Sample records for nacl solution resulted

  1. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration of NaCl solutions to 350°C

    NASA Astrophysics Data System (ADS)

    Horita, Juske; Cole, David R.; Wesolowski, David J.

    1995-03-01

    The effect of dissolved NaCl on equilibrium oxygen and hydrogen isotope fractionation factors between liquid water and water vapor was precisely determined in the temperature range from 130-350°C, using two different types of apparatus with static or dynamic sampling techniques of the vapor phase. The magnitude of the oxygen and hydrogen isotope effects of NaCl is proportional to the molality of liquid NaCl solutions at a given temperature. Dissolved NaCl lowers appreciably the hydrogen isotope fractionation factor between liquid water and water vapor over the entire temperature range. NaCl has little effect on the oxygen isotope fractionation factor at temperatures below about 200°C, with the magnitude of the salt effect gradually increasing from 200-350°C. Our results are at notable variance with those of Truesdell (1974) and Kazahaya (1986), who reported large oxygen and hydrogen isotope effects of NaCl with very complex dependencies on temperature and NaCl molality. Our high-temperature results have been regressed along with our previous results between 50 and 100°C (Horita et al., 1993a) and the low-temperature literature data to simple equations which are valid for NaCl solutions from 0 to at least 5 molal NaCl in the temperature range from 10-350°C. Our preliminary results of oxygen isotope fractionation in the system CaCO3-water ± NaCl at 300°C and 1 kbar are consistent with those obtained from the liquid-vapor equilibration experiments, suggesting that the isotope salt effects are common to systems involving brines and any other coexisting phases or species (gases, minerals, dissolved species, etc.). The observed NaCl isotope effects at elevated temperatures should be taken into account in the interpretation of isotopic data of brine-dominated natural systems.

  2. Corrosion of dental amalgam and mercury vapor emission in vitro.

    PubMed

    Moberg, L E

    1988-10-01

    Amalgam specimens were immersed for 30 days in 1) water, 2) 0.9% NaCl in water, 3) 0.9% NaCl and 10 mM phosphate buffer in water, and 4) 0.9% NaCl, 7.7 mM phosphate, and 6.1 mM citric acid in water. The solutions were stored in stoppered glass tubes. Hg-drops were immersed in solutions 1, 2, and 3. The concentration of mercury vapor in the air above the solutions was measured once a day. After 30 days the amounts of Cu, Zn, Hg, and Ag in the solutions were analyzed by atomic absorption spectrophotometry. The results showed that 0.9% NaCl alone or in combination with the additives increased the amounts of elements released into the solutions. The concentration of Hg0 in the glass tubes increased with the amount of Hg in the solutions, with the exception of solution No. 3, from which significantly less Hg0 evaporated. The results indicate that the composition of the saliva, oral hygiene and dietary factors may be determinants of Hg0 emission from amalgams in the oral cavity.

  3. Molecular Dynamics Simulation of Surface Tension of NaCl Aqueous Solution at 298.15K: from Diluted to Highly Supersaturated Concentrations

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiang; Chen, Chuchu; Poeschl, Ulirch; Su, Hang; Cheng, Yafang

    2017-04-01

    Sodium chloride (NaCl) is one of the key components of atmospheric aerosol particles. Concentration-depend surface tension of aqueous NaCl solution is essential to determine the equilibrium between droplet NaCl solution and water vapor, which is important in regards to aerosol-cloud interaction and aerosol climate effects. Although supersaturated NaCl droplets can be widely found under atmospheric conditions, the experimental determined concentration dependency of surface tension is limited up to the saturated concentration range due to technical difficulties, i.e., heterogeneous nucleation since nearly all surface tension measurement techniques requires contact of the sensor and solution surface. In this study, the surface tension of NaCl aqueous solution with solute mass fraction from 0 to 1 was calculated using molecular dynamics (MD) simulation. The surface tension increases monotonically and near linearly when mass fraction of NaCl (xNaCl) is lower than 0.265 (saturation point), which follows theoretical predictions (e.g., E-AIM, SP parameterization, and PK parameterization). Once entering into the supersaturated concentration range, the calculated surface tension starts to deviate from the near-linear extrapolation and adopts a slightly higher increasing rate until xNaCl of 0.35. We found that these two increasing phases (xNaCl 0.35) is mainly driven by the increase of excessive surface enthalpy when the solution becomes concentrated. After that, the surface tension remains almost unchanged until xNaCl of 0.52. This phenomenon is supported by the results from experiment based Differential Koehler Analyses. The stable surface tension in this concentration range is attributed to a simultaneous change of surface excess enthalpy and entropy at similar degree. When the NaCl solution is getting more concentrated than xNaCl of 0.52, the simulated surface tension regains an even faster growing momentum and shows the tendency of ultimately approaching the surface tension of molten NaCl at 298.15 K ( 148.4 mN/m by MD simulation). Energetic analyses imply that this fast increase is primarily still an excessive surface enthalpy-driven process, although concurrent fluctuation of excessive surface entropy is also expected but in a much smaller scale. Our results unfold the global landscape of concentration dependence of aqueous NaCl solution and its driven forces: a water surface tension dominated regime (xNaCl from 0 to 0.35), a transition regime (xNaCl from 0.35 to 0.52) and a molten NaCl surface tension dominated regime (xNaCl beyond 0.52).

  4. Equilibrium, Kinetics, and Spectroscopic Studies of SF6 Hydrate in NaCl Electrolyte Solution.

    PubMed

    Seo, Youngrok; Moon, Donghyun; Lee, Changho; Park, Jeong-Woo; Kim, Byeong-Soo; Lee, Gang-Woo; Dotel, Pratik; Lee, Jong-Won; Cha, Minjun; Yoon, Ji-Ho

    2015-05-19

    Many studies have focused on desalination via hydrate formation; however, for their potential application, knowledge pertaining to thermodynamic stability, formation kinetics, and guest occupation behavior in clathrate hydrates needs to be determined. Herein, the phase equilibria of SF6 hydrates in the presence of NaCl solutions (0, 2, 4, and 10 wt %) were monitored in the temperature range of 277-286 K and under pressures of up to 1.4 MPa. The formation kinetics of SF6 hydrates in the presence of NaCl solutions (0, 2, and 4 wt %) was also investigated. Gas consumption curves of SF6 hydrates showed that a pure SF6 hydrate system allowed fast hydrate growth as well as high conversion yield, whereas SF6 hydrate in the presence of NaCl solutions showed retarded hydrate growth rate as well as low conversion yield. In addition, structural identification of SF6 hydrates with and without NaCl solutions was performed using spectroscopic tools such as Raman spectroscopy and X-ray diffraction. The Raman spectrometer was also used to evaluate the temperature-dependent release behavior of guest molecules in SF6 and SF6 + 4 wt % NaCl hydrates. The results indicate that whereas SF6 hydrate starts to decompose at around 240 K, the escape of SF6 molecules in SF6 + 4 wt % NaCl hydrate is initiated rapidly at around 205 K. The results of this study can provide a better understanding of guest-host interaction in electrolyte-containing systems.

  5. Pitting Corrosion of alloy 690 in thiosulfate-containing chloride solutions

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Ta; Wu, Tsung-Feng

    2000-01-01

    The effects of thiosulfate ion and solution pH on pitting corrosion of Alloy 690 in chloride solution were explored. Potentiodynamic polarization measurements were conducted to evaluate pitting corrosion susceptibility of Alloy 690 in these environments. The results showed that pitting corrosion occurred in the mill-annealed (1050°C/5min) Alloy 690 in 1 wt% NaCl solution but not in 0.1 M Na 2S 2O 3 solution. The value of pitting nucleation potential ( Enp) determined in 1 wt% NaCl solution (without Na 2S 2O 3 ) increased with increasing solution pH value in the range of 2-10. The addition of Na 2S 2O 3 to 1 wt% NaCl solution greatly affected the pitting corrosion behavior, which was dependent on concentration. The preformed nickel sulfide surface film due to the presence of Na 2S 2O 3 caused Alloy 690 to become more susceptible to pitting corrosion in 1 wt% NaCl solution.

  6. Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH.

    PubMed

    Takenaka, Norimichi; Tanaka, Masayuki; Okitsu, Kenji; Bandow, Hiroshi

    2006-09-14

    Oxidative decomposition of gallic acid occurs in alkaline solutions but hardly arises in acidic solutions. We have found that the addition of sodium chloride promotes the decomposition of gallic acid caused by freezing even under neutral and acidic conditions. Even at pH 4.5, gallic acid was decomposed by freezing in the presence of NaCl; however, in the absence of NaCl, it was hardly decomposed by freezing at pH lower than 7. Chloride ions are more easily incorporated in ice than sodium ions when the NaCl solution is frozen. The unfrozen solution in ice becomes positively charged, and as a result, protons transfer from the unfrozen solution to the ice. We measured the pH in the unfrozen solution which coexists with single-crystal ice formed from a 5 mmol dm(-3) NaCl solution and determined the pH to be 8.6 at equilibrium with CO(2) of 380 ppm or 11.3 in the absence of CO(2) compared to pH 5.6 in the original solution. From the model calculation performed for gallic acid solution in the presence of 5 mmol dm(-3) NaCl, it can be estimated that the amount of OH(-) transferred from the ice to the solution corresponds to 1.26 x 10(-5) mol dm(-3). The amount of OH(-) transferred is concentrated into the unfrozen solution and affects the pH of the unfrozen solution. Therefore, the pH in an unfrozen gallic acid solution in ice becomes alkaline, and the decomposition of gallic acid proceeds. It is expected that other base-catalyzed reactions in weakly acidic solutions also proceed by freezing in the presence of NaCl without the need for any alkaline reagents.

  7. Direct Coexistence Methods to Determine the Solubility of Salts in Water from Numerical Simulations. Test Case NaCl.

    PubMed

    Manzanilla-Granados, Héctor M; Saint-Martín, Humberto; Fuentes-Azcatl, Raúl; Alejandre, José

    2015-07-02

    The solubility of NaCl, an equilibrium between a saturated solution of ions and a solid with a crystalline structure, was obtained from molecular dynamics simulations using the SPC/E and TIP4P-Ew water models. Four initial setups on supersaturated systems were tested on sodium chloride (NaCl) solutions to determine the equilibrium conditions and computational performance: (1) an ionic solution confined between two crystal plates of periodic NaCl, (2) a solution with all the ions initially distributed randomly, (3) a nanocrystal immersed in pure water, and (4) a nanocrystal immersed in an ionic solution. In some cases, the equilibration of the system can take several microseconds. The results from this work showed that the solubility of NaCl was the same, within simulation error, for the four setups, and in agreement with previously reported values from simulations with the setup (1). The system of a nanocrystal immersed in supersaturated solution was found to equilibrate faster than others. In agreement with laser-Doppler droplet measurements, at equilibrium with the solution the crystals in all the setups had a slight positive charge.

  8. Preliminary Investigation of the Corrosion Behavior of Proprietary Micro-alloyed Steels in Aerated and Deaerated Brine Solutions

    NASA Astrophysics Data System (ADS)

    Onyeji, Lawrence; Kale, Girish

    2017-12-01

    The corrosion performance of fairly new generation of micro-alloyed steels was compared in different concentrations of aerated and deaerated brines. Electrochemical polarization, weight loss and surface analyses techniques were employed. The results showed a threshold of corrosion rate at 3.5 wt.% NaCl in both aerated and deaerated solutions. The average corrosion current density for steel B, for example, increased from 1.3 µA cm-2 in 1 wt.% NaCl to 1.5 µA cm-2 in 3.5 wt.% NaCl, but decreased to 1.4 µA cm-2 in 10 wt.% deaerated NaCl solutions. The aerated solutions exhibited an average of over 80% increase in corrosion current density in the respective concentrations when compared with the deaerated solution. These results can be attributed to the effects of dissolved oxygen (DO) which has a maximum solubility in 3.5 wt.% NaCl. DO as a depolarizer and electron acceptor in cathodic reactions accelerates anodic metal dissolution. The difference in carbon content and microstructures occasioned by thermo-mechanical treatment contributed to the witnessed variation in corrosion performance of the steels. Specifically, the results of the various corrosion techniques corroborated each other and showed that the corrosion rate of the micro-alloyed steels can be ranked as CRSteel A < CRX65 < CRSteel B < CRSteel C.

  9. A combined physicochemical-biological method of NaCl extraction from the irrigation solution in the BTLSS

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia

    2016-07-01

    The use of processed human wastes as a source of minerals for plants in closed biotechnical life support systems (BTLSS) leads to high salt levels in the irrigation solution, as urine contains high concentrations of NaCl. It is important to develop a process that would effectively decrease NaCl concentration in the irrigation solution and return this salt to the crew's diet. The salt-tolerant plants (Salicornia europea) used to reduce NaCl concentration in the irrigation solution require higher salt concentrations than those of the solution, and this problem cannot be resolved by concentrating the solution. At the same time, NaCl extracted from mineralized wastes by physicochemical methods is not pure enough to be included in the crew's diet. This study describes an original physicochemical method of NaCl extraction from the solution, which is intended to be used in combination with the biological method of NaCl extraction by using saltwort plants. The physicochemical method produces solutions with high NaCl concentrations, and saltwort plants serve as a biological filter in the final phase, to produce table salt. The study reports the order in which physicochemical and biological methods of NaCl extraction from the irrigation solution should be used to enable rapid and effective inclusion of NaCl into the cycling of the BTLSS with humans. This study was carried out in the IBP SB RAS and supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).

  10. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles.

    PubMed

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-28

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO 4 ). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  11. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-01

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO4). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  12. Effect of Cooling Rate on SCC Susceptibility of β-Processed Ti-6Al-4V Alloy in 0.6M NaCl Solution

    NASA Astrophysics Data System (ADS)

    Ahn, Soojin; Park, Jiho; Jeong, Daeho; Sung, Hyokyung; Kwon, Yongnam; Kim, Sangshik

    2018-03-01

    The effects of cooling rate on the stress corrosion cracking (SCC) susceptibility of β-processed Ti-6Al-4V (Ti64) alloy, including BA/S specimen with furnace cooling and BQ/S specimen with water quenching, were investigated in 0.6M NaCl solution under various applied potentials using a slow strain rate test technique. It was found that the SCC susceptibility of β-processed Ti64 alloy in aqueous NaCl solution decreased with fast cooling rate, which was particularly substantial under an anodic applied potential. The micrographic and fractographic analyses suggested that the enhancement with fast cooling rate was related to the random orientation of acicular α platelets in BQ/S specimen. Based on the experimental results, the effect of cooling rate on the SCC behavior of β-processed Ti64 alloy in aqueous NaCl solution was discussed.

  13. NaCl intake and preference threshold of spontaneously hypertensive rats.

    PubMed

    Fregly, M J

    1975-09-01

    Both male and female spontaneously hypertensive (SH) rats have an appetite for NaCl solution. The appetite is present when a choice is offered between distilled water and either isotonic or hypertonic (0.25 M) NaCl solution to drink. Total fluid intake (water plus NaCl solution) was greater for SH rats than for controls while food intakes (g/100 g body wt/day) of SH rats were not different from controls. Mean body weight of SH rats was always less than that of controls. The appetite for NaCl solution was accompanied by a significant reduction in preference (detection) threshold. SH rats could detect the difference between distilled water and NaCl solution when the concentration of the latter was 12 mEq/liter compared to a control threshold of 30 mEq/liter. The NaCl appetite and reduced NaCl preference threshold induced by spontaneous hypertension is in marked contrast to the NaCl aversion induced by other types of experimentally induced hypertension in rats. The mechanism or mechanisms responsible for these differences remain for further study.

  14. Effect of sodium bicarbonate and varying concentrations of sodium chloride in brine on the liquid retention of fish (Pollachius virens L.) muscle.

    PubMed

    Åsli, Magnus; Ofstad, Ragni; Böcker, Ulrike; Jessen, Flemming; Einen, Olai; Mørkøre, Turid

    2016-03-15

    Negative health effects associated with excessive sodium (Na) intake have increased the demand for tasty low-Na products (<2% NaCl) rather than traditional heavily salted fish products (∼20% NaCl). This study investigates the causes of improved yield and liquid retention of fish muscle brined with a combination of salt (NaCl) and sodium bicarbonate (NaHCO3 ). Water characteristics and microstructure of saithe (Pollachius virens L.) muscle brined in solutions of NaCl and NaHCO3 or NaCl alone were compared using low-field nuclear magnetic resonance (LF-NMR) T2 relaxometry, microscopy, salt content, liquid retention and colorimetric measurements. Saithe muscle was brined for 92 h in 0, 30, 60, 120 or 240 g kg(-1) NaCl or the respective solutions with added 7.5 g kg(-1) NaHCO3 . NaHCO3 inclusion improved the yield in solutions ranging from 0 to 120 g kg(-1) NaCl, with the most pronounced effect being observed at 30 g kg(-1) NaCl. The changes in yield were reflected in water mobility, with significantly shorter T2 relaxation times in all corresponding brine concentrations. Salt-dependent microstructural changes were revealed by light microscopy, where NaHCO3 supplementation resulted in greater intracellular space at 30 and 60 g kg(-1) NaCl. Sodium bicarbonate addition to low-salt solutions can improve yield and flesh quality of fish muscle owing to altered water mobility and wider space between the muscle cells. © 2015 Society of Chemical Industry.

  15. Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen.

    PubMed

    Li, D G; Wang, J D; Chen, D R; Liang, P

    2015-09-01

    The influences of oxygen and nitrogen on the ultrasonic cavitation erosion of Ti in 0.35%NaCl solution at room temperature, were investigated using a magnetostrictive-induced ultrasonic cavitation erosion (CE) facility and scanning electron microscopy (SEM). The roles of oxygen and nitrogen in the composition and the electronic property of the passive film on Ti, were studied by Mott-Schottky plot and X-ray photoelectron spectroscopy (XPS). The results showed that the mass loss of Ti in 0.35%NaCl solution increased with increasing cavitation time. Bubbling oxygen can evidently increase the resistance of ultrasonic cavitation erosion comparing with bubbling nitrogen. XPS results showed that the thickness of the passive film on Ti in 0.35%NaCl solution in the case of bubbling oxygen for 3 weeks, was about 7 nm, and the passive film was mainly composed of TiO2 with an anatase structure. While TiO2 with a rutile structure was found to be the major component of the passive film on Ti in 0.35%NaCl solution in the case of bubbling nitrogen for 3 weeks, and the film thickness was 5 nm. The results extracted from Mott-Schottky plot showed that the passive film on Ti in the case of bubbling oxygen had more donor density than the passive film on Ti in the case of bubbling nitrogen. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effects of ions on the solubility transition and the phase-separation of N-isopropylacrylamide in water.

    PubMed

    Sasaki, Shigeo; Okabe, Satoshi

    2011-11-10

    The effects of NaCl, NaOH, and HCl on the solubility transition and the phase-separation of N-isopropylacrylamide (NIPA) were investigated for the purpose of clarifying the physicochemical mechanism of salting-out and salting-in phenomena. The discrete change in the solubility of NIPA in the salt-free water at the solubility transition (reported in J. Phys. Chem. B 2010, 114, 14995-15002) decreased with the addition of HCl and disappeared in the HCl solutions at concentrations higher than 2 M, while it increased with additions of NaOH and NaCl. A difference in NIPA concentration between the phase-separated solutions decreases with the addition of HCl and increases with additions of NaOH and NaCl. Partition coefficients of HCl in the phase-separated NIPA-rich solutions are higher than those in the NIPA poor solutions, while partition coefficients of NaCl and NaOH between the NIPA-rich and -poor solutions have trends opposite to those of HCl. The present results clearly indicate that the HCl favors the dehydrated NIPA and stabilizes the H(2)O-poor state of the NIPA molecule more than NaCl.

  17. Effects of environment factors on initiation of sperm motility in sea cucumber Apostichopus japonicus (Selenka)

    NASA Astrophysics Data System (ADS)

    Yu, Li; Shao, Mingyu; Bao, Zhenmin; Hu, Jingjie; Zhang, Zhifeng

    2011-06-01

    Sperm of sea cucumber Apostichopus japonicus (Selenka) were quiescent in electrolyte NaCl solution and artificial seawater (ASW) and nonelectrolyte glucose and mannitol solutions when the osmolality was less than 200 mOsm kg-1. The sperm started to be motile as a result of increased osmolality, indicating an osmolality-dependent initiation of sperm motility in sea cucumber. After a brief incubation in hypotonic NaCl and glucose solutions with osmolalities of 200 and 400 mOsm kg-1, sperm lost partial motile ability. Sperm became immobilized when pH was 6.0 in NaCl, glucose and mannitol solutions, suggesting that an H+ release is involved in sperm activation. The decreased pH had no effect on the percentage of motile sperm in ASW, whereas it delayed the time period to reach the maximum motility (motilitymax). Extracellular Ca2+ in electrolyte solutions was not essential for motility stimulation but shortened the time of reaching motilitymax. When Ca2+ was mixed in nonelectrolyte solutions the sperm motility was completely suppressed. The K+ channel blocker, quinine, suppressed the sperm motility in electrolyte solution, showing a possible involvement of K+ transport in the process. High K+ concentration did not affect the sperm motility in NaCl solution, but decreased it in ASW and almost entirely suppressed it in nonelectrolyte solutions. The different effects of pH and K+ in ASW and NaCl solution indicate that external ions may also regulate sperm motility.

  18. Sodium Chloride Diffusion in Low-Acid Foods during Thermal Processing and Storage.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S

    2016-05-01

    This study aimed at modeling sodium chloride (NaCl) diffusion in foods during thermal processing using analytical and numerical solutions and at investigating the changes in NaCl concentrations during storage after processing. Potato, radish, and salmon samples in 1% or 3% NaCl solutions were heated at 90, 105, or 121 °C for 5 to 240 min to simulate pasteurization and sterilization. Selected samples were stored at 4 or 22 °C for up to 28 d. Radish had the largest equilibrium NaCl concentrations and equilibrium distribution coefficients, but smallest effective diffusion coefficients, indicating that a greater amount of NaCl diffused into the radish at a slower rate. Effective diffusion coefficients determined using the analytical solution ranged from 0.2 × 10(-8) to 2.6 × 10(-8) m²/s. Numerical and analytical solutions showed good agreement with experimental data, with average coefficients of determination for samples in 1% NaCl at 121 °C of 0.98 and 0.95, respectively. During storage, food samples equilibrated to a similar NaCl concentration regardless of the thermal processing severity. The results suggest that sensory evaluation of multiphase (solid and liquid) products should occur at least 14 d after processing to allow enough time for the salt to equilibrate within the product. © 2016 Institute of Food Technologists®

  19. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  20. Cephradine as corrosion inhibitor for copper in 0.9% NaCl solution

    NASA Astrophysics Data System (ADS)

    Tasić, Žaklina Z.; Petrović Mihajlović, Marija B.; Radovanović, Milan B.; Simonović, Ana T.; Antonijević, Milan M.

    2018-05-01

    The effect of (6R,7R)-7-[[(2R)-2-amino-2-cyclohexa-1,4-dien-1-ylacetyl]amino]-3-methyl-8-oxo-5-thia-1-azobicyclo[4.2.0]oct-2-ene-2-carboxylic acid (cephradine) on corrosion behavior of copper in 0.9% NaCl solution was investigated. The electrochemical methods including the open circuit potential measurements, potentiodynamic polarization and electrochemical impedance spectroscopy measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy and quantum chemical calculations were used for this investigation. According to the results obtained by potentiodynamic polarization, cephradine acts as mixed type inhibitor. Also, the results obtained by electrochemical impedance spectroscopy indicate that cephradine provides good copper protection in 0.9% NaCl solution. The inhibition efficiency of cephradine increases with increasing its concentration. The scanning electron microscopy with energy dispersive X-ray spectroscopy confirms that a protective layer is formed on the copper surface due to the adsorption of cephradine on the active sites on the copper surface. Adsorption of cephradine in 0.9% NaCl solution follows the Langmuir adsorption isotherm. Quantum chemical calculations are in agreement with results obtained by electrochemical measurements.

  1. Salting out the polar polymorph: analysis by alchemical solvent transformation.

    PubMed

    Duff, Nathan; Dahal, Yuba Raj; Schmit, Jeremy D; Peters, Baron

    2014-01-07

    We computationally examine how adding NaCl to an aqueous solution with α- and γ-glycine nuclei alters the structure and interfacial energy of the nuclei. The polar γ-glycine nucleus in pure aqueous solution develops a melted layer of amorphous glycine around the nucleus. When NaCl is added, a double layer is formed that stabilizes the polar glycine polymorph and eliminates the surface melted layer. In contrast, the non-polar α-glycine nucleus is largely unaffected by the addition of NaCl. To quantify the stabilizing effect of NaCl on γ-glycine nuclei, we alchemically transform the aqueous glycine solution into a brine solution of glycine. The alchemical transformation is performed both with and without a nucleus in solution and for nuclei of α-glycine and γ-glycine polymorphs. The calculations show that adding 80 mg/ml NaCl reduces the interfacial free energy of a γ-glycine nucleus by 7.7 mJ/m(2) and increases the interfacial free energy of an α-glycine nucleus by 3.1 mJ/m(2). Both results are consistent with experimental reports on nucleation rates which suggest: J(α, brine) < J(γ, brine) < J(α, water). For γ-glycine nuclei, Debye-Hückel theory qualitatively, but not quantitatively, captures the effect of salt addition. Only the alchemical solvent transformation approach can predict the results for both polar and non-polar polymorphs. The results suggest a general "salting out" strategy for obtaining polar polymorphs and also a general approach to computationally estimate the effects of solvent additives on interfacial free energies for nucleation.

  2. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.

    PubMed

    Lü, Y J; Wei, B

    2006-10-14

    The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions.

  3. Effects of soy sauce on physicochemical and textural properties of tumbled chicken breast.

    PubMed

    Kim, H W; Hwang, K E; Song, D H; Kim, Y J; Lim, Y B; Choi, J H; Choi, Y S; Kim, H Y; Kim, C J

    2014-03-01

    The objective of this study was to evaluate the effects of soy sauce on the physicochemical and textural properties of tumbled chicken breasts. Chicken breasts marinated with distilled water (Con), 4% NaCl solution, 4% NaCl and lactic acid solution (pH 4.9), and soy sauce solution (4% salt concentration and pH 4.9) were vacuum tumbled at 3°C for 60 min. The chicken breast marinated with soy sauce solution showed lower lightness and higher redness and yellowness due to the color of the soy sauce. The acidic marinades led to a decrease in pH value of tumbled chicken breast. The acidic marinades increased collagen solubility of sample compared with 4% NaCl solution, resulting in decreased shear force. Water-holding capacity, marination and cooking yields, and solubility of myofibrillar proteins were mainly affected by the presence of salt in the marinade, rather than by pH alternation. Our results suggested that soy sauce marination can improve the tenderness of tumbled chicken breast.

  4. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  5. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-03-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  6. Salting effects on protein components in aqueous NaCl and urea solutions: toward understanding of urea-induced protein denaturation.

    PubMed

    Li, Weifeng; Zhou, Ruhong; Mu, Yuguang

    2012-02-02

    The mechanism of urea-induced protein denaturation is explored through studying the salting effect of urea on 14 amino acid side chain analogues, and N-methylacetamide (NMA) which mimics the protein backbone. The solvation free energies of the 15 molecules were calculated in pure water, aqueous urea, and NaCl solutions. Our results show that NaCl displays strong capability to salt out all 15 molecules, while urea facilitates the solvation (salting-in) of all the 15 molecules on the other hand. The salting effect is found to be largely enthalpy-driven for both NaCl and urea. Our observations can explain the higher stability of protein's secondary and tertiary structures in typical salt solutions than that in pure water. Meanwhile, urea's capability to better solvate protein backbone and side-chain components can be extrapolated to explain protein's denaturation in aqueous urea solution. Urea salts in molecules through direct binding to solute surface, and the strength is linearly dependent on the number of heavy atoms of solute molecules. The van der Waals interactions are found to be the dominant force, which challenges a hydrogen-bonding-driven mechanism proposed previously.

  7. Thermoresponsive Poly(Ionic Liquid)s in Aqueous Salt Solutions: Salting-Out Effect on Their Phase Behavior and Water Absorption/Desorption Properties.

    PubMed

    Okafuji, Akiyoshi; Kohno, Yuki; Ohno, Hiroyuki

    2016-07-01

    Here, a thermoresponsive phase behavior of polymerized ionic liquids (PILs) composed of poly([tri-n-alkyl(vinylbenzyl)phosphonium]chloride) (poly([Pnnn VB ]Cl) is reported, where n (the number of carbon atoms of an alkyl chain) = 4, 5, or 6 after mixing with aqueous sodium chloride solutions. Both monomeric [P555VB ]Cl and the resulting poly([P555VB ]Cl) linear homopolymer show a lower critical solution temperature (LCST)-type phase behavior in aq. NaCl solutions. The phase transition temperature of the PIL shifts to lower value by increasing concentration of NaCl. Also the swelling degree of cross-linked poly([P555VB ]Cl) gel decreases by increasing NaCl concentration, clearly suggesting the "salting-out" effect of NaCl results in a significant dehydration of the poly([P555VB ]Cl) gel. The absorbed water in the PIL gel is desorbed by moderate heating via the LCST behavior, and the absolute absorption/desorption amount is improved by copolymerization of [P555VB ]Cl with more hydrophilic [P444VB ]Cl monomer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sodium chloride decreases cadmium accumulation and changes the response of metabolites to cadmium stress in the halophyte Carpobrotus rossii.

    PubMed

    Cheng, Miaomiao; Wang, Anan; Liu, Zhiqian; Gendall, Anthony R; Rochfort, Simone; Tang, Caixian

    2018-05-18

    Salinity affects the bioavailability of cadmium (Cd) in soils and Cd accumulation in plants, but the associated mechanisms remain unclear. This study aimed to assess the metabolic response to NaCl and Cd and the relationship between metabolites and Cd accumulation in the halophyte Carpobrotus rossii, which has potential for Cd phytoextraction. Plants were grown in nutrient solution with 0-400 mm NaCl in the presence of 5 or 15 µm Cd, with varied or constant solution Cd2+ activity. Plant growth and Cd uptake were measured, and the accumulation of peptides, and organic and amino acids in plant tissues were assessed. The addition of NaCl to Cd-containing solutions improved plant growth along with 70-87 % less shoot Cd accumulation, resulting from decreases in Cd root uptake and root-to-shoot translocation irrespective of Cd2+ activity in solutions. Moreover, Cd exposure increased the concentration of phytochelatins, which correlated positively with Cd concentrations in plants regardless of NaCl addition. In comparison, Cd inhibited the synthesis of organic acids in shoots and roots in the absence of NaCl, but increased it in shoots in the presence of NaCl. While Cd increased the concentrations of amino acids in plant shoots, the effect of NaCl on the synthesis of amino acids was inconsistent. Our data provide the first evidence that NaCl decreased Cd shoot accumulation in C. rossii by decreasing Cd root uptake and root-to-shoot translocation even under constant Cd2+ activity. The present study also supports the important role of peptides and organic acids, particular of phytochelatins, in Cd tolerance and accumulation although the changes of those metabolites was not the main reason for the decreased Cd accumulation.

  9. [The corrosion of pure iron in five different mediums].

    PubMed

    Xu, Li; Zhu, Shengfa; Huang, Nan; Li, Xinchang; Zhang, Yu

    2009-08-01

    The sectional test was adopted in this study to investigate the corrosion of pure iron in 0.15 mol/L NaCl solution, Ringer solution, PBS(-) solution, SBF solution and M199 cell culture medium at three different times. The result shows that different mediums have different corrosion effects on pure iron. The arrangement according to the medium's corrosion ability from the strongest to weakest is 0.15 mol/L NaCl solution (Ringer solution), PBS(-) solution, SBF solution and M199 cell culture medium. The results of scanning electron microscopy and energy dispersive X-ray spectrum analyses show that the addition of HPO4(2-), H2POC4-, Ca2+, Mg2+, SO4(2-) and the organic component can inhibit the corrosion to some degree.

  10. Electron scattering in graphene with adsorbed NaCl nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drabińska, Aneta, E-mail: Aneta.Drabinska@fuw.edu.pl; Kaźmierczak, Piotr; Bożek, Rafał

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The mainmore » inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.« less

  11. Effect of inorganic regenerant properties on pharmaceutical adsorption and desorption performance on polymer anion exchange resin.

    PubMed

    Zheng, Shaokui; Li, Xiaofeng; Zhang, Xueyu; Wang, Wei; Yuan, Shengliu

    2017-09-01

    This study investigated the potential effect of four frequently used inorganic regenerant properties (i.e., ionic strength, cation type, anion type, and regeneration solution volume) on the desorption and adsorption performance of 14 pharmaceuticals, belonging to 12 therapeutic classes with different predominant chemical forms and hydrophobicities, using polymeric anion exchange resin (AER)-packed fixed-bed column tests. After preconditioning with NaCl, NaOH, or saline-alkaline (SA) solutions, all resulting mobile counterion types of AERs effectively adsorbed all 14 pharmaceuticals, where the preferential magnitude of OH - -type = Cl -  + OH - -type > Cl - -type. During regeneration, ionic strength (1 M versus 3 M NaCl) had no significant influence on desorption performance for any of the 14 pharmaceuticals, while no regenerant cation (HCl versus NaCl) or anion type (NaCl versus NaOH and SA) achieved higher desorption efficiencies for all pharmaceuticals. A volumetric increase in 1 M or 3 M NaCl solutions significantly improved the desorption efficiencies of most pharmaceuticals, irrespective of ionic strength. The results indicate that regeneration protocols, including regenerant cation type, anion type and volume, should be optimized to improve pharmaceutical removal by AERs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. EQCM analysis of titanium corrosion in peroxide- or fluoride-containing solutions.

    PubMed

    Hattori, Masayuki; Oda, Yutaka

    2013-01-01

    Although offering superior resistance to corrosion, titanium is unable to withstand discoloration with exposure to peroxide or fluoride. The mechanism of this discoloration, however, remains to be clarified. The purpose of this study was to investigate the mechanism underlying discoloration of titanium with immersion in peroxide- or fluoride-containing solutions based on electrochemical quartz crystal microbalance (EQCM) analysis. A 9-MHz titanium-deposited quartz crystal was used as for the electrodes. Four test solutions were prepared for immersion of the electrodes: 154 mM (0.9%) NaCl; 150 mM H2O2+154 mM NaCl (pH=4 by addition of lactic acid); 150 mM H2O2+154 mM NaCl (pH=8 by addition of sodium hydroxide solution); and 48 mM (0.2%) NaF+154 mM NaCl (pH=5.0 by addition of lactic acid). A WinEchem electrochemistry software-controlled quartz crystal analyzer (QCA922) and the Potentiostat/Galvanostat (Princeton Applied Research) on Windows XP were used to measure concurrently the resonance frequency and potential of the electrodes. The EQCM data differed among solutions. In the acidulated fluoride-containing solution, the electrode showed lower open circuit potential and a gradual increase in electrode frequency, indicating a loss of mass by titanium dissolution. In the peroxide-containing solution, although open circuit potential showed no marked difference, electrode frequency showed a gentle decrease in acidic solution, indicating a gain in mass by oxidation; but an increase in alkaline solution, indicating a loss of mass by dissolution. These results confirmed that exposure to acidulated fluoride- or alkaline peroxide-containing solutions causes dissolution-induced discoloration, while that to acidulated peroxide-containing solutions resulted in the formation of an oxide film together with discoloration.

  13. Energetics of acclimation to NaCl by submerged, anoxic rice seedlings

    PubMed Central

    Kurniasih, Budiastuti; Greenway, Hank; Colmer, Timothy David

    2017-01-01

    Background and aims Our aim was to elucidate how plant tissues under a severe energy crisis cope with imposition of high NaCl, which greatly increases ion fluxes and hence energy demands. The energy requirements for ion regulation during combined salinity and anoxia were assessed to gain insights into ion transport processes in the anoxia-tolerant coleoptile of rice. Methods We studied the combined effects of anoxia plus 50 or 100 mm NaCl on tissue ions and growth of submerged rice (Oryza sativa) seedlings. Excised coleoptiles allowed measurements in aerated or anoxic conditions of ion net fluxes and O2 consumption or ethanol formation and by inference energy production. Key Results Over 80 h of anoxia, coleoptiles of submerged intact seedlings grew at 100 mm NaCl, but excised coleoptiles, with 50 mm exogenous glucose, survived only at 50 mm NaCl, possibly due to lower energy production with glucose than for intact coleoptiles with sucrose as substrate. Rates of net uptake of Na+ and Cl− by coleoptiles in anoxia were about half those in aerated solution. Ethanol formation in anoxia and O2 uptake in aerobic solution were each increased by 13–15 % at 50 mm NaCl, i.e. ATP formation was stimulated. For acclimation to 50 mm NaCl, the anoxic tissues used only 25 % of the energy that was expended by aerobic tissues. Following return of coleoptiles to aerated non-saline solution, rates of net K+ uptake recovered to those in continuously aerated solution, demonstrating there was little injury during anoxia with 50 mm NaCl. Conclusion Rice seedlings survive anoxia, without the coleoptile incurring significant injury, even with the additional energy demands imposed by NaCl (100 mm when intact, 50 mm when excised). Energy savings were achieved in saline anoxia by less coleoptile growth, reduced ion fluxes as compared to aerobic coleoptiles and apparent energy-economic ion transport systems. PMID:27694332

  14. [Massive transfusion of washed red blood cells: acid-base and electrolyth changes for different wash solutions].

    PubMed

    Sümpelmann, R; Schürholz, T; Marx, G; Ahrenshop, O; Zander, R

    2003-09-01

    The composition of normal saline (NaCl), the standard wash solution for cell saver autotransfusion, is considerably different from physiologic plasma values in small infants. Therefore, we investigated acid-base and electrolyte changes during massive cell saver autotransfusion with different wash solutions in young pigs. After approval by the animal protection authorities 15 young pigs (weight 10.6 +/- 1.1 kg, blood volume 848 +/- 88 ml, mean+/-SD) underwent 15 cycles of cell saver autotransfusion (Haemolite 2plus, Haemonetics). For each cycle, 100 ml arterial blood was withdrawn, washed with NaCl, physiologic multielectrolyte solution (PME, V Infusionslösung 296 mval Elektrolyte, Baxter) or physiologic erythrocyte protection solution (PEP, 3.2 % gelatine, pH 7.40, cHCO3 24 mmol/l), and then retransfused. Analyses of acid-base, electrolyte, and hematologic parameters were performed for systemic and washed blood samples. For NaCl there was a progressive decrease in systemic pH, HCO3 and base excess (BE) and an increase in chloride values (Cl) (p < 0.05). Use of PME slightly decreased pH (n. s.), whereas HCO3, BE and Cl remained stable. PEP slightly increased pH, HCO3 and BE, and decreased Cl (n. s.). Free hemoglobin increased in NaCl and PME (p < 0.05) and was below baseline in PEP (n. s.). Lactic acid course was comparable in all groups. The use of NaCl as wash solution for massive autotransfusion resulted in metabolic acidosis caused by dilution of HCO3 and increased Cl values. Fewer systemic acid-base and electrolyte changes were observed, when blood was washed with PME or PEP. The decreased hemoglobin release with PEP is possibly due to a gelatine specific electrostatic surface coating of erythrocyte membranes. For massive transfusion of washed red blood cells, physiologic multielectrolyte solution and physiologic erythrocyte protection solution should be preferred to NaCl, especially for small infants.

  15. Microstructure and corrosion resistance of a fluorosilane modified silane-graphene film on 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Dun, Yuchao; Zhao, Xuhui; Tang, Yuming; Dino, Sahib; Zuo, Yu

    2018-04-01

    Heptadecafluorodecyl trimethoxysilane (FAS-17) was incorporated into γ-(2,3-epoxypropoxy) propyltrimethoxysilane/graphene (GPTMS/rGO) by adding pre-hydrolyzed FAS-17 solution in GPTMS solution, and a hybrid silane-graphene film (FG/rGO) was prepared on 2024 aluminum alloy surface. The FG/rGO film showed better thermal shock resistance, good adhesion force and high micro-hardness, compared with GPTMS/rGO film. In neutral 3.5 wt% NaCl solution, the corrosion current density for 2024 AA sample with FG/rGO film was 3.40 × 10-3 μA/cm2, which is about one fifth of that for the sample with GPTMS/rGO film. In acidic and alkaline NaCl solutions, the FG/rGO film also showed obviously better corrosion resistance than GPTMS/rGO film. EIS results confirm that the FG/rGO film showed longer performance than GPTMS/rGO film for 2024 AA in NaCl solution. The hydrophobic FAS-17 increased water contact angle of the film surface from 68° to 113°, and changed the stacking structure of graphene in the film. The higher crosslink degree and less interfaces promoted the barrier property of FG/rGO film against aggressive ions and prolonged the performance time in NaCl solution.

  16. Molecular dynamics study of salt-solution interface: solubility and surface charge of salt in water.

    PubMed

    Kobayashi, Kazuya; Liang, Yunfeng; Sakka, Tetsuo; Matsuoka, Toshifumi

    2014-04-14

    The NaCl salt-solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt-solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt-solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  17. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Kazuya; Liang, Yunfeng, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp

    2014-04-14

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemicalmore » potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.« less

  18. Exposure to buffer solution alters tendon hydration and mechanics.

    PubMed

    Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M

    2017-08-16

    A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of Intravenous Small-Volume Hypertonic Sodium Bicarbonate, Sodium Chloride, and Glucose Solutions in Decreasing Plasma Potassium Concentration in Hyperkalemic Neonatal Calves with Diarrhea.

    PubMed

    Trefz, F M; Constable, P D; Lorenz, I

    2017-05-01

    Hyperkalemia is a frequently observed electrolyte imbalance in dehydrated neonatal diarrheic calves that can result in skeletal muscle weakness and life-threatening cardiac conduction abnormalities and arrhythmias. Intravenous administration of a small-volume hypertonic NaHCO 3 solution is clinically more effective in decreasing the plasma potassium concentration (cK) in hyperkalemic diarrheic calves than hypertonic NaCl or glucose solutions. Twenty-two neonatal diarrheic calves with cK >5.8 mmol/L. Prospective randomized clinical trial. Calves randomly received either 8.4% NaHCO 3 (6.4 mL/kg BW; n = 7), 7.5% NaCl (5 mL/kg BW; n = 8), or 46.2% glucose (5 mL/kg BW; n = 7) IV over 5 minutes and were subsequently allowed to suckle 2 L of an electrolyte solution. Infusions with NaHCO 3 and NaCl provided an identical sodium load of 6.4 mmol/kg BW. Hypertonic NaHCO 3 infusions produced an immediate and sustained decrease in plasma cK. Hypertonic glucose infusions resulted in marked hyperglycemia and hyperinsulinemia, but cK remained unchanged for 20 minutes. Between 30 and 120 minutes after initiation of treatment, the most marked decrements in cK from baseline occurred in group NaHCO 3 , which were significantly (P < .05) larger during this period of time than in calves in group NaCl, but not group glucose. After 120 minutes, the mean decrease in cK from baseline was -26 ± 10%, -9 ± 8%, and -22 ± 6% in groups NaHCO 3 , NaCl, and glucose, respectively. Small-volume hypertonic NaHCO 3 infusions appear to have clinical advantages for the rapid resuscitation of hyperkalemic diarrheic calves, compared to hypertonic NaCl or glucose solutions. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. Mouse taste preference tests: why only two bottles?

    PubMed

    Tordoff, Michael G; Bachmanov, Alexander A

    2003-05-01

    Two-bottle tests have been used extensively to measure the preference for taste and nutrient solutions but there has been little work with tests involving more than two bottles. Here, we compare the results obtained in two-bottle tests with those obtained in three- and six-bottle tests. In Experiment 1, we measured the preferences for 2 mM saccharin, 50 mM citric acid, 0.3 mM quinine hydrochloride and 75 mM NaCl displayed by 129X1/SvJ (129) and C57BL/6J (B6) mice. Mice drank more taste solution when they received two bottles providing taste solution and one providing water than when they received either a standard two-bottle test or two bottles providing water and one providing taste solution. The three-bottle tests also revealed the left spout side preferences of the 129 strain and were generally better at distinguishing between the 129 and B6 strains (i.e. were more sensitive) than were the two-bottle tests. In Experiment 2, we measured intakes and preferences in tests with six bottles, with one, two, three, four or five containing 75 mM NaCl and the rest containing water. NaCl preferences were monotonically related to the number of NaCl spouts available. A follow-up experiment found similar results whether the index of ingestion was volume intakes or licks. This argues that spillage cannot account for the effect of spout number on taste solution intake. Together, the results suggest that (i) the number of bottles of taste solution and water has a profound influence on taste solution intake and preference, and (ii) three-bottle tests may be more sensitive than two-bottle tests in many circumstances.

  1. Mouse Taste Preference Tests: Why Only Two Bottles?

    PubMed Central

    Tordoff, Michael G.; Bachmanov, Alexander A.

    2008-01-01

    Two-bottle tests have been used extensively to measure the preference for taste and nutrient solutions but there has been little work with tests involving more than two bottles. Here, we compare the results obtained in two-bottle tests with those obtained in three- and six-bottle tests. In Experiment 1, we measured the preferences for 2 mM saccharin, 50 mM citric acid, 0.3 mM quinine hydrochloride and 75 mM NaCl displayed by 129X1/SvJ (129) and C57BL/6J (B6) mice. Mice drank more taste solution when they received two bottles providing taste solution and one providing water than when they received either a standard two-bottle test or two bottles providing water and one providing taste solution. The three-bottle tests also revealed the left spout side preferences of the 129 strain and were generally better at distinguishing between the 129 and B6 strains (i.e. were more sensitive) than were the two-bottle tests. In Experiment 2, we measured intakes and preferences in tests with six bottles, with one, two, three, four or five containing 75 mM NaCl and the rest containing water. NaCl preferences were monotonically related to the number of NaCl spouts available. A follow-up experiment found similar results whether the index of ingestion was volume intakes or licks. This argues that spillage cannot account for the effect of spout number on taste solution intake. Together, the results suggest that (i) the number of bottles of taste solution and water has a profound influence on taste solution intake and preference, and (ii) three-bottle tests may be more sensitive than two-bottle tests in many circumstances. PMID:12771018

  2. Efficacy of chlorine dioxide against Listeria monocytogenes in brine chilling solutions.

    PubMed

    Valderrama, W B; Mills, E W; Cutter, C N

    2009-11-01

    Chilled brine solutions are used by the food industry to rapidly cool ready-to-eat meat products after cooking and before packaging. Chlorine dioxide (ClO(2)) was investigated as an antimicrobial additive to eliminate Listeria monocytogenes. Several experiments were performed using brine solutions made of sodium chloride (NaCl) and calcium chloride (CaCl(2)) inoculated with L. monocytogenes and/or treated with 3 ppm of ClO(2). First, 10 and 20% CaCl(2) and NaCl solutions (pH 7.0) were inoculated with a five-strain cocktail of L. monocytogenes to obtain approximately 7 log CFU/ml and incubated 8 h at 0 degrees C. The results demonstrated that L. monocytogenes survived in 10% CaCl(2), 10 and 20% NaCl, and pure water. L. monocytogenes levels were reduced approximately 1.2 log CFU/ml in 20% CaCl(2). Second, inoculated ( approximately 7 log CFU/ml) brine solutions (10 and 20% NaCl and 10% CaCl(2)) treated with 3 ppm of ClO(2) resulted in a approximately 4-log reduction of the pathogen within 90 s. The same was not observed in a solution of 20% CaCl(2); further investigation demonstrated that high levels of divalent cations interfere with the disinfectant. Spent brine solutions from hot dog and ham chilling were treated with ClO(2) at concentrations of 3 or 30 ppm. At these concentrations, ClO(2) did not reduce L. monocytogenes. Removal of divalent cations and organic material in brine solutions prior to disinfection with ClO(2) should be investigated to improve the efficacy of the compound against L. monocytogenes. The information from this study may be useful to processing establishments and researchers who are investigating antimicrobials in chilling brine solutions.

  3. Salt Induced and Salt Suppressed Proteins in Tomato Leaves

    USDA-ARS?s Scientific Manuscript database

    Tomato (Solanum lycopersicum cv. Money Maker) seedlings at the two-leaf stage were grown in one-half strength Hoagland solution supplemented with 50 mM NaCl for 4 days, with 100 mM NaCl for 4 days, with 150 mM NaCl for 4 days, and with a final concentration 200 mM NaCl for 2 days. Solutions were ref...

  4. Effect of concentration of hyaluronic acid and NaCl on corrosion behavior of 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Bansod, Ankur V.; Khobragade, Nilay N.; Giradkar, Karansagar V.; Patil, Awanikumar P.

    2017-11-01

    Due to low cost and easily available material, 316L stainless steel (SS) is used for biomedical implants. The electrochemical corrosion behavior of 316L (SS) was studied as a function of the concentration of simulated biological fluid (hyaluronic acid), the influence of Cl- and the combined effect of NaCl and hyaluronic acid (HA). For the electrochemical tests, potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were undertaken. With the increase in HA concentration, corrosion rate increases. Whereas, with the addition of NaCl to HA the solution, the corrosion resistance of the sample was enhanced. Also, in pure NaCl solution, the corrosion current density (i corr) increased as compared to bare HA and HA  +  NaCl. This is due to the adhesion property of the HA on the sample surface. EIS result agrees with the findings of potentiodynamic polarization tests. X-ray photoelectron spectroscopy (XPS) was executed to analyze the passive film formed in the solution of HA and NaCl on 316L SS. XPS spectra confirms the formation of the passive film containing chromium oxide and hydroxides. Also, the formation of MoO2 helps in improving better corrosion resistance. The peak of nitrogen was observed in the sample immersed in HA solution. Scanning electron microscope (SEM) was carried out to analyze the surface morphology.

  5. Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route.

    PubMed

    Benavides, A L; Aragones, J L; Vega, C

    2016-03-28

    The solubility of NaCl in water is evaluated by using three force field models: Joung-Cheatham for NaCl dissolved in two different water models (SPC/E and TIP4P/2005) and Smith Dang NaCl model in SPC/E water. The methodology based on free-energy calculations [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] and [J. L. Aragones et al., J. Chem. Phys. 136, 244508 (2012)] has been used, except, that all calculations for the NaCl in solution were obtained by using molecular dynamics simulations with the GROMACS package instead of homemade MC programs. We have explored new lower molalities and made longer runs to improve the accuracy of the calculations. Exploring the low molality region allowed us to obtain an analytical expression for the chemical potential of the ions in solution as a function of molality valid for a wider range of molalities, including the infinite dilute case. These new results are in better agreement with recent estimations of the solubility obtained with other methodologies. Besides, two empirical simple rules have been obtained to have a rough estimate of the solubility of a certain model, by analyzing the ionic pairs formation as a function of molality and/or by calculating the difference between the NaCl solid chemical potential and the standard chemical potential of the salt in solution.

  6. Dehydration process in NaCl solutions under various external electric fields

    NASA Astrophysics Data System (ADS)

    Kadota, Kazunori; Shimosaka, Atsuko; Shirakawa, Yoshiyuki; Hidaka, Jusuke

    2007-06-01

    Ionic motions at solid-liquid interface in supersaturated NaCl solutions have been investigated by molecular dynamics (MD) simulation for understanding crystal growth processes. The density profile in the vicinity of the interfaces between NaCl(100) and the supersaturated NaCl solution was calculated. Diffusion coefficients of water molecules in the solution were estimated as a function of distance from the crystal interface. It turned out that the structure and dynamics of the solution in the interfaces was different from those of bulk solution owing to electric fields depending on the surface charge. Therefore, the electric field was applied to the supersaturated solutions and dehydration phenomenon occurring in the process of the crystal growth was discussed. As the electric field increased, it was observed that the Na+ keeping strongly hydration structure broke out by the electric force. In supersaturated concentration, the solution structure is significantly different from that of dilution and has a complicated structure with hydration ions and clusters of NaCl. If the electric fields were applied to the solutions, the breakout of hydration structure was not affected with increasing the supersaturated ratio. This reason is that the cluster structures are destroyed by the electric force. The situation depends on the electric field or crystal surface structure.

  7. Ultrasound degradation of xanthan polymer in aqueous solution: Its scission mechanism and the effect of NaCl incorporation.

    PubMed

    Saleh, H M; Annuar, M S M; Simarani, K

    2017-11-01

    Degradation of xanthan polymer in aqueous solution by ultrasonic irradiation was investigated. The effects of selected variables i.e. sonication intensity, irradiation time, concentration of xanthan gum and molar concentration of NaCl in solution were studied. Combined approach of full factorial design and conventional one-factor-at-a-time was applied to obtain optimum degradation at sonication power intensity of 11.5Wcm -2 , irradiation time 120min and 0.1gL -1 xanthan in a salt-free solution. Molecular weight reduction of xanthan gum under sonication was described by an exponential decay function with higher rate constant for polymer degradation in the salt free solution. The limiting molecular weight where fragments no longer undergo scission was determined from the function. The incorporation of NaCl in xanthan solution resulted in a lower limiting molecular weight. The ultrasound-mediated degradation of aqueous xanthan polymer chain agreed with a random scission model. Side chain of xanthan polymer is proposed to be the primary site of scission action. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Solution density and concentration measurement using noninvasive in situ ultrasonic resonance interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, N.G.

    A method of noninvasively measuring the density and concentration of NaCl solutions contained within stainless steel pipes has been developed. The pipe-solution system was energized using an ultrasonic transducer resulting in resonances at specific frequencies. The periodicity of the resonant peaks was determined by analyzing ultrasonic voltage response data using a fast Fourier transform to yield the power spectrum. In preliminary studies the periodicity was measured directly from the voltage response spectrum. The resonant periodicities were correlated against known NaCl density and concentration standards. The concentration of unknown NaCl solutions was measured in situ with an accuracy of {plus_minus}O.15 Mmore » over a range of 0.4 to 3.4 M. The precision of each of the measurements range from 1 part in 10,000 to 1 part in 1000. The error resulting from temperature was at most 0.0287 M per degree Celsius or 0.59% over the range measured. Data collection time ranged from 1.7 seconds to 17.0 seconds. Literature on similar but invasive techniques suggests that the technique developed here could be applied to a variety of industrial solutions including acids, caustics, petrochemicals, gases, foodstuffs, and beverages.« less

  9. Inhibition effect of sugar-based amphiphiles on eutectic formation in the freezing-thawing process of aqueous NaCl solution.

    PubMed

    Ogawa, Shigesaburo; Osanai, Shuichi

    2007-04-01

    DSC and simultaneous XRD-DSC measurements were carried out to clarify the interaction among the ingredients in a ternary aqueous solution composed of NaCl, a sugar-based amphiphile or free sugar, and water. Two aspects of the inhibition of eutectic formation were suggested through the addition of the sugar amphiphile. One was the retention of the glass state of the eutectic phase, and the other was the trapping of NaCl hydrate into the sugar moiety of the amphiphilic aggregate. The difference between the free sugar and the amphiphilic one in terms of the trapping of NaCl hydrate was attributable to their dissimilarity in the dissolution state. The results indicated that the free sugars in water could interact with NaCl hydrate on the basis of their various hydroxyl groups. On the other hand, the sugar-based amphiphiles generated a self-assembly aggregate in the system, and interacted with NaCl hydrate by a salting-in effect with their sugar moiety in the freezing-thawing process. It was confirmed that the number of sugar units played an important role in trapping NaCl hydrate in the system. The effects of the structural isomerism in the sugars were slight with regard to the inhibition of eutectic formation.

  10. Corrosion Properties of SAC305 Solder in Different Solution of HCl and NaCl

    NASA Astrophysics Data System (ADS)

    Nurwahida, M. Z.; Mukridz, M. M.; Ahmad, A. M.; Muhammad, F. M. N.

    2018-03-01

    Potentiodynamic polarization was used to studied the corrosion properties of SAC305 solder in different solution of 1.0 M HCl and 3.5 wt.% NaCl using the same scanning rate of 1.0 mV/s. The polarization curves indicated that corrosion in NaCl was less severe than in HCl solution based on corrosion current and passivation behavior obtained. Morphology and phases obtained after corrosion using SEM and XRD were analyzed. Microstructure analysis shows the present of compact corrosion product with presence of larger flake for polarization in NaCl compared to HCl. Phases present in XRD analysis confirmed the present of SnO and SnO2 corrosion product for sample from both solutions.

  11. Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Qin, Lifeng; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Chen, Guang

    2013-02-01

    Growing plants can be used to clean waste water in bioregenerative life support system (BLSS). However, NaCl contained in the human urine always restricts plant growth and further reduces the degree of mass cycle closure of the system (i.e. salt stress). This work determined the effect of NaCl stress on physiological characteristics of plants for the life support system. Amaranth (Amaranthus tricolor L. var. Huahong) and leaf lettuce (Lactuca sativa L. var. Luoma) were cultivated at nutrient solutions with different NaCl contents (0, 1000, 5000 and 10,000 ppm, respectively) for 10 to 18 days after planted in the Controlled Ecological Life Support System Experimental Facility in China. Results showed that the two plants have different responses to the salt stress. The amaranth showed higher salt-tolerance with NaCl stress. If NaCl content in the solution is below 5000 ppm, the salt stress effect is insignificant on above-ground biomass output, leaf photosynthesis rate, Fv/Fm, photosynthesis pigment contents, activities of antioxidant enzymes, and inducing lipid peroxidation. On the other hand, the lettuce is sensitive to NaCl which significantly decreases those indices of growth and physiology. Notably, the lettuce remains high productivity of edible biomass in low NaCl stress, although its salt-tolerant limitation is lower than amaranth. Therefore, we recommended that amaranth could be cultivated under a higher NaCl stress condition (<5000 ppm) for NaCl recycle while lettuce should be under a lower NaCl stress (<1000 ppm) for water cleaning in future BLSS.

  12. Contribution of extracellular ice formation and the solution effects to the freezing injury of PC-3 cells suspended in NaCl solutions.

    PubMed

    Takamatsu, Hiroshi; Zawlodzka, Sylwia

    2006-08-01

    The mechanism of cell injury during slow freezing was examined using PC-3 human prostate adenocarcinoma cells suspended in NaCl solutions. The objective was to evaluate contribution of extracellular ice and the 'solution effects' to freezing injury separately. The solution effects that designate the influence of elevated concentration were evaluated from a pseudo-freezing experiment, where cells were subjected to the milieu that simulated a freeze-thaw process by changing the NaCl concentration and the temperature at the same time. The effect of extracellular ice formation on cell injury was then estimated from the difference in cell survival between the pseudo-freezing experiment and a corresponding freezing experiment. When cells were frozen to a relatively higher freezing temperature at -10 degrees C, about 30% of cells were damaged mostly due to extracellular ice formation, because the concentration increase without ice formation to 2.5-M NaCl, i.e., the equilibrium concentration at -10 degrees C, had no effect on cell survival. In contrast, in the case of the lower freezing temperature at -20 degrees C, about 90% of cells were injured by both effects, particularly 60-80% by the solution effects among them. The present results suggested that the solution effects become more crucial to cell damage during slow freezing at lower temperatures, while the effect of ice is limited to some extent.

  13. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.

    PubMed

    Wong, Douglas; Vasanthan, Thava; Ozimek, Lech

    2013-12-15

    This paper investigated the enhancement of thermal gelation properties when salt-soluble pea proteins were co-gelated with whey proteins in NaCl solutions, using different blend ratios, total protein concentrations, pH, and salt concentrations. Results showed that the thermal co-gelation of pea/whey proteins blended in ratio of 2:8 in NaCl solutions showed synergistic enhancement in storage modulus, gel hardness, paste viscosity and minimum gelation concentrations. The highest synergistic enhancement was observed at pH 6.0 as compared with pH 4.0 and 8.0, and at the lower total protein concentration of 10% as compared with 16% and 22% (w/v), as well as in lower NaCl concentrations of 0.5% and 1.0% as compared with 1.5%, 2.0%, 2.5%, and 3.0% (w/v). The least gelation concentrations were also lower in the different pea/whey protein blend ratios than in pure pea or whey proteins, when dissolved in 1.0% or 2.5% (w/v) NaCl aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Effect of Temperature, Light and Salinity on Seed Germination and Radicle Growth of the Geographically Widespread Halophyte Shrub Halocnemum strobilaceum

    PubMed Central

    Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M.; Baskin, Carol C.

    2008-01-01

    Background and Aims The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from ‘salt steppes’ in the Mediterranean region of Spain. Methods Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 °C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Key Results Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 0·1 to 0·75 m NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by ≥2·0 m NaCl. Elongation of radicles from salt solutions <3·0 m resumed after seedlings were transferred to deionized water. Conclusions The seed and early seedling growth stages of the life cycle of H. strobilaceum are very salt tolerant, and their physiological responses differ somewhat between the Mediterranean ‘salt steppe’ of Spain and the inland cold salt desert of north-west China. PMID:17428834

  15. Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution

    PubMed Central

    Han, Yu-Mei; Chen, X.-Grant

    2015-01-01

    Aluminum based metal matrix composites (MMCs) have received considerable attention in the automotive, aerospace and nuclear industries. One of the main challenges using Al-based MMCs is the influence of the reinforcement particles on the corrosion resistance. In the present study, the corrosion behavior of Al-B4C MMCs in a 3.5 wt.% NaCl solution were investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Results indicated that the corrosion resistance of the composites decreased when increasing the B4C volume fraction. Al-B4C composite was susceptible to pitting corrosion and two types of pits were observed on the composite surface. The corrosion mechanism of the composite in the NaCl solution was primarily controlled by oxygen diffusion in the solution. In addition, the galvanic couples that formed between Al matrix and B4C particles could also be responsible for the lower corrosion resistance of the composites. PMID:28793574

  16. Solubility of NaCl and KCl in aqueous HCl from 20 to 85°C

    USGS Publications Warehouse

    Potter, Robert W.; Clynne, Michael A.

    1980-01-01

    The solubilities of NaCl and KCl in aqueous HCl solutions were determined from 20 to 85°C at concentrations ranging from 0 to 20 g of HCl/100 g of solution. Equations are given that describe the solubilities over the range of conditions studied. For NaCl and KCl respectively measured solubilities show an average deviation from these equations of ??0.10 and ??0.08 g/100 g of saturated solution.

  17. Solubility of KF and NaCl in water by molecular simulation.

    PubMed

    Sanz, E; Vega, C

    2007-01-07

    The solubility of two ionic salts, namely, KF and NaCl, in water has been calculated by Monte Carlo molecular simulation. Water has been modeled with the extended simple point charge model (SPC/E), ions with the Tosi-Fumi model and the interaction between water and ions with the Smith-Dang model. The chemical potential of the solute in the solution has been computed as the derivative of the total free energy with respect to the number of solute particles. The chemical potential of the solute in the solid phase has been calculated by thermodynamic integration to an Einstein crystal. The solubility of the salt has been calculated as the concentration at which the chemical potential of the salt in the solution becomes identical to that of the pure solid. The methodology used in this work has been tested by reproducing the results for the solubility of KF determined previously by Ferrario et al. [J. Chem. Phys. 117, 4947 (2002)]. For KF, it was found that the solubility of the model is only in qualitative agreement with experiment. The variation of the solubility with temperature for KF has also been studied. For NaCl, the potential model used predicts a solubility in good agreement with the experimental value. The same is true for the hydration chemical potential at infinite dilution. Given the practical importance of solutions of NaCl in water the model used in this work, whereas simple, can be of interest for future studies.

  18. A method of calculating quartz solubilities in aqueous sodium chloride solutions

    USGS Publications Warehouse

    Fournier, R.O.

    1983-01-01

    The aqueous silica species that form when quartz dissolves in water or saline solutions are hydrated. Therefore, the amount of quartz that will dissolve at a given temperature is influenced by the prevailing activity of water. Using a standard state in which there are 1,000 g of water (55.51 moles) per 1,000 cm3 of solution allows activity of water in a NaCl solution at high temperature to be closely approximated by the effective density of water, pe, in that solution, i.e. the product of the density of the NaCl solution times the weight fraction of water in the solution, corrected for the amount of water strongly bound to aqueous silica and Na+ as water of hydration. Generally, the hydration of water correction is negligible. The solubility of quartz in pure water is well known over a large temperature-pressure range. An empirical formula expresses that solubility in terms of temperature and density of water and thus takes care of activity coefficient and pressure-effect terms. Solubilities of quartz in NaCl solutions can be calculated by using that equation and substituting pe, for the density of pure water. Calculated and experimentally determined quartz solubilities in NaCl solutions show excellent agreement when the experiments were carried out in non-reactive platinum, gold, or gold plus titanium containers. Reactive metal containers generally yield dissolved silica concentrations higher than calculated, probably because of the formation of metal chlorides plus NaOH and H2. In the absence of NaOH there appears to be no detectable silica complexing in NaCl solutions, and the variation in quartz solubility with NaCl concentration at constant temperature can be accounted for entirely by variations in the activity of water. The average hydration number per molecule of dissolved SiO2 in liquid water and NaCl solutions decreases from about 2.4 at 200??C to about 2.1 at 350??C. This suggests that H4SiO4 may be the dominant aqueous silica species at 350??C, but other polymeric forms become important at lower temperatures. ?? 1983.

  19. Mineral intake independent from gastric irritation or pica by cell-dehydrated rats.

    PubMed

    Constancio, Juliana; Pereira-Derderian, Daniela T B; Menani, José V; De Luca, Laurival A

    2011-10-24

    Gavage of 2 M NaCl (IG 2 M NaCl), a procedure to induce cell-dehydration-and water and 0.15 M NaCl intake in a two-bottle choice test-is also a potential gastric irritant. In this study, we assessed whether mineral intake induced by IG 2 M NaCl is associated with gastric irritation or production of pica in the rat. We first determined the amount of mineral solution (0.15 M NaCl, 0.15 M NaHCO3, 0.01 M KCl and 0.05 mM CaCl2) and water ingested in response to IG 2 M NaCl in a five-bottle test. Then, we used mineral solutions (0.01 M KCl and 0.15 M NaHCO3), whose intakes were significantly increased compared to controls, and water in three-bottle tests to test the gastric irritation hypothesis. The IG 2 M NaCl induced KCl and NaHCO3 intake that was not inhibited by gavage with gastric protectors Al(OH)3 or NaHCO3. IG 2 M NaCl or gavage of 0.6 N acetic acid induced mild irritation, hyperemia, of the glandular part of the stomach. A gavage of 50% ethanol induced strong irritation seen as pinpoint ulcerations. Neither ethanol nor acetic acid induced any fluid intake. Neither IG 2 M NaCl nor acetic acid induced kaolin intake, a marker of pica in laboratory rats. Ethanol did induce kaolin intake. These results suggest that IG 2 M NaCl induced a mineral fluid intake not selective for sodium and independent from gastric irritation or pica. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Low pH-Induced Pore Formation by the T Domain of Botulinum Toxin Type A is Dependent upon NaCl Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, B.; Swaminathan, S.; Agarwal, R.

    2010-07-19

    Botulinum neurotoxins (BoNTs) undergo low pH-triggered membrane insertion, resulting in the translocation of their light (catalytic) chains into the cytoplasm. The T (translocation) domain of the BoNT heavy chain is believed to carry out translocation. Here, the behavior of isolated T domain from BoNT type A has been characterized, both in solution and when associated with model membranes. When BoNT T domain prepared in the detergent dodecylmaltoside was diluted into aqueous solution, it exhibited a low pH-dependent conformational change below pH 6. At low pH the T domain associated with, and formed pores within, model membrane vesicles composed of 30more » mol% dioleoylphosphatidylglycerol/70 mol% dioleoylphosphatidylcholine. Although T domain interacted with vesicles at low (50 mM) and high (400 mM) NaCl concentrations, the interaction required much less lipid at low salt. However, even at high lipid concentrations pore formation was much more pronounced at low NaCl concentrations than at high NaCl concentration. Increasing salt concentration after insertion in the presence of 50 mM NaCl did not decrease pore formation. A similar effect of NaCl concentration upon pore formation was observed in vesicles composed solely of dioleoylphosphatidylcholine, showing that the effect of NaCl did not solely involve modulation of electrostatic interactions between protein and anionic lipids. These results indicate that some feature of membrane-bound T domain tertiary structure critical for pore formation is highly dependent upon salt concentration.« less

  1. Drinking salt water enhances rehydration in horses dehydrated by frusemide administration and endurance exercise.

    PubMed

    Butudom, P; Schott, H C; Davis, M W; Kobe, C A; Nielsen, B D; Eberhart, S W

    2002-09-01

    Because the primary stimulus for thirst is an increase in plasma tonicity, we hypothesised that dehydrated horses would drink a greater total volume of fluid voluntarily during the first hour of recovery when they were initially offered salt water. To test this hypothesis, bodyweight (bwt), fluid intake (FI) and [Na+] were measured in 6 Arabian horses offered 3 rehydration solutions. After dehydration was induced by frusemide administration (1 mg/kg bwt, i.v.) followed by 45 km treadmill exercise, water (W), 0.45% NaCl and 0.9% NaCl were offered, in a randomised order, during the initial 5 min after completing exercise. Horses were subsequently placed in a stall and further intake of plain water during the first hour of recovery was measured. By the end of exercise, horses lost 5.2 +/- 0.2, 5.6 +/- 0.3 and 5.7 +/- 0.2% (P>0.05) bwt and FI during the first 5 min of recovery was 10.5 +/- 0.7, 11.6 +/- 0.8 and 11.6 +/- 1.5 l (P>0.05) for W, 0.45% NaCl and 0.9% NaCl, respectively. After 20 min of recovery, [Na+] had decreased with W but remained unchanged from the end exercise values for both saline solutions. During the initial hour of recovery, further water intake was 0.9 +/- 0.4, 5.0 +/- 0.5 and 6.9 +/- 0.7 l (P<0.05) for W, 0.45% NaCl and 0.9% NaCl, respectively. Therefore, total FI was 11.4 +/- 0.5, 16.6 +/- 0.7 and 18.5 +/- 1.7 l (P<0.05) for W, 0.45% NaCl and 0.9% NaCl, respectively, and persisting bwt loss after 60 min of recovery was greater (P<0.05) for W (3.5%) than for the 2 saline solutions (24% for 0.45% NaCl and 1.9% for 0.9% NaCl). In conclusion, providing salt water as the initial rehydration fluid maintained an elevated [Na+] and resulted in greater total FI and recovery of bwt loss during the first hour of recovery, in comparison to offering only plain water.

  2. Temperature and Pressure Effects of Desalination Using a MFI-Type Zeolite Membrane

    PubMed Central

    Zhu, Bo; Kim, Jun Hyun; Na, Yong-Han; Moon, Il-Shik; Connor, Greg; Maeda, Shuichi; Morris, Gayle; Gray, Stephen; Duke, Mikel

    2013-01-01

    Zeolites are potentially a robust desalination alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could desalinate “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al2O3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and single gas (He or N2) permeation and underwent desalination tests with NaCl solutions under different pressures (0.7 MPa and 7 MPa). The results showed that higher pressure resulted in higher Na+ rejection and permeate flux. The zeolite membrane achieved a good rejection of Na+ (~82%) for a NaCl feed solution with a TDS (total dissolved solids) of 3000 mg·L−1 at an applied pressure of 7 MPa and 21 °C. To explore the opportunity for high salinity and high temperature desalination, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000 mg·L−1) and at 90 °C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na+ rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection. PMID:24956943

  3. Ion-induced nucleation in solution: promotion of solute nucleation in charged levitated droplets.

    PubMed

    Draper, Neil D; Bakhoum, Samuel F; Haddrell, Allen E; Agnes, George R

    2007-09-19

    We have investigated the nucleation and growth of sodium chloride in both single quiescent charged droplets and charged droplet populations that were levitated in an electrodynamic levitation trap (EDLT). In both cases, the magnitude of a droplet's net excess charge (ions(DNEC)) influenced NaCl nucleation and growth, albeit in different capacities. We have termed the phenomenon ion-induced nucleation in solution. For single quiescent levitated droplets, an increase in ions(DNEC) resulted in a significant promotion of NaCl nucleation, as determined by the number of crystals observed. For levitated droplet populations, a change in NaCl crystal habit, from regular cubic shapes to dome-shaped dendrites, was observed once a surface charge density threshold of -9 x 10(-4) e.nm(-2) was surpassed. Although promotion of NaCl nucleation was observed for droplet population experiments, this can be attributed in part to the increased rate of solvent evaporation observed for levitated droplet populations having a high net charge. Promotion of nucleation was also observed for two organic acids, 2,4,6-trihydroxyacetophenone monohydrate (THAP) and alpha-cyano-4-hydroxycinnamic acid (CHCA). These results are of direct relevance to processes that occur in both soft-ionization techniques for mass spectrometry and to a variety of industrial processes. To this end, we have demonstrated the use of ion-induced nucleation in solution to form ammonium nitrate particles from levitated droplets to be used in in vitro toxicology studies of ambient particle types.

  4. Solution density and concentration measurement using noninvasive in situ ultrasonic resonance interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, N.G.

    A method of noninvasively measuring the density and concentration of NaCl solutions contained within stainless steel pipes has been developed. The pipe-solution system was energized using an ultrasonic transducer resulting in resonances at specific frequencies. The periodicity of the resonant peaks was determined by analyzing ultrasonic voltage response data using a fast Fourier transform to yield the power spectrum. In preliminary studies the periodicity was measured directly from the voltage response spectrum. The resonant periodicities were correlated against known NaCl density and concentration standards. The concentration of unknown NaCl solutions was measured in situ with an accuracy of {plus minus}O.15more » M over a range of 0.4 to 3.4 M. The precision of each of the measurements range from 1 part in 10,000 to 1 part in 1000. The error resulting from temperature was at most 0.0287 M per degree Celsius or 0.59% over the range measured. Data collection time ranged from 1.7 seconds to 17.0 seconds. Literature on similar but invasive techniques suggests that the technique developed here could be applied to a variety of industrial solutions including acids, caustics, petrochemicals, gases, foodstuffs, and beverages.« less

  5. A comparative study on the electrochemical corrosion behavior of iron and X-65 steel in 4.0 wt % sodium chloride solution after different exposure intervals.

    PubMed

    Sherif, El-Sayed M

    2014-07-09

    In this work, the results obtained from studying the anodic dissolution of pure iron and API X-65 5L pipeline steel after 40 min and 12 h exposure period in 4.0 wt % NaCl solutions at room temperature were reported. Potential-time, electrochemical impedance spectroscopy, potentiodynamic polarization, and chronoamperometric current-time at constant potential techniques were employed. It has been found that the iron electrode corrodes in the chloride test solutions faster than the API X-65 5L steel does under the same conditions. Increasing the exposure period for the electrodes from 40 min to 12 h showed a significant reduction in the corrosion parameters for both iron and steel in the 4.0 wt % NaCl solution. Results together confirmed clearly that the X-65 steel is superior to iron against corrosion in sodium chloride solutions.

  6. A possible NaCl pathway in the bioregenerative human life support system

    NASA Astrophysics Data System (ADS)

    Polonskiy, V. I.; Gribovskaya, I. V.

    One of the ways to involve NaCl in the mass exchange of the bioregenerative human life support system (BLSS) is to grow some vegetables and leafy greens that can accumulate sodium chloride at high concentrations in their edible biomass. Lettuce, celery cabbage, chard, dill and radish plants were grown hydroponically in Knop's nutrient solution. In the first series of experiments, at the end of the growth period the plants were grown on solutions containing 2-14 g/L of NaCl for 1-5 days. It was found that the amount of sodium in edible biomass of the plants increased with NaCl concentration in the solution and with the time plants were irrigated with that solution. The content of NaCl in the biomass of leaves and edible roots was considerable—up to 10% dry matter. At the same time, the amount of water in the leaves decreased and productivity of the treatment plants was 14-28% lower than that of the control ones, grown on Knop's solution. The treatment plants contained less than half of the amount of nitrates recorded in the control ones. Expert evaluation showed that the taste of the vegetables and leafy greens of the treatment group were not inferior to the taste of the control plants. In the second series of experiments, prior to being grown on the NaCl solution, the plants were irrigated with water for 2, 4 or 6 days. It was found that lower salt status of the plants was not favorable for increased salt accumulation in their biomass. If a human consumes 30 g salad vegetables and follows a low-sodium diet (3 g/d of table salt), it may be feasible to recycle NaCl in the BLSS using vegetables and leafy greens.

  7. Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW

    2018-03-01

    Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.

  8. Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.

    PubMed

    Kanou, Mikihito; Kameoka, Takaharu; Suehara, Ken-Ichiro; Hashimoto, Atsushi

    2017-04-01

    The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.

  9. SODIUM CHLORIDE AND SELECTIVE DIFFUSION IN LIVING ORGANISMS.

    PubMed

    Loeb, J

    1922-11-20

    1. It is shown that NaCl acts like CaCl(2) or LaCl(3) in preventing the diffusion of strong acids through the membrane of the egg of Fundulus with this difference only that a M/8 solution of NaCl acts like a M/1,000 solution of CaCl(2) and like a M/30,000 solution of LaCl(3). 2. It is shown that these salts inhibit the diffusion of non-dissociated weak acid through the membrane of the Fundulus egg but slightly if at all. 3. Both NaCl and CaCl(2) accelerate the diffusion of dissociated strong alkali through the egg membrane of Fundulus and CaCl(2) is more efficient in this respect than NaCl. 4. It is shown that in moderate concentrations NaCl accelerates the rate of diffusion of KCl through the membrane of the egg of Fundulus while CaCl(2) does not.

  10. Measuring osmosis and hemolysis of red blood cells.

    PubMed

    Goodhead, Lauren K; MacMillan, Frances M

    2017-06-01

    Since the discovery of the composition and structure of the mammalian cell membrane, biologists have had a clearer understanding of how substances enter and exit the cell's interior. The selectively permeable nature of the cell membrane allows the movement of some solutes and prevents the movement of others. This has important consequences for cell volume and the integrity of the cell and, as a result, is of utmost clinical importance, for example in the administration of isotonic intravenous infusions. The concepts of osmolarity and tonicity are often confused by students as impermeant isosmotic solutes such as NaCl are also isotonic; however, isosmotic solutes such as urea are actually hypotonic due to the permeant nature of the membrane. By placing red blood cells in solutions of differing osmolarities and tonicities, this experiment demonstrates the effects of osmosis and the resultant changes in cell volume. Using hemoglobin standard solutions, where known concentrations of hemoglobin are produced, the proportion of hemolysis and the effect of this on resultant hematocrit can be estimated. No change in cell volume occurs in isotonic NaCl, and, by placing blood cells in hypotonic NaCl, incomplete hemolysis occurs. By changing the bathing solution to either distilled water or isosmotic urea, complete hemolysis occurs due to their hypotonic effects. With the use of animal blood in this practical, students gain useful experience in handling tissue fluids and calculating dilutions and can appreciate the science behind clinical scenarios. Copyright © 2017 the American Physiological Society.

  11. Silver nanoparticles coated with natural polysaccharides as models to study AgNP aggregation kinetics using UV-Visible spectrophotometry upon discharge in complex environments.

    PubMed

    Lodeiro, Pablo; Achterberg, Eric P; Pampín, Joaquín; Affatati, Alice; El-Shahawi, Mohammed S

    2016-01-01

    This study provides quantitative information on the aggregation and dissolution behaviour of silver nanoparticles (AgNPs) upon discharge in fresh and sea waters, represented here as NaCl solutions of increasing ionic strength (up to 1M) and natural fjord waters. Natural polysaccharides, sodium alginate (ALG) and gum Arabic (GA), were used as coatings to stabilize the AgNPs and the compounds acted as models to study AgNP aggregation kinetics. The DLVO theory was used to quantitatively describe the interactions between the AgNPs. The stability of AgNPs was established using UV-Visible spectrophotometry, including unique information collected during the first seconds of the aggregaton process. Alginate coating resulted in a moderate stabilization of AgNPs in terms of critical coagulation concentration (~82mM NaCl) and a low dissolution of <10% total Ag in NaCl solutions up to 1M. Gum Arabic coated AgNPs were more strongly stabilized, with ~7-30% size increase up to 77mM NaCl, but only when the silver ion content initially present in solution was low (<10% total Ag). The ALG and GA coated AgNPs showed a strongly enhanced stability in natural fjord waters (ca. 5h required to reduce the area of the surface plasmon resonance band (SPRB) by two fold) compared with NaCl at an equivalent ionic strength (1-2min period for a two fold SPRB reduction). This is ascribed to a stabilizing effect from dissolved organic matter present in natural fjord waters. Interestingly, for AgNP-GA solutions with 40% of total silver present as unreacted silver ions in the NP stock solution, fast aggregation kinetics were observed in NaCl solutions (SPRB area was reduced by ca. 50% within 40-150min), with even more rapid removal in fjord waters, attributed to the high amount of silver-chloride charged species, that interact with the NP coating and/or organic matter and reduce the NPs stabilization. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effect of electrolytes on bubble coalescence in columns observed with visualization techniques.

    PubMed

    Aguilera, María Eugenia; Ojeda, Antonieta; Rondón, Carolina; López De Ramos, Aura

    2002-10-01

    Bubble coalescence and the effect of electrolytes on this phenomenon have been previously studied. This interfacial phenomenon has attracted attention for reactor design/operation and enhanced oil recovery. Predicting bubble coalescence may help prevent low yields in reactors and predict crude oil recovery. Because of the importance of bubble coalescence, the objectives of this work were to improve the accuracy of measuring the percentage of coalescing bubbles and to observe the interfacial gas-liquid behavior. An experimental setup was designed and constructed. Bubble interactions were monitored with a visualization setup. The percentage of air bubble coalescence was 100% in distilled water, about 50% in 0.1 M sodium chloride (NaCl) aqueous solution, and 0% in 0.145 M NaCl aqueous solution. A reduction of the contact gas-liquid area was observed in distillate water. The volume of the resulting bubble was the sum of the original bubble volumes. Repulsion of bubbles was observed in NaCl solutions exceeding 0.07 M. The percentage of bubble coalescence diminishes as the concentration of NaCl chloride increases. High-speed video recording is an accurate technique to measure the percentage of bubble coalescence, and represents an important advance in gas-liquid interfacial studies.

  13. Magnesite Solubility at 800 ºC, 10 kbar, in H2O-CO2± NaCl solutions: implications for carbon transport in the mantle

    NASA Astrophysics Data System (ADS)

    Fineman, D.; Manning, C. E.

    2017-12-01

    Magnesite (MgCO3) is an important carbon reservoir in the upper mantle. It can be a product of interaction with mantle fluids, but its solubility has not been determined at high P and T. We measured magnesite solubility at 800 ºC, 10 kbar, in H2O-CO2± NaCl solutions. The NaCl mole fraction (XNaCl) ranged from 0 to 0.4. XCO2 = 0.05 was fixed by addition of hydrous oxalic acid and low fH2 generated by hematite or Mn oxide sealed in inner Pt capsules, added along with a crimped Pt capsule containing pure natural magnesite crystals to a larger Pt capsule containing H2O-CO2± NaCl fluid. Solubility was determined after quenching by the weight loss of the capsule containing magnesite. Magnesite solubility in pure water is 0.02 molal, nearly the same as calcite, 0.025 molal. Solubility rises to 0.37 molal with addition of NaCl to XNaCl =0.3. This value is 1/3 that of calcite at the same XNaCl. Graphite precipitated in experiments at XNaCl > 0.3 and resulted in inconsistent solubility measurements. There are two probable causes: (1) reduction of H2O activity and increase in CO2 activity via NaCl addition, or (2) exhaustion of the fO2 buffer. The experiments demonstrate that transport of Mg+2 and carbonate are substantially increased by saline solutions in the mantle.

  14. Electrodialyse inverse. Etude de l'energie electrique obtenue a partir de deux solutions de salinites differentes

    NASA Astrophysics Data System (ADS)

    Audinos, R.

    It is possible to obtain, in the form of electric power, the energy of mixing of two solutions of different salinity by reverse electrodialysis. The laboratory electrodialyzer used was fitted in turn with two different pairs of permselective membranes, AMV-CMV and ARP-CRP. Solutions of ZnSO 4 (216/18.8, 201/34.6, 110/40.2 and 127/14.2 g/l) and of NACl (245/13 and 250/1 g/l) were used in batch recirculation. Only NACl solutions (294/1, 295/1 and 150/1 g/l) were used in continuous flow operation. Results show the influence of type of membrane, composition and concentration of solutions and type of electrode. The maximum power obtained is 400 mW/m 2.

  15. [Computer modeling the hydrostatic pressure characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].

    PubMed

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Rogal, Mirosława; Slezak, Andrzej

    2006-01-01

    On the basis of model equation depending the membrane potential deltapsis, on mechanical pressure difference (deltaP), concentration polarization coefficient (zetas), concentration Rayleigh number (RC) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics deltapsis = f(deltaP)zetas,RC,Ch/Cl for steady values of zetas, RC and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, RC and zetas.

  16. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant.

    PubMed

    Zhang, Wei; Zhou, Zhen; An, Ying; Du, Silu; Ruan, Danian; Zhao, Chengyue; Ren, Ning; Tian, Xiaoce

    2017-07-01

    Simultaneous zeolites regeneration and nitrogen removal were investigated by using a mixed solution of NaClO and NaCl (NaClO-NaCl solution), and effects of the regenerant on ammonium removal performance and textural properties of zeolites were analyzed by long-term adsorption and regeneration operations. Mixed NaClO-NaCl solution removed more NH 4 + exchanged on zeolites and converted more of them to nitrogen than using NaClO or NaCl solution alone. Response surface methodological analysis indicated that molar ratio of hypochlorite and nitrogen (ClO - /N), NaCl concentration and pH value all had significant effects on zeolites regeneration and NH 4 + conversion to nitrogen, and the optimum condition was obtained at ClO - /N of 1.75, NaCl concentration of 20 g/L and pH of 10.0. Zeolites regenerated by mixed NaClO-NaCl solution showed higher ammonium adsorption rate and lower capacity than unused zeolites. Zeolites and the regeneration solution were both effective even after 20 cycles of use. Composition and morphological analysis revealed that the main mineral species and surface morphology of zeolites before and after NaClO-NaCl regeneration were unchanged. Textural analysis indicated that NaClO-NaCl regeneration leads to an increased surface area of zeolites, especially the microporosity. The results indicated that NaClO-NaCl regeneration is an attractive method to achieve sustainable removal of nitrogen from wastewater through zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Representation of sweet and salty taste intensity in the brain.

    PubMed

    Spetter, M S; Smeets, P A M; de Graaf, C; Viergever, M A

    2010-11-01

    The intensity of the taste of a food is affected mostly by the amount of sugars (mono- and disaccharides) or salt it contains. To season savory-tasting foods mainly table salt (NaCl) is used and to sweeten foods, sugars like sucrose are used. Foods with highly intense tastes are consumed in smaller amounts. The optimal taste intensity of a food is the intensity at which it is perceived as most pleasant. When taste intensity decreases or increases from optimal, the pleasantness of a food decreases. Here, we investigated the brain representation of sweet and salty taste intensity using functional magnetic resonance imaging. Fifteen subjects visited twice and tasted a range of 4 watery solutions (0-1 M) of either sucrose or NaCl in water. Middle insula activation increased with increasing concentration for both NaCl and sucrose. Despite similar subjective intensity ratings, anterior insula activation by NaCl increased more with concentration than that by sucrose. Amygdala activation increased with increasing NaCl concentration but not sucrose concentration. In conclusion, sweet and salty taste intensity are represented in the middle insula. Amygdala activation is only modulated by saltiness. Further research will need to extrapolate these results from simple solutions to real foods.

  18. Electrochemical performances of Al-0.5Mg-0.1Sn-0.02In alloy in different solutions for Al-air battery

    NASA Astrophysics Data System (ADS)

    Jingling, Ma; Jiuba, Wen; Hongxi, Zhu; Quanan, Li

    2015-10-01

    In this research, the corrosion behavior and the electrochemical performances of Al-0.5Mg-0.1Sn-0.02In (wt.%) alloy have been investigated in 2 M NaCl, 4 M NaOH ethanol-10% water, 4 M NaOH solutions. The results show that the optimal electrochemical properties are obtained in 4 M NaOH ethanol-water solutions, and the alloy has higher anodic utilization and lower self-corrosion rate in the solutions compared to 2 M NaCl or 4 M aqueous NaOH. SEM and EIS results of the alloy are in good agreement with corrosion characteristics. By comparison with the electrochemical performance of Zn in 4 M NaOH solutions, the feasibility of using Al-0.5Mg-0.1Sn-0.02In alloy as anode material for a high power density Al-air battery in 4 M NaOH ethanol-water solutions is demonstrated.

  19. The solubility of quartz in aqueous sodium chloride solution at 350°C and 180 to 500 bars

    USGS Publications Warehouse

    Fournier, Robert O.; Rosenbauer, Robert J.; Bischoff, James L.

    1982-01-01

    The solubility of quartz in 2, 3, and 4 molal NaCl was measured at 350°C and pressures ranging from 180 to 500 bars. The molal solubility in each of the salt solutions is greater than that in pure water throughout the measured pressure range, with the ratio of solubility in NaCl solution to solubility in pure water decreasing as pressure is increased. The measured solubilities are significantly higher than solubilities calculated using a simple model in which the water activity in NaCl solutions decreases either in proportion to decreasing vapor pressure of the solution as salinity is increased or in proportion to decreasing mole fraction of water in the solvent.

  20. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum.

    PubMed

    Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M; Baskin, Carol C

    2008-01-01

    The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from 'salt steppes' in the Mediterranean region of Spain. Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 degrees C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 0.1 to 0.75 M NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by > or = 2.0 M NaCl. Elongation of radicles from salt solutions < 3.0 M resumed after seedlings were transferred to deionized water. The seed and early seedling growth stages of the life cycle of H. strobilaceum are very salt tolerant, and their physiological responses differ somewhat between the Mediterranean 'salt steppe' of Spain and the inland cold salt desert of north-west China.

  1. The 4D evolution of porosity during ongoing pressure-solution processes in NaCl using x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Macente, Alice; Fusseis, Florian; Butler, Ian; Tudisco, Erika; Hall, Stephen; Andò, Edward

    2016-04-01

    Pressure-solution creep is a common deformation mechanism in the upper crust. It represents a mass transfer via dissolution-reprecipitation that critically affects the hydraulic properties of rocks. Successful management of safe radioactive storage sites in rock-salt deposits critically depends on an accurate knowledge of the hydro-mechanical behaviour of salt deposits. Despite numerous lab experiments that have been conducted, many aspects of pressure-solution are still poorly understood. There is little knowledge about the spatio-temporal evolution of porosity and permeability during pressure-solution creep. While rates of pressure-solution creep in silicates and carbonates are slow, which makes laboratory investigations of these materials impractical, compaction experiments have demonstrated that NaCl samples deform sufficiently fast to study pressure-solution creep in a lab environment at room temperature and modest loads. We present results from novel experiments that quantify the 4-dimensional (three spatial dimensions plus time) evolution of pressure-solution processes using in-situ x-ray microtomography. Our experiments are performed in custom made x-ray transparent presses. 5 mm diameter NaCl powder samples with a grain size of 250-300 μm are loaded dry into the press and pre-compacted to produce a starting aggregated material. The sample is then flooded with saturated NaCl solution and loaded uniaxially by means of a pneumatic actuator to a constant uniaxial stress. Different sample mixtures were tested, as well as different uniaxial loads. The resulting deformation of the samples is documented in 3-dimensional microtomographic datasets, acquired at regular time intervals. Image analysis allowed characterization of the microstructural evolution of the NaCl grains and the spatio-temporal distribution of porosity during ongoing mechanical and chemical compaction. The microtomography data have also been analysed with 3D Digital Image Correlation (3D-DIC or DVC) to quantify the fields of displacements in each direction, as well as volumetric and maximum shear strain fields. Following the approach described above, we have been able to quantify and characterize in 4D the evolution of pressure-solution creep and porosity distribution in relation to different sample materials and increasing uniaxial load. The presence of phyllosilicates (biotite) and more competent materials (glass beads) allowed pressure-solution to develop in a much shorter time compared to pure halite sample. The same trend is observed in samples experiencing bigger uniaxial loads (6.6 MPa v 1.6 MPa). We also found that, in the presence of phyllosilicates (biotite), pore size distribution clearly reflects the localisation of pressure-solution processes, as for natural stylolites. In the presence of glass beads, pressure-solution has a greater effect on the pore orientations rather than pore sizes. Our results extend the current understanding of the effect of pressure-solution creep on the mechanical and hydraulic properties of rocks, with implications for natural rock-salt, salt-based repository systems (nuclear and chemical waste storage) and salt mining.

  2. Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution.

    PubMed

    Hadzima, Branislav; Mhaede, Mansour; Pastorek, Filip

    2014-05-01

    Magnesium alloys suffer from their high reactivity in common environments. Protective layers are widely created on the surface of magnesium alloys to improve their corrosion resistance. This article evaluates the influence of a calcium-phosphate layer on the electrochemical characteristics of AZ31 magnesium alloy in 0.9 % NaCl solution. The calcium phosphate (CaP) layer was electrochemically deposited in a solution containing 0.1 M Ca(NO3)2, 0.06 M NH4H2PO4 and 10 ml l(-1) of H2O2. The formed surface layer was composed mainly of brushite [(dicalcium phosphate dihidrate (DCPD)] as proved by energy-dispersive X-ray analysis. The surface morphology was observed by scanning electron microscopy. Immersion test was performed in order to observe degradation of the calcium phosphatized surfaces. The influence of the phosphate layer on the electrochemical characteristics of AZ31, in 0.9 % NaCl solution, was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy. The obtained results were analysed by the Tafel-extrapolation method and equivalent circuits method. The results showed that the polarization resistance of the DCPD-coated surface is about 25 times higher than that of non-coated surface. The CaP electro-deposition process increased the activation energy of corrosion process.

  3. Effect of Ca(OH)2, NaCl, and Na2SO4 on the corrosion and electrochemical behavior of rebar

    NASA Astrophysics Data System (ADS)

    Jin, Zuquan; Zhao, Xia; Zhao, Tiejun; Hou, Baorong; Liu, Ying

    2017-05-01

    The corrosion of rebar in reinforced concrete in marine environments causes significant damage to structures built in ocean environments. Studies on the process and mechanism of corrosion of rebar in the presence of multiple ions may help to control damage and predict the service life of reinforced concrete structures in such environments. The effect of interactions between sulfate and chloride ions and calcium hydroxide on the electrochemical behavior of rebar are also important for evaluation of structure durability. In this work, electrochemical impedance spectroscopy (EIS) plots of rebar in Ca(OH)2 solution and cement grout, including NaCl and Na2SO4 as aggressive salts, were measured for diff erent immersion times. The results show that corrosion of rebar was controlled by the rate of charge transfer as the rebar was exposed to chloride solution. In the presence of high concentrations of sulfate ions in the electrolyte, generation and dissolution of the passive film proceeded simultaneously and corrosion was mainly controlled by the diff usion rate. When Na2SO4 and NaCl were added to Ca(OH)2 solution, the instantaneous corrosion rate decreased by a factor of 10 to 20 as a result of the higher pH of the corroding solution.

  4. Electrochemical Evaluation of Stainless Steels in Acidified Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; MacDowell, L. G.; Vinje, R. D.

    2004-01-01

    This paper presents the results of an investigation in which several 300-series stainless steels (SS): AISI S30403 SS (UNS S30403), AISI 316L SS (UNS S31603), and AISI 317L SS (LINS S31703), as well as highly-alloyed: SS 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C (UNS S44735), were evaluated using DC electrochemical techniques in three different electrolyte solutions. The solutions consisted of neutral 3.55% NaCl, 3.55% NaCl in 0.1N HCl, and 3.55% NaCl in 1.0N HCl. These solutions were chosen to simulate environments that are less, similar, and more aggressive, respectively, than the conditions at the Space Shuttle launch pads. The electrochemical test results were compared to atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the subject alloys. The electrochemical measurements for the six alloys indicated that the higher-alloyed SS 254-SMO, AL29-4C, and AL-6XN exhibited significantly higher resistance to localized corrosion than the 300-series SS. There was a correlation between the corrosion performance of the alloys during a two-year atmospheric exposure and the corrosion rates calculated from electrochemical (polarization resistance) measurements.

  5. Evaporation of NaCl solution from porous media with mixed wettability

    NASA Astrophysics Data System (ADS)

    Bergstad, Mina; Shokri, Nima

    2016-05-01

    Evaporation of saline water from porous media is ubiquitous in many processes including soil salinization, crop production, and CO2 sequestration in deep saline acquirer. It is controlled by the transport properties of porous media, atmospheric conditions, and properties of the evaporating saline solution. In the present study, the effects of mixed wettability conditions on the general dynamics of water evaporation from porous media saturated with NaCl solution were investigated. To do so, we conducted a comprehensive series of evaporation experiments using sand mixtures containing different fractions of hydrophobic grains saturated with NaCl solutions. Our results showed that increasing fraction of hydrophobic grains in the mixed wettability sand pack had minor impact on the evaporative mass losses due to the presence of salt whose precipitation patterns were significantly influenced by the mixed wettability condition. Through macroscale and microscale investigations, we found formation of patchy efflorescence in the case of mixed wettability sand pack as opposed to crusty efflorescence in the case of completely hydrophilic porous media. Furthermore, the presence of salty water and hydrophobic grains in the sand pack significantly influenced the general dynamics and morphology of the receding drying front. Our results extend the understanding of the saline water evaporation from porous media with direct applications to various hydrological and engineering processes.

  6. Variations of water's local-structure induced by solvation of NaCl

    NASA Astrophysics Data System (ADS)

    Gu, Bin; Zhang, Feng-Shou; Huang, Yu-Gai; Fang, Xia

    2010-03-01

    The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and presented quantitatively with some order parameters and visualized with 2-body and 3-body correlation functions. The results show that, after the NaCl are solvated, the translational order t of water is decreased for the suppression of the second hydration shells around H2O molecules; the tetrahedral order (q) of water is also decreased and its favorite distribution peak moves from 0.76 to 0.5. In addition, the orientational freedom k and the diffusion coefficient D of water molecules are reduced because of new formed hydrogen-bonding structures between water and solvated ions.

  7. Influence of Ionic Strength on the Deposition of Metal-Phenolic Networks.

    PubMed

    Guo, Junling; Richardson, Joseph J; Besford, Quinn A; Christofferson, Andrew J; Dai, Yunlu; Ong, Chien W; Tardy, Blaise L; Liang, Kang; Choi, Gwan H; Cui, Jiwei; Yoo, Pil J; Yarovsky, Irene; Caruso, Frank

    2017-10-10

    Metal-phenolic networks (MPNs) are a versatile class of self-assembled materials that are able to form functional thin films on various substrates with potential applications in areas including drug delivery and catalysis. Different metal ions (e.g., Fe III , Cu II ) and phenols (e.g., tannic acid, gallic acid) have been investigated for MPN film assembly; however, a mechanistic understanding of the thermodynamics governing MPN formation remains largely unexplored. To date, MPNs have been deposited at low ionic strengths (<5 mM), resulting in films with typical thicknesses of ∼10 nm, and it is still unclear how a bulk complexation reaction results in homogeneous thin films when a substrate is present. Herein we explore the influence of ionic strength (0-2 M NaCl) on the conformation of MPN precursors in solution and how this determines the final thickness and morphology of MPN films. Specifically, the film thickness increases from 10 nm in 0 M NaCl to 12 nm in 0.5 M NaCl and 15 nm in 1 M NaCl, after which the films grow rougher rather than thicker. For example, the root-mean-square roughness values of the films are constant below 1 M NaCl at 1.5 nm; in contrast, the roughness is 3 nm at 1 M NaCl and increases to 5 nm at 2 M NaCl. Small-angle X-ray scattering and molecular dynamics simulations allow for comparisons to be made with chelated metals and polyelectrolyte thin films. For example, at a higher ionic strength (2 M NaCl), sodium ions shield the galloyl groups of tannic acid, allowing them to extend away from the Fe III center and interact with other MPN complexes in solution to form thicker and rougher films. As the properties of films determine their final performance and application, the ability to tune both thickness and roughness using salts may allow for new applications of MPNs.

  8. A simple and efficient method for preparing partially purified phosvitin from egg yolk using ethanol and salts.

    PubMed

    Ko, K Y; Nam, K C; Jo, C; Lee, E J; Ahn, D U

    2011-05-01

    The objective of this study was to develop a new protocol that could be used for large-scale separation of phosvitin from egg yolk using ethanol and salts. Yolk granules, which contain phosvitin, were precipitated after diluting egg yolk with 9 volumes of distilled water. The pH of the yolk solution was adjusted to pH 4.0 to 8.0 using 6 N HCl or NaOH, and then yolk granules containing phosvitin was separated by centrifugation at 3,220 × g for 30 min. Lipids and phospholipids were removed from the insoluble yolk granules using 85% ethanol. The optimal volumes and concentration of ethanol in removing lipids from the precipitants were determined. After centrifugation, the lipid-free precipitants were homogenized with 9 volumes of ammonium sulfate [(NH(4))(2)SO(4)] or NaCl to extract phosvitin. The optimal pH and concentration of (NH(4))(2)SO(4) or NaCl for the highest recovery rate and purity for phosvitin in final solution were determined. At pH 6.0, all the phosvitin in diluted egg yolk solution was precipitated. Among the (NH(4))(2)SO(4) and NaCl conditions tested, 10% (NH(4))(2)SO(4) or 10% NaCl at pH 4.0 yielded the greatest phosvitin extraction from the lipid-free precipitants. The recovery rates of phosvitin using (NH(4))(2)SO(4) and NaCl were 72 and 97%, respectively, and their purity was approximately 85%. Salt was removed from the extract using ultrafiltration. The salt-free phosvitin solution was concentrated using ultrafiltration, the impurities were removed by centrifugation, and the resulting solution was freeze-dried. The partially purified phosvitin was suitable for human use because ethanol was the only solvent used to remove lipids, (NH(4))(2)SO(4) or NaCl was used to extract phosvitin, and ultrafiltration was used to remove salt and concentrate the extract. The developed method was simple and suitable for a large-scale preparation of partially purified phosvitin.

  9. The effect of a solid surface on the segregation and melting of salt hydrates.

    PubMed

    Zhang, Yu; Anim-Danso, Emmanuel; Dhinojwala, Ali

    2014-10-22

    Considering the importance of salt and water on earth, the crystallization of salt hydrates next to solid surfaces has important implications in physical and biological sciences. Heterogeneous nucleation is driven by surface interactions, but our understanding of hydrate formation near surfaces is limited. Here, we have studied the hydrate formation of three commonly prevalent salts, MgCl2, CaCl2, and NaCl, next to a sapphire substrate using surface sensitive infrared-visible sum frequency generation (SFG) spectroscopy. SFG spectroscopy can detect the crystallization and melting of salt hydrates at the interface by observing the changes in the intensity and the location of the cocrystallized water hydroxyl peaks (3200-3600 cm(-1)). The results indicate that the surface crystal structures of these three hydrates are similar to those in the bulk. For the NaCl solution, the brine solution is segregated next to the sapphire substrate after the formation of the ice phase. In contrast, the MgCl2 and CaCl2 surface hydrate crystals are interdispersed with nanometer-size ice crystals. The nanosize ice crystals melt at much lower temperatures than bulk ice crystals. For NaCl and MgCl2 solution, the NaCl hydrates prefer to crystallize next to the sapphire substrate instead of the ice crystals and MgCl2 hydrates.

  10. Japanese traditional miso soup attenuates salt-induced hypertension and its organ damage in Dahl salt-sensitive rats.

    PubMed

    Yoshinaga, Mariko; Toda, Natsuko; Tamura, Yuki; Terakado, Shouko; Ueno, Mai; Otsuka, Kie; Numabe, Atsushi; Kawabata, Yukari; Uehara, Yoshio

    2012-09-01

    We investigated the effects of long-term miso soup drinking on salt-induced hypertension in Dahl salt-sensitive (Dahl S) rats. Dahl S rats were divided into four groups that consumed 1) water, 2) a 0.9% NaCl solution, 3) a 1.3% sodium NaCl solution, or 4) miso soup containing 1.3% NaCl. They were followed for 8 wk. Systolic blood pressure and hypertensive organ damage were determined. Systolic blood pressure increased in an age- and dose-dependent manner in Dahl S rats drinking salt solutions. The systolic blood pressure increase was significantly less in the Dahl S rats that drank miso soup, although the ultimate cumulative salt loading was greater than that in the Dahl S rats given the 1.3% NaCl solution. This blood pressure decrease was associated with a morphologic attenuation of glomerular sclerosis in the kidney and collagen infiltration in the heart. Urinary protein excretions were less in the miso group than in the rats given the 1.3% NaCl solution. The fractional excretion of sodium was increased and that of potassium was decreased in Dahl S rats given the 1.3% NaCl solution, and these effects were reversed in rats given miso soup toward the values of the control. We found that long-term miso soup drinking attenuates the blood pressure increase in salt-induced hypertension with organ damage. This may be caused by a possible retardation of sodium absorption in the gastrointestinal tract or by the direct effects of nutrients in the miso soup from soybeans. The decrease was associated with decreases in cardiovascular and renal damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Sodium relations in desert plants: 8. Differential effects of NaCl and Na/sub 2/SO/sub 4/ on growth and composition of Atriplex hymenelytra (desert holly)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufi, S.M.; Wallace, A.

    1982-07-01

    Maximum growth over a period of 3 months of Atriplex hymenelytra (Torr.) Wats. (desert holly) in solution culture was obtained when the nutrient solution contained 5 x 10/sup -2/ N NaCl. Sodium concentratons in leaves at maximum yield was 7.88% and that of Cl was also 7.88%. In the presence of 10/sup -2/ N Na/sub 2/SO/sub 4/, there was much less growth than with 10/sup -2/ N NaCl. The highest NaCl level depressed levels of K, Ca, and Mg in leaves, stems, and roots. The highest NaCl level also decreased levels of micronutrients in many of the plants.

  12. [Computer modeling the dependences of the membrane potential for polymeric membrane separated non-homogeneous electrolyte solutions on concentration Rayleigh number].

    PubMed

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Bilewicz-Wyrozumska, Teresa; Slezak, Andrzej

    2006-01-01

    On the basis of model equation describing the membrane potential delta psi(s) on concentration Rayleigh number (R(C)), mechanical pressure difference (deltaP), concentration polarization coefficient (zeta s) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics delta psi(s) = f(Rc)(delta P, zeta s, Ch/Cl) for steady values of zeta s, R(C) and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, Rc and Zeta(s).

  13. Surface chemical properties of eutectic and frozen NaCl solutions probed by XPS and NEXAFS.

    PubMed

    Křepelová, Adéla; Huthwelker, Thomas; Bluhm, Hendrik; Ammann, Markus

    2010-12-17

    We study the surface of sodium chloride-water mixtures above, at, and below the eutectic temperature using X-ray photoelectron spectroscopy (XPS) and electron-yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NaCl frozen solutions are mimicking sea-salt deposits in ice or snow. Sea-salt particles emitted from the oceans are a major contributor to the global aerosol burden and can act as a catalyst for heterogeneous chemistry or as cloud condensation nuclei. The nature of halogen ions at ice surfaces and their influence on surface melting of ice are of significant current interest. We found that the surface of the frozen solution, depending on the temperature, consists of ice and different NaCl phases, that is, NaCl, NaCl·2H(2)O, and surface-adsorbed water.

  14. The Mechanism of Isotonic Water Transport

    PubMed Central

    Diamond, Jared M.

    1964-01-01

    The mechanism by which active solute transport causes water transport in isotonic proportions across epithelial membranes has been investigated. The principle of the experiments was to measure the osmolarity of the transported fluid when the osmolarity of the bathing solution was varied over an eightfold range by varying the NaCl concentration or by adding impermeant non-electrolytes. An in vitro preparation of rabbit gall bladder was suspended in moist oxygen without an outer bathing solution, and the pure transported fluid was collected as it dripped off the serosal surface. Under all conditions the transported fluid was found to approximate an NaCl solution isotonic to whatever bathing solution used. This finding means that the mechanism of isotonic water transport in the gall bladder is neither the double membrane effect nor co-diffusion but rather local osmosis. In other words, active NaCl transport maintains a locally high concentration of solute in some restricted space in the vicinity of the cell membrane, and water follows NaCl in response to this local osmotic gradient. An equation has been derived enabling one to calculate whether the passive water permeability of an organ is high enough to account for complete osmotic equilibration of actively transported solute. By application of this equation, water transport associated with active NaCl transport in the gall bladder cannot go through the channels for water flow under passive conditions, since these channels are grossly too impermeable. Furthermore, solute-linked water transport fails to produce the streaming potentials expected for water flow through these passive channels. Hence solute-linked water transport does not occur in the passive channels but instead involves special structures in the cell membrane, which remain to be identified. PMID:14212146

  15. Improving adhesion of seasonings to crackers with hydrocolloid solutions.

    PubMed

    Armstrong, Matthew E; Barringer, Sheryl A

    2013-11-01

    Food powders were applied on crackers that had been coated using water, oil, emulsion, sucrose, or hydrocolloid solutions. The hydrocolloids that were used include gellan gum, kappa-carrageenan, methylcellulose, gum karaya, gum tragacanth, gum arabic, guar gum, modified starch, and maltodextrin. Solutions of similar hydrophobicity to the powder gave the greatest adhesion. NaCl, barbecue (BBQ), ranch, and sour cream & onion (SC&O) seasoning showed greatest adhesion with water, cheese powder with an emulsion of 12.5% to 25% oil, and cocoa powder with oil. For NaCl, BBQ, ranch, and SC&O seasoning, hydrocolloids improved the adhesion over using water alone, with gellan gum providing the greatest adhesion. Hydrocolloid structural differences, including the presence or absence of branching, substitution of sugar units, and molecular weight affect water binding and thickening of the hydrocolloid spray that seemed to be significant factors affecting adhesion of powders to the target surface. For cheese powder, hydrocolloids were capable of replacing the oil within an emulsion while improving or maintaining the same level of adhesion, with gum arabic providing the greatest adhesion. For cocoa powder, hydrocolloid solutions were ineffective adhesives due to differences in hydrophilicity that result in insolubility. The effect of hydrocolloid concentration on adhesion was dependent both on the hydrocolloid type and the concentration that is sprayable, with 0.5% being the optimum concentration for most gums. Adhesion using sucrose solutions was determined by particle size and relative hydrophobicity. Increasing sucrose concentration decreased adhesion of smaller particles, but increased adhesion of larger particles. Adhesion of NaCl significantly increased with decreasing NaCl size using oil, water, and sucrose solutions. © 2013 Institute of Food Technologists®

  16. Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys.

    PubMed

    Muñoz, A Igual; Mischler, S

    2011-03-01

    The corrosion behaviour and the wear ranking of biomedical high carbon (HC) and low carbon (LC) CoCrMo alloys sliding against an alumina ball in four different simulated body fluids [NaCl and phosphate buffered solutions (PBS) with and without albumin] has been analyzed by tribocorrosion and electrochemical techniques. The effects of alloy and of albumin on corrosion depend on the base electrolyte: differences between LC and HC alloy were only observed in NaCl solutions but not in PBS. Albumin increased significantly corrosion of both alloys in PBS solutions while its effect in NaCl was smaller. The wear ranking of the HC and LC alloys also depends on the environment. In the present study, HC CoCrMo alloy had lower wear resistance in NaCl and PBS + albumin than the LC alloy, while no differences between both alloys were found in the other solutions. This was attributed to surface chemical effects affecting third body behaviour.

  17. Age related decreases in neural sensitivity to NaCl in SHR-SP.

    PubMed

    Osada, Kazumi; Komai, Michio; Bryant, Bruce P; Suzuki, Hitoshi; Tsunoda, Kenji; Furukawa, Yuji

    2003-03-01

    To determine whether neurophysiological taste responses of young and old rats are different, recordings were made from the whole chorda tympani nerve which innervates taste buds on the anterior tongue. SHR-SP (Stroke-Prone Spontaneously Hypertensive Rats) in two age groups were studied. Chemical stimuli included single concentrations of 250 mM NH(4)Cl, 100 mM NaCl, 100 mM KCl, 500 mM sucrose, 20 mM quinine-hydrochloride, 10 mM HCl, 10 mM monosodium glutamate (MSG), 10 mM L- glutamic acid (L-Glu) and an NaCl concentration series. The magnitude of the neural response (response ratio) was calculated by dividing the amplitude of the integrated response by the amplitude of the spontaneous activity that preceded it. Substantial neural responses to all chemicals were obtained at both ages. The responses to KCl, sucrose, quinine-hydrochloride, HCl, monosodium glutamate (MSG) and glutamic acid (Glu) did not change with age, but the response to NaCl did decrease significantly. The profile of the response/concentration function for NaCl differed with age. In particular, the responses to solutions more concentrated than 100 mM NaCl were significantly weaker in aged than in young SHR-SPs. We also observed that recovery from amiloride treatment on the tongue of SHR-SPs was faster in aged rats than in young ones, suggesting that there is some functional difference in the sodium-specific channels on the taste cell. These results suggest that aged SHR-SP may be less able than young SHR-SPs to discriminate among higher concentrations of NaCl solutions.

  18. Kinetics Study on the Effect of NaCl on the CaSO4 Dissolution Behavior

    NASA Astrophysics Data System (ADS)

    Song, Jingyao; Shi, Peiyang; Wang, Yeguang; Jiang, Maofa

    2018-01-01

    The study of the dissolution kinetics of CaSO4 is essential for the control of the dissolution and recrystallization behavior of CaSO4. In this work, the kinetic behavior of CaSO4 dissolved in NaCl solution was investigated by means of conductivity meter. The results show that with the increase of concentration of NaCl, the temperature rise and the time prolonged, the dissolution rate of dihydrate CaSO4 gradually increases, and the dissolved apparent activation energy is gradually decreased. When the NaCl concentration is 1.8%, the dissolution kinetic equation is 1-(1-α) 1/3=5.46*10-4exp (-9147/RT) t; When the NaCl concentration is 3.0%, the dissolution kinetic equation is 1-(1-α) 1/3=2.81×10-4 exp (-6753/RT)t; When the NaCl concentration is 3.6%, the dissolution kinetic equation is 1-(1-α) 1/3=3.07×l0-4exp(-6103/RT)t.

  19. Solubility of NaCl in aqueous electrolyte solutions from 10 to 100°C

    USGS Publications Warehouse

    Clynne, M.A.; Potter, R.W.; Haas, J.L.

    1981-01-01

    The solubilities of NaCl in aqueous KCl, MgCl2, CaCl2, and mixed CaCl2-KCl solutions have been determined from 10 to 100??C. The data were fit to an equation, and the equation was used to calculate values of the change in solubility of NaCl, ???[NaCl]/???T. These values are required for calculations of the rate of migration of fluids in a thermal gradient in rock salt. The data obtained here indicate that the values of ???[NaCl]/???T are 36-73% greater for solutions containing divalent ions than for the NaCl-H2O system.

  20. Tribochemical wear of single crystal aluminum in NaCl solution studied by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Cai, M.; Langford, S. C.; Dickinson, J. T.

    2011-09-01

    We report a systematic study of chemically enhanced wear of single crystal aluminum surfaces in aqueous solutions using an environmentally equipped atomic force microscope (AFM). The experiments were conducted by using a standard Si3N4 AFM tip to apply a localized force on a polished, single crystal aluminum (110) surface. Most measurements were performed in 0.5 M NaCl solution. We show the effect of applied force, number of scans, chemical solution, and temperature on the chemical-mechanical wear of aluminum on the nanometer scale. Aggressive chemical environments significantly enhance the wear of aluminum relative to scanning in dry air. Quantitative measurements show that the wear volume increases in proportion to the square root of force and the number of scans (or time). Arrhenius plots of wear volume versus temperature are consistent with an activation energy of 31 kJ/mol for scanning in 0.5 M NaCl. The wear of the AFM tip and the aluminum substrate is explained in terms of the synergistic surface chemical reactions and mechanical action of the tip. We compare these results to previous studies of AFM wear of silicate glass.

  1. Tests on the centrifugal flotation technique and its use in estimating the prevalence of Toxocara in soil samples from urban and suburban areas of Malaysia.

    PubMed

    Loh, A G; Israf, D A

    1998-03-01

    The influence of soil texture (silt, sand and laterite) and flotation solutions (saturated NaCl, sucrose, NaNO3, and ZnSO4) upon the recovery of Toxocara ova from seeded soil samples with the centrifugal flotation technique was investigated. Soil samples of different texture were artificially seeded with Toxocara spp. ova and subjected to a centrifugal flotation technique which used various flotation solutions. The results showed significant (P < 0.001) interactions between the soil types and the flotation solutions. The highest percentage of ova recovery was obtained with silty soil (34.9-100.8%) with saturated NaCl as the flotation solution (45.3-100.8%). A combination of washing of soil samples with 0.1% Tween 80, and flotation using saturated NaCl and a 30 min coverslip recovery period was used to study the prevalence of contamination of soil samples. Forty-six soil samples were collected from up to 24 public parks/playgrounds in urban areas of Petaling Jaya and suburban areas of Serdang. The prevalence of Toxocara species in the urban and suburban areas was 54.5% and 45.8% respectively.

  2. Study of palladium plating components

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Palladium deposits were prepared by electrolysis for evaluation as catalytic materials. Electrolysis was carried out in acidic solutions consisting of either 1.0 M in NaCl and 0.01 M PdCl2 or 1.0 M NaCl and 0.04 M PdCl2. It was during the preparation of the palladium deposits that unexpected observations were made that led to the request for analytical services. The analyses did not, nor were they intended to, answer all of the questions. They did, however, shed light on the nature and magnitude of some of the contaminants in the solutions and in the palladium electrodes, as well as characterize the forms of the palladium deposits. Results of analyses are grouped into solution, deposit, and electrode categories for comparison purposes.

  3. Hydroxyapatite Based 99Mo - 99Tc and 188W - 188Re Generator Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp Jr, Russ F; Monroy-Guzman, F.; Badillo, V. E.

    2006-01-01

    This paper describes studies evaluating the use of hydroxyapatite as the adsorbent material for both {sup 99}Mo-{sup 99m}Tc and {sup 188}W-{sup 188}Re generator systems. Hydroxyapatite is an insoluble solid with anion exchange properties. A study of the sorption behaviour of {sup 99}Mo, {sup 99m}Tc, {sup 188}W and {sup 188}Re on hydroxyapatite in NaCl medium was evaluated by batch experiments. The results demonstrated that while {sup 99}Mo, {sup 99m}Tc and {sup 188}Re are not adsorbed by the hydroxyapatite in NaCl solutions (Kd <5), {sup 188}W is strongly adsorbed (Kd >500). On the basis of these measurements, hydroxyapatite {sup 188}W-{sup 188}Re generatormore » systems were then constructed and eluted in NaCl solutions. The hydroxyapatite based {sup 188}W-{sup 188}Re generator performances are presented.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunkin, N F; Shkirin, A V; Burkhanov, I S

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ∼10 – 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)

  5. Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules.

    PubMed

    Endo, Satoshi; Pfennigsdorff, Andrea; Goss, Kai-Uwe

    2012-02-07

    Salting-out in aqueous NaCl solutions is relevant for the environmental behavior of organic contaminants. In this study, Setschenow (or salting-out) coefficients (K(s) [M(-1)]) for 43 diverse neutral compounds in NaCl solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The results were used to calibrate and evaluate estimation models for K(s). The molar volume of the solute correlated only moderately with K(s) (R(2) = 0.49, SD = 0.052). The polyparameter linear free energy relationship (pp-LFER) model that uses five compound descriptors resulted in a more accurate fit to our data (R(2) = 0.83, SD = 0.031). The pp-LFER analysis revealed that Na(+) and Cl(-) in aqueous solutions increase the cavity formation energy cost and the polar interaction energies toward neutral organic solutes. Accordingly, the salting-out effect increases with the size and decreases with the polarity of the solute molecule. COSMO-RS, a quantum mechanics-based fully predictive model, generally overpredicted the experimental K(s), but the predicted values were moderately correlated with the experimental values (R(2) = 0.66, SD = 0.042). Literature data (n = 93) were predicted by the calibrated pp-LFER and COSMO-RS models with root mean squared errors of 0.047 and 0.050, respectively. This study offers prediction models to estimate K(s), allowing implementation of the salting-out effect in contaminant fate models, linkage of various partition coefficients (such as air-water, sediment-water, and extraction phase-water partition coefficients) measured for fresh water and seawater, and estimation of enhancement of extraction efficiency in analytical procedures.

  6. Evaluation of 2 Purification Methods for Isolation of Human Adipose-Derived Stem Cells Based on Red Blood Cell Lysis With Ammonium Chloride and Hypotonic Sodium Chloride Solution.

    PubMed

    Li, Sheng-Hong; Liao, Xuan; Zhou, Tian-En; Xiao, Li-Ling; Chen, Yuan-Wen; Wu, Fan; Wang, Jing-Ru; Cheng, Biao; Song, Jian-Xing; Liu, Hong-Wei

    2017-01-01

    The present study was conducted to compare 2 purification methods for isolation of human adipose-derived stromal vascular fraction or stem cells (ADSCs) based on red blood cell (RBC) lysis with 155 mM ammonium chloride (NH4Cl) and hypotonic sodium chloride (NaCl) solution, and try to develop a safe, convenient, and cost-effective purification method for clinical applications. Adipose-derived stem cells and RBC were harvested from the fatty and fluid portions of liposuction aspirates, respectively. The suitable concentration of hypotonic NaCl solution on RBC lysis for purification of ADSCs was developed by RBC osmotic fragility test and flow cytometry analysis. The effects of 155 mM NH4Cl or 0.3% NaCl solution on ADSCs proliferation and RBC lysis efficiency were examined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide assay and lysis efficiency test, respectively. In addition, the adipogenic and osteogenic capabilities, phenotype and genetic stability of ADSCs were evaluated by oil red staining, alkaline phosphatase activity measurement, flow cytometry, and karyotype analysis, respectively. Sodium chloride solution in 0.3% concentration effectively removed RBCs and did not influence the survival of ADSCs in the 10-minute incubation time. The lysis efficiency did not differ significantly between 0.3% NaCl and 155 mM NH4Cl. Moreover, the adipogenic and osteogenic capabilities, surface marker expression and karyotype of the ADSCs were not affected by lysis solutions or by lysis per se. However, the proliferation capacity in the 0.3% NaCl group was superior to that in 155 mM NH4Cl group. Our data suggest that 0.3% NaCl solution is useful for isolating ADSCs from liposuction aspirate for clinical applications with safety, convenience, and cost-effect.

  7. SALT EFFECTS ON SWARMERS OF DUNALIELLA VIRIDIS TEOD

    PubMed Central

    Baas-Becking, L. G. M.

    1931-01-01

    1. Dunaliella viridis Teodoresco thrives equally well in solutions of NaCl 1 to 4 mol and pH 6 to 9. 2. The organism is sensitive to calcium and magnesium, especially in acid medium. 3. Calcium and magnesium are antagonistic. In a molar solution of NaCl the antagonistic relation Mg:Ca is 4 to 5. In a 4 molar solution of NaCl the proportion becomes many times as great (20:1). 4. Although the strains used in this investigation did not occur in sea water concentrates, the increase in the antagonistic ratio Mg:Ca in which they can live closely paralleled the changes in this ratio which take place when sea water evaporates. 5. The other organisms which occurred in the cultures each show a specific relation to Ca and Mg. 6. The size of the cells of Dunaliella does not decrease with increasing NaCl content. PMID:19872621

  8. Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS

    NASA Astrophysics Data System (ADS)

    Ushakova, S. A.; Kovaleva, N. P.; Gribovskaya, I. V.; Dolgushev, V. A.; Tikhomirova, N. A.

    The accumulation of solid and liquid wastes in manmade ecosystems presents a problem that has not been efficiently solved yet. Urine, containing NaCl, are part of these products. This is an obstacle to the creation of biological systems with a largely closed material cycling, because the amount of solid and liquid wastes in them must be reduced to a minimum. A possible solution to the problem is to select plant species capable of utilizing sufficiently high concentrations of NaCl, edible for humans, and featuring high productivity. Until recently, the life support systems have included the higher plants that were either sensitive to salinization (wheat, many of the legumes, carrot, potato, maize) or relatively salt-resistant (barley, sugar beet, spinach). Salicomia europaea, whose above-ground part is fully edible for humans, is one of the most promising candidates to be included in life support systems. It is reported in the literature that this plant is capable of accumulating up to 50% NaCl (dry basis). Besides, excessive accumulation of sodium ions should bring forth a decrease in the uptake of potassium ions and other biogenic elements. The aim of this work is to study the feasibility of using S. europaea plants in growth chambers to involve NaCl into material cycling. Plants were grown in vegetation chambers at the irradiance of 100 or 150 W/m 2 PAR (photosynthetically active radiation) and the air temperature 24 °C, by two methods. The first method was to grow the plants on substrate - peat. The peat was supplemented with either 3% NaCl (Variant 1) or 6% NaCl (Variant 2) of the oven-dry mass of the peat. The second method was to grow the plants in water culture, using the solution with a full complement of nutrients, which contained 0.0005% of NaCl, 1% or 2%. The study showed that the addition of NaCl to the substrate or to the solution resulted in the formation of more succulent plants, which considerably increased their biomass. The amount of NaCl uptake was the highest in the plants grown in water culture, 2.6 g per plant. As the sodium uptake increased, the consumption of potassium and the sum of the reduced N forms decreased twofold. The uptake of calcium and magnesium by plants decreased as the NaCl concentration increased; the smallest amounts were taken up by S. europaea grown in water culture. Salinity had practically no effect on the uptake of phosphorus and sulfur. Thus, S. europaea is a promising candidate to be included in life support systems; of special interest is further research on growing these plants in water culture.

  9. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.; Light, B.

    2014-05-01

    Salt solutions on Mars can stabilize liquid water at low temperatures by lowering the freezing point of water. The maximum equilibrium freezing-point depression possible, known as the eutectic temperature, suggests a lower temperature limit for liquid water on Mars; however, salt solutions can supercool below their eutectic before crystallization occurs. To investigate the magnitude of supercooling and its variation with salt composition and concentration, we performed slow cooling and warming experiments on pure salt solutions and saturated soil-solutions of MgSO4, MgCl2, NaCl, NaClO4, Mg(ClO4)2, and Ca(ClO4)2. By monitoring solution temperatures, we identified exothermic crystallization events and determined the composition of precipitated phases from the eutectic melting temperature. Our results indicate that supercooling is pervasive. In general, supercooling is greater in more concentrated solutions and with salts of Ca and Mg. Slowly cooled MgSO4, MgCl2, NaCl, and NaClO4 solutions investigated in this study typically supercool 5-15 °C below their eutectic temperature before crystallizing. The addition of soil to these salt solutions has a variable effect on supercooling. Relative to the pure salt solutions, supercooling decreases in MgSO4 soil-solutions, increases in MgCl2 soil-solutions, and is similar in NaCl and NaClO4 soil-solutions. Supercooling in MgSO4, MgCl2, NaCl, and NaClO4 solutions could marginally extend the duration of liquid water during relatively warm daytime temperatures in the martian summer. In contrast, we find that Mg(ClO4)2 and Ca(ClO4)2 solutions do not crystallize during slow cooling, but remain in a supercooled, liquid state until forming an amorphous glass near -120 °C. Even if soil is added to the solutions, a glass still forms during cooling. The large supercooling effect in Mg(ClO4)2 and Ca(ClO4)2 solutions has the potential to prevent water from freezing over diurnal and possibly annual cycles on Mars. Glasses are also potentially important for astrobiology because of their ability to preserve pristine cellular structures intact compared to solutions that crystallize.

  10. Corrosion fatigue crack growth behavior of titanium alloys in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipilov, S.A.

    1998-01-01

    The corrosion fatigue crack growth (FCG) behavior, the effect of applied potential on corrosion FCG rates, and the fracture surfaces of VT20 (near-{alpha}) and TS6 (near-{beta}) titanium alloys were studied. Environments were aqueous solutions of sodium chloride (NaCl), sodium hydroxide (NaOH), potassium hydroxide (KOH), ferric chloride (FeCl{sub 3}), and chromic acid (H{sub 2}CrO{sub 4}) with and without NaCl. Depending upon solution composition, corrosion FCG rates were found to be higher or lower than those in air. Cathodic polarization retarded the corrosion FCG, while anodic polarization accelerated insignificantly or almost did not influence it in most of the solutions investigated. However,more » cathodic polarization accelerated corrosion FCG in 0.6 M FeCl{sub 3} and 0.5 M to 2 M H{sub 2}CrO{sub 4} + 0.01 M to 0.1 M NaCl solutions by a dozen times when the maximum stress intensity (K{sub max}) exceeded certain critical values. When K{sub max} was lower than the critical values, the same cathodic polarization (with all other /conditions being equal) retarded corrosion FCG. Results suggested the accelerated crack growth at cathodic potentials resulted from hydrogen-induced cracking (HIC). Therefore, critical values of K{sub max}, as well as the stress intensity range ({Delta}K) were regarded as corresponding to the beginning of corrosion FCG according to a HIC mechanism and designated as K{sub HIC} and {Delta}K{sub HIC}.« less

  11. Assessing the integration of forward osmosis and anaerobic digestion for simultaneous wastewater treatment and resource recovery.

    PubMed

    Ansari, Ashley J; Hai, Faisal I; Price, William E; Ngo, Huu H; Guo, Wenshan; Nghiem, Long D

    2018-07-01

    This study assessed the performance and key challenges associated with the integration of forward osmosis (FO) and anaerobic digestion for wastewater treatment and resource recovery. Using a thin film composite polyamide FO membrane, maximising the pre-concentration factor (i.e. system water recovery) resulted in the enrichment of organics and salinity in wastewater. Biomethane potential evaluation indicated that methane production increased correspondingly with the FO pre-concentration factor due to the organic retention in the feed solution. At 90% water recovery, about 10% more methane was produced when using NaOAc compared with NaCl because of the contribution of biodegradable reverse NaOAc flux. No negative impact on anaerobic digestion was observed when wastewater was pre-concentrated ten-fold (90% water recovery) for both draw solutes. Interestingly, the unit cost of methane production using NaOAc was slightly lower than NaCl due to the lower reverse solute flux of NaOAc, although NaCl is a much cheaper chemical. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  12. The impact of sulphate and magnesium on chloride binding in Portland cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Weerdt, K., E-mail: klaartje.d.weerdt@ntnu.no; SINTEF Building and Infrastructure, Trondheim; Orsáková, D.

    2014-11-15

    The effect of magnesium and sulphate present in sea water on chloride binding in Portland cement paste was investigated. Ground well hydrated cement paste was exposed to MgCl{sub 2}, NaCl, NaCl + MgCl{sub 2}, MgSO{sub 4} + MgCl{sub 2} and artificial sea water solutions with a range of concentrations at 20 °C. Chloride binding isotherms are determined and pH of the solutions were measured. A selection of samples was examined by SEM-EDS to identify phase changes upon exposure. The experimental data were compared with calculations of a thermodynamic model. Chloride binding from sea water was similar to chloride binding formore » NaCl solutions. The magnesium content in the sea water lead to a slight decrease in pH, but this did not result in a notable increase in chloride binding. The sulphate present in sea water reduces both chloride binding in C–S–H and AFm phases, as the C–S–H incorporates more sulphates instead of chlorides, and part of the AFm phases converts to ettringite.« less

  13. A new specific ageusia: some humans cannot taste L-glutamate.

    PubMed

    Lugaz, O; Pillias, A-M; Faurion, A

    2002-02-01

    A new specific ageusia was found in human subjects for monosodium L-glutamate (MSG). Four tests were successively applied to discriminate non-tasters and hypotasters from tasters. (i) NaCl and MSG thresholds, and (ii) suprathreshold sensitivity were evaluated using the up-and-down procedure. Only 73% of 109 subjects common to both tests demonstrated a sensitivity for MSG significantly higher than their sensitivity to NaCl, and hence a specific sensitivity to L-glutamate. The remaining 27% who showed no significant difference in sensitivity to MSG and NaCl solutions were considered as putative hypotasters. (iii) Perception profiles (time-intensity) for MSG and NaCl were tested in 58 subjects and appeared significantly different in 47 tasters (81%). This technique helped in identifying among putative hypotasters of tests 1 and 2 a few tasters who perceived equal intensity for isoconcentration of NaCl and MSG but who could discriminate isomolar solutions on other cues. Thus, 19% of subjects, for whom no significant differences were found between MSG and NaCl time-intensity profiles, remained in the hypotaster group. (iv) A discrimination task including 24 triangular presentations per subject of NaCl and MSG 29 mM applied to the eight most severe hypotasters showed that two subjects at least (two of 58; 3.5%) could not discriminate between both stimuli. Moreover, these subjects probably perceived identical sensations for MSG and NaCl solutions. The six other hypotasters (10.3%) could discriminate both stimuli at the limit of significance. None of these eight subjects were able to identify the typical umami taste in 29 mM MSG.

  14. Evaluation of the effects of the solution used for electrochemical dissolution of nickel-titanium endodontic files on dentine structure, microhardness and cell viability.

    PubMed

    Amaral, C C F; Ormiga, F; Boldrini, L C; Miranda, P G; Mendonça, T A; Granjeiro, J M; Gomes, J A C P

    2018-05-15

    To evaluate the effects of the [NaF 12 g/L + NaCl 1 g/L] solution used in the electrochemical dissolution process of fractured endodontic files, as well as its NiTi-containing product, on dentine hardness, topography and human fibroblast viability. Sixty single-rooted human teeth were evaluated for dentine microhardness using the Vickers hardness test and the area and number of dentinal tubules by scanning electron microscopy. The samples were divided according to the dentine surface treatment: distilled water; 17% EDTA; [NaF 12 g/L + NaCl 1 g/L]; and 17% EDTA + [NaF 12 g/L + NaCl 1 g/L]. Thirty-six single-rooted human teeth were divided according to the irrigation protocol: Dulbecco's Modified Eagle's Medium + 10% fetal bovine serum; 5.25% NaOCl; [NaF 12 g/L + NaCl 1 g/L]; and [NaF 12 g/L + NaCl 1 g/L+NiTi]. The extracts in contact with the apical foramen were used in the MTT assay to evaluate human fibroblast viability, with dilutions of 100, 50, 25 and 12.5%. Statistical tests used were paired t-tests, one-way ANOVA, Tukey's test, Kruskal-Wallis test and Dunn's post-test. The [NaF 12 g/L + NaCl 1 g/L] solution did not modify the dentine microhardness or the average dentinal tubule area. However, the EDTA induced changes in the dentine structure and microhardness (p<0.05). The [NaF 12 g/L + NaCl 1 g/L] solution and its NiTi-containing product had lower cytotoxicity than NaOCl at dilutions of 25% and 50% (p<0.01). The [NaF 12 g/L + NaCl 1 g/L] solution did not alter dentine microhardness or damage the dentine structure. It also demonstrated lower cytotoxicity than NaOCl. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Effect of ice growth rate on the measured Workman-Reynolds freezing potential between ice and dilute NaCl solutions.

    PubMed

    Wilson, P W; Haymet, A D J

    2010-10-07

    Workman-Reynolds freezing potentials have been measured across the interface between ice and dilute NaCl solutions as a function of ice growth rate for three salt concentrations. Growth rates of up to 40 μm·s(-1) are used, and it is found that the measured voltage peaks at rates of ∼25 μm·s(-1). Our initial results indicate that the freezing potential can be used as a probe into various aspects of the DC electrical resistance of ice as a function of variables such as salt concentration.

  16. Synergic effects in the extraction of paracetamol from aqueous NaCl solution by the binary mixtures of diethyl ether and low molecular weight primary alcohols

    NASA Astrophysics Data System (ADS)

    Nikolić, G. M.; Živković, J. V.; Atanasković, D. S.; Nikolić, M. G.

    2013-12-01

    Liquid-liquid extraction of paracetamol from aqueous NaCl solutions was performed with diethyl ether, 1-propanol, 1-butanol, isobutanol, 1-pentanol, and binary mixtures diethyl ether/1-propanol, diethyl ether/1-butanol, and diethyl ether/isobutanol. Among the pure solvents investigated in this study best extraction efficacy was obtained with 1-butanol. Synergic effects in the extraction with binary mixtures was investigated and compared with some other systems used for the extraction of poorly extractable compounds. Results obtained in this study may be of both fundamental and practical importance.

  17. H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium

    NASA Astrophysics Data System (ADS)

    Aranovich, L. Y.; Newton, R. C.

    1996-10-01

    H2O activities in concentrated NaCl solutions were measured in the ranges 600° 900° C and 2 15 kbar and at NaCl concentrations up to halite saturation by depression of the brucite (Mg(OH)2) periclase (MgO) dehydration equilibrium. Experiments were made in internally heated Ar pressure apparatus at 2 and 4.2 kbar and in 1.91-cm-diameter piston-cylinder apparatus with NaCl pressure medium at 4.2, 7, 10 and 15 kbar. Fluid compositions in equilibrium with brucite and periclase were reversed to closures of less than 2 mol% by measuring weight changes after drying of punctured Pt capsules. Brucite-periclase equilibrium in the binary system was redetermined using coarsely crystalline synthetic brucite and periclase to inhibit back-reaction in quenching. These data lead to a linear expression for the standard Gibbs free energy of the brucite dehydration reaction in the experimental temperature range: ΔG° (±120J)=73418 134.95 T(K). Using this function as a baseline, the experimental dehydration points in the system MgO-H2O-NaCl lead to a simple systematic relationship of high-temperature H2O activity in NaCl solution. At low pressure and low fluid densities near 2 kbar the H2O activity is closely approximated by its mole fraction. At pressures of 10 kbar and greater, with fluid densities approaching those of condensed H2O, the H2O activity becomes nearly equal to the square of its mole fraction. Isobaric halite saturation points terminating the univariant brucite-periclase curves were determined at each experimental pressure. The five temperature-composition points in the system NaCl-H2O are in close agreement with the halite saturation curves (liquidus curves) given by existing data from differential thermal analysis to 6 kbar. Solubility of MgO in the vapor phase near halite saturation is much less than one mole percent and could not have influenced our determinations. Activity concentration relations in the experimental P-T range may be retrieved for the binary system H2O-NaCl from our brucite-periclase data and from halite liquidus data with minor extrapolation. At two kbar, solutions closely approach an ideal gas mixture, whereas at 10 kbar and above the solutions closely approximate an ideal fused salt mixture, where the activities of H2O and NaCl correspond to an ideal activity formulation. This profound pressure-induced change of state may be characterized by the activity ( a) concentration ( X) expression: a H 2O= X H 2O/(1+α X NaCl), and a NaCl=(1+α)(1+α)[ X NaCl/(1+α X NaCl)](1+α). The parameter α is determined by regression of the brucite-periclase H2O activity data: α=exp[A B/ϱH 2O ]-C P/ T, where A=4.226, B=2.9605, C=164.984, and P is in kbar, T is in Kelvins, and ϱH 2O is the density of H2O at given P and T in g/cm3. These formulas reproduce both the H2O activity data and the NaCl activity data with a standard deviation of ±0.010. The thermodynamic behavior of concentrated NaCl solutions at high temperature and pressure is thus much simpler than portrayed by extended Debye-Hückel theory. The low H2O activity at high pressures in concentrated supercritical NaCl solutions (or hydrosaline melts) indicates that such solutions should be feasible as chemically active fluids capable of coexisting with solid rocks and silicate liquids (and a CO2-rich vapor) in many processes of deep crustal and upper mantle metamorphism and metasomatism.

  18. Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes.

    PubMed Central

    Mazur, P; Rall, W F; Rigopoulos, N

    1981-01-01

    As suspensions of cells freeze, the electrolytes and other solutes in the external solution concentrate progressively, and the cells undergo osmotic dehydration if cooling is slow. The progressive concentration of solute comes about as increasing amounts of pure ice precipitate out of solution and cause the liquid-filled channels in which the cells are sequestered to dwindle in size. The consensus has been that slow freezing injury is related to the composition of the solution in these channels and not to the amount of residual liquid. The purpose of the research reported here was to test this assumption on human erythrocytes. Ordinarily, solute concentration and the amount of liquid in the unfrozen channels are inversely coupled. To vary them independently, one must vary the initial solute concentration. Two solutes were used here: NaCl and the permeating protective additive glycerol. To vary the total initial solute concentration while holding the mass ratio of glycerol to NaCl constant, we had to allow the NaCl tonicity to depart from isotonic. Specifically, human red cells were suspended in solutions with weight ratios of glycerol to NaCl of either 5.42 or 11.26, where the concentrations of NaCl were 0.6, 0.75, 1.0, 2.0, 3.0, or 4.0 times isotonic. Samples were then frozen to various subzero temperatures, which were chosen to produce various molalities of NaCl (0.24-3.30) while holding the fraction of unfrozen water constant, or conversely to produce various unfrozen fractions (0.03-0.5) while holding the molality of salt constant. (Not all combinations of these values were possible). The following general findings emerged: (a) few cells survived the freezing of greater than 90% of the extracellular water regardless of the salt concentration in the residual unfrozen portion. (b) When the fraction of frozen water was less than 75% the majority of the cells survived even when the salt concentration in the unfrozen portion exceeded 2 molal. (c) Salt concentration affected survival significantly only when the frozen fraction lay between 75 and 90%. To find a major effect on survival of the fraction of water that remains unfrozen was unexpected. It may require major modifications in how cryobiologists view solution-effect injury and its prevention. PMID:7326328

  19. Protein-Water and Protein-Buffer Interactions in the Aqueous Solution of an Intrinsically Unstructured Plant Dehydrin: NMR Intensity and DSC Aspects

    PubMed Central

    Tompa, P.; Bánki, P.; Bokor, M.; Kamasa, P.; Kovács, D.; Lasanda, G.; Tompa, K.

    2006-01-01

    Proton NMR intensity and differential scanning calorimetry measurements were carried out on an intrinsically unstructured late embryogenesis abundant protein, ERD10, the globular BSA, and various buffer solutions to characterize water and ion binding of proteins by this novel combination of experimental approaches. By quantifying the number of hydration water molecules, the results demonstrate the interaction between the protein and NaCl and between buffer and NaCl on a microscopic level. The findings overall provide direct evidence that the intrinsically unstructured ERD10 not only has a high hydration capacity but can also bind a large amount of charged solute ions. In accord, the dehydration stress function of this protein probably results from its simultaneous action of retaining water in the drying cells and preventing an adverse increase in ionic strength, thus countering deleterious effects such as protein denaturation. PMID:16798808

  20. The effect of air bubbles on rabbit blood brain barrier.

    PubMed

    Hjelde, A; Bolstad, G; Brubakk, A O

    2002-01-01

    Several investigators have claimed that the blood brain barrier (BBB) may be broken by circulating bubbles, resulting in brain tissue edema. The aim of this study was to examine the effect of air bubbles on the permeability of BBB. Three groups of 6 rabbits were infused an isoosmotic solution of NaCl w/macrodex and 1% Tween. The solution was saturated with air bubbles and infused at rates of 50-100 ml hr(-1), a total of 1.6, 3.3, or 6.6 ml in each group, respectively. Two groups, each consisting of 6 rabbits, served as controls; one was infused by a degassed isoosmotic NaCl solution and one was sham-operated. All animals were left for 30 min before they were sacrificed. Specific gravity of brain tissue samples was determined using a brombenzene/kerosene gradient column, where a decrease in specific gravity indicates local brain edema. Specific gravity was significantly lower for left (P = 0.037) and right (P = 0.012) hemisphere white matter and left (P = 0.0015) and right (P = 0.002) hemisphere gray matter for the bubble-infused animals compared to the sham-operated ones. Infusion of degassed NaCl solution alone affected white left (P= 0.011) and right (P= 0.013), but not gray matter of both hemispheres. We speculate that insufficient degassing of the fluid may cause the effect of NaCl solution on the BBB of the white matter, indicating that the vessels of the white matter are more sensitive to gas bubbles than gray matter. Increasing the number of infused bubbles had no further impact on the development of cerebral edema, indicating that a threshold value was reached already at the lowest concentration of bubbles.

  1. On the calculation of solubilities via direct coexistence simulations: Investigation of NaCl aqueous solutions and Lennard-Jones binary mixtures.

    PubMed

    Espinosa, J R; Young, J M; Jiang, H; Gupta, D; Vega, C; Sanz, E; Debenedetti, P G; Panagiotopoulos, A Z

    2016-10-21

    Direct coexistence molecular dynamics simulations of NaCl solutions and Lennard-Jones binary mixtures were performed to explore the origin of reported discrepancies between solubilities obtained by direct interfacial simulations and values obtained from the chemical potentials of the crystal and solution phases. We find that the key cause of these discrepancies is the use of crystal slabs of insufficient width to eliminate finite-size effects. We observe that for NaCl crystal slabs thicker than 4 nm (in the direction perpendicular to the interface), the same solubility values are obtained from the direct coexistence and chemical potential routes, namely, 3.7 ± 0.2 molal at T = 298.15 K and p = 1 bar for the JC-SPC/E model. Such finite-size effects are absent in the Lennard-Jones system and are likely caused by surface dipoles present in the salt crystals. We confirmed that μs-long molecular dynamics runs are required to obtain reliable solubility values from direct coexistence calculations, provided that the initial solution conditions are near the equilibrium solubility values; even longer runs are needed for equilibration of significantly different concentrations. We do not observe any effects of the exposed crystal face on the solubility values or equilibration times. For both the NaCl and Lennard-Jones systems, the use of a spherical crystallite embedded in the solution leads to significantly higher apparent solubility values relative to the flat-interface direct coexistence calculations and the chemical potential values. Our results have broad implications for the determination of solubilities of molecular models of ionic systems.

  2. [Sodium chloride 0.9%: nephrotoxic crystalloid?].

    PubMed

    Dombre, Vincent; De Seigneux, Sophie; Schiffer, Eduardo

    2016-02-03

    Sodium chloride 0.9%, often incorrectly called physiological saline, contains higher concentration of chloride compared to plasma. It is known that the administration of sodium chloride 0.9% can cause hyperchloremic metabolic acidosis in a reproducible manner. The elevated chloride concentration in 0.9% NaCl solution can also adversely affect renal perfusion. This effect is thought to be induced by hyperchloremia that causes renal artery vasoconstriction. For these reasons, the use of 0.9% NaCl solution is raising attention and some would advocate the use of a more "physiological" solution, such as balanced solutions that contain a level of chloride closer to that of plasma. Few prospective, randomized, controlled trials are available today and most were done in a perioperative setting. Some studies suggest that the chloride excess in 0.9% NaCl solution could have clinical consequences; however, this remains to be established by quality randomized controlled trials.

  3. Effect of stabilization annealing on SCC susceptibility of β-annealed Ti-6Al-4V alloy in 0.6 M NaCl solution

    NASA Astrophysics Data System (ADS)

    Jeong, Daeho; Park, Jiho; Ahn, Soojin; Sung, Hyokyung; Kwon, Yongnam; Kim, Sangshik

    2018-01-01

    The effect of stabilization annealing on the stress corrosion cracking (SCC) susceptibility of β-annealed Ti-6Al-4V (Ti64) alloy was examined in an aqueous 0.6 M NaCl solution under various applied potentials of +0.1, -0.05 and -0.1 V vs Ecorr, respectively, at a strain rate of 10 -6 s -1. The stabilization annealing substantially improved the resistance to SCC of β-annealed Ti64 alloy in 0.6 M NaCl solution under cathodic applied potentials, while the effect was marginal under an anodic applied potential. It was also noted that the areal fraction between ductile and brittle fracture of β-annealed Ti64 specimens, which were slow strain rate tested in 0.6 M NaCl solution, varied with stabilization annealing and applied potentials. The effect of stabilization annealing on the SCC behavior of β-annealed Ti64 alloy in SCC-causing environment was discussed based on the micrographic and fractographic observation.

  4. Reactions occurring during the sulfation of sodium chloride deposited on alumina substrates

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Birks, N.

    1986-01-01

    The reaction between solid NaCl and air containing 1 pct SO2 has been studied between 500 and 700 C. The reaction product, Na2SO4, forms not only on the surface of the NaCl but also on surrounding areas of the substrate due to the volatility of the NaCl at these temperatures. At the higher temperatures, the vapor pressure of NaCl is so high that the majority of the reaction product is distributed on the substrate. Above 625 C, the reaction product is a liquid solution of NaCl and Na2SO4 that exists only so long as NaCl is supplied from the original crystal source. Eventually, the liquid solidifies by constitutional solidification as the NaCl is converted to Na2SO4. While it exists, the liquid NaCl-Na2SO4 solution is shown to be highly corrosive to Al2O3 and, on a scale of Al2O3 growing on alloy HOS 875, particularly attacks the grain boundaries of the scale at preferred sites where chromium and iron oxides and sulfides rapidly develop. This is proposed as one mechanism by which NaCl deposition contributes to the initiation of low temperature hot corrosion.

  5. The Photosynthesis, Na+/K+ Homeostasis and Osmotic Adjustment of Atriplex canescens in Response to Salinity

    PubMed Central

    Pan, Ya-Qing; Guo, Huan; Wang, Suo-Min; Zhao, Bingyu; Zhang, Jin-Lin; Ma, Qing; Yin, Hong-Ju; Bao, Ai-Ke

    2016-01-01

    Atriplex canescens (fourwing saltbush) is a C4 perennial fodder shrub with excellent resistance to salinity. However, the mechanisms underlying the salt tolerance in A. canescens are poorly understood. In this study, 5-weeks-old A. canescens seedlings were treated with various concentrations of external NaCl (0–400 mM). The results showed that the growth of A. canescens seedlings was significantly stimulated by moderate salinity (100 mM NaCl) and unaffected by high salinity (200 or 400 mM NaCl). Furthermore, A. canescens seedlings showed higher photosynthetic capacity under NaCl treatments (except for 100 mM NaCl treatment) with significant increases in net photosynthetic rate and water use efficiency. Under saline conditions, the A. canescens seedlings accumulated more Na+ in either plant tissues or salt bladders, and also retained relatively constant K+ in leaf tissues and bladders by enhancing the selective transport capacity for K+ over Na+ (ST value) from stem to leaf and from leaf to bladder. External NaCl treatments on A. canescens seedlings had no adverse impact on leaf relative water content, and this resulted from lower leaf osmotic potential under the salinity conditions. The contribution of Na+ to the leaf osmotic potential (Ψs) was sharply enhanced from 2% in control plants to 49% in plants subjected to 400 mM NaCl. However, the contribution of K+ to Ψs showed a significant decrease from 34% (control) to 9% under 400 mM NaCl. Interestingly, concentrations of betaine and free proline showed significant increase in the leaves of A. canescens seedlings, these compatible solutes presented up to 12% of contribution to Ψs under high salinity. These findings suggest that, under saline environments, A. canescens is able to enhance photosynthetic capacity, increase Na+ accumulation in tissues and salt bladders, maintain relative K+ homeostasis in leaves, and use inorganic ions and compatible solutes for osmotic adjustment which may contribute to the improvement of water status in plant. PMID:27379134

  6. Reaction of Cl- ions in electrolyte solution induced electrical discharge plasma in the presence of argon fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Wahyudiono, Kanda, Hideki; Goto, Motonobu

    2017-05-01

    Active chlorine species such as chlorine molecules and hypochlorous acid have been known as high performance sanitizers. They would act more reactive on chemical and biological substances when an electrical discharge was introduced in water containing an electrolyte substance. Here, the reaction of chloride (Cl-) ions were examined by introducing of a pulsed discharge plasma in sodium chloride (NaCl) solution as an electrolyte solution at room temperature. The results show that a large electrical current generated by the pulsed discharge plasma affected the reaction of Cl- ions to result available chlorine. The reaction pathway for available chlorine production was assumed similar with the reaction pathway as electrolysis. A pulsed discharge plasma in NaCl solution in the presence of argon (Ar) fine bubbles exhibited intense emissions and high electron density compared to when no Ar fine bubbles were introduced. At these conditions, the dissociation reaction rate of water increased drastically leads to the formation of 0 atoms. As a result, the reaction of Cl- ions and the available chlorine generation were also increased.

  7. Behavior of pure gallium in water and various saline solutions.

    PubMed

    Horasawa, N; Nakajima, H; Takahashi, S; Okabe, T

    1997-12-01

    This study investigated the chemical stability of pure gallium in water and saline solutions in order to obtain fundamental knowledge about the corrosion mechanism of gallium-based alloys. A pure gallium plate (99.999%) was suspended in 50 mL of deionized water, 0.01%, 0.1% or 1% NaCl solution at 24 +/- 2 degrees C for 1, 7, or 28 days. The amounts of gallium released into the solutions were determined by atomic absorption spectrophotometry. The surfaces of the specimens were examined after immersion by x-ray diffractometry (XRD) and x-ray photoelectron spectroscopy (XPS). In the solutions containing 0.1% or more NaCl, the release of gallium ions into the solution was lowered when compared to deionized water after 28-day immersion. Gallium oxide monohydroxide was found by XRD on the specimens immersed in deionized water after 28-day immersion. XPS indicated the formation of gallium oxide/hydroxide on the specimens immersed in water or 0.01% NaCl solution. The chemical stability of pure solid gallium was strongly affected by the presence of Cl- ions in the aqueous solution.

  8. Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution

    PubMed Central

    Zhou, Aifen; Baidoo, Edward; He, Zhili; Mukhopadhyay, Aindrila; Baumohl, Jason K; Benke, Peter; Joachimiak, Marcin P; Xie, Ming; Song, Rong; Arkin, Adam P; Hazen, Terry C; Keasling, Jay D; Wall, Judy D; Stahl, David A; Zhou, Jizhong

    2013-01-01

    Desulfovibrio vulgaris Hildenborough strains with significantly increased tolerance to NaCl were obtained via experimental evolution. A NaCl-evolved strain, ES9-11, isolated from a population cultured for 1200 generations in medium amended with 100 mM NaCl, showed better tolerance to NaCl than a control strain, EC3-10, cultured for 1200 generations in parallel but without NaCl amendment in medium. To understand the NaCl adaptation mechanism in ES9-11, we analyzed the transcriptional, metabolite and phospholipid fatty acid (PLFA) profiles of strain ES9-11 with 0, 100- or 250 mM-added NaCl in medium compared with the ancestral strain and EC3-10 as controls. In all the culture conditions, increased expressions of genes involved in amino-acid synthesis and transport, energy production, cation efflux and decreased expression of flagellar assembly genes were detected in ES9-11. Consistently, increased abundances of organic solutes and decreased cell motility were observed in ES9-11. Glutamate appears to be the most important osmoprotectant in D. vulgaris under NaCl stress, whereas, other organic solutes such as glutamine, glycine and glycine betaine might contribute to NaCl tolerance under low NaCl concentration only. Unsaturation indices of PLFA significantly increased in ES9-11. Branched unsaturated PLFAs i17:1 ω9c, a17:1 ω9c and branched saturated i15:0 might have important roles in maintaining proper membrane fluidity under NaCl stress. Taken together, these data suggest that the accumulation of osmolytes, increased membrane fluidity, decreased cell motility and possibly an increased exclusion of Na+ contribute to increased NaCl tolerance in NaCl-evolved D. vulgaris. PMID:23575373

  9. Intrinsic viscosity of binary gum mixtures with xanthan gum and guar gum: Effect of NaCl, sucrose, and pH.

    PubMed

    Bak, J H; Yoo, B

    2018-05-01

    The intrinsic viscosity ([η]) values of binary gum mixtures with xanthan gum (XG) and guar gum (GG) mixed with NaCl and sucrose at different concentrations as well as in the presence of different pH levels were examined in dilute solution as a function of XG/GG mixing ratio (100/0, 75/25, 50/50, and 0/100). Experimental values of concentration (C) and relative viscosity (η rel ) or specific viscosity (η sp ) of gums in dilute solution were fitted to five models to determine [η] values of binary gum mixtures including individual gums. A [η] model (η rel =1+[η]C) of Tanglertpaibul and Rao is recommended as the best model to estimate [η] values for the binary gum mixtures with XG and GG as affected by NaCl, sucrose, and pH. Overall, the synergistic interaction of XG-GG mixtures in the presence of NaCl and sucrose showed a greatly positive variation between measured and calculated values of [η]. In contrast, the binary gum mixtures showed synergy only under an acidic condition (pH3). These results suggest that the NaCl and sucrose addition or acidic condition appears to affect the intermolecular interaction occurred between XG and GG at different gum mixing ratios. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effect of halide salts on development of surface browning on fresh-cut 'Granny Smith' (Malus × domestica Borkh) apple slices during storage at low temperature.

    PubMed

    Li, Yongxin; Wills, Ron B H; Golding, John B; Huque, Roksana

    2015-03-30

    The postharvest life of fresh-cut apple slices is limited by browning on cut surfaces. Dipping in halide salt solutions was examined for their inhibition of surface browning on 'Granny Smith' apple slices and the effects on biochemical factors associated with browning. Delay in browning by salts was greatest with chloride = phosphate > sulfate > nitrate with no difference between sodium, potassium and calcium ions. The effectiveness of sodium halides on browning was fluoride > chloride = bromide > iodide = control. Polyphenol oxidase (PPO) activity of tissue extracted from chloride- and fluoride-treated slices was not different to control but when added into the assay solution, NaF > NaCl both showed lower PPO activity at pH 3-5 compared to control buffer. The level of polyphenols in treated slices was NaF > NaCl > control. Addition of chlorogenic acid to slices enhanced browning but NaCl and NaF counteracted this effect. There was no effect of either halide salt on respiration, ethylene production, ion leakage, and antioxidant activity. Dipping apple slices in NaCl is a low cost treatment with few impediments to commercial use and could be a replacement for other anti-browning additives. The mode of action of NaCl and NaF is through decreasing PPO activity resulting in reduced oxidation of polyphenols. © 2014 Society of Chemical Industry.

  11. Calcium deprivation increases the palatability of calcium solutions in rats.

    PubMed

    McCaughey, Stuart A; Forestell, Catherine A; Tordoff, Michael G

    2005-02-15

    Calcium-deprived rats have elevated intakes of CaCl2, other calcium salts, and some non-calcium compounds. We used taste reactivity to examine the effects of calcium deprivation on the palatability of CaCl2 and other solutions. Nine male Sprague-Dawley rats were calcium-deprived by maintenance on a low-calcium diet, and eight replete rats were used as controls. All rats were videotaped during intraoral infusion of the following solutions: 30 and 300 mM CaCl2, 30 mM calcium lactate, 100 and 600 mM NaCl, 30 mM MgCl2, 1 mM quinine.HCl, 2.5 mM sodium saccharin, and deionized water. We counted individual orofacial and somatic movements elicited by the infusions and used them to calculate total ingestive and aversive scores. Relative to controls, calcium-deprived rats gave a significantly larger number of tongue protrusions and had higher total ingestive scores for CaCl2, calcium lactate, NaCl, and MgCl2. Our results suggest that CaCl2, calcium lactate, NaCl, and MgCl2 taste more palatable to rats when they are calcium-deprived than replete, and this may be responsible for the increased intake of these solutions following calcium deprivation.

  12. Effect of Immersion Time on Corrosion Behavior of Single-Phase Alloy and Nanocomposite Bismuth Telluride-Based Thermoelectrics in NaCl Solution

    NASA Astrophysics Data System (ADS)

    Keshavarz, Mohsen K.; Fattah-Alhosseini, Arash

    2018-05-01

    The corrosiveness of bismuth telluride-based thermoelectric materials (n-type single-phase alloy and a nanocomposite with MoS2 nanoinclusions), in 0.1 molar solution of sodium chloride (NaCl), was investigated. The electrochemical impedance spectroscopy curves obtained after 1, 24, 48 and 72 h immersion time revealed the enhancement of the corrosion resistance of the nanocomposite specimen in a 0.1 molar NaCl solution in comparison with the single-phase bismuth telluride-based alloys, and the passivity increased by immersion time up to 72 h. The nanocomposite sample with submicron grains provided suitable nucleation sites for passive film nucleation that led to higher protective behavior.

  13. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    NASA Astrophysics Data System (ADS)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  14. [Study of surface enhanced Raman scattering of trace trinitrotoluene based on silver colloid nanoparticles].

    PubMed

    Zhang, Chun-ling; Li, Zhe; Wu, Zheng-long; Han, De-jun

    2012-03-01

    Trinitrotoluene (TNT), a representative nitroexplosive, attracts more and more attentions because of the urgent demand for trace analysis of explosives in recent years. The present study investigated the experiment condition of the surface enhanced Raman scattering (SERS) of 10(-6) mol x L(-1) TNT solution, especially the influence of NaCl and basic hydrolysis. The results indicate that SERS spectra of TNT can not be obtained when preparing the SERS samples without NaCl, and it was also shown that the intensity of Raman peaks has a relationship with the concentration of NaCl. With the increase in the concentration of NaCl, the intensity of Raman peak at 1 392 cm(-1) has a maximum value. This report explained the reason why NaCl can affect the intensity of SERS theoretically. It was also shown that the SERS spectrum of TNT treated with basic hydrolysis is more intense than that without basic hydrolysis.

  15. Corrosion Behavior of AZ91D Magnesium Alloy in Three Different Physiological Environments

    NASA Astrophysics Data System (ADS)

    Zhou, Juncen; Li, Qing; Zhang, Haixiao; Chen, Funan

    2014-01-01

    Magnesium alloys have been considered as promising biomedical materials and were studied in different physiological environments. In this work, corrosion behavior of AZ91D magnesium alloy in artificial saliva, simulated body fluid (SBF), and 3.5 wt.% NaCl solution was investigated using electrochemical techniques and a short-term immersion test. In contrast with other physiological environments, the amount of aggressive ions in artificial saliva is small. In addition, a protective film is formed on the surface of samples in artificial saliva. Experimental results suggest that corrosion resistance of AZ91D magnesium alloy in artificial saliva is better than that in c-SBF and 3.5 wt.% NaCl solution.

  16. Surface potential of methyl isobutyl carbinol adsorption layer at the air/water interface.

    PubMed

    Phan, Chi M; Nakahara, Hiromichi; Shibata, Osamu; Moroi, Yoshikiyo; Le, Thu N; Ang, Ha M

    2012-01-26

    The surface potential (ΔV) and surface tension (γ) of MIBC (methyl isobutyl carbinol) were measured on the subphase of pure water and electrolyte solutions (NaCl at 0.02 and 2 M). In contrast to ionic surfactants, it was found that surface potential gradually increased with MIBC concentration. The ΔV curves were strongly influenced by the presence of NaCl. The available model in literature, in which surface potential is linearly proportional to surface excess, failed to describe the experimental data. Consequently, a new model, employing a partial charge of alcohol adsorption layer, was proposed. The new model predicted the experimental data consistently for MIBC in different NaCl solutions. However, the model required additional information for ionic impurity to predict adsorption in the absence of electrolyte. Such inclusion of impurities is, however, unnecessary for industrial applications. The modeling results successfully quantify the influence of electrolytes on surface potential of MIBC, which is critical for froth stability.

  17. Temperature- and pressure-dependent structural transformation of methane hydrates in salt environments

    NASA Astrophysics Data System (ADS)

    Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho

    2017-03-01

    Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.

  18. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 °C - A potentiometric and spectrophotometric study

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques

    2013-11-01

    Carbonic acid ionization and sodium bicarbonate and carbonate ion pair formation constants have been experimentally determined in dilute hydrothermal solutions to 200 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using the pH indicators, 2-napthol and 4-nitrophenol, at 25-200 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for NaHCO(aq)(K) and NaCO3-(aq)(K) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The NaHCO(aq) and NaCO3-(aq) ion pair formation constants vary between 25 and 200 °C having values of logK=-0.18 to 0.58 and logK=1.01 to 2.21, respectively. These ion pairs are weak at low-temperatures but become increasingly important with increasing temperature under neutral to alkaline conditions in moderately dilute to concentrated NaCl solutions, with NaCO3-(aq) predominating over CO32-(aq) in ⩾0.1 M NaCl solution at temperatures above 100 °C. The results demonstrate that NaCl cannot be considered as an inert (non-complexing) electrolyte in aqueous carbon dioxide containing solutions at elevated temperatures.

  19. Osmolality- and Na+ -dependent effects of hyperosmotic NaCl solution on contractile activity and Ca2+ cycling in rat ventricular myocytes.

    PubMed

    Ricardo, Rafael A; Bassani, Rosana A; Bassani, José W M

    2008-01-01

    Hypertonic NaCl solutions have been used for small-volume resuscitation from hypovolemic shock. We sought to identify osmolality- and Na(+)-dependent components of the effects of the hyperosmotic NaCl solution (85 mOsm/kg increment) on contraction and cytosolic Ca(2+) concentration ([Ca(2+)](i)) in isolated rat ventricular myocytes. The biphasic change in contraction and Ca(2+) transient amplitude (decrease followed by recovery) was accompanied by qualitatively similar changes in sarcoplasmic reticulum (SR) Ca(2+) content and fractional release and was mimicked by isosmotic, equimolar increase in extracellular [Na(+)] ([Na(+)](o)). Raising osmolality with sucrose, however, augmented systolic [Ca(2+)](i) monotonically without change in SR parameters and markedly decreased contraction amplitude and diastolic cell length. Functional SR inhibition with thapsigargin abolished hyperosmolality effects on [Ca(2+)](i). After 15-min perfusion, both hyperosmotic solutions slowed mechanical relaxation during twitches and [Ca(2+)](i) decline during caffeine-evoked transients, raised diastolic and systolic [Ca(2+)](i), and depressed systolic contractile activity. These effects were greater with sucrose solution, and were not observed after isosmotic [Na(+)](o) increase. We conclude that under the present experimental conditions, transmembrane Na(+) redistribution apparently plays an important role in determining changes in SR Ca(2+) mobilization, which markedly affect contractile response to hyperosmotic NaCl solutions and attenuate the osmotically induced depression of contractile activity.

  20. Placebo effects of a sham opioid solution: a randomized controlled study in patients with chronic low back pain.

    PubMed

    Klinger, Regine; Kothe, Ralph; Schmitz, Julia; Kamping, Sandra; Flor, Herta

    2017-10-01

    This study tested the experimental placebo effect in a group of chronic pain patients. Forty-eight patients having chronic back pain participated in a randomized clinical trial that tested the efficacy of a sham opioid solution (NaCl) compared with an alleged neutral, completely inactive solution (NaCl). We shaped the placebo effect by 2 interventions: verbal instruction and conditioning. The patients were either told that the "solution reduces pain and improves physical capacity" or the "solution is neutral, a placebo." Half of each group was additionally conditioned (coupling solution with reduced experimental pain), yielding 4 subgroups with 12 participants each. Outcome measures were as follows: the patients' clinical back pain ratings and acute pain ratings (both examined by numerical rating scale 0-10) and self-rated functional capacity (0%-100%; time required for the exercise). Expected pain relief before and after solution intake was also assessed. The inactive solution (NaCl), when presented as an effective treatment (sham "opioid" solution), induced placebo analgesia as evident in lower ratings of the patients' clinical back pain (F(3.12,144.21) = 25.05, P < 0.001), acute pain ratings (F(1.99,87.40) = 18.12, P < 0.01), and time needed to complete a series of daily activities exercises (F(1,44) = 8.51, P < 0.01) as well as increased functional capacity (F(1,44.00) = 19.42, P < 0.001). The 2 manipulations (instruction and conditioning) changed pain expectations, and they were maintained in both sham opioid groups. The results suggest that it may be clinically useful to explicitly integrate placebo analgesia responses into pain management.

  1. Corrosion and Discharge Behaviors of Al-Mg-Sn-Ga-In in Different Solutions

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yin, Xiang; Yan, Yang; Dai, Yilong; Fan, Sufeng; Qiao, Xueyan; Yu, Kun

    2016-08-01

    Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga-0.05 wt.%In and Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga alloys were prepared by melting, casting and cold rolling. Corrosion and discharge behaviors of the two experimental alloys were investigated by electrochemical measurement, self-corrosion rate measurement, air battery testing, and scanning electron microscopy. The results showed that Al-Mg-Sn-Ga-In alloy exhibited higher electrochemical activity than Al-Mg-Sn-Ga alloy in 2 M NaCl solution, while it showed lower electrochemical activity than Al-Mg-Sn-Ga alloy in 4 M NaOH solution. By comparison with the air battery based on Al-Mg-Sn-Ga alloy, the battery with Al-Mg-Sn-Ga-In alloy cannot exhibit better discharge performance in 4 M NaOH electrolyte. However, the performance of the air battery based on Al-Mg-Sn-Ga-In alloy was greatly improved due to the In-rich inclusions and the uniform corroded morphology in 2 M NaCl electrolyte. Thus, Al-Mg-Sn-Ga-In alloy was a good anode material for Al-air battery in 2 M NaCl electrolyte.

  2. Cracking characteristics of alloy 690 in thiosulfate containing chloride solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.H.; Tsai, W.T.

    1999-07-01

    The cracking characteristics of Alloy 690 in deaerated 1wt% NaCl solution with different Na{sub 2}S{sub 2}O{sub 2} concentrations, namely 0.01, 0.1, 0.2 and 0.5 M, at controlled anodic potentials was investigated by using slow strain rate testing (SSRT) with a strain rate of 1 x 10{sup {minus}6} s{sup {minus}1}. The results showed that the ultimate tensile strength and the ductility increased with increasing the concentration of Na{sub 2}S{sub 2}O{sub 3} at the same anodic potential, but decreased with increasing potential at a fixed concentration of Na{sub 2}S{sub 2}O{sub 3}. Pitting corrosion could occur on Alloy 690 in 1wt% NaCl solutionmore » with the concentration of Na{sub 2}S{sub 2}O{sub 3} {le} 0.1 M, depending on the potential. The susceptibilities of Alloy 690 to pitting corrosion and environmentally-assisted cracking in 1wt% NaCl solution were inhibited with the concentration of Na{sub 2}S{sub 2}O{sub 3} {ge} 0.2M, regardless of the potential.« less

  3. Salting out of methane by sodium chloride: A scaled particle theory study.

    PubMed

    Graziano, Giuseppe

    2008-08-28

    The salting out of methane by adding NaCl to water at 25 degrees C and 1 atm is investigated by calculating the work of cavity creation by means of scaled particle theory and the methane-solvent energy of attraction. The latter quantity changes to little extent on passing from pure water to an aqueous 4M NaCl solution, whereas the magnitude of the work of cavity creation increases significantly, accounting for the salting out effect. There is quantitative agreement between the experimental values of the hydration Gibbs energy and the calculated ones. The behavior of the work of cavity creation is due to the increase in the volume packing density of NaCl solutions, since the average effective molecular diameter does not change, being always 2.80 A. The same approach allows the rationalization of the difference in methane salting out along the alkali chloride series. These results indicate that, fixed the aqueous solution density, the solubility of nonpolar species is mainly determined by the effective diameter of solvent molecules and the corresponding volume packing density. There is no need to take into account the H-bond rearrangement because it is characterized by an almost complete enthalpy-entropy compensation.

  4. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictionsmore » also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.« less

  5. Plasma Jet Interactions with Liquids in Partial Fulfillment of an NRL Karles Fellowship

    DTIC Science & Technology

    2015-11-30

    water (DI H2O) as the reference solution, two concentrations of NaCl mixtures (0.6 Molar, and 1.0 Molar saturated NaCl), and three electroless solutions...by diffusion) to the bulk surface in net excess; that oxygen ions/radicals are being consumed from the bulk by an electrolysis path way; or that the

  6. Understanding the corrosion behavior of amorphous multiple-layer carbon coating

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Gao, Ying; Xu, Yongxian; Zhang, Renhui; Madkour, Loutfy H.; Yang, Yingchang

    2018-04-01

    The corrosion behavior of multiple-layer carbon coating that contained hydrogen, fluorine and silicon, possessed dual amorphous structure with sutured interfaces was investigated using potentiodynamic polarization and electrochemical impedances (ETS) in 3.5 wt.% NaCl solution. The coating exhibited good resistance to corrosion in 3.5 wt.% NaCl solution due to its amorphous and dense structures.

  7. Irrigation of continent catheterizable ileal pouches: tap water can replace sterile solutions because it is safe, easy, and economical.

    PubMed

    Birkhäuser, Frédéric D; Zehnder, Pascal; Roth, Beat; Schürch, Leander; Ochsner, Katharina; Willener, Rita; Thalmann, George N; Burkhard, Fiona C; Studer, Urs E

    2011-04-01

    Continent catheterizable ileal pouches require regular irrigations to reduce the risk of bacteriuria and urinary tract infections (UTIs). Our aim was to compare the UTI rate, patient friendliness, and costs of standard sterile irrigation versus irrigation with tap water. Twenty-three patients participated in a prospective randomized two-arm crossover single-center trial. Aseptic intermittent self-catheterization (ISC) combined with sterile sodium chloride (NaCl) 0.9% irrigation was compared with clean ISC and irrigation with tap water (H(2)O) during two study periods of 90 d each. Patients underwent daily pouch irrigations with NaCl 0.9% solution or tap water. Urine nitrite dipstick tests were evaluated daily; urine culture (UC) and patient friendliness were evaluated monthly. Costs were documented. A total of 3916 study days with nitrite testing and irrigation were analyzed, 1876 (48%) in the NaCl arm and 2040 (52%) in the H(2)O arm. In the NaCl arm, 418 study days (22%) with nitrite-positive dipsticks were recorded, 219 d (11%) in the H(2)O arm, significantly fewer (p=0.01). Of the 149 UCs, 96 (64%) were positive, 48 in each arm, revealing a total of 16 different germs. All patients preferred the H(2)O method. Monthly costs were up to 20 times lower in the H(2)O arm. Pouch irrigation with sterile NaCl 0.9% solution and tap water had comparable rates of positive UC. Irrigation with tap water significantly lowered the incidence of nitrite-positive study days and was substantially less costly and more patient friendly than NaCl irrigation. We therefore recommend the use of tap water (or bottled water) instead of sterile NaCl 0.9% solution for daily irrigation of continent catheterizable ileal pouches. Australian New Zealand Clinical Trials Registry, ACTRN12610000618055, http://www.ANZCTR.org.au/ACTRN12610000618055.aspx. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  8. Temperature invariance of NaCl solubility in water: inferences from salt-water cluster behavior of NaCl, KCl, and NH4Cl.

    PubMed

    Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind

    2012-09-27

    The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.

  9. Proof of principle: hydration by low-osmolar mannitol-glucose solution alleviates undesirable renal effects of an iso-osmolar contrast medium in rats.

    PubMed

    Seeliger, Erdmann; Ladwig, Mechthild; Sargsyan, Lilit; Cantow, Kathleen; Persson, Pontus B; Flemming, Bert

    2012-04-01

    Saline infusion is widely used to prevent contrast media (CM)-induced acute kidney injury, because it fosters diuresis. Osmodiuretics have a stronger diuretic effect than saline, yet previous trials indicate that osmodiuretic mannitol tends to promote rather than to prevent CM-induced acute kidney injury. However, these studies used hypertonic mannitol solutions that will result in rebound volume contraction. We hypothesize that combining the osmodiuretic effects of a nonhypertonic mannitol solution with sustained volume expansion alleviates undesirable renal effects of CM. Forty-four anesthetized rats were studied by 4 protocols. Urine flow rate, urine viscosity, and glomerular filtration rate (GFR) were measured. Intravenous infusions of hydration solutions were initiated 60 minutes before CM administration and continued throughout the observation period. Hydration by a 3.2% mannitol and 3.2% glucose solution infused at 12 mL/kg per hour (Mannit-Gluc regimen) was compared with a standard regimen of isotonic saline at 4 mL/kg per hour (NaCl regimen); greater infusion rates are required for the Mannit-Gluc regimen because of the profound diuretic effect of mannitol. Two CM were studied: iso-osmolar iodixanol (320 mg I/mL) and low-osmolar iopromide (370 mg I/mL), they were administered as 1.5-mL bolus injection into the thoracic aorta. The Mannit-Gluc regimen resulted in higher urine flow rates than the standard NaCl regimen, yet maintained a good volume status. By virtue of its stronger diuretic effect, the Mannit-Gluc regimen greatly diminished the increase in urine viscosity and completely prevented the transient decrease in GFR caused by iodixanol with the NaCl regimen. After iopromide, the differences between the hydration regimens were much less, as iopromide increased urine flow rates much more than iodixanol, thus resulting in a much smaller increase in viscosity than iodixanol and no decrease in GFR even with the NaCl regimen. This proof of principle study shows that a hydration regimen that combines the osmodiuretic effect of a low-osmolar mannitol-glucose solution with sustained volume expansion is effective in reducing high urine viscosity and preventing GFR reduction caused by iso-osmolar iodixanol. For low-osmolar CM, the beneficial effects seem negligible, because these compounds per se exert greater osmodiuretic action.

  10. Oil-in-Water Emulsion Exhibits Bitterness-Suppressing Effects in a Sensory Threshold Study.

    PubMed

    Torrico, Damir Dennis; Sae-Eaw, Amporn; Sriwattana, Sujinda; Boeneke, Charles; Prinyawiwatkul, Witoon

    2015-06-01

    Little is known about how emulsion characteristics affect saltiness/bitterness perception. Sensory detection and recognition thresholds of NaCl, caffeine, and KCl in aqueous solution compared with oil-in-water emulsion systems were evaluated. For emulsions, NaCl, KCl, or caffeine were dissolved in water + emulsifier and mixed with canola oil (20% by weight). Two emulsions were prepared: emulsion 1 (viscosity = 257 cP) and emulsion 2 (viscosity = 59 cP). The forced-choice ascending concentration series method of limits (ASTM E-679-04) was used to determine detection and/or recognition thresholds at 25 °C. Group best estimate threshold (GBET) geometric means were expressed as g/100 mL. Comparing NaCl with KCl, there were no significant differences in detection GBET values for all systems (0.0197 - 0.0354). For saltiness recognition thresholds, KCl GBET values were higher compared with NaCl GBET (0.0822 - 0.1070 compared with 0.0471 - 0.0501). For NaCl and KCl, emulsion 1 and/or emulsion 2 did not significantly affect the saltiness recognition threshold compared with that of the aqueous solution. However, the bitterness recognition thresholds of caffeine and KCl in solution were significantly lower than in the emulsions (0.0242 - 0.0586 compared with 0.0754 - 0.1025). Gender generally had a marginal effect on threshold values. This study showed that, compared with the aqueous solutions, emulsions did not significantly affect the saltiness recognition threshold of NaCl and KCl, but exhibited bitterness-suppressing effects on KCl and/or caffeine. © 2015 Institute of Food Technologists®

  11. Effect of Repair Welding on Electrochemical Corrosion and Stress Corrosion Cracking Behavior of TIG Welded AA2219 Aluminum Alloy in 3.5 Wt Pct NaCl Solution

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2010-12-01

    The stress corrosion cracking (SCC) behavior of AA2219 aluminum alloy in the as-welded (AW) and repair-welded (RW) conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using the slow strain rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both BM and welded joints. The results show that the ductility ratio ( ɛ NaCl/( ɛ air)) of the BM was close to one (0.97) and reduced to 0.9 for the AW joint. This value further reduced to 0.77 after carrying out one repair welding operation. However, the RW specimen exhibited higher ductility than the single-weld specimens even in 3.5 wt pct NaCl solution. SSRT results obtained using pre-exposed samples followed by post-test metallographic observations clearly showed localized pitting corrosion along the partially melted zone (PMZ), signifying that the reduction in ductility ratio of both the AW and RW joints was more due to mechanical overload failure, caused by the localized corrosion and a consequent reduction in specimen thickness, than due to SCC. Also, the RW joint exhibited higher ductility than the AW joint both in air and the environment, although SCC index (SI) for the former is lower than that of the latter. Fractographic examination of the failed samples, in general, revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy. Microstructural examination and polarization tests further demonstrate grain boundary melting along the PMZ, and that provided the necessary electrochemical condition for the preferential cracking on that zone of the weldment.

  12. Assessment of nickel titanium and beta titanium corrosion resistance behavior in fluoride and chloride environments.

    PubMed

    Kassab, Elisa J; Gomes, José Ponciano

    2013-09-01

    To assess the influence of fluoride concentration on the corrosion behavior of nickel titanium (NiTi) superelastic wire and to compare the corrosion resistance of NiTi with that of beta titanium alloy in physiological solution with and without addition of fluoride. NiTi corrosion resistance was investigated through electrochemical impedance spectroscopy and anodic polarization in sodium chloride (NaCl 0.15 M) with and without addition of 0.02 M sodium fluoride (NaF), and the results were compared with those associated with beta titanium. The influence of fluoride concentration on NiTi corrosion behavior was assessed in NaCl (0.15 M) with and without 0.02, 0.04, 0.05, 0.07, and 0.12 M NaF solution. Galvanic corrosion between NiTi and beta titanium were investigated. All samples were characterized by scanning electron microscopy. Polarization resistance decreased when NaF concentration was increased, and, depending on NaF concentration, NiTi can suffer localized or generalized corrosion. In NaCl solution with 0.02 M NaF, NiTi suffer localized corrosion, while beta titanium alloys remained passive. Current values near zero were observed by galvanic coupling of NiTi and beta titanium. There is a decrease in NiTi corrosion resistance in the presence of fluoride. The corrosion behavior of NiTi alloy depends on fluoride concentration. When 0.02 and 0.04 M of NaF were added to the NaCl solution, NiTi presented localized corrosion. When NaF concentration increased to 0.05, 0.07, and 0.12 M, the alloy presented general corrosion. NiTi corrosion resistance behavior is lower than that of beta titanium. Galvanic coupling of these alloys does not increase corrosion rates.

  13. Influence of Salt Stress on Growth and Frost Resistance of Three Winter Cereals

    NASA Astrophysics Data System (ADS)

    Matuszak-Slamani, Renata; Brzóstowicz, Aleksander

    2015-04-01

    This paper presents results of a study on the influence of 0-150 mmol NaCl dm-3 Hoagland solution on growth, chlorophyll content, photosynthesis and frost resistance of seedlings of three winter cereals: wheat - cv. Almari, rye - cv. Amilo, and triticale - cv. Tornado. Sodium chloride at 25 mmol dm-3 caused better growth of wheat shoots and roots, both of fresh and dry matter. Higher concentrations of NaCl in the medium decreased the biomass of the tested seedlings. The influence of NaCl on the chlorophyll content in the seedlings varied. The conductometry method showed that the resistance of the cell walls of wheat and rye to low temperature decreased in the presence of NaCl in the growth medium. Luminescence has shown that seedlings that grew in NaCl-containing medium indicated an impediment of electron flow at a lower temperature than the control plants.

  14. Study on Microstructure and Electrochemical Corrosion Behavior of PEO Coatings Formed on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xiang, N.; Song, R. G.; Li, H.; Wang, C.; Mao, Q. Z.; Xiong, Y.

    2015-12-01

    Plasma electrolytic oxidation (PEO) treated 6063 aluminum alloy was applied in a silicate- and borate-based alkaline solution. The microstructure and electrochemical corrosion behavior were studied by scanning electron microscopy, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. The results showed that the silicate-based PEO coating was of a denser structure compared with that of borate-based PEO coating. In addition, the silicate-based PEO coating was composed of more phased (Al9Si) than borate-based PEO coating. The results of corrosion test indicated that the silicate-based PEO coating provided a superior protection to 6063 aluminum alloy substrate, while borate-based PEO coating with a porous structure showed an inferior conservancy against corrosive electrolyte. Furthermore, the EIS tests proved that both coatings were capable to resist the aggressive erosion in 0.5 M NaCl solution after 72 h of immersion. However, the borate-based PEO coating could not provide sufficient protection to the substrate after 72-h immersion in 1 M NaCl solution.

  15. NaNO3/NaCl Oxidant and Polyethylene Glycol (PEG) Capped Gold Nanoparticles (AuNPs) as a Novel Green Route for AuNPs Detection in Electrochemical Biosensors.

    PubMed

    López-Marzo, Adaris M; Hoyos-de-la-Torre, Raquel; Baldrich, Eva

    2018-03-20

    Gold nanoparticles (AuNPs) have been exploited as signal-producing tags in electrochemical biosensors. However, the electrochemical detection of AuNPs is currently performed using corrosive acid solutions, which may raise health and environmental concerns. Here, oxidant salts, and specifically the environmentally friendly and occupational safe NaNO 3 /NaCl mixture, have been evaluated for the first time as potential alternatives to the acid solutions traditionally used for AuNPs electrooxidation. In addition, a new strategy to improve the sensitivity of the biosensor through PEG-based ligand exchange to produce less compact and easier to oxidize AuNPs immunoconjugates is presented too. As we show, the electrochemical immunosensor using NaNO 3 /NaCl measurement solution for AuNPs electrooxidation and detection, coupled to the employment of PEG-capped nanoimmunoconjugates, produced results comparable to classical HCl detection. The procedure developed was next tested for human matrix metallopeptidase-9 (hMMP9) analysis, exhibiting a 0.18-23 ng/mL linear range, a detection limit of 0.06 ng/mL, and recoveries between 95 and 105% in spiked human plasma. These results show that the procedure developed is applicable to the analysis of protein biomarkers in blood plasma and could contribute to the development of more environmentally friendly AuNP-based electrochemical biosensors.

  16. Probing interfacial reactions with x-ray reflectivity and x-ray reflection interface microscopy : influence of NaCl on the dissolution of orthoclase at pOH2 and 85 {degree} C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenter, P.; Lee, S. S.; Park, C.

    2010-01-01

    The role of electrolyte ions in the dissolution of orthoclase (0 0 1) in 0.01 m NaOH (pOH {approx} 2) at 84 {+-} 1 C is studied using a combination of in-situ X-ray reflectivity (XR) and ex-situ X-ray reflection interface microscopy (XRIM). The real-time XR measurements show characteristic intensity oscillations as a function of time indicative of the successive removal of individual layers. The dissolution rate in 0.01 m NaOH increases approximately linearly with increasing NaCl concentration up to 2 m NaCl. XRIM measurements of the lateral interfacial topography/structure were made for unreacted surfaces and those reacted in 0.01 mmore » NaOH/1.0 m NaCl solution for 15, 30 and 58 min. The XRIM images reveal that the dissolution reaction leads to the formation of micron-scale regions that are characterized by intrinsically lower reflectivity than the unreacted regions, and appears to be nucleated at steps and defect sites. The reflectivity signal from these reacted regions in the presence of NaCl in solution is significantly lower than that calculated from an idealized layer-by-layer dissolution process, as observed previously in 0.1 m NaOH in the absence of added electrolyte. This difference suggests that dissolved NaCl results in a higher terrace reactivity leading to a more three-dimensional process, consistent with the real-time XR measurements. These observations demonstrate the feasibility of XRIM to gain new insights into processes that control interfacial reactivity, specifically the role of electrolytes in feldspar dissolution at alkaline conditions.« less

  17. Modelling the effect of water activity reduction by sodium chloride or glycerol on conidial germination and radial growth of filamentous fungi encountered in dairy foods.

    PubMed

    Nguyen Van Long, Nicolas; Rigalma, Karim; Coroller, Louis; Dadure, Robin; Debaets, Stella; Mounier, Jérôme; Vasseur, Valérie

    2017-12-01

    Water activity (a w ) is one of the most influential abiotic factors affecting fungal development in foods. The effects of a w reduction on conidial germination and radial growth are generally studied by supplementing culture medium with the non-ionic solute glycerol despite food a w can also depend on the concentration of ionic solutes such as sodium chloride (NaCl). The present study aimed at modelling and comparing the effects of a w , either modified using NaCl or glycerol, on radial growth and/or conidial germination parameters for five fungal species occurring in the dairy environment. The estimated cardinal values were then used for growth prediction and compared to growth kinetics observed on commercial fresh cheese. Overall, as compared to glycerol, NaCl significantly increased the fungistatic effect resulting from a w reduction by extending latency and/or reducing radial growth rates of Paecilomyces niveus, Penicillium brevicompactum, Penicillium expansum and Penicillium roqueforti but not of Mucor lanceolatus. Besides, NaCl significantly reduced a w range for conidial germination and delayed median germination time of P. expansum but not of P. roqueforti. Despite these observations, cardinal a w values obtained on glycerol-medium yielded similar predictions of radial growth and germination time in commercial fresh cheese as those obtained with NaCl. Thus, it indicates that, for the studied species and a w range used for model validation, the use of NaCl instead of glycerol as a a w depressor had only limited impact for fungal behavior prediction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains

    PubMed Central

    Kim, Nam Hee

    2015-01-01

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. PMID:26637600

  19. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains.

    PubMed

    Kim, Nam Hee; Rhee, Min Suk

    2016-02-15

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. NaCl nucleation from brine in seeded simulations: Sources of uncertainty in rate estimates.

    PubMed

    Zimmermann, Nils E R; Vorselaars, Bart; Espinosa, Jorge R; Quigley, David; Smith, William R; Sanz, Eduardo; Vega, Carlos; Peters, Baron

    2018-06-14

    This work reexamines seeded simulation results for NaCl nucleation from a supersaturated aqueous solution at 298.15 K and 1 bar pressure. We present a linear regression approach for analyzing seeded simulation data that provides both nucleation rates and uncertainty estimates. Our results show that rates obtained from seeded simulations rely critically on a precise driving force for the model system. The driving force vs. solute concentration curve need not exactly reproduce that of the real system, but it should accurately describe the thermodynamic properties of the model system. We also show that rate estimates depend strongly on the nucleus size metric. We show that the rate estimates systematically increase as more stringent local order parameters are used to count members of a cluster and provide tentative suggestions for appropriate clustering criteria.

  1. Synthesis and characterization of long-CNTs by electrical arc discharge in deionized water and NaCl solution

    NASA Astrophysics Data System (ADS)

    Sari, Amir Hossein; Khazali, Arezoo; Parhizgar, Sara Sadat

    2018-02-01

    In this study, electrical arc discharge method is used for the synthesis of multi wall carbon nanotubes (CNTs). The advantages of applied setup for producing CNTs are simplicity, low-cost procedures and avoiding the multistep purification. The experiments were optimized by submerging graphite electrodes inside deionized water and various concentrations of sodium chloride solution. The purpose of this research is to investigate the effect of liquid medium on growth, size and quality of the CNTs structures. The results show that CNTs of 150 Â µm length or larger with high purity and quality without using catalyst are produced on the cathode surface. Furthermore, the quantity of CNTs is influenced by NaCl concentration. Scanning electron microscopy, Raman spectroscopy and X-ray diffraction technique were used to characterize the results.

  2. Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100

    NASA Astrophysics Data System (ADS)

    Wan, Quanhe; Quesnel, David J.

    2013-03-01

    The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.

  3. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this PhD dissertation provide insight into the evaporative behavior and pattern formation in droplets of simplified model biological fluids (aqueous lysozyme + NaCl). The patterns that form depend sensitively on the evaporation conditions, characteristic time and length scales, and the physiochemical properties of the solutions. The patterns are unique, dependent on solution chemistry, and may therefore act as a "fingerprint" in identifying fluid properties.

  4. Japanese Papilio butterflies puddle using Na+ detected by contact chemosensilla in the proboscis

    NASA Astrophysics Data System (ADS)

    Inoue, Takashi A.; Hata, Tamako; Asaoka, Kiyoshi; Ito, Tetsuo; Niihara, Kinuko; Hagiya, Hiroshi; Yokohari, Fumio

    2012-12-01

    Many butterflies acquire nutrients from non-nectar sources such as puddles. To better understand how male Papilio butterflies identify suitable sites for puddling, we used behavioral and electrophysiological methods to examine the responses of Japanese Papilio butterflies to Na+, K+, Ca2+, and Mg2+. Based on behavioral analyses, these butterflies preferred a 10-mM Na+ solution to K+, Ca2+, and Mg2+ solutions of the same concentration and among a tested range of 1 mM to 1 M NaCl. We also measured the ion concentrations of solutions sampled from puddling sites in the field. Na+ concentrations of the samples were up to 6 mM, slightly lower than that preferred by butterflies in the behavioral experiments. Butterflies that sipped the 10 mM Na+ solution from the experimental trays did not continue to puddle on the ground. Additionally, butterflies puddled at sites where the concentrations of K+, Ca2+, and/or Mg2+ were higher than that of Na+. This suggests that K+, Ca2+, and Mg2+ do not interfere with the detection of Na+ by the Papilio butterfly. Using an electrophysiological method, tip recordings, receptor neurons in contact chemosensilla inside the proboscis evoked regularly firing impulses to 1, 10, and 100 mM NaCl solutions but not to CaCl2 or MgCl2. The dose-response patterns to the NaCl solutions were different among the neurons, which were classified into three types. These results showed that Japanese Papilio butterflies puddle using Na+ detected by the contact chemosensilla in the proboscis, which measure its concentration.

  5. Osmoadaptation and osmoregulation in archaea.

    PubMed

    Roberts, M F

    2000-09-01

    The response of archaea to changes in external NaCl is reviewed and compared to what is known about osmoadaptation and osmoregulation in bacteria and eukaryotes. Cells placed in altered external NaCl exhibit short term and long term responses. The earliest events are likely to be water movement through aquaporin-like channels (efflux if external NaCl has been increased, influx into the cell if the external NaCl has been decreased) and ion movement (e.g., K+ moving in the direction opposite to water flow) through channels sensitive to osmotic pressure. Accumulation of organic solutes, either by uptake from the medium or de novo synthesis, is triggered after these initial changes. Archaea have some unique organic solutes (osmolytes) that are not used by other organisms. These as well as other more common solutes have a role in stabilizing macromolecules from denaturation. Many osmolytes are distinguished by their stability in the cell and their lack of strong interactions with cellular components. A cell may respond by accumulating one or more temporary osmolytes, then over time readjust the intracellular solute distribution to what is optimal for cell growth under the new conditions. Coupled with the movement and accumulation of solutes is the induction of stress proteins (e.g., chaperonins) and, in some cases, transcriptional regulation of key enzymes. The response to NaCl stress of Methanococcus thermolithotrophicus is presented as an example of how one particular archaeon responds and adapts to altered osmotic pressure. Clearly, the detailed response of other archaea to osmotic stress will be needed in order to identify features (aside from some of the organic osmolytes) unique to the organisms in this kingdom.

  6. Osmoadaptation and osmoregulation in archaea: update 2004.

    PubMed

    Roberts, Mary F

    2004-09-01

    The response of archaea to changes in external NaCl is reviewed and compared to what is known about osmoadaptation and osmoregulation in bacteria and eukaryotes. Cells placed in altered external NaCl exhibit short term and long term responses. The earliest events are likely to be water movement through aquaporin-like channels (efflux if external NaCl has been increased, influx into the cell if the external NaCl has been decreased) and ion movement (e.g., K+ moving in the direction opposite to water flow) through channels sensitive to osmotic pressure. A brief discussion of recent structures of homologues of these membrane proteins is presented. Accumulation of organic solutes, either by uptake from the medium or de novo synthesis, is triggered after these initial changes. Archaea have some unique organic solutes (osmolytes) that are not used by other organisms. These as well as other more common solutes have a role in stabilizing macromolecules from denaturation. Many osmolytes are distinguished by their stability in the cell and their lack of strong interactions with cellular components. A cell may respond by accumulating one or more temporary osmolytes, then over time readjust the intracellular solute distribution to what is optimal for cell growth under the new conditions. Coupled with the movement and accumulation of solutes is the induction of stress proteins (e.g., chaperonins) and, in some cases, transcriptional regulation of key enzymes. The response to NaCl stress of Methanococcus thermolithotrophicus is presented as an example of how one particular archaeon responds and adapts to altered osmotic pressure. The detailed response of many other archaea to osmotic stress will be needed in order to identify features (aside from some of the organic osmolytes) unique to the organisms in this kingdom.

  7. Safety and Efficacy of an Artificial Tear Containing 0.3% Hyaluronic Acid in the Management of Moderate-to-Severe Dry Eye Disease.

    PubMed

    López-de la Rosa, Alberto; Pinto-Fraga, José; Blázquez Arauzo, Francisco; Urbano Rodríguez, Rubén; González-García, María J

    2017-11-01

    To evaluate the safety and efficacy of a new 0.3% hyaluronic acid artificial tear compared with 0.9% saline solution (0.9% NaCl) in moderate-to-severe dry eye patients after 1 month's use. A total of 16 patients with moderate-to-severe dry eye were included in this crossover study. After a 1-week washout period, patients used the experimental (Visaid 0.3%) or control solution (0.9% NaCl), selected randomly, applying three to eight drops daily for a month. After another washout period, patients used the other solution in the same way. Percentage of change (ΔY) was calculated and analyzed for (1) safety variables: visual acuity, intraocular pressure, and ophthalmoscopy evaluation; (2) efficacy variable: Ocular Surface Disease Index (OSDI) questionnaire; and (3) secondary variables: biomicroscopy findings, fluorescein corneal staining, lissamine green conjunctival staining, tear breakup time (TBUT), contrast sensitivity, Schirmer test, and subject satisfaction. There were no significant differences in the safety parameters for either solution. After using Visaid 0.3%, patients showed significant improvements in OSDI score (ΔY: -9.66%±10.90), tarsal hyperemia (ΔY: -16.67%±27.89), corneal staining extension (ΔY: -34.90%±42.41), TBUT (ΔY: 13.98%±26.19), and subjective satisfaction (ΔY: 38.06%±47.06). When using 0.9% NaCl, Schirmer test results were significantly worse (ΔY: -11.47%±19.27). A significant difference between the 2 solutions was found in TBUT (ΔY: 13.98%±26.19 vs. 10.15%±42.34, respectively; P=0.0214). Visaid 0.3% is a safe product with some benefits over 0.9% NaCl in reducing ocular symptoms and improving some ocular signs in patients with moderate-to-severe dry eye.

  8. A New Attempt at Alkaline Texturization of Monocrystaline Silicon with Anionic Surfactant as the Additive

    NASA Astrophysics Data System (ADS)

    Li, Hailing; Wang, Wenjing; Zhao, Lei; Zhou, Chunlan; Diao, Hongwei

    2012-10-01

    Owing to the volatilization of isopropanol (IPA), instability in the alkaline texturization of monocrystalline silicon has been a big problem for a long time. Many additives were adapted to replace IPA, such as high boiling point alcohols. In this experiment, as a new attempt, sodium lauryl sulfate (SDS), a type of anionic surfactant, was used as the additive in NaOH solution. The etching properties of silicon in 2 wt % NaOH/15-30 mg/L SDS solution were analyzed. To improve the wettability of silicon, two types of metal salt, NaCl and Na2CO3 with concentration from 2 to 15 wt %, were applied to the 2 wt % NaOH/15 mg/L SDS solution. The results showed that the effect of NaCl was better than that of Na2CO3. Finally, the role of the additive was discussed.

  9. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  10. High throughput determination of cleaning solutions to prevent the fouling of an anion exchange resin.

    PubMed

    Elich, Thomas; Iskra, Timothy; Daniels, William; Morrison, Christopher J

    2016-06-01

    Effective cleaning of chromatography resin is required to prevent fouling and maximize the number of processing cycles which can be achieved. Optimization of resin cleaning procedures, however, can lead to prohibitive material, labor, and time requirements, even when using milliliter scale chromatography columns. In this work, high throughput (HT) techniques were used to evaluate cleaning agents for a monoclonal antibody (mAb) polishing step utilizing Fractogel(®) EMD TMAE HiCap (M) anion exchange (AEX) resin. For this particular mAb feed stream, the AEX resin could not be fully restored with traditional NaCl and NaOH cleaning solutions, resulting in a loss of impurity capacity with resin cycling. Miniaturized microliter scale chromatography columns and an automated liquid handling system (LHS) were employed to evaluate various experimental cleaning conditions. Cleaning agents were monitored for their ability to maintain resin impurity capacity over multiple processing cycles by analyzing the flowthrough material for turbidity and high molecular weight (HMW) content. HT experiments indicated that a 167 mM acetic acid strip solution followed by a 0.5 M NaOH, 2 M NaCl sanitization provided approximately 90% cleaning improvement over solutions containing solely NaCl and/or NaOH. Results from the microliter scale HT experiments were confirmed in subsequent evaluations at the milliliter scale. These results identify cleaning agents which may restore resin performance for applications involving fouling species in ion exchange systems. In addition, this work demonstrates the use of miniaturized columns operated with an automated LHS for HT evaluation of chromatographic cleaning procedures, effectively decreasing material requirements while simultaneously increasing throughput. Biotechnol. Bioeng. 2016;113: 1251-1259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Characterization of a dielectric phantom for high-field magnetic resonance imaging applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Qi, E-mail: Qi.Duan@nih.gov; Duyn, Jeff H.; Gudino, Natalia

    2014-10-15

    Purpose: In this work, a generic recipe for an inexpensive and nontoxic phantom was developed within a range of biologically relevant dielectric properties from 150 MHz to 4.5 GHz. Methods: The recipe includes deionized water as the solvent, NaCl to primarily control conductivity, sucrose to primarily control permittivity, agar–agar to gel the solution and reduce heat diffusivity, and benzoic acid to preserve the gel. Two hundred and seventeen samples were prepared to cover the feasible range of NaCl and sucrose concentrations. Their dielectric properties were measured using a commercial dielectric probe and were fitted to a 3D polynomial to generatemore » a recipe describing the properties as a function of NaCl concentration, sucrose concentration, and frequency. Results: Results indicated that the intuitive linear and independent relationships between NaCl and conductivity and between sucrose and permittivity are not valid. A generic polynomial recipe was developed to characterize the complex relationship between the solutes and the resulting dielectric values and has been made publicly available as a web application. In representative mixtures developed to mimic brain and muscle tissue, less than 2% difference was observed between the predicted and measured conductivity and permittivity values. Conclusions: It is expected that the recipe will be useful for generating dielectric phantoms for general magnetic resonance imaging (MRI) coil development at high magnetic field strength, including coil safety evaluation as well as pulse sequence evaluation (including B{sub 1}{sup +} mapping, B{sub 1}{sup +} shimming, and selective excitation pulse design), and other non-MRI applications which require biologically equivalent dielectric properties.« less

  12. Effect of chlorides on solution corrosivity of methyldiethanolamine (MDEA) solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooney, P.C.; Bacon, T.R.; DuPart, M.S.

    1997-08-01

    Solution corrosivity of MDEA/water solutions containing added HCl or NaCl have been measured by weight loss coupons at 250 F and by linear polarization resistance (LPR) at 208 F using carbon steel, 304SS, 316SS and 410SS. General corrosion as well as pitting or crevice corrosion tendencies were recorded for each species. Based on these results, recommendations are made for chlorides in MDEA that minimizes corrosion in gas treating operations.

  13. Study of permeability characteristics of membranes

    NASA Technical Reports Server (NTRS)

    Spiegler, K. S.; Moore, R. J.; Leibovitz, J.; Messalem, R. M.

    1972-01-01

    A method is reported for evaluating transport experiments with membranes which is based on conservative fluxes, i.e. fluxes of quantities which do not vary across the membrane in the steady state. Conductance coefficients were calculated for the system: 0.05 N NaCl - C-103 cation-exchange membrane- 0.1 N NaCl. It is concluded that this method can be used to characterize any system of the type - solution-membrane-solution.

  14. Saltiness enhancement by the characteristic flavor of dried bonito stock.

    PubMed

    Manabe, M

    2008-08-01

    There is a pressing need for the development of ways of preparing palatable salt-reduced foods to reduce the salt intake of the Japanese population. The salt-reducing effect of the characteristic flavors other than umami of dried bonito stock, which is widely used in everyday Japanese food, was examined by sensory evaluation. In the 1st sensory evaluation, the effect was evaluated in a model solution. The saltiness of 0.80% NaCl solution was equivalent to that of 0.12% monosodium glutamate (MSG) solution containing 0.81% NaCl and dried bonito stock containing 0.68% NaCl. Saltiness enhancement could not be found when MSG solution was used, but was found with 6% dried bonito stock. The 2nd evaluation examined whether the effect was valid for 2 everyday Japanese foods--traditional Japanese clear soup (sumashi-jiru) and steamed egg custard (tamagodoufu). Although enhancement of saltiness by dried bonito stock could not be clearly demonstrated in the soup, a change in NaCl concentration within 15% did not affect the palatability of the soup. However, dried bonito stock not only enhanced the saltiness but also improved the palatability of steamed egg custard. These findings are expected to be useful for improving the palatability of salt-reduced food.

  15. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  16. Effects of starvation on the transport of Escherichia coli K12 in saturated porous media are dependent on pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Xu, S.; Walczak, J. J.; Wang, L.; Bardy, S. L.; Li, J.

    2010-12-01

    In this research, we investigate the effects of starvation on the transport of E. coli K12 in saturated porous media. Particularly, we examine the relationship between such effects and the pH and ionic strength of the electrolyte solutions that were used to suspend bacterial cells. E. coli K12 (ATCC 10798) cells were cultured using either Luria-Bertani Miller (LB-Miller) broth (10 g trypton, 5 g yeast extract and 10 g NaCl in 1 L of deionized water) or LB-Luria broth (10 g tryptone, 5 g yeast extract and 0.5 g NaCl in 1 L of deionized water). Both broths had similar pH (~7.1) but differed in ionic strength (LB-Miller: ~170 mM, LB-Luria: ~ 8 mM). The bacterial cells were then harvested and suspended using one of the following electrolyte solutions: phosphate buffered saline (PBS) (pH ~7.2; ionic strength ~170 mM), 168 mM NaCl (pH ~5.7), 5% of PBS (pH ~ 7.2; ionic strength ~ 8 mM) and 8 mM NaCl (pH ~ 5.7). Column transport experiments were performed at 0, 21 and 48 hours following cell harvesting to evaluate the change in cell mobility over time under “starvation” conditions. Our results showed that 1) starvation increased the mobility of E. coli K12 cells; 2) the most significant change in mobility occurred when bacterial cells were suspended in an electrolyte solution that had different pH and ionic strength (i.e., LB-Miller culture suspended in 8 mM NaCl and LB-Luria culture suspended in 168 mM Nacl); and 3) the change in cell mobility primarily occurred within the first 21 hours. The size of the bacterial cells was measured and the surface properties (e.g., zeta potential, hydrophobicity, cell-bound protein, LPS sugar content, outer membrane protein profiles) of the bacterial cells were characterized. We found that the measured cell surface properties could not fully explain the observed changes in cell mobility caused by starvation.

  17. Corrosion studies of DC reactive magnetron sputtered alumina coating on 304 SS

    NASA Astrophysics Data System (ADS)

    Thangaraj, Baskar; Mahadevan, Krishnan

    2017-12-01

    Aluminum oxide films on SS 304 deposited by DC reactive magnetron sputtering technique were studied with respect to the composition of the sputter gas (Ar:O2), gas pressure, substrate temperature, current etc. to achieve good insulating films with high corrosion resistance. The films were characterized by XRD and SEM techniques. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements were made under static conditions in order to evaluate the corrosion performance of the alumina-coated SS 304 for various immersion durations in 0.5 M and 1 M NaCl solution. Alumina-coated SS 304 has low corrosion value of 0.4550 and 1.1090MPY for 24 h immersion time in both solutions. The impedance plots for the alumina coated SS 304 in 1 M NaCl solution at different durations are slightly different to when compared to its immersion in 0.5 M NaCl solutions and are composed of two depressed semi circles. For the alumina coated film, the impedance spectrum decreased, when immersion time increased.

  18. Corrosion Behavior of Cu40Zn in Sulfide-Polluted 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Song, Q. N.; Xu, N.; Bao, Y. F.; Jiang, Y. F.; Gu, W.; Yang, Z.; Zheng, Y. G.; Qiao, Y. X.

    2017-10-01

    The corrosion behavior of a duplex-phase brass Cu40Zn in clean and sulfide-polluted 3.5% NaCl solutions was investigated by conducting electrochemical and gravimetric measurements. The corrosion product films were analyzed by scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The presence of sulfide shifted the corrosion potential of Cu40Zn toward a more negative value by 100 mV and increased the mass loss rate by a factor of 1.257 compared with the result in the clean solution. The corrosion product film in the clean solution was thin and compact; it mainly consisted of oxides, such as ZnO and Cu2O. By contrast, the film in the sulfide-polluted solution was thick and porous. It mainly contained sulfides and zinc hydroxide chloride (i.e., Zn5(OH)8Cl2·H2O). The presence of sulfide ions accelerated the corrosion damage of Cu40Zn by hindering the formation of protective oxides and promoting the formation of a defective film which consisted of sulfides and hydroxide chlorides.

  19. A thermodynamic model for the prediction of phase equilibria and speciation in the H 2O-CO 2-NaCl-CaCO 3-CaSO 4 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to halite saturation

    NASA Astrophysics Data System (ADS)

    Li, Jun; Duan, Zhenhao

    2011-08-01

    A thermodynamic model is developed for the calculation of both phase and speciation equilibrium in the H 2O-CO 2-NaCl-CaCO 3-CaSO 4 system from 0 to 250 °C, and from 1 to 1000 bar with NaCl concentrations up to the saturation of halite. The vapor-liquid-solid (calcite, gypsum, anhydrite and halite) equilibrium together with the chemical equilibrium of H+,Na+,Ca, CaHCO3+,Ca(OH)+,OH-,Cl-, HCO3-,HSO4-,SO42-, CO32-,CO,CaCO and CaSO 4(aq) in the aqueous liquid phase as a function of temperature, pressure and salt concentrations can be calculated with accuracy close to the experimental results. Based on this model validated from experimental data, it can be seen that temperature, pressure and salinity all have significant effects on pH, alkalinity and speciations of aqueous solutions and on the solubility of calcite, halite, anhydrite and gypsum. The solubility of anhydrite and gypsum will decrease as temperature increases (e.g. the solubility will decrease by 90% from 360 K to 460 K). The increase of pressure may increase the solubility of sulphate minerals (e.g. gypsum solubility increases by about 20-40% from vapor pressure to 600 bar). Addition of NaCl to the solution may increase mineral solubility up to about 3 molality of NaCl, adding more NaCl beyond that may slightly decrease its solubility. Dissolved CO 2 in solution may decrease the solubility of minerals. The influence of dissolved calcite on the solubility of gypsum and anhydrite can be ignored, but dissolved gypsum or anhydrite has a big influence on the calcite solubility. Online calculation is made available on www.geochem-model.org/model.

  20. Susceptibility of nitinol to localized corrosion.

    PubMed

    Pound, Bruce G

    2006-04-01

    The effect of different conditions on the susceptibility of nitinol to localized corrosion was examined using the cyclic potentiodynamic polarization technique. Tests were performed on mechanically polished (MP) and electropolished (EP) nitinol wire in 0.9 wt % NaCl and phosphate-buffered saline (PBS). A polarization curve was also obtained for an EP stent in the NaCl. Differences between the breakdown potential and the corrosion potential (E(corr)) and between the protection potential and E(corr) were used to evaluate the susceptibility to pitting corrosion and crevice corrosion, respectively. The type of solution and, particularly, the surface condition affected the resistance of nitinol to pitting corrosion. Both EP and MP nitinol were more susceptible to breakdown in the NaCl than in PBS, indicating that the NaCl provides a more severe test environment than does PBS. Electropolishing increased the breakdown resistance of nitinol in PBS and the NaCl, as found in previous studies with Hank's solution. Surface condition, however, did not have a significant effect on the repassivation behavior of nitinol, as is also the case with titanium. The EP wire and stent showed similar breakdown and repassivation behavior in the NaCl, suggesting that the nature of the EP surface was similar in both cases. (c) 2005 Wiley Periodicals, Inc.

  1. Probing the electrolyte infiltration behaviour of activated carbon supercapacitor electrodes by in situ neutron scattering using aqueous NaCl as electrolyte

    DOE PAGES

    Liu, Yiqun; Li, Chen; Liu, Cong; ...

    2018-04-24

    In situ contrast-matched neutron scattering was used to probe the electrolyte infiltration behavior of activated supercapacitor carbon electrodes using an aquoeus 1 M NaCl solution. It was found that only about 20% of the pore volume was infiltrated at chemical equilibrium. The partial infiltration can be attributed to the co-existence of hydrophilic and hydrophilic pores. As a result, the study suggests that for the achievement of optimal capacitance, supercapacitor electrodes should be evacuated before electrolyte infiltration.

  2. Probing the electrolyte infiltration behaviour of activated carbon supercapacitor electrodes by in situ neutron scattering using aqueous NaCl as electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yiqun; Li, Chen; Liu, Cong

    In situ contrast-matched neutron scattering was used to probe the electrolyte infiltration behavior of activated supercapacitor carbon electrodes using an aquoeus 1 M NaCl solution. It was found that only about 20% of the pore volume was infiltrated at chemical equilibrium. The partial infiltration can be attributed to the co-existence of hydrophilic and hydrophilic pores. As a result, the study suggests that for the achievement of optimal capacitance, supercapacitor electrodes should be evacuated before electrolyte infiltration.

  3. Ultrasonic Corrosion Fatigue Behavior of High Strength Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Ebara, R.; Yamaguchi, Y.; Kanei, D.; Yamamoto, Y.

    Ultrasonic corrosion fatigue tests were conducted for high strength austenitic stainless steels such as YUS270 and SUS304N2 in 3%NaCl aqueous solution. The reduction of giga-cycle corrosion fatigue strength of YUS270 and SUS304N2 was not observed at all, while the reduction of corrosion fatigue life was observed at higher stress amplitude. Corrosion pit was observed on corrosion fatigue crack initiation area. Striation was predominantly observed on crack propagation area in air and in 3% NaCl aqueous solution. The reduction of corrosion fatigue strength of high strength austenitic stainless steels such as YUS270 and SUS304N2 is due to the corrosion pit formation at corrosion fatigue crack initiation area. It can be concluded that the higher the ultimate tensile strength of austenitic stainless steels the higher the giga-cycle corrosion fatigue strength in 3%NaCl aqueous solution is.

  4. Where's the Water in (Salty) Ice?

    NASA Astrophysics Data System (ADS)

    Kahan, T.; Malley, P.

    2017-12-01

    Solutes can have large effects on reactivity in ice and at ice surfaces. Freeze concentration ("the salting out effect") forms liquid regions containing high solute concentrations surrounded by relatively solute-free ice. Thermodynamics can predict the fraction of ice that is liquid for a given temperature and (pre-frozen) solute concentration, as well as the solute concentration within these liquid regions, but they do not inform on the spatial distribution of the solutes and the liquid regions within the ice. This leads to significant uncertainty in predictions of reaction kinetics in ice and at ice surfaces. We have used Raman microscopy to determine the location of liquid regions within ice and at ice surface in the presence of sodium chloride (NaCl). Under most conditions, liquid channels are observed at the ice surface and throughout the ice bulk. The fraction of the ice that is liquid, as well as the widths of these channels, increases with increasing temperature. Below the eutectic temperature (-21.1 oC), no liquid is observed. Patches of NaCl.2H2O ("hydrohalite") are observed at the ice surface under these conditions. These results will improve predictions of reaction kinetics in ice and at ice surfaces.

  5. Telencephalic neural activation following passive avoidance learning in a terrestrial toad.

    PubMed

    Puddington, Martín M; Daneri, M Florencia; Papini, Mauricio R; Muzio, Rubén N

    2016-12-15

    The present study explores passive avoidance learning and its neural basis in toads (Rhinella arenarum). In Experiment 1, two groups of toads learned to move from a lighted compartment into a dark compartment. After responding, animals in the experimental condition were exposed to an 800-mM strongly hypertonic NaCl solution that leads to weight loss. Control animals received exposure to a 300-mM slightly hypertonic NaCl solution that leads to neither weight gain nor loss. After 10 daily acquisition trials, animals in the experimental group showed significantly longer latency to enter the dark compartment. Additionally, 10 daily trials in which both groups received the 300-mM NaCl solution after responding eliminated this group effect. Thus, experimental animals showed gradual acquisition and extinction of a passive avoidance respond. Experiment 2 replicated the gradual acquisition effect, but, after the last trial, animals were sacrificed and neural activation was assessed in five brain regions using AgNOR staining for nucleoli-an index of brain activity. Higher activation in the experimental animals, relative to controls, was observed in the amygdala and striatum. Group differences in two other regions, lateral pallium and septum, were borderline, but nonsignificant, whereas group differences in the medial pallium were nonsignificant. These preliminary results suggest that a striatal-amygdala activation could be a key component of the brain circuit controlling passive avoidance learning in amphibians. The results are discussed in relation to the results of analogous experiments with other vertebrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Japanese Papilio butterflies puddle using Na+ detected by contact chemosensilla in the proboscis.

    PubMed

    Inoue, Takashi A; Hata, Tamako; Asaoka, Kiyoshi; Ito, Tetsuo; Niihara, Kinuko; Hagiya, Hiroshi; Yokohari, Fumio

    2012-12-01

    Many butterflies acquire nutrients from non-nectar sources such as puddles. To better understand how male Papilio butterflies identify suitable sites for puddling, we used behavioral and electrophysiological methods to examine the responses of Japanese Papilio butterflies to Na(+), K(+), Ca(2+), and Mg(2+). Based on behavioral analyses, these butterflies preferred a 10-mM Na(+) solution to K(+), Ca(2+), and Mg(2+) solutions of the same concentration and among a tested range of 1 mM to 1 M NaCl. We also measured the ion concentrations of solutions sampled from puddling sites in the field. Na(+) concentrations of the samples were up to 6 mM, slightly lower than that preferred by butterflies in the behavioral experiments. Butterflies that sipped the 10 mM Na(+) solution from the experimental trays did not continue to puddle on the ground. Additionally, butterflies puddled at sites where the concentrations of K(+), Ca(2+), and/or Mg(2+) were higher than that of Na(+). This suggests that K(+), Ca(2+), and Mg(2+) do not interfere with the detection of Na(+) by the Papilio butterfly. Using an electrophysiological method, tip recordings, receptor neurons in contact chemosensilla inside the proboscis evoked regularly firing impulses to 1, 10, and 100 mM NaCl solutions but not to CaCl(2) or MgCl(2). The dose-response patterns to the NaCl solutions were different among the neurons, which were classified into three types. These results showed that Japanese Papilio butterflies puddle using Na(+) detected by the contact chemosensilla in the proboscis, which measure its concentration.

  7. Arginine and lysine reduce the high viscosity of serum albumin solutions for pharmaceutical injection.

    PubMed

    Inoue, Naoto; Takai, Eisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2014-05-01

    Therapeutic protein solutions for subcutaneous injection must be very highly concentrated, which increases their viscosity through protein-protein interactions. However, maintaining a solution viscosity below 50 cP is important for the preparation and injection of therapeutic protein solutions. In this study, we examined the effect of various amino acids on the solution viscosity of very highly concentrated bovine serum albumin (BSA) and human serum albumin (HSA) at a physiological pH. Among the amino acids tested, l-arginine hydrochloride (ArgHCl) and l-lysine hydrochloride (LysHCl) (50-200 mM) successfully reduced the viscosity of both BSA and HSA solutions; guanidine hydrochloride (GdnHCl), NaCl, and other sodium salts were equally as effective, indicating the electrostatic shielding effect of these additives. Fourier transform infrared spectroscopy showed that BSA is in its native state even in the presence of ArgHCl, LysHCl, and NaCl at high protein concentrations. These results indicate that weakened protein-protein interactions play a key role in reducing solution viscosity. ArgHCl and LysHCl, which are also non-toxic compounds, will be used as additives to reduce the solution viscosity of concentrated therapeutic proteins. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicatemore » that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.« less

  9. Reduction of mercury from mackerel fillet using combined solution of cysteine, EDTA, and sodium chloride.

    PubMed

    Hajeb, P; Jinap, S

    2012-06-13

    An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.

  10. Microscopic study of crystal growth in cryopreservation agent solutions and water.

    PubMed

    Tao, Le-Ren; Hua, Tse-Chao

    2002-10-01

    Ice formation inside or outside cells during cryopreservation is evidently the main factor of cryoinjury to cells. In the study described here a high voltage DC electric field and a cryomicroscopic stage were used to test DMSO and NaCl solutions under electric field strengths ranging from 83 kV/m to 320 kV/m. Dendritic ice crystals became asymmetric when the electric field was activated. This change in the ice crystal shape was more pronounced in the ionic NaCl solution. In addition, ice growth of distilled water without an electric field was tested under different cooling rates.

  11. Effect of NaCl Solution Spraying on Fatigue Lives of Smooth and Slit Specimens of 0.37% Carbon Steel

    NASA Astrophysics Data System (ADS)

    Makabe, Chobin; Ferdous, Md. Shafiul; Shimabukuro, Akimichi; Murdani, Anggit

    2017-07-01

    The fatigue crack initiation life and growth rate are affected by experimental conditions. A corrosive environment can be created in a laboratory by means of dropping salt water onto the specimen surface, spraying chloride mist into the experimental chamber, etc. In the case of smooth specimens of some metals, fatigue life is shortened and the fatigue limit disappears under such corrosive experimental conditions. In this study, the effects of intermittent spraying of 3% NaCl solution-mist on corrosion fatigue behavior were investigated. The material used was 0.37% carbon steel. This is called JIS S35C in Japan. Spraying of 3% NaCl solution-mist attacked the surface layer of the specimen. It is well known that the pitting, oxidation-reduction reaction, etc. affect the fatigue strength of metals in a corrosive environment. We carried out corrosion fatigue tests with smooth specimens, holed specimens and slit specimens. Then the effects of such specimen geometry on the fatigue strength were investigated when the NaCl solution-mist was sprayed onto the specimen surface. In the case of lower stress amplitude application in slit specimens, the fatigue life in a corrosive atmosphere was longer than that in the open air. It is discussed that the behavior is related to the crack closure which happens when the oxide builds up and clogs the crack or slit.

  12. Impact of source collinearity in simulated PM 2.5 data on the PMF receptor model solution

    NASA Astrophysics Data System (ADS)

    Habre, Rima; Coull, Brent; Koutrakis, Petros

    2011-12-01

    Positive Matrix Factorization (PMF) is a factor analytic model used to identify particle sources and to estimate their contributions to PM 2.5 concentrations observed at receptor sites. Collinearity in source contributions due to meteorological conditions introduces uncertainty in the PMF solution. We simulated datasets of speciated PM 2.5 concentrations associated with three ambient particle sources: "Motor Vehicle" (MV), "Sodium Chloride" (NaCl), and "Sulfur" (S), and we varied the correlation structure between their mass contributions to simulate collinearity. We analyzed the datasets in PMF using the ME-2 multilinear engine. The Pearson correlation coefficients between the simulated and PMF-predicted source contributions and profiles are denoted by " G correlation" and " F correlation", respectively. In sensitivity analyses, we examined how the means or variances of the source contributions affected the stability of the PMF solution with collinearity. The % errors in predicting the average source contributions were 23, 80 and 23% for MV, NaCl, and S, respectively. On average, the NaCl contribution was overestimated, while MV and S contributions were underestimated. The ability of PMF to predict the contributions and profiles of the three sources deteriorated significantly as collinearity in their contributions increased. When the mean of NaCl or variance of NaCl and MV source contributions was increased, the deterioration in G correlation with increasing collinearity became less significant, and the ability of PMF to predict the NaCl and MV loading profiles improved. When the three factor profiles were simulated to share more elements, the decrease in G and F correlations became non-significant. Our findings agree with previous simulation studies reporting that correlated sources are predicted with higher error and bias. Consequently, the power to detect significant concentration-response estimates in health effect analyses weakens.

  13. The short range anion-H interaction is the driving force for crystal formation of ions in water.

    PubMed

    Alejandre, José; Chapela, Gustavo A; Bresme, Fernando; Hansen, Jean-Pierre

    2009-05-07

    The crystal formation of NaCl in water is studied by extensive molecular dynamics simulations. Ionic solutions at room temperature and various concentrations are studied using the SPC/E and TIP4P/2005 water models and seven force fields of NaCl. Most force fields of pure NaCl fail to reproduce the experimental density of the crystal, and in solution some favor dissociation at saturated conditions, while others favor crystal formation at low concentration. A new force field of NaCl is proposed, which reproduces the experimental phase diagram in the solid, liquid, and vapor regions. This force field overestimates the solubility of NaCl in water at saturation conditions when used with standard Lorentz-Berthelot combining rules for the ion-water pair potentials. It is shown that precipitation of ions is driven by the short range interaction between Cl-H pairs, a term which is generally missing in the simulation of ionic solutions. The effects of intramolecular flexibility of water on the solubility of NaCl ions are analyzed and is found to be small compared to rigid models. A flexible water model, extending the rigid SPC/E, is proposed, which incorporates Lennard-Jones interactions centered on the hydrogen atoms. This force field gives liquid-vapor coexisting densities and surface tensions in better agreement with experimental data than the rigid SPC/E model. The Cl-H, Na-O, and Cl-O pair distribution functions of the rigid and flexible models agree well with experiment. The predicted concentration dependence of the electric conductivity is in fair agreement with available experimental data.

  14. NaCl and water responses across the frog tongue epithelium in vitro.

    PubMed

    Soeda, H; Sakudo, F

    1990-01-01

    Isolated dorsal epithelium of the frog tongue elicited transepithelial NaCl and water responses across the tissue when NaCl was added to or removed from the adapting Ringer solution in the mucosal surface, respectively. The NaCl response which was a negative polarization in the mucosa with respect to the serosa was associated with a decrease in resistance across the tissue, whereas the water response which was a positive polarization was associated with an increase in the resistance. The decrease and increase in the tissue resistance remained unchanged by various polarizations of the transepithelial potential difference across the tissue. Characteristics of the NaCl and water responses were similar in many respects to those in the taste cells and nerves of frogs. Thus the NaCl and water responses may relate to taste reception.

  15. Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic strength by composition-gradient multi-angle static light scattering.

    PubMed

    Ma, Yingfang; Acosta, Diana M; Whitney, Jon R; Podgornik, Rudolf; Steinmetz, Nicole F; French, Roger H; Parsegian, V Adrian

    2015-01-01

    Composition-gradient multi-angle static light scattering (CG-MALS) is an emerging technique for the determination of intermolecular interactions via the second virial coefficient B22. With CG-MALS, detailed studies of the second virial coefficient can be carried out more accurately and effectively than with traditional methods. In addition, automated mixing, delivery and measurement enable high speed, continuous, fluctuation-free sample delivery and accurate results. Using CG-MALS we measure the second virial coefficient of bovine serum albumin (BSA) in aqueous solutions at various values of pH and ionic strength of a univalent salt (NaCl). The systematic variation of the second virial coefficient as a function of pH and NaCl strength reveals the net charge change and the isoelectric point of BSA under different solution conditions. The magnitude of the second virial coefficient decreases to 1.13 x 10(-5) ml*mol/g(2) near the isoelectric point of pH 4.6 and 25 mM NaCl. These results illuminate the role of fundamental long-range electrostatic and van der Waals forces in protein-protein interactions, specifically their dependence on pH and ionic strength.

  16. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOEpatents

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  17. Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, Anna P. M.; Lawrence-Snyder, Marion; Angel, S. Michael

    The development of in situ chemical sensors is critical for present-day expeditionary oceanography and the new mode of ocean observing systems that we are entering. New sensors take a significant amount of time to develop; therefore, validation of techniques in the laboratory for use in the ocean environment is necessary. Laser-induced breakdown spectroscopy (LIBS) is a promising in situ technique for oceanography. Laboratory investigations on the feasibility of using LIBS to detect analytes in bulk liquids at oceanic pressures were carried out. LIBS was successfully used to detect dissolved Na, Mn, Ca, K, and Li at pressures up to 2.76x107more » Pa. The effects of pressure, laser-pulse energy, interpulse delay, gate delay, temperature, and NaCl concentration on the LIBS signal were examined. An optimal range of laser-pulse energies was found to exist for analyte detection in bulk aqueous solutions at both low and high pressures. No pressure effect was seen on the emission intensity for Ca and Na, and an increase in emission intensity with increased pressure was seen for Mn. Using the dual-pulse technique for several analytes, a very short interpulse delay resulted in the greatest emission intensity. The presence of NaCl enhanced the emission intensity for Ca, but had no effect on peak intensity of Mn or K. Overall, increased pressure, the addition of NaCl to a solution, and temperature did not inhibit detection of analytes in solution and sometimes even enhanced the ability to detect the analytes. The results suggest that LIBS is a viable chemical sensing method for in situ analyte detection in high-pressure environments such as the deep ocean.« less

  18. Pulsed laser micro-scribing of copper thin films on polyimide substrate in NaCl solution

    NASA Astrophysics Data System (ADS)

    Shiby, Sooraj; Nammi, Srinagalakshmi; Vasa, Nilesh J.; Krishnan, Sivarama

    2018-02-01

    Recently, there is an increasing interest to create micro-channels on metal thin films for diverse applications, such as biomedical, micro channel heat exchangers, chemical separation processes and microwave antenna. Nanosecond (ns) Nd3+:YAG laser has been studied for generating micro-channels on Cu thin film (35 μm) deposited on polyimide substrate (50 μm). A pulsed Nd3+:YAG laser (532 nm / 355 nm) based scribing was performed in air and water ambiancePlasma shielding phenomenon is observed to influence the depth of microchannel at higher energies. A novel pump-probe experiment has been conducted for verifying the plasma shielding effect in air. In underwater scribing the recast layer was reduced significantly as compared to that in air. Laser scribing of Cu thin film followed by chemical etching using FeCl3 was studied. However, the approach of chemical etching resulted in undercut and thinning of Cu film. Alternatively, laser material processing in NaCl solution was studied. Cl- ions present in the solution reacts with Cu which is removed from the sample via laser ablation and forms CuCl2. Formation of CuCl2 in turn improved the surface morphology of the channel through localized etching. The surface roughness parameter Ra was less than 400 nm for NaCl solution based scribing which is smaller compared to air and underwater based methods which are typically around 800 nm or above. Preliminary studies using femtosecond (fs) laser based Cu scribing in air with the fluence of 0.5 J/cm2 resulted in a crated depth of 3 μm without any recast layer.

  19. Entire-Dataset Analysis of NMR Fast-Exchange Titration Spectra: A Mg2+ Titration Analysis for HIV-1 Ribonuclease H Domain.

    PubMed

    Karki, Ichhuk; Christen, Martin T; Spiriti, Justin; Slack, Ryan L; Oda, Masayuki; Kanaori, Kenji; Zuckerman, Daniel M; Ishima, Rieko

    2016-12-15

    This article communicates our study to elucidate the molecular determinants of weak Mg 2+ interaction with the ribonuclease H (RNH) domain of HIV-1 reverse transcriptase in solution. As the interaction is weak (a ligand-dissociation constant >1 mM), nonspecific Mg 2+ interaction with the protein or interaction of the protein with other solutes that are present in the buffer solution can confound the observed Mg 2+ -titration data. To investigate these indirect effects, we monitored changes in the chemical shifts of backbone amides of RNH by recording NMR 1 H- 15 N heteronuclear single-quantum coherence spectra upon titration of Mg 2+ into an RNH solution. We performed the titration under three different conditions: (1) in the absence of NaCl, (2) in the presence of 50 mM NaCl, and (3) at a constant 160 mM Cl - concentration. Careful analysis of these three sets of titration data, along with molecular dynamics simulation data of RNH with Na + and Cl - ions, demonstrates two characteristic phenomena distinct from the specific Mg 2+ interaction with the active site: (1) weak interaction of Mg 2+ , as a salt, with the substrate-handle region of the protein and (2) overall apparent lower Mg 2+ affinity in the absence of NaCl compared to that in the presence of 50 mM NaCl. A possible explanation may be that the titrated MgCl 2 is consumed as a salt and interacts with RNH in the absence of NaCl. In addition, our data suggest that Na + increases the kinetic rate of the specific Mg 2+ interaction at the active site of RNH. Taken together, our study provides biophysical insight into the mechanism of weak metal interaction on a protein.

  20. Ectoine and 5-hydroxyectoine accumulation in the halophile Virgibacillus halodenitrificans PDB-F2 in response to salt stress.

    PubMed

    Tao, Ping; Li, Hui; Yu, Yunjiang; Gu, Jidong; Liu, Yongdi

    2016-08-01

    The moderately halophilic bacterium Virgibacillus halodenitrificans PDB-F2 copes with salinity by synthesizing or taking up compatible solutes. The main compatible solutes in this strain were ectoine and hydroxyectoine, as determined by (1)H nuclear magnetic resonance spectroscopy ((1)H-NMR). A high-performance liquid chromatography (HPLC) analysis showed that ectoine was the major solute that was synthesized in response to elevated salinity, while hydroxyectoine was a minor solute. However, the hydroxyectoine/ectoine ratio increased from 0.04 at 3 % NaCl to 0.45 at 15 % NaCl in the late exponential growth phase. A cluster of ectoine biosynthesis genes was identified, including three genes in the order of ectA, ectB, and ectC. The hydroxyectoine biosynthesis gene ectD was not part of the ectABC gene cluster. Reverse transcription-quantitative polymerase chain reactions (RT-qPCR) showed that the expression of the ect genes was salinity dependent. The expression of ectABC reached a maximum at 12 % NaCl, while ectD expression increased up to 15 % NaCl. Ectoine and hydroxyectoine production was growth phase dependent. The hydroxyectoine/ectoine ratio increased from 0.018 in the early exponential phase to 0.11 in the stationary phase at 5 % NaCl. Hydroxyectoine biosynthesis started much later than ectoine biosynthesis after osmotic shock, and the temporal expression of the ect genes differed under these conditions, with the ectABC genes being expressed first, followed by ectD gene. Increased culture salinity triggered ectoine or hydroxyectoine uptake when they were added to the medium. Hydroxyectoine was accumulated preferentially when both ectoine and hydroxyectoine were provided exogenously.

  1. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Wigger, Cornelia; Van Loon, Luc R.

    2018-06-01

    The effect of the pore water composition on the diffusive anion transport was studied for two different argillaceous, low permeability sedimentary rocks, Opalinus Clay (OPA) and Helvetic Marl (HM). The samples were saturated with different solutions with varying molar concentration and different main cations in the solution: NaCl based pore solutions and CaCl2 based pore solutions. The total porosity was measured by through-diffusion experiments with the neutral tracer HTO. Experiments performed in NaCl solutions resulted in a porosity of 0.12 for OPA and 0.03 for HM, and are consistent with results of the experiments in CaCl2 solutions. The total porosity was independent of the molar concentration, in contrast to the measured anion porosity, which increased with increasing molar concentration. It could further be observed that the pore solution based on the bivalent cation calcium shielded the negative surface charge stronger than the monovalent cation sodium, resulting in a larger measureable anion-accessible porosity in the case of CaCl2 solutions. The data was modelled based on an adapted Donnan approach of Birgersson and Karnland (2009). The model had to be adjusted with a permanent free, uncharged porosity, as well as with structural information on the permanent anion exclusion because of so-called bottleneck pores. Both parameters can only be evaluated from experiments. Nevertheless, taking these two adaptions into account, the effect of varying pore water compositions on the anion-accessible porosity of the investigated argillaceous rocks could be satisfactorily described.

  2. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks.

    PubMed

    Wigger, Cornelia; Van Loon, Luc R

    2018-06-01

    The effect of the pore water composition on the diffusive anion transport was studied for two different argillaceous, low permeability sedimentary rocks, Opalinus Clay (OPA) and Helvetic Marl (HM). The samples were saturated with different solutions with varying molar concentration and different main cations in the solution: NaCl based pore solutions and CaCl 2 based pore solutions. The total porosity was measured by through-diffusion experiments with the neutral tracer HTO. Experiments performed in NaCl solutions resulted in a porosity of 0.12 for OPA and 0.03 for HM, and are consistent with results of the experiments in CaCl 2 solutions. The total porosity was independent of the molar concentration, in contrast to the measured anion porosity, which increased with increasing molar concentration. It could further be observed that the pore solution based on the bivalent cation calcium shielded the negative surface charge stronger than the monovalent cation sodium, resulting in a larger measureable anion-accessible porosity in the case of CaCl 2 solutions. The data was modelled based on an adapted Donnan approach of Birgersson and Karnland (2009). The model had to be adjusted with a permanent free, uncharged porosity, as well as with structural information on the permanent anion exclusion because of so-called bottleneck pores. Both parameters can only be evaluated from experiments. Nevertheless, taking these two adaptions into account, the effect of varying pore water compositions on the anion-accessible porosity of the investigated argillaceous rocks could be satisfactorily described. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effect of sodium chloride and cadmium on the growth, oxidative stress and antioxidant enzyme activities of Zygosaccharomyces rouxii

    NASA Astrophysics Data System (ADS)

    Li, Chunsheng; Xu, Ying; Jiang, Wei; Lv, Xin; Dong, Xiaoyan

    2014-06-01

    Zygosaccharomyces rouxii is a salt-tolerant yeast species capable of removing cadmium (Cd) pollutant from aqueous solution. Presently, the physiological characteristics of Z. rouxii under the stress of sodium chloride (NaCl) and Cd are poorly understood. This study investigated the effects of NaCl and Cd on the growth, oxidative stress and antioxidant enzyme activities of Z. rouxii after stress treatment for 24 h. Results showed that NaCl or Cd alone negatively affected the growth of Z. rouxii, but the growth-inhibiting effect of Cd on Z. rouxii was reduced in the presence of NaCl. Flow cytometry assay showed that under Cd stress, NaCl significantly reduced the production of reactive oxygen species (ROS) and cell death of Z. rouxii compared with those in the absence of NaCl. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) of Z. rouxii were significantly enhanced by 2%-6% NaCl, which likely contributed to the high salt tolerance of Z. rouxii. The POD activity was inhibited by 20 mg L-1 Cd while the SOD and CAT activities were enhanced by 8 mg L-1 Cd and inhibited by 20 mg L-1 or 50 mg L-1 Cd. The inhibitory effect of high-level Cd on the antioxidant enzyme activities of Z. rouxii was counteracted by the combined use of NaCl, especially at 6%. This probably accounted for the decrease in Cd-induced ROS production and cell death of Z. rouxii after incubation with NaCl and Cd. Our work provided physiological clues as to the use of Z. rouxii as a biosorbent for Cd removal from seawater and liquid highly salty food.

  4. Effects of salinity on the cellular physiological responses of Natrinema sp. J7-2

    PubMed Central

    Mei, Yunjun; Liu, Huan; Zhang, Shunxi; Yang, Ming; Hu, Chun; Zhang, Jian; Shen, Ping; Chen, Xiangdong

    2017-01-01

    The halophilic archaea (haloarchaea) live in hyersaline environments such as salt lakes, salt ponds and marine salterns. To cope with the salt stress conditions, haloarchaea have developed two fundamentally different strategies: the "salt-in" strategy and the "compatible-solute" strategy. Although investigation of the molecular mechanisms underlying the tolerance to high salt concentrations has made outstanding achievements, experimental study from the aspect of transcription is rare. In the present study, we monitored cellular physiology of Natrinema sp. J7-2 cells incubated in different salinity media (15%, 25% and 30% NaCl) from several aspects, such as cellular morphology, growth, global transcriptome and the content of intracellular free amino acids. The results showed that the cells were polymorphic and fragile at a low salt concentration (15% NaCl) but had a long, slender rod shape at high salt concentrations (25% and 30% NaCl). The cells grew best in 25% NaCl, mediocre in 30% NaCl and struggled in 15% NaCl. An RNA-seq analysis revealed differentially expressed genes (DEGs) in various salinity media. A total of 1,148 genes were differentially expressed, consisting of 719 DEGs (348 up-regulated and 371 down-regulated genes) between cells in 15% vs 25% NaCl, and 733 DEGs (521 up-regulated and 212 down-regulated genes) between cells in 25% vs 30% NaCl. Moreover, 304 genes were commonly differentially expressed in both 15% vs 25% and 25% vs30% NaCl. The DEGs were enriched in different KEGG metabolic pathways, such as amino acids, glycerolipid, ribosome, nitrogen, protoporphyrin, porphyrin and porhiniods. The intracellular predominant free amino acids consisted of the glutamate family (Glu, Arg and Pro), aspartate family (Asp) and aromatic amino acids (Phe and Trp), especially Glu and Asp. PMID:28926633

  5. Tracer Film Growth Study of the Corrosion of Magnesium Alloys AZ31B and ZE10A in 0.01% NaCl Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, M. P.; Fayek, M.; Leonard, D. N.

    We conducted a sequential isotopic tracer study of corrosion film growth for Mg-3Al-1Zn-0.25Mn (AZ31B) and Mg-1.2Zn-0.25Zr-<0.5Nd (ZE10A) by 4 h immersion in H 2 18O or D 2 16O, followed by a 20 h immersion in a 0.01 wt% NaCl H 2 18O or D 2 16O solution. Sputter depth profiles were obtained for 16O, 18O, H, and D using secondary ion mass spectrometry (SIMS). When compared to the previous tracer study for these alloys in salt-free water, the addition of 0.01 wt% NaCl resulted in a transition from oxygen inward-dominated film growth to a component of mixed inward/outward filmmore » growth for both alloys. The hydrogen tracer behavior remained inward growing for AZ31B, and short-circuit, inward growing for ZE10A, in both pure water and in 0.01 wt% NaCl solution, with extensive penetration of D beyond the film and into the underlying alloy also observed for ZE10A. Our analysis of the films by X-ray photoelectron spectroscopy (XPS) and cross-section scanning transmission electron microscopy (STEM) indicated intermixed Mg(OH) 2 and MgO, with the relative fraction of Mg(OH) 2 peaking near the center of the film. These findings suggest a decoupled film growth mechanism, with initial formation of oxide followed by NaCl-accelerated conversion to hydroxide, likely by both solid-state and dissolution-precipitation processes.« less

  6. Tracer Film Growth Study of the Corrosion of Magnesium Alloys AZ31B and ZE10A in 0.01% NaCl Solution

    DOE PAGES

    Brady, M. P.; Fayek, M.; Leonard, D. N.; ...

    2017-05-25

    We conducted a sequential isotopic tracer study of corrosion film growth for Mg-3Al-1Zn-0.25Mn (AZ31B) and Mg-1.2Zn-0.25Zr-<0.5Nd (ZE10A) by 4 h immersion in H 2 18O or D 2 16O, followed by a 20 h immersion in a 0.01 wt% NaCl H 2 18O or D 2 16O solution. Sputter depth profiles were obtained for 16O, 18O, H, and D using secondary ion mass spectrometry (SIMS). When compared to the previous tracer study for these alloys in salt-free water, the addition of 0.01 wt% NaCl resulted in a transition from oxygen inward-dominated film growth to a component of mixed inward/outward filmmore » growth for both alloys. The hydrogen tracer behavior remained inward growing for AZ31B, and short-circuit, inward growing for ZE10A, in both pure water and in 0.01 wt% NaCl solution, with extensive penetration of D beyond the film and into the underlying alloy also observed for ZE10A. Our analysis of the films by X-ray photoelectron spectroscopy (XPS) and cross-section scanning transmission electron microscopy (STEM) indicated intermixed Mg(OH) 2 and MgO, with the relative fraction of Mg(OH) 2 peaking near the center of the film. These findings suggest a decoupled film growth mechanism, with initial formation of oxide followed by NaCl-accelerated conversion to hydroxide, likely by both solid-state and dissolution-precipitation processes.« less

  7. Life at low water activity.

    PubMed Central

    Grant, W D

    2004-01-01

    Two major types of environment provide habitats for the most xerophilic organisms known: foods preserved by some form of dehydration or enhanced sugar levels, and hypersaline sites where water availability is limited by a high concentration of salts (usually NaCl). These environments are essentially microbial habitats, with high-sugar foods being dominated by xerophilic (sometimes called osmophilic) filamentous fungi and yeasts, some of which are capable of growth at a water activity (a(w)) of 0.61, the lowest a(w) value for growth recorded to date. By contrast, high-salt environments are almost exclusively populated by prokaryotes, notably the haloarchaea, capable of growing in saturated NaCl (a(w) 0.75). Different strategies are employed for combating the osmotic stress imposed by high levels of solutes in the environment. Eukaryotes and most prokaryotes synthesize or accumulate organic so-called 'compatible solutes' (osmolytes) that have counterbalancing osmotic potential. A restricted range of bacteria and the haloarchaea counterbalance osmotic stress imposed by NaCl by accumulating equivalent amounts of KCl. Haloarchaea become entrapped and survive for long periods inside halite (NaCl) crystals. They are also found in ancient subterranean halite (NaCl) deposits, leading to speculation about survival over geological time periods. PMID:15306380

  8. Textural improvement of salt-reduced Alaska pollack (Theragra chalcogramma) roe product by CaCl2.

    PubMed

    Chen, Chaoping; Okazaki, Emiko; Osako, Kazufumi

    2016-12-15

    Salt-reduced Alaska pollack roe benefits public health by decreasing NaCl intake; however, it has a poor texture with low breaking strength. This study addresses the feasibility of NaCl reduction in salted roe products, with focusing on the improvement of breaking strength using CaCl2. Salted roe products were prepared by immersing Alaska pollack roe in either NaCl solutions (3.5, 7.0, 15.0, 20.0, and 25.0%) or 7.0% NaCl solutions with added CaCl2 (0.0, 0.5, 1.0, 2.0, and 3.0%). Breaking strength, moisture and salt contents, eggshell protein composition of the salted roe products, as well as total endogenous transglutaminase (TGase) activity in various NaCl and CaCl2 concentrations were analyzed. CaCl2 addition enhanced eggshell protein crosslinking and breaking strength of the salt-reduced roe products. An acyl transfer reaction catalyzed by calcium-dependent TGase may be responsible for the eggshell protein crosslinking and improved texture. Thus, we successfully developed a salt-reduced Alaska roe product using CaCl2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Cryosalt Formation in Delaminated Clays

    NASA Astrophysics Data System (ADS)

    Yeşilbaş, Merve; Boily, Jean-François

    2017-04-01

    Hydrohalite (NaClṡ2H2O) forms by evaporation, sublimation and freezing of aqueous solutions of NaCl. Although this process is traditionally deemed to occur in aqueous solutions little attention has been paid on whether this is possible with minerals. Smectite minerals are particularly interesting in this regard for their ability to accommodate water between aluminosilicate sheets, allowing them to swell and even delaminate. In particular, montmorillonite possesses high affinities for water and can play important roles in water retention and ice formation in nature, as well as in strategies for nuclear waste storage and even for technological applications. [1,2] For this study, we aimed to develop insight into the molecular-level nature of hydrohalite formation at surfaces of montmorillonite particles as well as in their interlayers. Thin films of Na+ and Ca2+ exchanged montmorillonites deposited on a diamond-based Attenuated Total Reflectance (ATR) cell were interacted with (0.01, 0.1, 1 and 5M) NaCl solutions, and then frozen to -10˚ C. The resulting frozen montmorillonites pastes were then probed by ATR Fourier Transform Infrared (FTIR) spectroscopy, which is a highly sensitive technique for probing hydrogen bonding in minerals and water. Our results on Na-montmorillonite showed that hydrohalite, with its characteristic O-H stretching (νOH ˜ 3245-3265, 3408, 3462, 3555 cm-1) and bending (δOH ˜ 1614 and 1641 cm-1) bands, formed from solutions of at least 0.1 M NaCl, yet well below the typical homogeneous crystallization of this phase from pure aqueous solutions.[3] Further analysis of the O-H stretching and silicate (νSi-O ˜1000 cm-1) regions of frozen paste of montmorillonites revealed that hydrohalite formed within interlayers and at surfaces of Na-montmorillonite. Ca-montmorillonite did not, on the other hand, promote hydrohalite formation but did undergo Ca2+/Na+ ion exchange due to exposure of the NaCl solutions. Given the inability of Ca-montmorillonite at hosting hydrohalite, the results of this study can be used to suggest that delaminated Na-montmorillonite sheets encapsulate the salt solutions and by preventing sublimation of water, promotes crystallization of hydrohalite. As delamination is not possible in Ca-montmorillonite, water more readily sublimated from the system, leaving behind a dry Ca-montmorillonite/NaCl assemblage. As such, this work identified processes through which clay minerals can affect the formation of cryosalts that are not only of importance to terrestrial environments of the cryosphere but also to atmospheric processes involving dust aerosols. [1] Yeşilbaş, M. and Boily, J.-F. (2016), Scientific Reports. 6, 32136. [2] Yeşilbaş, M. and Boily, J.-F. (2016), J. Phys. Chem. Lett. 7, 2849-2855. [3] Wagner, R., Möhler O., Schnaiter, M. (2012), 33, 8557-8571.

  10. Effect of salts on the water sorption kinetics of dried pasta.

    PubMed

    Ogawa, Takenobu; Adachi, Shuji

    2013-01-01

    The water sorption kinetics of dried pasta were measured in the 20-90 °C range in 1.83 mol/L of NaCl and at 80 °C in 1.83 mol/L of LiCl, KCl, NaBr and NaI solutions in order to elucidate the role of salt in the kinetics. At the temperatures higher than 70.8 °C, the change in the enthalpy of sorption, ΔH, in the 1.83 mol/L NaCl solution was 33.1 kJ/mol, which was greater than the ΔH value in water, and the activation energy for the sorption, E, in the salt solution was 25.6 kJ/mol, which was slightly lower than the E value in water. The Hofmeister series of ions was an index for their effect on the equilibrium amount of the sorbed solution of pasta. The apparent diffusion coefficient of water into pasta was not correlated with the crystal radius of the salts, but was with the Stokes radius of the hydrated ions. Equations were formulated to predict the amount of sorbed solution under any condition of temperature and NaCl concentration.

  11. Corrosion characteristics of alpha-Ti and Ti2Cu composing Ti-Cu alloys.

    PubMed

    Takada, Yukyo; Okuno, Osamu

    2005-12-01

    A series of binary Ti-Cu alloys containing 5-20 mass% Cu was prepared, and the corrosion behavior of alpha-Ti and Ti2Cu composing the Ti-Cu alloys were examined based on the anodic polarization curves and released ions in 0.9% NaCl and 1% lactic acid solutions. In both solutions, the Ti-Cu alloys showed the same anodic polarization curves as titanium in the condition below 1.4 V. However, precipitation of Ti2Cu contributed to a small increase in current densitiy in the transpassive region beyond 1.4 V. The amount of Cu ions released from Ti2Cu was 0.260 and 1.003 (microg/cm2/7 days) in 0.9% NaCl and 1% lactic acid solutions respectively. Although these values were larger than those from alpha-Ti (0.0379 +/- 0.0041 and 0.0962 +/- 0.0327 (microg/cm2/7days) in NaCl and lactic acid solutions respectively), they were not greater than those from type 4 gold alloy under the same conditions.

  12. Salinity alters curcumin, essential oil and chlorophyll of turmeric (Curcuma longa L.).

    PubMed

    Mostajeran, A; Gholaminejad, A; Asghari, G

    2014-01-01

    Turmeric (Curcuma longa L.) is a perennial rhizomatous plant from the family of Zingibraceae, native in South Asia. The main components of turmeric are curcuminoids and essential oil which are responsible for turmeric characteristic such as odor and taste. Due to the large areas of saline land in Iran and less information related to cultivation of turmeric, in this research, the effect of salinity on growth, curcumin and essential oil of turmeric was evaluated. Rhizomes were planted in coco peat and perlite for germination. Then uniform germinated rhizomes transferred to hydroponic condition containing Hoagland's solution. Two months old plants were exposed to salinity (0, 20, 60 and 100 mM NaCl) for two months via hydroponic media using Hoagland's solution. Then dry weight of different plant parts, chlorophyll, curcumin and essential oil components of turmeric were determined. The result indicated that, dry weight reductions in 100 mM NaCl were 191%, 141%, 56%, 30% in leaf, pseudo-stem, root and rhizome, respectively (This is almost equal to 6.9, 2.87, 0.34 and 0.23 mg plant(-1) mM(-1)NaCl reduction of dry weight, respectively). The reductions in chlorophyll a and b are almost 3.32 and 0.79 μg/gFW respectively due to one unit addition of NaCl (P < 0.05). The addition of curcumin of rhizome for four months old plant versus three months were almost 5 fold for 0 mM NaCl and 2 fold for 100 mM NaCl due to one month of delay in harvest. Low salinity has positive effect in curcumin production but higher salinity (higher than 60 mM) had adverse effect and causes 24% reduction of curcumin compared to control plants. There were more para-cymene and terpineol in volatile oils of turmeric rhizome than the other components, most of the volatile oil compounds were unchanged or varied slightly as salinity changed.

  13. Salinity alters curcumin, essential oil and chlorophyll of turmeric (Curcuma longa L.)

    PubMed Central

    Mostajeran, A.; Gholaminejad, A.; Asghari, G.

    2014-01-01

    Turmeric (Curcuma longa L.) is a perennial rhizomatous plant from the family of Zingibraceae, native in South Asia. The main components of turmeric are curcuminoids and essential oil which are responsible for turmeric characteristic such as odor and taste. Due to the large areas of saline land in Iran and less information related to cultivation of turmeric, in this research, the effect of salinity on growth, curcumin and essential oil of turmeric was evaluated. Rhizomes were planted in coco peat and perlite for germination. Then uniform germinated rhizomes transferred to hydroponic condition containing Hoagland's solution. Two months old plants were exposed to salinity (0, 20, 60 and 100 mM NaCl) for two months via hydroponic media using Hoagland's solution. Then dry weight of different plant parts, chlorophyll, curcumin and essential oil components of turmeric were determined. The result indicated that, dry weight reductions in 100 mM NaCl were 191%, 141%, 56%, 30% in leaf, pseudo-stem, root and rhizome, respectively (This is almost equal to 6.9, 2.87, 0.34 and 0.23 mg plant-1 mM-1NaCl reduction of dry weight, respectively). The reductions in chlorophyll a and b are almost 3.32 and 0.79 μg/gFW respectively due to one unit addition of NaCl (P < 0.05). The addition of curcumin of rhizome for four months old plant versus three months were almost 5 fold for 0 mM NaCl and 2 fold for 100 mM NaCl due to one month of delay in harvest. Low salinity has positive effect in curcumin production but higher salinity (higher than 60 mM) had adverse effect and causes 24% reduction of curcumin compared to control plants. There were more para-cymene and terpineol in volatile oils of turmeric rhizome than the other components, most of the volatile oil compounds were unchanged or varied slightly as salinity changed. PMID:25598799

  14. Suppression of agglomeration in fluidized bed coating. II. Measurement of mist size in a fluidized bed chamber and effect of sodium chloride addition on mist size.

    PubMed

    Yuasa, H; Nakano, T; Kanaya, Y

    1999-02-01

    It has been reported that the degree of particle agglomeration in fluidized bed coating is greatly affected by the spray mist size of coating solution. However, the mist size has generally been measured in open air, and few reports have described the measurement of the mist size in a chamber of the fluidized bed, in which actual coating is carried out. Therefore, using hydroxypropylmethyl cellulose (HPMC) aqueous solution as a coating solution, the spray mist size of the coating solution in a chamber of the fluidized bed was measured under various coating conditions, such as the distance from the spray nozzle, fluidization air volume, inlet air temperature and addition of sodium chloride (NaCl) into the coating solution. The mist size in the fluidized bed was compared with that in open air at various distances from the spray nozzle. Further, the relationship between the spray mist size and the degree of suppression of agglomeration at various NaCl concentrations during fluidized bed coating was studied. The mist size distribution showed a logarithmic normal distribution in both cases of the fluidized bed and open air. The number-basis median diameter of spray mist (D50) in the fluidized bed was smaller compared with that in open air. D50 increased with the increasing distance from the spray nozzle in both cases. In the fluidized bed, D50 decreased with the increasing fluidization air volume and inlet air temperature. The effect of NaCl concentration on the mist size was hardly observed, but the degree of suppression of agglomeration during coating increased with the increasing NaCl concentration in the coating solution.

  15. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations

    PubMed Central

    Bazihizina, Nadia; Colmer, Timothy D.; Barrett-Lennard, Edward G.

    2009-01-01

    Background and Aims Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Methods Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Key Results Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na+ and Cl− concentrations were 1·9- to 2·3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K+ concentrations were 1·2- to 2·0-fold higher in the non-uniform treatment. Conclusions Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments. PMID:19556265

  16. Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg-Air Battery Based on AZ61 Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Jingling; Wang, Guangxin; Li, Yaqiong; Li, Wuhui; Ren, Fengzhang

    2018-04-01

    The application of Mg-air batteries is limited due to passivation and self-corrosion of anode alloys in electrolyte. In effort of solving this problem, the present work studied the influence of sodium silicate (SS)/sodium alginate (SA) on electrochemical behaviors of AZ61 alloy in NaCl solution by circle potentiodynamic polarization and galvanostatic discharge. The corrosion morphology and discharge product were examined by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Results have shown that sodium silicate/sodium alginate inhibitors have an apparent effect on the self-corrosion of AZ61 alloy without affecting its discharge performance. The discharge capacity and the anodic utilization for Mg-air battery in a 0.6 M NaCl + 0.01 M SS +0.04 M SA solution are measured to be 1397 mAhg-1 and 48.2%, respectively. Electrochemical impedance spectroscopy (EIS) and SEM investigation have confirmed that the sodium silicate/sodium alginate inhibitor can obviously decrease the self-corrosion of AZ61 alloy. SEM and XRD diffraction examinations suggest that the inhibiting mechanism is due to the formation of a compact and "cracked mud" layer. AZ61 alloy can be used as the anode for Mg-air battery in a solution of 0.6 M NaCl + 0.01 M SS +0.04 M SA.

  17. Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg-Air Battery Based on AZ61 Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Jingling; Wang, Guangxin; Li, Yaqiong; Li, Wuhui; Ren, Fengzhang

    2018-05-01

    The application of Mg-air batteries is limited due to passivation and self-corrosion of anode alloys in electrolyte. In effort of solving this problem, the present work studied the influence of sodium silicate (SS)/sodium alginate (SA) on electrochemical behaviors of AZ61 alloy in NaCl solution by circle potentiodynamic polarization and galvanostatic discharge. The corrosion morphology and discharge product were examined by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Results have shown that sodium silicate/sodium alginate inhibitors have an apparent effect on the self-corrosion of AZ61 alloy without affecting its discharge performance. The discharge capacity and the anodic utilization for Mg-air battery in a 0.6 M NaCl + 0.01 M SS +0.04 M SA solution are measured to be 1397 mAhg-1 and 48.2%, respectively. Electrochemical impedance spectroscopy (EIS) and SEM investigation have confirmed that the sodium silicate/sodium alginate inhibitor can obviously decrease the self-corrosion of AZ61 alloy. SEM and XRD diffraction examinations suggest that the inhibiting mechanism is due to the formation of a compact and "cracked mud" layer. AZ61 alloy can be used as the anode for Mg-air battery in a solution of 0.6 M NaCl + 0.01 M SS +0.04 M SA.

  18. Effect of sodium chloride concentration on elemental analysis of brines by laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Goueguel, Christian; Singh, Jagdish P; McIntyre, Dustin L; Jain, Jinesh; Karamalidis, Athanasios K

    2014-01-01

    Leakage of injected carbon dioxide (CO2) or resident fluids, such as brine, is a major concern associated with the injection of large volumes of CO2 into deep saline formations. Migration of brine could contaminate drinking water resources by increasing their salinity or endanger vegetation and animal life as well as human health. The main objective of this study was to investigate the effect of sodium chloride (NaCl) concentration on the detection of calcium and potassium in brine samples using laser-induced breakdown spectroscopy (LIBS). The ultimate goals were to determine the suitability of the LIBS technique for in situ measurements of metal ion concentrations in NaCl-rich solution and to develop a chemical sensor that can provide the early detection of brine intrusion into formations used for domestic or agricultural water production. Several brine samples of NaCl-CaCl2 and NaCl-KCl were prepared at NaCl concentrations between 0.0 and 3.0 M. The effect of NaCl concentration on the signal-to-background ratio (SBR) and signal-to-noise ratio (SNR) for calcium (422.67 nm) and potassium (769.49 nm) emission lines was evaluated. Results show that, for a delay time of 300 ns and a gate width of 3 μs, the presence of and changes in NaCl concentration significantly affect the SBR and SNR for both emission lines. An increase in NaCl concentration from 0.0 to 3.0 M produced an increase in the SNR, whereas the SBR dropped continuously. The detection limits obtained for both elements were in the milligrams per liter range, suggesting that a NaCl-rich solution does not severely limit the ability of LIBS to detect trace amount of metal ions.

  19. Reduced carotid baroreceptor distensibility-induced baroreflex resetting contributes to impairment of sodium regulation in rats fed a high-fat diet.

    PubMed

    Abe, Chikara; Nagai, Yuko; Yamaguchi, Aoi; Aoki, Hitomi; Shimizu, Shuji; Akiyama, Tsuyoshi; Kawada, Toru; Sugimachi, Masaru; Morita, Hironobu

    2015-04-15

    Decreased carotid arterial compliance has been reported in obese subjects and animals. Carotid baroreceptors are located at the bifurcation of the common carotid artery, and respond to distension of the arterial wall, suggesting that higher pressure is required to obtain the same distension in obese subjects and animals. A hyperosmotic NaCl solution induces circulatory volume expansion and arterial pressure (AP) increase, which reflexively augment renal excretion. Thus, we hypothesized that sodium regulation via the baroreflex might be impaired in response to chronic hyperosmotic NaCl infusion in rats fed a high-fat diet. To examine this hypothesis, we used rats fed a high-fat (Fat) or normal (NFD) diet, and measured mean AP, water and sodium balance, and renal function in response to chronic infusion of hyperosmotic NaCl solution via a venous catheter. Furthermore, we examined arterial baroreflex characteristics with static open-loop analysis and distensibility of the common carotid artery. Significant positive water and sodium balance was observed on the 1st day of 9% NaCl infusion; however, this disappeared by the 2nd day in Fat rats. Mean AP was significantly higher during 9% NaCl infusion in Fat rats compared with NFD rats. In the open-loop analysis of carotid sinus baroreflex, a rightward shift of the neural arc was observed in Fat rats compared with NFD rats. Furthermore, distensibility of the common carotid artery was significantly reduced in Fat rats. These results indicate that a reduced baroreceptor distensibility-induced rightward shift of the neural arc might contribute to impairment of sodium regulation in Fat rats. Copyright © 2015 the American Physiological Society.

  20. Cotransport of bacteria with hematite in porous media: Effects of ion valence and humic acid.

    PubMed

    Yang, Haiyan; Ge, Zhi; Wu, Dan; Tong, Meiping; Ni, Jinren

    2016-01-01

    This study investigated the influence of multiple colloids (hematite and humic acid) on the transport and deposition of bacteria (Escherichia coli) in packed porous media in both NaCl (5 mM) and CaCl2 (1 mM) solutions at pH 6. Due to the alteration of cell physicochemical properties, the presence of hematite and humic acid in cell suspensions significantly affected bacterial transport and deposition in quartz sand. Specifically, the presence of hematite (5 mg/L) decreased cell transport (increased cell deposition) in quartz sand in both NaCl and CaCl2 solutions, which could be attributed to the less negative overall zeta potentials of bacteria induced by the adsorption of positively charged hematite onto cell surfaces. The presence of a low concentration (0.1 mg/L) of humic acid in bacteria and hematite mixed suspensions reduced the adsorption of hematite onto cell surfaces, leading to increased cell transport in quartz sand in NaCl solutions, whereas, in CaCl2 solutions, the presence of 0.1 mg/L humic acid increased the formation of hematite-cell aggregates and thus decreased cell transport in quartz sand. When the concentration of humic acid was increased to 1 mg/L, enhanced cell transport was observed in both NaCl and CaCl2 solutions. The decreased adsorption of hematite onto cell surfaces as well as the competition of deposition sites on quartz sand with bacteria by the suspended humic acid contributed to the increased cell transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of alpha/gamma phase ratio on corrosion behavior of dual-phase stainless steels.

    PubMed

    Lim, Y J; Reyes, M; Thongthammachat, S; Sukchit, K; Panich, M; Oshida, Y

    1999-01-01

    Dual-phase stainless steels have been developed in order to reduce the nickel content, which is potentially responsible to an allergic reaction when these steels are used as medical or dental applications. In this study, two different dual-phase stainless steels (2205 and Z100) were electrochemically tested to evaluate their corrosion resistance in three corrosive solutions (i.e., synthetic saliva, 0.9% NaCl solution, and Ringer solution). Particularly, an attempt was made to correlate the corrosion resistance to a metallographic parameter, which is, in this study, the alpha/gamma phase ratio. It was concluded that (1) type 2205 stainless steel exhibited excellent corrosion resistance in all three corrosion media; however 2205 stainless steel decreases its corrosion resistance by increasing chloride concentration in tested electrolytes from synthetic saliva through 0.9% NaCl solution to Ringer solution. (2) X-ray diffraction analysis indicated that the alpha/gamma phase ratio of 2205 (1.735) was higher than that of Z100 (0.905). As a result, it is suggested that by increasing the alpha/gamma phase ratio the material shows more corrosion-prone behavior when being subjected to a hostile environment containing higher chloride ion concentration.

  2. XAFS measurements on zinc chloride aqueous solutions from ambient to supercritical conditions using the diamond anvil cell

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    1999-01-01

    The structure and bonding properties of metal complexes in subcritical and supercritical fluids are still largely unknown. Conventional high pressure and temperature cell designs impose considerable limitations on the pressure, temperature, and concentration of metal salts required for measurements on solutions under supercritical conditions. In this study, we demonstrate the first application of the diamond anvil cell, specially designed for x-ray absorption studies of first-row transition metal ions in supercritical fluids. Zn K-edge XAFS spectra were measured from aqueous solutions of 1-2m ZnCl2 and up to 6m NaCl, at temperatures ranging from 25-660 ??C and pressures up to 800 MPa. Our results indicate that the ZnCl42- complex is predominant in the 1m ZnCl2/6m NaCl solution, while ZnCl2(H2O)2 is similarly predominant in the 2m ZnCl2 solution, at all temperatures and pressures. The Zn-Cl bond length of both types of chlorozinc(II) complexes was found to decrease at a rate of about 0.01 A??/100 ??C.

  3. Impact of additives on the formation of protein aggregates and viscosity in concentrated protein solutions.

    PubMed

    Bauer, Katharina Christin; Suhm, Susanna; Wöll, Anna Katharina; Hubbuch, Jürgen

    2017-01-10

    In concentrated protein solutions attractive protein interactions may not only cause the formation of undesired aggregates but also of gel-like networks with elevated viscosity. To guarantee stable biopharmaceutical processes and safe formulations, both phenomenons have to be avoided as these may hinder regular processing steps. This work screens the impact of additives on both phase behavior and viscosity of concentrated protein solutions. For this purpose, additives known for stabilizing proteins in solution or modulating the dynamic viscosity were selected. These additives were PEG 300, PEG 1000, glycerol, glycine, NaCl and ArgHCl. Concentrated lysozyme and glucose oxidase solutions at pH 3 and 9 served as model systems. Fourier-transformed-infrared spectroscopy was chosen to determine the conformational stability of selected protein samples. Influencing protein interactions, the impact of additives was strongly dependent on pH. Of all additives investigated, glycine was the only one that maintained protein conformational and colloidal stability while decreasing the dynamic viscosity. Low concentrations of NaCl showed the same effect, but increasing concentrations resulted in visible protein aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution

    DOE PAGES

    Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; ...

    2016-05-21

    Monosulfoaluminate (Ca 4Al 2(SO 4)(OH) 12∙6H 2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO 4 2- and OH -) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formedmore » ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.« less

  5. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  6. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godinho, Jose R. A.; Stack, Andrew G.

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  7. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    NASA Astrophysics Data System (ADS)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  8. Prediction of Setschenow constants of N-heteroaromatics in NaCl solutions based on the partial charge on the heterocyclic nitrogen atom.

    PubMed

    Yang, Bin; Li, Zhongjian; Lei, Lecheng; Sun, Feifei; Zhu, Jingke

    2016-02-01

    The solubilities of 19 different kinds of N-heteroaromatic compounds in aqueous solutions with different concentrations of NaCl were determined at 298.15 K with a UV-vis spectrophotometry and titration method, respectively. Setschenow constants, Ks, were employed to describe the solubility behavior, and it is found that the higher ring numbers of N-heteroaromatics gave rise to the lower values of Ks. Moreover, Ks showed a good linear relationship with the partial charge on the nitrogen atom (QN) for either QN > 0 or QN < 0 N-heteroaromatics. It further revealed that QN was well-matched in the prediction of salting-out effect for N-heteroaromatics compared to the conventional descriptors such as molar volume (VH) and the octanol-water partition coefficient (Kow). The heterocyclic N in N-heteroaromatics may interact with Na(+) ions in NaCl solution for QN < 0 and with Cl(-) for QN > 0.

  9. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    PubMed

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society

  10. Beyond Chloride Brines: Variable Metabolomic Responses in the Anaerobic Organism Yersinia intermedia MASE-LG-1 to NaCl and MgSO4 at Identical Water Activity

    PubMed Central

    Schwendner, Petra; Bohmeier, Maria; Rettberg, Petra; Beblo-Vranesevic, Kristina; Gaboyer, Frédéric; Moissl-Eichinger, Christine; Perras, Alexandra K.; Vannier, Pauline; Marteinsson, Viggó T.; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Westall, Frances; Riedo, Andreas; Monaghan, Euan P.; Ehrenfreund, Pascale; Cabezas, Patricia; Walter, Nicolas; Cockell, Charles

    2018-01-01

    Growth in sodium chloride (NaCl) is known to induce stress in non-halophilic microorganisms leading to effects on the microbial metabolism and cell structure. Microorganisms have evolved a number of adaptations, both structural and metabolic, to counteract osmotic stress. These strategies are well-understood for organisms in NaCl-rich brines such as the accumulation of certain organic solutes (known as either compatible solutes or osmolytes). Less well studied are responses to ionic environments such as sulfate-rich brines which are prevalent on Earth but can also be found on Mars. In this paper, we investigated the global metabolic response of the anaerobic bacterium Yersinia intermedia MASE-LG-1 to osmotic salt stress induced by either magnesium sulfate (MgSO4) or NaCl at the same water activity (0.975). Using a non-targeted mass spectrometry approach, the intensity of hundreds of metabolites was measured. The compatible solutes L-asparagine and sucrose were found to be increased in both MgSO4 and NaCl compared to the control sample, suggesting a similar osmotic response to different ionic environments. We were able to demonstrate that Yersinia intermedia MASE-LG-1 accumulated a range of other compatible solutes. However, we also found the global metabolic responses, especially with regard to amino acid metabolism and carbohydrate metabolism, to be salt-specific, thus, suggesting ion-specific regulation of specific metabolic pathways. PMID:29535699

  11. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions.

    PubMed

    Esfandyari Bayat, Ali; Junin, Radzuan; Derahman, Mohd Nawi; Samad, Adlina Abdul

    2015-09-01

    The impact of ionic strength (from 0.003 to 500mM) and salt type (NaCl vs MgCl2) on transport and retention of titanium dioxide (TiO2) nanoparticles (NPs) in saturated limestone porous media was systematically studied. Vertical columns were packed with limestone grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolent-visible spectrometry. Presence of NaCl and MgCl2 in the suspensions were found to have a significant influence on the electrokinetic properties of the NP aggregates and limestone grains. In NaCl and MgCl2 solutions, the deposition rates of the TiO2-NP aggregates were enhanced with the increase in ionic strength, a trend consistent with traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Furthermore, the NP aggregates retention increased in the porous media with ionic strength. The presence of salts also caused a considerable delay in the NPs breakthrough time. MgCl2 as compared to NaCl was found to be more effective agent for the deposition and retention of TiO2-NPs. The experimental results followed closely the general trends predicted by the filtration and DLVO calculations. Overall, it was found that TiO2-NP mobility in the limestone porous media depends on ionic strength and salt type. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Interactions in L-phenylalanine/L-leucine/L-glutamic Acid/L-proline + 2 M aqueous NaCl/2 M NaNO3 systems at different temperatures

    NASA Astrophysics Data System (ADS)

    Riyazuddeen, Imran Khan; Afrin, Sadaf

    2012-12-01

    Density (ρ) and speed of sound ( u) in 2 M aqueous NaCl and 2 M NaNO3 solutions of amino acids: L-phenylalanine, L-leucine, L-glutamic acid, and L-proline have been measured for several molal concentrations of amino acids at different temperatures. The ρ and u data have been used to calculate the values of isothermal compressibility and internal pressure at different temperatures. The trends of variations of κ T and P i with an increase in molal concentration of amino acid and temperature have been discussed in terms of solute-solvent and solute-solute interactions in the systems.

  13. The influence of ionic strength on carbonate-based spectroscopic barometry for aqueous fluids: an in-situ Raman study on Na2CO3-NaCl solutions

    PubMed Central

    Wu, Jia; Wang, Shixia; Zheng, Haifei

    2016-01-01

    The Raman wavenumber of the symmetric stretching vibration of carbonate ion (ν1-CO32−) was measured in three aqueous solutions containing 2.0 mol·L−1 Na2CO3 and 0.20, 0.42, or 0.92 mol·L−1 NaCl, respectively, from 122 to 1538 MPa at 22 °C using a moissanite anvil cell. The ν1 Raman signal linearly shifted to higher wavenumbers with increasing pressure. Most importantly, the slope of ν1-CO32− Raman frequency shift (∂ν1/∂P)I was independent of NaCl concentration. Moreover, elevated ionic strength was found to shift the apparent outline of the carbonate peak toward low wavenumbers, possibly by increasing the proportion of the contact ion pair NaCO3−. Further investigations revealed no cross-interaction between the pressure effect and the ionic strength effect on the Raman spectra, possibly because the distribution of different ion-pair species in the carbonate equilibrium was largely pressure-independent. These results suggested that the ionic strength should be incorporated as an additional constraint for measuring the internal pressure of various solution-based systems. Combining the ν1-CO32− Raman frequency slope with the pressure herein with the values for the temperature or the ionic strength dependencies determined from previous studies, we developed an empirical equation that can be used to estimate the pressure of carbonate-bearing aqueous solutions. PMID:27982064

  14. Electrolyte effects in a model of proton discharge on charged electrodes

    NASA Astrophysics Data System (ADS)

    Wiebe, Johannes; Kravchenko, Kateryna; Spohr, Eckhard

    2015-01-01

    We report results on the influence of NaCl electrolyte dissolved in water on proton discharge reactions from aqueous solution to charged platinum electrodes. We have extended a recently developed combined proton transfer/proton discharge model on the basis of empirical valence bond theory to include NaCl solutions with several different concentrations of cations and anions, both stoichiometric (1:1) compositions and non-stoichiometric ones with an excess of cations. The latter solutions partially screen the electrostatic potential from the surface charge of the negatively charged electrode. 500-1000 trajectories of a discharging proton were integrated by molecular dynamics simulations until discharge occurred, or for at most 1.5 ns. The results show a strong dependence on ionic strength, but only a weak dependence on the screening behavior, when comparing stoichiometric and non-stoichiometric solutions. Overall, the Na+ cations exert a more dominant effect on the discharge reaction, which we argue is likely due to the very rigid arrangements of the cations on the negatively polarized electrode surface. Thus, our model predicts, for the given and very high negative surface charge densities, the fastest discharge reaction for pure water, but obviously cannot take into account the fact that such high charge densities are even more out of reach experimentally than for higher electrolyte concentrations.

  15. A high-throughput method to measure NaCl and acid taste thresholds in mice.

    PubMed

    Ishiwatari, Yutaka; Bachmanov, Alexander A

    2009-05-01

    To develop a technique suitable for measuring NaCl taste thresholds in genetic studies, we conducted a series of experiments with outbred CD-1 mice using conditioned taste aversion (CTA) and two-bottle preference tests. In Experiment 1, we compared conditioning procedures involving either oral self-administration of LiCl or pairing NaCl intake with LiCl injections and found that thresholds were the lowest after LiCl self-administration. In Experiment 2, we compared different procedures (30-min and 48-h tests) for testing conditioned mice and found that the 48-h test is more sensitive. In Experiment 3, we examined the effects of varying strength of conditioned (NaCl or LiCl taste intensity) and unconditioned (LiCl toxicity) stimuli and concluded that 75-150 mM LiCl or its mixtures with NaCl are the optimal stimuli for conditioning by oral self-administration. In Experiment 4, we examined whether this technique is applicable for measuring taste thresholds for other taste stimuli. Results of these experiments show that conditioning by oral self-administration of LiCl solutions or its mixtures with other taste stimuli followed by 48-h two-bottle tests of concentration series of a conditioned stimulus is an efficient and sensitive method to measure taste thresholds. Thresholds measured with this technique were 2 mM for NaCl and 1 mM for citric acid. This approach is suitable for simultaneous testing of large numbers of animals, which is required for genetic studies. These data demonstrate that mice, like several other species, generalize CTA from LiCl to NaCl, suggesting that they perceive taste of NaCl and LiCl as qualitatively similar, and they also can generalize CTA of a binary mixture of taste stimuli to mixture components.

  16. Nonspecific microvascular vasodilation during iontophoresis is attenuated by application of hyperosmolar saline.

    PubMed

    Asberg, A; Holm, T; Vassbotn, T; Andreassen, A K; Hartmann, A

    1999-07-01

    Iontophoretic administration of acetylcholine chloride (ACh) and sodium nitroprusside (SNP) combined with laser Doppler skin blood perfusion measurements are used for determination of endothelial-dependent and -independent vasodilation. However, the method is biased by nonspecific vasodilation. The primary aim of this study was to investigate if iontophoresis-induced nonspecific vasodilation may be attenuated by addition of high molar concentrations of NaCl to the iontophoresis solutions. Secondary we investigated the applicability of 5 mol/liter NaCl solution as vehicle for ACh and SNP in this method. Skin perfusion changes were determined for iontophoresis of pure vehicles, deionized water and 5 mol/liter NaCl solution, in 12 healthy volunteers. Responses in skin perfusion to iontophoresis of ACh and SNP dissolved in both vehicles were also investigated. Addition of 5 mol/liter NaCl to deionized water significantly attenuated the nonspecific vasodilation and lowered the potential applied over the skin. The inter- and intraindividual coefficients of variation to ACh and SNP responses became, however, higher using hyperosmolar vehicle. During iontophoresis of SNP (in deionized water) we were unable to distinguish between SNP and vehicle effects. This study shows that the nonspecific vasodilation induced by iontophoresis can be attenuated by addition of 5 mol/liter NaCl, possibly due to lower electrical potential over the skin. However, the variability of the method was not improved. When deionized water was used as vehicle the effect of SNP could not be differentiated from that of the vehicle. This was not the case for ACh. Copyright 1999 Academic Press.

  17. Optimization of palm oil extraction from Decanter cake of small crude palm oil mill by aqueous surfactant solution using RSM

    NASA Astrophysics Data System (ADS)

    Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya

    2018-04-01

    The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.

  18. Swelling/Floating Capability and Drug Release Characterizations of Gastroretentive Drug Delivery System Based on a Combination of Hydroxyethyl Cellulose and Sodium Carboxymethyl Cellulose

    PubMed Central

    Chen, Ying-Chen; Ho, Hsiu-O; Liu, Der-Zen; Siow, Wen-Shian; Sheu, Ming-Thau

    2015-01-01

    The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4) and formulation (F1-1) were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW). Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug’s release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the water-soluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics. PMID:25617891

  19. Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties.

    PubMed

    Jisha, K C; Puthur, Jos T

    2014-07-01

    The investigation was carried out to study the effect of halopriming on NaCl and polyethylene glycol-6000 (PEG-6000) induced stress tolerance potential of three Vigna radiata (L.) Wilczek varieties, with varied abiotic stress tolerance potential. Halopriming is a seed priming technique in which the seeds were soaked in various salt solutions (in this study NaCl was used). The results of the study indicated that the application of stresses (both NaCl and PEG) induced retardation of growth attributes (measured in terms of shoot length, fresh weight, dry weight) and decrease in physiological attributes like total chlorophyll content, metabolites, photosynthetic and mitochondrial activity of the seedlings in all three V. radiata (L.) varieties. However, halopriming of the seeds could reduce the extent of decrease in these biological attributes. NaCl and PEG stress also caused increase in MDA content (a product of membrane lipid peroxidation) in all the varieties studied and this increase was significantly minimized under halopriming. From the present investigation it was evident that among the green gram varieties studied, Pusa Vishal, a NaCl tolerant variety showed enhanced tolerance to NaCl and PEG induced stress, when the seeds were subjected to halopriming followed by Pusa Ratna (stress sensitive variety). Pusa 9531 (drought tolerant variety) also showed positive halopriming effects but it was less significant when compared to other two varieties. It could be concluded that halopriming improved the drought and salinity stress tolerance potential of all varieties and it was significantly higher in the Pusa Vishal as compared to Pusa 9531 and Pusa Ratna.

  20. Comparison contemporary methods of regeneration sodium-cationic filters

    NASA Astrophysics Data System (ADS)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  1. Influence of solution chemistry on the inactivation of particle-associated viruses by UV irradiation.

    PubMed

    Feng, Zhe; Lu, Ruiqing; Yuan, Baoling; Zhou, Zhenming; Wu, Qingqing; Nguyen, Thanh H

    2016-12-01

    MS2 inactivation by UV irradiance was investigated with the focus on how the disinfection efficacy is influenced by bacteriophage MS2 aggregation and adsorption to particles in solutions with different compositions. Kaolinite and Microcystis aeruginosa were used as model inorganic and organic particles, respectively. In the absence of model particles, MS2 aggregates formed in either 1mM NaCl at pH=3 or 50-200mM ionic strength CaCl 2 solutions at pH=7 led to a decrease in the MS2 inactivation efficacy because the virions located inside the aggregate were protected from the UV irradiation. In the presence of kaolinite and Microcystis aeruginosa, MS2 adsorbed onto the particles in either 1mM NaCl at pH=3 or 50-200mM CaCl 2 solutions at pH=7. In contrast to MS2 aggregates formed without the presence of particles, more MS2 virions adsorbed on these particles were exposed to UV irradiation to allow an increase in MS2 inactivation. In either 1mM NaCl at pH from 4 to 8 or 2-200mM NaCl solutions at pH=7, the absence of MS2 aggregation and adsorption onto the model particles explained why MS2 inactivation was not influenced by pH, ionic strength, and the presence of model particles in these conditions. The influence of virus adsorption and aggregation on the UV disinfection efficiency found in this research suggests the necessity of accounting for particles and cation composition in virus inactivation for drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m 3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water frommore » oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less

  3. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    DOE PAGES

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; ...

    2015-08-01

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m 3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water frommore » oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less

  4. Corrosion behavior of aluminum doped diamond-like carbon thin films in NaCl aqueous solution.

    PubMed

    Khun, N W; Liu, E

    2010-07-01

    Aluminum doped diamond-like carbon (DLC:Al) thin films were deposited on n-Si(100) substrates by co-sputtering a graphite target under a fixed DC power (650 W) and an aluminum target under varying DC power (10-90 W) at room temperature. The structure, adhesion strength and surface morphology of the DLC:Al films were characterized by X-ray photoelectron spectroscopy (XPS), micro-scratch testing and atomic force microscopy (AFM), respectively. The corrosion performance of the DLC:Al films was investigated by means of potentiodynamic polarization testing in a 0.6 M NaCl aqueous solution. The results showed that the polarization resistance of the DLC:Al films increased from about 18 to 30.7 k(omega) though the corrosion potentials of the films shifted to more negative values with increased Al content in the films.

  5. Effect of hyperosmotic solutions on salt excretion and thirst in rats

    NASA Technical Reports Server (NTRS)

    Schoorlemmer, G. H.; Johnson, A. K.; Thunhorst, R. L.

    2000-01-01

    We investigated urinary changes and thirst induced by infusion of hyperosmotic solutions in freely moving rats. Intracarotid infusions of 0.3 M NaCl (4 ml/20 min, split between both internal carotid arteries) caused a larger increase in excretion of Na(+) and K(+) than intravenous infusions, indicating that cephalic sensors were involved in the response to intracarotid infusions. Intravenous and intracarotid infusions of hyperosmotic glycerol or urea (300 mM in 150 mM NaCl) had little or no effect, suggesting the sensors were outside the blood-brain barrier (BBB). Intracarotid infusion of hypertonic mannitol (300 mM in 150 mM NaCl) was more effective than intravenous infusion, suggesting that cell volume rather than Na(+) concentration of the blood was critical. Similarly, intracarotid infusion (2 ml/20 min, split between both sides), but not intravenous infusion of hypertonic NaCl or mannitol caused thirst. Hyperosmotic glycerol, infused intravenously or into the carotid arteries, did not cause thirst. We conclude that both thirst and electrolyte excretion depend on a cell volume sensor that is located in the head, but outside the BBB.

  6. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.

    PubMed

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2018-01-28

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  7. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  8. Synthesis and characterization of porous CaCO3 micro/nano-particles

    NASA Astrophysics Data System (ADS)

    Achour, A.; Arman, A.; Islam, M.; Zavarian, A. A.; Basim Al-Zubaidi, A.; Szade, J.

    2017-06-01

    Porous CaCO3 particles, both micro and nano sized, were synthesized in a mixture of Ca(OH)2, hyaluronic acid (HA), glycine, NaOH and NaCl solution with supercritical carbon dioxide. The particles were characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscope, Raman spectroscope (RS), X-ray photoelectron spectroscope (XPS) and scanning electron microscope techniques. All these techniques showed that the particles crystallize into only one CaCO3 structure, namely the vaterite phase. In addition, FTIR, RS and XPS indicated the presence of residual reactive species i.e. glycine, NaCl, and HA. The XRD results confirmed the presence of NaCl and γ-glycine, which is a crystalline material. Moreover, the HA seems to be mostly embedded in the bulk of the micro-particles. Such materials are promising for biomedical applications such as drug delivery.

  9. Experimental determination of solubilities of di-calcium ethylenediaminetetraacetic acid hydrate [Ca2C10H12N2O8·7H2O(s)] in NaCl and MgCl2 solutions to high ionic strengths and its Pitzer model: Applications to geological disposal of nuclear waste and other low temperature environments

    DOE PAGES

    Xiong, Yongliang; Kirkes, Leslie; Westfall, Terry

    2017-04-01

    In this study, solubility measurements on di-calcium ethylenediaminetetraacetic acid [Ca 2C 10H 12N 2O 8(s), abbreviated as Ca 2EDTA(s)] as a function of ionic strength are conducted in NaCl solutions up to I = 5.0 mol•kg –1 and in MgCl 2 solutions up to I = 7.5 mol•kg –1, at room temperature (22.5 ± 0.5oC).

  10. Wear resistance of CuZr-based amorphous-forming alloys against bearing steel in 3.5% NaCl solution

    NASA Astrophysics Data System (ADS)

    Ji, Xiulin; Wang, Hui; Bao, Yayun; Zheng, Dingcong

    2017-11-01

    To investigate the amorphous-crystalline microstructure on the tribocorrosion of bulk metallic glasses (BMGs), 6 mm diameter rods of Cu46-xZr47Al7Agx (x = 0, 2, 4) amorphous-forming alloys with in situ crystalline and amorphous phases were fabricated by arc-melting and Cu-mould casting. Using a pin-on-disc tribometer, the tribo-pair composed by CuZr-based amorphous-forming alloys and AISI 52100 steel were studied in 3.5% NaCl solution. With the increase of Ag content from 0 to 4 at.%, the compressive fracture strength and the average hardness decrease firstly and then increase. Moreover, 4 at.% Ag addition increases the amount of amorphous phase obviously and inhibits the formation of brittle crystalline phase, resulting in the improvement of corrosion resistance and the corrosive wear resistance. The primary wear mechanism of the BMG composites is abrasive wear accompanying with corrosive wear. The tribocorrosion mass loss of Cu42Zr47Al7Ag4 composite is 1.5 mg after 816.8 m sliding distance at 0.75 m s-1 sliding velocity under 10 N load in NaCl solution. And the volume loss evaluated from the mass loss is about 20 times lower than that of AISI 304 SS. Thus, Cu42Zr47Al7Ag4 composite may be a good candidate in the tribology application under marine environment.

  11. Molecular simulation study on Hofmeister cations and the aqueous solubility of benzene.

    PubMed

    Ganguly, Pritam; Hajari, Timir; van der Vegt, Nico F A

    2014-05-22

    We study the ion-specific salting-out process of benzene in aqueous alkali chloride solutions using Kirkwood-Buff (KB) theory of solutions and molecular dynamics simulations with different empirical force field models for the ions and benzene. Despite inaccuracies in the force fields, the simulations indicate that the decrease of the Setchenow salting-out coefficient for the series NaCl > KCl > RbCl > CsCl is determined by direct benzene-cation correlations, with the larger cations showing weak interactions with benzene. Although ion-specific aqueous solubilities of benzene may be affected by indirect ion-ion, ion-water, and water-water correlations, too, these correlations are found to be unimportant, with little to no effect on the Setchenow salting-out coefficients of the various salts. We further considered LiCl, which is experimentally known to be a weaker salting-out agent than NaCl and KCl and, therefore, ranks at an unusual position within the Hofmeister cation series. The simulations indicate that hydrated Li(+) ions can take part of the benzene hydration shell while the other cations are repelled by it. This causes weaker Li(+) exclusion around the solute and a resulting, weaker salting-out propensity of LiCl compared to that of the other salts. Removing benzene-water and benzene-salt electrostatic interactions in the simulations does not affect this mechanism, which may therefore also explain the smaller effect of LiCl, as compared to that of NaCl or KCl, on aqueous solvation and hydrophobic interaction of nonpolar molecules.

  12. Preparation of smooth, flexible and stable silver nanowires- polyurethane composite transparent conductive films by transfer method

    NASA Astrophysics Data System (ADS)

    Bai, Shengchi; Wang, Haifeng; Yang, Hui; Zhang, He; Guo, Xingzhong

    2018-02-01

    Silver nanowires (AgNWs)-polyurethane (PU) composite transparent conductive films were fabricated via transfer method using AgNWs conductive inks and polyurethane as starting materials, and the effects of post-treatments including heat treatment, NaCl solution bath and HCl solution bath for AgNWs film on the sheet resistance and transmittance of the composite films were respectively investigated in detail. AgNWs networks are uniformly embedded in the PU layer to improve the adhesion and reduce the surface roughness of AgNWs-PU composite films. Heat treatment can melt and weld the nanowires, and NaCl and HCl solution baths promote the dissolution and re-deposition of silver and the dissolving of the polymer, both which form conduction pathways and improve contact of AgNWs for reducing the sheet resistance. Smooth and flexible AgNWs-PU composite film with a transmittance of 85% and a sheet resistance of 15 Ω · sq‑1 is obtained after treated in 0.5 wt% HCl solution bath for 60 s, and the optoelectronic properties of the resultant composite film can maintain after 1000 cycles of bending and 100 days.

  13. Effect of the cation model on the equilibrium structure of poly-L-glutamate in aqueous sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Marchand, Gabriel; Soetens, Jean-Christophe; Jacquemin, Denis; Bopp, Philippe A.

    2015-12-01

    We demonstrate that different sets of Lennard-Jones parameters proposed for the Na+ ion, in conjunction with the empirical combining rules routinely used in simulation packages, can lead to essentially different equilibrium structures for a deprotonated poly-L-glutamic acid molecule (poly-L-glutamate) dissolved in a 0.3M aqueous NaCl solution. It is, however, difficult to discriminate a priori between these model potentials; when investigating the structure of the Na+-solvation shell in bulk NaCl solution, all parameter sets lead to radial distribution functions and solvation numbers in broad agreement with the available experimental data. We do not find any such dependency of the equilibrium structure on the parameters associated with the Cl- ion. This work does not aim at recommending a particular set of parameters for any particular purpose. Instead, it stresses the model dependence of simulation results for complex systems such as biomolecules in solution and thus the difficulties if simulations are to be used for unbiased predictions, or to discriminate between contradictory experiments. However, this opens the possibility of validating a model specifically in view of analyzing experimental data believed to be reliable.

  14. Polymorphic Protein Crystal Growth: Influence of Hydration and Ions in Glucose Isomerase

    PubMed Central

    Gillespie, C. M.; Asthagiri, D.; Lenhoff, A. M.

    2014-01-01

    Crystal polymorphs of glucose isomerase were examined to characterize the properties and to quantify the energetics of protein crystal growth. Transitions of polymorph stability were measured in poly(ethylene glycol)/NaCl solutions, and one transition point was singled out for more detailed quantitative analysis. Single crystal x-ray diffraction was used to confirm space groups and identify complementary crystal structures. Crystal polymorph stability was found to depend on the NaCl concentration, with stability transitions requiring > 1 M NaCl combined with a low concentration of PEG. Both salting-in and salting-out behavior was observed and was found to differ for the two polymorphs. For NaCl concentrations above the observed polymorph transition, the increase in solubility of the less stable polymorph together with an increase in the osmotic second virial coefficient suggests that changes in protein hydration upon addition of salt may explain the experimental trends. A combination of atomistic and continuum models was employed to dissect this behavior. Molecular dynamics simulations of the solvent environment were interpreted using quasi-chemical theory to understand changes in protein hydration as a function of NaCl concentration. The results suggest that protein surface hydration and Na+ binding may introduce steric barriers to contact formation, resulting in polymorph selection. PMID:24955067

  15. NaCl osmotic perturbation can modulate hydration control in rabbit cornea.

    PubMed

    Ruberti, Jeffrey W; Klyce, Stephen D

    2003-03-01

    The corneal endothelium transports solute from the stroma to the aqueous humor, maintaining corneal hydration. Currently, little is known about how this active transport system is controlled. The purpose of this study is to investigate in greater detail the corneal response to small NaCl osmotic perturbations using a more refined automatic thickness measurement system in a search for response signatures of transport control. Adult New Zealand White rabbit corneas were debrided of their epithelium, excised and mounted in perfusion chambers. The endothelium, thus isolated, was bathed in isotonic Glutathione Bicarbonate Ringer's (GBR) solution and the bare anterior stroma was covered with silicone oil. Following stabilization in isotonic GBR, the endothelial perfusate was altered by +/-15 mOsm or+/-45 mOsm for 1 hr and 45 min by addition or removal of NaCl and returned (reversal) to GBR for 1 hr and 45 min. An enhanced, automatic scanning specular microscope monitored stromal thickness. The effective membrane transport coefficients were determined from the stromal thickness vs. time curves using an established numerical model of corneal hydration dynamics. It was found that the small (+/-15 mOsm) NaCl perturbations of the rabbit corneal endothelium resulted in a rapid trans-endothelial stromal volume control response that was not reversible after return to GBR. Long after the expected dissipation of the induced transients, this thickness 'controlling' response ultimately resulted in a sustained net thinning of 14 microm following the hypotonic perturbation and reversal, and a net swelling of 16 microm following the hypertonic perturbation and reversal. Model calculations indicated that the change induced by the perturbation could be explained by an immediate and persistent reduction of the passive endothelial NaCl permeability by 26% for the -15 mOsm perturbation compared to the +15 mOsm perturbation. This change persisted even after return to GBR. In contrast, the larger (+/-45 mOsm) perturbations did not elicit a similar response consistently. Our data suggest that trans-endothelial fluid transport can be rapidly modulated to control stromal hydration in response to small NaCl osmotic stresses in a way that cushions the shock and reduces the change in corneal thickness. Moreover, this behavior is not reversible in the short term, and may assist the regulation of corneal hydration homeostatically.

  16. Synergism between Sodium Chloride and Sodium Taurocholate and Development of Pepsinogen‐altered Pyloric Glands: Relevance to a Medium‐term Bioassay System for Gastric Carcinogens and Promoters in Rats

    PubMed Central

    Tatematsu, Masae; Mutai, Mamoru; Inoue, Kaoru; Ozaki, Keisuke; Furihata, Chie; Ito, Nobuyuki

    1989-01-01

    In an approach to early detection of gastric carcinogens and promoters in an in vivo test system, promotion by sodium chloride (NaCl) and the synergistic effects of NaCl and sodium taurocholate (Na‐TC) on development of pepsinogen‐altered pyloric glands (PAPG) in rat glandular stomach after initiation with N‐methyl‐N′‐nitro‐N‐nitrosoguanidine (MNNG) were investigated. A total of 205 male WKY/NCrj rats were divided into 8 groups. Group 1 was given a single dose of MNNG of 160 mg/ kg body weight by gastric intubation, and starting 2 weeks later basal diet containing Na‐TC for 18 weeks. In addition, 1 ml doses of saturated NaCl solution were given by gastric intubation at weeks 4, 6, 8 and 10. Similarly, group 2 was treated with MNNG and Na‐TC, while group 3 animals received MNNG and NaCl. Group 4 was given MNNG alone. Groups 5–8 served as equivalent controls without MNNG initiation. The results revealed significantly enhanced induction of immunohisto‐chemically defined PAPG in the Na‐TC + NaCl (P< 0.001), Na‐TC (P<0.01) and NaCl (P<0.01) treated animals initiated with MNNG. Sodium chloride demonstrated a clear synergistic effect with Na‐TC in promoting the development of PAPG, suggesting possible advantage for its use in medium‐term in vivo assays for detection of gastric carcinogens and promoters. PMID:2514164

  17. Inhibition of Tryptophan on AA 2024 in Chloride-Containing Solutions

    NASA Astrophysics Data System (ADS)

    Li, Xing; Xiang, Bin; Zuo, Xiu-Li; Wang, Qin; Wei, Zi-Dong

    2011-03-01

    The inhibitory effects of tryptophan on the corrosion of AA 2024 in 1 M HCl, 20% (wt.%) CaCl2, and 3.5% (wt.%) NaCl solutions were investigated via polarization techniques, electrochemical impedance spectroscopy, and weight loss methods. The scanning electron microscope technique was employed to observe corrosion morphology. The results suggest that AA 2024 was corroded in these three corrosive media to some extent and that tryptophan can significantly inhibit the corrosion of aluminum alloys. The inhibition efficiency (η) increased with increasing concentrations of tryptophan, and the best inhibition efficiency exhibited was about 87% in 1 M HCl solution with 0.008 M tryptophan. Tryptophan acted as a cathodic corrosion inhibitor and affected the hydrogen evolution reaction, which was the main electrode reaction in the 1 M HCl solution. In solutions with 20% CaCl2 and 3.5% NaCl, tryptophan was adsorbed onto anodic areas, thus increasing the activation energy of the interface reaction as an anodic corrosion inhibitor. The Dmol3 program of Material Studio 4.0 was used to obtain the optimized geometry of the tryptophan inhibitor and some quantum-chemical parameters. Front orbital distributions and Fukui indices indicate that the molecular active reaction zones were located in the indole ring of tryptophan.

  18. Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis.

    PubMed

    Silva, E N; Silveira, J A G; Rodrigues, C R F; Viégas, R A

    2015-09-01

    This study assessed the capacity of Jatropha curcas to physiologically adjust to salinity. Seedlings were exposed to increasing NaCl concentrations (25, 50, 75 and 100 mm) for 15 days. Treatment without NaCl was adopted as control. Shoot dry weight was strongly reduced by NaCl, reaching values of 35% to 65% with 25 to 100 mm NaCl. The shoot/root ratio was only affected with 100 mm NaCl. Relative water content (RWC) increased only with 100 mm NaCl, while electrolyte leakage (EL) was much enhanced with 50 mm NaCl. The Na(+) transport rate to the shoot was more affected with 50 and 100 mm NaCl. In parallel, Cl(-) transport rate increased with 75 and 100 mm NaCl, while K(+) transport rate fell from 50 mm to 100 mm NaCl. In roots, Na(+) and Cl(-) transport rates fell slightly only in 50 mm (to Na(+)) and 50 and 100 mm (to Cl(-)) NaCl, while K(+) transport rate fell significantly with increasing NaCl. In general, our data demonstrate that J. curcas seedlings present changes in key physiological processes that allow this species to adjust to salinity. These responses are related to accumulation of Na(+) and Cl(-) in leaves and roots, K(+)/Na(+) homeostasis, transport of K(+) and selectivity (K-Na) in roots, and accumulation of organic solutes contributing to osmotic adjustment of the species. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Comparison of actual vs synthesized ternary phase diagrams for solutes of cryobiological interest☆

    PubMed Central

    Kleinhans, F.W.; Mazur, Peter

    2009-01-01

    Phase diagrams are of great utility in cryobiology, especially those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPA's. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA + salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt % concentrations exceeded 30% for DMSO and 55% for glycerol and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue. PMID:17350609

  20. Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest.

    PubMed

    Kleinhans, F W; Mazur, Peter

    2007-04-01

    Phase diagrams are of great utility in cryobiology, especially, those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPAs. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA+salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt% concentrations exceeded 30% for DMSO and 55% for glycerol, and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue.

  1. Insight into the effect of organic and inorganic draw solutes on the flux stability and sludge characteristics in the osmotic membrane bioreactor.

    PubMed

    Siddique, Muhammad Saboor; Khan, Sher Jamal; Shahzad, Muhammad Aamir; Nawaz, Muhammad Saqib; Hankins, Nicholas P

    2018-02-01

    In this study, chloride based (CaCl 2 and MgCl 2 ) and acetate based (NaOAc and MgOAc) salts in comparison with NaCl were investigated as draw solutions (DS) to evaluate their viability in the osmotic membrane bioreactor (OMBR). Membrane distillation was coupled with an OMBR setup to develop a hybrid OMBR-MD system, for the production of clean water and DS recovery. Results demonstrate that organic DS were able to mitigate the salinity buildup in the bioreactor as compared to inorganic salts. Prolonged filtration runs were observed with MgCl 2 and MgOAc in contrast with other draw solutes at the same molar concentration. Significant membrane fouling was observed with NaOAc while rapid flux decline due to increased salinity build-up was witnessed with NaCl and CaCl 2 . Improved characteristics of mixed liquor in terms of sludge filterability, particle size, and biomass growth along with the degradation of soluble microbial products (SMP) were found with organic DS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of octenidine HCl on liver tissue: could it be an alternative scolicidal for Hidatid disease?

    PubMed

    Arikan, Yüksel; Akbulut, Gökhan; Sahin, Dursun Ali; Dilek, Fatma Hüsniye; Saykol, Volkan; Dilek, Osman Nuri

    2007-06-01

    Octenidine HCl is new topical antiseptic solution for wounds and abdominal washing that has been found to be highly effective for inactivating scolices in an in vitro study. However, the effects of octenidine HCl on the liver are not yet known. The aim of this study was to determine if there are any histopathologic changes after injecting octenidine HCl into the liver. A group of 50 male Sprague-Dawley rats were included in the study and randomly divided into five groups of 10 rats each, as follows: sham group; 0.09% NaCl group; 20% NaCl group; undiluted octenidine HCl group; 1% octenidine HCl group. The scolicidal agents (0.3 ml) were directly injected into the left lobe of the liver (except in the sham group). At 3 and 7 days after the injection, the rats were sacrificed, and the left lobe of the liver was harvested. Liver tissue was scored for degree of necrosis and the diameter of the necrosis examined under light microscopy. The highest scores were found in the undiluted octenidine HCl group, although a similar effect was observed in the 20% NaCl group. There was no necrosis in the sham group, the 0.09% NaCl group, or the 1% octenidine HCl group. All of the injury was coagulation-type necrosis. No mortality was observed throughout the study. The 1% octenidine HCl solution could thus be used as a scolicidal agent in liver tissue, whereas the undiluted form of octenidine and 20% NaCl solutions were shown to cause necrosis when directly injected into liver tissue in our animal model.

  3. Adsorption of proteins on γ-Fe2O3 and γ-Fe2O3/SiO2 magnetic materials

    NASA Astrophysics Data System (ADS)

    Khokhlova, T. D.

    2017-10-01

    γ-Fe2O3-SiO2 composites are synthesized via the coprecipitation of a γ-Fe2O3 magnetic carrier (with specific surface S = 17 m2/g and pore volume V = 0.51 cm3/g) and silicon dioxide from an aqueous glass (sodium silicate) solution. The effect coagulation agent NaCl has on the coprecipitation process and structural characteristics of the composite is discussed. Adding NaCl to the aqueous glass solution prevents the formation of SiO2 macrogel making it possible to obtain highly porous composites with high adsorption capacity for proteins cytochrome C and hemoglobin. It is established that a composite that is 50% SiO2 and produced with the addition of 5% NaCl ( S = 150 m2/g and V = 0.87 cm3/g) has a sixfold and twofold higher capacity (280 and 175 mg/g) for cytochrome C and hemoglobin, respectively, than the initial ferric oxide (45 and 82 mg/g). The capacity for cytochrome C and hemoglobin of a composite synthesized without NaCl ( S = 50 m2/g and V = 0.45 cm3/g) is 19 and 20 mg/g, respectively, which is twofold and fourfold lower than those of the initial γ-Fe2O3. The dependence of protein adsorption on pH and the ionic strength of a solution is studied, and the conditions for the maximum adsorption and complete desorption of proteins are established. It is concluded that composites synthesized with additions of NaCl can be used as magnetocontrollable sorbents for the purification, concentration, and immobilization of proteins, and for the preparation of biocatalysts based on immobilized enzymes.

  4. Adjuvant action of garlic sugar solution in animals immunized with Ehrlich ascites tumor cells attenuated with allicin.

    PubMed

    Nakata, T; Fujiwara, M

    1975-08-01

    Ethanol-insoluble components were extracted from fresh garlic with 0.9% NaCl solution containing streptomycin and penicillin. This extract, containing approximately 10% sugar, 0.3% nitrogen, and 0.4% ash, was termed garlic sugar solution. This garlic sugar solution (Medium 1) was used as the suspending medium for Ehrlich ascites tumor cells attenuated with allicin, the main principle of garlic, and 0.9% NaCl solution containing streptomycin and penicillin (Medium 2) was also used as the suspending medium. Mice of DDD strain were immunized with the attenuated tumor cells suspended in Medium 1 or 2. After immunization, the immunized and control mice were challenged intraperitoneally with viable Ehrlich ascites tumorcells. Animals immunized with the attenuated tumor cells suspended in Medium 1 acquired significantly stronger resistance against the tumor cells than animals immunized with those suspended in Medium 2.

  5. Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera.

    PubMed

    Llanes, A; Bertazza, G; Palacio, G; Luna, V

    2013-01-01

    The success of Prosopis strombulifera in growing under high NaCl concentrations involves a carefully controlled balance among different processes, including compartmentation of Cl(-) and Na(+) in leaf vacuoles, exclusion of Na(+) in roots, osmotic adjustment and low transpiration. In contrast, Na(2) SO(4) causes growth inhibition and toxicity. We propose that protection of the cytoplasm can be achieved through production of high endogenous levels of specific compatible solutes. To test our hypothesis, we examined endogenous levels of compatible solutes in roots and leaves of 29-, 40- and 48-day-old P. strombulifera plants grown in media containing various concentrations of NaCl, Na(2) SO(4) or in mixtures of both, with osmotic potentials of -1.0,-1.9 and -2.6 MPa, as correlated with changes in hydric parameters. At 24 h after the last pulse plants grown in high NaCl concentrations had higher relative water content and relatively higher osmotic potential than plants grown in Na(2) SO(4) (at 49 days). These plants also had increased synthesis of proline, pinitol and mannitol in the cytoplasm, accompanied by normal carbon metabolism. When the sulphate anion is present in the medium, the capacities for ion compartmentalisation and osmotic adjustment are reduced, resulting in water imbalance and symptoms of toxicity due to altered carbon metabolism, e.g. synthesis of sorbitol instead of mannitol, reduced sucrose production and protein content. This inhibition was partially mitigated when both anions were present together in the solution, demonstrating a detrimental effect of the sulphate ion on plant growth. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Domain structure of human complement C4b extends with increasing NaCl concentration: implications for its regulatory mechanism.

    PubMed

    Fung, Ka Wai; Wright, David W; Gor, Jayesh; Swann, Marcus J; Perkins, Stephen J

    2016-12-01

    During the activation of complement C4 to C4b, the exposure of its thioester domain (TED) is crucial for the attachment of C4b to activator surfaces. In the C4b crystal structure, TED forms an Arg 104 -Glu 1032 salt bridge to tether its neighbouring macroglobulin (MG1) domain. Here, we examined the C4b domain structure to test whether this salt bridge affects its conformation. Dual polarisation interferometry of C4b immobilised at a sensor surface showed that the maximum thickness of C4b increased by 0.46 nm with an increase in NaCl concentration from 50 to 175 mM NaCl. Analytical ultracentrifugation showed that the sedimentation coefficient s 20,w of monomeric C4b of 8.41 S in 50 mM NaCl buffer decreased to 7.98 S in 137 mM NaCl buffer, indicating that C4b became more extended. Small angle X-ray scattering reported similar R G values of 4.89-4.90 nm for C4b in 137-250 mM NaCl. Atomistic scattering modelling of the C4b conformation showed that TED and the MG1 domain were separated by 4.7 nm in 137-250 mM NaCl and this is greater than that of 4.0 nm in the C4b crystal structure. Our data reveal that in low NaCl concentrations, both at surfaces and in solution, C4b forms compact TED-MG1 structures. In solution, physiologically relevant NaCl concentrations lead to the separation of the TED and MG1 domain, making C4b less capable of binding to its complement regulators. These conformational changes are similar to those seen previously for complement C3b, confirming the importance of this salt bridge for regulating both C4b and C3b. © 2016 The Author(s).

  7. Pitting corrosion resistance of nickel-titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic Acid and sodium chloride solutions.

    PubMed

    Bonaccorso, Antonio; Tripi, Teresa Roberta; Rondelli, Gianni; Condorelli, Guglielmo Guido; Cantatore, Giuseppe; Schäfer, Edgar

    2008-02-01

    This study evaluated the pitting corrosion resistance of nickel-titanium (NiTi) rotary instruments with different surface treatments in 17% ethylenediaminetetraacetic acid (EDTA) and NaCl solutions. Electropolished RaCe instruments were allocated to group A, non-electropolished RaCe instruments to group B, and physical vapor deposition (PVD)-coated Alpha files to group C (10 instruments per group). Electrochemical measurements were carried out by using a potentiostat for galvanic current measurements. On the basis of electrochemical tests, no localized corrosion problems are to be expected in EDTA. In NaCl, pitting potential occurred at higher values for the electropolished and PVD instruments, indicating an increased corrosion resistance. There appears to be a risk of corrosion for NiTi instruments without surface treatments in contact with NaCl. NiTi files with PVD and electropolishing surface treatments showed an increase corrosion resistance.

  8. Effects of humic acid and solution chemistry on the aggregation and dispersion of carboxyl-functionalized carbon black nanoparticles

    NASA Astrophysics Data System (ADS)

    Hwang, G.; Gomez-Flores, A.; Choi, S.; Han, Y., , Dr; Kim, H.

    2017-12-01

    The influence of humic acid, ionic strength and ionic species on the aggregation and dispersion of carboxyl-functionalized carbon black nanoparticles (CB-NPs) was systemically investigated in aqueous media. The experimental conditions of stability tests were selected to the changes in the solution chemistry (0.1-10 mM NaCl and 0.01-1 mM CaCl2) and in the presence/absence of humic acid (1 and 5 mg L-1) in an aquatic environment. The CB-NPs suspension was more rapidly settled in NaCl solution than in CaCl2. Specifically, in the case of NaCl, the aggregation rate of CB-NPs increased with ionic strength. Contrary, CB-NPs dispersed in CaCl2 were insensitive to the aggregation as the ionic strength increased; that was because specific adsorption of the divalent cation Ca2+ occurred since the zeta potential of the CB-NPs is reversed to a positive charge with increasing of the ionic strength. It was confirmed that humic acid greatly influences the stability of the CB-NPs. In particular, the dispersion of CB-NPs was improved in the whole range of ionic strengths of NaCl as well as of CaCl2. To support the results, the interaction energy between CB-NPs was calculated for each condition by using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and modified-DLVO theories. In the presence of humic acid, the improved stability of CB-NPs is attributed to the steric repulsive force.This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020766), the Ministry of Education (MOE) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation (2015H1C1A1035930) and Korea Energy and Mineral Resources Engineering Program (KEMREP).

  9. A potential model for sodium chloride solutions based on the TIP4P/2005 water model

    NASA Astrophysics Data System (ADS)

    Benavides, A. L.; Portillo, M. A.; Chamorro, V. C.; Espinosa, J. R.; Abascal, J. L. F.; Vega, C.

    2017-09-01

    Despite considerable efforts over more than two decades, our knowledge of the interactions in electrolyte solutions is not yet satisfactory. Not even one of the most simple and important aqueous solutions, NaCl(aq), escapes this assertion. A requisite for the development of a force field for any water solution is the availability of a good model for water. Despite the fact that TIP4P/2005 seems to fulfill the requirement, little work has been devoted to build a force field based on TIP4P/2005. In this work, we try to fill this gap for NaCl(aq). After unsuccessful attempts to produce accurate predictions for a wide range of properties using unity ionic charges, we decided to follow recent suggestions indicating that the charges should be scaled in the ionic solution. In this way, we have been able to develop a satisfactory non-polarizable force field for NaCl(aq). We evaluate a number of thermodynamic properties of the solution (equation of state, maximum in density, enthalpies of solution, activity coefficients, radial distribution functions, solubility, surface tension, diffusion coefficients, and viscosity). Overall the results for the solution are very good. An important achievement of our model is that it also accounts for the dynamical properties of the solution, a test for which the force fields so far proposed failed. The same is true for the solubility and for the maximum in density where the model describes the experimental results almost quantitatively. The price to pay is that the model is not so good at describing NaCl in the solid phase, although the results for several properties (density and melting temperature) are still acceptable. We conclude that the scaling of the charges improves the overall description of NaCl aqueous solutions when the polarization is not included.

  10. [The Influence of Different Ionic Concentration in Cell Physiological Solution on Temperature Measurement by Near Infrared].

    PubMed

    Zheng, Yu; Chen, Xiong; Zhou, Mei; Wang, Meng-jun; Wang, Jin-hai; Li, Gang; Cui, Jun

    2015-10-01

    It is important to real-timely monitor and control the temperature of cell physiological solution in patch clamp experiments, which can eliminate the uncertainty due to temperature and improve the measurement accuracy. This paper studies the influence of different ions at different concentrations in the physiological solution on precision of a temperature model by using near infrared spectroscopy and chemometrics method. Firstly, we prepared twelve sample solutions respectively with the solutes of CaCl2, KCl and NaCl at four kinds of concentrations, and collected the spectra of different solutions at the setting temperature range 20-40 degrees C, the range of the spectra is 9 615-5 714 cm(-1). Then we divided the spectra of each solution at different temperatures into two parts (a training set and a prediction set) by three methods. Interval partial least squares method was used to select an effective wavelength range and develop calibration models between the spectra in the selected range and temperature velues. The experimental results show that RMSEP of CaCl2 solution with 0.25 g x mL(-1) is maximum, the result of the three tests are 0.386 3, 0.303 7 and 0.337 2 degrees C, RMSEP of NaCl with 0.005 g x mL(-1) solution is minimum, the result of the three tests are 0.220 8, 0.155 3 and 0.145 2 degrees C. The experimental results indicate that Ca2+ has the greatest influence on the accuracy of the temperature model of the cell physiological solution, then K+, and Na+ has the least influence. And with the ionic concentration increasing, the model accuracy decreases. Therefore; when we build the temperature model of cell physiological solution, it is necessary to change the proportion of the three kinds of main ions in cell physiological solution reasonably in order to correct the effects of different ionic concentrations in physiological solution and improve the accuracy of temperature measurements by near infrared spectroscopy.

  11. Effect of sodium chloride gradients on water flux in rat descending vasa recta.

    PubMed

    Pallone, T L

    1991-01-01

    In the hydropenic kidney, volume efflux from descending vasa recta (DVR) occurs despite an intracapillary oncotic pressure that exceeds hydraulic pressure. That finding has been attributed to small solute gradients which may provide an additional osmotic driving force favoring water transport from DVR plasma to the papillary interstitium. To test this hypothesis, axial gradients of NaCl and urea in the papilla were eliminated by administration of furosemide and saline. DVR were then blocked with paraffin and microperfused at 10 nl/min with a buffer containing albumin, fluorescein isothiocyanate labeled dextran (FITC-Dx), 22Na, and NaCl in a concentration of 0 (hypotonic to the interstitium), 161 (isotonic) or 322 mM (hypertonic). Collectate was obtained from the perfused DVR by micropuncture and the collectate-to-perfusate ratios of FITC-Dx and 22Na were measured. A mathematical model was employed to determine DVR permeability (Ps) and reflection coefficient to NaCl (sigma NaCl). The rate of transport of water from the DVR lumen to the papillary interstitium was 2.8 +/- 0.3 (Nv = 22), -0.19 +/- 0.4 (Nv = 15), and -2.3 +/- 0.3 nl/min (Nv = 21) (mean +/- SE) when perfusate NaCl was 0, 161, or 322 mM, respectively (Nv = number of DVR perfused). The collectate-to-perfusate 22Na concentration ratios were 0.34 +/- 0.04, 0.36 +/- 0.04 and 0.37 +/- 0.03 for those groups, respectively. Based on these data, Ps is calculated to be 60.4 x 10(-5) +/- 4.0 x 10(-5) cm/s and sigma NaCl less than 0.05. The results of this study confirm that transcapillary NaCl concentrations gradients induce water movement across the wall of the DVR.

  12. Method for Detection and Enumeration of Cryptosporidium parvum Oocysts in Feces, Manures, and Soils

    PubMed Central

    Kuczynska, Ewa; Shelton, Daniel R.

    1999-01-01

    Eight concentration and purification methods were evaluated to determine percentages of recovery of Cryptosporidium parvum oocysts from calf feces. The NaCl flotation method generally resulted in the highest percentages of recovery. Based on the percentages of recovery, the amounts of fecal debris in the final oocyst preparations, the relatively short processing time (<3 h), and the low expense, the NaCl flotation method was chosen for further evaluation. Extraction efficiency was evaluated by using oocyst concentrations of 25, 50, 102, 103, 104, and 105 oocysts g of bovine feces−1. The percentages of recovery ranged from 10.8% (25 oocysts g−1) to 17.0% (104 oocysts g−1) (r2 = 0.996). A conservative estimate of the detection limit for bovine feces is ca. 30 oocysts g of feces−1. Percentages of recovery were determined for six different types of animal feces (cow, horse, pig, sheep, deer, and chicken feces) at a single oocyst concentration (104 oocysts g−1). The percentages of recovery were highest for bovine feces (17.0%) and lowest for chicken feces (3.2%). Percentages of recovery were determined for bovine manure after 3 to 7 days of storage. The percentages of recovery ranged from 1.9 to 3.5% depending on the oocyst concentration, the time of storage, and the dispersing solution. The percentages of oocyst recovery from soils were evaluated by using different flotation solutions (NaCl, cold sucrose, ZnSO4), different dispersing solutions (Triton X-100, Tween 80, Tris plus Tween 80), different dispersion techniques (magnetic stirring, sonication, blending), and different dispersion times (5, 15, and 30 min). Twenty-five-gram soil samples were used to reduce the spatial variability. The highest percentages of recovery were obtained when we used 50 mM Tris–0.5% Tween 80 as the dispersing solution, dispersion for 15 min by stirring, and saturated NaCl as the flotation solution. The percentages of oocyst recovery from freshly spiked sandy loam, silty clay loam, and clay loam soils were ca. 12 to 18, 8, and 6%, respectively. The theoretical detection limits were ca. 1 to 2 oocysts g of soil−1 depending on the soil type. The percentages of recovery without dispersant (distilled H2O or phosphate-buffered saline) were less than 0.1%, which indicated that oocysts adhere to soil particles. The percentages of recovery decreased with storage time, although the addition of dispersant (Tris-Tween 80) before storage appeared to partially prevent adhesion. These data indicate that the NaCl flotation method is suitable for routine detection and enumeration of oocysts from feces, manures, soils, or soil-manure mixtures. PMID:10388670

  13. The effect of functionalized polycarboxylate structures as corrosion inhibitors in a simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Fazayel, A. S.; Khorasani, M.; Sarabi, A. A.

    2018-05-01

    In this study, the effects of polycarboxylate derivatives with different comonomers and functional groups on the control or reduction of corrosion in steel specimens were evaluated through electrochemical impedance spectroscopy (EIS) and potentiodynamic analysis. A highly alkaline contaminated concrete pore solution (CPS) containing chlorides was used to simulate the pitting corrosion, and according to the results, the mechanism of inhibitive action was determined. Both the inhibition efficiency and pitting corrosion inhibition of methacrylate-copolymers were in the order of poly methacrylate-co acrylamide > poly methacrylate-co-2-acrylamido-2 methylpropane sulfonic acid > poly methacrylate-co-hydroxyethyl methacrylate. In addition, the corrosion potential of steel specimens in all studied concentrations of NaCl with different concentrations of polymethacrylate-co acrylamide (as the best inhibitor in this study) in saturated Ca(OH)2 solution showed almost an identical trend. Polymethacrylic acid-co-acrylamide showed a 92.35% inhibitor efficiency in the saturated Ca(OH)2 solution containing 1.8 wt.% chlorides and could effectively reduce the corrosion rate. Even at 3.5 wt.% of NaCl, this inhibitor could remarkably reduce the destructive effect of chloride ion attacks on the steel surface and passive film. The inhibition effect of these polymeric inhibitors seemed to be due to the formation of a barrier layer on the metal surface, approved by the well-known adsorption mechanism of organic molecules at the metal/solution interface. The results of SEM, EDS and AFM investigations were also in agreement with the outcomes of electrochemical studies.

  14. In-situ growth of AuNPs on WS2@U-bent optical fiber for evanescent wave absorption sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Suzhen; Zhao, Yuefeng; Zhang, Chao; Jiang, Shouzhen; Yang, Cheng; Xiu, Xianwu; Li, Chonghui; Li, Zhen; Zhao, Xiaofei; Man, Baoyuan

    2018-05-01

    The sensitivity of the evanescent wave absorption sensor is always a hot topic which has been attracted researchers' discussion. It is still a challenge for developing the effective sensor to sensitively detect some biochemical molecules solution in a simple and low-cost way. In this paper, an evanescent wave absorption (EWA) sensor has been presented based on the U-bent multimode fiber coated with tungsten disulfide (WS2) film and in-situ growth of gold nanoparticles (AuNPs) for the detection of ethanol solution and sodium chloride (NaCl) solution. Benefitted from the effective light coupling produced between U-bent probe and AuNPs, we attained the optimal size of the AuNPs by changing the reaction time between WS2 and tetrachloroauric acid (HAuCl4). With the AuNPs/WS2@U-bent optical fiber, we discussed the behaviors of EWA sensor, such as sensitivity, reproducibility, fast response-recovery time and stability. The sensitivity (△A/△C) of the proposed AuNPs/WS2@U-bent optical fiber EWA sensor is 0.65 for the detection of the ethanol solution. Besides, the AuNPs/WS2@U-bent optical fiber EWA sensor exhibits high sensitivity in detection of the sodium chloride (NaCl), which can reach 1.5 when the proposed sensor was immersed into NaCl solution. Our work demonstrates that the U-bent optical fiber EWA sensor may have promising applications in testing the solution of concentration.

  15. X-ray photoelectron spectroscopic study of the oxide film on an aluminum-tin alloy in 3.5% sodium chloride solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venugopal, A.; Selvam, P.; Raja, V.S.

    1997-10-01

    Oxide films on Al and an Al-Sn alloy were analyzed by x-ray photoelectron spectroscopy (XPS) after immersion in 3.5% sodium chloride (NaCl) solution. Results showed Sn exhibited both Sn{sup 2+} and Sn{sup 4+} oxidation stats in the oxide film. It was proposed that incorporation of these cations in the film would result in generation of more anionic and cationic vacancies in aluminum oxide (Al{sub 2}O{sub 3}), leading to active dissolution of Al.

  16. A new class of draw solutions for minimizing reverse salt flux to improve forward osmosis desalination.

    PubMed

    Nguyen, Hau Thi; Nguyen, Nguyen Cong; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Li, Chi-Wang

    2015-12-15

    The applications of forward osmosis (FO) have been hindered because of the lack of an optimal draw solution. The reverse salt flux from the draw solution not only reduces the water flux but also increases the cost of draw solute replenishment. Therefore, in this study, Tergitol NP7 and NP9 with a long straight carbon chain and low critical micelle concentration (CMC) were coupled with highly charged ethylenediaminetetraacetic acid (EDTA) as an innovative draw solution to minimize reverse salt diffusion in FO for the first time. The results showed that the lowest reverse salt flux of 0.067 GMH was observed when 0.1M EDTA-2Na coupled with 15mM NP7 was used as a draw solution and deionized water was used as a feed solution in FO mode (active layer facing with the feed solution). This is due to the hydrophobic interaction between the tails of NP7 and the FO membrane, thus creating layers on the membrane surface and constricting the FO membrane pores. Moreover, 1M EDTA-2Na coupled with 15mM NP7 is promising as an optimal draw solution for brackish water and sea water desalination. Average water fluxes of 7.68, 6.78, and 5.95 LMH were achieved when brackish water was used as a feed solution (5, 10, and 20g/L NaCl), and an average water flux of 3.81 LMH was achieved when sea water was used as a feed solution (35g/L NaCl). The diluted draw solution was recovered using a nanofiltration (NF-TS80) membrane with a high efficiency of 95% because of the high charge and large size of the draw solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Shape Fixing via Salt Recrystallization: A Morphology-Controlled Approach To Convert Nanostructured Polymer to Carbon Nanomaterial as a Highly Active Catalyst for Oxygen Reduction Reaction.

    PubMed

    Ding, Wei; Li, Li; Xiong, Kun; Wang, Yao; Li, Wei; Nie, Yao; Chen, Siguo; Qi, Xueqiang; Wei, Zidong

    2015-04-29

    Herein, we report a "shape fixing via salt recrystallization" method to efficiently synthesize nitrogen-doped carbon material with a large number of active sites exposed to the three-phase zones, for use as an ORR catalyst. Self-assembled polyaniline with a 3D network structure was fixed and fully sealed inside NaCl via recrystallization of NaCl solution. During pyrolysis, the NaCl crystal functions as a fully sealed nanoreactor, which facilitates nitrogen incorporation and graphitization. The gasification in such a closed nanoreactor creates a large number of pores in the resultant samples. The 3D network structure, which is conducive to mass transport and high utilization of active sites, was found to have been accurately transferred to the final N-doped carbon materials, after dissolution of the NaCl. Use of the invented cathode catalyst in a proton exchange membrane fuel cell produces a peak power of 600 mW cm(-2), making this among the best nonprecious metal catalysts for the ORR reported so far. Furthermore, N-doped carbon materials with a nanotube or nanoshell morphology can be realized by the invented method.

  18. Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest.

    PubMed

    Kaspari, Michael; Yanoviak, Stephen P; Dudley, Robert; Yuan, May; Clay, Natalie A

    2009-11-17

    Sodium (Na) is uncommon in plants but essential to the metabolism of plant consumers, both decomposers and herbivores. One consequence, previously unexplored, is that as Na supplies decrease (e.g., from coastal to inland forests), ecosystem carbon should accumulate as detritus. Here, we show that adding NaCl solution to the leaf litter of an inland Amazon forest enhanced mass loss by 41%, decreased lignin concentrations by 7%, and enhanced decomposition of pure cellulose by up to 50%, compared with stream water alone. These effects emerged after 13-18 days. Termites, a common decomposer, increased 7-fold on +NaCl plots, suggesting an agent for the litter loss. Ants, a common predator, increased 2-fold, suggesting that NaCl effects cascade upward through the food web. Sodium, not chloride, was likely the driver of these patterns for two reasons: two compounds of Na (NaCl and NaPO(4)) resulted in equivalent cellulose loss, and ants in choice experiments underused Cl (as KCl, MgCl(2), and CaCl(2)) relative to NaCl and three other Na compounds (NaNO(3), Na(3)PO(4), and Na(2)SO(4)). We provide experimental evidence that Na shortage slows the carbon cycle. Because 80% of global landmass lies >100 km inland, carbon stocks and consumer activity may frequently be regulated via Na limitation.

  19. Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest

    PubMed Central

    Kaspari, Michael; Yanoviak, Stephen P.; Dudley, Robert; Yuan, May; Clay, Natalie A.

    2009-01-01

    Sodium (Na) is uncommon in plants but essential to the metabolism of plant consumers, both decomposers and herbivores. One consequence, previously unexplored, is that as Na supplies decrease (e.g., from coastal to inland forests), ecosystem carbon should accumulate as detritus. Here, we show that adding NaCl solution to the leaf litter of an inland Amazon forest enhanced mass loss by 41%, decreased lignin concentrations by 7%, and enhanced decomposition of pure cellulose by up to 50%, compared with stream water alone. These effects emerged after 13–18 days. Termites, a common decomposer, increased 7-fold on +NaCl plots, suggesting an agent for the litter loss. Ants, a common predator, increased 2-fold, suggesting that NaCl effects cascade upward through the food web. Sodium, not chloride, was likely the driver of these patterns for two reasons: two compounds of Na (NaCl and NaPO4) resulted in equivalent cellulose loss, and ants in choice experiments underused Cl (as KCl, MgCl2, and CaCl2) relative to NaCl and three other Na compounds (NaNO3, Na3PO4, and Na2SO4). We provide experimental evidence that Na shortage slows the carbon cycle. Because 80% of global landmass lies >100 km inland, carbon stocks and consumer activity may frequently be regulated via Na limitation. PMID:19884505

  20. The effects of topical agents of fluticasone propionate, oxymetazoline, and 3% and 0.9% sodium chloride solutions on mucociliary clearance in the therapy of acute bacterial rhinosinusitis in vivo.

    PubMed

    Inanli, Selçuk; Oztürk, Ozmen; Korkmaz, Mukadder; Tutkun, Alper; Batman, Cağlar

    2002-02-01

    The aims of the study were to determine: 1) how mucociliary activity in acute bacterial rhinosinusitis is affected; 2) how this activity is changed by therapy; 3) the effects of topical agents on mucociliary clearance, and 4) the most appropriate topical agent(s) to be used in the therapy of sinusitis. Five groups of patients with acute bacterial rhinosinusitis were studied prospectively. All patients had 500 mg oral amoxicillin and 125 mg oral clavulanic acid preparations given three times daily for 3 weeks. According to the topical agent applications, these groups included: group I (n = 12), no topical treatment was given; group II (n = 14), two puffs for each nostril once daily of 50 microg/100 mL fluticasone propionate was given; group III (n = 9), one puff for each nostril three times daily of 0.05% oxymetazoline was given; group IV (n =12), 3% sodium chloride (NaCl) (buffered to pH 6.5-7 at room temperature) was given; and group V (n =13), 10-mL solutions of 0.9% NaCl (buffered to pH 6.5--7 at room temperature) were given for nasal irrigations three times daily. All patients had medication for 3 weeks and were controlled each week. The saccharin method was used to measure nasal mucociliary clearance. To investigate the early effects of the topical agents for groups II to V, an additional test was repeated 20 minutes after the basal mucociliary clearance recordings. The test was repeated in the first, second, and third weeks of the treatment. The mucociliary clearance was significantly slower in the acute bacterial rhinosinusitis group than in the control group. There was no significant difference between the basal mucociliary clearance and the 20th minute mucociliary clearance of the fluticasone propionate and 0.9% NaCl solution groups. The mean values of the basal and the 20 minute's mucociliary clearance of the oxymetazoline group were 24.72 +/- 6.16 and 15.5 +/- 7.45 minutes, respectively, which were statistically significant. The mean values of the basal and the 20th minute mucociliary clearance of the 3% NaCl solution groups were 19.45 +/- 9.35 and 15.45 +/- 8.20 minutes, respectively, which were also statistically significant. In the first group (without topical treatment), the basal mucociliary clearance became significantly shorter after the second week of treatment. In the first and second weeks of the treatment of the oxymetazoline group, the mucociliary clearance did not change significantly, but after the third week the mucociliary clearance was significantly shorter. In the 3% NaCl solution group, significant improvement began from the first week and continued through the third week. Comparing the basal and the third weeks' mucociliary clearance values among the groups, the oxymetazoline and 3% NaCl solution groups revealed more significant improvement than the other groups, but this improvement was not different from the improvement of group I. There was still a statistically significant difference in the mucociliary clearance of the post-treatment sinusitis groups from the control group. The oxymetazoline and 3% NaCl solution groups seemed to be more effective in mucociliary clearance, but there was no significant difference in improvement among the groups. The improvement of acute bacterial rhinosinusitis takes more than 3 weeks, according to the mucociliary clearance values of the groups.

  1. The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature

    NASA Astrophysics Data System (ADS)

    Millero, Frank; Huang, Fen; Graham, Taylor; Pierrot, Denis

    2007-01-01

    Potentiometric measurements of the stoichiometric constants for the dissociation of carbonic acid in NaCl solutions ( K1∗=[H+][HCO3-]/[CO] and K1∗=[H][CO32-]/[HCO3-]) have been made as a function of molality (0-6 m) and temperature (0-50 °C). The results have been fitted to the equations pKi∗-pKi=Ai+Bi/T+CilnT The values of p Ki in pure water are taken from the literature and the adjustable parameters Ai, Bi and Ci are a function of molality A1=35.2911m+0.8491m-0.32m+0.055m B1=-1583.09m C1=-5.4366m A2=38.2746m+1.6057m-0.647m+0.113m B2=-1738.16m C2=-6.0346m ( σ = 0.013 for pK1∗ and σ = 0.020 for pK2∗, N = 603). The values determined in this study are in good agreement with the 25 °C literature values. Our results have been combined with previous measurements to derive equations that are valid from 0 to 250 °C and 0 to 5 m. This large data set has been used to determine the Pitzer parameters ( β(0), β(1) and Cϕ) for the interactions of Na + with HCO 3- and CO 32- from 0 to 250 °C. These results extend the carbonate system Pitzer model to hydrothermal brines containing high concentrations of NaCl.

  2. Effect of storage of shelled Moringa oleifera seeds from reaping time on turbidity removal.

    PubMed

    Golestanbagh, M; Ahamad, I S; Idris, A; Yunus, R

    2011-09-01

    Moringa oleifera is an indigenous plant to Malaysia whose seeds are used for water purification. Many studies on Moringa oleifera have shown that it is highly effective as a natural coagulant for turbidity removal. In this study, two different methods for extraction of Moringa's active ingredient were investigated. Results of sodium chloride (NaCl) and distilled water extraction of Moringa oleifera seeds showed that salt solution extraction was more efficient than distilled water in extracting Moringa's active coagulant ingredient. The optimum dosage of shelled Moringa oleifera seeds extracted by the NaCl solution was comparable with that of the conventional chemical coagulant alum. Moreover, the turbidity removal efficiency was investigated for shelled Moringa oleifera seeds before drying in the oven under different storage conditions (i.e. open and closed containers at room temperature, 27 °C) and durations (fresh, and storage for 2, 4, 6 and 8 weeks from the time the seeds were picked from the trees). Our results indicate that there are no significant differences in coagulation efficiencies and, accordingly, turbidity removals between the examined storage conditions and periods.

  3. The influence of pressure on the activity coefficients of the solutes and on the solubility of minerals in the system Na-Ca-Cl-SO 4-H 2O to 200°C and 1 kbar and to high NaCl concentration

    NASA Astrophysics Data System (ADS)

    Monnin, Christophe

    1990-12-01

    A model is presented which is used to calculate the effect of pressure on activity coefficients of aqueous solutes in the system Na-Ca-Cl-SO 4-H 2O to 200°C. Literature data for the density and compressibility of aqueous binary solutions of Na 2SO 4 and CaCl 2 to 200°C are used to calculate the first and second pressure derivatives of Pitzer's ion interaction model parameters, as well as the standard molal compressibility and volume of these two salts. Empirical correlations between the apparent molal volume and compressibility of the aqueous electrolytes are used to guide the choice of the temperature dependent expressions used for the numerical representation of the derivatives of Pitzer's parameters with respect to pressure. For sodium sulfate solutions, such correlations are used to extrapolate compressibilities to 200°C. The change in the thermodynamic properties of the-CaSO 04 ion pair with pressure is taken into account by the variation of its dissociation constant. The volumetric properties (partial molal volumes and compressibilities) of multicomponent solutions in the Na-Ca-Cl-SO 4-H 2O system can be predicted from the information generated here and the volumetric equations of ROGERS and PITZER (1982) for NaCl. This model is then combined with the high temperature model of MOLLER (1988) of the same system in order to calculate activity coefficients at high pressures to 200°C. The resulting model is validated by comparing calculated and measured solubilities of anhydrite and gypsum in pure water and in NaCl solutions up to 6 M. The agreement between the calculated and measured solubilities of the calcium sulfates is typically better than 10% up to 200°C and 1 kbar. The relevance of temperature and pressure corrections to the activity coefficients of aqueous solutes is discussed in regard to the assumed accuracy with which geochemical models are able to calculate mineral solubilities.

  4. New amine-type inhibitors for protecting low-carbon steels in hydrogen sulfide-containing neutral media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podobaev, N.I.; Atanasyan, T.K.; Lyashenko, L.F.

    The protecting action of polethylenepolyamine (PEPA) products was carried out by gravimetric and electrochemical methods in aerated and de-aerated 35 NaCl solutions and simulated waste water containing CaCl/sub 2/, NaCl, NaHCO/sub 3/, Na/sub 2/SO/sub 4/, and KBr, with addition of H/sub 2/S. Gravimetric and electrochemical measurements were carried out and results are presented. The influence on tanning agents on the physicomechanical and photographic properties of the positive emulsion Unibrom, Normal at thermostated aging for two days was shown. The results lead to the conclusion that the use of animals as tanning agents of the emulsion lead to improvement of themore » physicomechanical properties of the emulsion light sensitive layers.« less

  5. Early Detection of Salt Stress Damage by Biophotons in Red Bean Seedling

    NASA Astrophysics Data System (ADS)

    Ohya, Tomoyuki; Kurashige, Hideaki; Okabe, Hirotaka; Kai, Shoichi

    2000-06-01

    The optical detection of the stress damage to plants by NaCl solutions was attempted during germination of a seed and growth of a root. We compared the photon intensity of red beans before and after NaCl treatment and found that the photon intensity after NaCl treatment decreased as the NaCl concentration increased. For the saturated NaCl concentration (4.5 M), however, the observed photon intensity drastically increased, and the simultaneous destruction of cell membranes was observed. The intensity of biophoton emission from red beans showed characteristic change with salt concentrations. When the salt stress was applied to the red beans at an early growth stage, their root elongations were suppressed and photon intensity from the root decreased. This was not the case for the root at the late stage. This shows that biophoton intensity due to salt stress depends on not only NaCl concentration but also the growth stage of the plant. We may conclude that the extent of damage to roots by salt stress can be evaluated from biophoton response.

  6. Antagonistic Effect of Monovalent Cations in Maintenance of Cellular Integrity of a Marine Bacterium1

    PubMed Central

    De Voe, Irving W.; Oginsky, Evelyn L.

    1969-01-01

    The susceptibility of a marine bacterium, designated isolate c-A1, to lysis in distilled water and in salt solutions has been found to be a function of Na+ concentration. Optical densities of cells pre-exposed to 0.05 m MgCl2 were maintained in 1.0 m KCl, whereas those of cells pre-exposed to 1.0 m NaCl were not maintained at any KCl concentration tested. Cells transferred from MgCl2 to low concentrations of NaCl underwent more extensive lysis than did those transferred to distilled water. The degree of disruption of cells transferred to distilled water from mixtures of 0.05 m MgCl2 and NaCl (0 to 1.0 m) was dependent on the concentration of NaCl; similar results were obtained with LiCl, but not with KCl. In electron micrographs of thin sections, c-A1 cell envelopes consisted of two double-track layers which fractured and peeled apart on lysis after pre-exposure to NaCl-MgCl2 mixtures. Envelope eruptions or “hernias” occurred only in lysed cells pre-exposed to NaCl alone. No evidence for a functional lytic enzyme was found. Comparative studies on a terrestrial pseudomonad with a multilayered envelope indicated that preexposure to NaCl did not enhance the susceptibility of this cell to lysis in distilled water. The lytic susceptibility of the marine bacterium is considered to be the consequence of competition between specific monovalent cations and Mg++ for electrostatic interactions with components of the cell envelope of this organism. Images PMID:5788707

  7. Performance of Surfactant Methyl Ester Sulphonate solution for Oil Well Stimulation in reservoir sandstone TJ Field

    NASA Astrophysics Data System (ADS)

    Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-05-01

    Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of surfactant. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic surfactant derived from renewable natural resource that environmental friendly is one of potential surfactant types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-surfactant-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are surfactant that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.

  8. Performance of the electrical generator cell by the ferrous alloys of printed circuit board scrap and Iron Metal 1020

    NASA Astrophysics Data System (ADS)

    Sahan, Y.; Sudarsono, S.; Silviana, E.; Chairul; Wisrayetti

    2018-04-01

    Galvani cell is one of thealternative energy. This cell can be used as an electric resources. In this research, the generator cell was designed and builds to generate the electric. The generator cell consisted of the iron metal 1020 were used as anode, the ferrous alloys of printed circuit board scrapwas then used as chatode, and NaCl solution as an electrolyte. The aim of this research is to estimate the performance of this generator cell by using variation of NaCl concentration (i.e. 1%, 3%, 5%, 7%, and 9%) with the electrodes pair ( 1 and 8 pairs). The performance of the cell was measured with a multi tester equipment and a LED bulb (5-watt 3Volt). The Results shown that the generator cell can produce the electric power of 3.679 Volt maximally by using NaCl 9% and 8 electrode pairs applied for this condition.

  9. Strain difference in amiloride-sensitivity of salt-induced responses in mouse non-dissociated taste cells.

    PubMed

    Miyamoto, T; Fujiyama, R; Okada, Y; Sato, T

    1999-12-17

    The chorda tympani nerve responses to NaCl in a mouse strain, C57BL/6 are known to be much more sensitive than those in BALB/c. We compared the NaCl-induced responses obtained from taste cells of the fungiform papillae in these two strains of mice. Amiloride inhibited, in the same degree, the responses induced by a bath-application of normal extracellular solution (NES) containing 140 mM NaCl in either taste cells of C57BL/6 and BALB/c mice. In contrast, amiloride inhibited 62% of responses induced by an apically applied 0.5 M NaCl in the C57BL/6 strain, but only 33% of responses in the BALB/c strain. These results suggest that the difference in amiloride-sensitivity between taste cells in both strains mainly derives from the difference in density of functional amiloride sensitive Na+ channels at the apical receptive membrane but not at the basolateral membrane.

  10. Effect of different irrigation on smear layer removal after post space preparation.

    PubMed

    Gu, Xin-Hua; Mao, Cai-Yun; Kern, Matthias

    2009-04-01

    The purpose of this study was to evaluate the effect of different irrigating solutions on smear layer removal and dentinal tubule opening on root canal surfaces after post space preparation and to study whether additional ultrasonic irrigation has any effect on smear layer removal. Forty-eight anterior teeth were treated endodontically. After post space preparation, they were assigned to six groups: group 1, EDTA; group 2, EDTA with ultrasonic activation; group 3, sodium hypochlorite (NaOCl); group 4, NaOCl with ultrasonic activation; group 5, sodium chloride (NaCl); and group 6, NaCl with ultrasonic activation. Specimens were examined under a field-emission scanning electron microscope and scored for debris removal and dentinal tubule opening at the coronal, middle, and apical thirds of the root canal. The results showed that EDTA performed significantly better than NaCl and NaOCl in smear layer removal and dentinal tubule opening. Additional ultrasonic irrigation did not improve smear layer removal significantly.

  11. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations.

    PubMed

    Bazihizina, Nadia; Colmer, Timothy D; Barrett-Lennard, Edward G

    2009-09-01

    Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na(+) and Cl(-) concentrations were 1.9- to 2.3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K(+) concentrations were 1.2- to 2.0-fold higher in the non-uniform treatment. Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments.

  12. Biosynthesis of the Osmoprotectant Ectoine, but Not Glycine Betaine, Is Critical for Survival of Osmotically Stressed Vibrio parahaemolyticus Cells

    PubMed Central

    Ongagna-Yhombi, Serge Y.

    2013-01-01

    Vibrio parahaemolyticus is a halophile present in marine and estuarine environments, ecosystems characterized by fluctuations in salinity and temperature. One strategy to thrive in such environments is the synthesis and/or uptake of compatible solutes. The V. parahaemolyticus genome contains biosynthesis systems for both ectoine and glycine betaine, which are known to act as compatible solutes in other species. We showed that V. parahaemolyticus had a 6% NaCl tolerance when grown in M9 minimal medium with 0.4% glucose (M9G) with a >5-h lag phase. By using 1H nuclear magnetic resonance spectroscopy (1H-NMR) analysis, we determined that cells synthesized ectoine and glutamate in a NaCl-dependent manner. The most effective compatible solutes as measured by a reduction in lag-phase growth in M9G with 6% NaCl (M9G 6% NaCl) were in the order glycine betaine > choline > proline = glutamate > ectoine. However, V. parahaemolyticus could use glutamate or proline as the sole carbon source, but not ectoine or glycine betaine, which suggests that these are bona fide compatible solutes. Expression analysis showed that the ectA and betA genes were more highly expressed in log-phase cells, and expression of both genes was induced by NaCl up-shock. Under all conditions examined, the ectA gene was more highly expressed than the betA gene. Analysis of in-frame deletions in betA and ectB and in a double mutant showed that the ectB mutant was defective for growth, and this defect was rescued by the addition of glycine betaine, proline, ectoine, and glutamate, indicating that these compounds are compatible solutes for this species. The presence of both synthesis systems was the predominant distribution pattern among members of the Vibrionaceae family, suggesting this is the ancestral state. PMID:23770911

  13. Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

    PubMed Central

    Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of γ-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration. PMID:26761294

  14. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of the conveyor. Thus, during the first 56-d period, the plants grew only in the fresh nutrient solution, whereas during the second 56-d period, the worked out nutrient solutions were being returned into the cycle having been added to the growth vessels along with the fresh SSMU. Growth characteristics, water and ionic relations of S. europaea plants, balance of nutrients between organs and growth media for the first and second 56-d periods of the conveyor operation are presented. There was no significant difference in the rates of shoot biomass production during the first and the second periods. The plants were producing shoot biomass with the rates close to those observed under optimal conditions. However, substantial increase in root biomass production (by 50% on the dry mass basis) was observed in the second period as compared with the first one. Decrease in organ water contents on the dry mass basis (by 13% and 30% for shoots and roots, respectively) and transpiration rates (by 25%) occurred also in the second period as compared with the first one. Measurements of Na+ , Cl- and nutrient contents in the growth media and plant organs and calculation of their balances showed that the plants did not suffer from a deficiency of nutrients during the 112 days of the conveyor operation while accumulating required NaCl amounts. Observed root proliferation and deterioration of water relations in the second 56-d period of the conveyor operation may be caused by toxic plant metabolites exuded by roots into the growth medium.

  15. Salt exclusion and mycorrhizal symbiosis increase tolerance to NaCl and CaCl2 salinity in ‘Siam Queen’ basil

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to evaluate the effects of salinity on growth and nutrient uptake in basil (Ocimum basilicum L.). Plants were fertilized with a complete nutrient solution and exposed to no, low, or moderate levels of salinity from NaCl or CaCl2. Plants in the control and moderate salinity tre...

  16. Corrosion behavior and microstructures of experimental Ti-Au alloys.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo; Okuno, Osamu; Okabe, Toru

    2004-06-01

    Anodic polarization was performed in 0.9% NaCl and 1% lactic acid solutions to characterize the relationship between the corrosion behavior and microstructures of cast Ti-Au (5-40%) alloys. An abrupt increase in the current density occurred at approximately 0.6 V vs. SCE for the 30% and 40% Au alloys in the 0.9% NaCl solution. The microstructures after corrosion testing indicated that this breakdown may have been caused by the preferential dissolution of the Ti3Au. However, the potential for preferential dissolution was higher than the breakdown potential of stainless steel or Co-Cr alloy, which meant that the corrosion resistance of the Ti-Au alloys was superior. In 1% lactic acid solution, the corrosion resistance of the Ti-Au alloys was excellent, with no breakdown at any composition. In the present test solutions, the Ti-Au alloys up to 20% Au had good corrosion resistance comparable to that for pure titanium.

  17. Highly Unstable Double-Diffusive Finger Convection in a Hele-Shaw Cell: Baseline Experimental Data for Evaluation of Numerical Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PRINGLE,SCOTT E.; COOPER,CLAY A.; GLASS JR.,ROBERT J.

    An experimental investigation was conducted to study double-diffusive finger convection in a Hele-Shaw cell by layering a sucrose solution over a more-dense sodium chloride (NaCl) solution. The solutal Rayleigh numbers were on the order of 60,000, based upon the height of the cell (25 cm), and the buoyancy ratio was 1.2. A full-field light transmission technique was used to measure a dye tracer dissolved in the NaCl solution. They analyze the concentration fields to yield the temporal evolution of length scales associated with the vertical and horizontal finger structure as well as the mass flux. These measures show a rapidmore » progression through two early stages to a mature stage and finally a rundown period where mass flux decays rapidly. The data are useful for the development and evaluation of numerical simulators designed to model diffusion and convection of multiple components in porous media. The results are useful for correct formulation at both the process scale (the scale of the experiment) and effective scale (where the lab-scale processes are averaged-up to produce averaged parameters). A fundamental understanding of the fine-scale dynamics of double-diffusive finger convection is necessary in order to successfully parameterize large-scale systems.« less

  18. Texture and microstructure properties of frozen chicken breasts pretreated with salt and phosphate solutions.

    PubMed

    Yoon, K S

    2002-12-01

    This study investigated the effects of 10% NaCl, trisodium phosphate (TSP), sodium tripolyphosphate (STPP), and tetrapotassium pyrophosphate (TKPP) treatments on textural and microstructural properties of chicken breasts during 10 mo of frozen storage at -20 C. Fresh chicken breasts were treated for 10 min with 10% NaCl and various phosphate solutions, including TSP, STPP, and TKPP, and stored in a -20 C freezer for 10 mo. Frozen chicken breasts were completely thawed at 4 C and oven-baked at 177 C for 20 min. Shear force, drip loss, and cooking loss were measured. In addition, ice crystal formation and structure changes of frozen chicken breasts during storage were evaluated using transmission electron microscopy (TEM). Treating chicken breasts with 10% TSP and STPP solution significantly reduced drip and cooking losses as well as minimized ice crystal formation and freeze-induced shrinkage of myofibrils. No significant texture toughening was observed in frozen chicken breasts regardless of treatments. These results suggest that the perceived quality losses of frozen chicken breast were not associated with texture toughening. The water-binding ability of chicken meat was the most important factor in maintaining the quality of chicken breast during extended frozen storage, which can be accomplished by treating chicken breasts with 10% TSP and STPP solutions before frozen storage.

  19. Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441

    NASA Astrophysics Data System (ADS)

    Brytan, Z.; Niagaj, J.; Reiman, Ł.

    2016-12-01

    The corrosion characterisation of lean duplex stainless steel (1.4662) UNS S82441 welded joints using the potentiodynamic test and electrochemical impedance spectroscopy in 1 M NaCl solution are discussed. The influence of autogenous TIG welding parameters (amount of heat input and composition of shielding gases like Ar and Ar-N2 and an Ar-He mixture), as well as A-TIG welding was studied. The influence of welding parameters on phase balance, microstructural changes and the protective properties of passive oxide films formed at the open circuit potential or during the anodic polarisation were studied. From the results of the potentiodynamic test and electrochemical impedance spectroscopy of TIG and A-TiG, welded joints show a lower corrosion resistance compared to non-welded parent metal, but introducing heat input properly during welding and applying shielding gases rich in nitrogen or helium can increase austenitic phase content, which is beneficial for corrosion resistance, and improves surface oxide layer resistance in 1 M NaCl solution.

  20. Enhancement of nitrate uptake and growth of barley seedlings by calcium under saline conditions

    NASA Technical Reports Server (NTRS)

    Ward, M. R.; Aslam, M.; Huffaker, R. C.

    1986-01-01

    The effect of Ca2+ on NO3- assimilation in young barley (Hordeum vulgare L. var CM 72) seedlings in the presence and absence of NaCl was studied. Calcium increased the activity of the NO3- transporter under saline conditions, but had little effect under nonsaline conditions. Calcium decreased the induction period for the NO3- transporter under both saline and nonsaline conditions but had little effect on its apparent Km for NO3- both in the presence and absence of NaCl. The enhancement of NO3- transport by Ca2+ under saline conditions was dependent on the presence of Ca2+ in the uptake solution along with the salt, since Ca2+ had no effect when supplied before or after salinity stress. Although Mn2+ and Mg2+ enhanced NO3- uptake under saline conditions, neither was as effective as Ca2+. In longer studies, increasing the Ca2+ concentration in saline nutrient solutions resulted in increases in NO3- assimilation and seedling growth.

  1. Bedsores successfully treated with topical phenytoin.

    PubMed

    Inchingolo, Francesco; Vermesan, Dino; Inchingolo, Alessio D; Malcangi, Giuseppina; Santacroce, Luigi; Scacco, Salvatore; Benagiano, Vincenzo; Girolamo, Francesco; Cagiano, Raffaele; Caprio, Monica; Longo, Lucia; Abbinante, Antonia; Inchingolo, Angelo M; Dipalma, Gianna; Tarullo, Angelo; Tattoli, Maria

    2017-04-28

    Phenytoin is normally used in epilepsy treatment. One of the side effect affecting a significative part of the treated patients is the gingival overgrowth. It could surely be a correlation between this stimulatory effect and the assessment of phenytoin in wound healing. In fact, some studies of the literature have shown that topical phenytoin promotes healing of traumatic wounds, burns and ulcers by decubitus or stasis (diabetic or venous) and we emphasize, in vitiligo, a particular attention into repigmentation. The related mechanism of action seems to be multifactorial. In the present paper topical phenytoin has been used as wound-healing agent in 19 documented cases of bedsores, divided in treated and placebo group. The used concentration of phenytoin was 5 mg/L dissolved in a water solution of 9 g NaCl /L (0.9% P/V of NaCl). Patches soaked with phenytoin solution were applied over the bedsores along 3 hours every 12 hours. Results showed that phenytoin treated patients healed their wounds significantly before (p<0.001) with respect to controls.

  2. Crystallization of D-mannitol in binary mixtures with NaCl: phase diagram and polymorphism.

    PubMed

    Telang, Chitra; Suryanarayanan, Raj; Yu, Lian

    2003-12-01

    To study the crystallization, polymorphism, and phase behavior of D-mannitol in binary mixtures with NaCl to better understand their interactions in frozen aqueous solutions. Differential scanning calorimetry, hot-stage microscopy, Raman microscopy, and variable-temperature X-ray diffractometry were used to characterize D-mannitol-NaCl mixtures. NaCl and D-mannitol exhibited significant melt miscibility (up to 7.5% w/w or 0.20 mole fraction of NaCl) and a eutectic phase diagram (eutectic composition 7.5% w/w NaCl; eutectic temperature 150 degrees C for the alpha and beta polymorphs of D-mannitol and 139 degrees C for the delta). The presence of NaCl did not prevent mannitol from crystallizing but, depending on sample size, affected the polymorph crystallized: below 10 mg, delta was obtained; above 100 mg, alpha was obtained. Pure mannitol crystallized under the same conditions first as the delta polymorph and then as the a polymorph, with the latter nucleating on the former. KCl showed similar eutectic points and melt miscibility with D-mannitol as NaCl. LiCl yielded lower eutectic melting points, inhibited the crystallization of D-mannitol during cooling, and enabled the observation of its glass transition. Despite their structural dissimilarity, significant melt miscibility exists between D-mannitol and NaCl. Their phase diagram has been determined and features polymorph-dependent eutectic points. NaCl influences the polymorphic behavior of mannitol, and the effect is linked to the crystallization of mannitol in two polymorphic stages.

  3. Effects of ionic strength and temperature on the aggregation and deposition of multi-walled carbon nanotubes.

    PubMed

    Wang, Lixin; Yang, Xuezhi; Wang, Qi; Zeng, Yuxuan; Ding, Lei; Jiang, Wei

    2017-01-01

    The aggregation and deposition of carbon nanotubes (CNTs) determines their transport and fate in natural waters. Therefore, the aggregation kinetics of humic-acid treated multi-walled carbon nanotubes (HA-MWCNTs) was investigated by time-resolved dynamic light scattering in NaCl and CaCl 2 electrolyte solutions. Increased ionic strength induced HA-MWCNT aggregation due to the less negative zeta potential and the reduced electrostatic repulsion. The critical coagulation concentration (CCC) values of HA-MWCNTs were 80mmol/L in NaCl and 1.3mmol/L in CaCl 2 electrolyte, showing that Ca 2+ causes more serious aggregation than Na + . The aggregation behavior of HA-MWCNTs was consistent with Derjaguin-Landau-Verwey-Overbeek theory. The deposition kinetics of HA-MWCNTs was measured by the optical absorbance at 800nm. The critical deposition concentrations for HA-MWCNT in NaCl and CaCl 2 solutions were close to the CCC values, therefore the rate of deposition cannot be increased by changing the ionic strength in the diffusion-limited aggregation regime. The deposition process was correlated to the aggregation since larger aggregates increased gravitational deposition and decreased random Brownian diffusion. HA-MWCNTs hydrodynamic diameters were evaluated at 5, 15 and 25°C. Higher temperature caused faster aggregation due to the reduced electrostatic repulsion and increased random Brownian motion and collision frequency. HA-MWCNTs aggregate faster at higher temperature in either NaCl or CaCl 2 electrolyte due to the decreased electrostatic repulsion and increased random Brownian motion. Our results suggest that CNT aggregation and deposition are two correlated processes governed by the electrolyte, and CNT transport is favored at low ionic strength and low temperature. Copyright © 2016. Published by Elsevier B.V.

  4. Sodium chloride-induced volume changes of freshwater cyanobacterium Synechococcus sp. PCC 7942 cells can be probed by chlorophyll a fluorescence.

    PubMed

    Stamatakis, K; Ladas, N P; Alygizaki-Zorba, A; Papageorgiou, G C

    1999-10-15

    Freshwater species of the cyanobacterial genus Synechococcus import NaCl passively, and export Na(+) actively, by means of primary and secondary extrusion mechanisms. As a result of the ion and water fluxes, cell volumes are enlarged. We show in this paper that the NaCl-induced volume enlargement of Synechococcus sp. PCC 7942 cells is attended by a rapid (k = 0.39 s(-1)) increase in chlorophyll (Chl) a fluorescence. The cell turgor threshold (measured by osmotic titration of Chl a fluorescence) was lower in the absence of NaCl (0.195 Osm kg(-1)) than in the presence of 0.4 M NaCl (0.248 Osm kg(-1)) indicating NaCl uptake by the cells. Turgor thresholds of cells suspended in NaCl-containing medium were enlarged further by protonophoric uncouplers, P-type ATPase inhibitors, and light starvation, conditions that are known to interfere with the active extrusion of Na(+) ions. Cell swelling exerts probably a regulation on the distribution of phycobilisome (PBS) excitation between photosystem II (fluorescent Chl a) and photosystem I (nonfluorescent Chl a), since it affects PBS-sensitized Chl a fluorescence, but not directly excited Chl a fluorescence. The dependence of the Chl a fluorescence of cyanobacteria on cell volumes allows probing of bioenergetic phenomena that are related to dynamic osmotic volume changes, transmembrane solute and water fluxes, plasma membrane permeabilities, and internal osmotic conditions of cyanobacterial cells. Thus, cyanobacteria may serve as quite convenient models of aquatic microorganisms in experimental studies directed toward the elucidation of perception mechanisms and defense mechanisms of water and solute stresses. Copyright 1999 Academic Press.

  5. Volumetric, rheological, and optical properties of hydroxylamine hydrochloride aqueous solutions containing NaCl, KCl, and NH4Cl at 30°C

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Puyad, A. L.; Shaikh, U. B.; Solanke, S. S.

    2014-04-01

    Densities, viscosities, and refractive indices of aqueous solutions of hydroxylamine hydrochloride containing 0.05, 0.10, and 0.15 mol/dm3 NaCl, KCl, and NH4Cl were measured at different concentrations of hydroxylamine hydrochloride at 30°C. Viscosity coefficients A and B representing ion-ion and ion-solvent interactions were determined from Jones-Dole equation. Experimental properties and viscosity coefficients have been interpreted in terms of ion-ion and ion-solvent interactions. Ion-solvent interactions were found to be dominating over the ion-ion interactions in studied systems.

  6. Effect of Na+ on surface fractal dimension of compacted bentonite

    NASA Astrophysics Data System (ADS)

    Xiang, G. S.; Xu, Y. F.; Jiang, H.

    2015-05-01

    Compacted Tsukinuno bentonite was immersed into NaCl solutions of different concentrations in oedometers, and the surface fractal dimension of bentonite-saline association was measured by nitrogen adsorption isotherms. The application of the Frenkel-Halsey-Hill equation and the Neimark thermodynamic method to nitrogen adsorption isotherms indicated that the surface roughness was greater for the bentonite-saline association. The surface fractal dimension of bentonite increased in the NaCl solution with low Na+ concentration, but decreased at high Na+ concentration. This process was accompanied by the same tendency in specific surface area and microporosity with the presence of Na+ coating in the clay particles.

  7. Resistance to Internal Damage and Scaling of Concrete Air Entrained By Microspheres

    NASA Astrophysics Data System (ADS)

    Molendowska, Agnieszka; Wawrzenczyk, Jerzy

    2017-10-01

    This paper report the test results of high strength concrete produced with slag cement and air entrained with polymer microspheres in three diameters. The study focused on determining the effects of the microsphere size and quantity on the air void structure and resistance to internal cracking and scaling of the concrete. The resistance to internal cracking was determined in compliance with the requirements of the modified ASTM C666 A method on beam specimens. The scaling resistance in a 3% NaCl solution was determined using the slab test in accordance with PKN-CEN/TS 12390-9:2007. The air void structure parameters were determined to PN-EN 480-11:1998. The study results indicate that the use of microspheres is an effective air entrainment method providing very good air void structure parameters. The results show high freeze-thaw durability of polymer microsphere-based concrete in exposure class XF3. The scaling resistance test confirms that it is substantially more difficult to protect concrete against scaling in the presence of the 3% NaCl solution (exposure class XF4). Concrete scaling is a complex phenomenon controlled by a number of independent factors.

  8. Corrosion behavior of as-cast Mg-8Li-3Al+ xCe alloy in 3.5wt% NaCl solution

    NASA Astrophysics Data System (ADS)

    Manivannan, S.; Dinesh, P.; Mahemaa, R.; MariyaPillai, Nandhakumaran; Kumaresh Babu, S. P.; Sundarrajan, Srinivasan

    2016-10-01

    Mg-8Li-3Al+ xCe alloys ( x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg-8Li-3Al+ xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B-117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg-8Li-3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.

  9. Characterization of Nanoparticles and Colloids in Aquatic Systems 1. Small Angle Neutron Scattering Investigations of Suwannee River Fulvic Acid Aggregates in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Diallo, Mamadou S.; Glinka, Charles J.; Goddard, William A.; Johnson, James H.

    2005-10-01

    Fulvic acids (FA) and humic acids (HA) constitute 30-50% of dissolved organic matter in natural aquatic systems. In aqueous solutions, a commonly accepted view is that FA and HA exist as soluble macroligands at low concentration and as supramolecular aggregates at higher concentration. The size, shape and structure of these aggregates are still the subject of ongoing debate in the environmental chemistry literature. In this article, we use small angle neutron scattering (SANS) to assess the effects of solute concentration, solution pH and background electrolyte (NaCl) concentration on the structures of Suwannee River FA (SRFA) aggregates in D2O. The qualitative features of the SANS curves and data analysis are not consistent with the view point that SRFA forms micelle-like aggregates as its concentration in aqueous solution increases. We find that SRFA forms fractal aggregates in D20 with size greater than 242 nm. The SRFA aggregates undergo a significant degree of restructuring in compactness as solution pH, solute concentration and NaCl concentration increase.

  10. Corrosion Behaviour in Human Stimulation Media of a High Entropy Titan-Based Alloy

    NASA Astrophysics Data System (ADS)

    Ghiban, B.; Popescu, G.; Lazar, C.; Rosu, L.; Constantin, I.; Olaru, M.; Carlan, B.

    2018-06-01

    The paper presents results on the corrosion behavior of high entropy alloys, commonly called BIOHEA in human physiological simulating media, respectively in the NaCl infusion solution and Ringer’s lactate infusion solution. Corrosion tests were performed by potendiodinamic test using AUTOLAB type potentiostat equipped with specialized corrosion software including the PGSTAT302N, BA and SCAN250 modules. Three entropy alloy systems were investigated: FeTa0.5Nb0.5Ti1.5Zr0.5 (BIOHEA 1), FeMnNb0.5TiZr0.5 (BIOHEA 3), FeTa0.5Nb0.5TiZr0.5 (BIOHEA 4), and BIOHEA alloy 2 was obtained by remelting BIOHEA 1. A comparison of the results obtained in the present tests and the data from the literature shows, on the one hand, that the global results can be compared with the different results from the literature, and, on the other hand, the results are new, in the sense that in any work there are no combinations of alloys studied here or human simulating medians used for testing. The conclusion of the experimental investigations in the present paper is the fact that regardless of the simulation test environment, all the alloys experimental alloys have similar behaviors, there is a difference between the chemical composition of the experimental alloy and the displacement of the corrosion potential values at electropositive values, decreasing of corrosion current, and corrosion rates. The experimental results allow the corrosion resistance of the investigated alloys, alloy BIOHEA 2 having the best corrosion behavior in both test media, with very low corrosion rates (respectivelly 0.067 μm/year in NaCl infusion solution, and 0.021 μm / year in Ringer’s lactate infusion solution).

  11. Impact of High Concentration Solutions on Hydraulic Properties of Geosynthetic Clay Liner Materials

    PubMed Central

    Xue, Qiang; Zhang, Qian; Liu, Lei

    2012-01-01

    This study focuses on the impact of landfill high concentration solutions erosion on geosynthetic clay liner (GCL) materials permeability. The permeation tests on the GCL, submerged using different kinds of solutions with different concentrations, were carried out systematically by taking these chemical solutions as permeant liquids. Based on seasonal variations of ion concentrations in Chenjiachong landfill leachate (Wuhan Province), CaCl2, MgCl2, NaCl, and KCl were selected as chemical attack solutions to carry out experimental investigations under three concentrations (50 mM, 100 mM, 200 mM) and soak times (5, 10, and 20 days). The variation law of the GCL hydraulic conductivity under different operating conditions was analyzed. The relationship between GCL hydraulic conductivity, chemical solutions categories, concentrations, and soak times were further discussed. The GCL hydraulic conductivity, when soaked and permeated with high concentration chemical solutions, increases several times or exceeds two orders of magnitude, as compared with the permeation test under normal conditions that used water as the permeant liquid. This reveals that GCL is very susceptible to chemical attack. For four chemical solutions, the chemical attack effect on GCL hydraulic conductivity is CaCl2 > MgCl2 > KCl > NaCl. The impact of soak times on GCL hydraulic conductivity is the cooperative contribution of the liner chemical attack reaction and hydration swelling. A longer soak time results in a more advantageous hydration swelling effect. The chemical attack reaction restrains the hydration swelling of the GCL. Moreover, the GCL hydraulic conductivity exponentially decreases with the increased amplitude of thickness.

  12. Distribution behaviour of acaricide cyflumetofen in tomato during home canning.

    PubMed

    Liu, Na; Dong, Fengshou; Chen, Zenglong; Xu, Jun; Liu, Xingang; Duan, Lifang; Li, Minmin; Zheng, Yongquan

    2016-05-01

    The distribution behaviour of cyflumetofen in tomatoes during home canning was studied. The targeted compound cyflumetofen was determined by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) after each process step, which included washing, peeling, homogenisation, simmering and sterilisation. Results indicated that more cyflumetofen was removed by washing with detergent solution compared with tap water, 2% NaCl solution and 2% CH3COOH solution. Peeling resulted in 90.2% loss of cyflumetofen and was the most effective step at removing pesticide residues from tomatoes. The processing factors (PFs) of tomato samples after each step were generally less than 1; in particular, the PF of the peeling process for cyflumetofen was 0.28.

  13. Response surface method optimization of ectoine fermentation medium with moderate halophilic bacteria Halomonas sp. H02

    NASA Astrophysics Data System (ADS)

    Li, T. T.; Qu, A.; Yuan, X. N.; Tan, F. X.; Li, X. W.; Wang, T.; Zhang, L. H.

    2017-07-01

    Moderate halophilic bacteria are of halophilic bacteria whose suitable growth of NaCl is 5-10%. When the moderate halophilic bacteria response to high osmotic stress, the intracellular will synthesize small organic molecule compatible solutes. Ectoine, which is the major synthetic osmotic compatible solutes for moderate halophilic bacteria, can help microbial enzymes, nucleic acids and the whole cell resist to hypertonic, high temperature, freezing and other inverse environment. In order to increase the Ectoine production of Moderate halophilic bacteria Halomonas sp. H02, the Ectoine fermentation medium component was optimized by Plackett-Burman (PB) and Response Surface Methodology (RSM) based on the principle of non-complete equilibrium The results of PB experiments showed that the three main influencing factors of Moderate halophilic bacteria Halomonas sp. H02 synthesis Ectoine culture medium were C5H8NNaO4 concentration, NaCl concentration and initial pH. According to the center point of the steepest climbing experiment, the central combination design experiment was used to show that the model is consistent with the actual situation. The optimum combination of three influencing factors were C5H8NNaO4 41 g/L, NaCl 87.2 g/L and initial pH 5.9, and the predicted amount of Ectoine was 1835.8 mg/L, increased by 41.6%.

  14. Studies of a Halophilic NADH Dehydrogenase. 1: Purification and Properties of the Enzyme

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Dalton, Bonnie P.

    1973-01-01

    An NADH dehydrogenase obtained from an extremely halophilic bacterium was purified 570-fold by a combination of gel filtration, chromatography on hydroxyapatite, and ion-exchange chromatography on QAE-Sephadex. The purified enzyme appeared to be FAD-linked and bad an apparent molecular weight of 64000. Even though enzyme activity was stimulated by NaCl, considerable activity (430 % of the maximum activity observed in the presence of 2.5 M NaCl) was observed in the absence of added NaCl. The enzyme was unstable when incubated in solutions of low ionic strength. The presence of NADH enhanced the stability of the enzyme.

  15. Effects of NaCl and CaCl2 on Water Transport across Root Cells of Maize (Zea mays L.) Seedlings 1

    PubMed Central

    Azaizeh, Hassan; Gunse, Benito; Steudle, Ernst

    1992-01-01

    The effect of salinity and calcium levels on water flows and on hydraulic parameters of individual cortical cells of excised roots of young maize (Zea mays L. cv Halamish) plants have been measured using the cell pressure probe. Maize seedlings were grown in one-third strength Hoagland solution modified by additions of NaCl and/or extra calcium so that the seedlings received one of four treatments: control; +100 millimolar NaCl; +10 millimolar CaCl2; +100 millimolar NaCl + 10 millimolar CaCl2. From the hydrostatic and osmotic relaxations of turgor, the hydraulic conductivity (Lp) and the reflection coefficient (σs) of cortical cells of different root layers were determined. Mean Lp values in the different layers (first to third, fourth to sixth, seventh to ninth) of the four different treatments ranged from 11.8 to 14.5 (Control), 2.5 to 3.8 (+NaCl), 6.9 to 8.7 (+CaCl2), and 6.6 to 7.2 · 10−7 meter per second per megapascal (+NaCl + CaCl2). These results indicate that salinization of the growth media at regular calcium levels (0.5 millimolar) decreased Lp significantly (three to six times). The addition of extra calcium (10 millimolar) to the salinized media produced compensating effects. Mean cell σs values of NaCl ranged from 1.08 to 1.16, 1.15 to 1.22, 0.94 to 1.00, and 1.32 to 1.46 in different root cell layers of the four different treatments, respectively. Some of these σs values were probably overestimated due to an underestimation of the elastic modulus of cells, σs values of close to unity were in line with the fact that root cell membranes were practically not permeable to NaCl. However, the root cylinder exhibited some permeability to NaCl as was demonstrated by the root pressure probe measurements that resulted in σsr of less than unity. Compared with the controls, salinity and calcium increased the root cell diameter. Salinized seedlings grown at regular calcium levels resulted in shorter cell length compared with control (by a factor of 2). The results demonstrate that NaCl has adverse effects on water transport parameters of root cells. Extra calcium could, in part, compensate for these effects. The data suggest a considerable apoplasmic water flow in the root cortex. However, the cell-to-cell path also contributed to the overall water transport in maize roots and appeared to be responsible for the decrease in root hydraulic conductivity reported earlier (Azaizeh H, Steudle E [1991] Plant Physiol 97: 1136-1145). Accordingly, the effect of high salinity on the cell Lp was much larger than that on root Lpr. PMID:16669016

  16. Micro-organization of humic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Klučáková, Martina; Věžníková, Kateřina

    2017-09-01

    The methods of dynamic light scattering and micro-rheology were used to investigate the molecular organization of humic acids in solutions. The obtained results were supplemented by ultraviolet/visible spectrometry and measurement of the zeta potential. Particle tracking micro-rheology was used for the first time as a novel method in humic research. Solutions of humic acids were prepared in three different mediums: NaOH, NaCl, and NaOH neutralized by HCl after dissolution of the humic sample. The molecular organization of humic acids was studied over a wide concentration range (0.01-10 g dm-3). Two breaks were detected in the obtained concentration dependencies. The rearrangements were observed at concentrations around 0.02 g dm-3 and 1 g dm-3. Changes in the measured values observed at around 0.02 g dm-3 were less noticeable and were related to the formation of particles between 100 and 1000 nm in size and the strong bimodal character of humic systems diluted by NaCl. The ;switch-over point; at around 1 g dm-3 indicated changes in the secondary structure of humic acids connected with the increase in colloidal stability (decrease of zeta potential), the decrease in polydispersity, and minimal values of viscosity.

  17. Relationships between sucretolerance and salinotolerance in bacteria from hypersaline environments and their implications for the exploration of Mars and the icy worlds

    NASA Astrophysics Data System (ADS)

    Fredsgaard, Casper; Moore, Donald B.; Al Soudi, Amer F.; Crisler, James D.; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.

    2017-04-01

    The most extremely osmotolerant microbial isolates are fungi from high-sugar environments that tolerate the lowest water activity (0.61) for growth yet reported. Studies of osmotolerant bacteria have focused on halotolerance rather than sucretolerance (ability to grow in high sugar concentrations). A collection of salinotolerant (>=10% NaCl or >=50% MgSO4) bacterial isolates from the Great Salt Plains of Oklahoma and Hot Lake in Washington were screened for sucretolerance in medium supplemented with >=50% fructose, glucose or sucrose. Tolerances significantly differed between solutes, even though water activities for saline media (0.92 and 0.85 for 10 and 20% NaCl Salt Plains media, respectively) were comparable or lower than water activities for high-sugar media (0.93 and 0.90 for 50 and 70% sucrose artificial nectar media, respectively). These specific solute effects were differentially expressed among individual isolates. Extrapolating the results of earlier food science studies with yeasts at high sugar concentrations to bacteria in salty environments with low water activity should be done with caution. Furthermore, the discussion of habitable Special Regions on Mars and the icy worlds should reflect an understanding of specific solute effects.

  18. Hydration patterns and salting effects in sodium chloride solution.

    PubMed

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  19. Nitrate photolysis in salty snow

    NASA Astrophysics Data System (ADS)

    Donaldson, D. J.; Morenz, K.; Shi, Q.; Murphy, J. G.

    2016-12-01

    Nitrate photolysis from snow can have a significant impact on the oxidative capacity of the local atmosphere, but the factors affecting the release of gas phase products are not well understood. Here, we report the first systematic study of the amounts of NO, NO2, and total nitrogen oxides (NOy) emitted from illuminated snow samples as a function of both nitrate and total salt (NaCl and Instant Ocean) concentration. We show that the release of nitrogen oxides to the gas phase is directly related to the expected nitrate concentration in the brine at the surface of the snow crystals, increasing to a plateau value with increasing nitrate, and generally decreasing with increasing NaCl or Instant Ocean (I.O.). In frozen mixed nitrate (25 mM) - salt (0-500 mM) solutions, there is an increase in gas phase NO2 seen at low added salt amounts: NO2 production is enhanced by 35% at low prefreezing [NaCl] and by 70% at similar prefreezing [I.O.]. Raman microscopy of frozen nitrate-salt solutions shows evidence of stronger nitrate exclusion to the air interface in the presence of I.O. than with added NaCl. The enhancement in nitrogen oxides emission in the presence of salts may prove to be important to the atmospheric oxidative capacity in polar regions.

  20. Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration.

    PubMed

    Kiura, Hiromasa; Sano, Kouichi; Morimatsu, Shinichi; Nakano, Takashi; Morita, Chizuko; Yamaguchi, Masaki; Maeda, Toyoyuki; Katsuoka, Yoji

    2002-05-01

    Electrolyzed strong acid water (ESW) containing free chlorine at various concentrations is becoming to be available in clinical settings as a disinfectant. ESW is prepared by electrolysis of a NaCl solution, and has a corrosive activity against medical instruments. Although lower concentrations of NaCl and free chlorine are desired to eliminate corrosion, the germicidal effect of ESW with low NaCl and free-chlorine concentrations (ESW-L) has not been fully clarified. In this study, we demonstrated that ESW-L possesses bactericidal activity against Mycobacteria and spores of Bacillus subtilis. The effect was slightly weaker than that of ESW containing higher NaCl and free-chlorine concentrations (ESW-H), but acceptable as a disinfectant. To clarify the mechanism of the bactericidal activity, we investigated ESW-L-treated Pseudomonas aeruginosa by transmission electron microscopy, a bacterial enzyme assay and restriction fragment length polymorphism pattern (RFLP) assay. Since the bacterium, whose growth was completely inhibited by ESW-L, revealed the inactivation of cytoplasmic enzyme, blebs and breaks in its outer membrane and remained complete RFLP of DNA, damage of the outer membrane and inactivation of cytoplasmic enzyme are the important determinants of the bactericidal activity.

  1. Sodium chloride and potassium sorbate: a synergistic combination against Enterococcus faecalis biofilms: an in vitro study.

    PubMed

    van der Waal, Suzette V; Jiang, Lei-Meng; de Soet, Johannes J; van der Sluis, Lucas W M; Wesselink, Paul R; Crielaard, Wim

    2012-10-01

    Incomplete disinfection of the root canal system is a major cause of post-treatment disease. This study aimed to investigate the disinfecting property of organic acid salts and sodium chloride (NaCl), in a double-hurdle strategy, on Enterococcus faecalis biofilms. First of all, the high-throughput resazurin metabolism assay (RMA) was used to test a range of organic acid salts. Then, to gain more insight into the efficacy of sorbate salt solutions, 48-h E. faecalis biofilms were evaluated in colony-forming unit (CFU) assays. Chlorhexidine (CHX) and calcium hydroxide [Ca(OH)(2) ] were tested in parallel as controls. Sorbate salt produced the largest and most significant reduction of fluorescence intensity in the RMA assay. Neither NaCl nor potassium sorbate (KS) alone induced a clinically relevant reduction of CFU counts after 1 h. Surprisingly, the combination of the two in a single solution had a synergistic effect on the inactivation of E. faecalis. Potassium sorbate amplified the efficacy of NaCl. Of the salts tested, NaCl with KS eradicated E. faecalis biofilms within 1 h. This study showed that the double-hurdle strategy indeed leads to synergistic efficacy and is a possible next step in the complete disinfection of endodontic infections. © 2012 Eur J Oral Sci.

  2. Protein Adsorption to In-Line Filters of Intravenous Administration Sets.

    PubMed

    Besheer, Ahmed

    2017-10-01

    Ensuring compatibility of administered therapeutic proteins with intravenous administration sets is an important regulatory requirement. A low-dose recovery during administration of low protein concentrations is among the commonly observed incompatibilities, and it is mainly due to adsorption to in-line filters. To better understand this phenomenon, we studied the adsorption of 4 different therapeutic proteins (2 IgG1s, 1 IgG4, and 1 Fc fusion protein) diluted to 0.01 mg/mL in 5% glucose (B. Braun EcoFlac; B. Braun Melsungen AG, Melsungen, Germany) or 0.9% sodium chloride (NaCl; Freeflex; Fresenius Kabi, Friedberg, Germany) solutions to 8 in-line filters (5 positively charged and 3 neutral filters made of different polymers and by different suppliers). The results show certain patterns of protein adsorption, which depend to a large extent on the dilution solution and filter material, and to a much lower extent on the proteins' biophysical properties. Investigation of the filter membranes' zeta potential showed a correlation between the observed adsorption pattern in 5% glucose solution and the filter's surface charge, with higher protein adsorption for the strongly negatively charged membranes. In 0.9% NaCl solution, the surface charges are masked, leading to different adsorption patterns. These results contribute to the general understanding of the protein adsorption to IV infusion filters and allow the design of more efficient compatibility studies. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Removal of phthalate esters from aqueous solutions by chitosan bead.

    PubMed

    Chen, Chih-Yu; Chung, Ying-Chien

    2006-01-01

    Removal of phthalate esters (PAEs) by chitosan bead in aqueous solution was studied. The adsorption isotherms of PAEs by chitosan bead were well described by Freundlich isotherm equations. Results of kinetic experiments indicated that diheptyl phthalate (DHpP) had the highest adsorption capacity (1.52 mg/g) among six PAEs in our research. PAE adsorption efficiency by chitosan bead was examined in both batch and continuous systems, and DHpP attained 74.9% recovery efficiency from chitosan bead by shaking with an equal volume mixture of methanol and water. The recovered chitosan bead was reusable as an adsorbent. The influences of temperature, pH, Ca+2, and NaCl on PAE adsorption were also evaluated to determine performance in different water environments (e.g., groundwater, surface water, and sea water). The results showed that PAE adsorption decreased as temperature increased. From pH experiments it appeared that pH 8.0 was optimal for adsorption. The effect of Ca+2 showed that adsorption efficiency did not change by increasing the concentrations of Ca+2 until 400 mg/L. NaCl coexistence showed an insignificant effect on PAE adsorption. Furthermore, the chitosan bead was also applied to treating the discharge of a plastics plant, and the treatment results resembled those of a laboratory continuous system. This is the first report to use chitosan bead as an adsorbent to adsorb phthalate esters from aqueous solution. These results indicate that the application of chitosan bead is feasible in the aqueous environments of Taiwan.

  4. 23Na and 35/37Cl as NMR probes of growth and shape of sodium taurodeoxycholate micellar aggregates in the presence of NaCl.

    PubMed

    Asaro, Fioretta; Feruglio, Luigi; Galantini, Luciano; Nardelli, Alessia

    2013-02-15

    The growth of the aggregates of the dihydroxylated bile salt sodium taurodeoxycholate (NaTDC) upon NaCl addition and the involvement of the counterion were investigated by NMR spectroscopy of monoatomic ionic species. (23)Na T(1) values from 0.015, 0.100, and 0.200 mol kg(-1) NaTDC solutions in D(2)O, at variable NaCl content, proved to be sensitive to the transition from primary to secondary aggregates, which occurs in the former sample, and to intermicellar interaction. Some (79)Br NMR measurements were performed on a 0.100 mol kg(-1) NaTDC sample added by NaBr in place of NaCl for comparison purposes. The (23)Na, (35)Cl, and (37)Cl double quantum filtered (DQF) patterns, from the 0.100 mol kg(-1) NaTDC sample, and (23)Na ones also from the 0.200 mol kg(-1) NaTDC one, in the presence of 0.750 mol kg(-1) NaCl, are a clear manifestation of motional anisotropy. Moreover, the DQF spectra of (23)Na and (37)Cl, which possess close quadrupole moments, display a striking similarity. The DQF lineshapes were simulated exploiting the Scilab environment to obtain an estimate of the residual quadrupole splitting magnitude. These results support the description of NaTDC micelles as cylindrical aggregates, strongly interacting at high ionic strengths, and capable of association with added electrolytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Stability of embossed PEI-(PSS-PDADMAC) 20 multilayer films versus storage time and versus a change in ionic strength

    NASA Astrophysics Data System (ADS)

    Ladhari, Nadia; Hemmerlé, Joseph; Haikel, Youssef; Voegel, Jean-Claude; Schaaf, Pierre; Ball, Vincent

    2008-12-01

    The use of microstructured films increased markedly in many areas of science and technology, notably in the design of microfluidic channels and in the design of parallel biosensing arrays. The concept of imprinting polyelectrolyte multilayer films (PEMs) has been introduced recently [C. Gao, B. Wang, J. Feng, J. Shen, Macromolecules 37 (2004) 8836]. These irreversibly imprinted films, obtained by plastic deformation, have to keep their size and shape after contact with fluids having physicochemical properties comparable to those of biological fluids in order to be used as microfluidic channels. We demonstrate herein that PEI-(PSS-PDADMAC) 20 PEMs built-up by the spray deposition from NaCl 1 M solutions and subsequently imprinted with polydimethylsiloxane stamps keep their morphology over time (up to 9 months) when stored in the dry state. In addition the depth of the imprinted channels does not change over this time duration. When the embossed films are immersed in NaCl 0.15 M solutions, mimicking biological fluids, the depth of the imprinted channels also does not significantly change. But, when the imprinted films prepared in the presence of 1 M NaCl are subsequently dipped in a 4 M NaCl solution, partial film loss and subsequent disappearance of the imprinted channels are observed. An explanation for these findings is furnished by means of FTIR spectroscopy in the attenuated total reflection mode (ATR-FTIR). These observations should offer large opportunities for the use of the imprinted multilayer films as microfluidic channels.

  6. Effects of Salinity on Leaf Spectral Reflectance and Biochemical Parameters of Nitrogen Fixing Soybean Plants (Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora D.; Kirova, Elisaveta B.; Yanev, Tony K.; Iliev, Ilko Ts.

    2010-01-01

    Measurements of physiology and hyperspectral leaf reflectance were used to detect salinity stress in nitrogen fixing soybean plants. Seedlings were inoculated with suspension of Bradyrhizobium japonicum strain 273. Salinity was performed at the stage of 2nd-4th trifoliate expanded leaves by adding of NaCl in the nutrient solution of Helrigel in concentrations 40 mM and 80 mM. A comparative analysis was performed between the changes in the biochemical parameters - stress markers (phenols, proline, malondialdehyde, thiol groups), chlorophyll a and b, hydrogen peroxide, and leaf spectral reflectance in the spectral range 450-850 nm. The spectral measurements were carried out by an USB2000 spectrometer. The reflectance data of the control and treated plants in the red, green, red-edge and the near infrared ranges of the spectrum were subjected to statistical analysis. Statistically significant differences were found through the Student's t-criterion at the two NaCl concentrations in all of the ranges examined with the exception of the near infrared range at 40 mM NaCl concentration. Similar results were obtained through linear discriminant analysis. The tents of the phenols, malondialdehyde and chlorophyll a and b were found to decrease at both salinity treatments. In the spectral data this effect is manifested by decrease of the reflectance values in the green and red ranges. The contents of proline, hydrogen peroxide and thiol groups rose with the NaCl concentration increase. At 80 mM NaCl concentration the values of these markers showed a considerable increase giving evidence that the soybean plants were stressed in comparison with the control. This finding is in agreement with the results from the spectral reflectance analysis.

  7. The study of ikaite formation in sea ice

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Nehrke, G.; Dieckmann, G.; Völker, C.; Wolf-Gladrow, D.

    2012-04-01

    Ikaite (CaCO3.6H2O) is a metastable mineral of calcium carbonate, which is usually found in environments characterized by low temperature (below 5° C), high pH, high alkalinity, high concentration of phosphate and organic matter. Although synthetic CaCO3.6H2O was already known from laboratory studies in 1865, ikaite was first observed in nature in 1963. Recently, Dieckmann et al. (2008, 2010) discovered this mineral in sea ice, which at the same time, was the first direct proof of CaCO3 precipitation in sea ice. However, little is known about the mechanism of ikaite formation in sea ice. Our study focuses on how physico-chemical processes in sea ice affect the formation of ikaite. Experiments were set up at pH ranging from 8.5 to 9.0, and salinity ranging from 0 to 105 at 0 ° C, in order to examine the effect of pH, salinity and also phosphate on the formation of ikaite. Preliminary results read: (1) Experiments show that ikaite can form at different pH levels (8.5~9.0). At high pH, the induction time (the time when the crystals start to precipitate) is shorter which means high pH favours the formation of ikaite. This might be expected given higher CO32- concentrations and thus higher saturation levels for ikaite with increasing pH. (2) The results of experiments with different salinities show that ikaite can form over wide range of salinities from 0 to 105 both in Artificial Sea Water (ASW) and NaCl solution in the presence of phosphate. In ASW, the induction time increases with salinity from S = 0 to S =105; while in NaCl solution, the induction time first increases with salinity and then decreases with the further increase of salinity. Salinity plays both positive and negative roles in the formation of ikaite. On the one hand, the increase in salinity will increase the fraction of CO32- in DIC. On the other hand, the increase in salinity means more ions are involved in the solution, which will reduce the activities of Ca2+ and CO32-by forming ion pairs with them. This effect is more obvious in ASW, as there are more ion species in ASW than in the NaCl solution. (3) The effect of different phosphate concentrations at high salinity (S = 70) medium show that in ASW, the precipitate is ikaite both with and without the presence of phosphate. In NaCl solution, the precipitate is ikaite in the presence of phosphate; however, the precipitate is no longer ikaite but vaterite in the absence of phosphate. These results suggest phosphate plays an important role in the formation of ikaite. However, besides phosphate, there must be other ion(s) in ASW, which also favour the formation of ikaite.

  8. Pressure-volume (P-V) curves in Atriplex nummularia Lindl. for evaluation of osmotic adjustment and water status under saline conditions.

    PubMed

    Teixeira Lins, Cíntia Maria; Rodrigues de Souza, Edivan; Farias de Melo, Hidelblandi; Silva Souza Paulino, Martha Katharinne; Dourado Magalhães, Pablo Rugero; Yago de Carvalho Leal, Lucas; Bentzen Santos, Hugo Rafael

    2018-03-01

    The survival of Atriplex nummularia plants in saline environments is possible mainly due to the presence of salt-accumulating epidermal vesicles. Commonly, destructive methods, such as plant material maceration and subsequent reading in osmometers, are employed in studies on water relations and osmotic adjustment and are inconvenient due to their underestimation of the total water potential inside the cells, which can cause overestimation of an osmotic adjustment that is not present. As a result, methods that preserve leaf structure, such as pressure-volume (P-V) curves, which take into consideration only the salts that compose the symplastic solution, are more adequate. Thus, the main objectives of this study were to evaluate the effect of determination methods of osmotic potential (Ψ o ) in Atriplex nummularia through destructive and leaf structure-preserving techniques and to determine the water relations of the species under increasing NaCl concentrations. Plants were subjected to daily irrigations, maintaining soil moisture at 80% of field capacity, with solutions of increasing NaCl concentration (0, 0.05, 0.1, 0.2, 0.25 and 0.3 M) for 84 days. Water potential, osmotic potential and osmotic adjustment were determined. In addition, P-V curves were constructed using pressure chambers. Water and osmotic potentials decreased linearly with increasing NaCl concentration in the irrigation solution. The main discrepancies observed were related to the osmotic adjustments determined through maceration and P-V curves. Based on the present research, it was possible to conclude that in studies with species that have salt-accumulating vesicles in the epidermis, such as the plants in the genus Atriplex, constructing P-V curves is more adequate than destructive methods. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Rectal forceps biopsy procedure in cystic fibrosis: technical aspects and patients perspective for clinical trials feasibility

    PubMed Central

    2013-01-01

    Background Measurements of CFTR function in rectal biopsies ex vivo have been used for diagnosis and prognosis of Cystic Fibrosis (CF) disease. Here, we aimed to evaluate this procedure regarding: i) viability of the rectal specimens obtained by biopsy forceps for ex vivo bioelectrical and biochemical laboratory analyses; and ii) overall assessment (comfort, invasiveness, pain, sedation requirement, etc.) of the rectal forceps biopsy procedure from the patients perspective to assess its feasibility as an outcome measure in clinical trials. Methods We compared three bowel preparation solutions (NaCl 0.9%, glycerol 12%, mannitol), and two biopsy forceps (standard and jumbo) in 580 rectal specimens from 132 individuals (CF and non-CF). Assessment of the overall rectal biopsy procedure (obtained by biopsy forceps) by patients was carried out by telephone surveys to 75 individuals who underwent the sigmoidoscopy procedure. Results Integrity and friability of the tissue specimens correlate with their transepithelial resistance (r = −0.438 and −0.305, respectively) and are influenced by the bowel preparation solution and biopsy forceps used, being NaCl and jumbo forceps the most compatible methods with the electrophysiological analysis. The great majority of the individuals (76%) did not report major discomfort due to the short procedure time (max 15 min) and considered it relatively painless (79%). Importantly, most (88%) accept repeating it at least for one more time and 53% for more than 4 times. Conclusions Obtaining rectal biopsies with a flexible endoscope and jumbo forceps after bowel preparation with NaCl solution is a safe procedure that can be adopted for both adults and children of any age, yielding viable specimens for CFTR bioelectrical/biochemical analyses. The procedure is well tolerated by patients, demonstrating its feasibility as an outcome measure in clinical trials. PMID:23688510

  10. Coupling Molecular Beacons to Barcoded Metal Nanowires for Multiplexed, Sealed Chamber DNA Bioassays

    PubMed Central

    Stoermer, Rebecca L.; Cederquist, Kristin B.; McFarland, Sean K.; Sha, Michael Y.; Penn, Sharron G.

    2010-01-01

    We have combined molecular beacon (MB) probes with barcoded metal nanowires to enable no-wash, sealed chamber, multiplexed detection of nucleic acids. Probe design and experimental parameters important in nanowire-based MB assays are discussed. Loop regions of 24 bases and 5 base pair stem regions in the beacon probes gave optimal performance. Our results suggest that thermodynamic predictions for secondary structure stability of solution-phase MB can guide probe design for nanowire-based assays. Dengue virus-specific probes with predicted solution-phase ΔG of folding in 500 mM buffered NaCl of approximately −4 kcal/mol performed better than those with ΔG > −2 or < −6 kcal/mol. Buffered 300–500 mM NaCl was selected after comparison of several buffers previously reported for similar types of assays, and 200–500 mM NaCl was found to be the optimal ionic strength for the hybridization temperatures (25 and 50 °C) and probe designs used here. Target binding to the surface as a function of solution concentration fit a Sips isotherm with Kd = 1.7 ± 0.3 nM. The detection limit was ∼100 pM, limited by incomplete quenching. Single base mismatches could be discriminated from fully complementary targets. Oligonucleotide target sequences specific for human immunodeficiency, hepatitis C, and severe acute respiratory viruses were assayed simultaneously in a no-wash, sealed chamber, multiplexed experiment in which each of three probe sequences was attached to a different pattern of encoded nanowires. Finally, we demonstrated that probe-coated nanowires retain their selectivity and sensitivity in a triplexed assay after storage for over 3 months. PMID:17177440

  11. Effect of Azotobacter vinelandii and compatible solutes on germination wheat seeds and root concentrations of sodium and potassium under salt stress.

    PubMed

    Silini, A; Silini-Chérif, H; Ghoul, M

    2012-02-01

    The effect of plant growth-promoting Rhizobacteria (PGPR) and exogenous application of compatible solutes on seed germination and root concentrations of sodium and potassium of two wheat varieties (Triticum durum L.) were evaluated under saline stress. In this experiment, Azotobacter vinelandii strain DSM85, glycine betaine and proline were used. Inoculated seeds for each variety were placed on Whatman paper in 9 cm Petri dishes containing 15 mL of distilled water or NaCl solutions at various concentrations (control, 100, 200, 300 mM) supplemented with or without glycine betaine (GB) or proline at 5 mM. The results indicated that addition of proline (5 mM) stimulated the production of indol acetic acid and the growth of A. vinelandii at 200 and 300 mM NaCl, respectively. The germination rate index and the germination final percentage decreased significantly (p < 0.05) with increasing salinity level. The germination was significantly diminished at 300 mM with significant variation among varieties and Waha variety had higher germination percentage than Bousselam variety. Inoculation of seeds by A. vinelandii and exogenous application of proline had significantly positive effect on the germination at this concentration of NaCl. The rate of accumulation of Na+ in roots was important at 100 mM and increased at 200 mM. The concentration of K+ decreased when salinity increased. The effect of inoculation or inoculation with proline decreased the accumulation of Na' and reduced the loss of K+ under salt stress. From the present study we can conclude that the use of A. vinelandii strain DSM85 and external application of low concentrations of proline on seeds might be considered as a strategy for the protection of plants under saline stress.

  12. Influence of collector surface composition and water chemistry on the deposition of cerium dioxide nanoparticles: QCM-D and column experiment approaches.

    PubMed

    Liu, Xuyang; Chen, Gexin; Su, Chunming

    2012-06-19

    The deposition behavior of cerium dioxide (CeO(2)) nanoparticles (NPs) in dilute NaCl solutions was investigated as a function of collector surface composition, pH, ionic strength, and organic matter (OM). Sensors coated separately with silica, iron oxide, and alumina were applied in quartz crystal microbalance with dissipation (QCM-D) to examine the effect of these mineral phases on CeO(2) deposition in NaCl solution (1-200 mM). Frequency and dissipation shift followed the order: silica > iron oxide > alumina in 10 mM NaCl at pH 4.0. No significant deposition was observed at pH 6.0 and 8.5 on any of the tested sensors. However, ≥ 94.3% of CeO(2) NPs deposited onto Ottawa sand in columns in 10 mM NaCl at pH 6.0 and 8.5. The inconsistency in the different experimental approaches can be mainly attributed to NP aggregation, surface heterogeneity of Ottawa sand, and flow geometry. In QCM-D experiments, the deposition kinetics was found to be qualitatively consistent with the predictions based on the classical colloidal stability theory. The presence of low levels (1-6 mg/L) of Suwannee River humic acid, fulvic acid, alginate, citric acid, and carboxymethyl cellulose greatly enhanced the stability and mobility of CeO(2) NPs in 1 mM NaCl at pH 6.5. The poor correlation between the transport behavior and electrophoretic mobility of CeO(2) NPs implies that the electrosteric effect of OM was involved.

  13. Aerial biomass and elemental changes in Atriplex canescens and A. acanthocarpa as affected by salinity and soil water availability

    Treesearch

    Ricardo Mata-Gonzalez; Ruben Melendez-Gonzalez; J. Jesus Martinez-Hernandez

    2001-01-01

    Atriplex canescens and A. acanthocarpa from the Chihuahuan Desert in Mexico were subjected to different salinity and irrigation treatments in a greenhouse study. Plants were grown in pots containing soil and irrigated with NaCl solutions of 0, 50, and 100 mM at 40 and 80 percent available soil water. Aerial biomass of A. canescens declined as NaCl treatments increased...

  14. Immunization of sockeye salmon (Oncorhynchus nerka) against vibriosis using the hyperosmotic infiltration technique

    USGS Publications Warehouse

    Croy, Thomas R.; Amend, Donald F.

    1977-01-01

    Various procedures of hyperosmotic infiltration (HI) and intraperitoneal injection were used to vaccinate sockeye salmon (Oncorhynchus nerka) with killed Vibrio anguillarum. Excellent protection was evident against experimentally induced vibriosis in the groups immunized by HI with 10 × Hanks' balanced salt solution (HBSS), 1 × HBSS with 8.0% NaCl and 5.3% NaCl, as well as in the injected groups. Comparisons were made among the various immunization methods by vaccinating fish with ten-fold serial dilutions of bacterin, then challenging them by the water contact method after 6 or 9 weeks. Protection was somewhat better with 10 × HBSS than with 5.3% NaCl, and 1 × HBSS containing 8.0% NaCl was markedly superior to the vaccination of fish without hyperosmotic treatment. Agglutinin titers did not exceed 1 : 8 in any group.

  15. On the role of convective motion during dendrite growth: Experiments under variable gravity, revised

    NASA Technical Reports Server (NTRS)

    Hallett, J.; Cho, N.; Harrison, K.; Lord, A.; Wedum, E.; Purcell, R.; Saunders, C. P. R.

    1987-01-01

    Experiments show the effect of self induced convection on individual dendrite growth in uniformly supercooled samples and solidification of the resulting mush under conditions of high and low g. Convection is visualized by a Schlieren optical system or a Mach Zender interferometer. For ice crystals growing from the vapor in air, a slight reduction in linear growth rate occur under low g. For ice crystals growing from NaCl solution, dendrite tip velocities are unchanged, but subsequent mush solidification is enhanced through drainage channels under higher g. By contrast, sodium sulfate decahydrate dendrites growing from solution produce convective plumes which lead to higher tip growth rate only as the crystal growth direction approaches that of gravity. Convective plumes are laminar for small crystals under conditions of these experiments; the rise velocity of such plumes is greater than individual vortex rings under identical conditions. Convection effects are only present in solution under a critical supercooling less than about 5 C for sodium sulfate and 2 C for ice in NaCl since at higher supercooling the crystallization velocity, proportional to the square of the supercooling, exceeds the convective velocity, proportional to the square root of the supercooling. The role of convective velocity in bulk solidification is to give a large scale flow which under extreme cases may lead to extensive secondary crystal production, which alters the resulting crystal texture of the completely solidified melt.

  16. Coulometric sodium chloride removal system with Nafion membrane for seawater sample treatment.

    PubMed

    Grygolowicz-Pawlak, Ewa; Sohail, Manzar; Pawlak, Marcin; Neel, Bastien; Shvarev, Alexey; de Marco, Roland; Bakker, Eric

    2012-07-17

    Seawater analysis is one of the most challenging in the field of environmental monitoring, mainly due to disparate concentration levels between the analyte and the salt matrix causing interferences in a variety of analytical techniques. We propose here a miniature electrochemical sample pretreatment system for a rapid removal of NaCl utilizing the coaxial arrangement of an electrode and a tubular Nafion membrane. Upon electrolysis, chloride is deposited at the Ag electrode as AgCl and the sodium counterions are transported across the membrane. This cell was found to work efficiently at potentials higher than 400 mV in both stationary and flow injection mode. Substantial residual currents observed during electrolysis were found to be a result of NaCl back diffusion from the outer side of the membrane due to insufficient permselectivity of the Nafion membrane. It was demonstrated that the residual current can be significantly reduced by adjusting the concentration of the outer solution. On the basis of ion chromatography results, it was found that the designed cell used in flow injection electrolysis mode reduced the NaCl concentration from 0.6 M to 3 mM. This attempt is very important in view of nutrient analysis in seawater where NaCl is a major interfering agent. We demonstrate that the pretreatment of artificial seawater samples does not reduce the content of nitrite or nitrate ions upon electrolysis. A simple diffusion/extraction steady state model is proposed for the optimization of the electrolysis cell characteristics.

  17. Crevice corrosion - NaCl concentration map for grade-2 titanium at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujikawa, Shigeo; Kojima, Yoichi

    1993-12-31

    The repassivation potential, ER, for metal/metal-crevice of Commercially Pure Titanium, C.P.Ti, was determined in NaCl solutions at temperatures up to 250C. The ER has its least noble value near 100C and becomes more noble as the temperature increases. As shown in previous research, the shrinkage of the repassivation region should continue with increasing temperatures. However, in conducting this same experiment at temperatures higher than 100C, an examination of the NaCl concentration - temperature - crevice corrosion map verifies that the repassivation region began to expand again when the temperature exceeded 140C. This expansion continued as the temperature continued to increase.

  18. Anomalous surface behavior of hydrated guanidinium ions due to ion pairing

    NASA Astrophysics Data System (ADS)

    Ekholm, Victor; Vazdar, Mario; Mason, Philip E.; Bialik, Erik; Walz, Marie-Madeleine; Öhrwall, Gunnar; Werner, Josephina; Rubensson, Jan-Erik; Jungwirth, Pavel; Björneholm, Olle

    2018-04-01

    Surface affinity of aqueous guanidinium chloride (GdmCl) is compared to that of aqueous tetrapropylammonium chloride (TPACl) upon addition of sodium chloride (NaCl) or disodium sulfate (Na2SO4). The experimental results have been acquired using the surface sensitive technique X-ray photoelectron spectroscopy on a liquid jet. Molecular dynamics simulations have been used to produce radial distribution functions and surface density plots. The surface affinities of both TPA+ and Gdm+ increase upon adding NaCl to the solution. With the addition of Na2SO4, the surface affinity of TPA+ increases, while that of Gdm+ decreases. From the results of MD simulations it is seen that Gdm+ and SO4 2 - ions form pairs. This finding can be used to explain the decreased surface affinity of Gdm+ when co-dissolved with SO4 2 - ions. Since SO4 2 - ions avoid the surface due to the double charge and strong water interaction, the Gdm+-SO4 2 - ion pair resides deeper in the solutions' bulk than the Gdm+ ions. Since TPA+ does not form ion pairs with SO4 2 -, the TPA+ ions are instead enriched at the surface.

  19. Performance of Al-0.5 Mg-0.02 Ga-0.1 Sn-0.5 Mn as anode for Al-air battery in NaCl solutions

    NASA Astrophysics Data System (ADS)

    Ma, Jingling; Wen, Jiuba; Gao, Junwei; Li, Quanan

    2014-05-01

    In this research, metal-air battery based on Al, Zn, Al-0.5 Mg-0.02 Ga-0.1 Sn and Al-0.5 Mg-0.02 Ga-0.1 Sn-0.5 Mn (wt%) is prepared and the battery performance is investigated by constant current discharge test in 2 mol L-1 NaCl solutions. The characteristics of the anodes after discharge are investigated by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM). The corrosion behavior of the anodes is studied by self-corrosion rate measurement and potentiodynamic polarization measurement. The results show that Al-Mg-Ga-Sn-Mn is more active than Al, Zn and Al-Mg-Ga-Sn anodes. The self-corrosion rate is found to be in the order: Al < Al-Mg-Ga-Sn-Mn < Al-Mg-Ga-Sn < Zn. It has been observed that the Al-air battery based on Al-Mg-Ga-Sn-Mn offers higher operating voltage and anodic utilization than those with others. SEM and EIS results of the alloy are in good agreement with corrosion characteristics.

  20. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Svoboda, Martin; Lísal, Martin

    2018-06-01

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  1. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations.

    PubMed

    Svoboda, Martin; Lísal, Martin

    2018-06-14

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  2. Growth and cellular ion content of a salt-sensitive symbiotic system Azolla pinnata-Anabaena azollae under NaCl stress.

    PubMed

    Rai, Vandna; Sharma, Naveen Kumar; Rai, Ashwani K

    2006-09-01

    Salinity, at a concentration of 10 mM NaCl affected the growth of Azolla pinnata-Anabaena azollae association and became lethal at 40 mM. Plants exposed up to 30 mM NaCl exhibited longer roots than the control, especially during the beginning of incubation. Average root number in plants exposed to 10 and 20 mM NaCl remained almost the same as in control. A further rise in NaCl concentration to 30 mM reduced the root number, and roots shed off at 40 mM NaCl. Presence of NaCl in the nutrient solution increased the cellular Na+ of the intact association exhibiting differential accumulation by individual partners, while it reduced the cellular Ca2+ level. However, cellular K+ content did not show significant change. Cellular Na+ based on fresh weight of respective individual partners (host tissues and cyanobiont) remained higher in the host tissues than the cyanobiont, while reverse was true for K+ and Ca2+ contents. The contribution of A. azollae in the total cellular ion content of the association was a little because of meagre contribution of the cyanobiont mass (19-21%). High salt sensitivity of Azolla-Anabaena complex is due to an inability of the association to maintain low Na+ and high Ca2+ cellular level.

  3. An Efficient Method for Co-purification of Eggshell Matrix Proteins OC-17, OC-116, and OCX-36

    PubMed Central

    2016-01-01

    In this study, we improved the eggshell-membrane separation process by separating the shell and membrane with EDTA solution, evaluating effects of three different extraction solutions (acetic acid, EDTA, and phosphate solution), and co-purifying multiple eggshell proteins with two successive ion-exchange chromatography procedures (CM Sepharose Fast Flow and DEAE Sepharose Fast Flow). The recovery and residual rates of eggshell and membrane separated by the modified method with added EDTA solution were 93.88%, 91.15% and 1.01%, 2.87%, respectively. Ovocleidin-116 (OC-116) and ovocalyxin-36 (OCX-36) were obtained by loading 50 mM Na-Hepes, pH 7.5, 2 mM DTT and 350 mM NaCl buffer onto the DEAE-FF column at a flow rate of 1 mL/min, ovocleidin-17 (OC-17) was obtained by loading 100 mM NaCl, 50 mM Tris, pH 8.0 on the CM-FF column at a flow rate of 0.5 mL/min. The purities of OCX-36, OC-17 and OC-116 were 96.82%, 80.15% and 73.22%, and the recovery rates were 55.27%, 53.38% and 36.34%, respectively. Antibacterial activity test suggested that phosphate solution extract exhibited significantly higher activity against the tested bacterial strains than the acetic acid or EDTA extract, probably due to more types of proteins in the extract. These results demonstrate that this separation method is feasible and efficient. PMID:28115888

  4. The Link between low H2O Activity and Chloride Brines in High-Grade Metamorphism - A Status Report

    NASA Astrophysics Data System (ADS)

    Manning, C. E.; Newton, R. C.

    2006-12-01

    High-grade metamorphic mineral assemblages typically record low activity of H2O (aH2O) at peak conditions. Substantial debate has centered on whether low aH2O requires the presence of a hydrous melt or of a fluid phase. Lowering aH2O in a fluid phase by CO2 is problematic because (1) at requisite compositions and observed fO2, graphite should be stable but is not observed; and (2) H2O-CO2 fluids are poor solvents for many of the components observed to be mobile at the amphibolite-granulite transition. In contrast, chloride brines are more likely to be responsible for reduced aH2O where a fluid phase is present (e.g., Newton et al., 1998, Precambrian Res., 91, 41). However, the properties of such brines are poorly understood at high P and T. We are addressing this problem through a program of experimental measurement of mineral solubilities in NaCl-H2O solutions at high P and T. Results indicate that, at 800°C and 10 kbar, solubilities of volatile-bearing, congruently soluble Ca minerals increase strongly with NaCl to halite saturation. At XNaCl = 0.3 (assuming full dissociation), Ca mole fractions in solutions increase as follows: 0.0012 (apatite), 0.0075 (fluorite), 0.0107 (calcite), 0.0513 (anhydrite). Because solubilities of F, CO2, and SO4 will increase correspondingly, H2O-NaCl brines will promote significant volatile transfer. By contrast, oxides exhibit variable behavior. At the same P and T, quartz solubility decreases monotonically with increasing NaCl, whereas corundum, hematite, wollastonite, diopside, and grossular mole fractions all increase to maxima at low to moderate XNaCl, and then decline to halite saturation. These results indicate that SiO2 does not ineract with NaCl, whereas the dissolution of the other minerals involves consumption of NaCl by solutes to a greater extent than H2O. Notably, solubility of Al is strongly enhanced in NaCl-H2O with SiO2 ± CaO. It is unlikely that all instances of low aH2O in high-grade metamorphic rocks are explained by a single mechanism; however, our results clearly demonstrate that, where present, a low- aH2O chloride brine can act as a powerful solvent in the lower crust, even at very low water-rock ratios.

  5. Molecular dynamics study of structure and vibrational spectra at zwitterionoic lipid/aqueous KCl, NaCl, and CaCl2 solution interfaces

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Shirai, Shinnosuke; Okumura, Tomoaki; Morita, Akihiro

    2018-06-01

    Molecular dynamics (MD) simulations of KCl, NaCl, and CaCl2 solution/dipalmytoylphosphatidylcholine lipid interfaces were performed to analyze heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectra in relation to the interfacial water structure. The present MD simulation well reproduces the experimental spectra and elucidates a specific cation effect on the interfacial structure. The K+, Na+, and Ca2+ cation species penetrate in the lipid layer more than the anions in this order, due to the electrostatic interaction with negative polar groups of lipid, and the electric double layer between the cations and anions cancels the intrinsic orientation of water at the water/lipid interface. These mechanisms explain the HD-VSFG spectrum of the water/lipid interface and its spectral perturbation by adding the ions. The lipid monolayer reverses the order of surface preference of the cations at the solution/lipid interface from that at the solution/air interface.

  6. Regulation of the putative TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Lyall, Vijay; Phan, Tam-Hao T; Ren, ZuoJun; Mummalaneni, Shobha; Melone, Pamela; Mahavadi, Sunila; Murthy, Karnam S; DeSimone, John A

    2010-03-01

    Regulation of the putative amiloride and benzamil (Bz)-insensitive TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate (PIP(2)) was studied by monitoring chorda tympani (CT) taste nerve responses to 0.1 M NaCl solutions containing Bz (5 x 10(-6) M; a specific ENaC blocker) and resiniferatoxin (RTX; 0-10 x 10(-6) M; a specific TRPV1 agonist) in Sprague-Dawley rats and in wildtype (WT) and TRPV1 knockout (KO) mice. In rats and WT mice, RTX elicited a biphasic effect on the NaCl + Bz CT response, increasing the CT response between 0.25 x 10(-6) and 1 x 10(-6) M. At concentrations >1 x 10(-6) M, RTX inhibited the CT response. An increase in PIP(2) by topical lingual application of U73122 (a phospholipase C blocker) or diC8-PIP(2) (a short chain synthetic PIP(2)) inhibited the control NaCl + Bz CT response and decreased its sensitivity to RTX. A decrease in PIP(2) by topical lingual application of phenylarsine oxide (a phosphoinositide 4 kinase blocker) enhanced the control NaCl + Bz CT response, increased its sensitivity to RTX stimulation, and inhibited the desensitization of the CT response at RTX concentrations >1 x 10(-6) M. The ENaC-dependent NaCl CT responses were not altered by changes in PIP(2). An increase in PIP(2) enhanced CT responses to sweet (0.3 M sucrose) and bitter (0.01 M quinine) stimuli. RTX produced the same increase in the Bz-insensitive Na(+) response when present in salt solutions containing 0.1 M NaCl + Bz, 0.1 M monosodium glutamate + Bz, 0.1 M NaCl + Bz + 0.005 M SC45647, or 0.1 M NaCl + Bz + 0.01 M quinine. No effect of RTX was observed on CT responses in WT mice and rats in the presence of the TRPV1 blocker N-(3-methoxyphenyl)-4-chlorocinnamide (1 x 10(-6) M) or in TRPV1 KO mice. We conclude that PIP(2) is a common intracellular effector for sweet, bitter, umami, and TRPV1t-dependent salt taste, although in the last case, PIP(2) seems to directly regulate the taste receptor protein itself, i.e., the TRPV1 ion channel or its taste receptor variant, TRPV1t.

  7. ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions.

    PubMed

    Liu, Nei-Ling; Dutta, Saikat; Salunkhe, Rahul R; Ahamad, Tansir; Alshehri, Saad M; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C-W

    2016-07-12

    Three-dimensional (3-D) ZIF-8 derived carbon polyhedrons with high nitrogen (N) content, (denoted as NC-800) are synthesized for their application as high-performance electrodes in electrosorption of salt ions. The results showed a high specific capacitance of 160.8 F·g(-1) in 1 M NaCl at a scan rate of 5 mV·s(-1). Notably, integration of 3-D mesopores and micropores in NC-800 achieves an excellent capacitive deionization (CDI) performance. The electrosorption of salt ions at the electrical double layer is enhanced by N-doping at the edges of a hexagonal lattice of NC-800. As evidenced, when the initial NaCl solution concentration is 1 mM, the resultant NC-800 exhibits a remarkable CDI potential with a promising salt electrosorption capacity of 8.52 mg·g(-1).

  8. ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions

    PubMed Central

    Liu, Nei-Ling; Dutta, Saikat; Salunkhe, Rahul R.; Ahamad, Tansir; Alshehri, Saad M.; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C.-W.

    2016-01-01

    Three-dimensional (3-D) ZIF-8 derived carbon polyhedrons with high nitrogen (N) content, (denoted as NC-800) are synthesized for their application as high-performance electrodes in electrosorption of salt ions. The results showed a high specific capacitance of 160.8 F·g−1 in 1 M NaCl at a scan rate of 5 mV·s−1. Notably, integration of 3-D mesopores and micropores in NC-800 achieves an excellent capacitive deionization (CDI) performance. The electrosorption of salt ions at the electrical double layer is enhanced by N-doping at the edges of a hexagonal lattice of NC-800. As evidenced, when the initial NaCl solution concentration is 1 mM, the resultant NC-800 exhibits a remarkable CDI potential with a promising salt electrosorption capacity of 8.52 mg·g−1. PMID:27404086

  9. Umami compounds enhance the intensity of retronasal sensation of aromas from model chicken soups.

    PubMed

    Nishimura, Toshihide; Goto, Shingo; Miura, Kyo; Takakura, Yukiko; Egusa, Ai S; Wakabayashi, Hidehiko

    2016-04-01

    We examined the influence of taste compounds on retronasal aroma sensation using a model chicken soup. The aroma intensity of a reconstituted flavour solution from which glutamic acid (Glu), inosine 5'-monophosphate (IMP), or phosphate was omitted was significantly lower (p<0.05) than that of the model soup. The aroma intensity of 0.4% NaCl solution containing the aroma chicken model (ACM) with added Glu and IMP was significantly higher (p<0.05) than that of 0.4% NaCl solution containing only ACM. The quantitative analyses showed that adding monosodium glutamate (MSG) to aqueous aroma solution containing only ACM enhanced the intensity of retronasal aroma sensation by 2.5-folds with increasing MSG concentration from 0% to 0.3%. Sensation intensity using an umami solution with added MSG and IMP was significantly higher than that with only MSG when the MSG concentration was 0.05%, 0.075%, or 0.1%. However, it plateaued when MSG concentration was beyond 0.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Inhibitory effect of konjac glucomanan on pitting corrosion of AA5052 aluminium alloy in NaCl solution.

    PubMed

    Zhang, Kegui; Yang, Wenzhong; Xu, Bin; Chen, Yun; Yin, Xiaoshuang; Liu, Ying; Zuo, Huanzhen

    2018-05-01

    A natural carbohydrate polymer, konjac glucomanan, has been extracted from commercial product and studied as a green corrosion inhibitor for AA5052 aluminium alloy in 3.5 wt% NaCl solution by high-performance gel permeation chromatography (GPC), thermo gravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectra, electrochemical measurement and surface characterization techniques. The results of GPC measurements suggest the weight-average molecular weight and the number-average molecular weight of KGM with 98.2% purity are 1.61 × 10 5  g/mol and 1.54 × 10 5  g/mol, respectively. Potentiodynamic polarization curves show konjac glucomanan behaves as a mixed-type inhibitor with dominant anodic effect and that its maximum efficiency at 200 ppm is 94%. Electrochemical impedance spectroscopy (EIS) studies reveal the resistance of oxide film is approximately two orders of magnitude greater than the resistance of adsorbed inhibitor layer and that they both increase with KGM concentration. Moreover, in-situ electrochemical noise (EN) detection demonstrates that the growth and propagation stages of the pitting corrosion germinating on metal surface are blocked by polysaccharide additive, which is confirmed by the surface analysis of aluminium alloy using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and Raman spectroscopy. At last, it is found that the addition of KGM makes it harder for water droplet containing NaCl to wet the metallic substrate. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobacter salexigens.

    PubMed

    Vargas, C; Jebbar, M; Carrasco, R; Blanco, C; Calderón, M I; Iglesias-Guerra, F; Nieto, J J

    2006-01-01

    To investigate the catabolism of ectoine and hydroxyectoine, which are the major compatible solutes synthesized by Chromohalobacter salexigens. Growth curves performed in M63 minimal medium with low (0.75 mol l(-1) NaCl), optimal (1.5 mol l(-1) NaCl) or high (2.5 mol l(-1) NaCl) salinity revealed that betaine and ectoines were used as substrate for growth at optimal and high salt. Ectoine transport was maximal at optimal salinity, and showed 3- and 1.5-fold lower values at low and high salinity respectively. The salt-sensitive ectA mutant CHR62 showed an ectoine transport rate 6.8-fold higher than that of the wild type. Incubation of C. salexigens in a mixture of glucose and ectoine resulted in a biphasic growth pattern. However, CO(2) production due to ectoine catabolism was lower, but not completely abolished, in the presence of glucose. When used as the sole carbon source, glycine betaine effectively inhibited ectoine and hydroxyectoine synthesis at any salinity. The catabolic pathways for ectoine and hydroxyectoine in C. salexigens operate at optimal and high (although less efficiently) salinity. Endogenous ectoine(s) may repress its own transport. Ectoine utilization was only partially repressed by glucose. Betaine, when used as carbon source, suppresses synthesis of ectoines even under high osmolarity conditions. This study is a previous step to the subsequent isolation and manipulation of the catabolic genes, so as to generate strains with enhanced production of ectoine and hydroxyectoine.

  12. Evaluation of the pH- and Thermal Stability of the Recombinant Green Fluorescent Protein (GFP) in the Presence of Sodium Chloride

    NASA Astrophysics Data System (ADS)

    Ishii, Marina; Kunimura, Juliana Sayuri; Jeng, Hélio Tallon; Vessoni Penna, Thereza Christina; Cholewa, Olivia

    The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95°C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84 ±0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94±0.60) was half that observed in phosphate buffer (pH 6.08±0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80°C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65±0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80°C. GFP pH-and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.

  13. Viscosity of NaCl and other solutions up to 350{sup 0}C and 50 MPa pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.L.; Ozbek, H.; Igbene, A.

    1980-11-01

    Experimental values for the viscosity of sodium chloride solutions are critically reviewed for application to geothermal energy. Data published recently by Kestin, Los, Pepinov, and Semenyuk as well as earlier data are included. A theoretically based equation for calculating relative viscosity was developed, and used to generate tables of smoothed values over the ranges 20{sup 0}C to 350{sup 0}C, 0 to 5 m and pressures up to 50 MPa. The equation reproduces selected data to an average of better than 2 percent over the entire range of temperatures and pressures. Selected tables of data are included for KCl up tomore » 150{sup 0}C, CaCl{sub 2} solutions up to 100{sup 0}C, and for mixtures of NaCl with KCl and CaCl{sub 2}. Recommendations are given for additional data needs.« less

  14. Influence of De-icers on the Corrosion and Fatigue Behavior of 4140 Steel

    NASA Astrophysics Data System (ADS)

    Dean, William P.; Sanford, Brittain J.; Wright, Matthew R.; Evans, Jeffrey L.

    2012-11-01

    The purpose of this test was to evaluate the effects of calcium magnesium acetate (CMA) and sodium chloride (NaCl)—two common substances used to de-ice roadways—on the corrosion and fatigue behavior of annealed AISI 4140 steel. When CMA-corroded, NaCl-corroded, and as-machined samples were tested using R = 0.1, and f = 20 Hz, it was found that, within the scope of this study, samples corroded in both 3.5% CMA solution and 3.5% NaCl solution exhibited a lower fatigue strength than samples tested in the as-machined, uncorroded condition. For the short lives tested in this study, the difference in the effects of CMA and NaCl is minimal. However, at longer lives it is suspected, based on the trends, that the CMA solution would be less detrimental to the fatigue life.

  15. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity.

    PubMed

    Sawtarie, Nader; Cai, Yuhang; Lapitsky, Yakov

    2017-09-01

    Nanoparticles prepared through the ionotropic gelation of chitosan with tripolyphosphate (TPP) have been extensively studied as vehicles for drug and gene delivery. Though a number of these works have focused on preparing particles with narrow size distributions, the monodisperse particles produced by these methods have been limited to narrow size ranges (where the average particle size was not varied by more than twofold). Here we show how, by tuning the NaCl concentration in the parent chitosan and TPP solutions, low-polydispersity particles with z-average diameters ranging between roughly 100 and 900nm can be prepared. Further, we explore how the size of these particles depends on the method by which the TPP is mixed into the chitosan solution, specifically comparing: (1) single-shot mixing; (2) dropwise addition; and (3) a dilution technique, where chitosan and TPP are codissolved at a high (gelation-inhibiting) ionic strength and then diluted to lower ionic strengths to trigger gelation. Though the particle size increases sigmoidally with the NaCl concentration for all three mixing methods, the dilution method delivers the most uniform/gradual size increase - i.e., it provides the most precise control. Also investigated are the effects of mixture composition and mixing procedure on the particle yield. These reveal the particle yield to increase with the chitosan/TPP concentration, decrease with the NaCl concentration, and vary only weakly with the mixing protocol; thus, at elevated NaCl concentrations, it may be beneficial to increase chitosan and TPP concentrations to ensure high particle yields. Finally, possible pitfalls of the salt-assisted size control strategy (and their solutions) are discussed. Taken together, these findings provide a simple and reliable method for extensively tuning chitosan/TPP particle size while maintaining narrow size distributions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thirst Increases Chorda Tympani Responses to Sodium Chloride.

    PubMed

    Mast, Thomas G; Breza, Joseph M; Contreras, Robert J

    2017-10-01

    In nature, water is present as a low-salt solution, thus we hypothesized that thirst would increase taste responses to low-salt solutions. We investigated the effect of thirst on the 2 different salt detection mechanisms present in the rat chorda tympani (CT) nerve. The first mechanism is dependent upon the epithelial sodium channel (ENaC), is blocked by benzamil, and is specific to the cation sodium. The second mechanism, while undefined, is independent of ENaC, and detects multiple cations. We expected thirst to increase benzamil-sensitive sodium responses due to mechanistically increasing the benzamil-sensitive ENaC. We recorded CT whole-nerve electrophysiological responses to lingual application of NaCl, KCl (30, 75, 150, 300, 500, and 600 mM), and imitation rainwater in both control and 24-h water-restricted male rats. NaCl solutions were presented in artificial saliva before and after lingual application of 5µM benzamil. Water restriction significantly increased the integrated CT responses to NaCl but not to KCl or imitation rainwater. Consistent with our hypothesis, only the benzamil-sensitive, and not the benzamil-insensitive, CT sodium response significantly increased. Additionally, CT responses to salt were recorded following induction of either osmotic or volemic thirst. Both thirsts significantly enhanced the integrated CT responses to NaCl and KCl, but not imitation rainwater. Interestingly, osmotic and volemic thirsts increased CT responses by increasing both the benzamil-sensitive and benzamil-insensitive CT sodium responses. We propose that thirst increases the sensitivity of the CT nerve to sodium. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Effects of Oxide Film on the Corrosion Resistance of Titanium Grade 7 in Fluoride-Containing NaCl Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, T; Whalen, M T; Wong, L

    2004-11-30

    The effects of oxide film on the corrosion behavior of Titanium Grade 7 (0.12-0.25% Pd) in fluoride-containing NaCl brines have been investigated. With the presence of a 0.6 {micro}m thick oxide layer, the annealed Ti grade 7 exhibited a significant improvement on the anodic polarization behavior. However, the oxide film did not demonstrate sustainable corrosion resistance in fluoride-containing solutions.

  18. [Effect of chloride ion on corrosion of two commonly used dental alloys].

    PubMed

    Chen, Lei; Zhang, Weidan; Zhang, Yuanyuan

    2014-11-01

    To investigate the eff ect of chloride concentration on the corrosion of Co-Cr alloy and pure Ti in a simulated oral environment. The electrochemical corrosion tests of pure Ti and Co-Cr alloy were carried out in neutral artificial saliva solutions with different NaCl concentrations (0.9%, 2.0%, and 3.0%). Th e morphologies of corroded surface for pure Ti and Co-Cr alloy were observed by scanning electron microscope (SEM). Th e changes in the self-corrosion potentials (Ecorr) for pure Ti and Co-Cr alloy in three kinds of artificial saliva solutions was not obvious. However, the self-corrosion current densities (Icorr) of pure Ti were much lower than those of Co-Cr. The Icorr of Co-Cr alloy increased in a concentration-dependent manner of NaCl, whereas the breakdown potential (Eb) of Co-Cr alloy decreased in a concentration-dependent manner. Th e potential ranged for the breakdown of oxide film (Ev) was shortened in a concentration-dependent manner of NaCl. There was no obvious difference in the Icorr of pure Ti with different concentrations of NaCl. The breakdown potential was not seen according to the polarization curves. In a certain range, the increase of the concentration of Cl- leads to accelerate the corrosion behavior of Co-Cr alloy, but it does not affect pure Ti.

  19. Caractérisation géochimique des fluides associés aux minéralisations Pb sbnd Zn de Bou-Dahar (Maroc)

    NASA Astrophysics Data System (ADS)

    Adil, Samira; Bouabdellah, Mohammed; Grandia, Fidel; Cardellach, Esteve; Canals, Àngel

    2004-11-01

    The Bou-Dahar Pb sbnd Zn Mississippi Valley deposits located in the eastern part of the High Atlas Range (Morocco) are hosted by a Liassic reefal complex. Fluid inclusion and 'crush-leach' data show that two distinct fluids were involved in the mineralisation deposition: a warmer, more saline fluid (180 °C, >25 wt% NaCl equivalent) and a cooler, less saline fluid (70 °C, 16 wt% equivalent NaCl). Mixing of these two fluids resulted in the precipitation of the ore. The solute composition of the ore-forming brine suggests that the MVT mineralising fluids were probably a mixture of halite-dissolution fluids and evaporated seawater. To cite this article: S. Adil et al., C. R. Geoscience 336 (2004).

  20. Effect of selected solutes on growth and recovery of a radiation-resistant Moraxella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruns, M.A.; Maxcy, R.B.

    1978-01-01

    A highly radiation-resistant Moraxella sp. from beef was more resistant to gamma radiation in frozen beef than Clostridium botulinum 33A spores. Even though the Moraxella sp. was extremely radiation-resistant, its recovery after irradiation was markedly influenced by the plating medium. Fewer colony-forming units were recovered in Tryptic Soy Agar (TSA) than in Plate Count Agar (PCA), and differences in recovery became more pronounced with increasing radiation dose. Growth studies of the nonirradiated Moraxella sp. suggested the presence of dialyzable inhibitory factor(s) in Trypticase Soy Broth (TSB) and TSA. The low (0.5 percent) concentration of NaCl in TSA was shown tomore » be mainly responsible for the slow growth and reduced recovery after irradiation. Reduced recovery was also obtained by plating the Moraxella sp. in PCA plus 0.5 percent NaCl or PCA plus 6 percent glucose after irradiation. It was noted that 2 other highly radiation-resistant isolates identified as Moraxella sp. gave similar results. Sensitivity to low solute concentrations, therefore, appeared to be a general phenomenon for this group.« less

  1. Ultrasonic cavitation erosion of high-velocity oxygen-fuel (HVOF) sprayed near-nanostructured WC-10Co-4Cr coating in NaCl solution.

    PubMed

    Hong, Sheng; Wu, Yuping; Zhang, Jianfeng; Zheng, Yugui; Qin, Yujiao; Lin, Jinran

    2015-09-01

    The high-velocity oxygen-fuel (HVOF) spraying process was used to prepare near-nanostructured WC-10Co-4Cr coating. The cavitation erosion behavior and mechanism of the coating in 3.5 wt.% NaCl solution were analyzed in detail. The results showed that the amorphous phase and WC grain were present in the coating. The cavitation erosion resistance of the coating was about 1.27 times that of the stainless steel 1Cr18Ni9Ti under the same testing conditions. The effects of erosion time on the microstructural evolution were discussed. It was revealed that cracks initiated at the edge of pre-existing pores and propagated along the carbide-binder interface, leading to the pull-out of carbide particle and the formation of pits and craters on the surface. The main failure mechanism of the coating was erosion of the binder phases, brittle detachment of hard phases and formation of pitting corrosion products. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A systematic proteomic analysis of NaCl-stressed germinating maize seeds.

    PubMed

    Meng, Ling-Bo; Chen, Yi-Bo; Lu, Tian-Cong; Wang, Yue-Feng; Qian, Chun-Rong; Yu, Yang; Ge, Xuan-Liang; Li, Xiao-Hui; Wang, Bai-Chen

    2014-05-01

    Salt (NaCl) is a common physiological stressor of plants. To better understand how germinating seeds respond to salt stress, we examined the changes that occurred in the proteome of maize seeds during NaCl-treated germination. Phenotypically, salt concentrations less than 0.2 M appear to delay germination, while higher concentrations disrupt development completely, leading to seed death. The identities of 96 proteins with expression levels altered by NaCl-incubation were established using 2-DE-MALDI-TOF-MS and 2-DE-MALDI-TOF-MS/MS. Of these 96 proteins, 79 were altered greater than twofold when incubated with a 0.2 M salt solution, while 51 were altered when incubated with a 0.1 M salt solution. According to their functional annotations in the Swiss-Prot protein-sequence databases, these proteins are mainly involved in seed storage, energy metabolism, stress response, and protein metabolism. Notably, the expression of proteins that respond to abscisic acid signals increased in response to salt stress. The results of this study provide important clues as to how NaCl stresses the physiology of germinating maize seeds.

  3. Characterization and electrochemical properties of Ni(Si)/Ni5Si2 multiphase coatings prepared by HVOF spraying

    NASA Astrophysics Data System (ADS)

    Verdian, M. M.; Raeissi, K.; Salehi, M.

    2012-11-01

    Ni(Si)/Ni5Si2 powders were produced by mechanical alloying (MA) of Ni-25 at.% Si powder mixture. Then, the as-milled powders were sprayed onto copper substrate using high velocity oxy-fuel (HVOF) process. The phase composition and microstructure of the coatings were examined by X-ray diffractometry and scanning electron microscopy. Polarization tests and electrochemical impedance spectroscopy (EIS) measurements were also employed to study corrosion performance of the coatings in 3.5% NaCl solution. The results showed that although single phase Ni3Si was formed during annealing of Ni(Si)/Ni5Si2 powders, but, only Ni(Si) and Ni5Si2 are present in HVOF coatings and no new phase has been formed during spraying. The coatings had microhardness up to 746 HV0.05. Further investigations showed the corrosion performance of multiphase coatings in 3.5% NaCl solution was better than that of copper substrate. The phase transitions during MA, HVOF and annealing processes were discussed in association with Ni-Si phase diagram and nature of each process.

  4. Covering surface nanobubbles with a NaCl nanoblanket.

    PubMed

    Berkelaar, Robin P; Zandvliet, Harold J W; Lohse, Detlef

    2013-09-10

    By letting a NaCl aqueous solution of low (0.01 M) concentration evaporate on a highly oriented pyrolytic graphite (HOPG) surface, it is possible to form a thin film of salt. However, pre-existing surface nanobubbles prevent the homogeneous coverage of the surface with the salt, keeping the footprint areas on the substrate pristine. Comparing the surface nanobubbles in the salt solution with their associated footprint after drying, provides information on the shrinkage of nanobubbles during the hours-long process of drying the liquid film. At a slightly higher NaCl concentration and thus salt layer thickness, the nanobubbles are covered with a thin blanket of salt. Once the liquid film has evaporated until a water film remains that is smaller than the height of the nanobubbles, the blanket of salt cracks and unfolds into a flower-like pattern of salt flakes that is located at the rim of the nanobubble footprint. The formation of a blanket of salt covering the nanobubbles is likely to considerably or even completely block the gas out-flux from the nanobubble, partially stabilizing the nanobubbles against dissolution.

  5. Response surface optimization of pH and ionic strength for emulsion characteristics of egg yolk.

    PubMed

    Kurt, S; Zorba, O

    2009-11-01

    Effects of pH (3.5, 4.5, 6.0, 7.5, and 8.5) and ionic strength (0.05, 0.15, 0.30, 0.45, and 0.55 M NaCl) on emulsion capacity, emulsion stability (ES), apparent yield stress of emulsion (AYS), and emulsion density (ED) of egg yolk were studied by using a model system. Ionic strength and pH had significant (P < 0.01) effects on the emulsion characteristics of egg yolk. Their interaction effects also have been found significant on ES, AYS, and ED. Predicted solutions of ES, emulsion capacity, and ED were minimum. The critical point of ES was determined to be at pH 6.08 and an ionic strength of 0.49 (M NaCl). Predicted solution for AYS was a maximum, which was determined to be at pH 6.04 and an ionic strength of 0.29 (M NaCl). Optimum values of pH and ionic strenght were 4.61 to 7.43 and 0.10 to 0.47, respectively.

  6. Effect of Heat Treatment on Electrochemical Properties of Mg-9 wt.%Al-2.5 wt.%Pb Alloy in Sodium Chloride Solution

    NASA Astrophysics Data System (ADS)

    Wang, Linqian; Wang, Richu; Feng, Yan; Deng, Min; Wang, Naiguang

    2017-12-01

    Mg-Al-Pb alloy can serve as a good candidate for the anode material in seawater-activated batteries. The effect of solution and aging treatment on electrochemical properties of Mg-9 wt.%Al-2.5 wt.%Pb alloy in 3.5 wt.% NaCl solution was investigated through scanning electron microscopy and electrochemical tests. The results indicate that the discharge activity of Mg-9 wt.%Al-2.5 wt.%Pb alloy decreases after solution treatment, although its anodic efficiency increases slightly. In contrast, its discharge performance and anodic efficiency, which are crucial for the application of batteries, are both enhanced after aging at 200°C for 12 h.

  7. Different blocking effects of HgCl2 and NaCl on aquaporins of pepper plants.

    PubMed

    Martínez-Ballesta, M Carmen; Diaz, Rafael; Martínez, Vicente; Carvajal, Micaela

    2003-12-01

    In this study we have compared the short-term effects of both NaCl and HgCl2 on aquaporins of Capsicum annuum L. plants, in order to determine whether or not they are similar. Stomatal conductance, turgor, root hydraulic conductance and water status were measured after 0.5, 2, 4 and 6 h of NaCl (60 mmol/L) or HgCl2 (50 micromol/L) treatment. When 60 mmol/L NaCl was added to the nutrient solution, a large decrease in stomatal conductance was observed after 2 h. However, when HgCl2 (50 micromol/L) was added, the decrease occurred after 4 h. The number of open stomata closed was always lower in plants treated with HgCl2 than in plants treated with NaCl. The water content of the Hg(2+)-treated plants was decreased, compared with controls and NaCl-treated. The root hydraulic conductance decreased after HgCl2 and NaCl treatment plants. Turgor of leaf epidermal cells was greatly reduced in plants treated with HgCl2, but remained constant in the NaCl treatment, compared with control plants. The fact that the stomatal conductance was reduced more rapidly after NaCl addition, followed by the stomatal closure, and that both water content and turgor did not differ from the control suggests that in NaCl-treated plants there must be a signal moving from root to shoot. Therefore, the control of plant homeostasis through a combined regulation of root and stomatal exchanges may be dependent on aquaporin regulation.

  8. Organic matter and salinity modify cadmium soil (phyto)availability.

    PubMed

    Filipović, Lana; Romić, Marija; Romić, Davor; Filipović, Vilim; Ondrašek, Gabrijel

    2018-01-01

    Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg -1 ). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd 2+ pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCl n 2-n complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Corrosion behavior of sensitized duplex stainless steel.

    PubMed

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  10. Electrochemical synthesis of a surface-porous Mg70.5Al29.5 eutectic alloy in a neutral aqueous NaCl solution

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Li, Yong-gang; Wei, Ying-hui; Wei, Huan; Yan, Ze-ying; Hou, Li-feng

    2018-03-01

    A surface-porous Mg-Al eutectic alloy was fabricated at room temperature via electrochemical dealloying in a neutral, aqueous 0.6 M NaCl solution by controlling the applied potential and processing duration. Selective dissolution occurred on the alloy surface. The surface-porous formation mechanism is governed by the selective dissolution of the α-Mg phase, which leaves the Mg17Al12 phase as the porous layer framework. The pore characteristics (morphology, size, and distribution) of the dealloyed samples are inherited from the α-Mg phases of the precursor Mg70.5Al29.5 (at.%) alloy. Size control in the porous layer can be achieved by regulating the synthesis parameters.

  11. Direct synthesis of carbon nanotubes using Cu-Sn catalyst on Cu substrates and their corrosion behavior in 0.6 M NaCl solution

    NASA Astrophysics Data System (ADS)

    Jeong, Namjo; Jwa, Eunjin; Kim, Chansoo; Choi, Ji Yeon; Nam, Joo-youn; Park, Soon-chul; Jang, Moon-seok

    2017-11-01

    We report the high-yield and large-area synthesis of a spaghetti-like carbon nanotubes (CNTs) on macroscopic Cu substrates (foil and foam) using a Cu-Sn alloy catalyst. In addition, we investigate the corrosion properties of the as-synthesized CNT/Cu foil system in 0.6 M NaCl solution. Electrochemical analysis showed that the corrosion resistance of the CNT/Cu foil system improved by a factor of ∼100 compared to the as-received Cu foil. Thus, it is concluded that a dense network of CNT was uniformly coated on the Cu foil and this coating functioned as an efficient barrier to corrosion under simulated seawater conditions.

  12. The corrosivity and passivity of sputtered Mg-Ti alloys

    DOE PAGES

    Song, Guang -Ling; Unocic, Kinga A.; Meyer, III, Harry M.; ...

    2015-11-30

    Our study explored the possibility of forming a “stainless” Mg–Ti alloy. The electrochemical behavior of magnetron-sputtered Mg–Ti alloys was measured in a NaCl solution, and the surface films on the alloys were examined by XPS, SEM and TEM. Increased corrosion resistance was observed with increased Ti content in the sputtered Mg–Ti alloys, but passive-like behavior was not reached until the Ti level (atomic %) was higher than the Mg level. Moreover, the surface film that formed on sputtered Mg–Ti based alloys in NaCl solution was thick, discontinuous and non-protective, whereas a thin, continuous and protective Mg and Ti oxide filmmore » was formed on a sputtered Ti–Mg based alloy.« less

  13. Effect of divalent versus monovalent cations on the MS2 retention capacity of amino-functionalized ceramic filters.

    PubMed

    Bartels, J; Hildebrand, N; Nawrocki, M; Kroll, S; Maas, M; Colombi Ciacchi, L; Rezwan, K

    2018-04-25

    Ceramic capillary membranes conditioned for virus filtration via functionalization with n-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA) are analyzed with respect to their virus retention capacity when using feed solutions based on monovalent and divalent salts (NaCl, MgCl2). The log reduction value (LRV) by operating in dead-end mode using the model bacteriophage MS2 with a diameter of 25 nm and an IEP of 3.9 is as high as 9.6 when using feeds containing MgCl2. In contrast, a lesser LRV of 6.4 is observed for feed solutions based on NaCl. The TPDA functionalized surface is simulated at the atomistic scale using explicit-solvent molecular dynamics in the presence of either Na+ or Mg2+ ions. Computational prediction of the binding free energy reveals that the Mg2+ ions remain preferentially adsorbed at the surface, whereas Na+ ions form a weakly bound dissolved ionic layer. The charge shielding between surface and amino groups by the adsorbed Mg2+ ions leads to an upright orientation of the TPDA molecules as opposed to a more tilted orientation in the presence of Na+ ions. The resulting better accessibility of the TPDA molecules is very likely responsible for the enhanced virus retention capacity using a feed solution with Mg2+ ions.

  14. Purification of proteins from solutions containing residual host cell proteins via preparative crystallization.

    PubMed

    Hekmat, Dariusch; Breitschwerdt, Peter; Weuster-Botz, Dirk

    2015-09-01

    To investigate quantitatively and reproducibly a scalable, preparative crystallization method in novel stirred tanks using three different protein solutions containing residual microbial host cell proteins (HCP). Lysozyme from solutions being spiked with up to 15% host cell proteins (HCP) (corresponding to 176,500 ppm) was crystallized within a 2.4-4.6 h at 93.7% yield using NaCl and glycerol. Lipase was crystallized under comparable conditions using NaCl and a mixture of two polyethylene glycols (PEG). Enhanced green fluorescent protein (eGFP) was overexpressed in E. coli yielding a solution containing 23% target protein. Residual HCP content after pre-treatment was 7-16%. eGFP was crystallized from these solutions within 1.75-4 h at 88.7% step yield using ethanol and the same mixture of two PEG as in the case of lipase. HCP contained in the solvent channels of the protein crystals could be removed by diffusive washing yielding final purities at or above 99%. Preparative crystallization can be carried out with fast kinetics and high yields from solutions containing residual impurities and may represent an attractive alternative purification method compared to preparative chromatography, especially at large production scales.

  15. In situ nano- to microscopic imaging and growth mechanism of electrochemical dissolution (e.g., corrosion) of a confined metal surface

    PubMed Central

    Merola, C.; Cheng, H.-W.; Schwenzfeier, K.; Kristiansen, K.; Chen, Y.-J.; Dobbs, H. A.; Valtiner, M.

    2017-01-01

    Reactivity in confinement is central to a wide range of applications and systems, yet it is notoriously difficult to probe reactions in confined spaces in real time. Using a modified electrochemical surface forces apparatus (EC-SFA) on confined metallic surfaces, we observe in situ nano- to microscale dissolution and pit formation (qualitatively similar to previous observation on nonmetallic surfaces, e.g., silica) in well-defined geometries in environments relevant to corrosion processes. We follow “crevice corrosion” processes in real time in different pH-neutral NaCl solutions and applied surface potentials of nickel (vs. Ag|AgCl electrode in solution) for the mica–nickel confined interface of total area ∼0.03 mm2. The initial corrosion proceeds as self-catalyzed pitting, visualized by the sudden appearance of circular pits with uniform diameters of 6–7 μm and depth ∼2–3 nm. At concentrations above 10 mM NaCl, pitting is initiated at the outer rim of the confined zone, while below 10 mM NaCl, pitting is initiated inside the confined zone. We compare statistical analysis of growth kinetics and shape evolution of individual nanoscale deep pits with estimates from macroscopic experiments to study initial pit growth and propagation. Our data and experimental techniques reveal a mechanism that suggests initial corrosion results in formation of an aggressive interfacial electrolyte that rapidly accelerates pitting, similar to crack initiation and propagation within the confined area. These results support a general mechanism for nanoscale material degradation and dissolution (e.g., crevice corrosion) of polycrystalline nonnoble metals, alloys, and inorganic materials within confined interfaces. PMID:28827338

  16. Stress Corrosion Cracking Behavior of Multipass TIG-Welded AA2219 Aluminum Alloy in 3.5 wt pct NaCl Solution

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2012-09-01

    The stress corrosion cracking (SCC) behavior of the AA2219 aluminum alloy in the single-pass (SP) and multipass (MP) welded conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using a slow-strain-rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both the BM and welded joints. The results showed that the ductility ratio ( ɛ NaCl/( ɛ air) was 0.97 and 0.96, respectively, for the BM and MP welded joint, and the same was marginally reduced to 0.9 for the SP welded joint. The fractographic examination of the failed samples revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy under all welded conditions. To understand the decrease in the ductility of the SP welded joint, preexposure SSRT followed by microstructural observations were made, which showed that the decrease in ductility ratio of the SP welded joint was caused by the electrochemical pitting that assisted the nucleation of cracks in the form of corrosion induced mechanical cracking rather than true SCC failure of the alloy. The microstructural examination and polarization tests demonstrated a clear grain boundary (GB) sensitization of the PMZ, resulting in severe galvanic corrosion of the SP weld joint, which initiated the necessary conditions for the localized corrosion and cracking along the PMZ. The absence of PMZ and a refined fusion zone (FZ) structure because of the lesser heat input and postweld heating effect improved the galvanic corrosion resistance of the MP welded joint greatly, and thus, failure occurred along the FZ.

  17. Recovery Of Chromium Metal (VI) Using Supported Liquid Membrane (SLM) Method, A study of Influence of NaCl and pH in Receiving Phase on Transport

    NASA Astrophysics Data System (ADS)

    Cholid Djunaidi, Muhammad; Lusiana, Retno A.; Rahayu, Maya D.

    2017-06-01

    Chromium metal(VI) is a valuable metal but in contrary has high toxicity, so the separation and recovery from waste are very important. One method that can be used for the separation and recovery of chromium (VI) is a Supported Liquid Membrane (SLM). SLM system contains of three main components: a supporting membrane, organic solvents and carrier compounds. The supported Membrane used in this research is Polytetrafluoroethylene (PTFE), organic solvent is kerosene, and the carrier compound used is aliquat 336. The supported liquid membrane is placed between two phases, namely, feed phase as the source of analyte (Cr(VI)) and the receiving phase as the result of separation. Feed phase is the electroplating waste which contains of chromium metal with pH variation about 4, 6 and 9. Whereas the receiving phase are the solution of HCl, NaOH, HCl-NaCl and NaOH-NaCl with pH variation about 1, 3, 5 and 7. The efficiency separation is determined by measurement of chromium in the feed and the receiving phase using AAS (Atomic Absorption Spectrophotometry). The experiment results show that transport of Chrom (VI) by Supported Liquid membrane (SLM) is influenced by pH solution in feed phase and receiving phase as well as NaCl in receiving phase. The highest chromium metal is transported from feed phase about 97,78%, whereas in receiving phase shows about 58,09%. The highest chromium metal transport happens on pH 6 in feed phase, pH 7 in receiving phase with the mixture of NaOH and NaCl using carrier compound aliquat 336.

  18. Pseudocapacitive Desalination of Brackish Water and Seawater with Vanadium-Pentoxide-Decorated Multiwalled Carbon Nanotubes.

    PubMed

    Lee, Juhan; Srimuk, Pattarachai; Aristizabal, Katherine; Kim, Choonsoo; Choudhury, Soumyadip; Nah, Yoon-Chae; Mücklich, Frank; Presser, Volker

    2017-09-22

    A hybrid membrane pseudocapacitive deionization (MPDI) system consisting of a hydrated vanadium pentoxide (hV 2 O 5 )-decorated multi-walled carbon nanotube (MWCNT) electrode and one activated carbon electrode enables sodium ions to be removed by pseudocapacitive intercalation with the MWCNT-hV 2 O 5 electrode and chloride ion to be removed by non-faradaic electrosorption of the porous carbon electrode. The MWCNT-hV 2 O 5 electrode was synthesized by electrochemical deposition of hydrated vanadium pentoxide on the MWCNT paper. The stable electrochemical operating window for the MWCNT-hV 2 O 5 electrode was between -0.5 V and +0.4 V versus Ag/AgCl, which provided a specific capacity of 44 mAh g -1 (corresponding with 244 F g -1 ) in aqueous 1 m NaCl. The desalination performance of the MPDI system was investigated in aqueous 200 mm NaCl (brackish water) and 600 mm NaCl (seawater) solutions. With the aid of an anion and a cation exchange membrane, the MPDI hybrid cell was operated from -0.4 to +0.8 V cell voltage without crossing the reduction and oxidation potential limit of both electrodes. For the 600 mm NaCl solution, the NaCl salt adsorption capacity of the cell was 23.6±2.2 mg g -1 , which is equivalent to 35.7±3.3 mg g -1 normalized to the mass of the MWCNT-hV 2 O 5 electrode. Additionally, we propose a normalization method for the electrode material with faradaic reactions based on sodium uptake capacities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Use of sodium dodecyl sulfate pretreatment and 2-stage curing for improved quality of salted duck eggs.

    PubMed

    Lian, Zixuan; Qiao, Longshan; Zhu, Guanghong; Deng, Yun; Qian, Bingjun; Yue, Jin; Zhao, Yanyun

    2014-03-01

    The effects of use of sodium dodecyl sulfate (SDS) pretreatment and 2-stage curing on the microbial, physicochemical, and microstructural qualities of salted duck eggs were studied. After pretreatment in 0.5% (w/v) SDS solution at room conditions for 15 min, no discolorations were observed and no microorganisms were detected on the egg shells. In the 2-stage curing process, 25% (w/v) and 30% (w/v) saline solutions were evaluated in the 1st step (Stage I, approximately 18 d), whereas 4% (w/v) saline solution was applied in the 2nd step (Stage II, approximately 15 d). Along with increased curing time, water content decreased and NaCl content increased in the egg yolks from approximately 0.40% to 0.86%, whereas the water content of egg albumen remained at approximately 85% during the 2-stage curing. More importantly, the NaCl content of albumen maintained at approximately 4.0% at Stage II curing. Yolk index as a sign of maturity for salted duck eggs reached 1 at the end of Stage I (18 d) and retained the same value during Stage II curing regardless of the NaCl concentration in the Stage I saline solution. Oil exudation in egg yolks increased as the time of curing increased. As seen from scanning electron microscopy, oil was released from yolk granules. This study indicated that SDS pretreatment is effective to reduce microbial load on the shells of fresh duck eggs and the 2-stage curing can improve physicochemical qualities of the salted duck eggs and shortened curing time to about 7 to 17 d as compared to the traditional 1-step curing method. Spoiled saline solution and uneven distribution of salt are the 2 major problems in producing salted duck eggs. Sodium dodecyl sulfate (SDS) pretreatment and 2-stage curing process have shown effective to solve these problems, respectively. The SDS pretreatment was able to remove microorganisms and soil from the surface of fresh egg shells, thus preventing the spoilage of the saline solution. The 2-stage curing process successfully controlled the NaCl content of egg albumen and yolk in the final product, and shortened the curing time compared to the traditional 1-step curing method. © 2014 Institute of Food Technologists®

  20. Phase relations in the system NaCl-KCl-H2O II: Differential thermal analysis of the halite liquidus in the NaCl-H2O binary above 450°c

    USGS Publications Warehouse

    Gunter, W.D.; Chou, I.-Ming; Girsperger, Sven

    1983-01-01

    The solubility of halite can be expressed as a function of the mole-fractional-based activity of NaCl in the liquid phase (L) in temperature (T, °K) and pressure (P, bars) In  Our liquidus data (based on 10 compositions) above 500 bars for these brines were combined with this equation to generate activity coefficients of NaCl which were fit within their experimental uncertainties to the following one parameter Margules equation In . Concentrated solutions of NaCl show negative deviations from ideality which rapidly increase in magnitude with decreasing XNaCl.

  1. FACTORS WHICH MODIFY THE EFFECT OF SODIUM AND POTASSIUM ON BACTERIAL CELL MEMBRANES1

    PubMed Central

    Henneman, Dorothy H.; Umbreit, W. W.

    1964-01-01

    Henneman, Dorothy H. (Rutgers, The State University, New Brunswick, N.J.), and W. W. Umbreit. Factors which modify the effect of sodium and potassium on bacterial cell membranes. J. Bacteriol. 87:1266–1273. 1964.—Suspensions of Escherichia coli B, when placed in 0.2 to 0.5 m solutions of NaCl, KCl, or LiCl, show an increased turbidity. With NaCl, this increased turbidity is stable with time; with KCl and LiCl, it is gradually lost. The stability to NaCl with time is due to substances removable from the cell by incubation in phosphate buffer; these materials exist in water washings from such phosphate-incubated cells. PMID:14188701

  2. Dynamics and Solubility of He and CO 2 in Brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Tuan Anh; Tenney, Craig M.

    2016-09-01

    Molecular dynamics simulation was implemented using LAMMPS simulation package (1) to study the diffusivity of He 3 and CO 2 in NaCl aqueous solution. To simulate at infinite dilute gas concentration, we placed one He 3 or CO 2 molecule in an initial simulation box of 24x24x33Å 3 containing 512 water molecules and a certain number of NaCl molecules depending on the concentration. Initial configuration was set up by placing water, NaCl, and gas molecules into different regions in the simulation box. Calculating diffusion coefficient for one He or CO 2 molecule consistently yields poor results. To overcome this, formore » each simulation at specific conditions (i.e., temperature, pressure, and NaCl concentration), we conducted 50 simulations initiated from 50 different configurations. These configurations are obtained by performing the simulation starting from the initial configuration mentioned above in the NVE ensemble (i.e., constant number of particles, volume, and energy). for 100,000 time steps and collecting one configuration every 2,000 times step. The output temperature of this simulation is about 500K. The collected configurations were then equilibrated for 2ns in the NPT ensemble (i.e., constant number of particles, pressure, and temperature) followed by 9ns simulations in the NVT ensemble (i.e., constant number of particles, volume, and temperature). The time step is 1fs for all simulations.« less

  3. Construction of a Novel Three-Dimensional PEDOT/RVC Electrode Structure for Capacitive Deionization: Testing and Performance

    PubMed Central

    Rahaman, Mostafizur; Govindasami, Periyasami; Almoiqli, Mohammed; Altalhi, Tariq; Mezni, Amine

    2017-01-01

    This article discusses the deposition of different amount of microstuctured poly(3,4-ethylenedioxythiophene) (PEDOT) on reticulated vitreous carbon (RVC) by electrochemical method to prepare three-dimensional (3D) PEDOT/RVC electrodes aimed to be used in capacitive deionization (CDI) technology. A CDI unit cell has been constructed here in this study. The performance of CDI cell in the ion removal of NaCl onto the sites of PEDOT/RVC electrode has been systematically investigated in terms of flow-rate, applied electrical voltage, and increasing PEDOT loading on PEDOT/RVC electrodes. It is observed that the increase in flow-rate, electric voltage, and PEDOT loading up to a certain level improve the ion removal performance of electrode in the CDI cell. The result shows that these electrodes can be used effectively for desalination technology, as the electrosorption capacity/desalination performance of these electrodes is quite high compared to carbon materials. Moreover, the stability of the electrodes has been tested and it is reported that these electrodes are regenerative. The effect of increasing NaCl concentration on the electrosorption capacity has also been investigated for these electrodes. Finally, it has been shown that 1 m3 PEDOT-120 min/RVC electrodes from 75 mg/L NaCl feed solution produce 421, 978 L water per day of 20 mg/L NaCl final concentration. PMID:28773205

  4. Construction of a Novel Three-Dimensional PEDOT/RVC Electrode Structure for Capacitive Deionization: Testing and Performance.

    PubMed

    Aldalbahi, Ali; Rahaman, Mostafizur; Govindasami, Periyasami; Almoiqli, Mohammed; Altalhi, Tariq; Mezni, Amine

    2017-07-24

    This article discusses the deposition of different amount of microstuctured poly(3,4-ethylenedioxythiophene) (PEDOT) on reticulated vitreous carbon (RVC) by electrochemical method to prepare three-dimensional (3D) PEDOT/RVC electrodes aimed to be used in capacitive deionization (CDI) technology. A CDI unit cell has been constructed here in this study. The performance of CDI cell in the ion removal of NaCl onto the sites of PEDOT/RVC electrode has been systematically investigated in terms of flow-rate, applied electrical voltage, and increasing PEDOT loading on PEDOT/RVC electrodes. It is observed that the increase in flow-rate, electric voltage, and PEDOT loading up to a certain level improve the ion removal performance of electrode in the CDI cell. The result shows that these electrodes can be used effectively for desalination technology, as the electrosorption capacity/desalination performance of these electrodes is quite high compared to carbon materials. Moreover, the stability of the electrodes has been tested and it is reported that these electrodes are regenerative. The effect of increasing NaCl concentration on the electrosorption capacity has also been investigated for these electrodes. Finally, it has been shown that 1 m³ PEDOT-120 min/RVC electrodes from 75 mg/L NaCl feed solution produce 421, 978 L water per day of 20 mg/L NaCl final concentration.

  5. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequencymore » in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this computational approach will be of critical use in interpreting linear and nonlinear vibrational spectroscopies of HDO molecule that is considered as an excellent local probe for monitoring local electrostatic and hydrogen-bonding environment in not just salt but also other confined and crowded solutions.« less

  6. Prevention of duodenal ileus reveals functional differences in the duodenal response to luminal hypertonicity in Sprague-Dawley and Dark Agouti rats.

    PubMed

    Sedin, J; Sjöblom, M; Nylander, O

    2014-03-01

    The mechanism by which the duodenum adjusts the luminal osmolality remains unclear. The aim was to compare the duodenal osmoregulation in response to different hyperosmolar solutions in Sprague-Dawley and Dark Agouti rats and to elucidate whether cyclooxygenase-2 inhibition affects these responses. The duodenum was perfused in situ with a 700-milliosmolar solution (NaCl alone, D-glucose ± NaCl, D-mannitol ± NaCl or orange juice), and the effects on the duodenal motility, mucosal permeability, luminal alkalinization, fluid flux and osmoregulation were assessed in anaesthetized rats. The change in net fluid flux and luminal osmolality, in response to a given hyperosmolar solution, was almost identical in control rats of both strains. In control rats, hypertonic D-glucose-NaCl induced fluid secretion only in the presence of phlorizin, an inhibitor of SGLT1. Cyclooxygenase-2 inhibition potentiated the hypertonicity-induced fluid secretion and increased the osmolality-adjusting capability in both strains, but the responses were greater in Dark Agouti rats. While cyclooxygenase-2-inhibited Dark Agouti rats responded to the hyperosmolar solutions with depression of motility and increased mucosal permeability, these effects were absent or smaller in the Sprague-Dawley strain. In contrast, orange juice induced the same duodenal responses in cyclooxygenase-2-inhibited Dark Agouti and Sprague-Dawley rats. The duodenum possesses the ability to absorb fluid despite a very high luminal osmolality. Inhibition of cyclooxygenase-2 markedly enhanced the capability of the duodenum to secrete fluid and to decrease luminal osmolality, irrespective of the hyperosmolar solution or the rat strain used, and revealed notable differences between the two strains with regard to their osmolality-adjusting capability. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.

    PubMed

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2012-05-15

    We compared the rejection behaviours of three hydrophobic trace organic contaminants, bisphenol A, triclosan and diclofenac, in forward osmosis (FO) and reverse osmosis (RO). Using erythritol, xylose and glucose as inert reference organic solutes and the membrane pore transport model, the mean effective pore size of a commercial cellulose-based FO membrane was estimated to be 0.74 nm. When NaCl was used as the draw solute, at the same water permeate flux of 5.4 L/m(2) h (or 1.5 μm/s), the adsorption of all three compounds to the membrane in the FO mode was consistently lower than that in the RO mode. Rejection of bisphenol A and diclofenac were higher in the FO mode compared to that in the RO mode. Because the molecular width of triclosan was larger than the estimated mean effective membrane pore size, triclosan was completely rejected by the membrane and negligent difference between the FO and RO modes could be observed. The difference in the separation behaviour of these hydrophobic trace organics in the FO (using NaCl the draw solute) and RO modes could be explained by the phenomenon of retarded forward diffusion of solutes. The reverse salt flux of NaCl hinders the pore diffusion and subsequent adsorption of the trace organic compounds within the membrane. The retarded forward diffusion effect was not observed when MgSO(4) and glucose were used as the draw solutes. The reverse flux of both MgSO(4) and glucose was negligible and thus both adsorption and rejection of BPA in the FO mode were identical to those in the RO mode. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Temperature-dependent solubility transition of Na₂SO₄ in water and the effect of NaCl therein: solution structures and salt water dynamics.

    PubMed

    Bharmoria, Pankaj; Gehlot, Praveen Singh; Gupta, Hariom; Kumar, Arvind

    2014-11-06

    Dual, aqueous solubility behavior of Na2SO4 as a function of temperatures is still a natural enigma lying unresolved in the literature. The solubility of Na2SO4 increases up to 32.38 °C and decreases slightly thereafter at higher temperatures. We have thrown light on this phenomenon by analyzing the Na2SO4-water clusters (growth and stability) detected from temperature-dependent dynamic light scattering experiments, solution compressibility changes derived from the density and speed of sound measurements, and water structural changes/Na2SO4 (ion pair)-water interactions observed from the FT-IR and 2D DOSY (1)H NMR spectroscopic investigations. It has been observed that Na2SO4-water clusters grow with an increase in Na2SO4 concentration (until the solubility transition temperature) and then start decreasing afterward. An unusual decrease in cluster size and solution compressibility has been observed with the rise in temperature for the Na2SO4 saturated solutions below the solubility transition temperature, whereas an inverse pattern is followed thereafter. DOSY experiments have indicated different types of water cluster species in saturated solutions at different temperatures with varying self-diffusion coefficients. The effect of NaCl (5-15 wt %) on the solubility behavior of Na2SO4 at different temperatures has also been examined. The studies are important from both fundamental and industrial application points of view, for example, toward the clean separation of NaCl and Na2SO4 from the effluent streams of textile and tannery industries.

  9. Long-living nanobubbles of dissolved gas in aqueous solutions of salts and erythrocyte suspensions.

    PubMed

    Bunkin, Nikolai F; Ninham, Barry W; Ignatiev, Pavel S; Kozlov, Valery A; Shkirin, Alexey V; Starosvetskij, Artem V

    2011-03-01

    Results of experiments combining laser modulation interference microscopy and Mueller matrix scatterometry show that macroscopic scatterers of light are present in liquids free of external solid impurities. Experimental data on distilled water and aqueous NaCl solutions of various concentrations as well as physiological saline solution are reported. The experimental data can be interpreted by using a model of micron-scale clusters composed of polydisperse air nanobubbles having effective radii of 70-100 nm. Their concentration increases with the growth of ionic content. We hypothesize that under certain conditions those clusters of nanobubbles can affect the erythrocyte structure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  11. High-efficiency preparation of poly(2-methacryloyloxyethyl phosphorylcholine) grafting layer on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization in an aqueous solution in the presence of inorganic salt additives.

    PubMed

    Shiojima, Taro; Inoue, Yuuki; Kyomoto, Masayuki; Ishihara, Kazuhiko

    2016-08-01

    A highly efficient methodology for preparing a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer on the surface of poly(ether ether ketone) (PEEK) was examined by photoinduced and self-initiated graft polymerization. To enhance the polymerization rate, we demonstrated the effects of inorganic salt additives in the feed monomer solution on thickness of grafted PMPC layer. Photoinduced polymerization occurred and the PMPC graft layer was successfully formed on the PEEK surface, regardless of inorganic salt additives. Moreover, it was clearly observed that the addition of inorganic salt enhanced the grafting thickness of PMPC layer on the surface even when the photoirradiation time was shortened. The addition of inorganic salt additives in the feed monomer solution enhanced the polymerization rate of MPC and resulted in thicker PMPC layers. In particular, we evaluated the effect of NaCl concentration and how this affected the polymerization rate and layer thickness. We considered that this phenomenon was due to the hydration of ions in the feed monomer solution and subsequent apparent increase in the MPC concentration. A PMPC layer with over 100-nm-thick, which was prepared by 5-min photoirradiation in 2.5mol/L inorganic salt aqueous solution, showed good wettability and protein adsorption resistance compared to that of untreated PEEK. Hence, we concluded that the addition of NaCl into the MPC feed solution would be a convenient and efficient method for preparing a graft layer on PEEK. Photoinduced and self-initiated graft polymerization on the PEEK surface is one of the several methodologies available for functionalization. However, in comparison with free-radical polymerization, the efficiency of polymerization at the solid-liquid interface is limited. Enhancement of the polymerization rate for grafting could solve the problem. In this study, we observed the acceleration of the polymerization rate of MPC in an aqueous solution by the addition of inorganic salt. The salt itself did not show any adverse effects on the radical polymerization; however, the apparent concentration of the monomer in feed may be increased due to the hydration of ions attributed to salt additives. We could obtain PMPC-grafted PEEK with sufficient PMPC thickness to obtain good functionality with only 5-min photoirradiation by using 2.5mol/L NaCl in the feed solution. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Dissociation of Laboratory-Synthesized Methane Hydrate in Coarse-Grained Sediments by Slow Depressurization

    NASA Astrophysics Data System (ADS)

    Phillips, S. C.; You, K.; Borgfeldt, T.; Meyer, D.; Dong, T.; Flemings, P. B.

    2016-12-01

    We performed four dissociation experiments in which experimentally-formed methane hydrate was dissociated via slow, stepwise depressurization, revealing in situ salinity conditions. Overall, these results suggest the occurrence of local pore water freshening around dissociating hydrate in which bulk equilibrium behavior is limited by salt diffusion. Depressurization was performed at a constant confining temperature over 1 to 3 weeks by releasing small volumes of methane gas from the top of a vertically-oriented sample into an inverted graduated cylinder. We identify three distinct regimes of depressurization based on pressure drop behavior: (1) release of free gas down to initial hydrate dissociation at 3.3 MPa in NaBr or 4.64 MPa in NaCl, (2) dissociation of methane hydrate characterized by a slow, logarithmic increase in pressure after each gas release and (3) residual free gas release. Initial hydrate dissociation in NaCl brine at 4.64 MPa corresponds to the phase boundary for hydrate in 9.6 wt% NaCl. In the NaCl experiment, pressure increases of 0.16 MPa while the sample was shut in over 3 days likely correspond to a recovery in salinity of 0.7 wt. %. Salt ions likely diffuse from brine ahead of the hydrate front, based on a length scale for diffusion of NaCl of 6.3 cm for 3 days. In this experiment dissociation at bulk equilibrium is expected to decline from 4.54 to 4.04 MPa; however actual dissociation during 73 gas releases over 15 days, results in a pressure drop from 4.64 to 3.25 MPa. Hydrate samples were formed by injection of methane gas at 1 ºC and 12.24 MPa within a cylinder packed with medium-grained quartz sand and initially saturated in a 7 wt% NaBr or NaCl solution. In two experiments in which the system was thoroughly leak tested, total methane consumed during formation and recovered during depressurization match within 7% indicating this approach to be relatively accurate for determining total methane in experimental or pressure core samples.

  13. Measurement of Setschenow constants for six hydrophobic compounds in simulated brines and use in predictive modeling for oil and gas systems.

    PubMed

    Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-02-01

    Treatment and reuse of brines, produced from energy extraction activities, requires aqueous solubility data for organic compounds in saline solutions. The presence of salts decreases the aqueous solubility of organic compounds (i.e. salting-out effect) and can be modeled using the Setschenow Equation, the validity of which has not been assessed in high salt concentrations. In this study, we used solid-phase microextraction to determine Setschenow constants for selected organic compounds in aqueous solutions up to 2-5 M NaCl, 1.5-2 M CaCl2, and in Na-Ca binary electrolyte solutions to assess additivity of the constants. These compounds exhibited log-linear behavior up to these high NaCl concentrations. Log-linear decreases in solubility with increasing salt concentration were observed up to 1.5-2 M CaCl2 for all compounds, and added to a sparse database of CaCl2 Setschenow constants. Setschenow constants were additive in binary electrolyte mixtures. New models to predict CaCl2 and KCl Setschenow constants from NaCl Setschenow constants were developed, which successfully predicted the solubility of the compounds measured in this study. Overall, data show that the Setschenow Equation is valid for a wide range of salinity conditions typically found in energy-related technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rui; Su, Rongxin, E-mail: surx@tju.edu.cn; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072

    Highlights: {yields} We compare the structures of insulin upon heating with or without laser irradiation. {yields} Laser irradiation inhibits insulin fibrillation and may be of insert for mechanistic disease studies. {yields} Online laser measurements should be carefully used in the study of amyloid proteins. -- Abstract: Protein aggregation and amyloid fibrillation can lead to several serious diseases and protein drugs ineffectiveness; thus, the detection and inhibition of these processes have been of great interest. In the present study, the inhibition of insulin amyloid fibrillation by laser irradiation was investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), far-UV circularmore » dichroism (far-UV CD), and thioflavin T (ThT) fluorescence. During heat-induced aggregation, the size distribution of two insulin solutions obtained by online and offline dynamic light scattering were different. The laser-on insulin in the presence of 0.1 M NaCl exhibited fewer fibrils than the laser-off insulin, whereas no insulin fibril under laser irradiation was observed in the absence of 0.1 M NaCl for 45 h incubation. Moreover, our CD results showed that the laser-irradiated insulin solution maintained mainly an {alpha}-helical conformation, but the laser-off insulin solution formed bulk fibrils followed by a significant increase in {beta}-sheet content for 106 h incubation. These findings provide an inhibition method for insulin amyloid fibrillation using the laser irradiation and demonstrate that the online long-time laser measurements should be carefully used in the study of amyloid proteins because they may change the original results.« less

  15. Corrosion Fatigue of High-Strength Titanium Alloys Under Different Stress Gradients

    NASA Astrophysics Data System (ADS)

    Baragetti, Sergio; Villa, Francesco

    2015-05-01

    Ti-6Al-4V is the most widely used high strength-to-mass ratio titanium alloy for advanced engineering components. Its adoption in the aerospace, maritime, automotive, and biomedical sectors is encouraged when highly stressed components with severe fatigue loading are designed. The extents of its applications expose the alloy to several aggressive environments, which can compromise its brilliant mechanical characteristics, leading to potentially catastrophic failures. Ti-6Al-4V stress-corrosion cracking and corrosion-fatigue sensitivity has been known since the material testing for pressurized tanks for Apollo missions, although detailed investigations on the effects of harsh environment in terms of maximum stress reduction have been not carried out until recent times. In the current work, recent experimental results from the authors' research group are presented, quantifying the effects of aggressive environments on Ti-6Al-4V under fatigue loading in terms of maximum stress reduction. R = 0.1 axial fatigue results in laboratory air, 3.5 wt.% NaCl solution, and CH3OH methanol solution at different concentrations are obtained for mild notched specimens ( K t = 1.18) at 2e5 cycles. R = 0.1 tests are also conducted in laboratory air, inert environment, 3.5 wt.% NaCl solution for smooth, mild and sharp notched specimens, with K t ranging from 1 to 18.65, highlighting the environmental effects for the different load conditions induced by the specimen geometry.

  16. Salinity effects on the dynamics and patterns of desiccation cracks

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Zhou, P.

    2012-12-01

    Cracking arising from desiccation is a ubiquitous phenomenon encountered in various industrial and geo-environmental applications including drying of clayey soil, cement, ceramics, gels, and many more colloidal suspensions. Presence of cracks in muddy sediments modifies the characteristics of the medium such as pore structure, porosity, and permeability which in turn influence various flow and transport processes. Thus it remains a topic of great interest in many disciplines to describe the dynamics of desiccation cracking under various boundary conditions. To this end, we conducted a comprehensive study to investigate effects of NaCl concentrations on cracking dynamics and patterns during desiccation of Bentonite. Mixtures of Bentonite and NaCl solutions were prepared with NaCl concentration varying from 2 to 10 percent in 0.5 percent increment (totally 17 configurations). The slurry was placed in a Petri dish mounted on a digital balance to record the evaporation dynamics. The atmospheric conditions were kept constant using an environmental chamber. An automatic camera was used to record the dynamics of macro-cracks (mm scale) at the surface of desiccating clay each minute. The obtained results illustrate the significant effects of salt concentration on the initiation, propagation, morphology and general dynamics of macro-cracks. We found that higher salt concentrations results in larger macro cracks' lengths attributed to the effects of NaCl on compressing the electric double layer of particles at increasing electrolyte concentrations which reduce considerably the repulsive forces among the particles and causing instability of the slurry and flocculation of the colloidal particles. Rheological measurements by means of a stress controlled rheometer revealed that the yield stress of the slurry decreases as NaCl concentration increases which may indicate aggregation of larger units in the slurry as a result of flocculation causing larger cracks' lengths due to drying. At the end of each round of the experiment, a detailed visualization was conducted using Scanning Electron Microscopy to investigate the patterns and morphology of cracks at micro-scale as influenced by the salt concentration. Our results provide new insights and finding about the effects of salt concentrations on desiccation cracks at different scales ranging from a few mm to few microns.

  17. Exposure to Solute Stress Affects Genome-Wide Expression but Not the Polycyclic Aromatic Hydrocarbon-Degrading Activity of Sphingomonas sp. Strain LH128 in Biofilms

    PubMed Central

    Fida, Tekle Tafese; Breugelmans, Philip; Lavigne, Rob; Coronado, Edith; Johnson, David R.; van der Meer, Jan Roelof; Mayer, Antonia P.; Heipieper, Hermann J.; Hofkens, Johan

    2012-01-01

    Members of the genus Sphingomonas are important catalysts for removal of polycyclic aromatic hydrocarbons (PAHs) in soil, but their activity can be affected by various stress factors. This study examines the physiological and genome-wide transcription response of the phenanthrene-degrading Sphingomonas sp. strain LH128 in biofilms to solute stress (invoked by 450 mM NaCl solution), either as an acute (4-h) or a chronic (3-day) exposure. The degree of membrane fatty acid saturation was increased as a response to chronic stress. Oxygen consumption in the biofilms and phenanthrene mineralization activities of biofilm cells were, however, not significantly affected after imposing either acute or chronic stress. This finding was in agreement with the transcriptomic data, since genes involved in PAH degradation were not differentially expressed in stressed conditions compared to nonstressed conditions. The transcriptomic data suggest that LH128 adapts to NaCl stress by (i) increasing the expression of genes coping with osmolytic and ionic stress such as biosynthesis of compatible solutes and regulation of ion homeostasis, (ii) increasing the expression of genes involved in general stress response, (iii) changing the expression of general and specific regulatory functions, and (iv) decreasing the expression of protein synthesis such as proteins involved in motility. Differences in gene expression between cells under acute and chronic stress suggest that LH128 goes through changes in genome-wide expression to fully adapt to NaCl stress, without significantly changing phenanthrene degrading activity. PMID:23001650

  18. Inhibitor effects of sodium benzoate on corrosion resistance of Al6061-B4C composites in NaCl and H3BO3 solutions

    NASA Astrophysics Data System (ADS)

    Rafi-ud-din; Shafqat, Q. A.; Shahzad, M.; Ahmad, Ejaz; Asghar, Z.; Rafiq, Nouman; Qureshi, A. H.; Syed, Waqar adil; asim Pasha, Riffat

    2016-12-01

    Sodium benzoate (SB) is used for the first time to inhibit the corrosion of Al6061-B4C composites in H3BO3 and NaCl solutions. Al6061100-x -x wt% B4C (x = 0, 5, and 10) composites are manufactured by a powder metallurgy route. The corrosion inhibition efficiency of SB is investigated as a function of the volume fractions of B4C particles by using potentiodynamic polarization and electrochemical impedance techniques. Without the use of an inhibitor, an increase of the B4C particles in the composite decreases the corrosion resistance of Al6061-B4C composites. It is found that SB is an efficient corrosion inhibitor for Al6061-B4C composites in both investigated solutions. The corrosion inhibition efficiency of SB increases with an increase in B4C content. Since SB is an adsorption type inhibitor, it is envisaged that an extremely thin layer of molecules adsorbs onto the surface and suppresses the oxidation and reduction. It is found that the inhibitor effect of SB is more pronounced in a H3BO3 environment than in NaCl solution. Further, the mechanism of corrosion inhibition by SB is illustrated by using optical and scanning electron microscopy of corroded samples. It is found that the adsorption of benzoate ions on the Al surface and its bonding with Al3+ ions forms a hydrophobic layer on top of the exposed Al surface, which enhances the protection against dissolved boride ions.

  19. Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Lin, Xiao; Tan, LiLi; Li, Lugee; Li, WeiRong; Yang, Ke

    2013-10-01

    Magnesium and its alloys are of great interest for biodegradable metallic devices. However, the degradation behavior and mechanisms of magnesium treated with coating in physiological environment in the presence of organic compound such as albumin have not been elucidated. In this study, the plasma electrolytic oxidation coated magnesium immersed in four different simulated body fluids: NaCl, PBS and with the addition of albumin to investigate the influence of protein and inorganic ions on degradation behavior by electrochemical methods. The results of electrochemical tests showed that aggressive corrosion took place in 0.9 wt.% NaCl solution; whereas albumin can act as an inhibitor, its adsorption impeded further dissolution of the coating. The mechanism was attributed to the synergistic effect of protein adsorption and precipitation of insoluble salts.

  20. Effect of amino acids on the eutectic behavior of NaCl solutions studied by DSC.

    PubMed

    Chen, N J; Morikawa, J; Hashimoto, T

    2005-06-01

    The effect of a series of amino acids on the eutectic behavior of NaCl solutions at isotonic concentration has been studied by differential scanning calorimetry. The inclusion of different amino acids had different effects on eutectic formation. The amino acids were grouped into four categories based on their effect on eutectic formation: category C were amino acids that had no effect on eutectic formation; category D amino acids inhibited eutectic formation; category T amino acids shifted the melting of the eutectic to a lower temperature; category E amino acids caused the formation of a new eutectic with a melting temperature approximately -5 degrees C. The mechanism of these different effects on eutectic behavior is discussed, based on the chemical structure of the amino acids.

  1. Theoretical study of interactions of BSA protein in a NaCl aqueous solution

    NASA Astrophysics Data System (ADS)

    Pellicane, Giuseppe; Cavero, Miguel

    2013-03-01

    Bovine Serum Albumine (BSA) aqueous solutions in the presence of NaCl are investigated for different protein concentrations and low to intermediate ionic strengths. Protein interactions are modeled via a charge-screened colloidal model, in which the range of the potential is determined by the Debye-Hückel constant. We use Monte Carlo computer simulations to calculate the structure factor, and assume an oblate ellipsoidal form factor for BSA. The theoretical scattered intensities are found in good agreement with the experimental small angle X-ray scattering intensities available in the literature. The performance of well-known integral equation closures to the Ornstein-Zernike equation, namely the mean spherical approximation, the Percus-Yevick, and the hypernetted chain equations, is also assessed with respect to computer simulation.

  2. Evaluating stress corrosion cracking behaviour of high strength AA7075-T651 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Prabhuraj, P.; Rajakumar, S.; Lakshminarayanan, A. K.; Balasubramanian, V.

    2017-12-01

    The objective of the present study is to determine the threshold stress level of stress corrosion cracking (SCC) in AA7075-T651 aluminium alloy by suitable experimentation. The test was carried out using a circumferential notch specimen in a horizontal-type constant load SCC setup in a 3.5 wt.% NaCl solution. The time to failure by SCC was determined at various loading conditions. The threshold stress of AA7075-T651 alloy was found to be 242 MPa in a 3.5 wt.% NaCl solution. The various regions of the fractured surface specimen such as machined notch, SCC region and final overload fracture area were examined using scanning electron microscopy (SEM) in order to identify the SCC mechanism.

  3. Options for refractive index and viscosity matching to study variable density flows

    NASA Astrophysics Data System (ADS)

    Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.

    2018-02-01

    Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a linearly stratified environment. The creation of the index-matched solutions and linear stratification in a large-scale experimental facility are detailed, as well as the practical challenges to obtain precise refractive index matching.

  4. Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhenguo; Geiker, Mette Rica; De Weerdt, Klaartje

    Chloride binding is investigated for Portland cement–metakaolin–limestone pastes exposed to CaCl{sub 2} and NaCl solutions. The phase assemblages and the amount of Friedel's salt are evaluated using TGA, XRD and thermodynamic modeling. A larger amount of Friedel's salt is observed in the metakaolin blends compared to the pure Portland cement. A higher total chloride binding is observed for the pastes exposed to the CaCl{sub 2} solution relative to those in the NaCl solution. This is reflected by the fact that calcium increases the quantity of Friedel's salt in the metakaolin blends by promoting the transformation of strätlingite and/or monocarbonate tomore » Friedel's salt. Calcium increases also the amount of chloride in the diffuse layer of the C-S-H for the pure cement. A linear correlation between the total bound chloride and the uptake of calcium from the CaCl{sub 2} solution is obtained and found to be independent on the type of cement blend.« less

  5. Spatially resolved micro-Raman observation on the phase separation of effloresced sea salt droplets.

    PubMed

    Xiao, Han-Shuang; Dong, Jin-Ling; Wang, Liang-Yu; Zhao, Li-Jun; Wang, Feng; Zhang, Yun-Hong

    2008-12-01

    We report on the investigation of the phase separation of individual seawater droplets in the efflorescence processes with the spatially resolved Raman system. Upon decreasing the relative humidity (RH), CaSO4.0.5H2O separated out foremost fromthe droplet atan unexpectedly high RH of approcimately 90%. Occasionally, CaSO4.2H2O substituted for CaSO4.O.5H2O crystallizing first at approximately 78% RH. Relatively large NaCI solids followed to crystallize at approximately 55% RH and led to the great loss of the solution. Then, the KMgCl3.6H2O crystallites separated out from the residual solutions, adjacentto NaCl at approximately 44% RH. Moreover, a shell structure of dried sea salt particle was found to form at low RHs, with the NaCl crystals in the core and minor supersaturated solutions covered with MgSO4 gel coating on the surface. Ultimately, the shielded solution partly effloresced into MgSO4 hydrates at very dry state (<5% RH).

  6. Response of non-added solutes during nutrient addition experiments in streams

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.

    2015-12-01

    Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may provide insights into fundamental aspects of stream nutrient cycling.

  7. Tailoring the Kinetics of the Photoinitiated Cationic Polymerization of Polyoctahedral Oligomeric Silsesquioxane (POSS)-Containing Epoxy Monomers

    NASA Astrophysics Data System (ADS)

    Iordanov, Liubomir

    Within the aircraft industry, high strength steels have been used for aircraft components (e.g., main landing gear, fasteners, etc). These steels have traditionally been protected using cadmium electroplating. As a result of the carcinogenic nature of cadmium, its use has been severely restricted. Electroplated ZnNi has been identified as a replacement material for the cadmium coating. Demonstration plating lines have been implemented in both Air Force and NAVAIR depots. However, the effects of hydrogen generated from differences in electrochemical potential between the ZnNi coating and exposed steel at a defect site have raised concern. The objective of this work is to determine the potential effect of hydrogen on the susceptibility of ZnNi coated 4340 steel to Hydrogen Embrittlement. In this work, susceptibility of the substrate AISI 4340 steel to HE as a function of cathodic potential will be shown. Slow strain rate tests (SSRT) of smooth bar samples made of high strength AISI 4340 are being conducted to determine susceptibility to HE. In the first set of SSR experiments, bare steel samples were exposed to a NaCl immersion environment while being held at one of five different electrochemical potentials. The effect of potential on time to failure and other properties will be explored. A second set of SSR tests were performed under atmospheric exposure conditions at 84% RH. This value of RH is above the deliquescence point of NaCl and was controlled within the enclosed SSR test cell using a saturated solution of Sodium Sulfate at the bottom of the cell. NaCl salt was deposited on the SSR sample gauge section by a salt spray technique. Filter paper soaked in saturated NaCl solution was used to act as a salt bridge for the reference and counter electrodes under atmospheric condition. The effect of electrochemical potential on the cracking behavior of the atmospherically exposed samples will also be described. SEM characterization of the fractured samples was performed to validate embrittlement. Results from this effort will be used by both the Air Force and Navy to assess the need for enhanced risk based inspection of ZnNi coated steel parts. Engineering modeling was done for different defect sizes on the sample and results were used to validate engineering modeling approaches to predict corrosion and cracking performance during system design.

  8. Ca$sup 45$ UPTAKE BY DOG ERYTHROCYTES SUSPENDED IN SODIUM AND POTASSIUM CHLORIDE SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omachi, A.; Markel, R.P.; Hegarty, H.

    1961-04-01

    The disappearance of Ca/sup 4//sup 5/ from the medium was greater when washed dog erythrocytes were suspended in isotonic KCl rather than in isotonic NaCl. Cells stored in a refrigerator for 24 hr or more took up even greater quantities of Ca/sup 4//sup 5/ when incubated in KCl but cells suspended in NaCl did not show any difference from fresh cells. This result is consistent with the view that competition takes place between Ca and Na ions for binding sites as a consequence of the similarity in ionic radii. Acid-citrate-dextrose and, to a certain extent, heparin appeared to delay themore » increased uptake by stored cells. Addition of glucose, adenosine, or Nembutal to stored blood had no effect. Fresh cells hemolyzed by saponin or by hypotonic media took up no more Ca than unhemolyzed fresh cells. Calcium uptake in KCl was -dependent upon pH, greater amounts being taken up at alkaline pH. In contrast to dog red cells, human and cat erythrocytes did not show differences in uptake in NaCl and in KCl, before or after storage. (auth)« less

  9. Corrosion behavior and surface structure of orthodontic Ni-Ti alloy wires.

    PubMed

    Iijima, M; Endo, K; Ohno, H; Yonekura, Y; Mizoguchi, I

    2001-03-01

    The corrosion behaviors of a commercial Ni-Ti alloy orthodontic wire and a polished plate with same composition in 0.9% NaCl and 1% lactic acid solutions were examined using an electrochemical technique, an analysis of released ions, and a surface analysis by X-ray photoelectron spectroscopy (XPS). The effect of polishing the wire on the corrosion was also examined. The XPS analysis demonstrated the presence of a thick oxide film mainly composed of TiO2 with trace amounts of Ni hydroxide, which had formed on the wire surface during the heat treatment and subsequent pickling processes. This oxide layer contributed to the higher resistance of the as-received wire to both general and localized corrosion in 0.9% NaCl solution, compared with that of the polished plate and the polished wire. The thick oxide layer, however, was not stable and did not protect the orthodontic wire from corrosion in 0.1% lactic acid solution.

  10. Size exclusion chromatography for analyses of fibroin in silk: optimization of sampling and separation conditions

    NASA Astrophysics Data System (ADS)

    Pawcenis, Dominika; Koperska, Monika A.; Milczarek, Jakub M.; Łojewski, Tomasz; Łojewska, Joanna

    2014-02-01

    A direct goal of this paper was to improve the methods of sample preparation and separation for analyses of fibroin polypeptide with the use of size exclusion chromatography (SEC). The motivation for the study arises from our interest in natural polymers included in historic textile and paper artifacts, and is a logical response to the urgent need for developing rationale-based methods for materials conservation. The first step is to develop a reliable analytical tool which would give insight into fibroin structure and its changes caused by both natural and artificial ageing. To investigate the influence of preparation conditions, two sets of artificially aged samples were prepared (with and without NaCl in sample solution) and measured by the means of SEC with multi angle laser light scattering detector. It was shown that dialysis of fibroin dissolved in LiBr solution allows removal of the salt which destroys stacks chromatographic columns and prevents reproducible analyses. Salt rich (NaCl) water solutions of fibroin improved the quality of chromatograms.

  11. Halide Ions Effects on Surface Excess of Long Chain Ionic Liquids Water Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Sung, Woongmo; Ao, Mingqi

    2013-10-07

    The interfacial structure and composition of water solutions with alkylimidazolium ionic liquids varying in their halide anions ([C12mim][X], X = Cl and I) were investigated by X-ray near-total-reflection fluorescence spectroscopy and X-ray reflectivity measurements. We demonstrate that X-ray fluorescence and reflectivity techniques provide a more direct measurement of surface adsorption. Furthermore, we show that for [C12mim][Cl] and [C12mim][I] solutions with mixed inorganic salts (NaI, NaCl), I– ions replace Cl– above the critical micelle concentration (CMC) of [C12mim][Cl] at much lower concentrations of NaI, whereas NaCl concentrations a hundred times higher than the CMC of [C12mim][I] only partially replace the I–more » at the interface. Our surface-sensitive X-ray diffraction and spectroscopy provide two independent tools to directly determine the surface adsorption of ionic surfactants and the interfacial composition of the surface films.« less

  12. Investigation of efflorescence of inorganic aerosols using fluorescence spectroscopy.

    PubMed

    Choi, Man Yee; Chan, Chak K

    2005-02-17

    The phase transition is one of the most fundamental phenomena affecting the physical and chemical properties of atmospheric aerosols. Efflorescence, in particular, is not well understood, partly because the molecular interactions between the solute and water molecules of saturated or supersaturated solution droplets have not been well characterized. Recently, we developed a technique that combines the use of an electrodynamic balance and a fluorescence dye, 8-hydroxyl-1,3,6-pyrenetrisulfonate (pyranine), to study the distributions of solvated and free water in aqueous droplets (Choi, M. Y.; Chan, C. K.; Zhang, Y. H. J. Phys. Chem. A 2004, 108, 1133). We found that the equality of the amounts of solvated and free water is a necessary but not sufficient condition for efflorescence. For efflorescing compounds such as Na2SO4, (NH4)2SO4, and a mixture of NaCl and Na2SO4, the amount of free water decreases, while that of solvated water is roughly constant in bulk measurements and decreases less dramatically than that of free water in single-particle measurements as the relative humidity (RH) decreases. Efflorescence of the supersaturated droplets of these solutions occurs when the amounts of free and solvated water are equal, which is consistent with our previous observation for NaCl. For nonefflorescing compounds in single-particle levitation experiments such as MgSO4 and Mg(NO3)2, the amounts of free and solvated water are equal at a water-to-solute molar ratio of about 6, at which spectral changes due to the formation of contact ion pairs between magnesium and the anions occur as shown by Raman spectroscopy. Fluorescence imaging shows that the droplets of diluted Mg(NO3)2 (at 80% RH) and MgSO4 are homogeneous but those of NaCl, Na2SO4, (NH4)2SO4, and supersaturated Mg(NO3)2 (at 10% RH) are heterogeneous in terms of the solvated-to-free water distribution. The solvated-to-free water ratios in NaCl, Na2SO4, and (NH4)2SO4 droplets are higher in the outer regions by about half a radius deep than at the center of the droplets.

  13. Stability and tribological performances of fluid phospholipid bilayers: effect of buffer and ions.

    PubMed

    Dekkiche, F; Corneci, M C; Trunfio-Sfarghiu, A-M; Munteanu, B; Berthier, Y; Kaabar, W; Rieu, J-P

    2010-10-15

    We have investigated the mechanical and tribological properties of supported Dioleoyl phosphatidylcholine (DOPC) bilayers in different solutions: ultrapure water (pH 5.5), saline solution (150 mM NaCl, pH 5.8), Tris buffer (pH 7.2) and Tris saline buffer (150 mM NaCl, pH 7.2). Friction forces are measured using a homemade biotribometer. Lipid bilayer degradation is controlled in situ during friction tests using fluorescence microscopy. Mechanical resistance to indentation is measured by force spectroscopy with an atomic force microscope. This study confirms that mechanical stability under shear or normal load is essential to obtain low and constant friction coefficients. In ultrapure water, bilayers are not resistant and have poor lubricant properties. On the other hand, in Tris saline buffer, they fully resist to indentation and exhibit low (micro=0.035) and stable friction coefficient with no visible wear during the 50 min of the friction test. The unbuffered saline solution improves the mechanical resistance to indentation but not the lubrication. These results suggest that the adsorption of ions to the zwiterrionic bilayers has different effects on the mechanical and tribological properties of bilayers: higher resistance to normal indentation due to an increase in bilayer cohesion, higher lubrication due to an increase in bilayer-bilayer repulsion. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Structural Characterization of IgG1 mAb Aggregates and Particles Generated under Various Stress Conditions

    PubMed Central

    Telikepalli, Srivalli N.; Kumru, Ozan S.; Kalonia, Cavan; Esfandiary, Reza; Joshi, Sangeeta B.; Middaugh, C. Russell; Volkin, David B.

    2014-01-01

    IgG1 mAb solutions were prepared with and without sodium chloride and subjected to different environmental stresses. Formation of aggregates and particles of varying size was monitored by a combination of size exclusion chromatography (SEC), Nanosight Tracking Analysis (NTA), Micro-flow Imaging (MFI), turbidity, and visual assessments. Stirring and heating induced the highest concentration of particles. In general, the presence of NaCl enhanced this effect. The morphology of the particles formed from mAb samples exposed to different stresses was analyzed from TEM and MFI images. Shaking samples without NaCl generated the most fibrillar particles, while stirring created largely spherical particles. The composition of the particles was evaluated for covalent cross-linking by SDS-PAGE, overall secondary structure by FTIR microscopy, and surface apolarity by extrinsic fluorescence spectroscopy. Freeze-thaw and shaking led to particles containing protein with native-like secondary structure. Heating and stirring produced IgG1 containing aggregates and particles with some non-native disulfide crosslinks, varying levels of intermolecular beta sheet content, and increased surface hydrophobicity. These results highlight the importance of evaluating protein particle morphology and composition, in addition to particle number and size distributions, to better understand the effect of solution conditions and environmental stresses on the formation of protein particles in mAb solutions. PMID:24452866

  15. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions.

    PubMed

    Telikepalli, Srivalli N; Kumru, Ozan S; Kalonia, Cavan; Esfandiary, Reza; Joshi, Sangeeta B; Middaugh, C Russell; Volkin, David B

    2014-03-01

    IgG1 mAb solutions were prepared with and without sodium chloride and subjected to different environmental stresses. Formation of aggregates and particles of varying size was monitored by a combination of size-exclusion chromatography, Nanoparticle Tracking Analysis, Micro-flow Imaging (MFI), turbidity, and visual assessments. Stirring and heating induced the highest concentration of particles. In general, the presence of NaCl enhanced this effect. The morphology of the particles formed from mAb samples exposed to different stresses was analyzed from transmission electron microscopy and MFI images. Shaking samples without NaCl generated the most fibrillar particles, whereas stirring created largely spherical particles. The composition of the particles was evaluated for covalent cross-linking by SDS-PAGE, overall secondary structure by FTIR microscopy, and surface apolarity by extrinsic fluorescence spectroscopy. Freeze-thaw and shaking led to particles containing protein with native-like secondary structure. Heating and stirring produced IgG1-containing aggregates and particles with some non-native disulfide cross-links, varying levels of intermolecular beta sheet content, and increased surface hydrophobicity. These results highlight the importance of evaluating protein particle morphology and composition, in addition to particle number and size distributions, to better understand the effect of solution conditions and environmental stresses on the formation of protein particles in mAb solutions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Effect of Organic Oxygen Scavenger on Performance of Pyrrole as Corrosion Inhibitor

    NASA Astrophysics Data System (ADS)

    Kassim, E. S. Mohd; Ibrahim, I. M.; Jai, J.; So’aib, M. S.; Zamanhuri, N. Ahmad; Husin, H.; Hashim, M. A.

    2018-05-01

    Abstract.The inhibitory effect of pyrrole in the presence of methyl ethyl ketoxime (MEKO) and erythorbic acid (EA) on the corrosion of carbon steel in static of condition 3.5 wt% NaCl solution were studied using Linear Polarization Resistance (LPR) method. Experimental results found that the inhibition effect of pyrrole increased with the increase of oxygen scavenger concentration.The inhibition efficiency was observed to be about 67% after addition of erythorbic acid (EA) into saline solution containing 100 ppm of pyrrole compared by adding MEKO which recorded about 59%. The addition of oxygen scavenger could reducing the corrosion rate of carbon steel by reacting with dissolved oxygen in the solution and thus further to protect metal surface.

  17. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.

    PubMed

    Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia

    2015-11-15

    A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Investigation on localized corrosion of 304 stainless steel joints brazed using Sn-plated Ag alloy filler in NaCl aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Li, Shuai; Peng, Jin

    2018-03-01

    Novel AgCuZnSn filler metal with high Sn contents was prepared from BAg50CuZn filler metal by a process of electroplating and thermal diffusion, and the prepared filler metal was applied to induction brazing of 304 stainless steel. The corrosion behavior of the brazed joints was evaluated based on localized corrosion analysis, the morphology of the joints were analyzed by SEM after immersion in a 3.5 vol% NaCl aqueous solution. The results indicated that corrosion groove occurred near the interface between the stainless steel base metal and the brazing seam. A wide range of defects such as holes and cracks appeared on the surface of the base metal, while the brazing seam zone almost no corrosion defects occur. With the increase of corrosion time, the corrosion rates of both the brazing seam and the base metal first exhibited an increasing trend, followed by a decreasing trend, and the corrosion rate of the base metal was slightly greater than that of the brazing seam. The corrosion potential of the brazing seam and 304 stainless steel were -0.7758 V and -0.7863 V, respectively.

  19. [Effect of hypertonic saline solution on the viscoelasticities of erythrocyte membrane in rats subjected to hemorrhagic shock].

    PubMed

    Zhou, X; Hu, D; Liu, L; Wu, Z; Qin, J; Cai, S

    2001-12-01

    We have studied the effect of hypertonic saline solution on the viscoelasticities of erythrocyte membrane in hemorrhage-shocked rats using micropippette aspiration technique. Wistar rats were randomly divided into three groups of 0.9% NaCl(NS), 7.5% NaCl (HS) and 5% NaCl-3.5% NaAc (HSA), respectively. The animals were bled to reach a mean arterial pressure of 5.3 kPa in 10 minutes and maintained in shock for 90 minutes. 4 ml/kg NS, HS and HSA was given intravenously and respectively in 5 minutes following hemorrhagic shock. The blood was collected to determine the viscoelasticities of erythrocyte membrane at baseline, shock and after treatment. The results showed that the elastic moduli and viscous coefficients of erythrocyte membrane were increased obviously following hemorrhagic shock. HS raised elastic moduli and reduced viscous coefficients significantly compared with NS after treatment. The elastic moduli and viscous coefficients of erythrocyte membrane were decreased remarkably in HSA group than in NS and HS group. These data suggested that HSA could improve the viscoelasticities of erythrocyte membrane significantly in rats subjected to hemorrhagic shock.

  20. The Influence of Porosity on Corrosion Attack of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Abdullah, Z.; Ismail, A.; Ahmad, S.

    2017-10-01

    Porous metals also known as metal foams is a metallic body having spaces orpores through which liquid or air may pass. Porous metals get an attention from researchers nowadays due to their unique combination of properties includes excellent mechanical and electrical, high energy absorption, good thermal and sound insulation and water and gas permeability. Porous metals have been applied in numerous applications such as in automotive, aerospace and also in biomedical applications. This research reveals the influence of corrosion attack in porous austenitic stainless steel 316L. The cyclic polarization potential analysis was performed on the porous austenitic stainless steel 316L in 3.5% NaCl solution. The morphology and the element presence on the samples before and after corrosion attack was examined using scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) respectively to determine the corrosion mechanism structure. The cyclic polarization potential analysis showed the result of (E corr ) for porous austenitic stainless steel type 316L in the range of -0.40v to -0.60v and breakdown potential (E b ) is -0.3v to -0.4v in NaCl solution.

  1. The effect of saponins from Ampelozizyphus amazonicus Ducke on the renal Na+ pumps' activities and urinary excretion of natriuretic peptides.

    PubMed

    Diniz, Lúcio Ricardo Leite; Portella, Viviane Gomes; Cardoso, Flávia Magalhães; de Souza, Aloa Machado; Caruso-Neves, Celso; Cassali, Geovanni Dantas; dos Reis, Adelina Martha; Brandão, Maria das Graças Lins; Vieira, Maria Aparecida Ribeiro

    2012-04-11

    In a previous study, we showed that a saponin mixture isolated from the roots of Ampelozizyphus amazonicus Ducke (SAPAaD) reduces urine excretion in rats that were given an oral loading of 0.9 % NaCl (4 ml/100 g body weight). In the present study, we investigated whether atrial natriuretic peptides (ANP) and renal ATPases play a role in the SAPAaD- induced antidiuresis in rats. To evaluate the effect of SAPAaD on furosemide-induced diuresis, Wistar rats (250-300 g) were given an oral loading of physiological solution (0.9 % NaCl, 4 ml/100 g body weight) to impose a uniform water and salt state. The solution containing furosemide (Furo, 13 mg/kg) was given 30 min after rats were orally treated with 50 mg/kg SAPAaD (SAPAaD + Furo) or 0.5 ml of 0.9 % NaCl (NaCl + Furo). In the SAPAaD + NaCl group, rats were pretreated with SAPAaD and 30 min later they received the oral loading of physiological solution. Animals were individually housed in metabolic cages, and urine volume was measured every 30 min throughout the experiment (3 h). To investigate the role of ANP and renal Na(+) pumps on antidiuretic effects promoted by SAPAaD, rats were given the physiological solution (as above) containing SAPAaD (50 mg/kg). After 90 min, samples of urine and blood from the last 30 min were collected. Kidneys and atria were also removed after previous anesthesia. ANP was measured by radioimmunoassay (RIA) and renal cortical activities of Na(+)- and (Na(+),K(+))-ATPases were calculated from the difference between the [32P] Pi released in the absence and presence of 1 mM furosemide/2 mM ouabain and in the absence and presence of 1 mM ouabain, respectively. It was observed that SAPAaD inhibited furosemide-induced diuresis (at 90 min: from 10.0 ± 1.0 mL, NaCl + Furo group, n = 5, to 5.9 ± 1.0 mL, SAPAaD + Furo group n = 5, p < 0.05), increased both Na(+)-ATPase (from 25.0 ± 5.9 nmol Pi.mg(-1).min(-1), control, to 52.7 ± 8.9 nmol Pi.mg(-1).min(-1), p < 0.05) and (Na(+),K(+))-ATPase (from 47.8 ± 13.3 nmol Pi.mg(-1).min(-1), control, to 79.8 ± 6.9 nmol Pi .mg(-1).min(-1), p < 0.05) activities in the renal cortex. SAPAaD also lowered urine ANP (from 792 ± 132 pg/mL, control, to 299 ± 88 pg/mL, p < 0.01) and had no effect on plasma or atrial ANP. We concluded that the SAPAaD antidiuretic effect may be due to an increase in the renal activities of Na(+)- and (Na(+),K(+))-ATPases and/or a decrease in the renal ANP.

  2. Emulsifying properties and oil/water (O/W) interface adsorption behavior of heated soy proteins: effects of heating concentration, homogenizer rotating speed, and salt addition level.

    PubMed

    Cui, Zhumei; Chen, Yeming; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei

    2014-02-19

    The adsorption of heat-denatured soy proteins at the oil/water (O/W) interface during emulsification was studied. Protein samples were prepared by heating protein solutions at concentrations of 1-5% (w/v) and were then diluted to 0.3% (w/v). The results showed that soy proteins that had been heated at higher concentrations generated smaller droplet size of emulsion. Increase in homogenizer rotating speed resulted in higher protein adsorption percentages and lower surface loads at the O/W interface. Surface loads for both unheated and heated soy proteins were linearly correlated with the unadsorbed proteins' equilibrium concentration at various rotating speeds. With the rise in NaCl addition level, protein adsorption percentage and surface loads of emulsions increased, whereas lower droplet sizes were obtained at the ionic strength of 0.1 M. The aggregates and non-aggregates displayed different adsorption behaviors when rotating speed or NaCl concentration was varied.

  3. A study of the tyramine/glucose Maillard reaction: Variables, characterization, cytotoxicity and preliminary application.

    PubMed

    Jiang, Wei; Chen, Yaxin; He, Xiaoxia; Hu, Shiwei; Li, Shijie; Liu, Yu

    2018-01-15

    The tyramine/glucose Maillard reaction was proposed as an emerging tool for tyramine reduction in a model system and two commercial soy sauce samples. The model system was composed of tyramine and glucose in buffer solutions with or without NaCl. The results showed that tyramine was reduced in the model system, and the reduction rate was affected by temperature, heating time, initial pH value, NaCl concentration, initial glucose concentration and initial tyramine concentration. Changes in fluorescence intensity and ultraviolet-visible (UV-vis) absorption spectra showed three stages of the Maillard reaction between tyramine and glucose. Cytotoxicity assay demonstrated that tyramine/glucose Maillard reaction products (MRPs) were significantly less toxic than that of tyramine (p<0.05). Moreover, tyramine concentration in soy sauce samples was significantly reduced when heated with the addition of glucose (p<0.05). Experimental results showed that the tyramine/glucose Maillard reaction is a promising method for tyramine reduction in foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Glycine Betaine, Carnitine, and Choline Enhance Salinity Tolerance and Prevent the Accumulation of Sodium to a Level Inhibiting Growth of Tetragenococcus halophila

    PubMed Central

    Robert, Hervé; Le Marrec, Claire; Blanco, Carlos; Jebbar, Mohamed

    2000-01-01

    Natural-abundance 13C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na+ content and confer a much higher salt tolerance to T. halophila. PMID:10653711

  5. Characterization of superabsorbent hydrogel based on epichlorohydrin crosslink and carboxymethyl functionalization of cassava starch

    NASA Astrophysics Data System (ADS)

    Muharam, S.; Yuningsih, L. M.; Sumitra, M. R.

    2017-07-01

    Superabsorbent hydrogel was prepared by epichlorohydrin crosslink of cassava starch. Their swelling improved with added carboxymethyl group on the starch-epichlorohydrin structure. The structure and properties of starch-epichlorohydrin-carboxymethyl hydrogel were measured by SEM, FTIR, water and physiological solution absorption test and water retention test. The result showed that hydrogel displayed macroporous with heterogenous distribution and irregular surface was formed by epichlorohydrin and carboxymethyl bond in the structure of hydrogel. It was confirmed also by the FTIR spectra. The swelling ratio of starch-epichlorohydrin hydrogel to the water is 518 % and increased to 1,028.5 % with carboxymethyl addition on the structure. The best influence of the physiological solution to the swelling ratio of starch-epichlorohydrin-carboxymethyl hydrogel is urea solution. The water retention of starch-epichlorohydrin-carboxymethyl hydrogel in NaCl solution is better than in CaCl2 solution.

  6. Induction of Crassulacean Acid Metabolism in Mesembryanthemum crystallinum by High Salinity: Mass Increase and de Novo Synthesis of PEP-Carboxylase 1

    PubMed Central

    Höfner, Roswitha; Vazquez-Moreno, Luz; Winter, Klaus; Bohnert, Hans J.; Schmitt, Jürgen M.

    1987-01-01

    Intact plants of the halophilic species Mesembryanthemum crystallinum were induced to exhibit Crassulacean acid metabolism by irrigation with nutrient solution containing 500 millimolar NaCl. During the induction period, the extractable activity of phosphoenolpyruvate carboxylase (PEPcase) increased approximately 40-fold. This increase was linearly correlated with a mass increase of PEPcase protein as measured by single radial immunodiffusion. De novo synthesis of PEPcase protein was shown by immunoprecipitation of the newly synthesized, radioactively labeled protein in leaf discs from salt-treated plants. Nontreated plants were characterized by a low level of the enzyme and low rates of PEPcase synthesis. Synthesis of this enzyme in leaf discs was correlated with the concentration of NaCl in the nutrient solution during growth. Images Fig. 1 Fig. 2 Fig. 3 PMID:16665363

  7. An electrochemical quartz crystal microbalance study of magnesium dissolution

    NASA Astrophysics Data System (ADS)

    Ralston, K. D.; Thomas, S.; Williams, G.; Birbilis, N.

    2016-01-01

    A quartz crystal microbalance (QCM) was used in conjunction with electrochemical measurements to study dissolution of pure magnesium (Mg) sensors in dilute NaCl electrolytes. Open circuit potential and potentiodynamic polarisation experiments were conducted in 0.01 M NaCl, having pH values 3 (buffered) and 6 (unbuffered). In the pH 3 solution, the Mg sensor showed a net mass-loss during the electrochemical tests, whereas, in the unbuffered pH 6 solution Mg showed a net mass-gain, corresponding to the growth of an Mg(OH)2 film on its surface. The loss in the electrochemical efficiency of Mg dissolution due to such direct parasitic Mg(OH)2 growth has been estimated to be around 17-34%. This loss relates to the low capacities and voltage fluctuations reported during discharge of primary Mg batteries.

  8. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions.

    PubMed

    Walker, Rachel L; Searles, Keith; Willard, Jesse A; Michelsen, Rebecca R H

    2013-12-28

    Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.

  9. Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea.

    PubMed

    Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong

    2018-03-24

    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.

  10. Biochar from malt spent rootlets for the removal of mercury from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Boutsika, Lamprini; Manariotis, Ioannis; Karapanagioti, Hrissi K.

    2013-04-01

    Biochar is receiving increased attention as a promising material in environmental applications. It is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. One of the many proposed applications of biochars is the removal of metals (e.g., lead, mercury, etc.) from aqueous solutions. Mercury is one of the heavy metals of particular concern due to its toxicity even at relatively low concentration and thus, its removal from aqueous systems is desirable. Malt spent rootlets is a by-product formed during beer production, it is inexpensive and it is produced in high quantities. The objective of the present study was to evaluate the potential use of biochar, produced from malt spent rootlets, to remove mercury from aqueous solutions. Batch experiments were conducted at room temperature (25oC) to obtain the optimum sorption conditions under different pH values, biomass dose, contact time, and solution ionic strength. Sorption kinetics and equilibrium capacity constants were determined at the optimum pH value. Furthermore, the effect of different leaching solutions on mercury desorption from the biochar was examined. All studies with mercury and biochar were conducted at pH 5 that was determined to be the optimum pH for sorption. The proportion of mercury removal increased with the increased dose of the biochar, i.e. from 71% removal for biochar dose of 0.3 g/L, it reached almost 100% removal for biochar dose ˜1 g/L. Based on the isotherm data, the maximum biochar sorption capacity (qmax) for mercury was 99 mg/g. Based on the sorption kinetic data, (qmax) was achieved after 2 h; it should be mentioned that 30% of the (qmax) was observed within the first 5 min. Five leaching solutions were tested for mercury desorption (H2O, HCl, EDTA, NaCl and HNO3). HCl resulted in the highest extraction percentage of the sorbed mercury. The desorbing mercury percentages at 24 h for HCl concentrations 0.1, 0.2, 0.4, 0.8, and 2 M were 62, 59, 62, 69, and 95%, respectively. Finally, the influence of solution salinity in mercury sorption onto biochar was tested by adjusting the solution ionic strength with two different salts, NaCl and NaNO3. The salts were added at concentrations 1, 0.5, 0.1, 0.01, 0.001, and 0.0001 mol/L. Mercury removal was not affected by the presence of NaNO3 and high metal removal percentages were obtained even at high NaNO3 concentrations (about 53% at concentration 1 mol/L NaNO3). However, a significant decrease of mercury adsorption was observed with the increase of NaCl concentration, i.e. from 55% removal at concentration 0.0001 mol/LNaCl, it reached 20% removal at a concentration of 1 mol/L NaCl. These differences can be related to the different counter ion present in the salts. NO3- does not interfere in mercury sorption but Cl- forms mercury species with negative charge, which do not favor the sorption process. Generally, biochar from malt spent rootlets seemed as a promising novel sorbent that could be used for aqueous system remediation under most environmental conditions.

  11. Sodiated Sugar Structures: Cryogenic Ion Vibrational Spectroscopy of Na^+(GLUCOSE) Adducts

    NASA Astrophysics Data System (ADS)

    Voss, Jonathan; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2017-06-01

    The recent discovery that ionic liquids help facilitate the dissolution of cellulose has renewed interest in understanding how ionic species interact with carbohydrates. Here we present infrared spectra in the 2800 - 3800 \\wn range of gas-phase mass-selected Na^+(Glucose) adducts. These adducts are further probed with IR-dip spectroscopy to yield conformer specific spectra of at least seven unique species. The relative abundances of conformers show that gas-phase interconversion barriers are sufficiently high to preserve the solution-phase populations. Additionally, our results demonstrate that mM concentrations of NaCl do not strongly perturb the anomeric ratio of glucose in solution.

  12. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-10-01

    A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  13. Use of topical tranexamic acid or aminocaproic acid to prevent bleeding after major surgical procedures.

    PubMed

    Ipema, Heather J; Tanzi, Maria G

    2012-01-01

    To evaluate the literature describing topical use of tranexamic acid or aminocaproic acid for prevention of postoperative bleeding after major surgical procedures. Literature was retrieved through MEDLINE (1946-September 2011) and International Pharmaceutical Abstracts (1970-September 2011) using the terms tranexamic acid, aminocaproic acid, antifibrinolytic, topical, and surgical. In addition, reference citations from publications identified were reviewed. All identified articles in English were evaluated. Clinical trials, case reports, and meta-analyses describing topical use of tranexamic acid or aminocaproic acid to prevent postoperative bleeding were included. A total of 16 publications in the setting of major surgical procedures were included; the majority of data were for tranexamic acid. For cardiac surgery, 4 trials used solutions containing tranexamic acid (1-2.5 g in 100-250 mL of 0.9% NaCl), and 1 trial assessed a solution containing aminocaproic acid (24 g in 250 mL of 0.9% NaCl). These solutions were poured into the chest cavity before sternotomy closure. For orthopedic procedures, all of the data were for topical irrigation solutions containing tranexamic acid (500 mg-3 g in 50-100 mL of 0.9% NaCl) or for intraarticular injections of tranexamic acid (250 mg to 2 g in 20-50 mL of 0.9% sodium chloride, with or without carbazochrome sodium sulfate). Overall, use of topical tranexamic acid or aminocaproic acid reduced postoperative blood loss; however, few studies reported a significant reduction in the number of packed red blood cell transfusions or units given, intensive care unit stay, or length of hospitalization. Topical application of tranexamic acid and aminocaproic acid to decrease postsurgical bleeding after major surgical procedures is a promising strategy. Further data are needed regarding the safety of this hemostatic approach.

  14. Molecular Dynamics in Physiological Solutions: Force Fields, Alkali Metal Ions, and Ionic Strength.

    PubMed

    Zhang, Chao; Raugei, Simone; Eisenberg, Bob; Carloni, Paolo

    2010-07-13

    The monovalent ions Na(+) and K(+) and Cl(-) are present in any living organism. The fundamental thermodynamic properties of solutions containing such ions is given as the excess (electro-)chemical potential differences of single ions at finite ionic strength. This quantity is key for many biological processes, including ion permeation in membrane ion channels and DNA-protein interaction. It is given by a chemical contribution, related to the ion activity, and an electric contribution, related to the Galvani potential of the water/air interface. Here we investigate molecular dynamics based predictions of these quantities by using a variety of ion/water force fields commonly used in biological simulation, namely the AMBER (the newly developed), CHARMM, OPLS, Dang95 with TIP3P, and SPC/E water. Comparison with experiment is made with the corresponding values for salts, for which data are available. The calculations based on the newly developed AMBER force field with TIP3P water agrees well with experiment for both KCl and NaCl electrolytes in water solutions, as previously reported. The simulations based on the CHARMM-TIP3P and Dang95-SPC/E force fields agree well for the KCl and NaCl solutions, respectively. The other models are not as accurate. Single cations excess (electro-)chemical potential differences turn out to be similar for all the force fields considered here. In the case of KCl, the calculated electric contribution is consistent with higher level calculations. Instead, such agreement is not found with NaCl. Finally, we found that the calculated activities for single Cl(-) ions turn out to depend clearly on the type of counterion used, with all the force fields investigated. The implications of these findings for biomolecular systems are discussed.

  15. Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses.

    PubMed

    Qu, Wenwen; Busscher, Henk J; van der Mei, Henny C; Hooymans, Johanna M M

    2013-03-01

    To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Adhesion forces of bacterial strains to Ag-impregnated and polypropylene lens cases and a rigid CL were measured using atomic force microscopy. Adhesion forces were used to calculate Weibull distributions, from which transmission probabilities from lens case to CL were derived. Transmission probabilities were compared with actual transmission of viable bacteria from a lens case to the CL in 0.9% NaCl and in an antimicrobial lens care solution. Bacterial transmission probabilities from polypropylene lens cases based on force analysis coincided well for all strains with actual transmission in 0.9% NaCl. Bacterial adhesion forces on Ag-impregnated lens cases were much smaller than that on polypropylene and CLs, yielding a high probability of transmission. Comparison with actual bacterial transmission indicated bacterial killing due to Ag ions during colony-forming unit transmission from an Ag-impregnated lens case, especially for P. aeruginosa. Transmission of viable bacteria from Ag-impregnated lens cases could be further decreased by use of an antimicrobial lens care solution instead of 0.9% NaCl. Bacterial transmission probabilities are higher from Ag-impregnated lens cases than from polypropylene lens cases because of small adhesion forces, but this is compensated for by enhanced bacterial killing due to Ag impregnation, especially when in combination with an antimicrobial lens care solution. This calls for a balanced combination of antimicrobial lens care solutions and surface properties of a lens case and CL.

  16. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro

    PubMed Central

    Lee, So Young; Damodaran, Puthanveettil Narayanankutty; Roh, Kwang Soo

    2014-01-01

    The present study was designed to evaluate the influence of salicylic acid (SA) on the growth of salt stress (sodium chloride) induced in tobacco plants. In addition, quantification of rubisco and rubisco activase contents of the plants was also determined in treatments with the control, 10−4 mM SA, 50 mM NaCl, 100 mM NaCl, 150 mM NaCl, SA + 50 mM NaCl, SA + 100 mM NaCl and SA + 150 mM NaCl, respectively after in vitro culture for 5 weeks. The growth of the tobacco plant decreased in 50 mM and 100 mM NaCl when not treated with SA. However, the growth was accelerated by SA, and the growth retardation caused by NaCl was improved by SA. The content of rubisco was improved by SA only in plants treated with 50 mM NaCl, and the activity of rubisco was increased by SA resulting in the decreased effect of NaCl, but only in 50 mM NaCl treated plants. The content of rubisco activase decreased due to NaCl, and SA did not improve the effect caused by NaCl. The activity of rubisco activase was increased by SA resulting in decreased activity caused by NaCl, but increased effect by SA was not recovered to the level of NaCl untreated plants. The activity of rubisco and rubisco activase, which decreased due to denaturing agents, did not demonstrate significant improvement when compared to the control. PMID:25313276

  17. Effects of dilute aqueous NaCl solution on caffeine aggregation

    NASA Astrophysics Data System (ADS)

    Sharma, Bhanita; Paul, Sandip

    2013-11-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  18. Do osmotic forces play a role in the uptake of water by human skin?

    PubMed

    van Kemenade, Patricia M; Houben, Mark M J; Huyghe, Jacques M; Douven, Lucien F A

    2004-05-01

    To describe the water and ion transport through the skin under different conditions, we developed a three-component mixture model. This model has proven to describe the transient change in transepidermal water loss (TEWL) after a change in relative humidity and the result of damage to the skin. Osmotic forces arc present in the model. To assess the influence of osmotic forces on the water uptake of the skin, we investigated transient TEWL values after 1 h application of salt solutions of different molarities (0, 1, and 4 M NaCl). Filters saturated with 0, 1, and 4 M NaCl solution were applied for 1 h under occlusion. TEWL was measured 50-90 min after removal of the solution. The transient water loss curves were fit with an exponential function. The area under the fitted curve was calculated and regarded as a measure for the amount of extra water absorbed in the skin. For all molarities, TEWL is increased immediately after removal of the solution. In time, this increase decays until pre-application values are reached again. The rate of decrease differs significantly for all three molarities. Ninety-five per cent of the increase has been reversed after 30, 19, and 6 min for the 0, 1, and 4 M case, respectively. The amount of water absorbed differs significantly between the three molarities 7.3+/-2.0; 3.9+/-1.0; 2.0+/-0.5 g/m(2), respectively. In all cases, there was an increase in TEWL immediately after removal of the solution. The significant differences in decay time and amount of water absorbed between the three molarities indicate that osmotic forces do play an important role in the water uptake.

  19. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts.

    PubMed

    Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping

    2009-08-01

    The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.

  20. Effect of Abalone Hydrolysates Encapsulated by Double Emulsion on the Physicochemical and Sensorial Properties of Fresh Cheese

    PubMed Central

    2017-01-01

    The intake of dietary salt through food now exceeds current nutritional recommendations and is thought to have negative effects on human health, such as the increasing prevalence of hypertension. This study was performed to investigate whether W1/O/W2 double emulsions can be used to enhance the saltiness of cheese without increasing the salt content (W1 is distilled water or 1% abalone hydrolysate, and W2 is 1% NaCl or 1% abalone hydrolysate + 1% NaCl solution). We also investigated the effect of adding abalone hydrolysate to the double emulsion as a saltiness enhancer. The cheeses were physico-chemically evaluated to determine curd yield, pH value, moisture content, color, texture, salt release rate, and sensory properties. No significant differences were observed in curd yield, pH value, moisture content, lightness, or redness between the cheeses made with and without the double emulsion. However, in the evaluation of salt release rate, fresh cheese made with double emulsion (W1 = distilled water, W2 = 1% NaCl + 1% abalone hydrolysate) was detected earlier than the control or the other treatments. In the sensory evaluation, fresh cheese made with the double emulsion showed higher scores for saltiness and overall preference than the control or the other treatments. We concluded that abalone hydrolysate encapsulated in a double emulsion (W1 is water and W2 is abalone hydrolysate and NaCl solution) could enhance the saltiness of fresh cheese while maintaining the same salt concentration, without altering its physical properties. PMID:28515645

  1. Effect of Abalone Hydrolysates Encapsulated by Double Emulsion on the Physicochemical and Sensorial Properties of Fresh Cheese.

    PubMed

    Choi, HeeJeong; Kim, Soo-Jin; Lee, Sang-Yoon; Choi, Mi-Jung

    2017-01-01

    The intake of dietary salt through food now exceeds current nutritional recommendations and is thought to have negative effects on human health, such as the increasing prevalence of hypertension. This study was performed to investigate whether W 1 /O/W 2 double emulsions can be used to enhance the saltiness of cheese without increasing the salt content (W 1 is distilled water or 1% abalone hydrolysate, and W 2 is 1% NaCl or 1% abalone hydrolysate + 1% NaCl solution). We also investigated the effect of adding abalone hydrolysate to the double emulsion as a saltiness enhancer. The cheeses were physico-chemically evaluated to determine curd yield, pH value, moisture content, color, texture, salt release rate, and sensory properties. No significant differences were observed in curd yield, pH value, moisture content, lightness, or redness between the cheeses made with and without the double emulsion. However, in the evaluation of salt release rate, fresh cheese made with double emulsion (W 1 = distilled water, W 2 = 1% NaCl + 1% abalone hydrolysate) was detected earlier than the control or the other treatments. In the sensory evaluation, fresh cheese made with the double emulsion showed higher scores for saltiness and overall preference than the control or the other treatments. We concluded that abalone hydrolysate encapsulated in a double emulsion (W 1 is water and W 2 is abalone hydrolysate and NaCl solution) could enhance the saltiness of fresh cheese while maintaining the same salt concentration, without altering its physical properties.

  2. Pathogenic ability and saline stress tolerance of two Fusarium isolates from Odontesthes bonariensis eggs.

    PubMed

    Pacheco Marino, Suani G; Cabello, Marta N; Dinolfo, María I; Stenglein, Sebastián A; Saparrat, Mario C N; Salibián, Alfredo

    2016-01-01

    Several fungal species represent a potential risk to embryos of Odontesthes bonariensis (Cuvier and Valenciennes, 1835), a euryhaline freshwater fish that lives in the Pampean inland waters and has potential economic relevance. To identify two fungi isolated from O. bonariensis eggs exposed to saline conditions and to characterize their pathogenicity and tolerance to sodium chloride solutions. The isolates were identified by morphological features, and a preliminar phylogenetic analysis using sequences of translation elongation factor 1-alpha (EF-1α) and calmodulin (CAM) was performed. Koch's postulates were tested to identify the causative agent of fungal infection. The influence of NaCl on the fungal growth was evaluated in in vitro assays. The isolates LPSC 1001 and 1002 were identified as representatives of the genus Fusarium, and belonging to the Fusarium incarnatum-Fusarium equiseti species complex (FIESC) and the Fusarium solani species complex (FSSC), respectively. Histological observations on eggs exposed in vitro to both isolates in infectivity assays confirmed the ability of the fungal isolates to penetrate to egg's chorionic membrane, leading to the death of embryos. Increasing NaCl concentration in the culture medium reduced the growth of the isolates LPSC 1001 and 1002, being completely inhibited at 160 and 120g/l NaCl respectively. The isolates LPSC 1001 (FIESC) and 1002 (FSSC) were identified as fungal pathogens to O. bonariensis eggs. The use of NaCl solutions as antifungal treatment was not effective to control the infection with these strains. Copyright © 2014 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  3. Distribution of Fos-immunoreactive neurons in the gustatory cortex elicited by intra-oral infusion of taste solutions in conscious rats.

    PubMed

    King, Michael S

    2018-03-15

    The location of neurons in the gustatory cortex (GC) activated by intra-oral infusion of solutions in conscious rats was mapped using Fos immunohistochemistry. Groups of adult male Wistar rats (N's = 5) received an infusion of one of the following: dH 2 O, 0.1 or 1.0 M NaCl, 0.1 or 1.0 M sucrose, 0.32 M MSG (with 100 µM amiloride and 2.5 M inosine 5'-monophosphate), 0.03 M HCl, or 0.003 M QHCl delivered via an intra-oral cannula (0.233 ml/min for 5 min). Unstimulated control rats received no infusion. Taste reactivity (TR) behaviors were videotaped and scored. The number of Fos-immunoreactive (Fos-IR) neurons was counted in eight sections throughout the anterior-posterior extent of the GC in the medial and lateral halves of the granular (GI), dysgranular (DI), and dorsal (AID) and ventral (AIV) agranular insular cortices. Intra-oral infusion of dH 2 O, NaCl, or sucrose altered the number of Fos-IR neurons in only specific subareas of the GC and the effects of these tastants were concentration-dependent. For example, 1.0 M NaCl increased Fos-IR neurons in the posterior lateral AID and DI and elicited more aversive TR responses than 0.1 M NaCl. Compared to dH 2 O, infusions of HCl or QHCl increased the total number of Fos-IR neurons in many subareas of the GC throughout its anterior-posterior extent and increased aversive TR behaviors. Linear regression analyses suggested that neurons in the medial AID of the posterior GC may influence aversive behavioral responses to HCl and QHCl while neurons in the posterior lateral AID and DI may play a role in aversive TR responses to 1.0 M NaCl. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Aqueous NaCl and CsCl Solutions Confined in Crystalline Slit-Shaped Silica Nanopores of Varying Degree of Protonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Tuan A.; Argyris, Dimitrios; Cole, David R.

    2011-12-13

    All-atom molecular dynamics simulations were conducted to study the dynamics of aqueous electrolyte solutions confined in slit-shaped silica nanopores of various degrees of protonation. Five degrees of protonation were prepared by randomly removing surface hydrogen atoms from fully protonated crystalline silica surfaces. Aqueous electrolyte solutions containing NaCl or CsCl salt were simulated at ambient conditions. In all cases, the ionic concentration was 1 M. The results were quantified in terms of atomic density distributions within the pores, and the self-diffusion coefficient along the direction parallel to the pore surface. We found evidence for ion-specific properties that depend on ion-surface, water-ion,more » and only in some cases ion-ion correlations. The degree of protonation strongly affects the structure, distribution, and the dynamic behavior of confined water and electrolytes. Cl -ions adsorb on the surface at large degrees of protonation, and their behavior does not depend significantly on the cation type (either Na + or Cs + ions are present in the systems considered). The cations show significant ion-specific behavior. Na + ions occupy different positions within the pore as the degree of protonation changes, while Cs + ions mainly remain near the pore center at all conditions considered. For a given degree of protonation, the planar self-diffusion coefficient of Cs + is always greater than that of Na + ions. The results are useful for better understanding transport under confinement, including brine behavior in the subsurface, with important applications such as environmental remediation.« less

  5. Accurate and self-consistent procedure for determining pH in seawater desalination brines and its manifestation in reverse osmosis modeling.

    PubMed

    Nir, Oded; Marvin, Esra; Lahav, Ori

    2014-11-01

    Measuring and modeling pH in concentrated aqueous solutions in an accurate and consistent manner is of paramount importance to many R&D and industrial applications, including RO desalination. Nevertheless, unified definitions and standard procedures have yet to be developed for solutions with ionic strength higher than ∼0.7 M, while implementation of conventional pH determination approaches may lead to significant errors. In this work a systematic yet simple methodology for measuring pH in concentrated solutions (dominated by Na(+)/Cl(-)) was developed and evaluated, with the aim of achieving consistency with the Pitzer ion-interaction approach. Results indicate that the addition of 0.75 M of NaCl to NIST buffers, followed by assigning a new standard pH (calculated based on the Pitzer approach), enabled reducing measured errors to below 0.03 pH units in seawater RO brines (ionic strength up to 2 M). To facilitate its use, the method was developed to be both conceptually and practically analogous to the conventional pH measurement procedure. The method was used to measure the pH of seawater RO retentates obtained at varying recovery ratios. The results matched better the pH values predicted by an accurate RO transport model. Calibrating the model by the measured pH values enabled better boron transport prediction. A Donnan-induced phenomenon, affecting pH in both retentate and permeate streams, was identified and quantified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Influence of salt and rinsing protocol on the structure of PAH/PSS polyelectrolyte multilayers.

    PubMed

    Feldötö, Zsombor; Varga, Imre; Blomberg, Eva

    2010-11-16

    A quartz crystal microbalance (QCM) and dual polarization interferometry (DPI) have been utilized to study how the structure of poly(allylamine hydrochloride) (PAH)/poly(styrene sulfonate) (PSS) multilayers is affected by the rinsing method (i.e., the termination of polyelectrolyte adsorption). The effect of the type of counterions used in the deposition solution was also investigated, and the polyelectrolyte multilayers were formed in a 0.5 M electrolyte solution (NaCl and KBr). From the measurements, it was observed that thicker layers were obtained when using KBr in the deposition solution than when using NaCl. Three different rinsing protocols have been studied: (i) the same electrolyte solution as used during multilayer formation, (ii) pure water, and (iii) first a salt solution (0.5 M) and then pure water. When the multilayer with PAH as the outermost layer was exposed to pure water, an interesting phenomenon was discovered: a large change in the energy dissipation was measured with the QCM. This could be attributed to the swelling of the layer, and from both QCM and DPI it is obvious that only the outermost PAH layer swells (to a thickness of 25-30 nm) because of a decrease in ionic strength and hence an increase in intra- and interchain repulsion, whereas the underlying layers retain a very rigid and compact structure with a low water content. Interestingly, the outermost PAH layer seems to obtain very similar thicknesses in water independent of the electrolyte used for the multilayer buildup. Another interesting aspect was that the measured thickness with the DPI evaluated by a single-layer model did not correlate with the estimated thickness from the model calculations performed on the QCM-D data. Thus, we applied a two-layer model to evaluate the DPI data and the results were in excellent agreement with the QCM-D results. To our knowledge, this evaluation of DPI data has not been done previously.

  7. Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal.

    PubMed

    Korak, Julie A; Huggins, Richard; Arias-Paic, Miguel

    2017-07-01

    Due to stricter regulations, some drinking water utilities must implement additional treatment processes to meet potable water standards for hexavalent chromium (Cr(VI)), such as the California limit of 10 μg/L. Strong base anion exchange is effective for Cr(VI) removal, but efficient resin regeneration and waste minimization are important for operational, economic and environmental considerations. This study compared multiple regeneration methods on pilot-scale columns on the basis of regeneration efficiency, waste production and salt usage. A conventional 1-Stage regeneration using 2 N sodium chloride (NaCl) was compared to 1) a 2-Stage process with 0.2 N NaCl followed by 2 N NaCl and 2) a mixed regenerant solution with 2 N NaCl and 0.2 N sodium bicarbonate. All methods eluted similar cumulative amounts of chromium with 2 N NaCl. The 2-Stage process eluted an additional 20-30% of chromium in the 0.2 N fraction, but total resin capacity is unaffected if this fraction is recycled to the ion exchange headworks. The 2-Stage approach selectively eluted bicarbonate and sulfate with 0.2 N NaCl before regeneration using 2 N NaCl. Regeneration approach impacted the elution efficiency of both uranium and vanadium. Regeneration without co-eluting sulfate and bicarbonate led to incomplete uranium elution and potential formation of insoluble uranium hydroxides that could lead to long-term resin fouling, decreased capacity and render the resin a low-level radioactive solid waste. Partial vanadium elution occurred during regeneration due to co-eluting sulfate suppressing vanadium release. Waste production and salt usage were comparable for the 1- and 2-Stage regeneration processes with similar operational setpoints with respect to chromium or nitrate elution. Published by Elsevier Ltd.

  8. Intravenous administration of hypertonic sodium chloride solution with dextran or isotonic sodium chloride solution for treatment of septic shock secondary to pyometra in dogs.

    PubMed

    Fantoni, D T; Auler Junior, J O; Futema, F; Cortopassi, S R; Migliati, E R; Faustino, M; de Oliveira, C M

    1999-11-01

    To determine effects of i.v. administration of hypertonic saline (7.5% NaCl) solution with 6% dextran 70 (HSSD) or isotonic saline (0.9% NaCl) solution (ISS) to dogs with septic shock secondary to pyometra. Prospective, randomized, clinical study. 14 client-owned dogs with septic shock secondary to pyometra. Prior to emergency ovariohysterectomy, catheters were placed in pulmonary and femoral arteries of each dog to evaluate hemodynamic and oxygenation status. Immediately prior to surgery, 7 dogs received HSSD (4 ml/kg [1.82 ml/lb] of body weight, i.v.) and 7 dogs received ISS (32 ml/kg [14.54 ml/lb], i.v.) during a 5-minute period. Measurements of hemodynamic and oxygenation variables were obtained before and 5 and 20 minutes after administration of fluids. Mean arterial pressure (MAP) increased significantly 5 and 20 minutes after administration of HSSD, whereas ISS did not affect MAP. However, cardiac output, cardiac index, and oxygen delivery increased and hematocrit decreased after both treatments. Oxygen consumption and extraction rate and degree of acidosis did not improve after either treatment. Intravenous administration of small volumes of HSSD to dogs with septic shock secondary to pyometra resulted in improvement of hemodynamic and oxygenation status. Although cardiac output, cardiac index, and oxygen delivery improved after administration of a volume of ISS equal to 8 times that of HSSD, MAP increased to > 80 mm Hg only after treatment with HSSD. Administration of HSSD may be an effective treatment for septic shock in dogs.

  9. Photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite films in an aerated 0.5 M NaCl solution

    NASA Astrophysics Data System (ADS)

    Boonserm, Aleena; Kruehong, Chaiyaput; Seithtanabutara, Varinrumpai; Artnaseaw, Apichart; Kwakhong, Panomkorn

    2017-10-01

    This research aimed to investigate the photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite films using electrochemical measurements in an aerated 0.5 M NaCl solution under white light illumination. The CdS/TiO2 nanocomposite films were prepared by chemical bath deposition technique in a solution of cadmium and sulfide ions. The high resolution images of CdS/TiO2 nanocomposite films were provided by field emission scanning electron microscope. Theirs chemical identification and quantitative compositional information, crystallinity and actual chemical compounds formed were determined by energy dispersive spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The results indicated that the photoelectrochemical activity of the films depended strongly on CdS content. From the preparation of CdS/TiO2 nanocomposite films by 5, 10 and 15 dipping cycles in the chemical solutions, the best photoelectrochemical response was revealed by the 10 dipping cycles-prepared film. Galvanic couple testing demonstrated that the photoelectrochemical response of the film decreased continuously compared to that of anodized nanoporous TiO2 substrate which described by photocorrosion of CdS nanoparticles. In addition, chloride-ion attack also induced pitting corrosion leading to fluctuation and deterioration of photoelectrochemical response. CdO2 and Cd(OH)2 depositions were found as the main photocorrosion products on collapsed nanostructured-surface. The relevance between photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite film was discussed in detail.

  10. Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition

    USDA-ARS?s Scientific Manuscript database

    Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0 to 100 mM) or CaCl2 (0.1 to 1.0 mM). The experimental breakthrough curves and retent...

  11. Antimicrobial Activity of Photodynamic Therapy Against Enterococcus faecalis Before and After Reciprocating Instrumentation in Permanent Molars.

    PubMed

    Pinheiro, Sérgio Luiz; Azenha, Giuliana Rodrigues; Democh, Yasmin Marialva; Nunes, Daniela Camila; Provasi, Silvia; Fontanetti, Giovana Masiero; Duarte, Danilo Antônio; Fontana, Carlos Eduardo; da Silveira Bueno, Carlos Eduardo

    2016-12-01

    The present study sought to evaluate the antimicrobial activity against Enterococcus faecalis of photodynamic therapy applied before and after reciprocating instrumentation of permanent molars. Apical extrusion of debris can cause flare-ups due to introduction of bacteria into the periapical tissues. Eighteen mesial roots from permanent mandibular molars were selected. The crowns were removed to obtain a standard root length of 15 mm. The included mesial roots had an angulation of 10°-40° and canals with independent foramina. The orifice of each mesiolingual canal was sealed with light-curing resin, and the working length was established visually, 1 mm short of the apical foramen. The roots were rendered impermeable and sterilized, and the mesiobuccal canals were contaminated with a standard strain of E. faecalis for 21 days. Specimens were randomly divided into three groups (n = 6): G1, photodynamic therapy performed before instrumentation and irrigation with 0.9% NaCl (saline) solution; G2, photodynamic therapy performed after instrumentation and irrigation with 0.9% NaCl; and G3 (control), instrumentation and irrigation with 2.5% NaOCl (sodium hypochlorite) solution. Canals were shaped with a WaveOne primary file (25.08) and irrigated with 0.9% NaCl. E. faecalis samples were collected before and after each procedure, and the results were analyzed using descriptive statistics and the Kruskal-Wallis and Wilcoxon tests. Significant reductions in E. faecalis were observed when photodynamic therapy was performed before and after instrumentation of the root canal system (p < 0.05). Reciprocating instrumentation significantly reduced E. faecalis colonies in experimentally contaminated root canal systems (p < 0.05). Photodynamic therapy was effective in removing E. faecalis from the root canal system, whether performed before or after reciprocating instrumentation.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atari, N.A.; Ettinger, K.V.

    When some irradiated solids are dissolved in water or certain other solvents light emission occurs, which is termed lyoluminescence''. In the case of inorganic materials, such as alkali halides, reactions of trapped electrons from F-centers are responsible for the light emission, and with organic materials, such as saccharides, trapped free radicals are involved. Application of lyoluminescence'' to dosimetry is described. It is possible to measure doses of between 1 and 10/sup 7/is way with an accuracy of 5% using NaCl with water as solvent. The stored lyoluminescent energy in NaCl decreases by only 15% after seven months of storage, butmore » is sensitive to optical and thermal bleaching. Furthermore, the effective ntomic numbers of NaCl is approximately 16, differing considerably from that of human tissue (above 7.5). Study of monosaccarides, including glucose, xylose and mannose, has demonstrated the stability of the trapped free radicals, and no decrease in their lyoluminescence was observed over 7 months. As regards their use for dosimetry they show linear dependence with dose up to 100 kR, and the lowest dose indicated under test was 100 R. It is considered possible to use the lyoluminescence of saccharides for clinical dosimetry if the sensitivity of the systems could be improved, and to this end tests were carried out using luminol solution. Using a /sup 60/Co gamma -source irradiated saccharides give bright blue light when dissolved in luminol solution, and the light enhancement was about 10/sup 6/ compared with water. It seems likely that the oxidizing species responsible for exciting the luminol are formed as a result of free radical reactions with dissolved or adsorbed O/sub 2/ in the system. Trehalose, which is a fairly true tissue equivalent material, appears to be a good candidate for lyoluminescence dosimetry. (UK)« less

  13. Sample treatment optimization for fish stool metabolomics.

    PubMed

    Hano, Takeshi; Ito, Mana; Ito, Katsutoshi; Uchida, Motoharu

    2018-06-07

    Gut microbiota play an essential role in an organism's health. The fecal metabolite profiling content reflects these microbiota-mediated physiological changes in various organisms, including fish. Therefore, metabolomics analysis of fish feces should provide insight into the dynamics linking physiology and gut microbiota. However, metabolites are often unstable in aquatic environments, making fecal metabolites difficult to examine in fish. In this study, a novel method using gas chromatography-mass spectrometry (GC-MS) was developed and optimized for the preparation of metabolomics samples from the feces of the marine fish, red sea bream (Pagrus major). The preparation methodology was optimized, focusing on rinsing frequency and rinsing solvent. Feces (collected within 4 h of excretion) were rinsed three times with sterilized 2.5% NaCl solution or 3.0% artificial seawater (ASW). Among the 86 metabolites identified in the NaCl-rinsed samples, 57 showed superior recovery to that in ASW-rinsed samples, indicating that NaCl is a better rinsing solvent, particularly for amino acids, organic acids, and fatty acids. To evaluate rinsing frequency, fecal samples were rinsed with NaCl solution 0, 1, 3, or 5 times. The results indicate that three or more rinses enabled robust and stable detection of metabolites encapsulated within the solid fecal residue. Furthermore, these data suggest that rinsing is unnecessary when studying sugars, amino acids, and sterols, again highlighting the need for appropriate rinsing solvent and frequency. This study provides further insight into the use of fecal samples to evaluate and promote fish health during farming and supports the application of this and similar analyses to study the effects of environmental fluctuations and/or contamination. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The nature of the in vivo sodium and chloride uptake mechanisms through the epithelium against sodium and of bicarbonate against chloride.

    PubMed

    García Romeu, F; Salibián, A; Pezzani-Hernádez, S

    1969-06-01

    The Chilean frog, Calyptocephallela gayi, placed in dilute NaCl solutions may pump Na(+) and Cl(-) at very different rates depending on the kind of bath solutions in which it was preadapted. Furthermore, Na(+) and Cl(-) may be absorbed from solutions in which the accompanying coion, such as sulfate and choline, respectively, is impermeant. In all these cases it is obligatory to postulate the existence of two ionic exchange mechanisms, Cl(-) and Na(+), being exchanged against endogenous anions and cations, respectively. It has been determined that Na(+) is exchanged against endogenous H(+) and that Cl(-) is exchanged against HCO(3) (-). In animals pumping Na(+) and Cl(-) from dilute NaCl solutions Na(+) or Cl(-) uptake may be selectively inhibited, while the flux of the accompanying ion remains unchanged. This is considered to be an additional proof that both Na(+) and Cl(-) fluxes are always independent. The role of the ionic exchange mechanisms in the direct regulation of the Na(+) and Cl(-) levels in the internal medium is discussed as well as their relationship in the regulation of the acid-base equilibrium; other physioecological considerations have been treated.

  15. The Nature of the In Vivo Sodium and Chloride Uptake Mechanisms through the Epithelium of the Chilean Frog Calyptocephalella gayi (Dum. et Bibr., 1841)

    PubMed Central

    Romeu, Federico García; Salibián, Alfredo; Pezzani-Hernandez, Silvia

    1969-01-01

    The Chilean frog, Calyptocephallela gayi, placed in dilute NaCl solutions may pump Na+ and Cl- at very different rates depending on the kind of bath solutions in which it was preadapted. Furthermore, Na+ and Cl- may be absorbed from solutions in which the accompanying coion, such as sulfate and choline, respectively, is impermeant. In all these cases it is obligatory to postulate the existence of two ionic exchange mechanisms, Cl- and Na+, being exchanged against endogenous anions and cations, respectively. It has been determined that Na+ is exchanged against endogenous H+ and that Cl- is exchanged against HCO3 -. In animals pumping Na+ and Cl- from dilute NaCl solutions Na+ or Cl- uptake may be selectively inhibited, while the flux of the accompanying ion remains unchanged. This is considered to be an additional proof that both Na+ and Cl- fluxes are always independent. The role of the ionic exchange mechanisms in the direct regulation of the Na+ and Cl- levels in the internal medium is discussed as well as their relationship in the regulation of the acid-base equilibrium; other physioecological considerations have been treated. PMID:5822161

  16. Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes.

    PubMed

    Ge, Qingchun; Amy, Gary Lee; Chung, Tai-Shung

    2017-10-01

    Forward osmosis (FO) has demonstrated its merits in hybrid FO seawater desalination. However, FO may have a potential for other applications if suitable draw solutes are available. In this study, a series of novel draw solutes based on oxalic acid (OA)-transitional metal complexes are presented. Influential factors of FO performance have been systematically investigated by varying the transitional metals, cations of the complex draw solutes as well as the experimental conditions. Compared to NaCl and other recently synthesized draw solutes, the OA complexes show superior FO performance in terms of high water fluxes up to 27.5 and 89.1 LMH under the respective FO and PRO (pressure retarded osmosis) modes, both with negligible reverse solute fluxes. The features of octahedral geometry, abundant hydrophilic groups and ionic species are crucial for the OA complexes as appropriate draw solutes with satisfactory FO performance. Among the synthesized OA complexes, the ammonium salt of chromic complex (NH 4 -Cr-OA) outperforms others due to the presence of more ionic species in its complex system. NH 4 -Cr-OA also performs better than the typical NaCl draw solute in FO oily wastewater treatment with higher water recovery and negligible reverse fluxes. Dilute solutions of OA complexes have been reconcentrated through membrane distillation (MD) and reused to new round of FO processes. The OA complexes have demonstrated their suitability and superiority as a novel class of draw solutes for the FO process in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of irrigation water salinity on the organic carbon mineralization in soil (laboratory incubation)

    NASA Astrophysics Data System (ADS)

    Mancer, Halima; Bouhoun, Mustapha Daddi

    2018-05-01

    In a laboratory study, the impact of salts on mineralization of organic carbon of soil was examined through the monitoring of the amount of CO2-C released from soil. The soil used was classified as a nonsaline soil which has been irrigated with artificially salinized water, a factorial combination of three types of salts (NaCl, MgCl2, CaCl2) with three levels of electrical conductivities (3, 6, and 9 dS.m-1) was used to assess the Carbon mineralization. The incubation was carried out under aerobic conditions and at a constant temperature of 28 °C during 70 days with moisture adjusted to 2/3 of the field capacity. No significant (P > 0.05) variation in the amount of CO2-C release from soil was observed until day 56 of the incubation, but it was significantly different due to the irrigation with salt solutions during the days: 70 (p ≤ 0.05). The results suggest that the rate of C-CO2 evolution decreased with the increase in water salinity compared to the control. Also this decrease of C-mineralization in the soils irrigated by the salts solutions of NaCl was the greatest compared to the other two salts (CaCl2, and MgCl2). These results suggest that C mineralization depended on the type of salts as well as the duration of incubation.

  18. Direct measurement of CO2 solubility and pH in NaCl hydrothermal solutions by combining in-situ potentiometry and Raman spectroscopy up to 280 °C and 150 bar

    NASA Astrophysics Data System (ADS)

    Truche, Laurent; Bazarkina, Elena F.; Berger, Gilles; Caumon, Marie-Camille; Bessaque, Gilles; Dubessy, Jean

    2016-03-01

    The in-situ monitoring of aqueous solution chemistry at elevated temperatures and pressures is a major challenge in geochemistry. Here, we combined for the first time in-situ Raman spectroscopy for concentration measurements and potentiometry for pH measurement in a single hydrothermal cell equipped with sampling systems and operating under controlled conditions of temperature and pressure. Dissolved CO2 concentration and pH were measured at temperatures up to 280 °C and pressures up to 150 bar in the H2O-CO2 and H2O-CO2-NaCl systems. A Pitzer specific-ion-interaction aqueous model was developed and confirmed the accuracy and consistency of the measurements, at least up to 250 °C. The revised Pitzer parameters for the H2O-CO2-NaCl system were formatted for the Phreeqc geochemical software. Significant changes with respect to the Pitzer.dat database currently associated with Phreeqc were observed. The new model parameters are now available for further applications. The Raman and pH probes tested here may also be applied to field monitoring of hydrothermal springs, geothermal wells, and oil and gas boreholes.

  19. Experimental Determination of Lead Interactions with Citrate and EDTA in NaCl and MgCl2 Solutions to High Ionic Strength and Its Applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yongliang; Kirkes, Leslie Dawn; Westfall, Terry

    For this study, the interactions of lead with citrate and ethylenediaminetetraacetate (EDTA) are investigated based on solubility measurements as a function of ionic strength at room temperature (22.5 ± 0.5°C) in NaCl and M gCl 2 solutions. The formation constants (log β 1 0 ) for Pb[C 3H 5O(COO) 3]– (abbreviated as PbCitrate –) and Pb[(CH 2COO) 2N(CH2) 2N(CH 2COO) 2)] 2– (abbreviated as PbEDTA 2–) Pb 2+ + [C 3H 5O(COO) 3] 3– = Pb[C 3H 5O(COO) 3] – (1) Pb 2+ + (CH 2COO) 2N(CH 2) 2N(CH 2COO) 2) 4- = Pb[(CH 2COO) 2N(CH 2) 2N(CH 2COO) 2)]more » 2– (2) are evaluated as 7.28 ± 0.18 (2σ) and 20.00 ± 0.20 (2σ), respectively, with a set of Pitzer parameters describing the specific interactions in NaCl and M gCl 2 media. Based on these parameters, the interactions of lead with citrate and EDTA in various low temperature environments can be accurately modelled.« less

  20. Application of EIS and SECM Studies for Investigation of Anticorrosion Properties of Epoxy Coatings Containing Zinc Oxide Nanoparticles on Mild Steel in 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Raj, X. Joseph

    2017-07-01

    The effect of corrosion protection performance of epoxy coatings containing ZnO nanoparticle on mild steel in 3.5% NaCl solution was analyzed using scanning electrochemical microscopy and electrochemical impedance spectroscopy (EIS). Line profile and topographic image analysis were measured by applying -0.70 and +0.60 V as the tip potential for the cathodic and anodic reactions, respectively. The tip current at -0.70 V for the epoxy-coated sample with ZnO nanoparticles decreased rapidly, which is due to cathodic reduction in dissolved oxygen. The EIS measurements were taken in 3.5% NaCl after wet and dry cyclic corrosion test. The increase in the film resistance ( R f) and charge transfer resistance ( R ct) values was confirmed by the addition of ZnO nanoparticles in the epoxy coating. SEM/EDX analysis showed that complex oxide layer of zinc was enriched in corrosion products at a scratched area of the coated steel after corrosion testing. FIB-TEM analysis confirmed the presence of the nanoscale complex oxide layer of Zn in the rust of the steel that had a beneficial effect on the corrosion resistance of coated steel by forming protective corrosion products in the wet/dry cyclic test.

  1. The vesicle-to-micelle transition of phosphatidylcholine vesicles induced by nonionic detergents: effects of sodium chloride, sucrose and urea.

    PubMed

    Walter, A; Kuehl, G; Barnes, K; VanderWaerdt, G

    2000-11-23

    The vesicle-to-micelle transition of egg phosphatidylcholine LUVs induced by octylglucoside was studied in buffers with 0-4 M sodium chloride, sucrose or urea. We used both light scattering and fluorescent probes to follow the lipid-detergent complexes in these buffers. The vesicle-to-micelle transition process was fundamentally the same in each solute. However, the detergent-to-lipid ratio required for micelle formation shifted in ways that depended on the aqueous solute. The partitioning of octylglucoside between the vesicles and the aqueous phase was primarily determined by the change in its critical micelle concentration (cmc) induced by each solute. Specifically, the cmc decreased in high salt and sucrose buffers but increased in high concentrations of urea. Cmc for two additional nonionic detergents, decyl- and dodecyl-maltoside, and three zwittergents (3-12, 3-14 and 3-16) were determined as a function of concentration for each of the solutes. In all cases NaCl and sucrose decreased the solubility of the detergents, whereas urea increased their solubilities. The effects clearly depended on acyl chain length in urea-containing solutions, but this dependence was less clear with increasing NaCl and sucrose concentrations. The contributions of these solutes to solubility and to interfacial interactions in the bilayers, pure and mixed micelles are considered.

  2. Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.

    PubMed

    Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2015-02-01

    Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Calculating Permittivity and Dielectric Loss Frequency Spectra for Aqueous Electrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Odinaev, S.; Makhmadbegov, R. S.

    2018-01-01

    Analytic expressions for dielectric permittivity factor ɛ1(ω) and dielectric dissipation factor ɛ2(ω) of electrolyte solutions are obtained, based on the ratio between complex factors of dielectric permittivity and specific conductivity. The range of frequency dispersion of dynamic factors ɛ1(ω) and ɛ2(ω) for aqueous solutions of LiCl, NaCl, KCl, and CsCl is considered. Numerical calculations are performed for friction coefficients β a and β b ; relaxation times τ a , τ b , and τ ab ; and factors ɛ1(ω) and ɛ2(ω) in a wide range of variation for ρ; concentration c; temperature T; and frequencies ω. The resulting theoretically calculated ɛ1(ω) and ɛ2(ω) values and the Cole-Cole diagram are in quantitative agreement with experimental data.

  4. Impact of sodium chloride on the expansion of a liquid-liquid miscibility gap in an API/water system. Case study of Brivaracetam.

    PubMed

    Couvrat, Nicolas; Mahieux, Julien; Fours, Baptiste; Cartigny, Yohann; Schenkel, Eric; Aerts, Luc; Quéré, Luc; Coquerel, Gérard

    2016-12-30

    Brivaracetam, or (2S)-2-[(4R)-2-oxo-4-propyl-pyrrolidin-1-yl] butanamide, is an active pharmaceutical ingredient designed for the treatment of epilepsy. During the development of the IV administration mode, a liquid-liquid miscibility gap has been observed with pure water, isotonic and hypertonic solutions (vehicle at 0.9% w/w and 5%w/w NaCl respectively). The study reveals that the NaCl concentration has a direct impact on the extent of the demixing domain; from a sub-micronic demixing in pure water towards a macroscopic miscibility gap in hypertonic aqueous solutions. The thorough exploration of these heterogeneous equilibria led to define experimental parameters for safe IV injections without risk of liquid - liquid miscibility gap at 37°C. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The one-step electroposition of superhydrophobic surface on AZ31 magnesium alloy and its time-dependence corrosion resistance in NaCl solution

    NASA Astrophysics Data System (ADS)

    Zhong, Yuxing; Hu, Jin; Zhang, Yufen; Tang, Shawei

    2018-01-01

    A calcium myristic superhydrophobicity coating with a hierarchical micro-nanostructure was fabricated on AZ31 magnesium alloy by one-step electroposition. The effects of deposition time on the coating structure, such as morphology, thickness, wettability and phase composition of the coating were studied. The corrosion behavior of the coated samples in 3.5% NaCl solution was also investigated and the corrosion mechanism was discussed. It was found that the deposition time has a visible effect on the morphology, thickness and wettability, which distinctly affects the corrosion resistance of coatings. The corrosion resistance of the coating gradually decreases with the increase in the immersion time due to the disappearance of the air layer which exists on the coating surface. The superhydrophobic surfaces present the temporal limitations to the corrosion resistance of AZ31 magnesium alloy.

  6. Experimental study of formation and dynamics of cavitation bubbles and acoustic flows in NaCl, KCl water solutions

    NASA Astrophysics Data System (ADS)

    Rybkin, K. A.; Bratukhin, Yu. K.; Lyubimova, T. P.; Fatallov, O.; Filippov, L. O.

    2017-07-01

    The acoustic flows and the phenomena associated with them arising under the action of ultrasound of different power on distilled water and aqueous solutions of a mixture of NaCl and KCl salts of various concentrations are studied experimentally. It is found that in the distilled water, under the action of ultrasound, the appearance of inertial and non-inertial cavitation bubbles takes place, then the formation of stable clusters, the distance between which depends on the power of the ultrasound source is observed. Experiments show that an increase in the mass concentration of salts in water leads to the decrease in the average diameter of the arising inertial cavitation bubbles and to the gradual decrease in their number, up to an almost complete disappearance at nearly 13% of the concentration of the salt mixture in the water.

  7. Effects of Alloying Element Ca on the Corrosion Behavior and Bioactivity of Anodic Films Formed on AM60 Mg Alloys

    PubMed Central

    Anawati, Anawati; Asoh, Hidetaka; Ono, Sachiko

    2016-01-01

    Effects of alloying element Ca on the corrosion behavior and bioactivity of films formed by plasma electrolytic oxidation (PEO) on AM60 alloys were investigated. The corrosion behavior was studied by conducting electrochemical tests in 0.9% NaCl solution while the bioactivity was evaluated by soaking the specimens in simulated body fluid (SBF). Under identical anodization conditions, the PEO film thicknesses increased with increasing Ca content in the alloys, which enhanced the corrosion resistance in NaCl solution. Thicker apatite layers grew on the PEO films of Ca-containing alloys because Ca was incorporated into the PEO film and because Ca was present in the alloys. Improvement of corrosion resistance and bioactivity of the PEO-coated AM60 by alloying with Ca may be beneficial for biodegradable implant applications. PMID:28772371

  8. The effects of 7.5% NaCl/6% dextran 70 on coagulation and platelet aggregation in humans

    NASA Technical Reports Server (NTRS)

    Hess, J. R.; Dubick, M. A.; Summary, J. J.; Bangal, N. R.; Wade, C. E.

    1992-01-01

    The combination solution of 7.5% NaCl/6% dextran 70 (HSD) administered IV gives hemodynamic improvement in the treatment of hemorrhagic hypotension. Since earlier dextran solutions were reported to interfere with blood coagulation, the effects of HSD on the prothrombin time (PT), the activated partial thromboplastin time (APTT), platelet aggregation, and platelet concentration were studied. The HSD mixed with human plasma (1:5 and 1:10) slightly prolonged PT, but had no effect on the APTT, compared with saline controls. The HSD also decreased human platelet aggregation at the 1:5 dilution. In separate mixing studies, the hypertonic saline component of HSD was associated with the prolongation of PT and decreased platelet aggregation. The data from these studies indicate that at its proposed therapeutic dose, HSD is expected to have minimal effect on blood coagulation.

  9. Adsorption behavior of benzenesulfonic acid by novel weakly basic anion exchange resins.

    PubMed

    Sun, Yue; Zuo, Peng; Luo, Junfen; Singh, Rajendra Prasad

    2017-04-01

    Two novel weakly basic anion exchange resins (SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene (Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respectively. The physicochemical structures of the resulting resins were characterized using Fourier Transform Infrared Spectroscopy and pore size distribution analysis. The adsorption behavior of SZ-1 and SZ-2 for benzenesulfonic acid (BA) was evaluated, and the common commercial weakly basic anion exchanger D301 was also employed for comparison purpose. Adsorption isotherms and influence of solution pH, temperature and coexisting competitive inorganic salts (Na 2 SO 4 and NaCl) on adsorption behavior were investigated and the optimum desorption agent was obtained. Adsorption isotherms of BA were found to be well represented by the Langmuir model. Thermodynamic parameters involving ΔH, ΔG and ΔS were also calculated and the results indicate that adsorption is an exothermic and spontaneous process. Enhanced selectivity of BA sorption over sulfate on the two novel resins was observed by comparison with the commercial anion exchanger D301. The fact that the tested resins loaded with BA can be efficiently regenerated by NaCl solution indicates the reversible sorption process. From a mechanistic viewpoint, this observation clearly suggests that electrostatic interaction is the predominant adsorption mechanism. Furthermore, results of column tests show that SZ-1 possesses a better adsorption property than D301, which reinforces the feasibility of SZ-1 for potential industrial application. Copyright © 2016. Published by Elsevier B.V.

  10. Divalent cation and ionic strength effects on Vinca alkaloid-induced tubulin self-association.

    PubMed

    Lobert, S; Boyd, C A; Correia, J J

    1997-01-01

    We present here a systematic study of ionic strength and divalent cation effects on Vinca alkaloid-induced tubulin spiral formation. We used sedimentation velocity experiments and quantitative fitting of weight-average sedimentation coefficients versus free drug concentrations to obtain thermodynamic parameters under various solution conditions. The addition of 50-150 mM NaCl to our standard buffer (10 mM piperazine-N,N'-bis(2-ethanesulfonic acid), 1 mM Mg, 50 microM GDP or GTP, pH 6.9) enhances overall vinblastine- or vincristine-induced tubulin self-association. As demonstrated in previous studies, GDP enhances overall self-association more than GTP, although in the presence of salt, GDP enhancement is reduced. For example, in 150 mM NaCl, GDP enhancement is 0.24 kcal/mol for vinblastine and 0.36 kcal/mol for vincristine versus an average enhancement of 0.87 (+/- 0.34) kcal/mol for the same drugs in the absence of salt. Wyman linkage analysis of experiments with vinblastine or vincristine over a range of NaCl concentrations showed a twofold increase in the change in NaCl bound to drug-induced spirals in the presence of GTP compared to GDP. These data indicate that GDP enhancement of Vinca alkaloid-induced tubulin self-association is due in part to electrostatic inhibition in the GTP state. In the absence of NaCl, we found that vinblastine and 1 mM Mn2+ or Ca2+ causes immediate condensation of tubulin. The predominant aggregates observed by electron microscopy are large sheets. This effect was not found with 1 mM Mg2+. At 100 microM cation concentrations (Mn2+, Mg2+, or Ca2+), GDP enhances vinblastine-induced spiral formation by 0.55 (+/- 0.26) kcal/mol. This effect is found only in K2, the association of liganded heterodimers at the ends of growing spirals. There is no GDP enhancement of K1, the binding of drug to heterodimer, although K1 is dependent upon the divalent cation concentration. NaCl diminishes tubulin condensation, probably by inhibiting lateral association, and allows an investigation of higher divalent cation concentrations. In the presence of 150 mM NaCl plus 1 mM divalent cations (Mn2+, Mg2+, or Ca2+) GDP enhances vinblastine-induced spiral formation by 0.35 (+/- 0.21) kcal/mol. Relaxation times determined by stopped-flow light scattering experiments in the presence of 150 mM NaCl and vincristine are severalfold longer than those in the presence of vinblastine, consistent with a mechanism involving the redistribution of longer polymers. Unlike previous results in the absence of NaCl, relaxation times in the presence of NaCl are only weekly protein concentration dependent, suggesting the absence of annealing or an additional rate-limiting step in the mechanism.

  11. Gas Exchange and Carbon Partitioning in the Leaves of Celery (Apium graveolens L.) at Various Levels of Root Zone Salinity.

    PubMed Central

    Everard, J. D.; Gucci, R.; Kann, S. C.; Flore, J. A.; Loescher, W. H.

    1994-01-01

    Both mannitol and sucrose (Suc) are primary photosynthetic products in celery (Apium graveolens L.). In other biological systems mannitol has been shown to serve as a compatible solute or osmoprotectant involved in stress tolerance. Although mannitol, like Suc, is translocated and serves as a reserve carbohydrate in celery, its role in stress tolerance has yet to be resolved. Mature celery plants exposed to low (25 mM NaCl), intermediate (100 mM NaCl), and high (300 mM NaCl) salinities displayed substantial salt tolerance. Shoot fresh weight was increased at low NaCl concentrations when compared with controls, and growth continued, although at slower rates, even after prolonged exposure to high salinities. Gas-exchange analyses showed that low NaCl levels had little or no effect on photosynthetic carbon assimilation (A), but at intermediate levels decreases in stomatal conductance limited A, and at the highest NaCl levels carboxylation capacity (as measured by analyses of the CO2 assimilation response to changing internal CO2 partial pressures) and electron transport (as indicated by fluorescence measurements) were the apparent prevailing limits to A. Increasing salinities up to 300 mM, however, increased mannitol accumulation and decreased Suc and starch pools in leaf tissues, e.g. the ratio of mannitol to Suc increased almost 10-fold. These changes were due in part to shifts in photosynthetic carbon partitioning (as measured by 14C labeling) from Suc into mannitol. Salt treatments increased the activity of mannose-6-phosphate reductase (M6PR), a key enzyme in mannitol biosynthesis, 6-fold in young leaves and 2-fold in fully expanded, mature leaves, but increases in M6PR protein were not apparent in the older leaves. Mannitol biosynthetic capacity (as measured by labeling rates) was maintained despite salt treatment, and relative partitioning into mannitol consequently increased despite decreased photosynthetic capacity. The results support a suggested role for mannitol accumulation in adaptation to and tolerance of salinity stress. PMID:12232328

  12. Distinct structural changes detected by X-ray fiber diffraction in stabilization of F-actin by lowering pH and increasing ionic strength.

    PubMed

    Oda, T; Makino, K; Yamashita, I; Namba, K; Maéda, Y

    2001-02-01

    Lowering pH or raising salt concentration stabilizes the F-actin structure by increasing the free energy change associated with its polymerization. To understand the F-actin stabilization mechanism, we studied the effect of pH, salt concentration, and cation species on the F-actin structure. X-ray fiber diffraction patterns recorded from highly ordered F-actin sols at high density enabled us to detect minute changes of diffraction intensities and to precisely determine the helical parameters. F-actin in a solution containing 30 mM NaCl at pH 8 was taken as the control. F-actin at pH 8, 30 to 90 mM NaCl or 30 mM KCl showed a helical symmetry of 2.161 subunits per turn of the 1-start helix (12.968 subunits/6 turns). Lowering pH from 8 to 6 or replacing NaCl by LiCl altered the helical symmetry to 2.159 subunits per turn (12.952/6). The diffraction intensity associated with the 27-A meridional layer-line increased as the pH decreased but decreased as the NaCl concentration increased. None of the solvent conditions tested gave rise to significant changes in the pitch of the left-handed 1-start helix (approximately 59.8 A). The present results indicate that the two factors that stabilize F-actin, relatively low pH and high salt concentration, have distinct effects on the F-actin structure. Possible mechanisms will be discussed to understand how F-actin is stabilized under these conditions.

  13. pH Shifting alters solubility characteristics and thermal stability of soy protein isolate and its globulin fractions in different pH, salt concentration, and temperature conditions.

    PubMed

    Jiang, Jiang; Xiong, Youling L; Chen, Jie

    2010-07-14

    Soy protein isolate (SPI), beta-conglycinin (7S), and glycinin (11S) were subjected to pH-shifting treatments, that is, unfolding at pH 1.5 or 12.0 followed by refolding at pH 7.0, to induce molten globule structures. Treated samples were analyzed for protein solubility, thermal stability, and aggregation in 0, 0.1, and 0.6 M NaCl solutions at pH 2.0-8.0. The pH(12) shifting resulted in drastic increases (up to 2.5-fold) in SPI solubility in the pH 6.0-7.0 range, especially at 0 M NaCl. The pH(1.5) shifting had a generally lesser effect on solubility. 11S exhibited a solubility pattern similar to that of SPI, but the solubility of 7S was unaffected by pH shifting except at 0.6 M NaCl. The pH shifting, notably at pH 12.0, produced soluble, disulfide-linked polymers from 11S and reduced (P < 0.05) its enthalpy but not its temperature of denaturation. Soy proteins structurally altered by pH shifting had a reduced sensitivity to thermal aggregation.

  14. Lateral Parabrachial Nucleus Serotonergic Mechanisms and Salt Appetite Induced by Sodium Depletion

    NASA Technical Reports Server (NTRS)

    Menani, Jose Vanderlei; DeLuca, Laurival Antonio, Jr.; Johnson, Alan Kim

    1998-01-01

    This study investigated the effects of bilateral injections of a serotonin (5-HT) receptor agonist into the lateral parabrachial nucleus on the intake of NaCl and water induced by 24-h water deprivation or by sodium depletion followed by 24 h of sodium deprivation (injection of the diuretic furosemide plus 24 h of d sodium-deficient diet). Rats had stainless steel cannulas implanted bilaterally into the LPBN. Bilateral LPBN injections of the serotonergic 5-HT(1/2) receptor antagonist methysergide (4 micro-g/200 nl at each site) increased hypertonic NaCl intake when tested 24 h after sodium depletion and after 24 h of water deprivation. Water intake also increased after bilateral injections of methysergide into the LPBN. In contrast, the intake of a palatable solution (0.06 M sucrose) under body fluid-replete conditions was not changed after bilateral LPBN methysergide injections. The results show that serotonergic mechanisms in the LPBN modulate water and sodium intake induced by volume depletion and sodium loss. The finding that sucrose intake was not affected by LPBN serotonergic blockade suggests that the effects of the methysergide treatment on the intakes of water and NaCl are not due to a mechanism producing a nonspecific enhancement of all ingestive behaviors.

  15. Solution Properties of Amphoteric Random Copolymers Bearing Pendant Sulfonate and Quaternary Ammonium Groups with Controlled Structures.

    PubMed

    Nakahata, Rina; Yusa, Shin-Ichi

    2018-01-05

    Amphoteric random copolymers P(AMPS/APTAC50) x , where x = 41, 89, and 117, composed of sodium 2-acrylamido-2-methylpropanesulfonate (AMPS) and 3-acrylamidopropyltrimethylammonium chloride (APTAC) were prepared via reversible addition-fragmentation chain transfer radical polymerization. P(AMPS/APTAC50) x can dissolve in pure water to form small interpolymer aggregates. In aqueous solutions of NaCl, P(AMPS/APTAC50) x can dissolve in the unimer state. Amphoteric random copolymer P(AMPS/APTAC50) c with high molecular weight was prepared via conventional free-radical polymerization. Although P(AMPS/APTAC50) c cannot dissolve in pure water, it can dissolve in aqueous solutions of NaCl. In amphoteric random copolymers with high molecular weight, the possibility of continuous sequences of monomers with the same charge may increase, which may cause strong interactions between polymer chains. When fetal bovine serum (FBS) and polyelectrolytes were mixed in phosphate-buffered saline, the hydrodynamic radius and light-scattering intensity increased. There was no interaction between P(AMPS/APTAC50) x and FBS because corresponding increases could not be observed.

  16. Chloride toxicity in critically ill patients: What's the evidence?

    PubMed

    Soussi, Sabri; Ferry, Axelle; Chaussard, Maité; Legrand, Matthieu

    2017-04-01

    Crystalloids have become the fluid of choice in critically ill patients and in the operating room both for fluid resuscitation and fluid maintenance. Among crystalloids, NaCl 0.9% has been the most widely used fluid. However, emerging evidence suggests that administration of 0.9% saline could be harmful mainly through high chloride content and that the use of fluid with low chloride content may be preferable in major surgery and intensive care patients. Administration of NaCl 0.9% is the leading cause of metabolic hyperchloraemic acidosis in critically ill patients and side effects might target coagulation, renal function, and ultimately increase mortality. More balanced solutions therefore may be used especially when large amount of fluids are administered in high-risk patients. In this review, we discuss physiological background favouring the use of balanced solutions as well as the most recent clinical data regarding the use of crystalloid solutions in critically ill patients and patients undergoing major surgery. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  17. Synergistic Effect of Polypyrrole-Intercalated Graphene for Enhanced Corrosion Protection of Aqueous Coating in 3.5% NaCl Solution.

    PubMed

    Qiu, Shihui; Li, Wei; Zheng, Wenru; Zhao, Haichao; Wang, Liping

    2017-10-04

    Dispersion of graphene in water and its incorporation into waterborne resin have been rarely researched and hardly achieved owing to its hydrophobicity. Furthermore, it has largely been reported that graphene with impermeability contributed to the improved anticorrosion property. Here, we show that highly concentrated graphene aqueous solution up to 5 mg/mL can be obtained by synthesizing hydrophilic polypyrrole (PPy) nanocolloids as intercalators and ultrasonic vibration. On the basis of π-π interaction between PPy and graphene, stacked graphene sheets are exfoliated to the thickness of three to five layers without increasing defects. The corrosion performance of coatings without and with PPy and graphene is obtained by potential and impedance measurements, Tafel curves, and fitted pore resistance by immersing in a 3.5 wt % NaCl solution. It turns out that composite coating with 0.5 wt % graphene additive exhibits superior anticorrosive ability. The mechanism of intercalated graphene-based coating is interpreted as the synergistic protection of impermeable graphene sheets and self-healing PPy and proved by the identification of corrosion products and the scanning vibrating electrode technique.

  18. Collision-Induced Dissociation of Electrosprayed NaCl Clusters: Using Molecular Dynamics Simulations to Visualize Reaction Cascades in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Schachel, Tilo D.; Metwally, Haidy; Popa, Vlad; Konermann, Lars

    2016-11-01

    Infusion of NaCl solutions into an electrospray ionization (ESI) source produces [Na( n+1)Cl n ]+ and other gaseous clusters. The n = 4, 13, 22 magic number species have cuboid ground state structures and exhibit elevated abundance in ESI mass spectra. Relatively few details are known regarding the mechanisms whereby these clusters undergo collision-induced dissociation (CID). The current study examines to what extent molecular dynamics (MD) simulations can be used to garner insights into the sequence of events taking place during CID. Experiments on singly charged clusters reveal that the loss of small neutrals is the dominant fragmentation pathway. MD simulations indicate that the clusters undergo extensive structural fluctuations prior to decomposition. Consistent with the experimentally observed behavior, most of the simulated dissociation events culminate in ejection of small neutrals ([NaCl] i , with i = 1, 2, 3). The MD data reveal that the prevalence of these dissociation channels is linked to the presence of short-lived intermediates where a relatively compact core structure carries a small [NaCl] i protrusion. The latter can separate from the parent cluster via cleavage of a single Na-Cl contact. Fragmentation events of this type are kinetically favored over other dissociation channels that would require the quasi-simultaneous rupture of multiple electrostatic contacts. The CID behavior of NaCl cluster ions bears interesting analogies to that of collisionally activated protein complexes. Overall, it appears that MD simulations represent a valuable tool for deciphering the dissociation of noncovalently bound systems in the gas phase.

  19. Enhancement of the sulfur capture capacity of limestones by the addition of Na2CO3 and NaCl.

    PubMed

    Laursen, K; Grace, J R; Lim, C J

    2001-11-01

    The ability of Na2CO3 and NaCl to enhance the sulfur capture capacity of three limestones was evaluated via fixed-bed calcination and sulfation experiments. The tested limestones represent three different sulfation morphologies: unreacted-core, network, and uniformly sulfated. Treatment with aqueous or powdered Na2CO3 significantly increased the Ca-utilization for two stones which normally sulfate in an unreacted-core pattern (20% to 45%) and network pattern (33% to 49%). The increase was lower for the uniformly sulfated stone (44% to 48%). Na2CO3 treatment increased the number of macropores leading to uniform sulfation of all particles, nearly eliminating the normal strong dependence of utilization on limestone type and particle size. The effect of Na2CO3 is believed to be associated with formation of a eutectic melt which enhances ionic diffusion and accelerates molecular rearrangement of the CaO. Treatment with aqueous NaCl solution caused a decrease in utilization, probably due to formation of large grains and plugging of pores caused by formation of a large amount of eutectic melt. The effect of Na2CO3 is less sensitive than that of NaCl to the amount added and the combustion environment (temperature and gas composition). In addition, Na2CO3 neither promotes corrosion nor forms chlorinated byproducts, which are main concerns associated with NaCl. Thus, Na2CO3 appears to have significant advantages over NaCl for enhancement of limestone sulfur capture capacity in fluidized-bed combustors.

  20. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Rachel L.; Searles, Keith; Willard, Jesse A.

    2013-12-28

    Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphologymore » allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.« less

  1. Experimental Determination of Solubilities of Tri-calcium Di-Citrate Tetrahydrate [Ca 3[C 3H 5O(COO) 3] 2•4H 2O] Earlandite in NaCl and MgCl 2 Solutions to High Ionic Strengths and Its Pitzer Model: Applications to Nuclear Waste Isolation and Other Low Temperature Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yongliang; Kirkes, Leslie Dawn; Westfall, Terry

    In this study, solubility measurements on tri-calcium di-citrate tetrahydrate [Ca 3[C 3H 5O(COO) 3]2•4H 2O, abbreviated as Ca 3[Citrate] 2•4H 2O] as a function of ionic strength are conducted in NaCl solutions up to I = 5.0 mol•kg –1 and in MgCl 2 solutions up to I = 7.5 mol•kg –1, at room temperature (22.5 ± 0.5°C). The solubility constant (log Kmore » $$0\\atop{sp}$$) for Ca 3[Citrate] 2•4H 2O and formation constant (logβ$$0\\atop{1}$$) for Ca[C 3H 5O(COO) 3] –Ca 3[C 3H 5O(COO) 3] 2•4H 2O (earlandite) = 3Ca 2+ + 2[C 3H 5O(COO) 3] 3– + 4H 2O (1) Ca 2+ + [C 3H 5O(COO) 3] 3– = Ca[C 3H 5O(COO) 3] – (2) are determined as –18.11 ± 0.05 and 4.97 ± 0.05, respectively, based on the Pitzer model with a set of Pitzer parameters describing the specific interactions in NaCl and M gCl 2 media.« less

  2. Response of duplex Cr(N)/S and Cr(C)/S coatings on 316L stainless steel to tribocorrosion in 0.89% NaCl solution under plastic contact conditions.

    PubMed

    Sun, Y; Dearnley, P A; Mallia, Bertram

    2017-08-01

    Two duplex coatings, Cr(N)/S and Cr(C)/S, were deposited on 316 L stainless steel by magnetron sputtering. The effectiveness of these duplex coatings in improving the tribocorrosion behavior of medical alloys under elastic contact conditions has been demonstrated in a recent publication. The present work focused on the response of these duplex coatings to tribocorrosion under plastic contact conditions. Tribocorrosion tests were conducted in 0.89% NaCl solution at 37°C at an initial contact pressure of 740 MPa and under unidirectional sliding conditions for sliding duration up to 24 h. The results showed that during sliding in the corrosive solution, the duplex coatings were plastically deformed into the substrate to a depth about 1 μm. The Cr(C)/S duplex coating had sufficient ductility to accommodate the deformation without cracking, such that it was worn through gradually, leading to the gradual increase in open circuit potential (OCP) and coefficient of friction (COF). On the other hand, the Cr(N)/S duplex coating suffered from cracking at all tested potentials, leading to coating blistering after prolonged sliding at OCP and stable pit formation in the substrate beneath the coating at applied anodic potentials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1503-1513, 2017. © 2016 Wiley Periodicals, Inc.

  3. The impact of electrolyte on the adsorption of the anionic surfactant methyl ester sulfonate at the air-solution interface: Surface multilayer formation.

    PubMed

    Xu, H; Thomas, R K; Penfold, J; Li, P X; Ma, K; Welbourne, R J L; Roberts, D W; Petkov, J T

    2018-02-15

    The methyl ester sulfonates represent a promising group of anionic surfactants which have the potential for improved performance and biocompatibility in a range of applications. Their solution properties, in particular their tolerance to hard water, suggests that surface ordering may occur in the presence of multi-valent counterion. Understanding their adsorption properties in a range of different circumstances is key to the exploitation of their potential. Neutron reflectivity and surface tension have been used to characterise the adsorption at the air-aqueous solution interface of the anionic surfactant sodium tetradecanoic 2-sulfo 1-methyl ester, C 14 MES, in the absence of electrolyte and in the presence of mono, di, and tri-valent counterions, Na + , Ca 2+ , and Al 3+ . In particular the emphasis has been on exploring the tendency to form layered structures at the interface. In the absence of electrolyte and in the presence of NaCl and CaCl 2 and AlCl 3 at low concentrations monolayer adsorption is observed, and the addition of electrolyte results in enhanced adsorption. In the presence of NaCl and CaCl 2 only monolayer adsorption is observed. However at higher AlCl 3 concentrations surface multilayer formation is observed, in which the number of bilayers at the surface depends upon the surfactant and AlCl 3 concentrations. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Molecular Dynamics Simulations of the Interfacial Region between Boehmite and Gibbsite Basal Surfaces and High Ionic Strength Aqueous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Zhizhang; Ilton, Eugene S.; Prange, Micah P.

    Classical molecular dynamics (MD) simulations were used to study the interactions of up to 2 M NaCl and NaNO3 aqueous solutions with the presumed inert boehmite (010) and gibbsite (001) surfaces. The force field parameters used in these simulations were validated against density functional theory calculations of Na+ and Cl- hydrated complexes adsorbed at the boehmite (010) surface. In all the classical MD simulations and regardless of the ionic strength or the nature of the anion, Na+ ions were found to preferably form inner-sphere complexes over outer-sphere complexes at the aluminum (oxy)hydroxide surfaces, adsorbing closer to the surface than bothmore » water molecules and anions. In contrast, Cl- ions were distributed almost equally between inner- and outer-sphere positions. The resulting asymmetry in adsorption strengths offers molecular-scale evidence for the observed isoelectric point (IEP) shift to higher pH at high ionic strength for aluminum (oxy)hydroxides. As such, the MD simulations also provided clear evidence against the assumption that the basal surfaces of boehmite and gibbsite are inert to background electrolytes. Finally, the MD simulations indicated that, although the adsorption behavior of Na+ in NaNO3 and NaCl solutions was similar, the different affinities of NO3- and Cl- for the aluminum (oxy)hydroxide surfaces might have macroscopic consequences, such as difference in the sensitivity of the IEP to the electrolyte concentration.« less

  5. NaCl-triggered self-assembly of hydrophilic poloxamine block copolymers.

    PubMed

    Bahadur, Anita; Cabana-Montenegro, Sonia; Aswal, Vinod Kumar; Lage, Emilio V; Sandez-Macho, Isabel; Concheiro, Angel; Alvarez-Lorenzo, Carmen; Bahadur, Pratap

    2015-10-15

    Tetronic 1307 (T1307) is a hydrophilic poloxamine (HLB>24) with a high molecular mass owing to its long PEO and PPO blocks. In spite of good biocompatibility, its use as a component of drug delivery systems is limited by its high critical micelle concentration (CMC) and temperature (CMT). The aim of this work was to elucidate whether the addition of NaCl or the combination of salts and temperature may bring T1307 micellization and gelling features into more practically useful values. Increasing NaCl concentration in the 0.154 M (isotonic) to 2M (hypertonic) range made the copolymer more hydrophobic and more prone to self-assemble into unimodal micelles, as observed by means of π-A isotherms, (1)H NMR, dynamic light scattering (DLS), small-angle neutron scattering (SANS), and pyrene fluorescence. The decrease in CMC and CMT observed for T1307 in 0.5 M NaCl medium (tolerable hypertonic solution), compared to water, notably favored the solubility of hydrophobic drugs such as curcumin and quercetin. Moreover, phase diagram, intrinsic viscosity and sol-to-gel transition were markedly affected by NaCl concentration. Overall, the strong dependence of T1307 self-assembly features on NaCl opens interesting possibilities for tuning the performance of T1307 as a component of nanocarriers and in situ gelling systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Study on Latent Heat of Fusion of Ice in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji

    In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.

  7. A surface complexation model of YREE sorption on Ulva lactuca in 0.05-5.0 M NaCl solutions

    NASA Astrophysics Data System (ADS)

    Zoll, Alison M.; Schijf, Johan

    2012-11-01

    We present distribution coefficients, log iKS, for the sorption of yttrium and the rare earth elements (YREEs) on BCR-279, a dehydrated tissue homogenate of a marine macroalga, Ulva lactuca, resembling materials featured in chemical engineering studies aimed at designing renewable biosorbents. Sorption experiments were conducted in NaCl solutions of different ionic strength (0.05, 0.5, and 5.0 M) at T = 25 °C over the pH range 2.7-8.5. Distribution coefficients based on separation of the dissolved and particulate phase by conventional filtration (<0.22 μm) were corrected for the effect of colloid-bound YREEs (>3 kDa) using an existing pH-dependent model. Colloid-corrected values were renormalized to free-cation concentrations by accounting for YREE hydrolysis and chloride complexation. At each ionic strength, the pH dependence of the renormalized values is accurately described with a non-electrostatic surface complexation model (SCM) that incorporates YREE binding to three monoprotic functional groups, previously characterized by alkalimetric titration, as well as binding of YREE-hydroxide complexes (MOH2+) to the least acidic one (pKa ∼ 9.5). In non-linear regressions of the distribution coefficients as a function of pH, each pKa was fixed at its reported value, while stability constants of the four YREE surface complexes were used as adjustable parameters. Data for a single fresh U. lactuca specimen in 0.5 M NaCl show generally the same pH-dependent behavior but a lower degree of sorption and were excluded from the regressions. Good linear free-energy relations (LFERs) between stability constants of the YREE-acetate and YREE-hydroxide solution complex and surface complexes with the first and third functional group, respectively, support their prior tentative identifications as carboxyl and phenol. A similar confirmation for the second group is precluded by insufficient knowledge of the stability of YREE-phosphate complexes and a perceived lack of YREE binding in 0.05 M NaCl; this issue awaits further study. The results indicate that SCMs can be successfully applied to sorbents as daunting as marine organic matter. Despite remnant challenges, for instance resolving the contributions of individual groups to the aggregate sorption signal, our approach helps formalize seaweed’s avowed promise as an ideal biomonitor or biofilter of metal pollution in environments ranging from freshwaters to brines by uncovering what chemical mechanisms underlie its pronounced affinity for YREEs and other surface-reactive elements.

  8. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    PubMed

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction but is strongly related to structural changes in the clay minerals in the suspended particles. Hydrated Na + ions expand the interlayer distance of the clay minerals, resulting in the facile desorption of cesium; in contrast, dehydrated K + ions reduce the interlayer distance and inhibit the desorption of cesium. In conclusion, the desorption of cesium from the suspended particles is controlled by the presence of sodium and potassium ions and the preloaded cesium concentration in the suspended particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yongliang; Kirkes, Leslie; Westfall, Terry

    In this study, solubility measurements on di-calcium ethylenediaminetetraacetic acid [Ca 2C 10H 12N 2O 8(s), abbreviated as Ca 2EDTA(s)] as a function of ionic strength are conducted in NaCl solutions up to I = 5.0 mol•kg –1 and in MgCl 2 solutions up to I = 7.5 mol•kg –1, at room temperature (22.5 ± 0.5oC).

  10. Antioxidant effects of soy sauce on color stability and lipid oxidation of raw beef patties during cold storage.

    PubMed

    Kim, Hyun-Wook; Choi, Yun-Sang; Choi, Ji-Hun; Kim, Hack-Youn; Hwang, Ko-Eun; Song, Dong-Heon; Lee, Soo-Yoen; Lee, Mi-Ai; Kim, Cheon-Jei

    2013-11-01

    This study was conducted to evaluate the antioxidant effects of soy sauce on lipid oxidation and color stability of raw beef patties. Raw beef patties were formulated with four solutions such as NaCl (sodium chloride solution), NaCl/SS (1:1 ratio of sodium chloride and soy sauce solution), SS (soy sauce solution), or SS/A (soy sauce solution combined with 0.05% ascorbic acid) in the same salt concentration. Addition of soy sauce resulted in the decreased pH, lightness, and increased yellowness. Treatment SS/A had the lowest percent of metmyoglobin during storage (P<0.05). A reduction (P<0.05) in the 2-thiobarbituric acid, peroxide, and conjugated diene concentration as result of soy sauce addition were observed in treatments SS and SS/A at the end of the storage period. There were no differences (P>0.05) in free fatty acid concentration at the end of storage. The combined addition of soy sauce and ascorbic acid greatly improved (P<0.05) color stability and retarded lipid oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A low-cost photonic biosensor built on a polymer platform

    NASA Astrophysics Data System (ADS)

    Wang, Linghua; Kodeck, Valérie; Van Vlierberghe, Sandra; Ren, Jun; Teng, Jie; Han, Xiuyou; Jian, Xigao; Baets, Roel; Morthier, Geert; Zhao, Mingshan

    2011-12-01

    Planar integrated optical biosensors are becoming more and more important as they facilitate label-free and real time monitoring biosensing with high sensitivity. In this paper, the systematic research on one kind of optical biosensor, based on a resonant principle in a polymer ring resonator, will be presented. Reduced footprint and high sensitivity are advantages of this kind of biosensor. Rather than expensive CMOS fabrication, the device with high performance is fabricated through a simple UV based soft imprint technique utilizing self-developed low loss polymer material. The measurement results for the bulk sensing of a NaCl solution and the surface sensing of a minimal amount of avidin molecules in a buffered solution will be presented.

  12. Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores

    NASA Astrophysics Data System (ADS)

    Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.

    2017-12-01

    When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

  13. Impact of renal medullary three-dimensional architecture on oxygen transport.

    PubMed

    Fry, Brendan C; Edwards, Aurélie; Sgouralis, Ioannis; Layton, Anita T

    2014-08-01

    We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies. The model represents the arrangement of tubules around a vascular bundle in the outer medulla and around a collecting duct cluster in the upper inner medulla. Model simulations yield marked gradients in intrabundle and interbundle interstitial fluid oxygen tension (PO2), NaCl concentration, and osmolality in the outer medulla, owing to the vigorous active reabsorption of NaCl by the thick ascending limbs. In the inner medulla, where the thin ascending limbs do not mediate significant active NaCl transport, interstitial fluid composition becomes much more homogeneous with respect to NaCl, urea, and osmolality. Nonetheless, a substantial PO2 gradient remains, owing to the relatively high oxygen demand of the inner medullary collecting ducts. Perhaps more importantly, the model predicts that in the absence of the three-dimensional medullary architecture, oxygen delivery to the inner medulla would drastically decrease, with the terminal inner medulla nearly completely deprived of oxygen. Thus model results suggest that the functional role of the three-dimensional medullary architecture may be to preserve oxygen delivery to the papilla. Additionally, a simulation that represents low medullary blood flow suggests that the separation of thick limbs from the vascular bundles substantially increases the risk of the segments to hypoxic injury. When nephrons and vessels are more homogeneously distributed, luminal PO2 in the thick ascending limb of superficial nephrons increases by 66% in the inner stripe. Furthermore, simulations predict that owing to the Bohr effect, the presumed greater acidity of blood in the interbundle regions, where thick ascending limbs are located, relative to that in the vascular bundles, facilitates the delivery of O2 to support the high metabolic requirements of the thick limbs and raises NaCl reabsorption. Copyright © 2014 the American Physiological Society.

  14. An induced current method for measuring zeta potential of electrolyte solution-air interface.

    PubMed

    Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2014-02-15

    This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Tribocorrosion Failure Mechanism of TiN/SiOx Duplex Coating Deposited on AISI304 Stainless Steel.

    PubMed

    Chen, Qiang; Xie, Zhiwen; Chen, Tian; Gong, Feng

    2016-11-26

    TiN/SiO x duplex coatings were synthesized on AISI304 stainless steel by plasma immersion ion implantation and deposition (PIIID) followed by radio frequency magnetron sputtering (RFMS). The microstructure and tribocorrosion failure behaviors of the duplex coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, reciprocating-sliding tribometer, and electrochemical tests. The as-deposited duplex coating had a two-layered columnar growth structure consisting of face-centered cubic TiN and amorphous SiO x . Sliding tests showed that the TiN interlayer had good adhesion with the substrate, but the SiO x layer suffered from severe delamination failure. Friction force induced a number of micro-cracks in the coating, which provided channels for the diffusion of NaCl solution. The tribocorrosion test showed that the duplex coating exhibited a lower wear-performance in NaCl solution than in ambient atmosphere. Multi-scale chloride ion corrosion occurred simultaneously and substantially degraded the bonding strength of the columnar crystals or neighboring layers. Force-corrosion synergy damage eventually led to multi-degradation failure of the duplex coating. The presented results provide a comprehensive understanding of the tribocorrosion failure mechanism in coatings with duplex architecture.

  16. Electrochemical Behavior of Sn-9Zn-xTi Lead-Free Solders in Neutral 0.5M NaCl Solution

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghong; Chen, Chuantong; Jiu, Jinting; Nagao, Shijo; Nogi, Masaya; Koga, Hirotaka; Zhang, Hao; Zhang, Gong; Suganuma, Katsuaki

    2018-03-01

    Electrochemical techniques were employed to study the electrochemical corrosion behavior of Sn-9Zn-xTi (x = 0, 0.05, 0.1, 0.2 wt.%) lead-free solders in neutral 0.5M NaCl solution, aiming to figure out the effect of Ti content on the corrosion properties of Sn-9Zn, providing information for the composition design of Sn-Zn-based lead-free solders from the perspective of corrosion. EIS results reveal that Ti addition was involved in the corrosion product layer and changed electrochemical interface behavior from charge transfer control process to diffusion control process. The trace amount of Ti addition (0.05 wt.%) can refine the microstructure and improve the corrosion resistance of Sn-9Zn solder, evidenced by much lower corrosion current density (i corr) and much higher total resistance (R t). Excess Ti addition (over 0.1 wt.%) led to the formation of Ti-containing IMCs, which were confirmed as Sn3Ti2 and Sn5Ti6, deteriorating the corrosion resistance of Sn-9Zn-xTi solders. The main corrosion products were confirmed as Sn3O(OH)2Cl2 mixed with small amount of chlorine/oxide Sn compounds.

  17. Influences of Cr/Ni equivalent ratios of filler wires on pitting corrosion and ductility-dip cracking of AISI 316L weld metals

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, D. G.; Sung, J. H.; Kim, I. S.; Ko, D. E.; Kang, N. H.; Hong, H. U.; Park, J. H.; Lee, H. W.

    2011-02-01

    To study the pitting corrosion of AISI 316L weld metals according to the chromium/nickel equivalent ratio (Creq/Nieq ratio), three filler wires were newly designed for the flux-cored arc welding process. The weld metal with delta-ferrite at less than 3 vol.%, was observed for ductility-dip cracking (DDC) in the reheated region after multi-pass welding. The tensile strength and yield strength increased with increasing Creq/Nieq ratio. The result of anodic polarization tests in a 0.1 M NaCl solution at the room temperature (25) for 45 min, revealed that the base metal and weld metals have a similar corrosion potential of -0.34 VSCE. The weld metal with the highest content of Cr had the highest pitting potential (0.39 VSCE) and the passivation range (0.64 VSCE) was higher than the base metal (0.21 VSCE and 0.46 VSCE, respectively). Adding 0.001 M Na2S to the 0.1M NaCl solution, the corrosion occurred more severely by H2S. The corrosion potentials of the base metal and three weld metals decreased to -1.0 VSCE. DDC caused the decrease of the pitting potential by inducing a locally intense corrosion attack around the crack openings.

  18. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    NASA Technical Reports Server (NTRS)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  19. Mechanical and corrosive behavior of Ti/TiN multilayer films with different modulation periods

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Leng, Y. X.; Qi, F.; Tao, T.; Huang, N.

    2007-04-01

    Ti/TiN multilayer films with different periods Λ (Λ = λTiN + λTi) were synthesized on 17-4PH stainless steel and silicon wafer using unbalanced magnetron sputtering. The microstructure of the films was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties such as hardness, sliding wear behavior and adhesion were analyzed by means of micro-hardness, ball-on-disc and scratch tests. The anodic polarization characteristics were measured in a 3% NaCl solution at room temperature to examine the corrosion resistance. Moreover, the corrosion resistance in a 350 °C water vapor ambience also was analyzed. XRD revealed a gradual TiNx transition layer between Ti and TiN. The SEM results confirmed the periodicity of the Ti/TiN multilayer films. The hardness and wear resistance of the Ti/TiN multilayer films increased with decrease of the modulation period. The adhesion strength between Ti/TiN multilayer films and 17-4PH substrate was improved with proper modulation period. The Ti/TiN multilayer films can for a corrosion protective coating on 17-4PH stainless steel in 3% NaCl solution, however the corrosion resistance at 350 °C vapor ambience decreased for the period Λ below 200 nm.

  20. Electrochemical Behavior of Sn-9Zn- xTi Lead-Free Solders in Neutral 0.5M NaCl Solution

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghong; Chen, Chuantong; Jiu, Jinting; Nagao, Shijo; Nogi, Masaya; Koga, Hirotaka; Zhang, Hao; Zhang, Gong; Suganuma, Katsuaki

    2018-05-01

    Electrochemical techniques were employed to study the electrochemical corrosion behavior of Sn-9Zn- xTi ( x = 0, 0.05, 0.1, 0.2 wt.%) lead-free solders in neutral 0.5M NaCl solution, aiming to figure out the effect of Ti content on the corrosion properties of Sn-9Zn, providing information for the composition design of Sn-Zn-based lead-free solders from the perspective of corrosion. EIS results reveal that Ti addition was involved in the corrosion product layer and changed electrochemical interface behavior from charge transfer control process to diffusion control process. The trace amount of Ti addition (0.05 wt.%) can refine the microstructure and improve the corrosion resistance of Sn-9Zn solder, evidenced by much lower corrosion current density ( i corr) and much higher total resistance ( R t). Excess Ti addition (over 0.1 wt.%) led to the formation of Ti-containing IMCs, which were confirmed as Sn3Ti2 and Sn5Ti6, deteriorating the corrosion resistance of Sn-9Zn- xTi solders. The main corrosion products were confirmed as Sn3O(OH)2Cl2 mixed with small amount of chlorine/oxide Sn compounds.

Top