0012 airfoils were investigated in the 6- by 28-inch tunnel at Reynolds numbers (based on chord) from about 4.7 to 9.3 million at the lowest and highest test Mach numbers respectively. The FX69-H-098, the NLR-1, the BHC-540, and the NACA 23012 airfoils were investigated in the 6- by 19-inch tunnel at Reynolds numbers from about 0.9 to 2.2 million at the lowest and highest test Mach numbers respectively.

  11. Measurements in a separation bubble on an airfoil using laser velocimetry

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Edward J.; Mueller, Thomas J.

    1990-01-01

    An experimental investigation was conducted to measure the reverse flow within the transitional separation bubble that forms on an airfoil at low Reynolds numbers. Measurements were used to determine the effect of the reverse flow on integrated boundary-layer parameters often used to model the bubble. Velocity profile data were obtained on an NACA 663-018 airfoil at angle of attack of 12 deg and a chord Reynolds number of 140,000 using laser Doppler and single-sensor hot-wire anemometry. A new correlation is proposed based on zero velocity position, since the Schmidt (1986) correlations fail in the turbulent portion of the bubble.

  12. Numerical simulation of the vortical flow around a pitching airfoil

    NASA Astrophysics Data System (ADS)

    Fu, Xiang; Li, Gaohua; Wang, Fuxin

    2017-04-01

    In order to study the dynamic behaviors of the flapping wing, the vortical flow around a pitching NACA0012 airfoil is investigated. The unsteady flow field is obtained by a very efficient zonal procedure based on the velocity-vorticity formulation and the Reynolds number based on the chord length of the airfoil is set to 1 million. The zonal procedure divides up the whole computation domain in to three zones: potential flow zone, boundary layer zone and Navier-Stokes zone. Since the vorticity is absent in the potential flow zone, the vorticity transport equation needs only to be solved in the boundary layer zone and Navier-Stokes zone. Moreover, the boundary layer equations are solved in the boundary layer zone. This arrangement drastically reduces the computation time against the traditional numerical method. After the flow field computation, the evolution of the vortices around the airfoil is analyzed in detail.

  13. An evaluation of four single element airfoil analytic methods

    NASA Technical Reports Server (NTRS)

    Freuler, R. J.; Gregorek, G. M.

    1979-01-01

    A comparison of four computer codes for the analysis of two-dimensional single element airfoil sections is presented for three classes of section geometries. Two of the computer codes utilize vortex singularities methods to obtain the potential flow solution. The other two codes solve the full inviscid potential flow equation using finite differencing techniques, allowing results to be obtained for transonic flow about an airfoil including weak shocks. Each program incorporates boundary layer routines for computing the boundary layer displacement thickness and boundary layer effects on aerodynamic coefficients. Computational results are given for a symmetrical section represented by an NACA 0012 profile, a conventional section illustrated by an NACA 65A413 profile, and a supercritical type section for general aviation applications typified by a NASA LS(1)-0413 section. The four codes are compared and contrasted in the areas of method of approach, range of applicability, agreement among each other and with experiment, individual advantages and disadvantages, computer run times and memory requirements, and operational idiosyncrasies.

  14. The potential of hybrid micro-vortex generators to control flow separation of NACA 4415 airfoil in subsonic flow

    NASA Astrophysics Data System (ADS)

    Jumahadi, Muhammad Taufiq; Saad, Mohd Rashdan; Idris, Azam Che; Sujipto, Suriyadi; Rahman, Mohd Rosdzimin Abdul

    2018-02-01

    Boundary layer separation is detrimental to the lift and drag of most aeronautical applications. Many vortex generators (VG), both passive and active have been designed to reduce these drawbacks. This study targets to investigate the effectiveness of hybrid micro-VGs, which combine both active and passive micro-VGs in controlling separation under subsonic conditions. NACA 4415 airfoils installed with passive, active and hybrid micro-VGs each are designed, 3D printed, and tested in a wind tunnel at 26.19 m/s under Re = 2.5x105. The lift and drag measurements from a 3-component force balance prove that hybrid micro-VGs increase lift by up to 21.2%, increase drag by more than 11.3% and improve lift-to-drag ratio by at least 8.6% until up to 33.7%. From this research, it is believed that hybrid micro-VGs are competitive to the performance of active VGs and a better configuration is to be considered to reduce parasitic drag and outstand active VGs.

  15. High-Order Multioperator Compact Schemes for Numerical Simulation of Unsteady Subsonic Airfoil Flow

    NASA Astrophysics Data System (ADS)

    Savel'ev, A. D.

    2018-02-01

    On the basis of high-order schemes, the viscous gas flow over the NACA2212 airfoil is numerically simulated at a free-stream Mach number of 0.3 and Reynolds numbers ranging from 103 to 107. Flow regimes sequentially varying due to variations in the free-stream viscosity are considered. Vortex structures developing on the airfoil surface are investigated, and a physical interpretation of this phenomenon is given.

  16. Symmetric airfoil geometry effects on leading edge noise.

    PubMed

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  17. Lift-Enhancing Tabs on Multielement Airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Storms, Bruce L.; Carrannanto, Paul G.

    1995-01-01

    The use of flat-plate tabs (similar to Gurney flaps) to enhance the lift of multielement airfoils is extended here by placing them on the pressure side and near the trailing edge of the main element rather than just on the furthest downstream wing element. The tabs studied range in height from 0.125 to 1.25% of the airfoil reference chord. In practice, such tabs would be retracted when the high-lift system is stowed. The effectiveness of the concept was demonstrated experimentally and computationally on a two-dimensional NACA 63(sub 2)-215 Mod B airfoil with a single-slotted, 30%-chord flap. Both the experiments and computations showed that the tabs significantly increase the lift at a given angle of attack and the maximum lift coefficient of the airfoil. The computational results showed that the increased lift was a result of additional turning of the flow by the tab that reduced or eliminated now separation on the flap. The best configuration tested, a 0.5%-chord tab placed 0.5% chord upstream of the trailing edge of the main element, increased the maximum lift coefficient of the airfoil by 12% and the maximum lift-to-drag ratio by 40%.

  18. Airfoil-Wake Modification with Gurney Flap at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan Meena, Muralikrishnan; Taira, Kunihiko; Asai, Keisuke

    2018-04-01

    The complex wake modifications produced by a Gurney flap on symmetric NACA airfoils at low Reynolds number are investigated. Two-dimensional incompressible flows over NACA 0000 (flat plate), 0006, 0012 and 0018 airfoils at a Reynolds number of $Re = 1000$ are analyzed numerically to examine the flow modifications generated by the flaps for achieving lift enhancement. While high lift can be attained by the Gurney flap on airfoils at high angles of attack, highly unsteady nature of the aerodynamic forces are also observed. Analysis of the wake structures along with the lift spectra reveals four characteristic wake modes (steady, 2S, P and 2P), influencing the aerodynamic performance. The effects of the flap over wide range of angles of attack and flap heights are considered to identify the occurrence of these wake modes, and are encapsulated in a wake classification diagram. Companion three-dimensional simulations are also performed to examine the influence of three-dimensionality on the wake regimes. The spanwise instabilities that appear for higher angles of attack are found to suppress the emergence of the 2P mode. The use of the wake classification diagram as a guidance for Gurney flap selection at different operating conditions to achieve the required aerodynamic performance is discussed.

  19. Characterization of Lift and Drag on Two Dimensional Airfoils with and without Sinusoidal Leading Edges

    NASA Astrophysics Data System (ADS)

    Acosta, Gregorio I.

    An experimental investigation was taken on a 63-021 NACA airfoil, to characterize lift and drag and how the effects of sinusoidal leading edges affect the aerodynamic properties. A theoretical model is also purposed by implementing a perturbation on thin-airfoil theory. Two sets of airfoils were machined and tested inside a low-speed open circuit wind tunnel. Data from a pressure scanner and particle image velocity will give an insight of how the modified leading edges affect the aerodynamic properties. A Fourier series expansion was used to solve for the lifting-line model, by use of thin-airfoil theory and complex number theory.

  20. The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Ward, Kenneth E; Pinkerton, Robert M

    1933-01-01

    An investigation of a large group of related airfoils was made in the NACA variable-density wind tunnel at a large value of the Reynolds number. The tests were made to provide data that may be directly employed for a rational choice of the most suitable airfoil section for a given application. The variation of the aerodynamic characteristics with variations in thickness and mean-line form were systematically studied. (author)

  1. Numerical computation of viscous flow about unconventional airfoil shapes

    NASA Technical Reports Server (NTRS)

    Ahmed, S.; Tannehill, J. C.

    1990-01-01

    A new two-dimensional computer code was developed to analyze the viscous flow around unconventional airfoils at various Mach numbers and angles of attack. The Navier-Stokes equations are solved using an implicit, upwind, finite-volume scheme. Both laminar and turbulent flows can be computed. A new nonequilibrium turbulence closure model was developed for computing turbulent flows. This two-layer eddy viscosity model was motivated by the success of the Johnson-King model in separated flow regions. The influence of history effects are described by an ordinary differential equation developed from the turbulent kinetic energy equation. The performance of the present code was evaluated by solving the flow around three airfoils using the Reynolds time-averaged Navier-Stokes equations. Excellent results were obtained for both attached and separated flows about the NACA 0012 airfoil, the RAE 2822 airfoil, and the Integrated Technology A 153W airfoil. Based on the comparison of the numerical solutions with the available experimental data, it is concluded that the present code in conjunction with the new nonequilibrium turbulence model gives excellent results.

  2. A flight investigation of blade-section aerodynamics for a helicopter main rotor having 10-64C airfoil sections

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.

    1981-01-01

    Pressure data at 90 percent blade radius were obtained for a helicopter main rotor with 10-64C blade sections during flight. Concurrent measurements ere made of vehicle flight state, performance and some rotor loads. The test envelope included hover, level flight from about 65 to 162 knots, climb and descent, and collective fixed maneuvers. Good agreement is shown between some sets of airfoil pressure distributions obtained in flight and those from two-dimensional wind-tunnel tests or theoretical calculations.

  3. Image processing of aerodynamic data

    NASA Technical Reports Server (NTRS)

    Faulcon, N. D.

    1985-01-01

    The use of digital image processing techniques in analyzing and evaluating aerodynamic data is discussed. An image processing system that converts images derived from digital data or from transparent film into black and white, full color, or false color pictures is described. Applications to black and white images of a model wing with a NACA 64-210 section in simulated rain and to computed low properties for transonic flow past a NACA 0012 airfoil are presented. Image processing techniques are used to visualize the variations of water film thicknesses on the wing model and to illustrate the contours of computed Mach numbers for the flow past the NACA 0012 airfoil. Since the computed data for the NACA 0012 airfoil are available only at discrete spatial locations, an interpolation method is used to provide values of the Mach number over the entire field.

  4. RANS Based Methodology for Predicting the Influence of Leading Edge Erosion on Airfoil Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langel, Christopher M.; Chow, Raymond C.; van Dam, C. P.

    The impact of surface roughness on flows over aerodynamically designed surfaces is of interested in a number of different fields. It has long been known the surface roughness will likely accelerate the laminar- turbulent transition process by creating additional disturbances in the boundary layer. However, there are very few tools available to predict the effects surface roughness will have on boundary layer flow. There are numerous implications of the premature appearance of a turbulent boundary layer. Increases in local skin friction, boundary layer thickness, and turbulent mixing can impact global flow properties compounding the effects of surface roughness. With thismore » motivation, an investigation into the effects of surface roughness on boundary layer transition has been conducted. The effort involved both an extensive experimental campaign, and the development of a high fidelity roughness model implemented in a R ANS solver. Vast a mounts of experimental data was generated at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel for the calibration and validation of the roughness model described in this work, as well as future efforts. The present work focuses on the development of the computational model including a description of the calibration process. The primary methodology presented introduces a scalar field variable and associated transport equation that interacts with a correlation based transition model. The additional equation allows for non-local effects of surface roughness to be accounted for downstream of rough wall sections while maintaining a "local" formulation. The scalar field is determined through a boundary condition function that has been calibrated to flat plate cases with sand grain roughness. The model was initially tested on a NACA 0012 airfoil with roughness strips applied to the leading edge. Further calibration of the roughness model was performed using results from the companion experimental study on a NACA 63 3 -418 airfoil

  5. Study of 3-D Dynamic Roughness Effects on Flow Over a NACA 0012 Airfoil Using Large Eddy Simulations at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Guda, Venkata Subba Sai Satish

    There have been several advancements in the aerospace industry in areas of design such as aerodynamics, designs, controls and propulsion; all aimed at one common goal i.e. increasing efficiency --range and scope of operation with lesser fuel consumption. Several methods of flow control have been tried. Some were successful, some failed and many were termed as impractical. The low Reynolds number regime of 104 - 105 is a very interesting range. Flow physics in this range are quite different than those of higher Reynolds number range. Mid and high altitude UAV's, MAV's, sailplanes, jet engine fan blades, inboard helicopter rotor blades and wind turbine rotors are some of the aerodynamic applications that fall in this range. The current study deals with using dynamic roughness as a means of flow control over a NACA 0012 airfoil at low Reynolds numbers. Dynamic 3-D surface roughness elements on an airfoil placed near the leading edge aim at increasing the efficiency by suppressing the effects of leading edge separation like leading edge stall by delaying or totally eliminating flow separation. A numerical study of the above method has been carried out by means of a Large Eddy Simulation, a mathematical model for turbulence in Computational Fluid Dynamics, owing to the highly unsteady nature of the flow. A user defined function has been developed for the 3-D dynamic roughness element motion. Results from simulations have been compared to those from experimental PIV data. Large eddy simulations have relatively well captured the leading edge stall. For the clean cases, i.e. with the DR not actuated, the LES was able to reproduce experimental results in a reasonable fashion. However DR simulation results show that it fails to reattach the flow and suppress flow separation compared to experiments. Several novel techniques of grid design and hump creation are introduced through this study.

  6. Experimental Investigation of Dynamic Stall on an Airfoil with Leading Edge Tubercles

    NASA Astrophysics Data System (ADS)

    Hrynuk, John; Bohl, Douglas

    2013-11-01

    Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils modeled after whale flippers has centered on the static aerodynamic characteristics of these airfoils. In the current work, NACA 0012 airfoils modified with leading edge tubercles are investigated to determine the effect of the tubercles on the dynamic characteristics, specifically on dynamic stall vortex formation, of the airfoils. Molecular Tagging Velocimetry (MTV) is used to measure the flow field around the modified airfoils at nondimensional pitch rates of Ω = 0.1, 0.2, and 0.4. The results show that the characteristics of the dynamics stall vortex are dependent on the location relative to the peak or valley of the leading edge bumps. These characteristics are also found to be different than those observed in dynamic stall on a smooth leading edge airfoil. In specific, the location of the dynamic stall vortex appears to form further aft on the airfoil for the tubercle case versus the smooth case. This work supported by NSF Grant # 0845882.

  7. Development and testing of airfoils for high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Drela, Mark (Principal Investigator)

    1996-01-01

    Specific tasks included airfoil design; study of airfoil constraints on pullout maneuver; selection of tail airfoils; examination of wing twist; test section instrumentation and layout; and integrated airfoil/heat-exchanger tests. In the course of designing the airfoil, specifically for the APEX test vehicle, extensive studies were made over the Mach and Reynolds number ranges of interest. It is intended to be representative of airfoils required for lightweight aircraft operating at extreme altitudes, which is the primary research objective of the APEX program. Also considered were thickness, pitching moment, and off-design behavior. The maximum ceiling parameter M(exp 2)C(sub L) value achievable by the Apex-16 airfoil was found to be a strong constraint on the pullout maneuver. The NACA 1410 and 2410 airfoils (inverted) were identified as good candidates for the tail, with predictable behavior at low Reynolds numbers and good tolerance to flap deflections. With regards to wing twist, it was decided that a simple flat wing was a reasonable compromise. The test section instrumentation consisted of surface pressure taps, wake rakes, surface-mounted microphones, and skin-friction gauges. Also, a modest wind tunnel test was performed for an integrated airfoil/heat-exchanger configuration, which is currently on Aurora's 'Theseus' aircraft. Although not directly related to the APEX tests, the aerodynamics or heat exchangers has been identified as a crucial aspect of designing high-altitude aircraft and hence is relevant to the ERAST program.

  8. Control of unsteady separated flow associated with the dynamic stall of airfoils

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.

    1994-01-01

    A unique active flow-control device is proposed for the control of unsteady separated flow associated with the dynamic stall of airfoils. The device is an adaptive-geometry leading-edge which will allow controlled, dynamic modification of the leading-edge profile of an airfoil while the airfoil is executing an angle-of-attack pitch-up maneuver. A carbon-fiber composite skin has been bench tested, and a wind tunnel model is under construction. A baseline parameter study of compressible dynamic stall was performed for flow over an NACA 0012 airfoil. Parameters included Mach number, pitch rate, pitch history, and boundary layer tripping. Dynamic stall data were recorded via point-diffraction interferometry and the interferograms were analyzed with in-house developed image processing software. A new high-speed phase-locked photographic image recording system was developed for real-time documentation of dynamic stall.

  9. A new method for designing shock-free transonic configurations

    NASA Technical Reports Server (NTRS)

    Sobieczky, H.; Fung, K. Y.; Seebass, A. R.; Yu, N. J.

    1978-01-01

    A method for the design of shock free supercritical airfoils, wings, and three dimensional configurations is described. Results illustrating the procedure in two and three dimensions are given. They include modifications to part of the upper surface of an NACA 64A410 airfoil that will maintain shock free flow over a range of Mach numbers for a fixed lift coefficient, and the modifications required on part of the upper surface of a swept wing with an NACA 64A410 root section to achieve shock free flow. While the results are given for inviscid flow, the same procedures can be employed iteratively with a boundary layer calculation in order to achieve shock free viscous designs. With a shock free pressure field the boundary layer calculation will be reliable and not complicated by the difficulties of shock wave boundary layer interaction.

  10. A study of flow past an airfoil with a jet issuing from its lower surface

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.; Leopold, D.

    1984-01-01

    The aerodynamics of a NACA 0018 airfoil with a rectangular jet of finite aspect ratio exiting from its lower surface at 90 deg to the chord were investigated. The jet was located at 50% of the wing chord. Measurements include static pressures on the airfoil surface, total pressures in the near wake, and local velocity vectors in different planes of the wake. The effects of jet cross flow interaction on the aerodynamics of the airfoil are studied. It is indicated that at all values of momentum coefficients, the jet cross flow interaction produces a strong contra-rotating vortex structure in the near wake. The flow behind the jet forms a closed recirculation region which extends up to a chord length down stream of the trailing edge which results in the flow field to become highly three dimensional. The various aerodynamic force coefficients vary significantly along the span of the wing. The results are compared with a jet flap configuration.

  11. Experimental measurements of the laminar separation bubble on an Eppler 387 airfoil at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Cole, Gregory M.; Mueller, Thomas J.

    1990-01-01

    An experimental investigation was conducted to measure the flow velocity in the boundary layer of an Eppler 387 airfoil. In particular, the laminar separation bubble that this airfoil exhibits at low Reynolds numbers was the focus. Single component laser Doppler velocimetry data were obtained at a Reynolds number of 100,000 at an angle of attack of 2.0 degree. Static Pressure and flow visualization data for the Eppler 387 airfoil were also obtained. The difficulty in obtaining accurate experimental measurements at low Reynolds numbers is addressed. Laser Doppler velocimetry boundary layer data for the NACA 663-018 airfoil at a Reynolds number of 160,000 and angle of attack of 12 degree is also presented.

  12. Scale Effect on Clark Y Airfoil Characteristics from NACA Full-Scale Wind-Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe

    1935-01-01

    This report presents the results of wind tunnel tests conducted to determine the aerodynamic characteristics of the Clark Y airfoil over a large range of Reynolds numbers. Three airfoils of aspect ratio 6 and with 4, 6, and 8 foot chords were tested at velocities between 25 and 118 miles per hour, and the characteristics were obtained for Reynolds numbers (based on the airfoil chord) in the range between 1,000,000 and 9,000,000 at the low angles of attack, and between 1,000,000 and 6,000,000 at maximum lift. With increasing Reynolds number the airfoil characteristics are affected in the following manner: the drag at zero lift decreases, the maximum lift increases, the slope of the lift curve increases, the angle of zero lift occurs at smaller negative angles, and the pitching moment at zero lift does not change appreciably.

  13. Fast Euler solver for transonic airfoils. I - Theory. II - Applications

    NASA Technical Reports Server (NTRS)

    Dadone, Andrea; Moretti, Gino

    1988-01-01

    Equations written in terms of generalized Riemann variables are presently integrated by inverting six bidiagonal matrices and two tridiagonal matrices, using an implicit Euler solver that is based on the lambda-formulation. The solution is found on a C-grid whose boundaries are very close to the airfoil. The fast solver is then applied to the computation of several flowfields on a NACA 0012 airfoil at various Mach number and alpha values, yielding results that are primarily concerned with transonic flows. The effects of grid fineness and boundary distances are analyzed; the code is found to be robust and accurate, as well as fast.

  14. Drag Reduction of an Airfoil Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Jiang, Chiyu; Sun, Anzhu; Marcus, Philip

    2017-11-01

    We reduced the drag of a 2D airfoil by starting with a NACA-0012 airfoil and used deep learning methods. We created a database which consists of simulations of 2D external flow over randomly generated shapes. We then developed a machine learning framework for external flow field inference given input shapes. Past work which utilized machine learning in Computational Fluid Dynamics focused on estimations of specific flow parameters, but this work is novel in the inference of entire flow fields. We further showed that learned flow patterns are transferable to cases that share certain similarities. This study illustrates the prospects of deeper integration of data-based modeling into current CFD simulation frameworks for faster flow inference and more accurate flow modeling.

  15. Experimental Investigation of Water Droplet Impingement on Airfoils, Finite Wings, and an S-duct Engine Inlet

    NASA Technical Reports Server (NTRS)

    Papadakis, Michael; Hung, Kuohsing E.; Vu, Giao T.; Yeong, Hsiung Wei; Bidwell, Colin S.; Breer, Martin D.; Bencic, Timothy J.

    2002-01-01

    Validation of trajectory computer codes, for icing analysis, requires experimental water droplet impingement data for a wide range of aircraft geometries as well as flow and icing conditions. This report presents improved experimental and data reduction methods for obtaining water droplet impingement data and provides a comprehensive water droplet impingement database for a range of test geometries including an MS(1)-0317 airfoil, a GLC-305 airfoil, an NACA 65(sub 2)-415 airfoil, a commercial transport tail section, a 36-inch chord natural laminar flow NLF(1)-0414 airfoil, a 48-inch NLF(1)-0414 section with a 25 percent chord simple flap, a state-of-the-art three-element high lift system, a NACA 64A008 finite span swept business jet tail, a full-scale business jet horizontal tail section, a 25 percent-scale business jet empennage, and an S-duct turboprop engine inlet. The experimental results were obtained at the NASA Glenn Icing Research Tunnel (IRT) for spray clouds with median volumetric diameter (MVD) of 11, 11.5, 21, 92, and 94 microns and for a range of angles of attack. The majority of the impingement experiments were conducted at an air speed of 175 mph corresponding to a Reynolds number of approximately 1.6 million per foot. The maximum difference of repeated tests from the average ranged from 0.24 to 12 percent for most of the experimental results presented. This represents a significant improvement in test repeatability compared to previous experimental studies. The increase in test repeatability was attributed to improvements made to the experimental and data reduction methods. Computations performed with the LEWICE-2D and LEWICE-3D computer codes for all test configurations are presented in this report. For the test cases involving median volumetric diameters of 11 and 21 microns, the correlation between the analytical and experimental impingement efficiency distributions was good. For the median volumetric diameters of 92 and 94-micron cases, however

  16. Pressure Distribution Over Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Dryden, H L

    1927-01-01

    This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.

  17. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    NASA Technical Reports Server (NTRS)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  18. Experimental and Computational Investigation of Lift-Enhancing Tabs on a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.

    1996-01-01

    An experimental and computational investigation of the effect of lift-enhancing tabs on a two-element airfoil has been conducted. The objective of the study was to develop an understanding of the flow physics associated with lift-enhancing tabs on a multi-element airfoil. An NACA 63(2)-215 ModB airfoil with a 30% chord fowler flap was tested in the NASA Ames 7- by 10-Foot Wind Tunnel. Lift-enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. A combination of tabs located at the main element and flap trailing edges increased the airfoil lift coefficient by 11% relative to the highest lift coefficient achieved by any baseline configuration at an angle of attack of 0 deg, and C(sub 1max) was increased by 3%. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computed results predicted all of the trends observed in the experimental data quite well. In addition, a simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift-enhancing tabs work. The tabs were modeled by a point vortex at the air-foil or flap trailing edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift-enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.

  19. Performance of NACA Eight-Stage Axial-Flow Compressor Designed on the Basis of Airfoil Theory

    DTIC Science & Technology

    1944-08-01

    TEE BASIS OF AIRFOIL THEORY By John T. Slnnette, Jr., Oscar W. Schey, and J. Austin King Aircraft Engine Research Laboratory Cleveland, Ohio FILE...efficiency can he designed by the proper application of airfoil theory. Aircraft Engine Research laboratory, Hational Advisory Committee for Aeronautlos...Basis of Airfoil Theory AUTHORS): Sinnette, John T.; Schey, Oscar W.; and others ORIGINATING AGENCY: Aircraft Engine Research Laboratory, Cleveland

  20. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics.

    PubMed

    Jain, Shubham; Sitaram, Nekkanti; Krishnaswamy, Sriram

    2015-01-01

    The present study comprises steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of Gurney flap (GF) on airfoil aerodynamics using k-ε RNG turbulence model of FLUENT. Airfoil with GF is analyzed for six different heights from 0.5% to 4% of the chord length, seven positions from 0% to 20% of the chord length from the trailing edge, and seven mounting angles from 30° to 120° with the chord. Computed values of lift and drag coefficients with angle of attack are compared with experimental values and good agreement is found at low angles of attack. In addition static pressure distribution on the airfoil surface and pathlines and turbulence intensities near the trailing edge are present. From the computational investigation, it is recommended that Gurney flaps with a height of 1.5% chord be installed perpendicular to chord and as close to the trailing edge as possible to obtain maximum lift enhancement with minimum drag penalty.

  1. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics

    PubMed Central

    Jain, Shubham; Sitaram, Nekkanti; Krishnaswamy, Sriram

    2015-01-01

    The present study comprises steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of Gurney flap (GF) on airfoil aerodynamics using k-ε RNG turbulence model of FLUENT. Airfoil with GF is analyzed for six different heights from 0.5% to 4% of the chord length, seven positions from 0% to 20% of the chord length from the trailing edge, and seven mounting angles from 30° to 120° with the chord. Computed values of lift and drag coefficients with angle of attack are compared with experimental values and good agreement is found at low angles of attack. In addition static pressure distribution on the airfoil surface and pathlines and turbulence intensities near the trailing edge are present. From the computational investigation, it is recommended that Gurney flaps with a height of 1.5% chord be installed perpendicular to chord and as close to the trailing edge as possible to obtain maximum lift enhancement with minimum drag penalty. PMID:27347517

  2. Efficient simulation of incompressible viscous flow over multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Wiltberger, N. Lyn; Kwak, Dochan

    1992-01-01

    The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The computer code uses the method of pseudo-compressibility with an upwind-differencing scheme for the convective fluxes and an implicit line-relaxation solution algorithm. The motivation for this work includes interest in studying the high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack, up to stall, is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared: a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time (on a CRAY YMP) per element in the airfoil configuration.

  3. Efficient simulation of incompressible viscous flow over multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Wiltberger, N. Lyn; Kwak, Dochan

    1993-01-01

    The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The solution algorithm employs the method of pseudo compressibility and utilizes an upwind differencing scheme for the convective fluxes, and an implicit line-relaxation scheme. The motivation for this work includes interest in studying high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack up to stall is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared; a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time on a CRAY YMP per element in the airfoil configuration.

  4. Unsteady Navier-Stokes computations over airfoils using both fixed and dynamic meshes

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Anderson, W. Kyle

    1989-01-01

    A finite volume implicit approximate factorization method which solves the thin layer Navier-Stokes equations was used to predict unsteady turbulent flow airfoil behavior. At a constant angle of attack of 16 deg, the NACA 0012 airfoil exhibits an unsteady periodic flow field with the lift coefficient oscillating between 0.89 and 1.60. The Strouhal number is 0.028. Results are similar at 18 deg, with a Strouhal number of 0.033. A leading edge vortex is shed periodically near maximum lift. Dynamic mesh solutions for unstalled airfoil flows show general agreement with experimental pressure coefficients. However, moment coefficients and the maximum lift value are underpredicted. The deep stall case shows some agreement with experiment for increasing angle of attack, but is only qualitatively comparable past stall and for decreasing angle of attack.

  5. Airfoil Ice-Accretion Aerodynamics Simulation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  6. Aeroacoustic measurements on a NACA 0012 applying the Coherent Particle Velocity method

    NASA Astrophysics Data System (ADS)

    Plogmann, B.; Würz, W.

    2013-07-01

    Aeroacoustic measurements on two NACA 0012 airfoil sections with different chord length and sharp trailing edge were conducted at the Laminar Wind Tunnel (LWT) of the University of Stuttgart. The LWT is a closed test section wind tunnel with a very low turbulence level and an acoustically optimized diffusor section allowing for high-quality aerodynamic as well as aeroacoustic measurements. Trailing edge noise measurements were performed using the Coherent Particle Velocity (CPV) method, which is based on a cross-spectral analysis of two hot-wire sensor signals placed on the suction and the pressure side of the airfoil trailing edge, respectively. At high angles of attack, the cross-spectral analysis of the two sensor signals used for the measurement of the trailing edge noise can be prone to a disturbing influence of hydrodynamic fluctuations. Hence, continuous shifts in the phasing of the cross-correlation are observed mainly for low sensor distances to the trailing edge. The quantitative evaluation of the trailing edge noise predominately in the low frequency range is, therefore, considerably disturbed. A new approach is proposed, which allows for the correction of the cross-correlation function based on the averaged single wire auto-spectrum. The results are compared to measurements with increased sensor distance and show good agreement. In the following, trailing edge noise measurements were performed on a NACA 0012 airfoil in a wide range of angles of attack ( α = 0°-8°) and free-stream velocities (u_{infty} = 30{-}70 {{m/s}}). The tripped flow cases exhibit a very good consistency for the scaling of the 1/3 octave spectra based on outer variables. Moreover, a common intersection point of the sound pressure level was observed for trailing edge noise spectra measured at constant free-stream velocity and different angles of attack. In cases without boundary layer tripping, the presence of an acoustic feedback loop was observed and linked to the presence of a

  7. The structure of separated flow regions occurring near the leading edge of airfoils - including transition

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Laser Doppler Velocimeter data, static pressure data, and smoke flow visualization data was obtained and analyzed to correlate with separation bubble data. The Eppler 387 airfoil was focused on at a chord Reynolds number of 100,000 and an angle of attack of 2 deg. Additional data was also obtained from the NACA 663-018 airfoil at a chord Reynolds number of 160,000 and an angle of attack of 12 deg. The structure and behavior of the transition separation bubble was documented along with the redeveloping boundary layer after reattachment over an airfoil at low Reynolds numbers. The understanding of the complex flow phenomena was examined so that analytic methods for predicting their formation and development can be improved. These analytic techniques have applications in the design and performance prediction of airfoils operating in the low Reynolds number flight regime.

  8. An Integrated Method for Airfoil Optimization

    NASA Astrophysics Data System (ADS)

    Okrent, Joshua B.

    Design exploration and optimization is a large part of the initial engineering and design process. To evaluate the aerodynamic performance of a design, viscous Navier-Stokes solvers can be used. However this method can prove to be overwhelmingly time consuming when performing an initial design sweep. Therefore, another evaluation method is needed to provide accurate results at a faster pace. To accomplish this goal, a coupled viscous-inviscid method is used. This thesis proposes an integrated method for analyzing, evaluating, and optimizing an airfoil using a coupled viscous-inviscid solver along with a genetic algorithm to find the optimal candidate. The method proposed is different from prior optimization efforts in that it greatly broadens the design space, while allowing the optimization to search for the best candidate that will meet multiple objectives over a characteristic mission profile rather than over a single condition and single optimization parameter. The increased design space is due to the use of multiple parametric airfoil families, namely the NACA 4 series, CST family, and the PARSEC family. Almost all possible airfoil shapes can be created with these three families allowing for all possible configurations to be included. This inclusion of multiple airfoil families addresses a possible criticism of prior optimization attempts since by only focusing on one airfoil family, they were inherently limiting the number of possible airfoil configurations. By using multiple parametric airfoils, it can be assumed that all reasonable airfoil configurations are included in the analysis and optimization and that a global and not local maximum is found. Additionally, the method used is amenable to customization to suit any specific needs as well as including the effects of other physical phenomena or design criteria and/or constraints. This thesis found that an airfoil configuration that met multiple objectives could be found for a given set of nominal

  9. The effect of wall interference upon the aerodynamic characteristics of an airfoil spanning a closed-throat circular wind tunnel

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Graham, Donald J

    1946-01-01

    The results of a theoretical and experimental investigation of wall interference for an airfoil spanning a closed-throat circular wind tunnel are presented. Analytical equations are derived which relate the characteristics of an airfoil in the tunnel at subsonic speeds with the characteristics in free air. The analysis takes into consideration the effect of fluid compressibility and is based upon the assumption that the chord of the airfoil is small as compared with the diameter of the tunnel. The development is restricted to an untwisted, constant-chord airfoil spanning the middle of the tunnel. Brief theoretical consideration is also given to the problem of choking at high speeds. Results are then presented of tests to determine the low-speed characteristics of an NACA 4412 airfoil for two chord-diameter ratios. While, on the basis of these experiments, no appraisal is possible of the accuracy of the corrections at high speeds, the data indicate that at low Mach numbers the analytical results are valid, even for relatively large values of the chord-diameter ratio.

  10. Flight Investigation at High Speeds of the Drag of Three Airfoils and a Circular Cylinder Representing Full-Scale Propeller Shanks

    NASA Technical Reports Server (NTRS)

    Barlow, William H

    1946-01-01

    Tests have been made at high speeds to determine the drag of models, simulating propeller shanks, in the form of a circular cylinder and three airfoils, the NACA 16-025, the NACA 16-040, and the NACA 16-040 with the rear 25 percent chord cut off. All the models had a maximum thickness of 4 1/2 inches to conform with average propeller-shank dimensions and a span of 20 1/4 inches. For the tests the models were supported perpendicular to the lower surface of the wing of an XP-51 airplane. A wake-survey rake mounted below the wing directly behind the models was used to determine profile drag of Mach numbers of 0.3 to 0.8 over a small range of angle of attack. The drag of the cylinder was also determined from pressure-distribution and force measurements.

  11. Schlieren visualization of flow-field modification over an airfoil by near-surface gas-density perturbations generated by a nanosecond-pulse-driven plasma actuator

    NASA Astrophysics Data System (ADS)

    Komuro, Atsushi; Takashima, Keisuke; Konno, Kaiki; Tanaka, Naoki; Nonomura, Taku; Kaneko, Toshiro; Ando, Akira; Asai, Keisuke

    2017-06-01

    Gas-density perturbations near an airfoil surface generated by a nanosecond dielectric-barrier-discharge plasma actuator (ns-DBDPA) are visualized using a high-speed Schlieren imaging method. Wind-tunnel experiments are conducted for a wind speed of 20 m s-1 with an NACA0015 airfoil whose chord length is 100 mm. The results show that the ns-DBDPA first generates a pressure wave and then stochastic perturbations of the gas density near the leading edge of the airfoil. Two structures with different characteristics are observed in the stochastic perturbations. One structure propagates along the boundary between the shear layer and the main flow at a speed close to that of the main flow. The other propagates more slowly on the surface of the airfoil and causes mixing between the main and shear flows. It is observed that these two heated structures interact with each other, resulting in a recovery in the negative pressure coefficient at the leading edge of the airfoil.

  12. Experimental investigation of a 10-percent-thick helicopter rotor airfoil section designed with a viscous transonic analysis code

    NASA Technical Reports Server (NTRS)

    Noonan, K. W.

    1981-01-01

    An investigation was conducted in the Langley 6- by 28-Inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics of a 10-percent-thick helicopter rotor airfoil at Mach numbers from 0.33 to 0.87 and respective Reynolds numbers from 4.9 x 10 to the 6th to 9.8 x 10 to the 6th. This airfoil, designated the RC-10(N)-1, was also investigated at Reynolds numbers from 3.0 x 10 to the 6th to 7.3 x 10 to the 6th at respective Mach numbers of 0.33 to 0.83 for comparison wit the SC 1095 (with tab) airfoil. The RC-10(N)-1 airfoil was designed by the use of a viscous transonic analysis code. The results of the investigation indicate that the RC-10(N)-1 airfoil met all the design goals. At a Reynolds number of about 9.4 x 10 to the 6th the drag divergence Mach number at zero normal-force coefficient was 0.815 with a corresponding pitching-moment coefficient of zero. The drag divergence Mach number at a normal-force coefficient of 0.9 and a Reynolds number of about 8.0 x 10 to the 6th was 0.61. The drag divergence Mach number of this new airfoil was higher than that of the SC 1095 airfoil at normal-force coefficients above 0.3. Measurements in the same wind tunnel at comparable Reynolds numbers indicated that the maximum normal-force coefficient of the RC-10(N)-1 airfoil was higher than that of the NACA 0012 airfoil for Mach numbers above about 0.35 and was about the same as that of the SC 1095 airfoil for Mach numbers up to 0.5.

  13. Further investigation of a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.; Yip, E.; Sebastian, J. D.

    1980-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. The steady velocity potential is obtained first from the well-known nonlinear equation for steady transonic flow. The unsteady velocity potential is then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. An out-of-core direct solution procedure was developed and applied to two-dimensional sections. Results are presented for a section of vanishing thickness in subsonic flow and an NACA 64A006 airfoil in supersonic flow. Good correlation is obtained in the first case at values of Mach number and reduced frequency of direct interest in flutter analyses. Reasonable results are obtained in the second case. Comparisons of two-dimensional finite difference solutions with exact analytic solutions indicate that the accuracy of the difference solution is dependent on the boundary conditions used on the outer boundaries. Homogeneous boundary conditions on the mesh edges that yield complex eigenvalues give the most accurate finite difference solutions. The plane outgoing wave boundary conditions meet these requirements.

  14. Experimental Water Droplet Impingement Data on Airfoils, Simulated Ice Shapes, an Engine Inlet and a Finite Wing

    NASA Technical Reports Server (NTRS)

    Papadakis, M.; Breer, M.; Craig, N.; Liu, X.

    1994-01-01

    An experimental method has been developed to determine the water droplet impingement characteristics on two- and three-dimensional aircraft surfaces. The experimental water droplet impingement data are used to validate particle trajectory analysis codes that are used in aircraft icing analyses and engine inlet particle separator analyses. The aircraft surface is covered with thin strips of blotter paper in areas of interest. The surface is then exposed to an airstream that contains a dyed-water spray cloud. The water droplet impingement data are extracted from the dyed blotter paper strips by measuring the optical reflectance of each strip with an automated reflectometer. Experimental impingement efficiency data represented for a NLF (1)-0414 airfoil, a swept MS (1)-0317 airfoil, a Boeing 737-300 engine inlet model, two simulated ice shapes and a swept NACA 0012 wingtip. Analytical impingement efficiency data are also presented for the NLF (1)-0414 airfoil and the Boeing 737-300 engine inlet model.

  15. Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section

    NASA Technical Reports Server (NTRS)

    Zaman, KBMQ; Fagan, A. F.; Mankbadi, M. R.

    2016-01-01

    An experimental investigation of a tip vortex from a NACA0012 airfoil is conducted in a low-speed wind tunnel at a chord Reynolds number of 4x10(exp 4). Initially, data for a stationary airfoil held at various angles-of-attack (alpha) are gathered. Detailed surveys are done for two cases: alpha=10 deg with attached flow and alpha=25 deg with massive flow separation on the upper surface. Distributions of various properties are obtained using hot-wire anemometry. Data include mean velocity, streamwise vorticity and turbulent stresses at various streamwise locations. For all cases, the vortex core is seen to involve a mean velocity deficit. The deficit apparently traces to the airfoil wake, part of which gets wrapped by the tip vortex. At small alpha, the vortex is laminar within the measurement domain. The strength of the vortex increases with increasing alpha but undergoes a sudden drop around alpha (is) greater than 16 deg. The drop in peak vorticity level is accompanied by transition and a sharp rise in turbulence within the core. Data are also acquired with the airfoil pitched sinusoidally. All oscillation cases pertain to a mean alpha=15 deg while the amplitude and frequency are varied. An example of phase-averaged data for an amplitude of +/-10 deg and a reduced frequency of k=0.2 is discussed. All results are compared with available data from the literature shedding further light on the complex dynamics of the tip vortex.

  16. Water-tunnel experiments on an oscillating airfoil at RE equals 21,000

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Carr, L. W.

    1978-01-01

    Flow visualization experiments were performed in a water tunnel on a modified NACA 0012 airfoil undergoing large amplitude harmonic oscillations in pitch. Hydrogen bubbles were used to: (1) create a conveniently striated and well preserved set of inviscid flow markers; and (2) to expose the succession of events occurring within the viscous domain during the onset of dynamic stall. Unsteady effects were shown to have an important influence on the progression of flow reversal along the airfoil surface prior to stall. A region of reversed flow underlying a free shear layer was found to momentarily exist over the entire upper surface without any appreciable disturbance of the viscous-inviscid boundary. A flow protuberance was observed to develop near the leading edge, while minor vortices evolve from an expanding instability of the free shear layer over the rear portion of the airfoil. The complete breakdown of this shear layer culminates in the successive formation of two dominant vortices.

  17. Aerodynamic Characteristics of Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Hull, G F; Dryden, H L

    1925-01-01

    This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

  18. Stall induced instability of a teetered rotor

    NASA Astrophysics Data System (ADS)

    Glasgow, J. C.; Corrigan, R. D.

    Recent tests on the 38m Mod-0 horizontal experimental wind turbine yielded quantitative information on stall induced instability of a teetered rotor. Tests were conducted on rotor blades with NACA 230 series and NACA 643-618 airfoils at low rotor speeds to produce high angles of attack at relatively low wind speeds and power levels. The behavior of the rotor shows good agreement with predicted rotor response based on blade angle of attack calculations and airfoil section properties. The untwisted blades with the 64 series airfoil sections had a slower rate of onset of rotor instability when compared with the twisted 230 series blades, but high teeter angles and teeter stop impacts were experienced with both rotors as wind speeds increased to produce high angles of attack on the outboard portion of the blade. The relative importance of blade twist and airfoil section stall characteristics on the rate of onset of rotor unstability with increasing wind speed was not established however. Blade pitch was shown to be effective in eliminating rotor instability at the expense of some loss in rotor performance near rated wind speed.

  19. Application of multivariable search techniques to the optimization of airfoils in a low speed nonlinear inviscid flow field

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Merz, A. W.

    1975-01-01

    Multivariable search techniques are applied to a particular class of airfoil optimization problems. These are the maximization of lift and the minimization of disturbance pressure magnitude in an inviscid nonlinear flow field. A variety of multivariable search techniques contained in an existing nonlinear optimization code, AESOP, are applied to this design problem. These techniques include elementary single parameter perturbation methods, organized search such as steepest-descent, quadratic, and Davidon methods, randomized procedures, and a generalized search acceleration technique. Airfoil design variables are seven in number and define perturbations to the profile of an existing NACA airfoil. The relative efficiency of the techniques are compared. It is shown that elementary one parameter at a time and random techniques compare favorably with organized searches in the class of problems considered. It is also shown that significant reductions in disturbance pressure magnitude can be made while retaining reasonable lift coefficient values at low free stream Mach numbers.

  20. Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Demir, Hacımurat; Özden, Mustafa; Genç, Mustafa Serdar; Çağdaş, Mücahit

    2016-03-01

    In this study, the flow over NACA4412 was investigated both numerically and experimentally at a different Reynolds numbers. The experiments were carried out in a low speed wind tunnel with various angles of attack and different Reynolds numbers (25000 and 50000). Airfoil was manufactured using 3D printer with a various aspect ratios (AR = 1 and AR = 3). Smoke-wire and oil flow visualization methods were used to visualize the surface flow patterns. NACA4412 aerofoil was designed by using SOLIDWORKS. The structural grid of numerical model was constructed by ANSYS ICEM CFD meshing software. Furthermore, ANSYS FLUENT™ software was used to perform numerical calculations. The numerical results were compared with experimental results. Bubble formation was shown in CFD streamlines and smoke-wire experiments at z / c = 0.4. Furthermore, bubble shrunk at z / c = 0.2 by reason of the effects of tip vortices in both numerical and experimental studies. Consequently, it was seen that there was a good agreement between numerical and experimental results.

  1. A study of the laminar separation bubble on an airfoil at low Reynolds numbers using flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Schmidt, Gordon S.; Mueller, Thomas J.

    1987-01-01

    The use of flow visualization to study separation bubbles is evaluated. The wind tunnel, two NACA 66(3)-018 airfoil models, and kerosene vapor, titanium tetrachloride, and surface flow visualizations techniques are described. The application of the three visualization techniques to the two airfoil models reveals that the smoke and vapor techniques provide data on the location of laminar separation and the onset of transition, and the surface method produces information about the location of turbulent boundary layer separation. The data obtained with the three flow visualization techniques are compared to pressure distribution data and good correlation is detected. It is noted that flow visualization is an effective technique for examining separation bubbles.

  2. Experimental measurement of the aerodynamic charateristics of two-dimensional airfoils for an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Velazquez, Luis; Nožička, Jiří; Vavřín, Jan

    2012-04-01

    This paper is part of the development of an airfoil for an unmanned aerial vehicle (UAV) with internal propulsion system; the investigation involves the analysis of the aerodynamic performance for the gliding condition of two-dimensional airfoil models which have been tested. This development is based on the modification of a selected airfoil from the NACA four digits family. The modification of this base airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface since the UAV will have an internal propulsion system. This analysis involved obtaining the lift, drag and pitching moment coefficients experimentally for the situation where there is not flow through the blowing outlet, called the no blowing condition by means of wind tunnel tests. The methodology to obtain the forces experimentally was through an aerodynamic wire balance. Obtained results were compared with numerical results by means of computational fluid dynamics (CFD) from references and found in very good agreement. Finally, a selection of the airfoil with the best aerodynamic performance is done and proposed for further analysis including the blowing condition.

  3. Airfoil Drag Reduction using Controlled Trapped Vorticity Concentrations

    NASA Astrophysics Data System (ADS)

    Desalvo, Michael; Glezer, Ari

    2017-11-01

    The aerodynamic performance of a lifting surface at low angles of attack (when the base flow is fully attached) is improved through fluidic modification of its ``apparent'' shape by superposition of near-surface trapped vorticity concentrations. In the present wind tunnel investigations, a controlled trapped vorticity concentration is formed on the pressure surface of an airfoil (NACA 4415) using a hybrid actuator comprising a passive obstruction of scale O(0.01c) and an integral synthetic jet actuator. The jet actuation frequency [Stact O(10)] is selected to be at least an order of magnitude higher than the characteristic unstable frequency of the airfoil wake, thereby decoupling the actuation from the global instabilities of the base flow. Regulation of vorticity accumulation in the vicinity of the actuator by the jet effects changes in the local pressure, leading in turn to changes in the airfoil's drag and lift. Trapped vorticity can lead to a significant reduction in drag and reduced lift (owing to the sense of the vorticity), e.g. at α =4° and Re = 6.7 .105 the drag and lift reductions are 14% and 2%, respectively. PIV measurements show the spatial variation in the distribution of vorticity concentrations and yield estimates of the corresponding changes in circulation.

  4. Experimental and computational investigation of lift-enhancing tabs on a multi-element airfoil

    NASA Technical Reports Server (NTRS)

    Ashby, Dale

    1996-01-01

    An experimental and computational investigation of the effect of lift enhancing tabs on a two-element airfoil was conducted. The objective of the study was to develop an understanding of the flow physics associated with lift enhancing tabs on a multi-element airfoil. A NACA 63(sub 2)-215 ModB airfoil with a 30 percent chord Fowler flap was tested in the NASA Ames 7 by 10 foot wind tunnel. Lift enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computer results predict all of the trends in the experimental data quite well. When the flow over the flap upper surface is attached, tabs mounted at the main element trailing edge (cove tabs) produce very little change in lift. At high flap deflections. however, the flow over the flap is separated and cove tabs produce large increases in lift and corresponding reductions in drag by eliminating the separated flow. Cove tabs permit high flap deflection angles to be achieved and reduce the sensitivity of the airfoil lift to the size of the flap gap. Tabs attached to the flap training edge (flap tabs) are effective at increasing lift without significantly increasing drag. A combination of a cove tab and a flap tab increased the airfoil lift coefficient by 11 percent relative to the highest lift tab coefficient achieved by any baseline configuration at an angle of attack of zero percent and the maximum lift coefficient was increased by more than 3 percent. A simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift enhancing tabs work. The tabs were modeled by a point vortex at the training edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift enhancing tabs on a multi-element airfoil. Results of the modeling

  5. Measuremants in the wake of an infinite swept airfoil

    NASA Technical Reports Server (NTRS)

    Novak, C. J.; Ramaprian, B. R.

    1982-01-01

    This is a report of the measurements in the trailing edge region as well as in the report of the developing wake behind a swept NACA 0012 airfoil at zero incidence and a sweep angle of 30 degrees. The measurements include both the mean and turbulent flow properties. The mean flow velocities, flow inclination and static pressure are measured using a calibrated three-hole yaw probe. The measurements of all the relevant Reynolds stress components in the wake are made using a tri-axial hot-wire probe and a digital data processing technique developed by the authors. The development of the three dimensional near-wake into a nearly two dimensional far-wake is discussed in the light of the experimental data. A complete set of wake data along with the data on the initial boundary layer in the trailing edge region of the airfoil are tabulated in an appendix to the report.

  6. Modeling of Flow about Pitching and Plunging Airfoil Using High-Order Schemes

    DTIC Science & Technology

    2008-03-13

    response, including the time for re intaini data needed, and completing and reviewing this collection of information. Send comments regarding this burden...and compared with available experimental data including lift force for plunging NACA0012 airfoil and visualization of vortical flowfield for plunging...time step m to time step m+I as follows f+nl = fn +b ’H, (28) H, = a, H,_-, + dtu , (29) where n refers to the stage number. The value off at the final

  7. Aerodynamic characteristics of two rotorcraft airfoils designed for application to the inboard region of a main rotor blade

    NASA Technical Reports Server (NTRS)

    Noonan, Kevin W.

    1990-01-01

    A wind tunnel investigation was conducted to determine the 2-D aerodynamic characteristics of two new rotorcraft airfoils designed especially for application to the inboard region of a helicopter main rotor blade. The two new airfoils, the RC(4)-10 and RC(5)-10, and a baseline airfoil, the VR-7, were all studied in the Langley Transonic Tunnel at Mach nos. from about 0.34 to 0.84 and at Reynolds nos. from about 4.7 to 9.3 x 10 (exp 6). The VR-7 airfoil had a trailing edge tab which is deflected upwards 4.6 degs. In addition, the RC(4)-10 airfoil was studied in the Langley Low Turbulence Pressure Tunnel at Mach nos. from 0.10 to 0.44 and at Reynolds nos. from 1.4 to 5.4 x 10 (exp 6) respectively. Some comparisons were made of the experimental data for the new airfoils and the predictions of two different theories. The results of this study indicates that both of the new airfoils offer advantages over the baseline airfoil. These advantages are discussed.

  8. Decomposing the aerodynamic forces of low-Reynolds flapping airfoils

    NASA Astrophysics Data System (ADS)

    Moriche, Manuel; Garcia-Villalba, Manuel; Flores, Oscar

    2016-11-01

    We present direct numerical simulations of flow around flapping NACA0012 airfoils at relatively small Reynolds numbers, Re = 1000 . The simulations are carried out with TUCAN, an in-house code that solves the Navier-Stokes equations for an incompressible flow with an immersed boundary method to model the presence of the airfoil. The motion of the airfoil is composed of a vertical translation, heaving, and a rotation about the quarter of the chord, pitching. Both motions are prescribed by sinusoidal laws, with a reduced frequency of k = 1 . 41 , a pitching amplitude of 30deg and a heaving amplitude of one chord. Both, the mean pitch angle and the phase shift between pitching and heaving motions are varied, to build a database with 18 configurations. Four of these cases are analysed in detail using the force decomposition algorithm of Chang (1992) and Martín Alcántara et al. (2015). This method decomposes the total aerodynamic force into added-mass (translation and rotation of the airfoil), a volumetric contribution from the vorticity (circulatory effects) and a surface contribution proportional to viscosity. In particular we will focus on the second, analysing the contribution of the leading and trailing edge vortices that typically appear in these flows. This work has been supported by the Spanish MINECO under Grant TRA2013-41103-P. The authors thankfully acknowledge the computer resources provided by the Red Española de Supercomputacion.

  9. Flow Observations with Tufts and Lampblack of the Stalling of Four Typical Airfoil Sections in the NACA Variable-density Tunnel

    NASA Technical Reports Server (NTRS)

    Abbott, Ira H; Sherman, Albert

    1938-01-01

    A preliminary investigation of the stalling processes of four typical airfoil sections was made over the critical range of the Reynolds Number. Motion pictures were taken of the movements of small silk tufts on the airfoil surface as the angle of attack increased through a range of angles including the stall. The boundary-layer flow also at certain angles of attack was indicated by the patterns formed by a suspension of lampblack in oil brushed onto the airfoil surface. These observations were analyzed together with corresponding force-test measurements to derive a picture of the stalling processes of airfoils.

  10. Leading edge embedded fan airfoil concept -- A new powered high lift technology

    NASA Astrophysics Data System (ADS)

    Phan, Nhan Huu

    A new powered-lift airfoil concept called Leading Edge Embedded Fan (LEEF) is proposed for Extremely Short Take-Off and Landing (ESTOL) and Vertical Take-Off and Landing (VTOL) applications. The LEEF airfoil concept is a powered-lift airfoil concept capable of generating thrust and very high lift-coefficient at extreme angles-of attack (AoA). It is designed to activate only at the take-off and landing phases, similar to conventional flaps or slats, allowing the aircraft to operate efficiently at cruise in its conventional configuration. The LEEF concept consists of placing a crossflow fan (CFF) along the leading-edge (LE) of the wing, and the housing is designed to alter the airfoil shape between take-off/landing and cruise configurations with ease. The unique rectangular cross section of the crossflow fan allows for its ease of integration into a conventional subsonic wing. This technology is developed for ESTOL aircraft applications and is most effectively applied to General Aviation (GA) aircraft. Another potential area of application for LEEF is tiltrotor aircraft. Unlike existing powered high-lift systems, the LEEF airfoil uses a local high-pressure air source from cross-flow fans, does not require ducting, and is able to be deployed using distributed electric power systems throughout the wing. In addition to distributed lift augmentation, the LEEF system can provide additional thrust during takeoff and landing operation to supplement the primary cruise propulsion system. Two-dimensional (2D) and three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations of a conventional airfoil/wing using the NACA 63-3-418 section, commonly used in GA, and a LEEF airfoil/wing embedded into the same airfoil section were carried out to evaluate the advantages of and the costs associated with implementing the LEEF concept. Computational results show that significant lift and augmented thrust are available during LEEF operation while requiring only moderate fan power

  11. An experimental study of dynamic stall on advanced airfoil sections. Volume 1: Summary of the experiment

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.; Mcalister, K. W.; Carr, L. W.; Pucci, S. L.

    1982-01-01

    The static and dynamic characteristics of seven helicopter sections and a fixed-wing supercritical airfoil were investigated over a wide range of nominally two dimensional flow conditions, at Mach numbers up to 0.30 and Reynolds numbers up to 4 x 10 to the 6th power. Details of the experiment, estimates of measurement accuracy, and test conditions are described in this volume (the first of three volumes). Representative results are also presented and comparisons are made with data from other sources. The complete results for pressure distributions, forces, pitching moments, and boundary-layer separation and reattachment characteristics are available in graphical form in volumes 2 and 3. The results of the experiment show important differences between airfoils, which would otherwise tend to be masked by differences in wind tunnels, particularly in steady cases. All of the airfoils tested provide significant advantages over the conventional NACA 0012 profile. In general, however, the parameters of the unsteady motion appear to be more important than airfoil shape in determining the dynamic-stall airloads.

  12. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    NASA Astrophysics Data System (ADS)

    González, A.; Gomez-Iradi, S.; Munduate, X.

    2014-06-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.

  13. Ground effects on the stability of separated flow around an airfoil at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    He, Wei; Yu, Peng; Li, Larry K. B.

    2017-11-01

    We perform a BiGlobal stability analysis on the separated flow around a NACA 4415 airfoil at low Reynolds numbers (Re = 300 - 1000) and a high angle of attack α =20° with a focus on the effect of the airfoil's proximity to a moving ground. The results show that the most dominant perturbation is the Kelvin-Helmholtz mode and that this traveling mode becomes less unstable as the airfoil approaches the ground, although this stabilizing effect diminishes with increasing Reynolds number. By performing a Floquet analysis, we find that this ground effect can also stabilize secondary instabilities. This numerical-theoretical study shows that the ground can have a significant influence on the stability of separated flow around an airfoil at low Reynolds numbers, which could have implications for the design of micro aerial vehicles and for the understanding of natural flyers such as insects and birds. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815) and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No.U1501501.

  14. Control of unsteady separated flow associated with the dynamic stall of airfoils

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.

    1995-01-01

    An effort to understand and control the unsteady separated flow associated with the dynamic stall of airfoils was funded for three years through the NASA cooperative agreement program. As part of this effort a substantial data base was compiled detailing the effects various parameters have on the development of the dynamic stall flow field. Parameters studied include Mach number, pitch rate, and pitch history, as well as Reynolds number (through two different model chord lengths) and the condition of the boundary layer at the leading edge of the airfoil (through application of surface roughness). It was found for free stream Mach numbers as low as 0.4 that a region of supersonic flow forms on the leading edge of the suction surface of the airfoil at moderate angles of attack. The shocks which form in this supersonic region induce boundary-layer separation and advance the dynamic stall process. Under such conditions a supercritical airfoil profile is called for to produce a flow field having a weaker leading-edge pressure gradient and no leading-edge shocks. An airfoil having an adaptive-geometry, or dynamically deformable leading edge (DDLE), is under development as a unique active flow-control device. The DDLE, formed of carbon-fiber composite and fiberglass, can be flexed between a NACA 0012 profile and a supercritical profile in a controllable fashion while the airfoil is executing an angle-of-attack pitch-up maneuver. The dynamic stall data were recorded using point diffraction interferometry (PDI), a noninvasive measurement technique. A new high-speed cinematography system was developed for recording interferometric images. The system is capable of phase-locking with the pitching airfoil motion for real-time documentation of the development of the dynamic stall flow field. Computer-aided image analysis algorithms were developed for fast and accurate reduction of the images, improving interpretation of the results.

  15. Effect of Ground Proximity on the Aerodynamic Characteristics of Aspect-Ratio-1 Airfoils With and Without End Plates

    NASA Technical Reports Server (NTRS)

    Carter, Arthur W.

    1961-01-01

    An investigation has been made to determine the effect of ground proximity on the aerodynamic characteristics of aspect-ratio-1 airfoils. The investigation was made with the model moving over the water in a towing tank in order to eliminate the effects of wind-tunnel walls and of boundary layer on ground boards at small ground clearances. The results indicated that, as the ground was approached, the airfoils experienced an increase in lift-curve slope and a reduction in induced drag; thus, lift-drag ratio was increased. As the ground was approached, the profile drag remained essentially constant for each airfoil. Near the ground, the addition of end plates to the airfoil resulted in a large increase in lift-drag ratio. The lift characteristics of the airfoils indicated stability of height at positive angles of attack and instability of height at negative angles; therefore, the operating range of angles of attack would be limited to positive values. At positive angles of attack, the static longitudinal stability was increased as the height above the ground was reduced. Comparison of the experimental data with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77) indicated generally good agreement between experiment and theory for the airfoils without end plates.

  16. Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)

    2001-01-01

    An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values

  17. NACA documents database project

    NASA Technical Reports Server (NTRS)

    Smith, Ruth S.

    1991-01-01

    The plan to get all the National Advisory Committee on Aeronautics (NACA) collection online, with quality records, led to the NACA Documents Data base Project. The project has a two fold purpose: (1) to develop the definitive bibliography of NACA produced and/or held documents; and (2) to make that bibliography and the associated documents available to the aerospace community. This study supports the first objective by providing an analysis of the NACA collection and its bibliographic records, and supports the second objective by defining the NACA archive and recommending methodologies for meeting the project objectives.

  18. Low-speed aerodynamic characteristics of a 13 percent thick medium speed airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1979-01-01

    Wind tunnel tests were conducted to determine the low speed, two dimensional aerodynamic characteristics of a 13percent thick medium speed airfoil designed for general aviation applications. The results were compared with data for the 13 percent thick low speed airfoil. The tests were conducted over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2.0 x 10 to the 6th power to 12.0 x 10 to the 6th power, and an angle of attack frange from about -8 deg to 10 deg. The objective of retaining good high-lift low speed characteristics for an airfoil designed to have good medium speed cruise performance was achieved.

  19. Experimental investigation of the flowfield of an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.

    1992-01-01

    The flowfield of an airfoil oscillated periodically over a wide range of reduced frequencies, 0 less than or = k less than or = 1.6 is studied experimentally at chord Reynolds numbers of R sub c = 22,000 and 44,000. The NACA0012 airfoil is pitched sinusoidally about one quarter chord between angles of attack (alpha) of 5 and 25 degrees. Detailed flow visualization and phase averaged vorticity measurements are carried out for k = 0.2 to document the evolution and the shedding of the dynamic stall vortex (DSV). In addition to the DSV, an intense vortex of opposite sign originates from the trailing edge just when the DSV is shed. After being shed into the wake, the two together take the shape of a large 'mushroom' while being convected away from the airfoil. The unsteady circulation around the airfoil and, therefore, the time varying component of the lift is estimated in a novel way from the shed vorticity flux and is found to be in good agreement with the lift variation reported by others. The delay in the shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of k. The DSV, for example, is shed nearly at the maximum alpha of 25 degrees at k = 0.2, but is shed at the minimum alpha of 5 degrees at k = 0.8. At low k, the flowfield appears quasi-steady and the bluff body shedding corresponding to the maximum alpha (25 degrees) dominates the unsteady fluctuations in the wake.

  20. Experimental investigation of the flowfield of an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.

    1992-01-01

    The flow field of an airfoil oscillated periodically over a wide range of reduced frequencies, 0 less than k less than 1.6, is studied experimentally at chord Reynolds numbers of R sub c = 22,000 and 44,000. The NACA0012 airfoil is pitched sinusoidally about one quarter chord between alpha of 5 deg and 25 deg. Detailed flow visualization and phase averaged vorticity measurements are carried out for k = 0.2 to document the evolution and the shedding of the dynamic stall vortex (DSV). In addition to the DSV, an intense vortex of opposite sign originates from the trailing edge just when the DSV is shed. After being shed into the wake, the two together take the shape of a large 'mushroom' while being convected away from the airfoil. The unsteady circulation around the airfoil and, therefore, the time varying component of the lift is estimated in a novel way from the shed vorticity flux and is found to be in good agreement with the lift variation reported by others. The delay in the shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of k. The DSV, for example, is shed nearly at the maximum alpha of 25 deg at k = 0.2, but is shed at the minimum alpha of 5 deg at k = 0.8. At low k, the flowfield appears quasi-steady and the bluff body shedding corresponding to the maximum alpha (25 deg) dominates the unsteady fluctuations in the wake.

  1. Vortex-Induced Vibration of an Airfoil Used in Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Benner, Bridget; Carlson, Daniel; Seyed-Aghazadeh, Banafsheh; Modarres-Sadeghi, Yahya

    2017-11-01

    In Vertical-axis wind turbines (VAWTs), when the blades are placed at high angles of attack with respect to the incoming flow, they could experience flow-induced oscillations. A series of experiments in a re-circulating water tunnel was conducted to study the possible Vortex-Induced Vibration (VIV) of a fully-submerged, flexibly-mounted NACA 0021 airfoil, which is used in some designs of VAWTs. The airfoil was free to oscillate in the crossflow direction, and the tests were conducted in a Reynolds number range of 600airfoil were measured at various angles of attack, α, in the range of 0< α<90. The airfoil was observed to oscillate in the range of 60< α<90, where α = 90 exhibited the widest lock-in range (1.67< U * <11.74) and the largest peak amplitude (A * = 1.93 at U * = 5.7). For all cases where oscillations were observed, the oscillation frequency remained close to the structure's natural frequency, defining a lock-in range. Flow visualization tests were also conducted to study the changes in the vortex shedding patterns. This research is supported in part by the National Science Foundation under NSF Award Numbers 1460461 and CBET-1437988.

  2. The Effect of Rivet Heads on the Characteristics of a 6 by 36 Foot Clark Y Metal Airfoil

    NASA Technical Reports Server (NTRS)

    Dearborn, Clinton H

    1933-01-01

    An investigation was conducted in the N.A.C.A. full-scale wind tunnel to determine the effects of exposed rivet heads on the aerodynamic characteristics of a metal-covered 6 by 36 foot Clasky airfoil. Lead punching simulating 1/8inch rivet heads were attached in full-span rows at a pitch of 1 inch at various chord positions. Tests were made at velocities varying from 40 to 120 miles per hour to investigate the scale effect. Rivets at the 5 percent chord position the upper surface of the airfoil produced the greatest increase in drag for a single row. Nine rows of rivets on both surfaces, simulating rivet spacing of multispan construction, increased the drag coefficients by a constant amount at velocities between 100 and 120 miles per hour. Accordingly, if rivets spaced the same as those on the test airfoil were used on a Clark Y wing of 300 square feet area and operated at 200 miles per hour, the drag would be increased over that for the smooth wing by 55 pounds and the power required would be increased by 29 horsepower.

  3. NASA supercritical airfoils: A matrix of family-related airfoils

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.

    1990-01-01

    The NASA supercritical airfoil development program is summarized in a chronological fashion. Some of the airfoil design guidelines are discussed, and coordinates of a matrix of family related supercritical airfoils ranging from thicknesses of 2 to 18 percent and over a design lift coefficient range from 0 to 1.0 are presented.

  4. An Experimental and Computational Investigation of Oscillating Airfoil Unsteady Aerodynamics at Large Mean Incidence

    NASA Technical Reports Server (NTRS)

    Capece, Vincent R.; Platzer, Max F.

    2003-01-01

    A major challenge in the design and development of turbomachine airfoils for gas turbine engines is high cycle fatigue failures due to flutter and aerodynamically induced forced vibrations. In order to predict the aeroelastic response of gas turbine airfoils early in the design phase, accurate unsteady aerodynamic models are required. However, accurate predictions of flutter and forced vibration stress at all operating conditions have remained elusive. The overall objectives of this research program are to develop a transition model suitable for unsteady separated flow and quantify the effects of transition on airfoil steady and unsteady aerodynamics for attached and separated flow using this model. Furthermore, the capability of current state-of-the-art unsteady aerodynamic models to predict the oscillating airfoil response of compressor airfoils over a range of realistic reduced frequencies, Mach numbers, and loading levels will be evaluated through correlation with benchmark data. This comprehensive evaluation will assess the assumptions used in unsteady aerodynamic models. The results of this evaluation can be used to direct improvement of current models and the development of future models. The transition modeling effort will also make strides in improving predictions of steady flow performance of fan and compressor blades at off-design conditions. This report summarizes the progress and results obtained in the first year of this program. These include: installation and verification of the operation of the parallel version of TURBO; the grid generation and initiation of steady flow simulations of the NASA/Pratt&Whitney airfoil at a Mach number of 0.5 and chordal incidence angles of 0 and 10 deg.; and the investigation of the prediction of laminar separation bubbles on a NACA 0012 airfoil.

  5. Estimation of unsteady lift on a pitching airfoil from wake velocity surveys

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Panda, J.; Rumsey, C. L.

    1993-01-01

    The results of a joint experimental and computational study on the flowfield over a periodically pitched NACA0012 airfoil, and the resultant lift variation, are reported in this paper. The lift variation over a cycle of oscillation, and hence the lift hysteresis loop, is estimated from the velocity distribution in the wake measured or computed for successive phases of the cycle. Experimentally, the estimated lift hysteresis loops are compared with available data from the literature as well as with limited force balance measurements. Computationally, the estimated lift variations are compared with the corresponding variation obtained from the surface pressure distribution. Four analytical formulations for the lift estimation from wake surveys are considered and relative successes of the four are discussed.

  6. An Experimental Study and Database for Tip Vortex Flow From an Airfoil

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Fagan, Amy F.; Mankbadi, Mina R.

    2017-01-01

    An experimental investigation of tip vortices from a NACA0012 airfoil is conducted in a low-speed wind tunnel at a chord Reynolds number (Rc) of 4×10(exp 4 ). Data for the stationary airfoil at various angles of attack (alpha) are first discussed. Detailed flow-field surveys are done for two cases: alpha = 10deg with attached flow and alpha = 25deg with massive flow separation. Data include mean velocity, streamwise vorticity, and turbulent stresses at various streamwise locations. For all cases, the vortex core is seen to involve a mean velocity deficit. The deficits in these cases trace to the airfoil wake, part of which gets wrapped up by the tip vortex. Comparison with data from the literature suggests that with increasing Rc, the deficit turns into an excess, with the transition occurring in the approximate Rc range of 2×10(exp 5) to 5×10(exp 5). Survey results for various shapes of the airfoil wingtip are then presented. The shapes include square and rounded ends and a number of winglet designs. Finally, data under sinusoidal pitching condition, for the airfoil with square ends, are documented. All pitching cases pertain to a mean alpha = 15deg, while the amplitude and frequency are varied. Amplitudes of +/-5deg, +/-10deg, and +/-15deg and reduced frequencies k = 0.08, 0.2, and 0.33 are covered. Digital records of all data and some of the hardware design are made available on a supplemental CD with the electronic version of the paper for those interested in numerical simulation.

  7. Simulation and Optimization of an Airfoil with Leading Edge Slat

    NASA Astrophysics Data System (ADS)

    Schramm, Matthias; Stoevesandt, Bernhard; Peinke, Joachim

    2016-09-01

    A gradient-based optimization is used in order to improve the shape of a leading edge slat upstream of a DU 91-W2-250 airfoil. The simulations are performed by solving the Reynolds-Averaged Navier-Stokes equations (RANS) using the open source CFD code OpenFOAM. Gradients are computed via the adjoint approach, which is suitable to deal with many design parameters, but keeping the computational costs low. The implementation is verified by comparing the gradients from the adjoint method with gradients obtained by finite differences for a NACA 0012 airfoil. The simulations of the leading edge slat are validated against measurements from the acoustic wind tunnel of Oldenburg University at a Reynolds number of Re = 6 • 105. The shape of the slat is optimized using the adjoint approach resulting in a drag reduction of 2%. Although the optimization is done for Re = 6 • 105, the improvements also hold for a higher Reynolds number of Re = 7.9 • 106, which is more realistic at modern wind turbines.

  8. Complete NACA Muroc Staff of 1950, in front of original NACA building

    NASA Technical Reports Server (NTRS)

    1950-01-01

    This group photo of National Advisory Committee for Aeronautics (NACA) employees was taken in 1950 in front of the NACA research building on South Base at Edwards Air Force Base, California. The team that had been established at Muroc Army Air Field in the later part of 1946 had grown to about 13 members at the beginning of 1947. In September of 1947 the group became known as the NACA Muroc Flight Test Unit with a complement of 27 employees by January 1948. In February 1948 the name of the base changed to Muroc Air Force Base and in 1949 would change again to Edwards Air Force Base. In November 1949 the NACA Muroc Flight Test Unit became the NACA High-Speed Flight Research Station. In January 1950 there were 132 employees with those numbers increasing to 196 by January 1952.

  9. The modelling of symmetric airfoil vortex generators

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Wendt, B. J.

    1996-01-01

    An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.

  10. Active flow control for a NACA-0012 profile

    NASA Astrophysics Data System (ADS)

    Oualli, H.; Mekadem, M.; Boukrif, M.; Saad, S.; Bouabdallah, A.; Gad-El-Hak, M.

    2015-11-01

    Active flow control is applied on a NACA-0012 profile. The experiments are carried out in a wind tunnel, and flow visualizations are conducted using high-resolution visible-light and infrared cameras. Numerical LES finite-volume code is used to complement the physical experiments. The symmetric wing is clipped into two parts, and those parts extend and retract along the chord according to the same sinusoidal law we optimized last year for a circular/elliptical cylinder (B. Am. Phys. Soc., vol. 59, no. 20, p. 319, 2014). The Reynolds number varies in the range of 500-100,000, which is typical of UAVs and micro-UAVs. The nascent cavity resulting from the oscillatory motion of the profile segments is kept open allowing the passage of fluid between the intrados and extrados. The pulsatile motion is characterized by an amplitude and frequency, and the airfoil's angle of attack is changed in the range of 0-30 deg. For certain amplitude and frequency, the drag coefficient is increased over the uncontrolled case by a factor of 300. But when the cavity is covered to prevent the flow from passing through the cavity, the drag coefficient becomes negative, and significant thrust is produced. The results are promising to achieve rapid deceleration and acceleration of UAVs.

  11. Experimental flutter boundaries with unsteady pressure distributions for the NACA 0012 Benchmark Model

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Bennett, Robert M.

    1991-01-01

    The Structural Dynamics Div. at NASA-Langley has started a wind tunnel activity referred to as the Benchmark Models Program. The objective is to acquire test data that will be useful for developing and evaluating aeroelastic type Computational Fluid Dynamics codes currently in use or under development. The progress is described which was achieved in testing the first model in the Benchmark Models Program. Experimental flutter boundaries are presented for a rigid semispan model (NACA 0012 airfoil section) mounted on a flexible mount system. Also, steady and unsteady pressure measurements taken at the flutter condition are presented. The pressure data were acquired over the entire model chord located at the 60 pct. span station.

  12. Numerical simulations of the flow with the prescribed displacement of the airfoil and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Řidký, V.; Šidlof, P.; Vlček, V.

    2013-04-01

    The work is devoted to comparing measured data with the results of numerical simulations. As mathematical model was used mathematical model whitout turbulence for incompressible flow In the experiment was observed the behavior of designed NACA0015 airfoil in airflow. For the numerical solution was used OpenFOAM computational package, this is open-source software based on finite volume method. In the numerical solution is prescribed displacement of the airfoil, which corresponds to the experiment. The velocity at a point close to the airfoil surface is compared with the experimental data obtained from interferographic measurements of the velocity field. Numerical solution is computed on a 3D mesh composed of about 1 million ortogonal hexahedron elements. The time step is limited by the Courant number. Parallel computations are run on supercomputers of the CIV at Technical University in Prague (HAL and FOX) and on a computer cluster of the Faculty of Mechatronics of Liberec (HYDRA). Run time is fixed at five periods, the results from the fifth periods and average value for all periods are then be compared with experiment.

  13. The semi-discrete Galerkin finite element modelling of compressible viscous flow past an airfoil

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1992-01-01

    A method is developed to solve the two-dimensional, steady, compressible, turbulent boundary-layer equations and is coupled to an existing Euler solver for attached transonic airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete Galerkin (SDG) method to model the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby permitting the use of a uniform finite element grid which provides high resolution near the wall and automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes, through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past NACA 0012 and RAE 2822 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack. All results show good agreement with experiment, and the coupled code proved to be a computationally-efficient and accurate airfoil analysis tool.

  14. Experimental, water droplet impingement data on two-dimensional airfoils, axisymmetric inlet and Boeing 737-300 engine inlet

    NASA Technical Reports Server (NTRS)

    Papadakis, M.; Elangovan, E.; Freund, G. A., Jr.; Breer, M. D.

    1987-01-01

    An experimental method has been developed to determine the droplet impingement characteristics on two- and three-dimensional bodies. The experimental results provide the essential droplet impingement data required to validate particle trajectory codes, used in aircraft icing analyses and engine inlet particle separator analyses. A body whose water droplet impingement characteristics are required is covered at strategic locations by thin strips of moisture absorbing (blotter) paper, and then exposed to an air stream containing a dyed-water spray cloud. Water droplet impingement data are extracted from the dyed blotter strips, by measuring the optical reflectance of the dye deposit on the strips, using an automated reflectometer. Impingement efficiency data obtained for a NACA 65(2)015 airfoil section, a supercritical airfoil section, and Being 737-300 and axisymmetric inlet models are presented in this paper.

  15. Reynolds number effect on airfoil wake structures under pitching and heaving motion

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Chun; Karbasian, Hamidreza; ExpTENsys Team

    2017-11-01

    Detached Eddy Simulation (DES) and particle image velocimetry (PIV) measurements were performed to investigate the wake flow characteristics of an airfoil under pitching and heaving motion. A NACA0012 airfoil was selected for the numerical simulation and experiments were carried out in a wind tunnel and a water tunnel at Reynolds number of 15,000 and 90,000, respectively. The airfoil oscillated around an axis located 1/4 distance from the leading edge chord. Two different angles of attack, 20° and 30°, were selected with +/-10° maximum amplitude of oscillation. In order to extract the coherent flow structures from time-resolved PIV data, proper orthogonal decomposition (POD) analysis was performed on 1,000 instantaneous realisations for each condition using the method of snapshots. Vorticity contour and velocity profiles for both PIV and DES results are in good agreement for pitching and heaving motion. At high Reynolds number, 3D stream-wise vortices appeared after generating span-wise vortices. The higher maximum angle of attack allows the leading edge vortex to grow stronger and that the angle of attack appears to be more important in influencing the growth of the leading edge vortex structure than the reduced frequency. National Research Foundation of Korea (No. 2011-0030013).

  16. The effects of leading-edge serrations on reducing flow unsteadiness about airfoils, an experimental and analytical investigation

    NASA Technical Reports Server (NTRS)

    Schwind, R. G.; Allen, H. J.

    1973-01-01

    High frequency surface pressure measurements were obtained from wind-tunnel tests over the Reynolds number range 1.2 times one million to 6.2 times one million on a rectangular wing of NACA 63-009 airfoil section. Measurements were also obtained with a wide selection of leading-edge serrations added to the basic airfoil. Under a two-dimensional laminar bubble very close to the leading edge of the basic airfoil there is a large apatial peak in rms pressure. Frequency analysis of the pressure signals in this region show a large, high-frequency energy peak which is interpreted as an oscillation in size and position of the bubble. The serrations divide the bubble into segments and reduce the peak rms pressures. A low Reynolds number flow visualization test on a hydrofoil in water was also conducted. A von Karman vortex street was found trailing from the rear of the foil. Its frequency is at a much lower Strouhal number than in the high Reynolds number experiment, and is related to the trailing-edge and boundary-layer thicknesses.

  17. Examining Dynamic Stall for an Oscillating NACA 4412 Hydrofoil

    NASA Astrophysics Data System (ADS)

    McVay, Eric; Lang, Amy; Gamble, Lawren; Bradshaw, Michael

    2013-11-01

    Dynamic stall is unsteady separation that occurs when a hydrofoil pitches through the static stall angle while simultaneously experiencing a rapid change in angle of attack. The NACA 4412 hydrofoil was selected for this research because it has strong trailing edge turbulent boundary layer separation characteristics. General dynamic stall angle of attack for approximately symmetric airfoils has been recorded to occur at 24 degrees, with separation beginning at about 16 degrees. It is predicted that the boundary layer will stay attached at a higher angle of attack because of the cambered geometry of the hydrofoil. It is also hypothesized that the boundary layer separation occurs closer to the trailing edge and that the dynamic stall angle of attack occurs somewhere between 24 and 28 degrees for the oscillating NACA 4412 hydrofoil. This research was conducted in a water tunnel facility using Time Resolved Digital Particle Image Velocimetry (TR-DPIV). The hydrofoil was pitched up from 0 to 30 degrees at Reynolds numbers of 60,000, 80,000 and 100,000. Flow characteristics, dynamic stall angles of attack, and points of boundary layer separation were compared at each velocity with both tripped and un-tripped surfaces. Follow-on research will be conducted using flow control techniques from sharks and dolphins to examine the potential benefits of these natural designs for separation control. Support for this research by NSF REU Grant #1062611 and CBET Grant #0932352 is gratefully acknowledged.

  18. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    NASA Astrophysics Data System (ADS)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambda<2, blades operate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were

  19. Assessment of Ice Shape Roughness Using a Self-Orgainizing Map Approach

    NASA Technical Reports Server (NTRS)

    Mcclain, Stephen T.; Kreeger, Richard E.

    2013-01-01

    Self-organizing maps are neural-network techniques for representing noisy, multidimensional data aligned along a lower-dimensional and nonlinear manifold. For a large set of noisy data, each element of a finite set of codebook vectors is iteratively moved in the direction of the data closest to the winner codebook vector. Through successive iterations, the codebook vectors begin to align with the trends of the higher-dimensional data. Prior investigations of ice shapes have focused on using self-organizing maps to characterize mean ice forms. The Icing Research Branch has recently acquired a high resolution three dimensional scanner system capable of resolving ice shape surface roughness. A method is presented for the evaluation of surface roughness variations using high-resolution surface scans based on a self-organizing map representation of the mean ice shape. The new method is demonstrated for 1) an 18-in. NACA 23012 airfoil 2 AOA just after the initial ice coverage of the leading 5 of the suction surface of the airfoil, 2) a 21-in. NACA 0012 at 0AOA following coverage of the leading 10 of the airfoil surface, and 3) a cold-soaked 21-in.NACA 0012 airfoil without ice. The SOM method resulted in descriptions of the statistical coverage limits and a quantitative representation of early stages of ice roughness formation on the airfoils. Limitations of the SOM method are explored, and the uncertainty limits of the method are investigated using the non-iced NACA 0012 airfoil measurements.

  20. 2015 Summer Series - The NACA - A Hundred Year Legacy

    NASA Image and Video Library

    2015-07-09

    Understanding the past provides insight into our identity and NASA's history lies within NACA, the National Advisory Committee for Aeronautics. NACA's culture of conducting cutting edge research became the spirit of NASA and laid the foundation for America's leap into space. NACA was established on March 3, 1915 in order to promote aeronautical research and was the source behind our air superiority during WWII. The Panel delves into the legacy of the NACA.

  1. A data-driven decomposition approach to model aerodynamic forces on flapping airfoils

    NASA Astrophysics Data System (ADS)

    Raiola, Marco; Discetti, Stefano; Ianiro, Andrea

    2017-11-01

    In this work, we exploit a data-driven decomposition of experimental data from a flapping airfoil experiment with the aim of isolating the main contributions to the aerodynamic force and obtaining a phenomenological model. Experiments are carried out on a NACA 0012 airfoil in forward flight with both heaving and pitching motion. Velocity measurements of the near field are carried out with Planar PIV while force measurements are performed with a load cell. The phase-averaged velocity fields are transformed into the wing-fixed reference frame, allowing for a description of the field in a domain with fixed boundaries. The decomposition of the flow field is performed by means of the POD applied on the velocity fluctuations and then extended to the phase-averaged force data by means of the Extended POD approach. This choice is justified by the simple consideration that aerodynamic forces determine the largest contributions to the energetic balance in the flow field. Only the first 6 modes have a relevant contribution to the force. A clear relationship can be drawn between the force and the flow field modes. Moreover, the force modes are closely related (yet slightly different) to the contributions of the classic potential models in literature, allowing for their correction. This work has been supported by the Spanish MINECO under Grant TRA2013-41103-P.

  2. A restored NACA P-51D Mustang in flight

    NASA Image and Video Library

    2000-09-15

    The huge compass rose on Rogers Dry Lake formed a backdrop for a genuine NACA (National Advisory Committee for Aeronautics) P-51D Mustang owned and flown by William C. Allmon during a visit to the NASA Dryden Flight Research Center in California's Mojave Desert Sept. 15, 2000 for a reunion of former NACA employees. The NACA was the forerunner of NASA.

  3. Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory

    NASA Technical Reports Server (NTRS)

    Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.

    2015-01-01

    An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.

  4. Wake vortex properties and thrust production of a harmonically-pitching flexible airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Olson, David; Naguib, Ahmed; Koochesfahani, Manoochehr

    2017-11-01

    Many of the natural flyers have deformable wing structures and exhibit complex kinematics in order to produce lift and thrust. Replicating all of these conditions in the laboratory (or in simulations) is extremely difficult, and drawing explicit connections to basic unsteady aerodynamics models and theories is even more complicated. Therefore, simplified wing structure and kinematics are typically used to facilitate drawing out these connections. In this work, measurements are conducted using a rigid and a chordwise-flexible NACA 0009 airfoils when harmonically pitched about the quarter chord point. Molecular tagging velocimetry is used to characterize the wake and estimate the thrust based on the momentum integral equation as function of the reduced frequency and the pitching amplitude. The results obtained using the two different airfoils are compared in order to examine the influence of structural flexibility. Consistent with the literature, chordwise flexibility is found to enhance thrust production and the circulation of the vortices shed into the wake, for a certain range of frequencies and amplitudes. Additional characterizations are undertaken of the wake vortex structure and its scaling. This work was supported by AFOSR Award Number FA9550-10-1-0342.

  5. Complete NACA Muroc Staff of 1954, in front of new NACA building (4800)

    NASA Technical Reports Server (NTRS)

    1954-01-01

    The employees of the NACA High-Speed Flight Station are gathered for a 1954 photo shoot on the front steps of building 4800, the new NACA Facility at Main Base of Edwards Air Force Base, California. This new building was considerably larger than the earlier NACA buildings on South Base, but then the staff had increased and the extra space was needed. From 1950 when an earlier group picture was taken (E-33717) until 1954 the staff at NACA increased from 132 to 250. As the workload increased and more research flights were completed the complement of employees grew to 662 in 1966. More changes took place in 1954 with the Station being called the NACA High-Speed Flight Station. A further name change occurred in October 1958 to the National Aeronautics and Space Administration (NASA) High-Speed Flight Station and again in September 1959 to the NASA Flight Research Center. There would be two more name changes before the next group photo (EC85-33160-2) would be made. On March 1976 to NASA Hugh L. Dryden Flight Research Center and in October 1981 when the Center became the Ames-Dryden Flight Research Facility.

  6. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1977-01-01

    Work has continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes on airfoil data and wall contours. Mechanical design analyses for the transonic self streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility is outlined.

  7. Ice Accretion Formations on a NACA 0012 Swept Wing Tip in Natural Icing Conditions

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Giriunas, Julius A.; Ratvasky, Thomas P.

    2002-01-01

    An experiment was conducted in the DeHavilland DHC-6 Twin Otter Icing Research Aircraft at NASA Glenn Research Center to study the formation of ice accretions on swept wings in natural icing conditions. The experiment was designed to obtain ice accretion data to help determine if the mechanisms of ice accretion formation observed in the Icing Research Tunnel are present in natural icing conditions. The experiment in the Twin Otter was conducted using a NACA 0012 swept wing tip. The model enabled data acquisition at 0 deg, 15 deg, 25 deg, 30 deg, and 45 deg sweep angles. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that the mechanisms of ice accretion formation observed in-flight agree well with the ones observed in the Icing Research Tunnel. Observations on the end cap of the airfoil showed the same strong effect of the local sweep angle on the formation of scallops as observed in the tunnel.

  8. Effects of thickness on the aerodynamic characteristics of an initial low-speed family of airfoils for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1976-01-01

    Wind tunnel tests were conducted to determine the effects of airfoil thickness-ratio on the low speed aerodynamic characteristics of an initial family of airfoils. The results were compared with theoretical predictions obtained from a subsonic viscous method. The tests were conducted over a Mach number range from 0.10 to 0.28. Chord Reynolds numbers varied from about 2.0 x 1 million to 9.0 x 1 million.

  9. NACA Groundbreaking Ceremony

    NASA Technical Reports Server (NTRS)

    1953-01-01

    The NACA High-Speed Flight Research Station, had initially been subordinate to the Langley Memorial Aeronautical Laboratory near Hampton, Virginia, but as the flight research in the Mojave Desert increasingly proved its worth after 1946, it made sense to make the Flight Research Station a separate entity reporting directly to the headquarters of the National Advisory Committee for Aeronautics. But an autonomous center required all the trappings of a major research facility, including good quarters. With the adoption of the Edwards 'Master Plan,' the Air Force had committed itself to moving from its old South Base to a new location midway between the South and North Bases. The NACA would have to move also--so why not take advantage of the situation and move into a full-blown research facility. The Air Force issued a lease to NACA for a location on the northwestern shore of the Roger Dry Lake. Construction started on the NACA station in early February 1953. On a windy day, January 27, 1953, at a groundbreaking ceremony stood left to right: Gerald Truszynski, Head of Instrumentation Division; Joseph Vensel, Head of the Operations Branch; Walter Williams, Head of the Station, scooping the first shovel full of dirt; Marion Kent, Head of Personnel; and California state official Arthur Samet.

  10. Airfoil structure

    DOEpatents

    Frey, Gary A.; Twardochleb, Christopher Z.

    1998-01-01

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally "C" configuration of the airfoil. The generally "C" configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion.

  11. Airfoil structure

    DOEpatents

    Frey, G.A.; Twardochleb, C.Z.

    1998-01-13

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally ``C`` configuration of the airfoil. The generally ``C`` configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion. 6 figs.

  12. Airfoil shape for a turbine nozzle

    DOEpatents

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  13. Wind-Tunnel Investigation of Control-Surface Characteristics. 2 - A Large Aerodynamic Balance of Various Nose Shapes with a 30-Percent-Chord Flap on an NACA 0009 Airfoil

    DTIC Science & Technology

    1942-08-01

    an extensive investigation of the aerodynamic characteristics of con- trol surfaces in order to provide data for desigD purposes...airfoil-flap combinations using plain flaps of various sises and with sealed gaps. (See references 2, 3, and 4.) The data ...made to provide sec- tion data for an airfoil having a flap with a large over- hang and to determine the effects of the

  14. Composite airfoil assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres Jose

    A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.

  15. Airfoil shape for a turbine bucket

    DOEpatents

    Hyde, Susan Marie; By, Robert Romany; Tressler, Judd Dodge; Schaeffer, Jon Conrad; Sims, Calvin Levy

    2005-06-28

    Third stage turbine buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth Table I wherein X and Y values are in inches and the Z values are non-dimensional values from 0 to 0.938 convertible to Z distances in inches by multiplying the Z values by the height of the airfoil in inches. The X and Y values are distances which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape. The X and Y distances may be scalable as a function of the same constant or number to provide a scaled up or scaled down airfoil section for the bucket. The nominal airfoil given by the X, Y and Z distances lies within an envelop of .+-.0.150 inches in directions normal to the surface of the airfoil.

  16. On the lift increments with the occurrence of airfoil tones at low Reynodls numbers

    NASA Astrophysics Data System (ADS)

    Ikeda, Tomoaki; Fujimoto, Daisuke; Inasawa, Ayumu; Asai, Masahito

    2015-11-01

    The aeroacoustic effects on the aerodynamics of an NACA 0006 airfoil are investigated experimentally at relatively low Reynolds numbers, Re = 30 , 000 - 70 , 000 . By employing two wind-testing airfoil models at different chord lengths, L = 40 and 100 [mm], the aerodynamic dependence on Mach number is examined at a given Reynolds number. In a particular range of Reynolds number, tonal peaks of trailing-edge noise are obtained from a shorter-chord airfoil, while no apparent tones are observed with longer chord length at a lower Mach number. Surprisingly, the occurrence of a tonal noise leads to a greater lift slope in the present wind-tunnel experiment, evaluated via a PIV approach. The lift curves obtained experimentally at higher Mach numbers agree well with two-dimensional numerical simulations, performed at M = 0 . 2 . At the Mach number, the numerical results clearly indicate the occurrence of an acoustic feedback loop with discrete tones, within a range of angle of attack. A few three dimensional numerical results are also presented. In the simulation at Re = 50 , 000 , the suppression of tonal noise corresponds to the development of a turbulent wedge in the suction-side boundary layer at the angle of attack 4 . 0 [deg.], which agrees with the experiment. This work was supported by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (Grant No. 25420139).

  17. Effect of Free-Stream Turbulence Intensity on Transonic Airfoil with Shock Wave

    NASA Astrophysics Data System (ADS)

    Lutsenko, I.; Serikbay, M.; Akiltayev, A.; Rojas-Solórzano, L. R.; Zhao, Y.

    2017-09-01

    Airplanes regularly operate switching between various flight modes such as take-off, climb, cruise, descend and landing. During these flight conditions the free-stream approaching the wings undergo fundamental changes. In transonic flow conditions, typically in the military or aerospace applications, existence of nonlinear and unsteady effects of the airflow stream significantly alters the performance of an airfoil. This paper presents the influence of free-stream turbulence intensity on transonic flow over an airfoil in the presence of a weak shock wave. In particular, NACA 0012 airfoil performance at Ma∞ = 0.7 is considered in terms of drag, lift, turbulence kinetic energy, and turbulence eddy dissipation parameters under the influence of varying angle of attacks and free-stream turbulence. The finite volume method in a commercial CFD package ANSYS-CFX is used to perform the numerical analysis of the flow. Mesh refinement using a mesh-adaption technique based on velocity gradient is presented for more accurate prediction of shocks and boundary layers. A Shear Stress Transport (SST) turbulence model is validated against experimental data available in the literature. Numerical simulations were performed, with free stream turbulence intensity ranging from low (1%), medium (5%) to high (10%) levels. Results revealed that drag and lift coefficients are approximately the same at every aforementioned value of turbulence intensity. However, turbulence kinetic energy and eddy dissipation contours vary as turbulence intensity changes, but their changes are disproportionally small, compared with values adopted for free-stream turbulence.

  18. Experimental analyses of trailing edge flows

    NASA Technical Reports Server (NTRS)

    Petrie, S. L.; Emmer, D. S.

    1984-01-01

    An experimental study of several of the trailing edge and wake turbulence properties for a NACA 64A010 airfoil section was completed. The experiment was conducted at the Ohio State University Aeronautical and Astronautical Research Laboratory in the 6 inch X 22 inch transonic wind tunnel facility. The data were obtained at a free stream Mach number of 0.80 and a flow Reynolds number (based on chord length) of 5 million. The principle diagnostic tool was a dual-component laser Doppler velocimeter. The experimental data included surface static pressures, chordwise and vertical mean velocities, RMS turbulence intensities, local flow angles, and a determination of turbulence kinetic energy in the wake. Two angles of attack (0 and 2 degrees) were investigated. At these incidence angles, four flow field surveys were obtained ranging in position from the surface of the airfoil, between the transonic shock and the trailing edge, to the far-wake. At both angles of attack, the turbulence intensities and turbulence kinetic energy were observed to decay in the streamwise direction. In the far wake, for the non-lifting case, the turbulence intensities were nearly isotropic. For the two degree case, the horizontal component of the turbulence intensity was observed to be substantially higher than the vertical component.

  19. Experiments with an Airfoil Model on which the Boundary Layers are Controlled Without the Use of Supplementary Equipment

    NASA Technical Reports Server (NTRS)

    Abbott, I H

    1931-01-01

    This report describes test made in the Variable Density Wind Tunnel of the NACA to determine the possibility of controlling the boundary layer on the upper surface of an airfoil by use of the low pressure existing near the leading edge. The low pressure was used to induce flow through slots in the upper surface of the wing. The tests showed that the angle of attack for maximum lift was increased at the expense of a reduction in the maximum lift coefficient and an increase in the drag coefficient.

  20. Effects of Wall-Normal and Angular Momentum Injections in Airfoil Separation Control

    NASA Astrophysics Data System (ADS)

    Munday, Phillip M.; Taira, Kunihiko

    2018-05-01

    The objective of this computational study is to quantify the influence of wall-normal and angular momentum injections in suppressing laminar flow separation over a canonical airfoil. Open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at $\\alpha = 9^\\circ$ and $Re = 23,000$ is examined with large-eddy simulations. This study independently introduces wall-normal momentum and angular momentum into the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. It is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Lift enhancement and suppression of separation with the wall-normal and angular momentum inputs are characterized by modifying the standard definition of the coefficient of momentum. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With this single modified coefficient of momentum, we are able to categorize each controlled flow into separated, transitional, and attached flows.

  1. Wind tunnel results for a high-speed, natural laminar-flow airfoil designed for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Sewall, William G.; Mcghee, Robert J.; Viken, Jeffery K.; Waggoner, Edgar G.; Walker, Betty S.; Millard, Betty F.

    1985-01-01

    Two dimensional wind tunnel tests were conducted on a high speed natural laminar flow airfoil in both the Langley 6 x 28 inch Transonic Tunnel and the Langley Low Turbulence Pressure Tunnel. The test conditions consisted of Mach numbers ranging from 0.10 to 0.77 and Reynolds numbers ranging from 3 x 1 million to 11 x 1 million. The airfoil was designed for a lift coefficient of 0.20 at a Mach number of 0.70 and Reynolds number of 11 x 1 million. At these conditions, laminar flow would extend back to 50 percent chord of the upper surface and 70 percent chord of the lower surface. Low speed results were also obtained with a 0.20 chord trailing edge split flap deflected 60 deg.

  2. NACA0012 benchmark model experimental flutter results with unsteady pressure distributions

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Bennett, Robert M.; Durham, Michael H.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA Langley Research Center has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of this program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type computational fluid dynamics codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. This paper describes results obtained from a second wind tunnel test of the first model in the Benchmark Models Program. This first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree of freedom mount system. Experimental flutter boundaries and corresponding unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations are presented.

  3. Wind-Tunnel Investigation of a Rectangular NACA 2212 Airfoil with Semispan Ailerons and with Nonperforated, Balanced Double Split Flaps for Use as Aerodynamic Brakes

    NASA Technical Reports Server (NTRS)

    Ivey, Margaret F

    1945-01-01

    Flat-plate flaps with no wing cutouts and flaps having Clark Y sections with corresponding cutouts made in wing were tested for various flap deflections, chord-wise locations, and gaps between flaps and airfoil contour. The drag was slightly lower for wing with airfoil section flaps. Satisfactory aileron effectiveness was obtained with flap gap of 20% wing chord and flap-nose location of 80 percent wing chord behind leading edge. Airflow was smooth and buffeting negligible.

  4. A restored NACA P-51D Mustang in flight

    NASA Image and Video Library

    2000-09-15

    Bill Allmon of Las Vegas, Nevada, brought his restored NACA P-51D to a reunion of former NACA employees at the NASA Dryden Flight Research Center located at Edwards Air Force Base, Calif., on Sept. 15, 2000. Allmon's award-winning restoration is a genuine former NACA testbed that saw service at the Langley Research Center in Virginia in the late 1940s. Later this Mustang was put on outdoor static display as an Air National Guard monument in Pittsburgh, Pa., where exposure to the elements ravaged its metal structure, necessitating an extensive four-year rebuild.

  5. Coordinating Council. Fourth Meeting: NACA Documents Database Project

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This NASA Scientific and Technical Information Coordination Council meeting dealt with the topic 'NACA Documents Database Project'. The following presentations were made and reported on: NACA documents database project study plan, AIAA study, the Optimal NACA database, Deficiencies in online file, NACA documents: Availability and Preservation, the NARA Collection: What is in it? and What to do about it?, and NACA foreign documents and availability. Visuals are available for most presentations.

  6. Investigation of advancing front method for generating unstructured grid

    NASA Technical Reports Server (NTRS)

    Thomas, A. M.; Tiwari, S. N.

    1992-01-01

    The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.

  7. NACA Photographer North American F-100A (NACA-200) Super Sabre Airplane take-off. The blowing-tupe

    NASA Technical Reports Server (NTRS)

    1957-01-01

    NACA Photographer North American F-100A (NACA-200) Super Sabre Airplane take-off. The blowing-tupe boundary-layer control on the leading- and trailing-edge provided large reductions in takeoff and landing approach speeds. Approach speeds were reduced by about 10 knots (Mar 1960). Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 102 and and Memoirs of a Flight Test Engneer NASA SP-2002-4525

  8. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  9. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  10. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manela, A.

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculationsmore » for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.« less

  11. Airfoils for wind turbine

    DOEpatents

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  12. Robust, optimal subsonic airfoil shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2008-01-01

    Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.

  13. Aeroelastic performance evaluation of a flexure box morphing airfoil concept

    NASA Astrophysics Data System (ADS)

    Pankonien, Alexander M.; Inman, Daniel J.

    2014-04-01

    The flexure-box morphing aileron concept utilizes Macro-Fiber Composites (MFCs) and a compliant box to create a conformal morphing aileron. This work evaluates the impact of the number of MFCs on the performance, power and mass of the aileron by experimentally investigating two different actuator configurations: unimorph and bimorph. Implemented in a NACA 0012 airfoil with 304.8 mm chord, the unimorph and bimorph configurations are experimentally tested over a range of flow speeds from 5 to 20 m/s and angles of attack from -20 to 20 degrees under aerodynamic loads in a wind tunnel. An embedded flexible sensor is installed in the aileron to evaluate the effect of aerodynamic loading on tip position. For both design choices, the effect of actuation on lift, drag and pitching moment coefficients are measured. Finally, the impact on aileron mass and average power consumption due to the added MFCs is considered. The results showed the unimorph exhibiting superior ability to influence flow up to 15 m/s, with equivalent power consumption and lower overall mass. At 20 m/s, the bimorph exhibited superior control over aerodynamic forces and the unimorph experienced significant deformation due to aerodynamic loading.

  14. NACA Researcher Examines the Cyclotron

    NASA Image and Video Library

    1951-02-21

    Researcher James Blue examines the new cyclotron at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Researchers at NACA Lewis began postulating about the use of atomic power for propulsion immediately after World War II. The NACA concentrated its efforts on the study of high temperature materials and heat transfer since it did not have access to the top secret fission information. The military studied the plausibility of nuclear propulsion for aircraft in the late 1940s. The military program was cancelled after four years without any breakthroughs, but the Atomic Energy Commission took on the effort in 1951. The NACA Lewis laboratory was expanding its nuclear-related research during this period. In 1948, Lewis engineers were assigned to the Oak Ridge National Laboratory to obtain expertise in high temperature heat transfer and advanced materials technology. The following year a new 80-person Nuclear Reactor Division was created, and an in-house nuclear school was established to train these researchers. The cyclotron was built behind the Materials and Structures Laboratory to support thermodynamic and materials research for both nuclear aircraft and nuclear rockets. The original NACA Lewis cyclotron was used to accelerate two kinds of particles. To better match the space radiation environment, the cyclotron was later modified to accelerate particles of the newly-discovered Van Allen radiation belts.

  15. NACA Wartime Safety Poster

    NASA Image and Video Library

    1945-04-21

    One of many safety posters produced by NACA artists during World War II. The Aircraft Engine Research Laboratory established a Safety Office in 1942 to coordinate and oversee safety-related activities. The lab struggled to maintain a full staff during the war when military research projects were at a peak. NACA management mandated six-day work weeks without overtime and the elimination of holidays. As such, workplace injuries were a serious threat to maintaining productivity needed to sustain the military’s aeronautics efforts.

  16. An Experimental Investigation of Unsteady Surface Pressure on an Airfoil in Turbulence

    NASA Technical Reports Server (NTRS)

    Mish, Patrick F.; Devenport, William J.

    2003-01-01

    Measurements of fluctuating surface pressure were made on a NACA 0015 airfoil immersed in grid generated turbulence. The airfoil model has a 2 ft chord and spans the 6 ft Virginia Tech Stability Wind Tunnel test section. Two grids were used to investigate the effects of turbulence length scale on the surface pressure response. A large grid which produced turbulence with an integral scale 13% of the chord and a smaller grid which produced turbulence with an integral scale 1.3% of the chord. Measurements were performed at angles of attack, alpha from 0 to 20 . An array of microphones mounted subsurface was used to measure the unsteady surface pressure. The goal of this measurement was to characterize the effects of angle of attack on the inviscid response. Lift spectra calculated from pressure measurements at each angle of attack revealed two distinct interaction regions; for omega(sub r) = omega b / U(sub infinity) is less than 10 a reduction in unsteady lift of up to 7 decibels (dB) occurs while an increase occurs for omega(sub r) is greater than 10 as the angle of attack is increased. The reduction in unsteady lift at low omega(sub r) with increasing angle of attack is a result that has never before been shown either experimentally or theoretically. The source of the reduction in lift spectral level appears to be closely related to the distortion of inflow turbulence based on analysis of surface pressure spanwise correlation length scales. Furthermore, while the distortion of the inflow appears to be critical in this experiment, this effect does not seem to be significant in larger integral scale (relative to the chord) flows based on the previous experimental work of McKeough suggesting the airfoils size relative to the inflow integral scale is critical in defining how the airfoil will respond under variation of angle of attack. A prediction scheme is developed that correctly accounts for the effects of distortion when the inflow integral scale is small relative

  17. Aerodynamic features of a two-airfoil arrangement

    NASA Astrophysics Data System (ADS)

    Faure, Thierry M.; Hétru, Laurent; Montagnier, Olivier

    2017-10-01

    The interaction between two foils occurs in many aerodynamic or hydrodynamic applications. Although the characteristics of many airfoils are well documented, there is a limited amount of data for multiple airfoils in interaction and for large values of the angle of attack. This paper presents measurements of the turbulent flow around a two-airfoil T-tail type arrangement and the aerodynamic coefficients, for an incompressible flow at moderate Reynolds number. The study focuses mainly on large angles of attack, corresponding to detached flows on the airfoils, large wakes and involving vortex shedding. Phase averages of velocity fields are made building the flow time development relative to the vortex shedding. The understanding of the change in the tail lift coefficient versus angle of attack, between a two-airfoil arrangement and a single airfoil, is discussed in relation with the position and width of the wing wake and the pathlines of the shedding vortices.

  18. Simulation of a Rotorcraft in Turbulent Flows

    DTIC Science & Technology

    1991-09-01

    Knot) Aircraft Parallel Aircraft Parallel Aircraft Parallel To Ship’s To Port-To-Star- To Starboard- Centerline board Landing To-Port Landing Lineup ...Line Lineup Line 345 to 015/35 340 to 005/45 345 to 005145 016 t,) 040/30 006 to 035!35 006 to 025/40 041 to 180/45 036 to 050/30 026 to 040/30 181 to...WIND /FRA3 LOW REYNOLD’S NUMBER AERODYNAMICS FOR NACA0012 AIRFOIL REQUIRES DS/DM NACA0012/AIRFOIL NO SEQUENTIAL FILES REQUIRED INPUT FOR FORCE FRA3

  19. The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics

    NASA Astrophysics Data System (ADS)

    Rostamzadeh, N.; Kelso, R. M.; Dally, B. B.; Hansen, K. L.

    2013-11-01

    In spite of its mammoth physical size, the humpback whale's manoeuvrability in hunting has captured the attention of biologists as well as fluid mechanists. It has now been established that the protrusions on the leading-edges of the humpback's pectoral flippers, known as tubercles, account for this species' agility and manoeuvrability. In the present work, Prandtl's nonlinear lifting-line theory was employed to propose a hypothesis that the favourable traits observed in the performance of tubercled lifting bodies are not exclusive to this form of leading-edge configuration. Accordingly, a novel alternative to tubercles was introduced and incorporated into the design of four airfoils that underwent wind tunnel force and pressure measurement tests in the transitional flow regime. In addition, a Computation Fluid Dynamics study was performed using the Shear Stress Transport transitional model in the context of unsteady Reynolds-Averaged Navier-Stokes at several attack angles. The results from the numerical investigation are in reasonable agreement with those of the experiments, and suggest the presence of features that are also observed in flows over tubercled foils, most notably a distinct pair of streamwise vortices for each wavelength of the tubercle-like feature.

  20. Electrogenic Na+/Ca2+ Exchange

    PubMed Central

    Danaceau, Jonathan P.; Lucero, Mary T.

    2000-01-01

    Olfactory receptor neurons (ORNs) from the squid, Lolliguncula brevis, respond to the odors l-glutamate or dopamine with increases in internal Ca2+ concentrations ([Ca2+]i). To directly asses the effects of increasing [Ca2+]i in perforated-patched squid ORNs, we applied 10 mM caffeine to release Ca2+ from internal stores. We observed an inward current response to caffeine. Monovalent cation replacement of Na+ from the external bath solution completely and selectively inhibited the caffeine-induced response, and ruled out the possibility of a Ca2+-dependent nonselective cation current. The strict dependence on internal Ca2+ and external Na+ indicated that the inward current was due to an electrogenic Na+/Ca2+ exchanger. Block of the caffeine-induced current by an inhibitor of Na+/Ca2+ exchange (50–100 μM 2′,4′-dichlorobenzamil) and reversibility of the exchanger current, further confirmed its presence. We tested whether Na+/Ca2+ exchange contributed to odor responses by applying the aquatic odor l-glutamate in the presence and absence of 2′,4′-dichlorobenzamil. We found that electrogenic Na+/Ca2+ exchange was responsible for ∼26% of the total current associated with glutamate-induced odor responses. Although Na+/Ca2+ exchangers are known to be present in ORNs from numerous species, this is the first work to demonstrate amplifying contributions of the exchanger current to odor transduction. PMID:10828249

  1. Closed loop steam cooled airfoil

    DOEpatents

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  2. Selected bibliography of NACA-NASA aircraft icing publications

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J. (Compiler)

    1981-01-01

    A summary of NACA-NASA icing research from 1940 to 1962 is presented. It includes: the main results of the NACA icing program from 1940 to 1950; a selected bibliography of 132 NACA-NASA aircraft icing publications; a technical summary of each document cited in the selected bibliography; and a microfiche copy of each document cited in the selected bibliography.

  3. Airfoil System for Cruising Flight

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Liu, Tianshu (Inventor)

    2014-01-01

    An airfoil system includes an airfoil body and at least one flexible strip. The airfoil body has a top surface and a bottom surface, a chord length, a span, and a maximum thickness. Each flexible strip is attached along at least one edge thereof to either the top or bottom surface of the airfoil body. The flexible strip has a spanwise length that is a function of the airfoil body's span, a chordwise width that is a function of the airfoil body's chord length, and a thickness that is a function of the airfoil body's maximum thickness.

  4. The Surface Pressure Response of a NACA 0015 Airfoil Immersed in Grid Turbulence. Volume 1; Characteristics of the Turbulence

    NASA Technical Reports Server (NTRS)

    Bereketab, Semere; Wang, Hong-Wei; Mish, Patrick; Devenport, William J.

    2000-01-01

    Two grids have been developed for the Virginia Tech 6 ft x 6 ft Stability wind tunnel for the purpose of generating homogeneous isotropic turbulent flows for the study of unsteady airfoil response. The first, a square bi-planar grid with a 12" mesh size and an open area ratio of 69.4%, was mounted in the wind tunnel contraction. The second grid, a metal weave with a 1.2 in. mesh size and an open area ratio of 68.2% was mounted in the tunnel test section. Detailed statistical and spectral measurements of the turbulence generated by the two grids are presented for wind tunnel free stream speeds of 10, 20, 30 and 40 m/s. These measurements show the flows to be closely homogeneous and isotropic. Both grids produce flows with a turbulence intensity of about 4% at the location planned for the airfoil leading edge. Turbulence produced by the large grid has an integral scale of some 3.2 inches here. Turbulence produced by the small grid is an order of magnitude smaller. For wavenumbers below the upper limit of the inertial subrange, the spectra and correlations measured with both grids at all speeds can be represented using the von Karman interpolation formula with a single velocity and length scale. The spectra maybe accurately represented over the entire wavenumber range by a modification of the von Karman interpolation formula that includes the effects of dissipation. These models are most accurate at the higher speeds (30 and 40 m/s).

  5. Tonal noise of a controlled-diffusion airfoil at low angle of attack and Reynolds number.

    PubMed

    Padois, Thomas; Laffay, Paul; Idier, Alexandre; Moreau, Stéphane

    2016-07-01

    The acoustic signature of a controlled-diffusion airfoil immersed in a flow is experimentally characterized. Acoustic measurements have been carried out in an anechoic open-jet-wind-tunnel for low Reynolds numbers (from 5 × 10(4) to 4.3 × 10(5)) and several angles of attack. As with the NACA0012, the acoustic spectrum is dominated by discrete tones. These tonal behaviors are divided into three different regimes. The first one is characterized by a dominant primary tone which is steady over time, surrounded by secondary peaks. The second consists of two unsteady primary tones associated with secondary peaks and the third consists of a hump dominated by several small peaks. A wavelet study allows one to identify an amplitude modulation of the acoustic signal mainly for the unsteady tonal regime. This amplitude modulation is equal to the frequency interval between two successive tones. Finally, a bispectral analysis explains the presence of tones at higher frequencies.

  6. Multi-Element Airfoil System

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); McKenney, Martin J. (Inventor); Atherley, Raymond D. (Inventor); Kidd, Reggie T. (Inventor)

    2014-01-01

    A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.

  7. The Influence of Chordwise Flexibility on the Flow Structure and Streamwise Force of a Sinusoidally Pitching Airfoil

    NASA Astrophysics Data System (ADS)

    Olson, David Arthur

    Many natural flyers and swimmers need to exploit unsteady mechanisms in order to generate sufficient aerodynamic forces for sustained flight and propulsion. This is, in part, due to the low speed and length scales at which they typically operate. In this low Reynolds number regime, there are many unanswered questions on how existing aerodynamic theory for both steady and unsteady flows can be applied. Additionally, most of these natural flyers and swimmers have deformable wing/fin structures, three dimensional wing planforms, and exhibit complex kinematics during motion. While some biologically-inspired studies seek to replicate these complex structures and kinematics in the laboratory or in numerical simulations, it becomes difficult to draw explicit connections to the existing knowledge base of classical unsteady aerodynamic theory due to the complexity of the problems. In this experimental study, wing kinematics, structure, and planform are greatly simplified to investigate the effect of chordwise flexibility on the streamwise force (thrust) and wake behavior of a sinusoidally pitching airfoil. The study of flexibility in the literature has typically utilized flat plates with varying thicknesses or lengths to change their chordwise flexibility. This choice introduces additional complexities when comparing to the wealth of knowledge originally developed on streamlined aerodynamic shapes. The current study capitalizes on the recent developments in 3D printer technology to create accurate shapes out of materials with varying degrees of flexibility by creating two standard NACA 0009 airfoils: one rigid and one flexible. Each of the two airfoils are sinusoidally pitched about the quarter chord over a range of oscillation amplitudes and frequencies while monitoring the deformation of the airfoil. The oscillation amplitude is selected to be small enough such that leading edge vortices do not form, and the vortical structures in the wake are formed from the trailing

  8. Aerodynamic characteristics of three helicopter rotor airfoil sections at Reynolds number from model scale to full scale at Mach numbers from 0.35 to 0.90. [conducted in Langley 6 by 28 inch transonic tunnel

    NASA Technical Reports Server (NTRS)

    Noonan, K. W.; Bingham, G. J.

    1980-01-01

    An investigation was conducted in the Langely 6 by 28 inch transonic tunnel to determine the two dimensional aerodynamic characteristics of three helicopter rotor airfoils at Reynolds numbers from typical model scale to full scale at Mach numbers from about 0.35 to 0.90. The model scale Reynolds numbers ranged from about 700,00 to 1,500,000 and the full scale Reynolds numbers ranged from about 3,000,000 to 6,600,000. The airfoils tested were the NACA 0012 (0 deg Tab), the SC 1095 R8, and the SC 1095. Both the SC 1095 and the SC 1095 R8 airfoils had trailing edge tabs. The results of this investigation indicate that Reynolds number effects can be significant on the maximum normal force coefficient and all drag related parameters; namely, drag at zero normal force, maximum normal force drag ratio, and drag divergence Mach number. The increments in these parameters at a given Mach number owing to the model scale to full scale Reynolds number change are different for each of the airfoils.

  9. Rocket Research Presentation at the NACA's 1947 Inspection

    NASA Image and Video Library

    1947-10-21

    Researcher John Sloop briefs visitors on his latest rocket engine research during the 1947 Inspection at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The NACA had been hosting annual Aircraft Engineering Conferences, better known as Inspections, since 1926. Individuals from the manufacturing industry, military, and university settings were invited to tour the NACA laboratories. There were a series of stops on the tour, mostly at test facilities, where researchers would brief the group on the latest efforts in their particular field. The Inspections grew in size and scope over the years and by the mid-1940s required multiple days. The three-day 1947 Inspection was the first time the event was held at NACA Lewis. Over 800 scientists, industrialists, and military leaders attended the three-day event. Talks were given at the Altitude Wind Tunnel, Four Burner Area, Engine Research Building, and other facilities. An array of topics were discussed, including full-scale engine testing, ramjets, axial-flow compressors, turbojets, fuels, icing, and materials. The NACA Lewis staff and their families were able to view the same presentations after the Inspection was over. Sloop, a researcher in the Fuels and Thermodynamics Division, briefed visitors on NACA Lewis’ early research in rocket engine propellants, combustion, and cooling. This early NACA Lewis work led to the development of liquid hydrogen as a viable propellant in the late 1950s.

  10. Detailed comparison between DNS and wind tunnel experiment for an airfoil at Re = 20,000 with a view towards control

    NASA Astrophysics Data System (ADS)

    Tank, Joseph; Jacobs, Gustaaf; Spedding, Geoffrey

    2017-11-01

    The reduction in size and weight of electronic devices in recent years has enabled the use of small flying devices that operate at Re <1.5 x 105 for a variety of applications. At these low Re, the boundary layer often separates before the trailing edge, even at low angles of attack, leading to aerodynamic behaviors that are not predicted by classical inviscid theories. There is currently no comprehensive database of airfoil data in this Re regime, where the sensitivity of the boundary layer behavior to small disturbances in the free stream often leads to discrepancies between results generated in different facilities. Here we provide experimental results generated in a wind tunnel with a low turbulence intensity for a NACA 65(1)-412 airfoil at Re = 2 x 104. Several unexpected phenomena are observed in force balance results and explanations are proposed based on PIV flow visualization. Qualitative and quantitative comparisons are made with results from a DNS code using higher-order discontinuous Galerkin methods. Internal acoustic forcing at locations dictated by Lagrangian Coherent Structure behavior is explored as a potential closed loop flow control strategy. Support from AFOSR Grant# FA9550-16-1-0392 under Dr Doug Smith is most gratefully acknowledged.

  11. Aeroacoustic analysis of an airfoil with Gurney flap based on time-resolved particle image velocimetry measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqing; Sciacchitano, Andrea; Pröbsting, Stefan

    2018-05-01

    Particle image velocimetry for the experimental assessment of trailing edge noise sources has become focus of research in recent years. The present study investigates the feasibility of the noise prediction for high-lift devices based on time-resolved particle image velocimetry (PIV). The model under investigation is a NACA 0015 airfoil with a Gurney flap with a height of 6% of the chord length. The velocity fields around and downstream of the Gurney flap were measured by PIV and used to compute the corresponding pressure fields by solving the Poisson equation for incompressible flows. The reconstructed pressure fluctuations on the airfoil surface constitute the source term for Curle's aeroacoustic analogy, which was employed in both the distributed and compact formulation to estimate the noise emission from PIV. The results of the two formulations are compared with the simultaneous far-field microphone measurements in the temporal and spectral domains. Both formulations of Curle's analogy yield acoustic sound pressure levels in good agreement with the simultaneous microphone measurements for the tonal component. The estimated far-field sound power spectra (SPL) from the PIV measurements reproduce the peak at the vortex shedding frequency, which also agrees well with the acoustic measurements.

  12. NACA Subcommittee on Combustion Meeting

    NASA Image and Video Library

    1951-12-21

    The National Advisory Committee for Aeronautics (NACA) Subcommittee on Combustion holds a meeting at Lewis Flight Propulsion Laboratory in Cleveland, Ohio. The NACA was managed by committees that included members of their own staff along with representatives from industry, the military, other government agencies, and universities. The 17-person Executive Committee was the NACA’s primary administrative body. They met several times a year at the NACA headquarters office in Washington DC to discuss broad issues confronting the US aeronautical community. Jerome Hunsaker, head of the Department of Aeronautical Engineering at the Massachusetts Institute of Technology, served as the NACA chairman from 1941 to 1956. George Lewis was not a member of the Executive Committee but served a key role as the NACA’s Director of Aeronautical Research. The NACA’s organizational chart also included 11 technical committees, several of which had specialized subcommittees. There were over 100 different subcommittees between World War I and 1958. The number of active subcommittees varied over the years. Most existed only for a few years, but some continued for over a decade. The subcommittees met three or four times per year, often at the laboratory most closely associated with the area of research. A team of laboratory researchers presented briefings on their recent activities and plans for the future. The Subcommittee on Combustion existed from 1945 to the NACA’s demise in 1958.

  13. The conformal transformation of an airfoil into a straight line and its application to the inverse problem of airfoil theory

    NASA Technical Reports Server (NTRS)

    Mutterperl, William

    1944-01-01

    A method of conformal transformation is developed that maps an airfoil into a straight line, the line being chosen as the extended chord line of the airfoil. The mapping is accomplished by operating directly with the airfoil ordinates. The absence of any preliminary transformation is found to shorten the work substantially over that of previous methods. Use is made of the superposition of solutions to obtain a rigorous counterpart of the approximate methods of thin-airfoils theory. The method is applied to the solution of the direct and inverse problems for arbitrary airfoils and pressure distributions. Numerical examples are given. Applications to more general types of regions, in particular to biplanes and to cascades of airfoils, are indicated. (author)

  14. Wind Tunnel and Numerical Analysis of Thick Blunt Trailing Edge Airfoils

    NASA Astrophysics Data System (ADS)

    McLennan, Anthony William

    Two-dimensional aerodynamic characteristics of several thick blunt trailing edge airfoils are presented. These airfoils are not only directly applicable to the root section of wind turbine blades, where they provide the required structural strength at a fraction of the material and weight of an equivalent sharp trailing edge airfoil, but are also applicable to the root sections of UAVs having high aspect ratios, that also encounter heavy root bending forces. The Reynolds averaged Navier-Stokes code, ARC2D, was the primary numerical tool used to analyze each airfoil. The UCD-38-095, referred to as the Pareto B airfoil in this thesis, was also tested in the University of California, Davis Aeronautical Wind Tunnel. The Pareto B has an experimentally determined maximum lift coefficient of 1.64 at 14 degrees incidence, minimum drag coefficient of 0.0385, and maximum lift over drag ratio of 35.9 at a lift coefficient of 1.38, 10 degrees incidence at a Reynolds number of 666,000. Zig-zag tape at 2% and 5% of the chord was placed on the leading edge pressure and suction side of the Pareto B model in order to determine the aerodynamic performance characteristics at turbulent flow conditions. Experimental Pareto B wind tunnel data and previous FB-3500-0875 data is also presented and used to validate the ARC2D results obtained in this study. Additionally MBFLO, a detached eddy simulation Navier-Stokes code, was used to analyze the Pareto B airfoil for comparison and validation purposes.

  15. Numerical simulation and comparison of symmetrical/supercritical airfoils for the near tip region of a helicopter in forward flight

    NASA Technical Reports Server (NTRS)

    Badavi, F. F.

    1989-01-01

    Aerodynamic loads on a multi-bladed helicopter rotor in forward flight at transonic tip conditions are calculated. The unsteady, three-dimensional, time-accurate compressible Reynolds-averaged thin layer Navier-Stokes equations are solved in a rotating coordinate system on a body-conformed, curvilinear grid of C-H topology. Detailed boundary layer and global numerical comparisons of NACA-0012 symmetrical and CAST7-158 supercritical airfoils are made under identical forward flight conditions. The rotor wake effects are modeled by applying a correction to the geometric angle of attack of the blade. This correction is obtained by computing the local induced downwash velocity with a free wake analysis program. The calculations are performed on the Numerical Aerodynamic Simulation Cray 2 and the VPS32 (a derivative of a Cyber 205 at the Langley Research Center) for a model helicopter rotor in forward flight.

  16. Na/Ca Ratio in Large Benthic Foraminifera as a Novel Proxy for Past Ocean Calcium

    NASA Astrophysics Data System (ADS)

    Rosenthal, Y.; Hauzer, H.; Evans, D.; Erez, J.

    2017-12-01

    Culture experiments with Operculina ammonoides (a large symbiont bearing benthic foraminifer and an extant relative of the Eocene Nummulites) were carried out varying seawater [Ca], temperature and salinity. The main results of these experiments are: 1. Na/Ca in these foraminifera shells varies with the Na/Ca ratio in the seawater 2. Na/Ca shows small, non-systematic variations with temperature (22-28 ºC) that are within our analytical precision. 3. Na/Ca in the shells show very low changes, increasing linearly with salinity. The sensitivity to salinity is very low compared to that caused by changes of Na/Ca in seawater. Over the seawater experimental range of Na/Ca (10-18 mM), a change of 5 ppt salinity induced a slight Na/Ca increase comparable to the analytical error for Na, or that caused by temperature. Initial reconstructions of seawater [Ca], based on these calibrations, generally agree well with previous models and reconstructions confirming that seawater [Ca] concentrations were substantially higher during the early-mid Cenozoic than today.

  17. Index of NACA Technical Publications, 1949 - May, 1951

    NASA Technical Reports Server (NTRS)

    1952-01-01

    The Preface to the Index of NACA Technical Publications, 1915-1949, mentioned that regular supplements would be issued in the future. This is the first such Supplement and covers those documents issued through May of 1951. Similar arrangement is used in both Indexes. First, there is a classified listing of the subject categories; second, a chronological listing of NACA publications under each subject category; third, an alphabetical index to the subject categories; and finally, an author index. The latter feature was not included in the basic 1915-1949 Index but has been issued separately and is available upon request. Immediately following this Preface is an Explanatory Chart of NACA Publications Series Designations which may be of use in identifying references to NACA documents encountered in the literature.

  18. NACA Muroc Staff of 1949 at NACA barbecue

    NASA Technical Reports Server (NTRS)

    1949-01-01

    On a nice day in November 1949 the NACA High-Speed Flight Station employees enjoy a break from a week of research by attending a barbecue on the Rawliegh Duntley ranch. The food was excellent and the camaraderie with friends and family members was welcome. Games were played with the winners applauded--fun for everyone before the start of another week.

  19. Dynamic stall study of a multi-element airfoil

    NASA Technical Reports Server (NTRS)

    Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.

    1992-01-01

    Unsteady flow behavior and load characteristics of a VR-7 airfoil with and without a slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 degrees at a Reynolds number of 200,000 to obtain the unsteady lift, drag and pitching moment data. A fluorescing dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flow field and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.

  20. Nozzle airfoil having movable nozzle ribs

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  1. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  2. Multiple piece turbine engine airfoil with a structural spar

    DOEpatents

    Vance, Steven J [Orlando, FL

    2011-10-11

    A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.

  3. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  4. Performance prediction of asymmetrical bladed H-Darrieus VAWT rotors in low wind speed condition using CFD

    NASA Astrophysics Data System (ADS)

    Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Biswas, Agnimitra; Sharma, Kaushal Kumar

    2018-04-01

    Wind energy is an essential and carbon free form of renewable energy resources. Energy can be easily extracted from wind with the use of Horizontal axis and Vertical axis wind turbine(VAWT). The performance of turbine depends on airfoil shape. The present work emphasizes the aerodynamics of different asymmetrical airfoils used in VAWT rotors. This investigation is conducted for the selection of efficient asymmetrical bladed H-Darrieus VAWT rotor. Five numbers of thick and cambered asymmetrical airfoil is considered for this investigation. A free stream velocity of 6.0 m/s is considered to simulate 2D CFD analysis using k-ɛ turbulence model. The power coefficient (Cp) of all H-Darrieus VAWT rotor increase with increase in TSR value to a certain limit and after it starts decrease with further increase of TSR. In the present investigation the Cp and TSR of NACA 63415 (RT-30%) are found to be higher among all considered asymmetrical airfoils. Moreover, Ct values of NACA 63415 (RT-30%) are also high corresponding to all TSR values. This is due to the long duration of attachment of flow with blade surroundings. Hence, NACA 63415 (RT- 30%) airfoil may be considered as an efficient airfoil among S818, GOE 561, GU25-5(11)8, and KENNEDY AND MARSDEN (kenmar) asymmetrical airfoils.

  5. Numerical Studies on a Rotor with Distributed Suction for Noise Reduction

    NASA Astrophysics Data System (ADS)

    Lutz, Thorsten; Arnold, Benjamin; Wolf, Alexander; Krämer, Ewald

    2014-06-01

    Minimizing the flow-induced noise is an important issue in the design of modern onshore wind turbines. There is a number of proven passive means to reduce the aeroacoustic noise, such as the implementation of serrations, porous trailing edges or the aeroacoustic airfoil design. The noise emission can be further reduced by active flow control techniques. In the present study the impact of distributed boundary layer suction on the noise emission of an airfoil and a complete rotor is investigated. Aerodynamic and aeroacoustic wind tunnel tests were performed for the NACA 64-418 airfoil and supplemented by numerical calculations. The aeroacoustic analyses have been conducted by means of the institute's Rnoise prediction scheme. The 2D studies have shown that noise reductions of 5 dB can be achieved by suction at moderate mass flow rates. To study the impact of three-dimensional effects numerical investigations have been conducted on the example of the generic NREL 5MW rotor with suction applied in the outer part of the blade. The predictions for the complete rotor provided smaller benefits compared to those for the isolated airfoil, mainly because the examined suction configurations were not optimized with respect to the extent of the suction patch and suction distribution.

  6. Analysis of unswept and swept wing chordwise pressure data from an oscillating NACA 0012 airfoil experiment. Volume 1: Technical Report

    NASA Technical Reports Server (NTRS)

    St.hilaire, A. O.; Carta, F. O.

    1983-01-01

    The unsteady chordwise force response on the airfoil surface was investigated and its sensitivity to the various system parameters was examined. A further examination of unsteady aerodynamic data on a tunnel spanning wing (both swept and unswept), obtained in a wind tunnel, was performed. The main body of this data analysis was carried out by analyzing the propagation speed of pressure disturbances along the chord and by studying the behavior of the unsteady part of the chordwise pressure distribution at various points of the airfoil pitching cycle. It was found that Mach number effects dominate the approach to and the inception of both static and dynamic stall. The stall angle decreases as the Mach number increases. However, sweep dominates the load behavior within the stall regime. Large phase differences between unswept and swept responses, that do not exist at low lift coefficient, appear once the stall boundary is penetrated. It was also found that reduced frequency is not a reliable indicator of the unsteady aerodynamic response in the high angle of attack regime.

  7. Groundbreaking Ceremony at the NACA's Plum Brook Station

    NASA Image and Video Library

    1956-09-21

    Addison Rothrock, the National Advisory Committee for Aeronautics’s (NACA) Assistant Director of Research, speaks at the groundbreaking ceremony for the Lewis Flight Propulsion Laboratory’s new test reactor at Plum Brook Station. This dedication event was held almost exactly one year after the NACA announced that it would build its $4.5 million nuclear reactor on 500 acres of the army’s 9000-acre Plum Brook Ordnance Works. The site was located in Sandusky, Ohio, approximately 60 miles west of the NACA Lewis laboratory in Cleveland. Lewis Director Raymond Sharp is seated to the left of Rothrock, Congressman Albert Baumhart and NACA Secretary John Victory are to the right. Many government and local officials were on hand for the press conference and ensuing luncheon. In the wake of World War II the military, the Atomic Energy Commission, and the NACA became interested in the use of atomic energy for propulsion and power. A Nuclear Division was established at NACA Lewis in the early 1950s. The division’s request for a 60-megawatt research reactor was approved in 1955. The semi-remote Plum Brook location was selected over 17 other possible sites. Construction of the Plum Brook Reactor Facility lasted five years. By the time of its first trial runs in 1961 the aircraft nuclear propulsion program had been cancelled. The space age had arrived, however, and the reactor would be used to study materials for a nuclear powered rocket.

  8. An experimental study of airfoil instability tonal noise with trailing edge serrations

    NASA Astrophysics Data System (ADS)

    Chong, Tze Pei; Joseph, Phillip F.

    2013-11-01

    This paper presents an experimental study of the effect of trailing edge serrations on airfoil instability noise. Detailed aeroacoustic measurements are presented of the noise radiated by an NACA-0012 airfoil with trailing edge serrations in a low to moderate speed flow under acoustical free field conditions. The existence of a separated boundary layer near the trailing edge of the airfoil at an angle of attack of 4.2 degree has been experimentally identified by a surface mounted hot-film arrays technique. Hot-wire results have shown that the saw-tooth surface can trigger a bypass transition and prevent the boundary layer from becoming separated. Without the separated boundary layer to act as an amplifier for the incoming Tollmien-Schlichting waves, the intensity and spectral characteristic of the radiated tonal noise can be affected depending upon the serration geometry. Particle Imaging Velocimetry (PIV) measurements of the airfoil wakes for a straight and serrated trailing edge are also reported in this paper. These measurements show that localized normal-component velocity fluctuations that are present in a small region of the wake from the laminar airfoil become weakened once serrations are introduced. Owing to the above unique characteristics of the serrated trailing edges, we are able to further investigate the mechanisms of airfoil instability tonal noise with special emphasis on the assessment of the wake and non-wake based aeroacoustic feedback models. It has been shown that the instability tonal noise generated at an angle of attack below approximately one degree could involve several complex mechanisms. On the other hand, the non-wake based aeroacoustic feedback mechanism alone is sufficient to predict all discrete tone frequencies accurately when the airfoil is at a moderate angle of attack. Larger Δf, which is defined as (fn+1-fn). In other words, a larger margin of velocity increase is required in order to "shift" the fn and fn+1 across fs

  9. Modern Airfoil Ice Accretions

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.

    1997-01-01

    This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.

  10. Aerodynamic sound of flow past an airfoil

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1995-01-01

    The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord

  11. A study of high-lift airfoils at high Reynolds numbers in the Langley low-turbulence pressure tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L., Jr.; Ferris, James C.; Mcghee, Robert J.

    1987-01-01

    An experimental study was conducted in the Langley Low Turbulence Pressure Tunnel to determine the effects of Reynolds number and Mach number on the two-dimensional aerodynamic performance of two supercritical type airfoils, one equipped with a conventional flap system and the other with an advanced high lift flap system. The conventional flap system consisted of a leading edge slat and a double slotted, trailing edge flap with a small chord vane and a large chord aft flap. The advanced flap system consisted of a leading edge slat and a double slotted, trailing edge flap with a large chord vane and a small chord aft flap. Both models were tested with all elements nested to form the cruise airfoil and with the leading edge slat and with a single or double slotted, trailing edge flap deflected to form the high lift airfoils. The experimental tests were conducted through a Reynolds number range from 2.8 to 20.9 x 1,000,000 and a Mach number range from 0.10 to 0.35. Lift and pitching moment data were obtained. Summaries of the test results obtained are presented and comparisons are made between the observed aerodynamic performance trends for both models. The results showing the effect of leading edge frost and glaze ice formation is given.

  12. Method for forming a liquid cooled airfoil for a gas turbine

    DOEpatents

    Grondahl, Clayton M.; Willmott, Leo C.; Muth, Myron C.

    1981-01-01

    A method for forming a liquid cooled airfoil for a gas turbine is disclosed. A plurality of holes are formed at spaced locations in an oversized airfoil blank. A pre-formed composite liquid coolant tube is bonded into each of the holes. The composite tube includes an inner member formed of an anti-corrosive material and an outer member formed of a material exhibiting a high degree of thermal conductivity. After the coolant tubes have been bonded to the airfoil blank, the airfoil blank is machined to a desired shape, such that a portion of the outer member of each of the composite tubes is contiguous with the outer surface of the machined airfoil blank. Finally, an external skin is bonded to the exposed outer surface of both the machined airfoil blank and the composite tubes.

  13. NACA Conference on Aircraft Loads, Flutter, and Structures: A compilation of Papers Presented.

    DTIC Science & Technology

    1953-03-04

    Variation of Atmospheric Turbulence With Altitude and Its Effect on Airplane Gust Loads . . . by Robert L. McDougal, Thomas L. Coleman, and Philip L. Smith ...SKOPINSKI, T. H. NACA - Langley Laboratory xvii CONFIDENTIAL CONFIDENTIAL SMETHERS, Rollo G. Bureau of Aeronautics SMITH , Dana W. NACA Subcommittee on...Aircraft Structural Materials SMITH , Frank C. National Bureau of Standards SMITH , Henry G. Hughes Aircraft Co. SMITH , Howard W. NACA Subcommittee on Aircraft

  14. Trailing edge flow conditions as a factor in airfoil design

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Maughmer, M. D.

    1984-01-01

    Some new developments relevant to the design of single-element airfoils using potential flow methods are presented. In particular, the role played by the non-dimensional trailing edge velocity in design is considered and the relationship between the specified value and the resulting airfoil geometry is explored. In addition, the ramifications of the unbounded trailing edge pressure gradients generally present in the potential flow solution of the flow over an airfoil are examined, and the conditions necessary to obtain a class of airfoils having finite trailing edge pressure gradients developed. The incorporation of these conditions into the inverse method of Eppler is presented and the modified scheme employed to generate a number of airfoils for consideration. The detailed viscous analysis of airfoils having finite trailing edge pressure gradients demonstrates a reduction in the strong inviscid-viscid interactions generally present near the trailing edge of an airfoil.

  15. Re-Computation of Numerical Results Contained in NACA Report No. 496

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III

    2015-01-01

    An extensive examination of NACA Report No. 496 (NACA 496), "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen, is described. The examination included checking equations and solution methods and re-computing interim quantities and all numerical examples in NACA 496. The checks revealed that NACA 496 contains computational shortcuts (time- and effort-saving devices for engineers of the time) and clever artifices (employed in its solution methods), but, unfortunately, also contains numerous tripping points (aspects of NACA 496 that have the potential to cause confusion) and some errors. The re-computations were performed employing the methods and procedures described in NACA 496, but using modern computational tools. With some exceptions, the magnitudes and trends of the original results were in fair-to-very-good agreement with the re-computed results. The exceptions included what are speculated to be computational errors in the original in some instances and transcription errors in the original in others. Independent flutter calculations were performed and, in all cases, including those where the original and re-computed results differed significantly, were in excellent agreement with the re-computed results. Appendix A contains NACA 496; Appendix B contains a Matlab(Reistered) program that performs the re-computation of results; Appendix C presents three alternate solution methods, with examples, for the two-degree-of-freedom solution method of NACA 496; Appendix D contains the three-degree-of-freedom solution method (outlined in NACA 496 but never implemented), with examples.

  16. Investigation of airfoil leading edge separation control with nanosecond plasma actuator

    NASA Astrophysics Data System (ADS)

    Zheng, J. G.; Cui, Y. D.; Zhao, Z. J.; Li, J.; Khoo, B. C.

    2016-11-01

    A combined numerical and experimental investigation of airfoil leading edge flow separation control with a nanosecond dielectric barrier discharge (DBD) plasma actuator is presented. Our study concentrates on describing dynamics of detailed flow actuation process and elucidating the nanosecond DBD actuation mechanism. A loose coupling methodology is employed to perform simulation, which consists of a self-similar plasma model for the description of pulsed discharge and two-dimensional Reynolds averaged Navier-Stokes (RANS) equations for the calculation of external airflow. A series of simulations of poststall flows around a NACA0015 airfoil is conducted with a Reynolds number range covering both low and high Re at Re=(0.05 ,0.15 ,1.2 ) ×106 . Meanwhile, wind-tunnel experiment is performed for two low Re flows to measure aerodynamic force on airfoil model and transient flow field with time-resolved particle image velocimetry (PIV). The PIV measurement provides possibly the clearest view of flow reattachment process under the actuation of a nanosecond plasma actuator ever observed in experiments, which is highly comparable to that predicted by simulation. It is found from the detailed simulation that the discharge-induced residual heat rather than shock wave plays a dominant role in flow control. For any leading edge separations, the preliminary flow reattachment is realized by residual heat-induced spanwise vortices. After that, the nanosecond actuator functions by continuing exciting flow instability at poststall attack angles or acting as an active trip near stall angle. As a result, the controlled flow is characterized by a train of repetitive, downstream moving vortices over suction surface or an attached turbulent boundary layer, which depends on both angle of attack and Reynolds number. The advection of residual temperature with external flow offers a nanosecond plasma actuator a lot of flexibility to extend its influence region. Animations are provided for

  17. Experimental study of performance degradation of a model helicopter main rotor with simulated ice shapes

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Cross, E. J., Jr.; Cornell, C. C.

    1984-01-01

    An experimental study utilizing a remote controlled model helicopter has been conducted to measure the performance degradation due to simulated ice accretion on the leading edge of the main rotor for hover and forward flight. The 53.375 inch diameter main rotor incorporates a NACA 0012 airfoil with a generic ice shape corresponding to a specified natural ice condition. Thrust coefficients and torque coefficients about the main rotor were measured as a function of velocity, main rotor RPM, angle-of-incidence of the fuselage, collective pitch angle, and extent of spanwise ice accretion. An experimental airfoil data bank has been determined using a two-dimensional twenty-one inch NACA 0012 airfoil with scaled ice accretion shapes identical to that used on the model helicopter main rotor. The corresponding experimental data are discussed with emphasis on Reynolds number effects and ice accretion scale model testing.

  18. Investigation on Convergence – Divergence Nozzle Shape for Microscale Channel in Harvesting Kinetic Energy

    NASA Astrophysics Data System (ADS)

    Zakaria, M. S.; Zairi, S.; Misbah, M. N.; Saifizi, M.; Rakawi, Izzudin

    2018-03-01

    This paper presents performance evaluation of nozzle shapes on microscale channel by employing different types of NACA airfoils profile and conventional profile. The deploying nozzle used are NACA 0012, NACA 0021 and NACA 0024 airfoils while for conventional convergence-divergence nozzle diameter ratio (d2 / d1) in the range from 1/4 to 3/4 are applied. These nozzles are assembled on rectangular cross sectional microscale channel which has designated constant fluid flow velocity at the channel inlet. This study revealed reduction on diameter ratio increased dramatically fluid velocity but further reduction on diameter ratio exposed fluid flow to fluctuate which slightly slowing down the fluid velocity. Nevertheless, curved NACA profiles are favourable for convergence – divergence nozzle in microscale channel as it significantly improved flow characteristics by enhancing fluid velocity and resultant kinetic energy as compared to conventional profile.

  19. NACA Researcher Sets up a Test of a New Seat Design

    NASA Image and Video Library

    1954-05-21

    A researcher at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory prepares for a test of an NACA-designed aircraft seat. The laboratory had undertaken a multi-year investigation into the causes and prevention of fires on low altitude aircraft crashes. The program was expanded in the mid-1950s to include the study of impact on passengers, types of seat restraints, and seat design. The crash impact portion of the program began by purposely wrecking surplus Fairchild C-82 Packet and Piper Cub aircraft into barricades at the end of a test runway at the Ravenna Arsenal, located approximately 40 miles south of the Lewis lab in Cleveland. Instrumented dummies and cameras were installed in the pilot and passenger areas. After determining the different loads and their effects on the passengers, the NACA researchers began designing new types of seats and restraints. The result was an elastic seat that flexed upon impact, absorbing 75 percent of the loads before it slowly recoiled. This photograph shows the seats mounted on a pendulum with a large spring behind the platform to provide the jolt that mimicked the forces of a crash. The seat was constructed without any potentially damaging metal parts and included rubber-like material, an inflated back and arms, and a seat cushion. After the pendulum tests, the researchers compared the flexible seats to the rigid seats during a crash of a transport aircraft. They found the passengers in the rigid seats received 66 percent higher g-forces than the NACA-designed seats.

  20. Vortex shedding within laminar separation bubbles forming over an airfoil

    NASA Astrophysics Data System (ADS)

    Kirk, Thomas M.; Yarusevych, Serhiy

    2017-05-01

    Vortex shedding within laminar separation bubbles forming over the suction side of a NACA 0018 airfoil is studied through a combination of high-speed flow visualization and boundary layer measurements. Wind tunnel experiments are performed at a chord-based Reynolds number of 100,000 and four angles of attack. The high-speed flow visualization is complemented by quantitative velocity and surface pressure measurements. The structures are shown to originate from the natural amplification of small-amplitude disturbances, and the shear layer roll-up is found to occur coherently across the span. However, significant cycle-to-cycle variations are observed in vortex characteristics, including shedding period and roll-up location. The formation of the roll-up vortices precedes the later stages of transition, during which these structures undergo significant deformations and breakdown to smaller scales. During this stage of flow development, vortex merging is also observed. The results provide new insight into the development of coherent structures in separation bubbles and their relation to the overall bubble dynamics and mean bubble topology.

  1. Index of Naca Technical Publications, June 1953 - May 1954

    NASA Technical Reports Server (NTRS)

    1954-01-01

    The Preface to the Index of NACA Technical Publications, 1915 - 1949, mentioned that regular supplements would be issued in the future. This is the third such Supplement and covers those documents issued from June 1953 through May 1954. Also included are certain documents dated prior to June 1953 which have been declassified during the period covered by this supplement. Similar arrangement is used in these Indexes. First, there is a classified listing of the subject categories; second, a chronological listing of NACA publications under each subject category; third, an alphabetical index to the subject categories; and finally, an author index. Immediately following this Preface is an Explanatory Chart of NACA Publications Series Designations which may be of use in identifying references to NACA research reports encountered in the literature.

  2. Index of NACA Technical Publications: June, 1955 - June, 1956

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This Index of NACA Technical Publications covers those NACA research reports issued in the period of June 1955 through June 1956. It is the fifth supplement to the basic 1919-1949 Index. The res ear c h reports issued prior to June 1955 which have been declassified since that date have also been included. In addition, current announcement of newly declassified materials is regularly made in the NACA Research Abstracts and Reclassification Notice. The arrangement of the present Index follows that of its predecessors: (1) A listing of the subject categories by numerical classifications, (2) a chronological listing of the NACA research reports under each subject category, (3) an aIphabe ic a I index to the subject categories, and (4) an author index. An Explanatory Chart on page iii may be helpful in identifying references to NACA research reports encountered in the literature. Entries included herein duplicate in part the information of the index cards furnished with the individual research reports. Recipients maintaining card fiIes may wish to discard those index cards on hand for unclassified research reports issued during the June 1955-June 1956 period. Newly available research reports are currently announced in the NACA Research Abstracts and Reclassification Notice and are normally available for a period of five years after announcement. Most of the older research reports (those issued prior to May 1951) are thus available on a "loan only" basis within the United States

  3. Pressure Distribution Over Thick Tapered Airfoils, NACA 81, USA 27c Modified and USA 35

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1926-01-01

    At the request of the United States Army Air Service, the tests reported herein were conducted in the 5-foot atmospheric wind tunnel of the Langley Memorial Aeronautical Laboratory. The object was the measurment of pressures over three representative thick, tapered airfoils which are being used on existing or forthcoming army airplanes. The results are presented in the form of pressure maps, cross-plan load and normal force coefficient curves and load contours. The pressure distribution along the chord was found very similar to that for thin wings, but with a tendency toward greater negative pressures. The characteristics of the loading across the span of the U. S. A. 27 C modified are inferior to those of the other two wings; in the latter the distribution is almost exactly elliptical throughout the usual range of flying angles. The form of tip incorporated in these models is not completely satisfactory and a modification is recommended. (author)

  4. Propulsion of a flapping and oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Garrick, I E

    1937-01-01

    Formulas are given for the propelling or drag force experience in a uniform air stream by an airfoil or an airfoil-aileron combination, oscillating in any of three degrees of freedom; vertical flapping, torsional oscillations about a fixed axis parallel to the span, and angular oscillations of the aileron about a hinge.

  5. A two dimensional study of rotor/airfoil interaction in hover

    NASA Technical Reports Server (NTRS)

    Lee, Chyang S.

    1988-01-01

    A two dimensional model for the chordwise flow near the wing tip of the tilt rotor in hover is presented. The airfoil is represented by vortex panels and the rotor is modeled by doublet panels. The rotor slipstream and the airfoil wake are simulated by free point vortices. Calculations on a 20 percent thick elliptical airfoil under a uniform rotor inflow are performed. Variations on rotor size, spacing between the rotor and the airfoil, ground effect, and the influence upper surface blowing in download reduction are analyzed. Rotor size has only a minor influence on download when it is small. Increase of the rotor/airfoil spacing causes a gradual decrease on download. Proximity to the ground effectively reduces the download and makes the wake unsteady. The surface blowing changes the whole flow structure and significantly reduces the download within the assumption of a potential solution. Improvement on the present model is recommended to estimate the wall jets induced suction on the airfoil lower surface.

  6. Development of a large-scale, outdoor, ground-based test capability for evaluating the effect of rain on airfoil lift

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Campbell, Bryan A.

    1993-01-01

    A large-scale, outdoor, ground-based test capability for acquiring aerodynamic data in a simulated rain environment was developed at the Langley Aircraft Landing Dynamics Facility (ALDF) to assess the effect of heavy rain on airfoil performance. The ALDF test carriage was modified to transport a 10-ft-chord NACA 64210 wing section along a 3000-ft track at full-scale aircraft approach speeds. An overhead rain simulation system was constructed along a 525-ft section of the track with the capability of producing simulated rain fields of 2, 10, 30, and 40 in/hr. The facility modifications, the aerodynamic testing and rain simulation capability, the design and calibration of the rain simulation system, and the operational procedures developed to minimize the effect of wind on the simulated rain field and aerodynamic data are described in detail. The data acquisition and reduction processes are also presented along with sample force data illustrating the environmental effects on data accuracy and repeatability for the 'rain-off' test condition.

  7. Airfoil Dynamic Stall and Rotorcraft Maneuverability

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    2000-01-01

    The loading of an airfoil during dynamic stall is examined in terms of the augmented lift and the associated penalties in pitching moment and drag. It is shown that once stall occurs and a leading-edge vortex is shed from the airfoil there is a unique relationship between the augmented lift, the negative pitching moment, and the increase in drag. This relationship, referred to here as the dynamic stall function, shows limited sensitivity to effects such as the airfoil section profile and Mach number, and appears to be independent of such parameters as Reynolds number, reduced frequency, and blade sweep. For single-element airfoils there is little that can be done to improve rotorcraft maneuverability except to provide good static C(l(max)) characteristics and the chord or blade number that is required to provide the necessary rotor thrust. However, multi-element airfoils or airfoils with variable geometry features can provide augmented lift in some cases that exceeds that available from a single-element airfoil. The dynamic stall function is shown to be a useful tool for the evaluation of both measured and calculated dynamic stall characteristics of single element, multi-element, and variable geometry airfoils.

  8. Spline-Based Smoothing of Airfoil Curvatures

    NASA Technical Reports Server (NTRS)

    Li, W.; Krist, S.

    2008-01-01

    Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been

  9. Robust, Optimal Subsonic Airfoil Shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.

  10. Aerodynamic Efficiency Analysis on Modified Drag Generator of Tanker-Ship Using Symmetrical Airfoil

    NASA Astrophysics Data System (ADS)

    Moranova, Starida; Rahmat Hadiyatul A., S. T.; Indra Permana S., S. T.

    2018-04-01

    Time reduction of tanker ship spent in the sea should be applied for solving problems occured in oil and gas distribution, such as the unpunctuality of the distribution and oil spilling. The aerodynamic design for some parts that considered as drag generators is presumed to be one of the solution, utilizing our demand of the increasing speed. This paper suggests two examples of the more-aerodynamic design of a part in the tanker that is considered a drag generator, and reports the value of drag generated from the basic and the suggested aerodynamic designs. The new designs are made by adding the NACA airfoil to the cross section of the drag generator. The scenario is assumed with a 39 km/hour speed of tanker, neglecting the hydrodynamic effects occured in the tanker by cutting it at the waterline which separated the drag between air and water. The results of produced drag in each design are calculated by Computational Fluid Dynamic method.

  11. Exploratory investigation of sound pressure level in the wake of an oscillating airfoil in the vicinity of stall

    NASA Technical Reports Server (NTRS)

    Gray, R. B.; Pierce, G. A.

    1972-01-01

    Wind tunnel tests were performed on two oscillating two-dimensional lifting surfaces. The first of these models had an NACA 0012 airfoil section while the second simulated the classical flat plate. Both of these models had a mean angle of attack of 12 degrees while being oscillated in pitch about their midchord with a double amplitude of 6 degrees. Wake surveys of sound pressure level were made over a frequency range from 16 to 32 Hz and at various free stream velocities up to 100 ft/sec. The sound pressure level spectrum indicated significant peaks in sound intensity at the oscillation frequency and its first harmonic near the wake of both models. From a comparison of these data with that of a sound level meter, it is concluded that most of the sound intensity is contained within these peaks and no appreciable peaks occur at higher harmonics. It is concluded that within the wake the sound intensity is largely pseudosound while at one chord length outside the wake, it is largely true vortex sound. For both the airfoil and flat plate the peaks appear to be more strongly dependent upon the airspeed than on the oscillation frequency. Therefore reduced frequency does not appear to be a significant parameter in the generation of wake sound intensity.

  12. Full-Scale Tests of Several Propellers Equipped with Spinners, Cuffs, Airfoil and Round Shanks, and NACA 16-Series Sections, Special Report

    NASA Technical Reports Server (NTRS)

    Biermann, David; Hartman, Edwin P.; Pepper, Edward

    1940-01-01

    Wind-tunnel tests of several propeller, cuff, and spinner combinations were conducted in the 20 foot propeller-research tunnel. Three propellers, which ranged in diameter from 8.4 to 11.25 feet, were tested at the front end of a streamline body incorporating spinners of two diameters. The tests covered a blade angle range from 20 deg to 65 deg. The effect of spinner diameter and propeller cuffs on the characteristics of one propeller was determined. Test were also conducted using a propeller which incorporated aerodynamically good shank sections and using one which incorporated the NACA 16 series sections for the outer 20 percent of the blades. Compressibility effects were not measured, owing to the low testing speeds. The results indicated that a conventional propeller was slightly more efficient when tested in conjunction with a 28 inch diameter spinner than with a 23 inch spinner, and that cuffs increased the efficiency as well as the power absorption characteristics. A propeller having good aerodynamic shanks was found to be definitely superior from the efficiency standpoint to a conventional round-shank propeller with or without cuffs; this propeller would probably be considered structurally impracticable, however. The propeller incorporating the NACA 16 series sections at the tims were found to have a slightly higher efficiency than a conventional propeller; the take-off characteristics appeared to be equally good. The effects noted above probably would be accentuated at helical speeds at which compressibility effects would enter.

  13. Supercritical flow past a symmetrical bicircular arc airfoil

    NASA Technical Reports Server (NTRS)

    Holt, Maurice; Yew, Khoy Chuah

    1989-01-01

    A numerical scheme is developed for computing steady supercritical flow about symmetrical airfoils, applying it to an ellipse for zero angle of attack. An algorithmic description of this new scheme is presented. Application to a symmetrical bicircular arc airfoil is also proposed. The flow field before the shock is region 1. For transonic flow, singularity can be avoided by integrating the resulting ordinary differential equations away from the body. Region 2 contains the shock which will be located by shock fitting techniques. The shock divides region 2 into supersonic and subsonic regions and there is no singularity problem in this case. The Method of Lines is used in this region and it is advantageous to integrate the resulting ordinary differential equation along the body for shock fitting. Coaxial coordinates have to be used for the bicircular arc airfoil so that boundary values on the airfoil body can be taken with one direction of the coaxial coordinates fixed. To avoid taking boundary values at + or - infinity in the coaxial co-ordinary system, approximate analytical representation of the flow field near the tips of the airfoil is proposed.

  14. Spatial and mineralogic variation of Na-Ca alteration in Laramide porphyry systems of Arizona

    NASA Astrophysics Data System (ADS)

    Runyon, S.; Seedorff, E.; Barton, M. D.; Mazdab, F. K.; Lecumberri-Sanchez, P.; Steele-MacInnis, M.

    2017-12-01

    Na-Ca alteration is characterized by the metasomatic addition of Ca ± Na and the loss of K. Minor volumes of Na-Ca alteration in Laramide porphyry systems develops from 3 to 8 km paleodepth. Mineral assemblages, mineral compositions, hydrogen isotopes, whole-rock analyses, and reconnaissance fluid inclusion characteristics have been documented for Na-Ca alteration in Laramide porphyry systems such as Tea Cup and Sierrita. Volumetrically minor Na-Ca alteration in Laramide porphyry systems documented in this study commonly takes the form of one of three mineral assemblages: albite-epidote-chlorite, Na-plagioclase-actinolite ± epidote, and garnet- or diopside-stable Na-plagioclase-actinolite ± epidote. These different Na-Ca mineral assemblages have broad spatial relationships, from shallow albite-chlorite-epidote to deeper Na-plagioclase-actinolite within a given district. Hydrogen isotope data on Na-Ca alteration minerals shows consistently distinct δD compositions of Na-Ca alteration minerals compared to igneous minerals in a given district. Further, calculated hydrogen isotope composition of fluids in equilibrium with Na-Ca alteration minerals are consistently enriched in δD compared to magmatic-hydrothermal fluids. Whole-rock analyses show consistent losses of K and variable addition of Na and Ca across different Na-Ca alteration assemblages. Na-Ca alteration has been well documented associated with the Jurassic arc. Previous studies demonstrated through mass balance, timing and spatial relationships, isotopic, and fluid inclusion studies that Na-Ca alteration associated with the Jurassic arc likely formed from the circulation of external, highly saline, non-magmatic fluids (e.g., Battles and Barton, 1995; Dilles et al., 1995). Na-Ca alteration documented in Laramide systems is generally similar to Na-Ca alteration documented along the Jurassic arc in mineral assemblages, compositions, and timing, but the volume of Na-Ca alteration in the Laramide systems is

  15. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    2000-01-01

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  16. Aerodynamics of a Flapping Airfoil with a Flexible Tail

    NASA Astrophysics Data System (ADS)

    Lai, Alan Kai San

    This dissertation presents computational solutions to an airfoil in a oscillatory heaving motion with a aeroelastically flexible tail attachment. An unsteady potential flow solver is coupled to a structural solver to obtain the aeroelastic flow solution over an inviscid fluid to investigate the propulsive performance of such a configuration. The simulation is then extended to a two-dimensional viscous solver by coupling NASA's CFL3D solver to the structural solver to study how the flow is altered by the presence of viscosity. Finally, additional simulations are done in three dimensions over wings with varying aspect ratio to study the three-dimensional effects on the propulsive performance of an airfoil with an aeroelastic tail. The computation reveals that the addition of the aeroelastic trailing edge improved the thrust generated by a heaving airfoil significantly. As the frequency of the heaving motion increases, the thrust generated by the airfoil with the tail increases exponentially. In an inviscid fluid, the increase in thrust is insufficient to overcome the increase in power required to maintain the motion and as a result the overall propulsive efficiency is reduced. When the airfoil is heaving in a viscous fluid, the presence of a suction boundary layer and the appearance of leading edge vortex increase the thrust generated to such an extent that the propulsive efficiency is increased by about 3% when compared to the same airfoil with a rigid tail. The three-dimensional computations shows that the presence of the tip vorticies suppress some of the increase in thrust observed in the two-dimensional viscous computations for short span wings. For large span wings, the overall thrust enhancing capabilities of the aeroelastic tail is preserved.

  17. Comparison of Full-Scale Propellers Having R.A.F.-6 and Clark Y Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Freeman, Hugh B

    1932-01-01

    In this report the efficiencies of two series of propellers having two types of blade sections are compared. Six full-scale propellers were used, three having R. A. F.-6 and three Clark Y airfoil sections with thickness/chord ratios of 0.06, 0.08, and 0.10. The propellers were tested at five pitch setting, which covered the range ordinarily used in practice. The propellers having the Clark Y sections gave the highest peak efficiency at the low pitch settings. At the high pitch settings, the propellers with R. A. F.-6 sections gave about the same maximum efficiency as the Clark Y propellers and were more efficient for the conditions of climb and take-off.

  18. Multiple piece turbine airfoil

    DOEpatents

    Kimmel, Keith D; Wilson, Jr., Jack W.

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  19. Direct Numerical Simulation of an Airfoil with Sand Grain Roughness on the Leading Edge

    NASA Technical Reports Server (NTRS)

    Ribeiro, Andre F. P.; Casalino, Damiano; Fares, Ehab; Choudhari, Meelan

    2016-01-01

    As part of a computational study of acoustic radiation due to the passage of turbulent boundary layer eddies over the trailing edge of an airfoil, the Lattice-Boltzmann method is used to perform direct numerical simulations of compressible, low Mach number flow past an NACA 0012 airfoil at zero degrees angle of attack. The chord Reynolds number of approximately 0.657 million models one of the test conditions from a previous experiment by Brooks, Pope, and Marcolini at NASA Langley Research Center. A unique feature of these simulations involves direct modeling of the sand grain roughness on the leading edge, which was used in the abovementioned experiment to trip the boundary layer to fully turbulent flow. This report documents the findings of preliminary, proof-of-concept simulations based on a narrow spanwise domain and a limited time interval. The inclusion of fully-resolved leading edge roughness in this simulation leads to significantly earlier transition than that in the absence of any roughness. The simulation data is used in conjunction with both the Ffowcs Williams-Hawkings acoustic analogy and a semi-analytical model by Roger and Moreau to predict the farfield noise. The encouraging agreement between the computed noise spectrum and that measured in the experiment indicates the potential payoff from a full-fledged numerical investigation based on the current approach. Analysis of the computed data is used to identify the required improvements to the preliminary simulations described herein.

  20. Leading-edge singularities in thin-airfoil theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    If the thin airfoil theory is applied to an airfoil having a rounded leading edge, a certain error will arise in the determination of the pressure distribution around the nose. It is shown that the evaluation of the drag of such a blunt nosed airfoil by the thin airfoil theory requires the addition of a leading edge force, analogous to the leading edge thrust of the lifting airfoil. The method of calculation is illustrated by application to: (1) The Joukowski airfoil in subsonic flow; and (2) the thin elliptic cone in supersonic flow. A general formula for the edge force is provided which is applicable to a variety of wing forms.

  1. Turbine airfoil to shround attachment

    DOEpatents

    Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J

    2014-05-06

    A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.

  2. Missile on Display at the 1957 NACA Lewis Inspection

    NASA Image and Video Library

    1957-10-21

    A researcher examines a model being installed in the test section of the 10- by 10-Foot Supersonic Wind Tunnel during the 1957 Inspection of the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The NACA held its annual Inspection at one of its three research laboratories. Representatives from the military, aeronautical industry, universities, and the press were invited to the laboratory to be briefed on the NACA’s latest research efforts and tour the state- of- the- art test facilities. Over 1700 people visited the NACA Lewis in Cleveland, Ohio during the October 7 - 10, 1957 Inspection. NACA researchers Leonard Obery, seen here, James Connors, Leonard, Stitt, David Bowditch gave presentations on high Mach number turbojets at the 10- by 10 tunnel. It had been only 15 years since a jet aircraft had first flown in the US. Since then the sound barrier had been broken and speeds of Mach 2.5 had been achieved. In the late 1950s NACA researchers sought to create an engine that could achieve Mach 4. This type of engine would require an extremely long inlet and nozzle which would have to be capable of adjusting their diameter for different speeds. A Mach 4 engine would require new composite materials to withstand the severe conditions, modified airframes to hold the longer engines, and high temperature seals and lubricants. The 10- by 10-foot tunnel, which had only been in operation for a year and a half, would play a critical role in these studies. NACA researchers at other facilities discussed high energy aircraft fuels and rocket propellants, aircraft noise reduction, hypersonic flight, nuclear propulsion, and high temperature materials.

  3. Experimental Test Results of Energy Efficient Transport (EET) High-Lift Airfoil in Langley Low-Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L., Jr.

    2002-01-01

    This report describes the results of an experimental study conducted in the Langley Low-Turbulence Pressure Tunnel to determine the effects of Reynolds number and Mach number on the two-dimensional aerodynamic performance of the Langley Energy Efficient Transport (EET) High-Lift Airfoil. The high-lift airfoil was a supercritical-type airfoil with a thickness-to- chord ratio of 0.12 and was equipped with a leading-edge slat and a double-slotted trailing-edge flap. The leading-edge slat could be deflected -30 deg, -40 deg, -50 deg, and -60 deg, and the trailing-edge flaps could be deflected to 15 deg, 30 deg, 45 deg, and 60 deg. The gaps and overlaps for the slat and flaps were fixed at each deflection resulting in 16 different configurations. All 16 configurations were tested through a Reynolds number range of 2.5 to 18 million at a Mach number of 0.20. Selected configurations were also tested through a Mach number range of 0.10 to 0.35. The plotted and tabulated force, moment, and pressure data are available on the CD-ROM supplement L-18221.

  4. Surface temperature effect on subsonic stall.

    NASA Technical Reports Server (NTRS)

    Macha, J. M.; Norton, D. J.; Young, J. C.

    1972-01-01

    Results of an analytical and experimental study of boundary layer flow over an aerodynamic surface rejecting heat to a cool environment. This occurs following reentry of a Space Shuttle vehicle. Analytical studies revealed that a surface to freestream temperature ratio, greater than unity tended to destabilize the boundary layer, hastening transition and separation. Therefore, heat transfer accentuated the effect of an adverse pressure gradient. Wind tunnel tests of a 0012-64 NACA airfoil showed that the stall angle was significantly reduced while drag tended to increase for freestream temperature ratios up to 2.2.

  5. NACA Engineer Examines Wind Tunnel Compressor Blades

    NASA Image and Video Library

    1955-09-21

    An engineer examines the main compressor for the 10- by 10-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The engineers were preparing the new wind tunnel for its initial runs in early 1956. The 10- by 10 was the most powerful propulsion wind tunnel in the nation. The facility was part of Congress’ Unitary Plan Act which coordinated wind tunnel construction at the NACA, Air Force, industry, and universities. The 10- by 10 was the largest of the three NACA tunnels built under the act. The 20-foot diameter eight-stage axial flow compressor, seen in this photograph, could generate air flows up to Mach 2.5 through the test section. The stainless steel compressor had 584 blades ranging from 1.8 to 3.25 feet in length. This main compressor was complemented by a secondary axial flow compressor. Working in tandem the two could generate wind streams up to Mach 3.5. The Cleveland Chamber of Commerce presented NACA Lewis photographer Bill Bowles with a second place award for this photograph in their Business and Professional category. The photograph was published in October 1955 edition of its periodical, The Clevelander, which highlighted local professional photographers. Fellow Lewis photographer Gene Giczy won second place in another category for a photograph of Cleveland Municipal Airport.

  6. Entrance to the NACA's Flight Propulsion Research Laboratory

    NASA Image and Video Library

    1948-08-21

    The sign near the entrance of the National Advisory Committee for Aeronautics (NACA) Flight Propulsion Research Laboratory. The name was changed several weeks later to the Lewis Flight Propulsion Laboratory in honor of the NACA’s former Director of Aeronautical Research, George W. Lewis. The research laboratory has had five different names since its inception in 1941. The Cleveland laboratory was originally known as the NACA Aircraft Engine Research Laboratory. In 1947 it was renamed the NACA Flight Propulsion Research Laboratory to reflect the expansion of the research activities beyond just engines. Following the death of George Lewis, the name was changed to the NACA Lewis Flight Propulsion Laboratory in September 1948. On October 1, 1958, the lab was incorporated into the new NASA space agency, and it was renamed the NASA Lewis Research Center. Following John Glenn’s flight on the space shuttle, the name was changed again to the NASA Glenn Research Center on March 1, 1999. From his office in Washington DC, George Lewis managed the aeronautical research conducted at the NACA for over 20 years. His most important accomplishment, however, may have been an investigative tour of German research facilities in the fall of 1936. The visit resulted in the broadening of the scope of the NACA’s research and the physical expansion that included the new engine laboratory in Cleveland.

  7. An Exploratory Investigation of a Slotted, Natural-Laminar-Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Somers, Dan M.

    2012-01-01

    A 15-percent-thick, slotted, natural-laminar-flow (SNLF) airfoil, the S103, for general aviation applications has been designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. The airfoil exhibits a rapid stall, which does not meet the design goal. Comparisons of the theoretical and experimental results show good agreement. Comparison with the baseline, NASA NLF(1)-0215F airfoil confirms the achievement of the objectives.

  8. Second Stage Turbine Bucket Airfoil.

    DOEpatents

    Xu, Liming; Ahmadi, Majid; Humanchuk, David John; Moretto, Nicholas; Delehanty, Richard Edward

    2003-05-06

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  9. Third-stage turbine bucket airfoil

    DOEpatents

    Pirolla, Peter Paul; Siden, Gunnar Leif; Humanchuk, David John; Brassfield, Steven Robert; Wilson, Paul Stuart

    2002-01-01

    The third-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  10. Thin oblique airfoils at supersonic speed

    NASA Technical Reports Server (NTRS)

    Jone, Robert T

    1946-01-01

    The well-known methods of thin-airfoil theory have been extended to oblique or sweptback airfoils of finite aspect ratio moving at supersonic speeds. The cases considered thus far are symmetrical airfoils at zero lift having plan forms bounded by straight lines. Because of the conical form of the elementary flow fields, the results are comparable in simplicity to the results of the two-dimensional thin-airfoil theory for subsonic speeds. In the case of untapered airfoils swept back behind the Mach cone the pressure distribution at the center section is similar to that given by the Ackeret theory for a straight airfoil. With increasing distance from the center section the distribution approaches the form given by the subsonic-flow theory. The pressure drag is concentrated chiefly at the center section and for long wings a slight negative drag may appear on outboard sections. (author)

  11. NACA Pilots at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-07-21

    The Aircraft Engine Research Laboratory’s pilot corps during the final days of World War II: from left to right, Joseph Vensel, Howard Lilly, William Swann, and Joseph Walker. William “Eb” Gough joined the group months after this photograph. These men were responsible for flying the various National Advisory Committee for Aeronautics (NACA) aircraft to test new engine modifications, study ice buildup, and determine fuel performance. Vensel, a veteran pilot from Langley, was the Chief of Flight Operations and a voice of reason at the laboratory. In April 1947 Vensel was transferred to lead the new Muroc Flight Tests Unit in California until 1966. Lilly was a young pilot with recent Navy experience. Lilly also flew in the 1946 National Air Races. He followed Vensel to Muroc in July 1947 where he became the first NACA pilot to penetrate the sound barrier. On May 3, 1948, Lilly became the first NACA pilot to die in the line of duty. Swann was a young civilian pilot when he joined the NACA. He spent his entire career at the Cleveland laboratory, and led the flight operations group from the early 1960s until 1979. Two World War II veterans joined the crew after the war. Walker was a 24-year-old P–38 reconnaissance pilot. He joined the NACA as a physicist in early 1945 but soon worked his way into the cadre of pilots. Walker later gained fame as an X-plane pilot at Muroc and was killed in a June 1966 fatal crash. Gough survived being shot down twice during the war and was decorated for flying rescue missions in occupied areas.

  12. Second-stage turbine bucket airfoil

    DOEpatents

    Wang, John Zhiqiang; By, Robert Romany; Sims, Calvin L.; Hyde, Susan Marie

    2002-01-01

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X and Y values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket. The second-stage wheel has sixty buckets.

  13. Hook nozzle arrangement for supporting airfoil vanes

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A gas turbine engine's nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic.

  14. Hook nozzle arrangement for supporting airfoil vanes

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1996-02-20

    A gas turbine engine`s nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic. 8 figs.

  15. Index of NACA Technical Publications, July 1956 - June 1957

    NASA Technical Reports Server (NTRS)

    1957-01-01

    This index of NACA Technical Publications covers the NACA research reports issued in the period of July 1956 through June 1957. It is the sixth supplement to the basic 1915-1949 Index. The research reports issued prior to July 1956 which have been declassified since that date have also been included. A list of these reports may be found on pages 243-244. Cards for this list may be discarded as entries for them are included in this Index. Current announcement of newly declassified materials is regularly made in the NACA Research Abstracts and Reclassification Notice. The arrangement of this Index follows: (1) Explanatory chart of NACA publications series designations, (2) outline of subject classification system, (3) chronological list of NACA reports under each subject classification, (4) list of reports declassified from July 1956 through June 1957, (5) alphabetical index to subject categories, and (6) author index. Entries included herein duplicate in part the information of the index cards furnished with the individual research reports. Recipients maintaining card files may wish to discard those index cards on hand for unclassified research reports issued during the July 1956-June 1957 period. Such cards were printed on yellow stock for easy identification in the discard process. Please note that some classified reports issued during the July-December 1956 period are included in the yellow stock area. Therefore care must be taken to avoid destroying such cards. Newly available research reports are currently announced in the NACA Research Abstracts and Reclassification Notice and are normally available for a period of five years after announcement. Most of the older research reports (those issued prior to July 1952) are thus available on a "loan only" basis within the United states.

  16. Numerical solution of periodic vortical flows about a thin airfoil

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Atassi, Hafiz M.

    1989-01-01

    A numerical method is developed for computing periodic, three-dimensional, vortical flows around isolated airfoils. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Solutions for thin airfoils at zero degrees incidence to the mean flow are presented in this paper. Using an elliptic coordinate transformation, the computational domain is transformed into a rectangle. The Sommerfeld radiation condition is applied to the unsteady pressure on the grid line corresponding to the far field boundary. The results are compared with a Possio solver, and it is shown that for maximum accuracy the grid should depend on both the Mach number and reduced frequency. Finally, in order to assess the range of validity of the classical thin airfoil approximation, results for airfoils with zero thickness are compared with results for airfoils with small thickness.

  17. Root region airfoil for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    1995-01-01

    A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

  18. Static-thrust Investigation of Full-scale PV-2 Helicopter Rotors Having NACA 0012.6 and 23012.6 Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Lipson, Stanley

    1946-01-01

    An investigation was conducted to compare the performance of two 25-ft-diam rotors which had identical dimensions and were similar in construction but different in blade airfoil-sections. Tests were conducted at indicated blade pitch angles from 3 degrees to 11.5 degrees and rotor speeds of 200, 290, and 371 rpm. The 23012.6 rotor required 2 percent less power to hover than the 0012.6. At thrust coefficients above design, the performance of the 23012.6 became better than the 0012.6 rotor.

  19. Some NACA Muroc personnel with snowman

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The late 1940s saw increased flight activity, and more women computers were needed at the NACA Muroc Flight Test Unit than the ones who had originally arrived in 1946. A call went out to the NACA Langley, Lewis, and Ames laboratories for more women computers. Pictured in this photograph with the Snowman are some of the women computers who responded to the call for help in 1948 along with Roxanah, Emily, Dorothy, who were already here. Standing left to right: Mary (Tut) Hedgepeth, from Langley; Lilly Ann Bajus, Lewis; Roxanah Yancey, Emily Stephens, Jane Collons (Procurement), Leona Corbett (Personnel), Angel Dunn, Langley. Kneeling left to right: Dorothy (Dottie) Crawford Roth, Lewis; Dorothy Clift Hughes, and Gertrude (Trudy) Wilken Valentine, Lewis. In National Advisory Committee for Aeronautics (NACA) terminology of 1946, computers were employees who performed laborious and time-consuming mathematical calculations and data reduction from long strips of records generated by onboard aircraft instrumentation. Virtually without exception, computers were female; at least part of the rationale seems to have been the notion that the work was long and tedious, and men were not thought to have the patience to do it. Though equipment changed over the years and most computers eventually found themselves programming and operating electronic computers, as well as doing other data processing tasks, being a computer initially meant long hours with a slide rule, hunched over illuminated light boxes measuring line traces from grainy and obscure strips of oscillograph film. Computers suffered terrible eyestrain, and those who didn't begin by wearing glasses did so after a few years. But they were initially essential employees at the Muroc Flight Test Unit and NACA High-Speed Flight Research Station, taking the oscillograph flight records and 'reducing' the data on them to make them useful to research engineers, who analyzed the data.

  20. Root region airfoil for wind turbine

    DOEpatents

    Tangler, J.L.; Somers, D.M.

    1995-05-23

    A thick airfoil is described for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%--26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4--1.6 that has minimum sensitivity to roughness effects. 3 Figs.

  1. Unsteady aerodynamic behavior of an airfoil with and without a slat

    NASA Technical Reports Server (NTRS)

    Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.

    1993-01-01

    Unsteady flow behavior and load characteristics of a 2D VR-7 airfoil with and without a leading-edge slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 deg at Re = 200,000 to obtain the unsteady lift, drag, and pitching moment data. A fluorescent dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flowfield and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.

  2. Parametric Investigation of a High-Lift Airfoil at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Dominik, Chet J.

    1997-01-01

    A new two-dimensional, three-element, advanced high-lift research airfoil has been tested in the NASA Langley Research Center s Low-Turbulence Pressure Tunnel at a chord Reynolds number up to 1.6 x 107. The components of this high-lift airfoil have been designed using a incompressible computational code (INS2D). The design was to provide high maximum-lift values while maintaining attached flow on the single-segment flap at landing conditions. The performance of the new NASA research airfoil is compared to a similar reference high-lift airfoil. On the new high-lift airfoil the effects of Reynolds number on slat and flap rigging have been studied experimentally, as well as the Mach number effects. The performance trend of the high-lift design is comparable to that predicted by INS2D over much of the angle-of-attack range. However, the code did not accurately predict the airfoil performance or the configuration-based trends near maximum lift where the compressibility effect could play a major role.

  3. TAIR: A transonic airfoil analysis computer code

    NASA Technical Reports Server (NTRS)

    Dougherty, F. C.; Holst, T. L.; Grundy, K. L.; Thomas, S. D.

    1981-01-01

    The operation of the TAIR (Transonic AIRfoil) computer code, which uses a fast, fully implicit algorithm to solve the conservative full-potential equation for transonic flow fields about arbitrary airfoils, is described on two levels of sophistication: simplified operation and detailed operation. The program organization and theory are elaborated to simplify modification of TAIR for new applications. Examples with input and output are given for a wide range of cases, including incompressible, subcritical compressible, and transonic calculations.

  4. Experimental and Calculated Characteristics of Several NACA 44-series Wings with Aspect Ratios of 8, 10, and 12 and Taper Ratios of 2.5 and 3.5

    NASA Technical Reports Server (NTRS)

    Neely, Robert H; Bollech, Thomas V; Westrick, Gertrude C

    1947-01-01

    The aerodynamic characteristics of seven unswept tapered wings were determined by calculation from two-dimensional data and by wind-tunnel tests in order to demonstrate the accuracy of the calculations and to show some of the effects of aspect ratio, taper ratio, and root thickness-chord ratio. The characteristics were calculated by the usual application of the lifting-line theory which assumes linear section lift curves and also by an application of the theory which allows the use of nonlinear lift curves. A correction to the lift for the effect of chord was made by using the Jones edge-velocity factor. The wings had aspect ratios of 8, 10, and 12, taper ratios of 2.5 and 3.5, and NACA 44-series airfoils.

  5. Multiple piece turbine airfoil

    DOEpatents

    Kimmel, Keith D

    2010-11-09

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

  6. Aerodynamic Simulation of Runback Ice Accretion

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.

    2010-01-01

    This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.

  7. Separated transonic airfoil flow calculations with a nonequilibrium turbulence model

    NASA Technical Reports Server (NTRS)

    King, L. S.; Johnson, D. A.

    1985-01-01

    Navier-Stokes transonic airfoil calculations based on a recently developed nonequilibrium, turbulence closure model are presented for a supercritical airfoil section at transonic cruise conditions and for a conventional airfoil section at shock-induced stall conditions. Comparisons with experimental data are presented which show that this nonequilibrium closure model performs significantly better than the popular Baldwin-Lomax and Cebeci-Smith equilibrium algebraic models when there is boundary-layer separation that results from the inviscid-viscous interactions.

  8. The aerodynamic design of an advanced rotor airfoil

    NASA Technical Reports Server (NTRS)

    Blackwell, J. A., Jr.; Hinson, B. L.

    1978-01-01

    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  9. A computer program for the design and analysis of low-speed airfoils

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Somers, D. M.

    1980-01-01

    A conformal mapping method for the design of airfoils with prescribed velocity distribution characteristics, a panel method for the analysis of the potential flow about given airfoils, and a boundary layer method have been combined. With this combined method, airfoils with prescribed boundary layer characteristics can be designed and airfoils with prescribed shapes can be analyzed. All three methods are described briefly. The program and its input options are described. A complete listing is given as an appendix.

  10. Effects of Compressibility on the Maximum Lift Characteristics and Spanwise Load Distribution of a 12-Foot-Span Fighter-Type Wing of NACA 230-Series Airfoil Sections

    NASA Technical Reports Server (NTRS)

    West, F E

    1945-01-01

    Lift characteristics and pressure distribution for a NACA 230 wing were investigated for an angle of attack range of from -10 to +24 degrees and Mach range of from 0.2 to 0.7. Maximum lift coefficient increased up to a Mach number of 0.3, decreased rapidly to a Mach number of 0.55, and then decreased moderately. At high speeds, maximum lift coefficient was reached at from 10 to 12 degrees beyond the stalling angle. In high-speed stalls, resultant load underwent a moderate shift outward.

  11. Advanced technology airfoil research, volume 2. [conferences

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A comprehensive review of airfoil research is presented. The major thrust of the research is in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  12. Turbine airfoil having near-wall cooling insert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jr., Nicholas F.; Wiebe, David J.

    A turbine airfoil is provided with at least one insert positioned in a cavity in an airfoil interior. The insert extends along a span-wise extent of the turbine airfoil and includes first and second opposite faces. A first near-wall cooling channel is defined between the first face and a pressure sidewall of an airfoil outer wall. A second near-wall cooling channel is defined between the second face and a suction sidewall of the airfoil outer wall. The insert is configured to occupy an inactive volume in the airfoil interior so as to displace a coolant flow in the cavity towardmore » the first and second near-wall cooling channels. A locating feature engages the insert with the outer wall for supporting the insert in position. The locating feature is configured to control flow of the coolant through the first or second near-wall cooling channel.« less

  13. Roughness sensitivity comparisons of wind turbine blade sections

    NASA Astrophysics Data System (ADS)

    Wilcox, Benjamin Jacob

    One explanation for wind turbine power degradation is insect roughness. Historical studies on insect-induced power degradation have used simulation methods which are either unrepresentative of actual insect roughness or too costly or time-consuming to be applied to wide-scale testing. Furthermore, the role of airfoil geometry in determining the relations between insect impingement locations and roughness sensitivity has not been studied. To link the effects of airfoil geometry, insect impingement locations, and roughness sensitivity, a simulation code was written to determine representative insect collection patterns for different airfoil shapes. Insect collection pattern data was then used to simulate roughness on an NREL S814 airfoil that was tested in a wind tunnel at Reynolds numbers between 1:6 x 106 and 4:0 x 106. Results are compared to previous tests of a NACA 633-418 airfoil. Increasing roughness height and density results in decreased maximum lift, lift curve slope, and lift-to-drag ratio. Increasing roughness height, density, or Reynolds number results in earlier bypass transition, with critical roughness Reynolds numbers lying within the historical range. Increased roughness sensitivity on the 25% thick NREL S814 is observed compared to the 18% thick NACA 633-418. Blade-element-momentum analysis was used to calculate annual energy production losses of 4.9% and 6.8% for a NACA 633-418 turbine and an NREL S814 turbine, respectively, operating with 200 microm roughness. These compare well to historical field measurements.

  14. A Two Element Laminar Flow Airfoil Optimized for Cruise. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Steen, Gregory Glen

    1994-01-01

    Numerical and experimental results are presented for a new two-element, fixed-geometry natural laminar flow airfoil optimized for cruise Reynolds numbers on the order of three million. The airfoil design consists of a primary element and an independent secondary element with a primary to secondary chord ratio of three to one. The airfoil was designed to improve the cruise lift-to-drag ratio while maintaining an appropriate landing capability when compared to conventional airfoils. The airfoil was numerically developed utilizing the NASA Langley Multi-Component Airfoil Analysis computer code running on a personal computer. Numerical results show a nearly 11.75 percent decrease in overall wing drag with no increase in stall speed at sailplane cruise conditions when compared to a wing based on an efficient single element airfoil. Section surface pressure, wake survey, transition location, and flow visualization results were obtained in the Texas A&M University Low Speed Wind Tunnel. Comparisons between the numerical and experimental data, the effects of the relative position and angle of the two elements, and Reynolds number variations from 8 x 10(exp 5) to 3 x 10(exp 6) for the optimum geometry case are presented.

  15. Aerodynamic performance of transonic and subsonic airfoils: Effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang

    The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface

  16. Analysis of the Na+/Ca2+ Exchanger Gene Family within the Phylum Nematoda

    PubMed Central

    He, Chao; O'Halloran, Damien M.

    2014-01-01

    Na+/Ca2+ exchangers are low affinity, high capacity transporters that rapidly transport calcium at the plasma membrane, mitochondrion, endoplasmic (and sarcoplasmic) reticulum, and the nucleus. Na+/Ca2+ exchangers are widely expressed in diverse cell types where they contribute homeostatic balance to calcium levels. In animals, Na+/Ca2+ exchangers are divided into three groups based upon stoichiometry: Na+/Ca2+ exchangers (NCX), Na+/Ca2+/K+ exchangers (NCKX), and Ca2+/Cation exchangers (CCX). In mammals there are three NCX genes, five NCKX genes and one CCX (NCLX) gene. The genome of the nematode Caenorhabditis elegans contains ten Na+/Ca2+ exchanger genes: three NCX; five CCX; and two NCKX genes. Here we set out to characterize structural and taxonomic specializations within the family of Na+/Ca2+ exchangers across the phylum Nematoda. In this analysis we identify Na+/Ca2+ exchanger genes from twelve species of nematodes and reconstruct their phylogenetic and evolutionary relationships. The most notable feature of the resulting phylogenies was the heterogeneous evolution observed within exchanger subtypes. Specifically, in the case of the CCX exchangers we did not detect members of this class in three Clade III nematodes. Within the Caenorhabditis and Pristionchus lineages we identify between three and five CCX representatives, whereas in other Clade V and also Clade IV nematode taxa we only observed a single CCX gene in each species, and in the Clade III nematode taxa that we sampled we identify NCX and NCKX encoding genes but no evidence of CCX representatives using our mining approach. We also provided re-annotation for predicted CCX gene structures from Heterorhabditis bacteriophora and Caenorhabditis japonica by RT-PCR and sequencing. Together, these findings reveal a complex picture of Na+/Ca2+ transporters in nematodes that suggest an incongruent evolutionary history of proteins that provide central control of calcium dynamics. PMID:25397810

  17. Flutter of a Low-Aspect-Ratio Rectangular Wing

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.

    1989-01-01

    A flutter test of a low-aspect-ratio rectangular wing was conducted in the Langley Transonic Dynamics Tunnel (TDT). The model used in this flutter test consisted of a rigid wing mounted to the wind-tunnel wall by a flexible, rectangular beam. The flexible support shaft was connected to the wing root and was cantilever mounted to the wind-tunnel wall. The wing had an aspect ratio of 1.5 based on the wing semispan and an NACA 64A010 airfoil shape. The flutter boundary of the model was determined for a Mach number range of 0.5 to 0.97. The shape of the transonic flutter boundary was determined. Actual flutter points were obtained on both the subsonic and supersonic sides of the flutter bucket. The model exhibited a deep transonic flutter bucket over a narrow range of Mach number. At some Mach numbers, the flutter conditions were extrapolated using a subcritical response technique. In addition to the basic configuration, modifications were made to the model structure such that the first bending frequency was changed without significantly affecting the first torsion frequency. The experiment showed that increasing the bending stiffness of the model support shaft through these modifications lowered the flutter dynamic pressure. Flutter analysis was conducted for the basic model as a comparison with the experimental results. This flutter analysis was conducted with subsonic lifting-surface (kernel function) aerodynamics using the k method for the flutter solution.

  18. Experimental Investigation of the Momentum Method for Determining Profile Drag

    NASA Technical Reports Server (NTRS)

    Goett, Harry J

    1939-01-01

    Report presents the results of an experimental investigation conducted in the full-scale tunnel to determine the accuracy of the Jones and the Betz equations for computing profile drag from total and static pressure surveys in the wake of wings. Surveys were made behind 6 by 8-foot airfoils of the NACA 0009, and 0018 sections at zero lift and behind the NACA 0012 at positive lifts. The surveys were made at various spanwise positions and at distances behind the airfoil ranging from 0.05c to 3.00c.

  19. Transonic airfoil analysis and design in nonuniform flow

    NASA Technical Reports Server (NTRS)

    Chang, J. F.; Lan, C. E.

    1986-01-01

    A nonuniform transonic airfoil code is developed for applications in analysis, inverse design and direct optimization involving an airfoil immersed in propfan slipstream. Problems concerning the numerical stability, convergence, divergence and solution oscillations are discussed. The code is validated by comparing with some known results in incompressible flow. A parametric investigation indicates that the airfoil lift-drag ratio can be increased by decreasing the thickness ratio. A better performance can be achieved if the airfoil is located below the slipstream center. Airfoil characteristics designed by the inverse method and a direct optimization are compared. The airfoil designed with the method of direct optimization exhibits better characteristics and achieves a gain of 22 percent in lift-drag ratio with a reduction of 4 percent in thickness.

  20. Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000

    NASA Astrophysics Data System (ADS)

    Levy, David-Elie; Seifert, Avraham

    2009-07-01

    Effective aerodynamics at Reynolds numbers lower than 10 000 is of great technological interest and a fundamental scientific challenge. The current study covers a Reynolds number range of 2000-8000. At these Reynolds numbers, natural insect flight could provide inspiration for technology development. Insect wings are commonly characterized by corrugated airfoils. In particular, the airfoil of the dragonfly, which is able to glide, can be used for two-dimensional aerodynamic study of fixed rigid wings. In this study, a simplified dragonfly airfoil is numerically analyzed in a steady free-stream flow. The aerodynamic performance (such as mean and fluctuating lift and drag), are first compared to a "traditional" low Reynolds number airfoil: the Eppler-E61. The numerical results demonstrate superior performances of the corrugated airfoil. A series of low-speed wind and water tunnel experiments were performed on the corrugated airfoil, to validate the numerical results. The findings indicate quantitative agreement with the mean wake velocity profiles and shedding frequencies while validating the two dimensionality of the flow. A flow physics numerical study was performed in order to understand the underlying mechanism of corrugated airfoils at these Reynolds numbers. Airfoil shapes based on the flow field characteristics of the corrugated airfoil were built and analyzed. Their performances were compared to those of the corrugated airfoil, stressing the advantages of the latter. It was found that the flow which separates from the corrugations and forms spanwise vortices intermittently reattaches to the aft-upper arc region of the airfoil. This mechanism is responsible for the relatively low intensity of the vortices in the airfoil wake, reducing the drag and increasing the flight performances of this kind of corrugated airfoil as compared to traditional low Reynolds number airfoils such as the Eppler E-61.

  1. Numerical investigation of multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Cummings, Russell M.

    1993-01-01

    The flow over multi-element airfoils with flat-plate lift-enhancing tabs was numerically investigated. Tabs ranging in height from 0.25 percent to 1.25 percent of the reference airfoil chord were studied near the trailing edge of the main-element. This two-dimensional numerical simulation employed an incompressible Navier-Stokes solver on a structured, embedded grid topology. New grid refinements were used to improve the accuracy of the solution near the overlapping grid boundaries. The effects of various tabs were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Both computed and measured results indicated that a tab in the main-element cove improved the maximum lift and lift-to-drag ratio relative to the baseline airfoil without a tab. Computed streamlines revealed that the additional turning caused by the tab may reduce the amount of separated flow on the flap. A three-element airfoil was also studied over a range of Reynolds numbers. For the optimized flap rigging, the computed and measured Reynolds number effects were similar. When the flap was moved from the optimum position, numerical results indicated that a tab may help to reoptimize the airfoil to within 1 percent of the optimum flap case.

  2. Advanced technology airfoil research, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  3. Preliminary Tests in the NACA Tank to Investigate the Fundamental Characteristics of Hydrofoils

    NASA Technical Reports Server (NTRS)

    Ward, Kenneth E.; Land, Norman S.

    1940-01-01

    This preliminary investigation was made to study the hydrodynamic properties and general behavior of simple hydrofoils. Six 5- by 30-inch plain, rectangular hydrofoils were tested in the NACA tank at various speeds, angles of attack and depths below the water surface. Two of the hydrofoils had sections representing the sections of commonly used airfoils, one had a section similar to one developed Guidoni for use with hydrofoil-equipped seaplane floats, and three had sections designed to have constant chordwise pressure distributions at given values of the lift coefficient for the purpose of delaying the speed at which cavitation begins. The experimental results are presented as curves of the lift and drag coefficients plotted against speed for the various angles of attack and depths for which the hydrofoils were tested. A number of derived curves are included for the purpose of better comparing the characteristics of the hydrofoils and to show the effects of depth. Several representative photographs show the development of cavitation on the the upper surface of the hydrofoils. The results indicate that properly designed hydrofoil sections will have excellent characteristics and that the speed at which cavitation occurs may be delayed to an appreciable extent by the use of suitable sections.

  4. Steady inviscid transonic flows over planar airfoils: A search for a simplified procedure

    NASA Technical Reports Server (NTRS)

    Magnus, R.; Yoshihara, H.

    1973-01-01

    A finite difference procedure based upon a system of unsteady equations in proper conservation form with either exact or small disturbance steady terms is used to calculate the steady flows over several classes of airfoils. The airfoil condition is fulfilled on a slab whose upstream extremity is a semi-circle overlaying the airfoil leading edge circle. The limitations of the small disturbance equations are demonstrated in an extreme example of a blunt-nosed, aft-cambered airfoil. The necessity of using the equations in proper conservation form to capture the shock properly is stressed. Ability of the steady relaxation procedures to capture the shock is briefly examined.

  5. Airfoil shape for flight at subsonic speeds. [design analysis and aerodynamic characteristics of the GAW-1 airfoil

    NASA Technical Reports Server (NTRS)

    Whitcomb, R. T. (Inventor)

    1976-01-01

    An airfoil is examined that has an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency. Diagrams illustrating supersonic flow and shock waves over the airfoil are shown.

  6. Robust Airfoil Optimization to Achieve Consistent Drag Reduction Over a Mach Range

    NASA Technical Reports Server (NTRS)

    Li, Wu; Huyse, Luc; Padula, Sharon; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    We prove mathematically that in order to avoid point-optimization at the sampled design points for multipoint airfoil optimization, the number of design points must be greater than the number of free-design variables. To overcome point-optimization at the sampled design points, a robust airfoil optimization method (called the profile optimization method) is developed and analyzed. This optimization method aims at a consistent drag reduction over a given Mach range and has three advantages: (a) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (b) there is no random airfoil shape distortion for any iterate it generates, and (c) it allows a designer to make a trade-off between a truly optimized airfoil and the amount of computing time consumed. For illustration purposes, we use the profile optimization method to solve a lift-constrained drag minimization problem for 2-D airfoil in Euler flow with 20 free-design variables. A comparison with other airfoil optimization methods is also included.

  7. Orders of Magnitude. A History of the NACA and NASA, 1915-1990. The NASA History Series.

    ERIC Educational Resources Information Center

    Bilstein, Roger E.

    This is a history of the National Advisory Committee for Aeronautics (NACA) and its successor agency the National Aeronautics and Space Administration (NASA). Main chapters included are: (1) "NACA Origins (1915-1930)"; (2) "New Facilities, New Designs (1930-1945)"; (3) "Going Supersonic (1945-1958)"; (4) "On the…

  8. Airfoil nozzle and shroud assembly

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1997-01-01

    An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.

  9. Airfoil nozzle and shroud assembly

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  10. Airfoil self-noise and prediction

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Pope, D. Stuart; Marcolini, Michael A.

    1989-01-01

    A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.

  11. Quiet airfoils for small and large wind turbines

    DOEpatents

    Tangler, James L [Boulder, CO; Somers, Dan L [Port Matilda, PA

    2012-06-12

    Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

  12. A new flow model for highly separated airfoil flows at low speeds

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Naik, S. N.

    1979-01-01

    An analytical model for separated airfoil flows is presented which is based on experimentally observed physical phenomena. These include a free stagnation point aft of the airfoil and a standing vortex in the separated region. A computer program is described which iteratively matches the outer potential flow, the airfoil turbulent boundary layer, the separated jet entrainment, mass conservation in the separated bubble, and the rear stagnation pressure. Separation location and pressure are not specified a priori. Results are presented for surface pressure coefficient and compared with experiment for three angles of attack for a GA(W)-1, 17% thick airfoil.

  13. Unsteady lift forces on highly cambered airfoils moving through a gust

    NASA Technical Reports Server (NTRS)

    Atassi, H.; Goldstein, M.

    1974-01-01

    An unsteady airfoil theory in which the flow is linearized about the steady potential flow of the airfoil is presented. The theory is applied to an airfoil entering a gust. After transformation to the W-plane, the problem is formulated in terms of a Poisson's equation. The solutions are expanded in a Fourier-Bessel series. The theory is applied to a circular arc with arbitrary camber. Closed form expressions for the velocity and pressure on the surface of the airfoil are obtained. The unsteady aerodynamic forces are then calculated and shown to contain two terms. One in an explicit closed analytical form represents the contribution of the oncoming vortical disturbance, the other depends on a single quadrature and accounts for the effect of the wake.

  14. Turbine airfoil to shroud attachment method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Christian X; Kulkarni, Anand A; James, Allister W

    2014-12-23

    Bi-casting a platform (50) onto an end portion (42) of a turbine airfoil (31) after forming a coating of a fugitive material (56) on the end portion. After bi-casting the platform, the coating is dissolved and removed to relieve differential thermal shrinkage stress between the airfoil and platform. The thickness of the coating is varied around the end portion in proportion to varying amounts of local differential process shrinkage. The coating may be sprayed (76A, 76B) onto the end portion in opposite directions parallel to a chord line (41) of the airfoil or parallel to a mid-platform length (80) ofmore » the platform to form respective layers tapering in thickness from the leading (32) and trailing (34) edges along the suction side (36) of the airfoil.« less

  15. Unsteady Newton-Busemann flow theory. I - Airfoils

    NASA Technical Reports Server (NTRS)

    Hui, W. H.; Tobak, M.

    1981-01-01

    Newtonian flow theory for unsteady flow at very high Mach numbers is completed by the addition of a centrifugal force correction to the impact pressures. The correction term is the unsteady counterpart of Busemann's centrifugal force correction to impact pressures in steady flow. For airfoils of arbitary shape, exact formulas for the unsteady pressure and stiffness and damping-in-pitch derivatives are obtained in closed form, which require only numerical quadratures of terms involving the airfoil shape. They are applicable to airfoils of arbitrary thickness having sharp or blunt leading edges. For wedges and thin airfoils these formulas are greatly simplified, and it is proved that the pitching motions of thin airfoils of convex shape and of wedges of arbitrary thickness are always dynamically stable according to Newton-Busemann theory. Leading-edge bluntness is shown to have a favorable effect on the dynamic stability; on the other hand, airfoils of concave shape tend toward dynamic instability over a range of axis positions if the surface curvature exceeds a certain limit. As a byproduct, it is also shown that a pressure formula recently given by Barron and Mandl for unsteady Newtonian flow over a pitching power-law shaped airfoil is erroneous and that their conclusion regarding the effect of pivot position on the dynamic stability is misleading.

  16. Boundary-layer stability and airfoil design

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.

    1986-01-01

    Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.

  17. Design of a shape adaptive airfoil actuated by a Shape Memory Alloy strip for airplane tail

    NASA Astrophysics Data System (ADS)

    Shirzadeh, R.; Raissi Charmacani, K.; Tabesh, M.

    2011-04-01

    Of the factors that mainly affect the efficiency of the wing during a special flow regime, the shape of its airfoil cross section is the most significant. Airfoils are generally designed for a specific flight condition and, therefore, are not fully optimized in all flight conditions. It is very desirable to have an airfoil with the ability to change its shape based on the current regime. Shape memory alloy (SMA) actuators activate in response to changes in the temperature and can recover their original configuration after being deformed. This study presents the development of a method to control the shape of an airfoil using SMA actuators. To predict the thermomechanical behaviors of an SMA thin strip, 3D incremental formulation of the SMA constitutive model is implemented in FEA software package ABAQUS. The interactions between the airfoil structure and SMA thin strip actuator are investigated. Also, the aerodynamic performance of a standard airfoil with a plain flap is compared with an adaptive airfoil.

  18. Wavy flow cooling concept for turbine airfoils

    DOEpatents

    Liang, George

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  19. Robust Airfoil Optimization in High Resolution Design Space

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon L.

    2003-01-01

    The robust airfoil shape optimization is a direct method for drag reduction over a given range of operating conditions and has three advantages: (1) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (2) it uses a large number of B-spline control points as design variables yet the resulting airfoil shape is fairly smooth, and (3) it allows the user to make a trade-off between the level of optimization and the amount of computing time consumed. The robust optimization method is demonstrated by solving a lift-constrained drag minimization problem for a two-dimensional airfoil in viscous flow with a large number of geometric design variables. Our experience with robust optimization indicates that our strategy produces reasonable airfoil shapes that are similar to the original airfoils, but these new shapes provide drag reduction over the specified range of Mach numbers. We have tested this strategy on a number of advanced airfoil models produced by knowledgeable aerodynamic design team members and found that our strategy produces airfoils better or equal to any designs produced by traditional design methods.

  20. Airfoil seal system for gas turbine engine

    DOEpatents

    None, None

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  1. An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Anerson, W. Kyle; Bonhaus, Daryl L.

    1994-01-01

    An implicit, Navier-Stokes solution algorithm is presented for the computation of turbulent flow on unstructured grids. The inviscid fluxes are computed using an upwind algorithm and the solution is advanced in time using a backward-Euler time-stepping scheme. At each time step, the linear system of equations is approximately solved with a point-implicit relaxation scheme. This methodology provides a viable and robust algorithm for computing turbulent flows on unstructured meshes. Results are shown for subsonic flow over a NACA 0012 airfoil and for transonic flow over a RAE 2822 airfoil exhibiting a strong upper-surface shock. In addition, results are shown for 3 element and 4 element airfoil configurations. For the calculations, two one equation turbulence models are utilized. For the NACA 0012 airfoil, a pressure distribution and force data are compared with other computational results as well as with experiment. Comparisons of computed pressure distributions and velocity profiles with experimental data are shown for the RAE airfoil and for the 3 element configuration. For the 4 element case, comparisons of surface pressure distributions with experiment are made. In general, the agreement between the computations and the experiment is good.

  2. Roughness Sensitivity Comparisons of Wind Turbine Blade Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Benjamin J.; White, Edward B.; Maniaci, David Charles

    One explanation for wind turbine power degradation is insect roughness. Historical studies on insect-induced power degradation have used simulation methods which are either un- representative of actual insect roughness or too costly or time-consuming to be applied to wide-scale testing. Furthermore, the role of airfoil geometry in determining the relations between insect impingement locations and roughness sensitivity has not been studied. To link the effects of airfoil geometry, insect impingement locations, and roughness sensitivity, a simulation code was written to determine representative insect collection patterns for different airfoil shapes. Insect collection pattern data was then used to simulate roughness onmore » an NREL S814 airfoil that was tested in a wind tunnel at Reynolds numbers between 1.6 x 10 6 and 4.0 x 10 6. Results are compared to previous tests of a NACA 63 3 -418 airfoil. Increasing roughness height and density results in decreased maximum lift, lift curve slope, and lift-to-drag ratio. Increasing roughness height, density, or Reynolds number results in earlier bypass transition, with critical roughness Reynolds numbers lying within the historical range. Increased roughness sensitivity on the 25% thick NREL S814 is observed compared to the 18% thick NACA 63 3 -418. Blade-element-momentum analysis was used to calculate annual energy production losses of 4.9% and 6.8% for a NACA 63 3 -418 turbine and an NREL S814 turbine, respectively, operating with 200 μm roughness. These compare well to historical field measurements.« less

  3. NACA Study of Crash Fires with a Fairchild C-82 Packet

    NASA Image and Video Library

    1950-06-21

    Researchers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory purposely crash a Fairchild C-82 Packet aircraft to study flame propagation. A rash of passenger aircraft crashes in 1946 and 1947 spurred a White House call for an investigatory board staffed by members of the Civil Aeronautics Board, military, and the NACA. The group addressed fire segregation, extinguishment, and prevention. The NACA established a Subcommittee on Aircraft Fire Prevention in February 1948 to coordinate its efforts. The Lewis team simulated situations in which an aircraft failed to become airborne during takeoff resulting in crashes into embankments and other objects. The Lewis researchers initially used surplus C-46 and C-82 military transport planes. In these situations, the aircraft generally suffered damage to its fuel system and other components, but was structurally survivable. The aircraft were mounted to a rail that ran down a 1700-foot long test runway. The aircraft was secured at the starting point with an anchor pier so it could get its engines up to takeoff speed before launching down the track. Barriers at the end of the runway were designed to simulate a variety of different types of crashes. Telemetry and high-speed cameras were crucial elements in these studies. The preliminary testing phase identified potential ignition sources and analyzed the spread of flammable materials.

  4. Computer programs for smoothing and scaling airfoil coordinates

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.

    1983-01-01

    Detailed descriptions are given of the theoretical methods and associated computer codes of a program to smooth and a program to scale arbitrary airfoil coordinates. The smoothing program utilizes both least-squares polynomial and least-squares cubic spline techniques to smooth interatively the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. A technique for computing the camber and thickness distribution of the smoothed airfoil is also discussed. The scaling program can then be used to scale the thickness distribution generated by the smoothing program to a specific maximum thickness which is then combined with the camber distribution to obtain the final scaled airfoil contour. Computer listings of the smoothing and scaling programs are included.

  5. Impact Test of a NACA-Designed Pilot Seat and Harness

    NASA Image and Video Library

    1955-02-21

    This time-lapse photograph shows the test of a pilot seat and restraint designed by researchers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The laboratory had undertaken a multi-year investigation into the causes and preventative measures for fires resulting from low altitude aircraft crashes. The program was expanded in the mid-1950s to include the study of crash impact on passengers, new types of types of seat restraints, and better seat designs. The impact program began by purposely wrecking surplus transport Fairchild C-82 Packet and Piper Cub aircraft into barricades at the end of a test runway. Instrumented dummies and cameras were installed in the pilot and passenger areas. After determining the different loads experienced during a crash and the effects on the passengers, the NACA researchers began designing new types of seats and restraints. The result was an elastic seat that flexed upon impact, absorbing 75 percent of the loads before it slowly recoiled. This photograph shows the seats mounted on a pendulum with a large spring behind the platform to provide the jolt that mimicked the forces of a crash. The seat was constructed without any potentially damaging metal parts and included rubber-like material, an inflated back and arms, and a seat cushion. After the pendulum tests, the researchers compared the flexible seats to the rigid seats during a crash of a transport aircraft. They found the passengers in the rigid seats received 66 percent higher g-forces than the NACA-designed seats.

  6. The effect of small variations in profile of airfoils

    NASA Technical Reports Server (NTRS)

    Ward, Kenneth E

    1931-01-01

    This report deals with the effect of small variations in ordinates specified by different laboratories for the airfoil section. This study was made in connection with a more general investigation of the effect of small irregularities of the airfoil surface on the aerodynamic characteristics of an airfoil. These tests show that small changes in airfoil contours, resulting from variations in the specified ordinates, have a sufficiently large effect upon the airfoil characteristics to justify the taking of great care in the specification of ordinates for the construction of models.

  7. First-stage high pressure turbine bucket airfoil

    DOEpatents

    Brown, Theresa A.; Ahmadi, Majid; Clemens, Eugene; Perry, II, Jacob C.; Holiday, Allyn K.; Delehanty, Richard A.; Jacala, Ariel Caesar

    2004-05-25

    The first-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  8. Modeling and Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

    2007-01-01

    SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.

  9. Advanced Airfoils Boost Helicopter Performance

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Carson Helicopters Inc. licensed the Langley RC4 series of airfoils in 1993 to develop a replacement main rotor blade for their Sikorsky S-61 helicopters. The company's fleet of S-61 helicopters has been rebuilt to include Langley's patented airfoil design, and the helicopters are now able to carry heavier loads and fly faster and farther, and the main rotor blades have twice the previous service life. In aerial firefighting, the performance-boosting airfoils have helped the U.S. Department of Agriculture's Forest Service control the spread of wildfires. In 2003, Carson Helicopters signed a contract with Ducommun AeroStructures Inc., to manufacture the composite blades for Carson Helicopters to sell

  10. TAIR- TRANSONIC AIRFOIL ANALYSIS COMPUTER CODE

    NASA Technical Reports Server (NTRS)

    Dougherty, F. C.

    1994-01-01

    The Transonic Airfoil analysis computer code, TAIR, was developed to employ a fast, fully implicit algorithm to solve the conservative full-potential equation for the steady transonic flow field about an arbitrary airfoil immersed in a subsonic free stream. The full-potential formulation is considered exact under the assumptions of irrotational, isentropic, and inviscid flow. These assumptions are valid for a wide range of practical transonic flows typical of modern aircraft cruise conditions. The primary features of TAIR include: a new fully implicit iteration scheme which is typically many times faster than classical successive line overrelaxation algorithms; a new, reliable artifical density spatial differencing scheme treating the conservative form of the full-potential equation; and a numerical mapping procedure capable of generating curvilinear, body-fitted finite-difference grids about arbitrary airfoil geometries. Three aspects emphasized during the development of the TAIR code were reliability, simplicity, and speed. The reliability of TAIR comes from two sources: the new algorithm employed and the implementation of effective convergence monitoring logic. TAIR achieves ease of use by employing a "default mode" that greatly simplifies code operation, especially by inexperienced users, and many useful options including: several airfoil-geometry input options, flexible user controls over program output, and a multiple solution capability. The speed of the TAIR code is attributed to the new algorithm and the manner in which it has been implemented. Input to the TAIR program consists of airfoil coordinates, aerodynamic and flow-field convergence parameters, and geometric and grid convergence parameters. The airfoil coordinates for many airfoil shapes can be generated in TAIR from just a few input parameters. Most of the other input parameters have default values which allow the user to run an analysis in the default mode by specifing only a few input parameters

  11. Design of high lift airfoils with a Stratford distribution by the Eppler method

    NASA Technical Reports Server (NTRS)

    Thomson, W. G.

    1975-01-01

    Airfoils having a Stratford pressure distribution, which has zero skin friction in the pressure recovery area, were investigated in an effort to develop high lift airfoils. The Eppler program, an inverse conformal mapping technique where the x and y coordinates of the airfoil are developed from a given velocity distribution, was used.

  12. Lift enhancing tabs for airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor)

    1994-01-01

    A tab deployable from the trailing edge of a main airfoil element forces flow onto a following airfoil element, such as a flap, to keep the flow attached and thus enhance lift. For aircraft wings with high lift systems that include leading edge slats, the slats may also be provided with tabs to turn the flow onto the following main element.

  13. Investigation of low-speed turbulent separated flow around airfoils

    NASA Technical Reports Server (NTRS)

    Wadcock, Alan J.

    1987-01-01

    Described is a low-speed wind tunnel experiment to measure the flowfield around a two-dimensional airfoil operating close to maximum lift. Boundary layer separation occurs on the upper surface at x/c=0.85. A three-component laser velocimeter, coupled with a computer-controlled data acquisition system, was used to obtain three orthogonal mean velocity components and three components of the Reynolds stress tensor in both the boundary layer and wake of the airfoil. Pressure distributions on the airfoil, skin friction distribution on the upper surface of the airfoil, and integral properties of the airfoil boudary layer are also documented. In addition to these near-field flow properties, static pressure distributions, both upstream and downstream from the airfoil and on the walls of the wind tunnel, are also presented.

  14. Airfoil lance apparatus for homogeneous humidification and sorbent dispersion in a gas stream

    DOEpatents

    Myers, Robert B.; Yagiela, Anthony S.

    1990-12-25

    An apparatus for spraying an atomized mixture into a gas stream comprises a stream line airfoil member having a large radius leading edge and a small radius trailing edge. A nozzle assembly pierces the trailing edge of the airfoil member and is concentrically surrounded by a nacelle which directs shielding gas from the interior of the airfoil member around the nozzle assembly. Flowable medium to be atomized and atomizing gas for atomizing the medium are supplied in concentric conduits to the nozzle. A plurality of nozzles each surrounded by a nacelle are spaced along the trailing edge of the airfoil member.

  15. Airfoil lance apparatus for homogeneous humidification and sorbent dispersion in a gas stream

    DOEpatents

    Myers, R.B.; Yagiela, A.S.

    1990-12-25

    An apparatus for spraying an atomized mixture into a gas stream comprises a stream line airfoil member having a large radius leading edge and a small radius trailing edge. A nozzle assembly pierces the trailing edge of the airfoil member and is concentrically surrounded by a nacelle which directs shielding gas from the interior of the airfoil member around the nozzle assembly. Flowable medium to be atomized and atomizing gas for atomizing the medium are supplied in concentric conduits to the nozzle. A plurality of nozzles each surrounded by a nacelle are spaced along the trailing edge of the airfoil member. 3 figs.

  16. Glider Ground Effect Investigation

    DTIC Science & Technology

    1989-05-01

    Up Down Airfoil Eppler NACA 63 2A615 13:556 603 12:750 Surface Material Polished Polished Aluminum 13:556 Fiber- 12:750 Glass Airfoil Man Thickness...5. Eppler , Richard. "Some New Airfoils ." Science and Technology of Low Speed and Motorless Vehicles. NASA, Mar 29-30, 1979. 6. Hoerner, Dr. Sighard... 61 5.2 Flight Profile Development Test Matrix . . .. 74 5.3 Profile Development Test Results ......... 76 5.4 Test Aircraft Comparison

  17. Design of a 3 kW wind turbine generator with thin airfoil blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath

    2008-09-15

    Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performancemore » characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)« less

  18. Low speed airfoil design and analysis

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Somers, D. M.

    1979-01-01

    A low speed airfoil design and analysis program was developed which contains several unique features. In the design mode, the velocity distribution is not specified for one but many different angles of attack. Several iteration options are included which allow the trailing edge angle to be specified while other parameters are iterated. For airfoil analysis, a panel method is available which uses third-order panels having parabolic vorticity distributions. The flow condition is satisfied at the end points of the panels. Both sharp and blunt trailing edges can be analyzed. The integral boundary layer method with its laminar separation bubble analog, empirical transition criterion, and precise turbulent boundary layer equations compares very favorably with other methods, both integral and finite difference. Comparisons with experiment for several airfoils over a very wide Reynolds number range are discussed. Applications to high lift airfoil design are also demonstrated.

  19. Monitoring pressure profiles across an airfoil with a fiber Bragg grating sensor array

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Anthony W.; Parkinson, Luke A.; Karas, Andrew R.; Hansen, Kristy L.; Arkwright, John W.

    2018-02-01

    Fluid flow over an airfoil section creates a pressure difference across the upper and lower surfaces, thus generating lift. Successful wing design is a combination of engineering design and experience in the field, with subtleties in design and manufacture having significant impact on the amount of lift produced. Current methods of airfoil optimization and validation typically involve computational fluid dynamics (CFD) and extensive wind tunnel testing with pressure sensors embedded into the airfoil to measure the pressure over the wing. Monitoring pressure along an airfoil in a wind tunnel is typically achieved using surface pressure taps that consist of hollow tubes running from the surface of the airfoil to individual pressure sensors external to the tunnel. These pressure taps are complex to configure and not ideal for in-flight testing. Fiber Bragg grating (FBG) pressure sensing arrays provide a highly viable option for both wind tunnel and inflight pressure measurement. We present a fiber optic sensor array that can detect positive and negative pressure suitable for validating CFD models of airfoil profile sections. The sensing array presented here consists of 6 independent sensing elements, each capable of a pressure resolution of less than 10 Pa over the range of 70 kPa to 120 kPa. The device has been tested with the sensor array attached to a 90mm chord length airfoil section subjected to low velocity flow. Results show that the arrays are capable of accurately detecting variations of the pressure profile along the airfoil as the angle of attack is varied from zero to the point at which stall occurs.

  20. D-558-1 on ramp with ground crew and NACA pilot Bob Champine

    NASA Technical Reports Server (NTRS)

    1949-01-01

    NACA test pilot Robert Champine is seen in the cockpit of the Douglas D-558-1 Skystreak with the ground crew. Robert A. Champine was a research pilot with the National Advisory Committee for Aeronautics (NACA) and the National Aeronautics and Space Administration (NASA) from December 1947 to 1979, when he retired as Langley Research Center's senior research pilot. He began his career with the NACA at the Langley Memorial Aeronautical Laboratory in Hampton, Virginia (as Langley Research Center was then called). He transferred to the NACA's High-Speed Flight Research Station in the Mojave Desert of California in October 1948, where he flew the X-1 and D-558-1 and -2 research airplanes. On December 2, 1948, Bob became the 6th man and 3rd civilian to break the mysterious sound barrier. He exceeded Mach 1 on NACA flight 23 checking handling qualities and pressure distribution on the XS-1 #2, after having been dropped from the B-29 mother ship, above the Rogers Dry Lake in California. On August 4, 1949, NACA flight 32, he again exceeded Mach 1 performing rolls, pullups, sideslips, and check of stabilizer effectiveness. This was his 13th and last flight in the XS-1. He flew the first NACA research flight of the D-558-1 #3 (Skystreak) on April 22, 1949, and the first NACA research flight of the D-558-2 #2 (Skyrocket) on May 24, 1949, beginning the supersonic research program for these aircraft on June l, 1949. Conceived in 1945, the D558-1 Skystreak was designed by the Douglas Aircraft Company for the U.S. Navy Bureau of Aeronautics, in conjunction with the National Advisory Committee for Aeronautics (NACA). The Skystreaks were turojet powered aircraft that took off from the ground under their own power and had straight wings and tails. All three D-558-1 Skystreaks were powered by Allison J35-A-11 turbojet engines producing 5,000 pounds of thrust. All the Skystreaks were initially painted scarlet, which lead to the nickname 'crimson test tube.' NACA later had the color of

  1. Response of a thin airfoil encountering strong density discontinuity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marble, F.E.

    1993-12-01

    Airfoil theory for unsteady motion has been developed extensively assuming the undisturbed medium to be of uniform density, a restriction accurate for motion in the atmosphere. In some instances, notably for airfoil comprising fan, compressor and turbine blade rows, the undisturbed medium may carry density variations or ``spots``, resulting from non-uniformities in temperature or composition, of a size comparable to the blade chord. This condition exists for turbine blades, immediately downstream of the main burner of a gas turbine engine where the density fluctuations of the order of 50 percent may occur. Disturbances of a somewhat smaller magnitude arise frommore » the ingestion of hot boundary layers into fans, and exhaust into hovercraft. Because these regions of non-uniform density convect with the moving medium, the airfoil experiences a time varying load and moment which the authors calculate.« less

  2. An experimental study of static and oscillating rotor blade sections in reverse flow

    NASA Astrophysics Data System (ADS)

    Lind, Andrew Hume

    The rotorcraft community has a growing interest in the development of high-speed helicopters to replace outdated fleets. One barrier to the design of such helicopters is the lack of understanding of the aerodynamic behavior of retreating rotor blades in the reverse flow region. This work considers two fundamental models of this complex unsteady flow regime: static and oscillating (i.e., pitching) airfoils in reverse flow. Wind tunnel tests have been performed at the University of Maryland (UMD) and the United States Naval Academy (USNA). Four rotor blade sections are considered: two featuring a sharp geometric trailing edge (NACA 0012 and NACA 0024) and two featuring a blunt geometric trailing edge (ellipse and cambered ellipse). Static airfoil experiments were performed at angles of attack through 180 deg and Reynolds numbers up to one million, representative of the conditions found in the reverse flow region of a full-scale high-speed helicopter. Time-resolved velocity field measurements were used to identify three unsteady flow regimes: slender body vortex shedding, turbulent wake, and deep stall vortex shedding. Unsteady airloads were measured in these three regimes using unsteady pressure transducers. The magnitude of the unsteady airloads is high in the turbulent wake regime when the separated shear layer is close to the airfoil surface and in deep stall due to periodic vortex-induced flow. Oscillating airfoil experiments were performed on a NACA 0012 and cambered ellipse to investigate reverse flow dynamic stall characteristics by modeling cyclic pitching kinematics. The parameter space spanned three Reynolds numbers (165,000; 330,000; and 500,000), five reduced frequencies between 0.100 and 0.511, three mean pitch angles (5,10, and 15 deg), and two pitch amplitudes (5 deg and 10 deg). The sharp aerodynamic leading edge of the NACA 0012 airfoil forces flow separation resulting in deep dynamic stall. The number of associated vortex structures depends strongly

  3. A Method for the Constrained Design of Natural Laminar Flow Airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford E.; Whitesides, John L.; Campbell, Richard L.; Mineck, Raymond E.

    1996-01-01

    A fully automated iterative design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. Drag reductions have been realized using the design method over a range of Mach numbers, Reynolds numbers and airfoil thicknesses. The thrusts of the method are its ability to calculate a target N-Factor distribution that forces the flow to undergo transition at the desired location; the target-pressure-N-Factor relationship that is used to reduce the N-Factors in order to prolong transition; and its ability to design airfoils to meet lift, pitching moment, thickness and leading-edge radius constraints while also being able to meet the natural laminar flow constraint. The method uses several existing CFD codes and can design a new airfoil in only a few days using a Silicon Graphics IRIS workstation.

  4. Close-loop Dynamic Stall Control on a Pitching Airfoil

    NASA Astrophysics Data System (ADS)

    Giles, Ian; Corke, Thomas

    2017-11-01

    A closed-loop control scheme utilizing a plasma actuator to control dynamic stall is presented. The plasma actuator is located at the leading-edge of a pitching airfoil. It initially pulses at an unsteady frequency that perturbs the boundary layer flow over the suction surface of the airfoil. As the airfoil approaches and enters stall, the amplification of the unsteady disturbance is detected by an onboard pressure sensor also located near the leading edge. Once detected, the actuator is switched to a higher voltage control state that in static airfoil experiments would reattach the flow. The threshold level of the detection is a parameter in the control scheme. Three stall regimes were examined: light, medium, and deep stall, that were defined by their stall penetration angles. The results showed that in general, the closed-loop control scheme was effective at controlling dynamic stall. The cycle-integrated lift improved in all cases, and increased by as much as 15% at the lowest stall penetration angle. As important, the cycle-integrated aerodynamic damping coefficient also increased in all cases, and was made to be positive at the light stall regime where it traditionally is negative. The latter is important in applications where negative damping can lead to stall flutter.

  5. Airfoil family design for large offshore wind turbine blades

    NASA Astrophysics Data System (ADS)

    Méndez, B.; Munduate, X.; San Miguel, U.

    2014-06-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design

  6. Investigation of the NACA 4-(3)(8)-045 Two-blade Propellers at Forward Mach Numbers to 0.725 to Determine the Effects of Compressibility and Solidity on Performance

    NASA Technical Reports Server (NTRS)

    Stack, John; Draley, Eugene C; Delano, James B; Feldman, Lewis

    1950-01-01

    As part of a general investigation of propellers at high forward speeds, tests of two 2-blade propellers having the NACA 4-(3)(8)-03 and NACA 4-(3)(8)-45 blade designs have been made in the Langley 8-foot high-speed tunnel through a range of blade angle from 20 degrees to 60 degrees for forward Mach numbers from 0.165 to 0.725 to establish in detail the changes in propeller characteristics due to compressibility effects. These propellers differed primarily only in blade solidity, one propeller having 50 percent and more solidity than the other. Serious losses in propeller efficiency were found as the propeller tip Mach number exceeded 0.91, irrespective of forward speed or blade angle. The magnitude of the efficiency losses varied from 9 percent to 22 percent per 0.1 increase in tip Mach number above the critical value. The range of advance ratio for peak efficiency decreased markedly with increase of forward speed. The general form of the changes in thrust and power coefficients was found to be similar to the changes in airfoil lift coefficient with changes in Mach number. Efficiency losses due to compressibility effects decreased with increase of blade width. The results indicated that the high level of propeller efficiency obtained at low speeds could be maintained to forward sea-level speeds exceeding 500 miles per hour.

  7. Design and Experimental Results for the S414 Airfoil

    DTIC Science & Technology

    2010-08-01

    EXECUTION The Eppler Airfoil Design and Analysis Code (refs. 15 and 16), a subcritical, single- element code, was used to design the initial fore- and...1965. 14. Maughmer, Mark D.: Trailing Edge Conditions as a Factor in Airfoil Design. Ph.D. Dis- sertation, Univ. of Illinois, 1983.14 15. Eppler ...Richard: Airfoil Design and Data. Springer-Verlag (Berlin), 1990. 16. Eppler , Richard: Airfoil Program System “PROFIL07.” User’s Guide. Richard

  8. Surface-pressure Distributions on a Systematic Group of NACA 1-series Cowlings with and Without Spinners

    NASA Technical Reports Server (NTRS)

    Boswinkle, Robert W JR; Keith, Arvid L JR

    1948-01-01

    A method for calculating the flow fields of axially symmetric bodies from their pressure distributions is reported in NACA RM No. L8I17. In order to facilitate application of this method to the important case of the cowling-spinner combination, for use in the design of propellers, the present paper presents static-pressure distributions on the tops of 79 high-critical-speed NACA 1-series cowling-spinner combinations over wide ranges of inlet-velocity ratio at angles of attack of 0 degrees, 2 degrees, 4 degrees, and 6 degrees. Static-pressure distributions around the nose sections of several cowlings are given in greater detail to aid in estimating the pressures near the stagnation points and to show the effect of changes in the internal lip shape. The effects of the operation of a typical propeller on the surface pressures on the cowling are shown for one configuration. The pressure distributions over the nine NACA 1-series nose inlets used as the basic components of these combinations are also presented ro supplement the existing open-nose-cowling data of NACA ACR No. L5F30a which are applicable to the case of the rotating cowling.

  9. OUT Success Stories: Advanced Airfoils for Wind Turbines

    DOE R&D Accomplishments Database

    Jones, J.; Green, B.

    2000-08-01

    New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs.

  10. Design and analytical study of a rotor airfoil

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.

    1978-01-01

    An airfoil section for use on helicopter rotor blades was defined and analyzed by means of potential flow/boundary layer interaction and viscous transonic flow methods to meet as closely as possible a set of advanced airfoil design objectives. The design efforts showed that the first priority objectives, including selected low speed pitching moment, maximum lift and drag divergence requirements can be met, though marginally. The maximum lift requirement at M = 0.5 and most of the profile drag objectives cannot be met without some compromise of at least one of the higher order priorities.

  11. NACA Conference on Aircraft Loads, Structures, and Flutter

    NASA Technical Reports Server (NTRS)

    1957-01-01

    This document contains reproductions of technical papers on some of the most recent research results on aircraft loads, flutter, and structures from the NACA laboratories. These papers were presented by members of the staff of the NACA laboratories at the Conference held at the Langley Aeronautical Laboratory March 5, 6, and 7, 1957. The primary purpose of this Conference was to convey to contractors of the military services and others concerned with the design of aircraft these recent research results and to provide those attending an opportunity to discuss the results. The papers in this document are in the same form in which they were presented at the Conference in order to facilitate their prompt distribution. The original presentation and this record are considered as complementary to, rather than as substitutes for, the Committee?s more complete and formal reports. Accordingly, if information from this document is utilized it is requested that this document not be listed as a reference. Individual reports dealing with most of the information presented at the Conference will subsequently be published by NACA and will therefore be suitable as reference material.

  12. Aerodynamic Analysis Over Double Wedge Airfoil

    NASA Astrophysics Data System (ADS)

    Prasad, U. S.; Ajay, V. S.; Rajat, R. H.; Samanyu, S.

    2017-05-01

    Aeronautical studies are being focused more towards supersonic flights and methods to attain a better and safer flight with highest possible performance. Aerodynamic analysis is part of the whole procedure, which includes focusing on airfoil shapes which will permit sustained flight of aircraft at these speeds. Airfoil shapes differ based on the applications, hence the airfoil shapes considered for supersonic speeds are different from the ones considered for Subsonic. The present work is based on the effects of change in physical parameter for the Double wedge airfoil. Mach number range taken is for transonic and supersonic. Physical parameters considered for the Double wedge case with wedge angle (ranging from 5 degree to 15 degree. Available Computational tools are utilized for analysis. Double wedge airfoil is analysed at different Angles of attack (AOA) based on the wedge angle. Analysis is carried out using fluent at standard conditions with specific heat ratio taken as 1.4. Manual calculations for oblique shock properties are calculated with the help of Microsoft excel. MATLAB is used to form a code for obtaining shock angle with Mach number and wedge angle at the given parameters. Results obtained from manual calculations and fluent analysis are cross checked.

  13. Stiffness characteristics of airfoils under pulse loading

    NASA Astrophysics Data System (ADS)

    Turner, Kevin Eugene

    The turbomachinery industry continually struggles with the adverse effects of contact rubs between airfoils and casings. The key parameter controlling the severity of a given rub event is the contact load produced when the airfoil tips incur into the casing. These highly non-linear and transient forces are difficult to calculate and their effects on the static and rotating components are not well understood. To help provide this insight, experimental and analytical capabilities have been established and exercised through an alliance between GE Aviation and The Ohio State University Gas Turbine Laboratory. One of the early findings of the program is the influence of blade flexibility on the physics of rub events. The core focus of the work presented in this dissertation is to quantify the influence of airfoil flexibility through a novel modeling approach that is based on the relationship between applied force duration and maximum tip deflection. This relationship is initially established using a series of forward, non-linear and transient analyses in which simulated impulse rub loads are applied. This procedure, although effective, is highly inefficient and costly to conduct by requiring numerous explicit simulations. To alleviate this issue, a simplified model, named the pulse magnification model, is developed that only requires a modal analysis and a static analyses to fully describe how the airfoil stiffness changes with respect to load duration. Results from the pulse magnification model are compared to results from the full transient simulation method and to experimental results, providing sound verification for the use of the modeling approach. Furthermore, a unique and highly efficient method to model airfoil geometries was developed and is outlined in this dissertation. This method produces quality Finite Element airfoil definitions directly from a fully parameterized mathematical model. The effectiveness of this approach is demonstrated by comparing modal

  14. Unsteady pressure measurements on a biconvex airfoil in a transonic oscillating cascade

    NASA Technical Reports Server (NTRS)

    Shaw, L. M.; Boldman, D. R.; Buggele, A. E.; Buffum, D. H.

    1985-01-01

    Flush-mounted dynamic pressure transducers were installed on the center airfoil of a transonic oscillating cascade to measure the unsteady aerodynamic response as nine airfroils were simultaneously driven to provide 1.2 deg of pitching motion about the midchord. Initial tests were performed at an incidence and angle of 0 deg and A Mach number of 0.65 in order to obtain results in a shock-free compressible flowfield. Subsequent tests were performed at an incidence angle of 7 deg and Mach number of 0.8 in order to observe the surface pressures with an oscillating shock near the leading edge of the airfoil. Results are presented for interblade phase angles of 90 and -90 deg and at blade oscillatory frequencies of 200 and 500 Hz (semi-chord reduced frequencies up to about 0.5 at a Mach number of 0.8). Results from the zero-incidence cascade are compared with a classical unsteady flat-plate analysis. Flow visualization results depicting the shock motion on the airfoils in the high-incidence cascade are discussed. The airfoil pressure data are tabulated.

  15. Low-speed single-element airfoil synthesis

    NASA Technical Reports Server (NTRS)

    Mcmasters, J. H.; Henderson, M. L.

    1979-01-01

    The use of recently developed airfoil analysis/design computational tools to clarify, enrich and extend the existing experimental data base on low-speed, single element airfoils is demonstrated. A discussion of the problem of tailoring an airfoil for a specific application at its appropriate Reynolds number is presented. This problem is approached by use of inverse (or synthesis) techniques, wherein a desirable set of boundary layer characteristics, performance objectives, and constraints are specified, which then leads to derivation of a corresponding viscous flow pressure distribution. Examples are presented which demonstrate the synthesis approach, following presentation of some historical information and background data which motivate the basic synthesis process.

  16. NACA collections: A directory of significant collections of the documents of the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Smith, Ruth S.

    1994-01-01

    An alphabetical listing is given of 42 centers that hold National Advisory Committee for Aeronautics (NACA) documents. Information is given on the number of NACA holdings in paper copy, bound volumes, and microfiche. Additional information is given on the bibliographic records and availability.

  17. A streamline curvature method for design of supercritical and subcritical airfoils

    NASA Technical Reports Server (NTRS)

    Barger, R. L.; Brooks, C. W., Jr.

    1974-01-01

    An airfoil design procedure, applicable to both subcritical and supercritical airfoils, is described. The method is based on the streamline curvature velocity equation. Several examples illustrating this method are presented and discussed.

  18. Aerodynamics Characteristics of Multi-Element Airfoils at -90 Degrees Incidence

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.; Schmitz, Fredric H. (Technical Monitor)

    1994-01-01

    A developed method has been applied to calculate accurately the viscous flow about airfoils normal to the free-stream flow. This method has special application to the analysis of tilt rotor aircraft in the evaluation of download. In particular, the flow about an XV-15 airfoil with and without deflected leading and trailing edge flaps at -90 degrees incidence is evaluated. The multi-element aspect of the method provides for the evaluation of slotted flap configurations which may lead to decreased drag. The method solves for turbulent flow at flight Reynolds numbers. The flow about the XV-15 airfoil with and without flap deflections has been calculated and compared with experimental data at a Reynolds number of one million. The comparison between the calculated and measured pressure distributions are very good, thereby, verifying the method. The aerodynamic evaluation of multielement airfoils will be conducted to determine airfoil/flap configurations for reduced airfoil drag. Comparisons between the calculated lift, drag and pitching moment on the airfoil and the airfoil surface pressure will also be presented.

  19. Application of two procedures for dual-point design of transonic airfoils

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Campbell, Richard L.; Allison, Dennis O.

    1994-01-01

    Two dual-point design procedures were developed to reduce the objective function of a baseline airfoil at two design points. The first procedure to develop a redesigned airfoil used a weighted average of the shapes of two intermediate airfoils redesigned at each of the two design points. The second procedure used a weighted average of two pressure distributions obtained from an intermediate airfoil redesigned at each of the two design points. Each procedure was used to design a new airfoil with reduced wave drag at the cruise condition without increasing the wave drag or pitching moment at the climb condition. Two cycles of the airfoil shape-averaging procedure successfully designed a new airfoil that reduced the objective function and satisfied the constraints. One cycle of the target (desired) pressure-averaging procedure was used to design two new airfoils that reduced the objective function and came close to satisfying the constraints.

  20. Aeroacoustic interaction of a distributed vortex with a lifting Joukowski airfoil

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Lamkin, S. L.

    1984-01-01

    A first principles computational aeroacoustics calculation of the flow and noise fields produced by the interaction of a distributed vortex with a lifting Joukowski airfoil is accomplished at the Reynolds number of 200. The case considered is that where the circulations of the vortex and the airfoil are of opposite sign, corresponding to blade vortex interaction on the retreating side of a single helicopter rotor. The results show that the flow is unsteady, even in the absence of the incoming vortex, resulting in trailing edge noise generation. After the vortex is input, it initially experiences a quite rapid apparent diffusion rate produced by stretching in the airfoil velocity gradients. Consideration of the effects of finite vortex size and viscosity causes the noise radiation during the encounter to be much less impulsive than predicted by previous analyses.

  1. Characteristics of a separating confluent boundary layer and the downstream wake

    NASA Technical Reports Server (NTRS)

    Adair, Desmond; Horne, W. Clifton

    1987-01-01

    Measurements of pressure and velocity characteristics are presented and analyzed for flow over and downstream of a NACA 4412 airfoil equipped with a NACA 4415 single-slotted flap at high angle of attack and close to maximum lift. The flow remained attached over the main element while a large region of recirculating flow occurred over the aft 61 percent of the flap. The airfoil configuration was tested at a Mach number of 0.09 and a chord Reynolds number of 1.8x10 to the 6th power in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. Measurement of mean and fluctuation velocities were obtained in regions of recirculation and high turbulence intensity using 3-D laser velocimetry. In regions where the flow had a preferred direction and relatively low turbulence intensity, hot-wire anemometry was used. Emphasis was placed on obtaining characteristics in the confluent boundary layer, the region of recirculating flow, and in the downstream wake. Surface pressure measurements were made on the main airfoil, flap, wind tunnel roof and floor. It is thought likely that because the model is large when compared to the wind tunnel cross section, the wind tunnel floor and ceiling interference should be taken into account when the flow field is calculated.

  2. Historical perspectives on thermostructural research at the NACA Langley Aeronautical Laboratory from 1948 to 1958

    NASA Technical Reports Server (NTRS)

    Heldenfels, R. R.

    1982-01-01

    Some of the early research on structural problems produced by aerodynamic heating, conducted at the Langley Aeronautical Laboratory of the National Advisory Committee for Aeronautics from 1948 to 1958 is described. That was the last decade of the NACA; in 1958 NACA became the nucleus of NASA. The NACA initially contracted for research but was aware that a well-equipped and suitably staffed laboratory was required to fulfill its obligations. Langley was established in 1920; the other listed were added during the NACA expansion in the World War II years. Some specific research activities are described, starting with calculation of the temperature of the structure.

  3. Historical perspectives on thermostructural research at the NACA Langley Aeronautical Laboratory from 1948 to 1958

    NASA Astrophysics Data System (ADS)

    Heldenfels, R. R.

    Some of the early research on structural problems produced by aerodynamic heating, conducted at the Langley Aeronautical Laboratory of the National Advisory Committee for Aeronautics from 1948 to 1958 is described. That was the last decade of the NACA; in 1958 NACA became the nucleus of NASA. The NACA initially contracted for research but was aware that a well-equipped and suitably staffed laboratory was required to fulfill its obligations. Langley was established in 1920; the other listed were added during the NACA expansion in the World War II years. Some specific research activities are described, starting with calculation of the temperature of the structure.

  4. Effect of an extendable slat on the stall behavior of a VR-12 airfoil

    NASA Technical Reports Server (NTRS)

    Dehugues, P. Plantin; Mcalister, K. W.; Tung, C.

    1993-01-01

    Experimental and computational tests were performed on a VR-12 airfoil to determine if the dynamic-stall behavior that normally accompanies high-angle pitch oscillations could be modified by segmenting the forward portion of the airfoil and extending it ahead of the main element. In the extended position the configuration would appear as an airfoil with a leading-edge slat, and in the retracted position it would appear as a conventional VR-12 airfoil. The calculations were obtained from a numerical code that models the vorticity transport equation for an incompressible fluid. These results were compared with test data from the water tunnel facility of the Aeroflightdynamics Directorate at Ames Research Center. Steady and unsteady flows around both airfoils were examined at angles of attack between 0 and 30 deg. The Reynolds number was fixed at 200,000 and the unsteady pitch oscillations followed a sinusoidal motion described by alpha = alpha(sub m) + 10 deg sin(omega t). The mean angle (alpha(sub m)) was varied from 10 to 20 deg and the reduced frequency from 0.05 to 0.20. The results from the experiment and the calculations show that the extended-slat VR-12 airfoil experiences a delay in both static and dynamic stall not experienced by the basic VR-12 airfoil.

  5. NACA: 25 Years of Flight Research

    NASA Image and Video Library

    2018-05-10

    A narrated film documentary of flight tests at the NACA and NASA’s Flight Research Center shows the X-1, D-558-II, X-3, X-4, X-5, and X-15 in flight and on the ground. The story describes what each aircraft contributed to flight’s expansion.

  6. Experimental investigation of a transonic potential flow around a symmetric airfoil

    NASA Technical Reports Server (NTRS)

    Hiller, W. J.; Meier, G. E. A.

    1981-01-01

    Experimental flow investigations on smooth airfoils were done using numerical solutions for transonic airfoil streaming with shockless supersonic range. The experimental flow reproduced essential sections of the theoretically computed frictionless solution. Agreement is better in the expansion part of the of the flow than in the compression part. The flow was nearly stationary in the entire velocity range investigated.

  7. Recent work on airfoil theory

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1940-01-01

    The basic ideas of a new method for treating the problem of the airfoil are presented, and a review is given of the problems thus far computed for incompressible and supersonic flows. Test results are reported for the airfoil of circular plan form and the results are shown to agree well with the theory. As a supplement, a theory based on the older methods is presented for the rectangular of small aspect ratio.

  8. Damping element for reducing the vibration of an airfoil

    DOEpatents

    Campbell, Christian X; Marra, John J

    2013-11-12

    An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.

  9. Solution of transonic flows by an integro-differential equation method

    NASA Technical Reports Server (NTRS)

    Ogana, W.

    1978-01-01

    Solutions of steady transonic flow past a two-dimensional airfoil are obtained from a singular integro-differential equation which involves a tangential derivative of the perturbation velocity potential. Subcritical flows are solved by taking central differences everywhere. For supercritical flows with shocks, central differences are taken in subsonic flow regions and backward differences in supersonic flow regions. The method is applied to a nonlifting parabolic-arc airfoil and to a lifting NACA 0012 airfoil. Results compare favorably with those of finite-difference schemes.

  10. Design and Analysis of a Subcritical Airfoil for High Altitude, Long Endurance Missions.

    DTIC Science & Technology

    1982-12-01

    Airfoil Design and Analysis Method ......... .... 61 Appendix D: Boundary Layer Analysis Method ............. ... 81 Appendix E: Detailed Results ofr...attack. Computer codes designed by Richard Eppler were used for this study. The airfoil was anlayzed by using a viscous effects analysis program...inverse program designed by Eppler (Ref 5) was used in this study to accomplish this part. The second step involved the analysis of the airfoil under

  11. Investigation of the Boundary Layer Behavior on Turbine Airfoils.

    DTIC Science & Technology

    1979-08-01

    turbine airfoil cascade . The airfoil profile was based on a turbine blade design used by Lander ’’4 and employed in previous wake studies by Cox and...simulate the wake from upstream turning vanes or blades , a circular cylinder was placed upstream of the centra l or test airfoil . The displacement of this...of turbine airfoil cascade model s by Cox and Han 15 are very much evident in the graph . It might be noted that the blade stag- nation points are at

  12. Study on Trailing Edge Ramp of Supercritical Airfoil

    DTIC Science & Technology

    2016-03-30

    7 th Asia-Pacific International Symposium on Aerospace Technology, 25 – 27 November 2015, Cairns Study on Trailing Edge Ramp of Supercritical...China Abstract Trailing edge flow control method could improve the performance of supercritical airfoil with a small modification on the original...airfoil. In this paper, a ramp of 2%~7% chord length is sliced near the trailing edge to improve airfoil performance. The trailing edge ramp is

  13. Theoretical and experimental study of a new method for prediction of profile drag of airfoil sections

    NASA Technical Reports Server (NTRS)

    Goradia, S. H.; Lilley, D. E.

    1975-01-01

    Theoretical and experimental studies are described which were conducted for the purpose of developing a new generalized method for the prediction of profile drag of single component airfoil sections with sharp trailing edges. This method aims at solution for the flow in the wake from the airfoil trailing edge to the large distance in the downstream direction; the profile drag of the given airfoil section can then easily be obtained from the momentum balance once the shape of velocity profile at a large distance from the airfoil trailing edge has been computed. Computer program subroutines have been developed for the computation of the profile drag and flow in the airfoil wake on CDC6600 computer. The required inputs to the computer program consist of free stream conditions and the characteristics of the boundary layers at the airfoil trailing edge or at the point of incipient separation in the neighborhood of airfoil trailing edge. The method described is quite generalized and hence can be extended to the solution of the profile drag for multi-component airfoil sections.

  14. Rocket Propellant Talk at the 1957 NACA Lewis Inspection

    NASA Image and Video Library

    1957-10-21

    A researcher works a demonstration board in the Rocket Engine Test Facility during the 1957 Inspection of the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio. Representatives from the military, aeronautical industry, universities, and the press were invited to the laboratory to be briefed on the NACA’s latest research efforts and tour the test facilities. Over 1700 people visited the Lewis during the October 7-10, 1957 Inspection. The Soviet Union launched their first Sputnik satellite just days before on October 4. NACA Lewis had been involved in small rockets and propellants research since 1945, but the NACA leadership was wary of involving itself too deeply with the work since ballistics traditionally fell under the military’s purview. The Lewis research was performed by the High Temperature Combustion section in the Fuels and Lubricants Division in a series of small cinderblock test cells. The rocket group was expanded in 1952 and made several test runs in late 1954 using liquid hydrogen as a propellant. A larger test facility, the Rocket Engine Test Facility, was approved and became operational just in time for the Inspection.

  15. Airfoil for a turbine of a gas turbine engine

    DOEpatents

    Liang, George

    2010-12-21

    An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.

  16. The Effect of Surface Irregularities on Wing Drag. 3; Roughness

    NASA Technical Reports Server (NTRS)

    Hood, Manley J.

    1938-01-01

    Tests have been made in the N.A.C.A. 8-foot high-speed wind tunnel of the drag caused by roughness on the surface of an airfoil of N.A.C.A. 23012 section and 5-foot chord. The tests were made at speeds from 80 t o 500 miles per hour at lift coefficients from 0 to 0.30. For conditions corresponding to high-speed flight, the increase in the drag was 30 percent of the profile drag of the smooth airfoil for the roughness produced by spray painting and 63 percent for the roughness produced. by 0.0037-inch carborundum grains. About one-half the drag increase was caused by the roughness on the forward one-fourth of the airfoil. Sandpapering the painted surface with No. 400 sandpaper made it sufficiently smooth that the drag was no greater than when the surface was polished. In the lower part of the range investigated the drag due to roughness increased rapidly with Reynolds Number.

  17. Mathematical modeling of ice accretion on airfoils

    NASA Technical Reports Server (NTRS)

    Macarthur, C. D.; Keller, J. L.; Luers, J. K.

    1982-01-01

    The progress toward development of a computer model suitable for predicting icing behavior on airfoils over a wide range of environmental conditions and airfoils shapes is reported. The LEWICE program was formulated to solve a set of equations which describe the physical processes which occur during accretion of ice on an airfoil, including heat transfer in a time dependent mode, with the restriction that the flow must be describable by a two-dimensional flow code. Input data comprises the cloud liquid water content, mean droplet diameter, ambient air temperature, air velocity, and relative humidity. A potential flowfield around the airfoil is calculated, along with the droplet trajectories within the flowfield, followed by local values of water droplet collection efficiency at the impact points. Both glaze and rime ice conditions are reproduced, and comparisons with test results on icing of circular cylinders showed good agreement with the physical situation.

  18. Optimal Control of Airfoil Flow Separation using Fluidic Excitation

    NASA Astrophysics Data System (ADS)

    Shahrabi, Arireza F.

    This thesis deals with the control of flow separation around a symmetric airfoils with the aid of multiple synthetic jet actuators (SJAs). CFD simulation methods have been implemented to uncover the flow separation regimes and associated properties such as frequencies and momentum ratio. In the first part of the study, the SJA was studied thoroughly. Large Eddy Simulations (LES) were performed for one individual cavity; the time history of SJA of the outlet velocity profile and the net momentum imparted to the flow were analyzed. The studied SJA is asymmetrical and operates with the aid of a piezoelectric (PZT) ceramic circular plate actuator. A three-dimensional mesh for the computational domain of the SJA and the surrounding volume was developed and was used to evaluate the details of the airflow conditions inside the SJA as well as at the outlet. The vibration of the PZT ceramic actuator was used as a boundary condition in the computational model to drive the SJA. Particular attention was given to developing a predictive model of the SJA outlet velocity. Results showed that the SJA velocity output is correlated to the PZT ceramic plate vibration, especially for the first frequency mode. SJAs are a particular class of zero net mass flux (ZNMF) fluidic devices with net imparted momentum to the flow. The net momentum imparted to the flow in the separated region is such that positive enhancement during AFC operations is achieved. Flows around the NACA 0015 airfoil were simulated for a range of operating conditions. Attention was given to the active open and closed loop control solutions for an airfoil with SJA at different angles of attack and flap angles. A large number of simulations using RANS & LES models were performed to study the effects of the momentum ratio (Cμ) in the range of 0 to 11% and of the non-dimensional frequency, F+, in the range of 0 to 2 for the control of flow separation at a practical angle of attack and flap angle. The optimum value of C

  19. Measuring Lift with the Wright Airfoils

    ERIC Educational Resources Information Center

    Heavers, Richard M.; Soleymanloo, Arianne

    2011-01-01

    In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…

  20. S825 and S826 Airfoils: 1994--1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somers, D. M.

    2005-01-01

    A family of airfoils, the S825 and S826, for 20- to 40-meter, variable-speed and variable-pitch (toward feather), horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, insensitive to roughness, and low profile drag have been achieved. The constraints on the pitching moments and the airfoil thicknesses have been satisfied. The airfoils should exhibit docile stalls.

  1. Experimental and simulated control of lift using trailing edge devices

    NASA Astrophysics Data System (ADS)

    Cooperman, A.; Blaylock, M.; van Dam, C. P.

    2014-12-01

    Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust.

  2. Compressor airfoil tip clearance optimization system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, David A.; Pu, Zhengxiang

    2015-08-18

    A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary.more » During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.« less

  3. The computation of the post-stall behavior of a circulation controlled airfoil

    NASA Technical Reports Server (NTRS)

    Linton, Samuel W.

    1993-01-01

    The physics of the circulation controlled airfoil is complex and poorly understood, particularly with regards to jet stall, which is the eventual breakdown of lift augmentation by the jet at some sufficiently high blowing rate. The present paper describes the numerical simulation of stalled and unstalled flows over a two-dimensional circulation controlled airfoil using a fully implicit Navier-Stokes code, and the comparison with experimental results. Mach numbers of 0.3 and 0.5 and jet total to freestream pressure ratios of 1.4 and 1.8 are investigated. The Baldwin-Lomax and k-epsilon turbulence models are used, each modified to include the effect of strong streamline curvature. The numerical solutions of the post-stall circulation controlled airfoil show a highly regular unsteady periodic flowfield. This is the result of an alternation between adverse pressure gradient and shock induced separation of the boundary layer on the airfoil trailing edge.

  4. Self-sustained Flow-acoustic Interactions in Airfoil Transitional Boundary Layers

    DTIC Science & Technology

    2015-07-09

    AFRL-AFOSR-VA-TR-2015-0235 Self-sustained flow-acoustic interactions in airfoil transitional boundary layers Vladimir Golubev EMBRY-RIDDLE...From - To)      01-04-2012 to 31-03-2015 4.  TITLE AND SUBTITLE Self-sustained flow-acoustic interactions in airfoil transitional boundary layers 5a...complementary experimental and numerical studies of flow-acoustic resonant interactions in transitional airfoils and their impact on airfoil surface

  5. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; hide

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  6. Flow visualization over a thick blunt trailing-edge airfoil with base cavity at low Reynolds numbers using PIV technique.

    PubMed

    Taherian, Gholamhossein; Nili-Ahmadabadi, Mahdi; Karimi, Mohammad Hassan; Tavakoli, Mohammad Reza

    2017-01-01

    In this study, the effect of cutting the end of a thick airfoil and adding a cavity on its flow pattern is studied experimentally using PIV technique. First, by cutting 30% chord length of the Riso airfoil, a thick blunt trialing-edge airfoil is generated. The velocity field around the original airfoil and the new airfoil is measured by PIV technique and compared with each other. Then, adding two parallel plates to the end of the new airfoil forms the desired cavity. Continuous measurement of unsteady flow velocity over the Riso airfoil with thick blunt trailing edge and base cavity is the most important innovation of this research. The results show that cutting off the end of the airfoil decreases the wake region behind the airfoil, when separation occurs. Moreover, adding a cavity to the end of the thickened airfoil causes an increase in momentum and a further decrease in the wake behind the trailing edge that leads to a drag reduction in comparison with the thickened airfoil without cavity. Furthermore, using cavity decreases the Strouhal number and vortex shedding frequency.

  7. Turbine airfoil with controlled area cooling arrangement

    DOEpatents

    Liang, George

    2010-04-27

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

  8. Turbine airfoil with laterally extending snubber having internal cooling system

    DOEpatents

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  9. Drop "impact" on an airfoil surface.

    PubMed

    Wu, Zhenlong

    2018-06-01

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Experimental verification of a new laminar airfoil: A project for the graduate program in aeronautics

    NASA Technical Reports Server (NTRS)

    Nicks, Oran W.; Korkan, Kenneth D.

    1991-01-01

    Two reports on student activities to determine the properties of a new laminar airfoil which were delivered at a conference on soaring technology are presented. The papers discuss a wind tunnel investigation and analysis of the SM701 airfoil and verification of the SM701 airfoil aerodynamic charcteristics utilizing theoretical techniques. The papers are based on a combination of analytical design, hands-on model fabrication, wind tunnel calibration and testing, data acquisition and analysis, and comparison of test results and theory.

  11. Design and Experimental Results for the S407 Airfoil

    DTIC Science & Technology

    2010-08-01

    reduced to the inverse problem of transforming the pressure distributions into an airfoil shape. The Eppler Airfoil Design and Analysis Code (refs. 3 and...Circuit Wind Tunnel. M. S. Thesis, Pennsylvania State Univ., 1993. 3. Eppler , Richard: Airfoil Design and Data. Springer-Verlag (Berlin), 1990. 4. Eppler ...Richard: Airfoil Program System “PROFIL07.” User’s Guide. Richard Eppler , c.2007. 5. Drela, M.: Design and Optimization Method for Multi-Element

  12. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.

    PubMed

    Wang, Chenglei; Tang, Hui

    2018-05-25

    In this study, we explore the use of synthetic jet (SJ) in manipulating the vortices around a rigid heaving airfoil, so as to enhance its aerodynamic performance. The airfoil heaves at two fixed pitching angles, with the Strouhal number, reduced frequency and Reynolds number chosen as St  =  0.3, k  =  0.25 and Re  =  100, respectively, all falling in the ranges for natural flyers. As such, the vortex force plays a dominant role in determining the airfoil's aerodynamic performance. A pair of in-phase SJs is implemented on the airfoil's upper and lower surfaces, operating with the same strength but in opposite directions. Such a fluid-structure interaction problem is numerically solved using a lattice Boltzmann method based numerical framework. It is found that, as the airfoil heaves with zero pitching angle, its lift and drag can be improved concurrently when the SJ phase angle [Formula: see text] relative to the heave motion varies between [Formula: see text] and [Formula: see text]. But this concurrent improvement does not occur as the airfoil heaves with [Formula: see text] pitching angle. Detailed inspection of the vortex evolution and fluid stress over the airfoil surface reveals that, if at good timing, the suction and blowing strokes of the SJ pair can effectively delay or promote the shedding of leading edge vortices, and mitigate or even eliminate the generation of trailing edge vortices, so as to enhance the airfoil's aerodynamic performance. Based on these understandings, an intermittent operation of the SJ pair is then proposed to realize concurrent lift and drag improvement for the heaving airfoil with [Formula: see text] pitching angle.

  13. Reynolds number effects on the aerodynamic characteristics of irregular planform wings at Mach number 0.3. [in the Ames 12 ft pressure wind tunnel

    NASA Technical Reports Server (NTRS)

    Kruse, R. L.; Lovette, G. H.; Spencer, B., Jr.

    1977-01-01

    The subsonic aerodynamic characteristics of a series of irregular planform wings were studied in wind tunnel tests conducted at M = 0.3 over a range of Reynolds numbers from 1.6 million to 26 million/m. The five basic wing planforms varied from a trapezoidal to a delta shape. Leading edge extensions, added to the basic shape, varied in approximately 5 deg increments from the wing leading edge sweep-back angle to a maximum 80 deg. Most of the tests were conducted using an NACA 0008 airfoil section with grit boundary layer trips. Tests were also conducted using an NACA 0012 airfoil section and an 8% thick wedge. In addition, the effect of free transition (no grit) was investigated. A body was used on all models.

  14. Study of the TRAC Airfoil Table Computational System

    NASA Technical Reports Server (NTRS)

    Hu, Hong

    1999-01-01

    The report documents the study of the application of the TRAC airfoil table computational package (TRACFOIL) to the prediction of 2D airfoil force and moment data over a wide range of angle of attack and Mach number. The TRACFOIL generates the standard C-81 airfoil table for input into rotorcraft comprehensive codes such as CAM- RAD. The existing TRACFOIL computer package is successfully modified to run on Digital alpha workstations and on Cray-C90 supercomputers. A step-by-step instruction for using the package on both computer platforms is provided. Application of the newer version of TRACFOIL is made for two airfoil sections. The C-81 data obtained using the TRACFOIL method are compared with those of wind-tunnel data and results are presented.

  15. Computational Modeling For The Transitional Flow Over A Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, Chris L. (Technical Monitor)

    2000-01-01

    The transitional flow over a multi-element airfoil in a landing configuration are computed using a two equation transition model. The transition model is predictive in the sense that the transition onset is a result of the calculation and no prior knowledge of the transition location is required. The computations were performed using the INS2D) Navier-Stokes code. Overset grids are used for the three-element airfoil. The airfoil operating conditions are varied for a range of angle of attack and for two different Reynolds numbers of 5 million and 9 million. The computed results are compared with experimental data for the surface pressure, skin friction, transition onset location, and velocity magnitude. In general, the comparison shows a good agreement with the experimental data.

  16. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    PubMed

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the

  17. Low-speed aerodynamic characteristics of a 13.1-percent-thick, high-lift airfoil

    NASA Technical Reports Server (NTRS)

    Sivier, K. R.; Ormsbee, A. I.; Awker, R. W.

    1974-01-01

    Experimental study of the low-speed, sectional characteristics of a high-lift airfoil, and comparison of these characteristics with the predictions of the theoretical methods used in the airfoil's design. The 13.1% thick UI-1720 airfoil was found to achieve the predicted maximum lift coefficient of nearly 2.0. No upper-surface flow separation was found below the stall angle of attack of 16 deg; it appeared that stall was due to an abrupt leading-edge flow separation.

  18. An Approach to the Constrained Design of Natural Laminar Flow Airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford E.

    1997-01-01

    A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integral turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the laminar flow toward the desired amount. An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

  19. An approach to the constrained design of natural laminar flow airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford Earl

    1995-01-01

    A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integml turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the larninar flow toward the desired amounl An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

  20. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  1. Airfoil-Shaped Fluid Flow Tool for Use in Making Differential Measurements

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2014-01-01

    A fluid flow tool includes an airfoil structure and a support arm. The airfoil structure's high-pressure side and low-pressure side are positioned in a conduit by the support arm coupled to the conduit. The high-pressure and low-pressure sides substantially face opposing walls of the conduit. At least one measurement port is formed in the airfoil structure at each of its high-pressure side and low-pressure side. A first manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the high-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit. A second manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the low-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit.

  2. The S411, S412, and S413 Airfoils

    DTIC Science & Technology

    2010-08-01

    Distribution on Wings in the Lower Critical Speed Range. Transonic Aerodynamics. AGARD CP No. 35, Sept. 1968, pp. 17-1–17-10.13 TABLE I.- AIRFOIL DESIGN...experimentally several airfoils for rotorcraft applications. SYMBOLS Cp pressure coefficient c airfoil chord, mm cd section profile-drag coefficient cl...Proceedings of the Conference on Low Reynolds Number Airfoil Aerodynamics, UNDAS- CP -77B123, Univ. of Notre Dame, June 1985, pp. 1–14. 5. Wortmann, F. X

  3. Comparisons of Theoretical Methods for Predicting Airfoil Aerodynamic Characteristics

    DTIC Science & Technology

    2010-08-01

    Airfoil ,” Airfoils , U.S. Army Aviation Research, Development and Engineering Command, RDECOM TR 10-D-107, August 2010. [2] Somers, D.M. and...Maughmer, M.D., “Design and Experimental Results for the S407 Airfoil ,” U.S. Army Aviation Research, Development and Engineering Command, RDECOM TR 10-D...S414 Airfoil ,” U.S. Army Aviation Research, Development and Engineering Command, RDECOM TR 10-D-112, August 2010. [5] Somers, D.M. and Maughmer

  4. Aerodynamic shape optimization of Airfoils in 2-D incompressible flow

    NASA Astrophysics Data System (ADS)

    Rangasamy, Srinivethan; Upadhyay, Harshal; Somasekaran, Sandeep; Raghunath, Sreekanth

    2010-11-01

    An optimization framework was developed for maximizing the region of 2-D airfoil immersed in laminar flow with enhanced aerodynamic performance. It uses genetic algorithm over a population of 125, across 1000 generations, to optimize the airfoil. On a stand-alone computer, a run takes about an hour to obtain a converged solution. The airfoil geometry was generated using two Bezier curves; one to represent the thickness and the other the camber of the airfoil. The airfoil profile was generated by adding and subtracting the thickness curve from the camber curve. The coefficient of lift and drag was computed using potential velocity distribution obtained from panel code, and boundary layer transition prediction code was used to predict the location of onset of transition. The objective function of a particular design is evaluated as the weighted-average of aerodynamic characteristics at various angles of attacks. Optimization was carried out for several objective functions and the airfoil designs obtained were analyzed.

  5. Formation and Development of the Dynamic Stall Vortex on a Wing with Leading Edge Tubercles

    NASA Astrophysics Data System (ADS)

    Hrynuk, John; Bohl, Douglas

    2015-11-01

    Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils inspired by whale flippers has centered on the static aerodynamic characteristics of these airfoils. The current study uses Molecular Tagging Velocimetry (MTV) to investigate the effects of tubercles on dynamically pitching NACA 0012 airfoils. A baseline (i.e. straight leading edge) wing and one modified with leading edge tubercles are investigated. Tracking of the Dynamic Stall Vortex (DSV) is performed to quantitatively compare the DSV formation location, path, and convective velocity for tubercled and baseline wings. The results show that there is a spanwise variation in the initial formation location and motion of the DSV on the modified wing. Once formed, the DSV aligns into a more uniform spanwise structure. As the pitching motion progresses, the DSV on the modified wing convects away from the airfoil surface later and slower than is observed for the baseline airfoil. The results indicate that the tubercles may delay stall when compared to the baseline airfoil. This work was supported by NSF Grant # 0845882.

  6. Grid generation by elliptic partial differential equations for a tri-element Augmentor-Wing airfoil

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1982-01-01

    Two efforts to numerically simulate the flow about the Augmentor-Wing airfoil in the cruise configuration using the GRAPE elliptic partial differential equation grid generator algorithm are discussed. The Augmentor-Wing consists of a main airfoil with a slotted trailing edge for blowing and two smaller airfoils shrouding the blowing jet. The airfoil and the algorithm are described, and the application of GRAPE to an unsteady viscous flow simulation and a transonic full-potential approach is considered. The procedure involves dividing a complicated flow region into an arbitrary number of zones and ensuring continuity of grid lines, their slopes, and their point distributions across the zonal boundaries. The method for distributing the body-surface grid points is discussed.

  7. NACA Conference on Turbojet-Engine Thrust Augmentation Research: A Compilation of the Papers Presented by NACA Staff Members

    NASA Technical Reports Server (NTRS)

    1948-01-01

    The conference on Turbojet-Engine Thrust-Augmentation Research was organized by the NACA to present in summarized form the results of the latest experimental and analytical investigations conducted at the Lewis Flight Propulsion Laboratory on methods of augmenting the thrust of turbojet engines. The technical discussions are reproduced herewith in the same form in which they were presented. The original presentation in this record are considered as complementary to, rather than substitutes for, the committee's system of complete and formal reports.

  8. Hydrodynamic Tests in the N.A.C.A. Tank of a Model of the Hull of the Short Calcutta Flying Boat

    NASA Technical Reports Server (NTRS)

    Ward, Kenneth E

    1937-01-01

    The hydrodynamic characteristics of a model of the hull of the Short Calcutta (N.A.C.A. Model 47) are presented in non-dimensional form. This model represents one of a series of hulls of successful foreign and domestic flying boats the characteristics of which are being obtained under similar test conditions in the N.A.C.A. tank. The take-off distance and time for a flying boat having the hull of the Calcutta are compared at two values of the gross load with the corresponding distances and times for the same flying boat having hulls of two representative American types, the Sikorsky S-40 and the N.A.C.A. 11-A. This comparison indicates that for hulls of the widely different forms compared, the differences in take-off time and distance are negligible.

  9. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification

    NASA Astrophysics Data System (ADS)

    Rostamzadeh, N.; Hansen, K. L.; Kelso, R. M.; Dally, B. B.

    2014-10-01

    Wings with tubercles have been shown to display advantageous loading behavior at high attack angles compared to their unmodified counterparts. In an earlier study by the authors, it was shown that an undulating leading-edge configuration, including but not limited to a tubercled model, induces a cyclic variation in circulation along the span that gives rise to the formation of counter-rotating streamwise vortices. While the aerodynamic benefits of full-span tubercled wings have been associated with the presence of such vortices, their formation mechanism and influence on wing performance are still in question. In the present work, experimental and numerical tests were conducted to further investigate the effect of tubercles on the flow structure over full-span modified wings based on the NACA 0021 profile, in the transitional flow regime. It is found that a skew-induced mechanism accounts for the formation of streamwise vortices whose development is accompanied by flow separation in delta-shaped regions near the trailing edge. The presence of vortices is detrimental to the performance of full-span wings pre-stall, however renders benefits post-stall as demonstrated by wind tunnel pressure measurement tests. Finally, primary and secondary vortices are identified post-stall that produce an enhanced momentum transfer effect that reduces flow separation, thus increasing the generated amount of lift.

  10. Developpement et implementation d'une methode pour resoudre les equations de la couche limite laminaire et turbulente

    NASA Astrophysics Data System (ADS)

    Leuca, Maxim

    CFD (Computational Fluid Dynamics) is a computational tool for studying flow in science and technology. The Aerospace Industry uses increasingly the CFD modeling and design phase of the aircraft, so the precision with which phenomena are simulated boundary layer is very important. The research efforts are focused on optimizing the aerodynamic performance of airfoils to predict the drag and delay the laminar-turbulent transition. CFD codes must be fast and efficient to model complex geometries for aerodynamic flows. The resolution of the boundary layer equations requires a large amount of computing resources for viscous flows. CFD codes are commonly used to simulate aerodynamic flows, require normal meshes to the wall, extremely fine, and, by consequence, the calculations are very expensive. . This thesis proposes a new approach to solve the equations of boundary layer for laminar and turbulent flows using an approach based on the finite difference method. Integrated into a code of panels, this concept allows to solve airfoils avoiding the use of iterative algorithms, usually computing time and often involving convergence problems. The main advantages of panels methods are their simplicity and ability to obtain, with minimal computational effort, solutions in complex flow conditions for relatively complicated configurations. To verify and validate the developed program, experimental data are used as references when available. Xfoil code is used to obtain data as a pseudo references. Pseudo-reference, as in the absence of experimental data, we cannot really compare two software together. Xfoil is a program that has proven to be accurate and inexpensive computing resources. Developed by Drela (1985), this program uses the method with two integral to design and analyze profiles of wings at low speed (Drela et Youngren, 2014), (Drela, 2003). NACA 0012, NACA 4412, and ATR-42 airfoils have been used for this study. For the airfoils NACA 0012 and NACA 4412 the calculations

  11. Ramjet Testing in the NACA's Altitude Wind Tunnel

    NASA Image and Video Library

    1946-02-21

    A 20-inch diameter ramjet installed in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Altitude Wind Tunnel was used in the 1940s to study early ramjet configurations. Ramjets provide a very simple source of propulsion. They are basically a tube which takes in high-velocity air, ignites it, and then expels the expanded airflow at a significantly higher velocity for thrust. Ramjets are extremely efficient and powerful but can only operate at high speeds. Therefore a turbojet or rocket was needed to launch the vehicle. This NACA-designed 20-inch diameter ramjet was installed in the Altitude Wind Tunnel in May 1945. The ramjet was mounted under a section of wing in the 20-foot diameter test section with conditioned airflow ducted directly to the engine. The mechanic in this photograph was installing instrumentation devices that led to the control room. NACA researchers investigated the ramjet’s overall performance at simulated altitudes up to 47,000 feet. Thrust measurements from these runs were studied in conjunction with drag data obtained during small-scale studies in the laboratory’s small supersonic tunnels. An afterburner was attached to the ramjet during the portions of the test program. The researchers found that an increase in altitude caused a reduction in the engine’s horsepower. They also determined the optimal configurations for the flameholders, which provided the engine’s ignition source.

  12. Program manual for the Eppler airfoil inversion program

    NASA Technical Reports Server (NTRS)

    Thomson, W. G.

    1975-01-01

    A computer program is described for calculating the profile of an airfoil as well as the boundary layer momentum thickness and energy form parameter. The theory underlying the airfoil inversion technique developed by Eppler is discussed.

  13. Investigation of the NACA 4-(5)(08)-03 and NACA 4-(10)(08)-03 Two-Blade Propellers at Forward Mach Numbers to 0.725 to Determine the Effects of Camber and Compressibility on Performance

    NASA Technical Reports Server (NTRS)

    Delano, James B

    1951-01-01

    As part of a general investigation of propellers at high forward speeds, tests of two-blade propellers having the NACA 4-(5)(08)-03 and NACA 4-(10)(08)-03 blade designs were made in the Langley 8-foot high-speed tunnel through a range of blade angle from 20 degrees to 60 degrees for forward Mach numbers from 0.165 to 0.70 to determine the effect of camber and compressibility on propeller characteristics. Results previously reported for similar tests of a two-blade propeller having the NACA 4-(3)(08)-03 blade design are included for comparison.

  14. Vultee YA–31C Vengeance at the NACA

    NASA Image and Video Library

    1945-03-21

    A Bell P-39 Airacobra in the NACA Aircraft Engine Research Laboratory’s Icing Research Tunnel for a propeller deicing study. The tunnel, which began operation in June 1944, was built to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight to aircraft, effects aerodynamics, and sometimes blocks airflow through engines. NACA design engineers added the Icing Research Tunnel to the new AERL’s original layout to take advantage of the massive refrigeration system being constructed for the Altitude Wind Tunnel. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. The tunnel can produce speeds up to 300 miles per hour and temperatures from about 30 to -45⁰ F. During World War II AERL researchers analyzed different ice protection systems for propeller, engine inlets, antennae, and wings in the icing tunnel. The P-39 was a vital low-altitude pursuit aircraft of the US during the war. NACA investigators investigated several methods of preventing ice buildup on the P-39’s propeller, including the use of internal and external electrical heaters, alcohol, and hot gases. They found that continual heating of the blades expended more energy than the aircraft could supply, so studies focused on intermittent heating. The results of the wind tunnel investigations were then compared to actual flight tests on aircraft.

  15. Transonic blade-vortex interactions - The far field

    NASA Astrophysics Data System (ADS)

    Lyrintzis, A. S.; George, A. R.

    Numerical techniques are developed to predict midfield and far-field helicopter noise due to main-rotor blade-vortex interaction (BVI). The extension of the two-dimensional small-disturbance transonic flow code VTRAN2 (George and Chang, 1983) to the three-dimensional far field (via the Green-function approach of Kirchhoff) is described, and the treatment of oblique BVIs is discussed. Numerical results for a NACA 64A006 airfoil at Mach 0.82 are presented in extensive graphs and characterized in detail. The far-field BVI signature is shown to begin with a strongly forward-directed primary wave (from the original BVI), with an additional downward-directed wave in the case of type C shock motion on the blade.

  16. Airfoil shape for flight at subsonic speeds

    DOEpatents

    Whitcomb, Richard T.

    1976-01-01

    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  17. Some new airfoils

    NASA Technical Reports Server (NTRS)

    Eppler, R.

    1979-01-01

    A computer approach to the design and analysis of airfoils and some common problems concerning laminar separation bubbles at different lift coefficients are briefly discussed. Examples of application to ultralight airplanes, canards, and sailplanes with flaps are given.

  18. Longitudinal Stability and Control Characteristics of a Semispan Model of the XF7U-1 Tailless Airplane at Transonic Speeds by the NACA Wing-Flow Method, TED No. NACA DE307

    NASA Technical Reports Server (NTRS)

    Sawyer, Richard H.; Trant, James P., Jr.

    1947-01-01

    An investigation was made by the NACA wing-flow method to determine the longitudinal stability and control characteristics at transonic speeds of a semispan model of the XF7U-1 tailless airplane. The 25-percent chord line of the wing of the model was swept back 35 deg. The airfoil sections of the wing perpendicular to the 25-percent chord line were 12 percent thick. Measurements were made of the normal force and pitching moment through an angle-of-attack range from about -3 deg to 14 deg for several ailavator deflections at Mach numbers from 0.65 to about 1.08. The results of the tests indicated no adverse effects of compressibility up to a Mach number of at least 0.85 at low normal-force coefficients and small ailavator deflections. Up to a Mach number of 0.85, the neutral point at low normal-force coefficients was at about 25 percent of the mean aerodynamic chord and moved rearward irregularly to 41 or 42 percent with a further increase in Mach number to about 1.05. For deflections up to -8.0 percent, the ailavator was effective in changing the pitching moment except at Mach numbers from 0.93 to about 1.0 where ineffectiveness or reversal was indicated for deflections and normal-force coefficients. With -13.2 deg deflection at normal-force coefficients above about 0.3, reversal of ailavator effectiveness occurred at Mach numbers as low as 0.81. A nose-down trim change, which began at a Mach number of about 0.85, together with the loss in effectiveness of the ailavator, indicated that with increase in the Mach number from about 0.95 to 1.05 an abrupt ailavator movement of 5 deg or 6 deg first up and then down would be required to maintain level flight.

  19. The NASA Langley Laminar-Flow-Control (LFC) experiment on a swept, supercritical airfoil: Design overview

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.

    1988-01-01

    A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.

  20. Airfoil/Wing Flow Control Using Flexible Extended Trailing Edge

    DTIC Science & Technology

    2009-02-27

    and (b) Power spectrums of drag coefficient Figure 4. Mean velocity profiles O Baseline NACA0012. AoA 18 deg c Baseline NACA0012. AoA 20...dynamics, (a) fin amplitude and (b) power spectrum of fin amplitude Development of Computational Tools Simulations of the time-dependent deformation of...combination of experimental, computational and theoretical methods. Compared with Gurney flap and conventional flap, this device enhanced lift at a smaller