Sample records for nacl-containing cuttings wastes

  1. Stabilization of NaCl-containing cuttings wastes in cement concrete by in situ formed mineral phases.

    PubMed

    Filippov, Lev; Thomas, Fabien; Filippova, Inna; Yvon, Jacques; Morillon-Jeanmaire, Anne

    2009-11-15

    Disposal of NaCl-containing cuttings is a major environmental concern due to the high solubility of chlorides. The present work aims at reducing the solubility of chloride by encapsulation in low permeability matrix as well as lowering its solubility by trapping into low-solubility phases. Both the studied materials were cuttings from an oil-based mud in oil drillings containing about 50% of halite, and cuttings in water-based mud from gas drilling containing 90% of halite. A reduction in the amount of dissolved salt from 41 to 19% according to normalized leaching tests was obtained by addition of potassium ortho-phosphate in the mortar formula of oil-based cuttings, while the aluminium dihydrogeno-phosphate is even more efficient for the stabilization of water-based cuttings with a NaCl content of 90%. Addition of ortho-phosphate leads to form a continuous and weakly soluble network in the cement matrix, which reduces the release of salt. The formed mineralogical phases were apatite and hydrocalumite. These phases encapsulate the salt grains within a network, thus lowering its interaction with water or/and trap chloride into low-solubility phases. The tested approaches allow to develop a confinement process of NaCl-containing waste of various compositions that can be applied to wastes, whatever the salt content and the nature of the drilling fluids (water or oil).

  2. Reuse of ornamental rock-cutting waste in aluminous porcelain.

    PubMed

    Silva, M A; Paes, H R; Holanda, J N F

    2011-03-01

    Large amounts of solid wastes are discarded in the ornamental rocks industry. This work investigates the incorporation of ornamental rock-cutting waste as a raw material into an aluminous porcelain body, replacing natural feldspar material by up to 35 wt.%. Formulations containing rock-cutting waste were pressed and sintered at 1350 °C. The porcelain pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, mechanical strength, and electrical resistivity). Development of the microstructure was followed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The results showed that ornamental rock-cutting waste could be used in aluminous porcelains, in the range up to 10 wt.%, as a partial replacement for traditional flux material, resulting in a valid route for management of this abundant waste. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Toxic-Waste Disposal by Combustion in Containers

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Stephens, J. B.; Moynihan, P. I.; Compton, L. E.; Kalvinskas, J. J.

    1986-01-01

    Chemical wastes burned with minimal handling in storage containers. Technique for disposing of chemical munitions by burning them inside shells applies to disposal of toxic materials stored in drums. Fast, economical procedure overcomes heat-transfer limitations of conventional furnace designs by providing direct contact of oxygenrich combustion gases with toxic agent. No need to handle waste material, and container also decontaminated in process. Oxygen-rich torch flame cuts burster well and causes vaporization and combustion of toxic agent contained in shell.

  4. Bioelectricity production from food waste leachate using microbial fuel cells: effect of NaCl and pH.

    PubMed

    Li, Xiao Min; Cheng, Ka Yu; Wong, Jonathan W C

    2013-12-01

    Microbial fuel cells are a promising technology for simultaneous treatment and energy recovery from food waste leachate. This study evaluates the effects of NaCl (0-150 mM) and pH on the treatment of food waste leachate using microbial fuel cells. The food waste leachate amended with 100mM NaCl enabled the highest maximum power density (1000 mW/m(3)) and lowest internal resistance (371Ω). Increasing the anodic pH gradually from acidic to alkaline conditions (pH 4-9) resulted in a gradual increase in maximum power density to 9956 mW/m(3) and decrease in internal cell resistance to 35.3Ω. The coulombic efficiency obtained under acidic conditions was only 17.8%, but increased significantly to 60.0% and 63.4% in the neutral and alkaline pH's MFCs, respectively. Maintaining a narrow pH window (6.3-7.6) was essential for efficient bioelectricity production and COD removal using microbial fuel cells for the treatment of food waste leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Lean methodology: supporting battlefield medical fitness by cutting process waste.

    PubMed

    Huggins, Elaine J

    2010-01-01

    Healthcare has long looked at decreasing risk in communication and patient care processes. Increasing the simplicity in communication and patient care process is a newer concept contained in Lean methodology. Lean is a strategy for achieving improvement in performance through the elimination of steps that use resources without contributing to customer value. This is known as cutting waste or nonvalue added steps. This article outlines how the use of Lean improved a key process that supports battlefield medical fitness.

  6. Re-evaluation of the fludrocortisone test: duration, NaCl supplementation and cut-off limits for aldosterone.

    PubMed

    Westerdahl, Christina; Bergenfelz, Anders; Larsson, Johanna; Nerbrand, Christina; Valdemarsson, Stig; Wihl, Anders; Isaksson, Anders

    2009-01-01

    Primary aldosteronism (PA) is the most common form of secondary hypertension. Thus, the aims of this study were: (1) to clarify whether the fludrocortisone suppression test (FST), which confirms autonomous aldosterone secretion, is reliable when carried out during a shorter period of time and (2) to confirm the importance of NaCl supplementation. The cut-off limits already obtained for aldosterone in healthy subjects during the FST were applied in hypertensive patients with a high aldosterone to renin ratio (ARR). The healthy subjects were allocated to three groups. Fludrocortisone was administered 4 times daily over 4 days and sodium chloride was supplemented in 3 different doses. The result was applied in 24 hypertensive patients, in 24 healthy subjects (10 women (23-38 years old) and 14 men (23-58 years old)) and in 24 patients with hypertension and high ARR (16 women (45-74 years old) and 8 men (56-73 years old)). Blood pressure, aldosterone, renin, potassium and sodium were measured. After three days of FST, there was a significant decrease in the serum level of aldosterone in the healthy subjects, regardless of high or low sodium chloride supplementation (p<0.001). The decrease in serum aldosterone was significantly less pronounced in patients with PA than in healthy subjects and hypertensive patients without PA (p<0.001). The 95th percentile of plasma aldosterone at the end of the test was 225 pmol/L. The FST can be shortened to 3 days and a daily 500 mg NaCl supplementation is sufficient. A cut-off value for aldosterone of 225 pmol/L after 4 days with FST is appropriate.

  7. Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS

    NASA Astrophysics Data System (ADS)

    Ushakova, S. A.; Kovaleva, N. P.; Gribovskaya, I. V.; Dolgushev, V. A.; Tikhomirova, N. A.

    The accumulation of solid and liquid wastes in manmade ecosystems presents a problem that has not been efficiently solved yet. Urine, containing NaCl, are part of these products. This is an obstacle to the creation of biological systems with a largely closed material cycling, because the amount of solid and liquid wastes in them must be reduced to a minimum. A possible solution to the problem is to select plant species capable of utilizing sufficiently high concentrations of NaCl, edible for humans, and featuring high productivity. Until recently, the life support systems have included the higher plants that were either sensitive to salinization (wheat, many of the legumes, carrot, potato, maize) or relatively salt-resistant (barley, sugar beet, spinach). Salicomia europaea, whose above-ground part is fully edible for humans, is one of the most promising candidates to be included in life support systems. It is reported in the literature that this plant is capable of accumulating up to 50% NaCl (dry basis). Besides, excessive accumulation of sodium ions should bring forth a decrease in the uptake of potassium ions and other biogenic elements. The aim of this work is to study the feasibility of using S. europaea plants in growth chambers to involve NaCl into material cycling. Plants were grown in vegetation chambers at the irradiance of 100 or 150 W/m 2 PAR (photosynthetically active radiation) and the air temperature 24 °C, by two methods. The first method was to grow the plants on substrate - peat. The peat was supplemented with either 3% NaCl (Variant 1) or 6% NaCl (Variant 2) of the oven-dry mass of the peat. The second method was to grow the plants in water culture, using the solution with a full complement of nutrients, which contained 0.0005% of NaCl, 1% or 2%. The study showed that the addition of NaCl to the substrate or to the solution resulted in the formation of more succulent plants, which considerably increased their biomass. The amount of NaCl uptake

  8. A combined physicochemical-biological method of NaCl extraction from the irrigation solution in the BTLSS

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia

    2016-07-01

    The use of processed human wastes as a source of minerals for plants in closed biotechnical life support systems (BTLSS) leads to high salt levels in the irrigation solution, as urine contains high concentrations of NaCl. It is important to develop a process that would effectively decrease NaCl concentration in the irrigation solution and return this salt to the crew's diet. The salt-tolerant plants (Salicornia europea) used to reduce NaCl concentration in the irrigation solution require higher salt concentrations than those of the solution, and this problem cannot be resolved by concentrating the solution. At the same time, NaCl extracted from mineralized wastes by physicochemical methods is not pure enough to be included in the crew's diet. This study describes an original physicochemical method of NaCl extraction from the solution, which is intended to be used in combination with the biological method of NaCl extraction by using saltwort plants. The physicochemical method produces solutions with high NaCl concentrations, and saltwort plants serve as a biological filter in the final phase, to produce table salt. The study reports the order in which physicochemical and biological methods of NaCl extraction from the irrigation solution should be used to enable rapid and effective inclusion of NaCl into the cycling of the BTLSS with humans. This study was carried out in the IBP SB RAS and supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).

  9. WASTE CONTAINMENT OVERVIEW

    EPA Science Inventory

    BSE waste is derived from diseased animals such as BSE (bovine spongiform encepilopothy, also known as Mad Cow) in cattle and CWD (chronic wasting disease) in deer and elk. Landfilling is examined as a disposal option and this presentation introduces waste containment technology...

  10. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  11. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  12. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  13. Effects of Oxide Film on the Corrosion Resistance of Titanium Grade 7 in Fluoride-Containing NaCl Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, T; Whalen, M T; Wong, L

    2004-11-30

    The effects of oxide film on the corrosion behavior of Titanium Grade 7 (0.12-0.25% Pd) in fluoride-containing NaCl brines have been investigated. With the presence of a 0.6 {micro}m thick oxide layer, the annealed Ti grade 7 exhibited a significant improvement on the anodic polarization behavior. However, the oxide film did not demonstrate sustainable corrosion resistance in fluoride-containing solutions.

  14. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    NASA Astrophysics Data System (ADS)

    Tozsin, Gulsen

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment ( t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  15. Nuclear waste storage container with metal matrix

    DOEpatents

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  16. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.31 Waste...

  17. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.31 Waste...

  18. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.31 Waste...

  19. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.31 Waste...

  20. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.31 Waste...

  1. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  2. Mechanical behavior of nanocrystalline NaCl islands on Cu(111).

    PubMed

    Bombis, Ch; Ample, F; Mielke, J; Mannsberger, M; Villagómez, C J; Roth, Ch; Joachim, C; Grill, L

    2010-05-07

    The mechanical response of ultrathin NaCl crystallites of nanometer dimensions upon manipulation with the tip of a scanning tunneling microscope (STM) is investigated, expanding STM manipulation to various nanostructuring modes of inorganic materials as cutting, moving, and cracking. In the light of theoretical calculations, our results reveal that atomic-scale NaCl islands can behave elastically and follow a classical Hooke's law. When the elastic limit of the nanocrystallites is reached, the STM tip induces atomic dislocations and consequently the regime of plastic deformation is entered. Our methodology is paving the way to understand the mechanical behavior and properties of other nanoscale materials.

  3. 40 CFR 148.11 - Waste specific prohibitions-dioxin-containing wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-dioxin-containing wastes. 148.11 Section 148.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS Prohibitions on Injection § 148.11...

  4. Treatment of mercury containing waste

    DOEpatents

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  5. 41 CFR 50-204.72 - Safe practices for welding and cutting on containers which have held combustibles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... welding and cutting on containers which have held combustibles. 50-204.72 Section 50-204.72 Public..., and Mists § 50-204.72 Safe practices for welding and cutting on containers which have held combustibles. Welding or cutting, or both, on containers which have held flammable or combustible solids...

  6. 41 CFR 50-204.72 - Safe practices for welding and cutting on containers which have held combustibles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... welding and cutting on containers which have held combustibles. 50-204.72 Section 50-204.72 Public..., and Mists § 50-204.72 Safe practices for welding and cutting on containers which have held combustibles. Welding or cutting, or both, on containers which have held flammable or combustible solids...

  7. 41 CFR 50-204.72 - Safe practices for welding and cutting on containers which have held combustibles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... welding and cutting on containers which have held combustibles. 50-204.72 Section 50-204.72 Public..., and Mists § 50-204.72 Safe practices for welding and cutting on containers which have held combustibles. Welding or cutting, or both, on containers which have held flammable or combustible solids...

  8. 41 CFR 50-204.72 - Safe practices for welding and cutting on containers which have held combustibles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... welding and cutting on containers which have held combustibles. 50-204.72 Section 50-204.72 Public..., and Mists § 50-204.72 Safe practices for welding and cutting on containers which have held combustibles. Welding or cutting, or both, on containers which have held flammable or combustible solids...

  9. 41 CFR 50-204.72 - Safe practices for welding and cutting on containers which have held combustibles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... welding and cutting on containers which have held combustibles. 50-204.72 Section 50-204.72 Public..., and Mists § 50-204.72 Safe practices for welding and cutting on containers which have held combustibles. Welding or cutting, or both, on containers which have held flammable or combustible solids...

  10. Corrosion Behavior of Titanium Grade 7 in Fluoride-Containing NaCl Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, T; Whalen, M T; Wong, L

    2004-10-25

    The effects of fluoride on the corrosion behavior of Titanium Grade 7 (0.12-0.25% Pd) have been investigated. Up to 0.1 mol/L fluoride was added to the NaCl brines at 95 C, and three pH values of 4, 8, and 11 were selected for studying pH dependence of fluoride effects. It was observed that fluoride significantly altered the anodic polarization behavior, at all three pH values of 4, 8, and 11. Under acidic condition fluoride caused active corrosion. The corrosion of Titanium grade 7 was increased by three orders of magnitude when a 0.1 mol/L fluoride was added to the NaClmore » brines at pH 4, and the Pd ennoblement effect was not observed in acidic fluoride-containing environments. The effects of fluoride were reduced significantly when pH was increased to 8 and above.« less

  11. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Radulesscu; J.S. Tang

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container alongmore » with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis

  12. Federal Register Notice: Final Rule Listing as Hazardous Wastes Certain Dioxin Containing Wastes

    EPA Pesticide Factsheets

    EPA is amending the regulations for hazardous waste management under the RCRA by listing as hazardous wastes certain wastes containing particular chlorinated dioxins, -dibenzofurans, and -phenols, and by specifying a engagement standards for these wastes.

  13. Differential tolerance of 3 self-rooted Citrus limon cultivars to NaCl stress.

    PubMed

    Tsabarducas, V; Chatzistathis, T; Therios, I; Koukourikou-Petridou, M; Tananaki, C

    2015-12-01

    One-year-old self-rooted cuttings of three Citrus limon cultivars (Nouvel Athos, Lisbon, Maglini) were grown in 1 L black plastic bags, containing a mixture of sand: perlite (1:1), in order to investigate: i) if genotypic differences to salt stress existed, ii) if KNO3 can alleviate salinity stress, iii) the role of carbohydrates (such as the sugars fructose, glucose and sucrose) and proline as possible osmoregulators in C. limon osmoprotection, and iv) if genotypic differences to salt stress tolerance exist among the 3 studied cultivars. The experiment included 3 treatments: i) control (C), i.e. 25% modified Hoagland (No2) solution (MHS)-NaCl, ii) T1, 25% MHS+80 mM NaCl, iii) T2, 25% MHS+80 mM NaCl+5 mM KNO3. Plant growth was negatively affected by high NaCl (T1); the highest Cl and Na quantities have been absorbed by Lisbon, while the lowest ones by Maglini. Salt stress reduced macronutrient and Zn concentrations, as well as the total carbohydrate concentration, and increased peroxidase (POD) activity and chlorophyll fluorescence in the leaves of the 3 C. limon cultivars studied; five mM KNO3 application alleviated the harmful effect of salt stress on leaf total carbohydrate concentration and leaf N and K concentrations. Sucrose was dramatically reduced in all the three genotypes studied, while leaf fructose concentration was significantly increased in Nouvel Nouvel Nouvel Athos and Maglini under salt stress. Leaf proline concentration of Maglini was significantly decreased by the high NaCl concentration, while Nouvel Athos and Lisbon had high proline concentration in their leaves. In conclusion, from the significantly decreased levels of proline for Maglini, together with the greatest reduction of the ratio Fv/Fm and the least enhancement of POD activity-compared to the other two cultivars-it can be concluded that Maglini was more susceptible to salinity, and should not be preferred for cultivation under NaCl stress. Finally, rich KNO3 application

  14. Plasma methods for metals recovery from metal-containing waste.

    PubMed

    Changming, Du; Chao, Shang; Gong, Xiangjie; Ting, Wang; Xiange, Wei

    2018-04-27

    Metal-containing waste, a kind of new wastes, has a great potential for recycling and is also difficult to deal with. Many countries pay more and more attention to develop the metal recovery process and equipment of this kind of waste as raw material, so as to solve the environmental pollution and comprehensively utilize the discarded metal resources. Plasma processing is an efficient and environmentally friendly way for metal-containing waste. This review mainly discuss various metal-containing waste types, such as printed circuit boards (PCBs), red mud, galvanic sludge, Zircon, aluminium dross and incinerated ash, and the corresponding plasma methods, which include DC extended transferred arc plasma reactor, DC non-transferred arc plasma torch, RF thermal plasma reactor and argon and argon-hydrogen plasma jets. In addition, the plasma arc melting technology has a better purification effect on the extraction of useful metals from metal-containing wastes, a great capacity of volume reduction of waste materials, and a low leaching toxicity of solid slag, which can also be used to deal with all kinds of metal waste materials, having a wide range of applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of

  16. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  17. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  18. Recovering low-turbidity cutting liquid from silicon slurry waste.

    PubMed

    Tsai, Tzu-Hsuan; Shih, Yu-Pei

    2014-04-30

    In order to recover a low-turbidity polyalkylene glycol (PAG) liquid from silicon slurry waste by sedimentation, temperatures were adjusted, and acetone, ethanol or water was used as a diluent. The experimental results show that the particles in the waste would aggregate and settle readily by using water as a diluent. This is because particle surfaces had lower surface potential value and weaker steric stabilization in PAG-water than in PAG-ethanol or PAG-acetone solutions. Therefore, water is the suggested diluent for recovering a low-turbidity PAG (<100 NTU) by sedimentation. After 50 wt.% water-assisted sedimentation for 21 days, the solid content of the upper liquid reduced to 0.122 g/L, and the turbidity decreased to 44 NTU. The obtained upper liquid was then vacuum-distillated to remove water. The final recovered PAG with 0.37 NTU had similar viscosity and density to the unused PAG and could be reused in the cutting process. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. INNOVATIVE PRACTICES FOR TREATING WASTE STREAMS CONTAINING HEAVY METALS: A WASTE MINIMIZATION APPROACH

    EPA Science Inventory

    Innovative practices for treating waste streams containing heavy metals often involve technologies or systems that either reduce the amount of waste generated or recover reusable resources. With the land disposal of metal treatment residuals becoming less of an accepted waste man...

  20. Potential impact of salinity on methane production from food waste anaerobic digestion.

    PubMed

    Zhao, Jianwei; Liu, Yiwen; Wang, Dongbo; Chen, Fei; Li, Xiaoming; Zeng, Guangming; Yang, Qi

    2017-09-01

    Previous studies have demonstrated that the presence of sodium chloride (NaCl) inhibited the production of methane from food waste anaerobic digestion. However, the details of how NaCl affects methane production from food waste remain unknown by now and the efficient approach to mitigate the impact of NaCl on methane production was seldom reported. In this paper, the details of how NaCl affects methane production was first investigated via a series of batch experiments. Experimental results showed the effect of NaCl on methane production was dosage dependent. Low level of NaCl improved the hydrolysis and acidification but inhibited the process of methanogenesis whereas high level of NaCl inhibit both steps of acidification and methanogenesis. Then an efficient approach, i.e. co-digestion of food waste and waste activated sludge, to mitigate the impact of NaCl on methane production was reported. Finally, the mechanisms of how co-digestion mitigates the effect on methane production caused by NaCl in co-digestion system were revealed. These findings obtained in this work might be of great importance for the operation of methane recovery from food waste in the presence of NaCl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Water Balance Covers For Waste Containment: Principles and Practice

    EPA Science Inventory

    Water Balance Covers for Waste Containment: Principles and Practices introduces water balance covers and compares them with conventional approaches to waste containment. The authors provided detailed analysis of the fundamentals of soil physics and design issues, introduce appl...

  2. PIC-container for containment and disposal of low and intermediate level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Araki, K.; Shinji, Y.; Maki, Y.; Ishizaki, K.; Minegishi, K.; Sudoh, G.

    1981-03-01

    Steel fiber reinforced polymer impregnated concrete (SFPIC) was investigated for low and intermediate level radioactive waste containers. The 60 L and 200 L containers were designed as pressure container (without equalizer) for 500 kg/square cm and 700 kg/square cm. Polymerization of impregnated methylmethacrylate monomer was performed by 60 Co-gamma ray radiation and thermal catalytic polymerization respectively. Under the loading of 500 kg/square cm and 700 kg/square cm-outside hydraulic pressure, these containers were kept in their good condition. The observed maximum strains were about .001380 and .003950 at the outside central position of container body for circumferential direction of the 60 L and 200 L container, respectively. The containers were immersed in deionized water for 400 days, nuclides were not leached from the container. The SFPIC container was suitable for containment and disposal of low and intermediate level radioactive wastes.

  3. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken on...

  4. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken on...

  5. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken on...

  6. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken on...

  7. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken on...

  8. VEGETATIVE COVERS FOR WASTE CONTAINMENT

    EPA Science Inventory

    Disposal of municipal ahd hazardous waste in the United States is primarily accomplished by containment in lined and capped landfills. Evapotranspiration cover systems offer an alternative to conventional landfill cap systems. These covers work on completely different principles ...

  9. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1995-01-01

    A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  10. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, Dennis F.

    1997-01-01

    A process for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  11. Waste-to-energy: Dehalogenation of plastic-containing wastes.

    PubMed

    Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong

    2016-03-01

    The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Double knockout of carbonic anhydrase II (CAII) and Na(+)-Cl(-) cotransporter (NCC) causes salt wasting and volume depletion.

    PubMed

    Xu, Jie; Barone, Sharon; Brooks, Mary-Beth; Soleimani, Manoocher

    2013-01-01

    The thiazide-sensitive Na(+)-Cl(-) cotransporter NCC and the Cl(-)/HCO3(-)exchanger pendrin are expressed on apical membranes of distal cortical nephron segments and mediate salt absorption, with pendrin working in tandem with the epithelial Na(+) channel (ENaC) and the Na(+)-dependent chloride/bicarbonate exchanger (NDCBE), whereas NCC is working by itself. A recent study showed that NCC and pendrin compensate for loss of each other under basal conditions, therefore masking the role that each plays in salt reabsorption. Carbonic anhydrase II (CAII, CA2 or CAR2) plays an important role in acid-base transport and salt reabsorption in the proximal convoluted tubule and acid-base transport in the collecting duct. Animals with CAII deletion show remodeling of intercalated cells along with the downregulation of pendrin. NCC KO mice on the other hand show significant upregulation of pendrin and ENaC. Neither model shows any significant salt wasting under baseline conditions. We hypothesized that the up-regulation of pendrin is essential for the prevention of salt wasting in NCC KO mice. To test this hypothesis, we generated NCC/CAII double KO (dKO) mice by crossing mice with single deletion of NCC and CAII. The NCC/CAII dKO mice displayed significant downregulation of pendrin, along with polyuria and salt wasting. As a result, the dKO mice developed volume depletion, which was associated with the inability to concentrate urine. We conclude that the upregulation of pendrin is essential for the prevention of salt and water wasting in NCC deficient animals and its downregulation or inactivation will result in salt wasting, impaired water conservation and volume depletion in the setting of NCC inactivation or inhibition. © 2014 S. Karger AG, Basel.

  13. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure.

    PubMed

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane

    2012-08-14

    The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema.

  14. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure

    PubMed Central

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E.; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane

    2012-01-01

    The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema. PMID:22847418

  15. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1997-09-02

    A process is described for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process is also disclosed. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile. 1 fig.

  16. Device and method for producing a containment barrier underneath and around in-situ buried waste

    DOEpatents

    Gardner, Bradley M.; Smith, Ann M.; Hanson, Richard W.; Hodges, Richard T.

    1998-01-01

    An apparatus for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably on which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment.

  17. Predicting the Lifetimes of Nuclear Waste Containers

    NASA Astrophysics Data System (ADS)

    King, Fraser

    2014-03-01

    As for many aspects of the disposal of nuclear waste, the greatest challenge we have in the study of container materials is the prediction of the long-term performance over periods of tens to hundreds of thousands of years. Various methods have been used for predicting the lifetime of containers for the disposal of high-level waste or spent fuel in deep geological repositories. Both mechanical and corrosion-related failure mechanisms need to be considered, although until recently the interactions of mechanical and corrosion degradation modes have not been considered in detail. Failure from mechanical degradation modes has tended to be treated through suitable container design. In comparison, the inevitable loss of container integrity due to corrosion has been treated by developing specific corrosion models. The most important aspect, however, is to be able to justify the long-term predictions by demonstrating a mechanistic understanding of the various degradation modes.

  18. Device and method for producing a containment barrier underneath and around in-situ buried waste

    DOEpatents

    Gardner, B.M.; Smith, A.M.; Hanson, R.W.; Hodges, R.T.

    1998-08-11

    An apparatus is described for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably on which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment. 15 figs.

  19. Apparatus for in situ installation of underground containment barriers under contaminated lands

    DOEpatents

    Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent

    1998-06-16

    An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.

  20. A thermochemical explanation for the stability of NaCl3 and NaCl7

    NASA Astrophysics Data System (ADS)

    Fernandes de Farias, Robson

    2017-03-01

    Thermodynamically stable cubic and orthorhombic NaCl3 as well as NaCl7 have been synthesized (Zhang et al., 2013). In the present work, a thermochemical explanation for the stability of such unusual sodium chlorides is provided, based on lattice energy values. Using the Glasser-Jenkins generalized equation (Glasser and Jenkins, 2000) lattice energies (kJ mol-1) of -162.5, -168.9 and -113.1 are calculated for Pm3n NaCl3, Pnma NaCl3 and NaCl7, respectively. It is postulated that any NaxCly compound could be synthesized, if the ionic character of the Nasbnd Cl bond in the prepared compound remains around 80%, and the sodium charge below unit.

  1. Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes

    NASA Astrophysics Data System (ADS)

    Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.

  2. Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals

    NASA Technical Reports Server (NTRS)

    Otterson, Dumas A.

    1961-01-01

    Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.

  3. Apparatus and method for in Situ installation of underground containment barriers under contaminated lands

    DOEpatents

    Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent

    1999-09-28

    An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.

  4. Sensor system for buried waste containment sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, May Catherine

    2000-01-01

    A sensor system is disclosed for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  5. Pipe overpack container for trasuranic waste storage and shipment

    DOEpatents

    Geinitz, Richard R.; Thorp, Donald T.; Rivera, Michael A.

    1999-01-01

    A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

  6. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles.

    PubMed

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-28

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO 4 ). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  7. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-01

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO4). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  8. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    PubMed Central

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results. PMID:28788199

  9. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents.

    PubMed

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-09-12

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  10. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  11. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  12. Simultaneous treatment of SO2 containing stack gases and waste water

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  13. Innovative approach to reduction of waste streams for cutting operations in remote environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skibo, A.

    SRNL proposes to develop and demonstrate an approach using the SRNL rotary microfilter (RMF) technology for reducing waste streams in remote cutting operations during decontamination operations. SRNL offers to collaborate with Tokyo Electric Power Company (TEPCO) in evaluation, testing, and utilization of SRNL’s radiation-hardened rotary microfilter in the deactivation and decommissioning (D&D) operations of the Fukushima Daiichi Nuclear Power Station (NPS). Refinement of the scope and associated costs will be conducted in consultation with TEPCO.

  14. A possible NaCl pathway in the bioregenerative human life support system

    NASA Astrophysics Data System (ADS)

    Polonskiy, V. I.; Gribovskaya, I. V.

    One of the ways to involve NaCl in the mass exchange of the bioregenerative human life support system (BLSS) is to grow some vegetables and leafy greens that can accumulate sodium chloride at high concentrations in their edible biomass. Lettuce, celery cabbage, chard, dill and radish plants were grown hydroponically in Knop's nutrient solution. In the first series of experiments, at the end of the growth period the plants were grown on solutions containing 2-14 g/L of NaCl for 1-5 days. It was found that the amount of sodium in edible biomass of the plants increased with NaCl concentration in the solution and with the time plants were irrigated with that solution. The content of NaCl in the biomass of leaves and edible roots was considerable—up to 10% dry matter. At the same time, the amount of water in the leaves decreased and productivity of the treatment plants was 14-28% lower than that of the control ones, grown on Knop's solution. The treatment plants contained less than half of the amount of nitrates recorded in the control ones. Expert evaluation showed that the taste of the vegetables and leafy greens of the treatment group were not inferior to the taste of the control plants. In the second series of experiments, prior to being grown on the NaCl solution, the plants were irrigated with water for 2, 4 or 6 days. It was found that lower salt status of the plants was not favorable for increased salt accumulation in their biomass. If a human consumes 30 g salad vegetables and follows a low-sodium diet (3 g/d of table salt), it may be feasible to recycle NaCl in the BLSS using vegetables and leafy greens.

  15. Pipe overpack container for transuranic waste storage and shipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geinitz, R.R.; Thorp, D.T.; Rivera, M.A.

    1999-12-07

    A Pipe Overpack Container is described for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding, thus allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container wasmore » employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.« less

  16. Characterization of drilling waste from shale gas exploration in Central and Eastern Poland.

    PubMed

    Mikos-Szymańska, Marzena; Rusek, Piotr; Borowik, Krzysztof; Rolewicz, Maciej; Bogusz, Paulina; Gluzińska, Joanna

    2018-05-28

    The purpose of this research was to determine and evaluate the chemical properties of drilling waste from five well sites in Central and Eastern Poland. It was found that spent drilling fluids can contain high values of nickel and mercury (270 and 8.77 mg kg -1 , respectively) and can exceed the maximum permissible limits recommended by the EC regulations for safety of soils (75 mg kg -1 for nickel and 1.5 mg kg -1 for mercury). The heavy metal concentrations in the studied drill cuttings did not exceed the maximum permissible limits recommended by the EC regulation. Drilling wastes contain macroelements (e.g., calcium, magnesium, and potassium) as well as trace elements (e.g., copper, iron, zinc, and manganese) that are essential for the plant growth. It was stated that water extracts of drilling fluids and drill cuttings, according to anions presence, had not any specific constituents of concern based on FAO irrigation guidelines, the USEPA WQC, and toxicity values. X-ray diffraction analysis was used to understand the structure and texture of waste drilling fluid solids and drill cuttings. Analysis of the mineralogical character of drilling fluid solids revealed that they contained calcite, quartz, muscovite, sylvite, barite, dolomite, and orthoclase. Drill cuttings contained calcite quartz, muscovite, barite, dolomite, and barium chloride.

  17. Vegetative covers for waste containment.

    PubMed

    Rock, Steven A

    2003-01-01

    Disposal of municipal and hazardous waste in the United States is primarily accomplished by containment in lined and capped landfills. Evapotranspiration cover systems offer an alternative to conventional landfill cap systems. These covers work on completely different principles than traditional covers do, and that difference may slow understanding and acceptance by site owners, regulators, and stakeholders. This chapter provides an introduction to this alternative technique and explains some of the common concerns regarding its implementation.

  18. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    NASA Astrophysics Data System (ADS)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  19. Mercury recovery from mercury-containing wastes using a vacuum thermal desorption system.

    PubMed

    Lee, Woo Rim; Eom, Yujin; Lee, Tai Gyu

    2017-02-01

    Mercury (Hg)-containing waste from various industrial facilities is commonly treated by incineration or stabilization/solidification and retained in a landfill at a managed site. However, when highly concentrated Hg waste is treated using these methods, Hg is released into the atmosphere and soil environment. To eliminate these risks, Hg recovery technology using thermal treatment has been developed and commercialized to recover Hg from Hg-containing waste for safe disposal. Therefore, we developed Hg recovery equipment to treat Hg-containing waste under a vacuum of 6.67kPa (abs) at 400°C and recover the Hg. In addition, the dust generated from the waste was separated by controlling the temperature of the dust filtration unit to 230°C. Additionally, water and Hg vapors were condensed in a condensation unit. The Hg removal rate after waste treatment was 96.75%, and the Hg recovery rate as elemental Hg was 75.23%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Corrosion of radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1988-05-01

    At the US Department of Energy (DOE) Savannah River Plant, the corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Laboratory tests, conducted to determine minimum corrosion inhibitor levels, indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations were conducted to assess the validity of laboratory tests. The in situ results are compared to those of laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species formore » carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 M nitrite required for reactor fuel reprocessing wastes.« less

  1. Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, HakSoo; Chung, SungHwan; Maeng, SungJun

    2013-07-01

    The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactivemore » waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)« less

  2. Spread potential of binucleate Rhizoctonia from propagation floors to trays containing stem cuttings

    USDA-ARS?s Scientific Manuscript database

    Binucelate Rhizoctonia spp. (BNR), the cause of web blight, are present all year on container-grown azaleas in the southern U.S. BNR can be eliminated during vegetative propagation by submerging stem cuttings in 50°C water for 21 minutes. The objective was to evaluate risk of rooting trays bein...

  3. Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan

    2017-08-01

    Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.

  4. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less

  5. TECHNICAL RESOURCE DOCUMENT: TREATMENT TECHNOLOGIES FOR CORROSIVE-CONTAINING WASTES. VOLUME 2

    EPA Science Inventory

    The Technical Resource Document (TRD) for wastes containing corrosives is one in a series of five documents which evaluate waste management alternatives to land disposal. In addition to this TRD for corrosive wastes, the other four TRDs in the series address land disposal alterna...

  6. Eliminating waste in US health care.

    PubMed

    Berwick, Donald M; Hackbarth, Andrew D

    2012-04-11

    The need is urgent to bring US health care costs into a sustainable range for both public and private payers. Commonly, programs to contain costs use cuts, such as reductions in payment levels, benefit structures, and eligibility. A less harmful strategy would reduce waste, not value-added care. The opportunity is immense. In just 6 categories of waste--overtreatment, failures of care coordination, failures in execution of care processes, administrative complexity, pricing failures, and fraud and abuse--the sum of the lowest available estimates exceeds 20% of total health care expenditures. The actual total may be far greater. The savings potentially achievable from systematic, comprehensive, and cooperative pursuit of even a fractional reduction in waste are far higher than from more direct and blunter cuts in care and coverage. The potential economic dislocations, however, are severe and require mitigation through careful transition strategies.

  7. Volumetric, rheological, and optical properties of hydroxylamine hydrochloride aqueous solutions containing NaCl, KCl, and NH4Cl at 30°C

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Puyad, A. L.; Shaikh, U. B.; Solanke, S. S.

    2014-04-01

    Densities, viscosities, and refractive indices of aqueous solutions of hydroxylamine hydrochloride containing 0.05, 0.10, and 0.15 mol/dm3 NaCl, KCl, and NH4Cl were measured at different concentrations of hydroxylamine hydrochloride at 30°C. Viscosity coefficients A and B representing ion-ion and ion-solvent interactions were determined from Jones-Dole equation. Experimental properties and viscosity coefficients have been interpreted in terms of ion-ion and ion-solvent interactions. Ion-solvent interactions were found to be dominating over the ion-ion interactions in studied systems.

  8. Evolution of thermoelectric performance for (Bi,Sb){sub 2}Te{sub 3} alloys from cutting waste powders to bulks with high figure of merit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Xi'an, E-mail: groupfxa@163.com; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081; School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081

    Bi{sub 2}Te{sub 3} based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi{sub 2}Te{sub 3} based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb){sub 2}Te{sub 3} alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb){sub 2}Te{sub 3} alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used inmore » this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi{sub 0.36}Sb{sub 1.64}Te{sub 3} and Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi{sub 2}Te{sub 3} based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi{sub 2}Te{sub 3} based wastes were directly selected as raw materials

  9. Getters for improved technetium containment in cementitious waste forms

    DOE PAGES

    Asmussen, R. Matthew; Pearce, Carolyn I.; Miller, Brian W.; ...

    2017-07-26

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This paper focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon enteringmore » the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ~0.08 wt% of the total waste form mass. The observed diffusion (D obs) of Tc decreased from 4.6 ± 0.2 × 10 -12 cm 2/s for Cast Stone that did not contain a getter to 5.4 ± 0.4 × 10 -13 cm 2/s for KMS-2 containing Cast Stone. Finally, it was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc D obs when using the KMS-2.« less

  10. Getters for improved technetium containment in cementitious waste forms.

    PubMed

    Asmussen, R Matthew; Pearce, Carolyn I; Miller, Brian W; Lawter, Amanda R; Neeway, James J; Lukens, Wayne W; Bowden, Mark E; Miller, Micah A; Buck, Edgar C; Serne, R Jeffery; Qafoku, Nikolla P

    2018-01-05

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This work focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon entering the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ∼0.08wt% of the total waste form mass. The observed diffusion (D obs ) of Tc decreased from 4.6±0.2×10 -12 cm 2 /s for Cast Stone that did not contain a getter to 5.4±0.4×10 -13 cm 2 /s for KMS-2 containing Cast Stone. It was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc D obs when using the KMS-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Residues of hazardous waste in empty containers. 261.7 Section 261.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.7 Residues of hazardous...

  12. Coal tar-containing asphalt - resource or hazardous waste?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson-Skold, Y.; Andersson, K.; Lind, B.

    2007-09-30

    Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. Themore » transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.« less

  13. Thermal destruction of wastes containing polychlorinated naphthalenes in an industrial waste incinerator.

    PubMed

    Yamamoto, Takashi; Noma, Yukio; Sakai, Shin-Ichi

    2016-07-02

    A series of verification tests were carried out in order to confirm that polychlorinated naphthalenes (PCNs) contained in synthetic rubber products (Neoprene FB products) and aerosol adhesives, which were accidentally imported into Japan, could be thermally destroyed using an industrial waste incinerator. In the verification tests, Neoprene FB products containing PCNs at a concentration of 2800 mg/kg were added to industrial wastes at a ratio of 600 mg Neoprene FB product/kg-waste, and then incinerated at an average temperature of 985 °C. Total PCN concentrations were 14 ng/m 3 N in stack gas, 5.7 ng/g in bottom ash, 0.98 ng/g in boiler dust, and 1.2 ng/g in fly ash. Destruction efficiency (DE) and destruction removal efficiency (DRE) of congener No. 38/40, which is considered an input marker congener, were 99.9974 and 99.9995 %, respectively. The following dioxin concentrations were found: 0.11 ng-TEQ/m 3 N for the stack gas, 0.096 ng-TEQ/g for the bottom ash, 0.010 ng-TEQ/g for the boiler dust, and 0.072 ng-TEQ/g for the fly ash. Since the PCN levels in the PCN destruction test were even at slightly lower concentrations than in the baseline test without PCN addition, the detected PCNs are to a large degree unintentionally produced PCNs and does not mainly stem from input material. Also, the dioxin levels did not change. From these results, we confirmed that PCNs contained in Neoprene FB products and aerosol adhesives could be destroyed to a high degree by high-temperature incineration. Therefore, all recalled Neoprene FB products and aerosol adhesives containing PCNs were successfully treated under the same conditions as the verification tests.

  14. Enclosed Cutting-And-Polishing Apparatus

    NASA Technical Reports Server (NTRS)

    Rossier, R. N.; Bicknell, B.

    1989-01-01

    Proposed apparatus cuts and polishes specimens while preventing contamination of outside environment or of subsequent specimens processed in it. Designed for use in zero gravity but also includes features useful in cutting and polishing of toxic or otherwise hazardous materials on Earth. Includes remote manipulator for handling specimens, cutting and polishing wire, inlets for gas and liquid, and outlets for waste liquid and gas. Replaceable plastic liner surrounds working space.

  15. Characteristics of solidified products containing radioactive molten salt waste.

    PubMed

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  16. Wool-waste as organic nutrient source for container-grown plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheljazkov, Valtcho D.; Stratton, Glenn W.; Pincock, James

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) inmore » pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.« less

  17. Amiloride-Sensitive and Amiloride-Insensitive Responses to NaCl + Acid Mixtures in Hamster Chorda Tympani Nerve

    PubMed Central

    Hettinger, Thomas P.; Savoy, Lawrence D.; Frank, Marion E.

    2012-01-01

    Component signaling in taste mixtures containing both beneficial and dangerous chemicals depends on peripheral processing. Unidirectional mixture suppression of chorda tympani (CT) nerve responses to sucrose by quinine and acid is documented for golden hamsters (Mesocricetus auratus). To investigate mixtures of NaCl and acids, we recorded multifiber responses to 50 mM NaCl, 1 and 3 mM citric acid and acetic acid, 250 μM citric acid, 20 mM acetic acid, and all binary combinations of each acid with NaCl (with and without 30 μM amiloride added). By blocking epithelial Na+ channels, amiloride treatment separated amiloride-sensitive NaCl-specific responses from amiloride-insensitive electrolyte-generalist responses, which encompass all of the CT response to the acids as well as responses to NaCl. Like CT sucrose responses, the amiloride-sensitive NaCl responses were suppressed by as much as 50% by citric acid (P = 0.001). The amiloride-insensitive electrolyte-generalist responses to NaCl + acid mixtures approximated the sum of NaCl and acid component responses. Thus, although NaCl-specific responses to NaCl were weakened in NaCl–acid mixtures, electrolyte-generalist responses to acid and NaCl, which tastes KCl-like, were transmitted undiminished in intensity to the central nervous system. The 2 distinct CT pathways are consistent with known rodent behavioral discriminations. PMID:22451526

  18. Social life and sanitary risks: evolutionary and current ecological conditions determine waste management in leaf-cutting ants

    PubMed Central

    Farji-Brener, Alejandro G.; Elizalde, Luciana; Amador-Vargas, Sabrina

    2016-01-01

    Adequate waste management is vital for the success of social life, because waste accumulation increases sanitary risks in dense societies. We explored why different leaf-cutting ants (LCA) species locate their waste in internal nest chambers or external piles, including ecological context and accounting for phylogenetic relations. We propose that waste location depends on whether the environmental conditions enhance or reduce the risk of infection. We obtained the geographical range, habitat and refuse location of LCA from published literature, and experimentally determined whether pathogens on ant waste survived to the high soil temperatures typical of xeric habitats. The habitat of the LCA determined waste location after phylogenetic correction: species with external waste piles mainly occur in xeric environments, whereas those with internal waste chambers mainly inhabit more humid habitats. The ancestral reconstruction suggests that dumping waste externally is less derived than digging waste nest chambers. Empirical results showed that high soil surface temperatures reduce pathogen prevalence from LCA waste. We proposed that LCA living in environments unfavourable for pathogens (i.e. xeric habitats) avoid digging costs by dumping the refuse above ground. Conversely, in environments suitable for pathogens, LCA species prevent the spread of diseases by storing waste underground, presumably, a behaviour that contributed to the colonization of humid habitats. These results highlight the adaptation of organisms to the hygienic challenges of social living, and illustrate how sanitary behaviours can result from a combination of evolutionary history and current environmental conditions. PMID:27226469

  19. Social life and sanitary risks: evolutionary and current ecological conditions determine waste management in leaf-cutting ants.

    PubMed

    Farji-Brener, Alejandro G; Elizalde, Luciana; Fernández-Marín, Hermógenes; Amador-Vargas, Sabrina

    2016-05-25

    Adequate waste management is vital for the success of social life, because waste accumulation increases sanitary risks in dense societies. We explored why different leaf-cutting ants (LCA) species locate their waste in internal nest chambers or external piles, including ecological context and accounting for phylogenetic relations. We propose that waste location depends on whether the environmental conditions enhance or reduce the risk of infection. We obtained the geographical range, habitat and refuse location of LCA from published literature, and experimentally determined whether pathogens on ant waste survived to the high soil temperatures typical of xeric habitats. The habitat of the LCA determined waste location after phylogenetic correction: species with external waste piles mainly occur in xeric environments, whereas those with internal waste chambers mainly inhabit more humid habitats. The ancestral reconstruction suggests that dumping waste externally is less derived than digging waste nest chambers. Empirical results showed that high soil surface temperatures reduce pathogen prevalence from LCA waste. We proposed that LCA living in environments unfavourable for pathogens (i.e. xeric habitats) avoid digging costs by dumping the refuse above ground. Conversely, in environments suitable for pathogens, LCA species prevent the spread of diseases by storing waste underground, presumably, a behaviour that contributed to the colonization of humid habitats. These results highlight the adaptation of organisms to the hygienic challenges of social living, and illustrate how sanitary behaviours can result from a combination of evolutionary history and current environmental conditions. © 2016 The Author(s).

  20. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi, E-mail: sakanakura@nies.go.jp; Terazono, Atsushi, E-mail: terazono@nies.go.jp

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered duringmore » the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as

  1. Method of determining a content of a nuclear waste container

    DOEpatents

    Bernardi, Richard T.; Entwistle, David

    2003-04-22

    A method and apparatus are provided for identifying contents of a nuclear waste container. The method includes the steps of forming an image of the contents of the container using digital radiography, visually comparing contents of the image with expected contents of the container and performing computer tomography on the container when the visual inspection reveals an inconsistency between the contents of the image and the expected contents of the container.

  2. Usachev with Solid Waste Container in Service Module

    NASA Image and Video Library

    2001-04-10

    ISS002-E-5336 (10 April 2001) --- As part of routine procedures, cosmonaut Yury V. Usachev, Expedition Two mission commander, changes out a solid waste container in the Zvezda / Service Module. This image was recorded with a digital still camera.

  3. ASSESSMENT AND RECOMMENDATIONS FOR IMPROVING THE PERFORMANCE OF WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This broad-based study addressed three categories of issues related to the design,
    construction, and performance of waste containment systems used at landfills, surface
    impoundments, and waste piles, and in the remediation of contaminated sites. Geosynthetic materials have...

  4. Passive 3D imaging of nuclear waste containers with Muon Scattering Tomography

    NASA Astrophysics Data System (ADS)

    Thomay, C.; Velthuis, J.; Poffley, T.; Baesso, P.; Cussans, D.; Frazão, L.

    2016-03-01

    The non-invasive imaging of dense objects is of particular interest in the context of nuclear waste management, where it is important to know the contents of waste containers without opening them. Using Muon Scattering Tomography (MST), it is possible to obtain a detailed 3D image of the contents of a waste container on reasonable timescales, showing both the high and low density materials inside. We show the performance of such a method on a Monte Carlo simulation of a dummy waste drum object containing objects of different shapes and materials. The simulation has been tuned with our MST prototype detector performance. In particular, we show that both a tungsten penny of 2 cm radius and 1 cm thickness, and a uranium sheet of 0.5 cm thickness can be clearly identified. We also show the performance of a novel edge finding technique, by which the edges of embedded objects can be identified more precisely than by solely using the imaging method.

  5. Potential of spreading binucleate Rhizoctonia from nursery propagation floors to trays containing azalea stem cuttings

    USDA-ARS?s Scientific Manuscript database

    Binucleate Rhizoctonia fungi cause web blight on azaleas and other woody ornamental plants. This research focused on one aspect of how the pathogen may spread from contaminated floors of propagation houses into trays containing clean azalea stem cuttings that generate new root systems. Rhizoctonia w...

  6. The role of NaCl in flame chemistry, in the deposition process, and in its reactions with protective oxides as related to hot corrosion

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1979-01-01

    Sodium chloride is believed to be the primary source of turbine engine contamination that contributes to hot corrosion. The behavior of NaCl-containing aerosols ingested with turbine intake air is very complex; some of the NaCl may vaporize during combustion while some may remain as particulates. The NaCl can lead to Na2SO4 formation by several possible routes or it can contribute to corrosion directly. Hydrogen or oxygen atom reaction with NaCl(c) was shown to result in the release of Na(g). Gaseous NaCl in flames can be partially converted to gaseous Na2SO4 by homogeneous reactions. The remaining gaseous NaCl and other Na-containing molecules can act as sodium carriers for condensate deposition of Na2SO4 on cool surfaces. A frozen boundary layer theory was developed to predict the rates of deposition. The condensed phase NaCl can be converted directly to condensed Na2SO4 by reaction with sulfur oxides and O2. Reaction of gaseous NaCl with Cr2O3 results in the vapor phase transport of chromium by the formation of complex Cr-containing gaseous molecules. Similar gaseous complexes are formed with molybdenum. The presence of gaseous NaCl was shown to affect the oxidation kinetics of Ni-Cr alloys. It also causes changes in the surface morphology of Al2O3 scales formed on Al-containing alloys.

  7. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...

  8. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...

  9. WESTERN RESEARCH INSTITUTE CONTAINED RECOVERY OF OILY WASTES (CROW) PROCESS - ITER

    EPA Science Inventory

    This report summarizes the findings of an evaluation of the Contained Recovery of Oily Wastes (CROW) technology developed by the Western Research Institute. The process involves the injection of heated water into the subsurface to mobilize oily wastes, which are removed from the ...

  10. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2003-11-18

    A sensor system for a buried waste containment site having a bottom wall barrier and sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  11. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2005-09-27

    A sensor system for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  12. New amine-type inhibitors for protecting low-carbon steels in hydrogen sulfide-containing neutral media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podobaev, N.I.; Atanasyan, T.K.; Lyashenko, L.F.

    The protecting action of polethylenepolyamine (PEPA) products was carried out by gravimetric and electrochemical methods in aerated and de-aerated 35 NaCl solutions and simulated waste water containing CaCl/sub 2/, NaCl, NaHCO/sub 3/, Na/sub 2/SO/sub 4/, and KBr, with addition of H/sub 2/S. Gravimetric and electrochemical measurements were carried out and results are presented. The influence on tanning agents on the physicomechanical and photographic properties of the positive emulsion Unibrom, Normal at thermostated aging for two days was shown. The results lead to the conclusion that the use of animals as tanning agents of the emulsion lead to improvement of themore » physicomechanical properties of the emulsion light sensitive layers.« less

  13. Application of fuel cell for pyrite and heavy metal containing mining waste

    NASA Astrophysics Data System (ADS)

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  14. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  15. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  16. Self-consolidating concretes containing waste PET bottles as sand replacement

    NASA Astrophysics Data System (ADS)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Mazenan, Puteri Natasya; Shahidan, Shahiron; Othman, Nor hazurina; Guntor, Nickholas Anting Anak

    2018-02-01

    This study evaluates the effect of self-consolidating concrete (SCC) containing waste polyethylene terephthalate (PET) granules on the fresh, mechanical and water absorption properties. Fine aggregates were replaced from 0% to 8% by PET granules. The fresh properties of SCC containing PET granules were determined using slump flow and V-funnel flow time tests. The compressive and splitting tensile strength were evaluated. The results indicated that utilization of waste PET granules in production of SCC could be an effective way for recycling purpose. The maximum amount of PET replacement should be limited to 5%. Exceeding 5% of PET content may result in an increase of V-funnel flow time to overpass the limiting value, decrease in strength. The production of high performance SCC containing 5% PET granules satisfies all the requirements for SCC with satisfactory outputs.

  17. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.

    PubMed

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production

  18. Photostabilization of a landfill containing coal combustion waste

    Treesearch

    Christopher Barton; Donald Marx; Domy Adriano; Bon Jun Koo; Lee Newman; Stephen Czapka; John Blake

    2005-01-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three...

  19. Phytostabilization of a landfill containing coal combustion waste

    Treesearch

    Christopher Barton; Donald Marx; Domy Adriano; Bon Jun Koo; Lee Newman; Stephen Czapka; John Blake

    2005-01-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three...

  20. Early detection and evaluation of waste through sensorized containers for a collection monitoring application.

    PubMed

    Rovetta, Alberto; Xiumin, Fan; Vicentini, Federico; Minghua, Zhu; Giusti, Alessandro; Qichang, He

    2009-12-01

    The present study describes a novel application for use in the monitoring of municipal solid waste, based on distributed sensor technology and geographical information systems. Original field testing and evaluation of the application were carried out in Pudong, Shanghai (PR China). The local waste management system in Pudong features particular requirements related to the rapidly increasing rate of waste production. In view of the fact that collected waste is currently deployed to landfills or to incineration plants within the context investigated, the key aspects to be taken into account in waste collection procedures include monitoring of the overall amount of waste produced, quantitative measurement of the waste present at each collection point and identification of classes of material present in the collected waste. The case study described herein focuses particularly on the above mentioned aspects, proposing the implementation of a network of sensorized waste containers linked to a data management system. Containers used were equipped with a set of sensors mounted onto standard waste bins. The design, implementation and validation procedures applied are subsequently described. The main aim to be achieved by data collection and evaluation was to provide for feasibility analysis of the final device. Data pertaining to the content of waste containers, sampled and processed by means of devices validated on two purpose-designed prototypes, were therefore uploaded to a central monitoring server using GPRS connection. The data monitoring and management modules are integrated into an existing application used by local municipal authorities. A field test campaign was performed in the Pudong area. The system was evaluated in terms of real data flow from the network nodes (containers) as well as in terms of optimization functions, such as collection vehicle routing and scheduling. The most important outcomes obtained were related to calculations of waste weight and

  1. Recovery Of Chromium Metal (VI) Using Supported Liquid Membrane (SLM) Method, A study of Influence of NaCl and pH in Receiving Phase on Transport

    NASA Astrophysics Data System (ADS)

    Cholid Djunaidi, Muhammad; Lusiana, Retno A.; Rahayu, Maya D.

    2017-06-01

    Chromium metal(VI) is a valuable metal but in contrary has high toxicity, so the separation and recovery from waste are very important. One method that can be used for the separation and recovery of chromium (VI) is a Supported Liquid Membrane (SLM). SLM system contains of three main components: a supporting membrane, organic solvents and carrier compounds. The supported Membrane used in this research is Polytetrafluoroethylene (PTFE), organic solvent is kerosene, and the carrier compound used is aliquat 336. The supported liquid membrane is placed between two phases, namely, feed phase as the source of analyte (Cr(VI)) and the receiving phase as the result of separation. Feed phase is the electroplating waste which contains of chromium metal with pH variation about 4, 6 and 9. Whereas the receiving phase are the solution of HCl, NaOH, HCl-NaCl and NaOH-NaCl with pH variation about 1, 3, 5 and 7. The efficiency separation is determined by measurement of chromium in the feed and the receiving phase using AAS (Atomic Absorption Spectrophotometry). The experiment results show that transport of Chrom (VI) by Supported Liquid membrane (SLM) is influenced by pH solution in feed phase and receiving phase as well as NaCl in receiving phase. The highest chromium metal is transported from feed phase about 97,78%, whereas in receiving phase shows about 58,09%. The highest chromium metal transport happens on pH 6 in feed phase, pH 7 in receiving phase with the mixture of NaOH and NaCl using carrier compound aliquat 336.

  2. Properties of concrete containing foamed concrete block waste as fine aggregate replacement

    NASA Astrophysics Data System (ADS)

    Muthusamy, K.; Budiea, A. M. A.; Zaidan, A. L. F.; Rasid, M. H.; Hazimmah, D. S.

    2017-11-01

    Environmental degradation due to excessive sand mining dumping at certain places and disposal of foamed concrete block waste from lightweight concrete producing industry are issues that should be resolved for a better and cleaner environment of the community. Thus, the main intention of this study is to investigate the potential of foamed concrete block waste as partial sand replacement in concrete production. The foamed concrete waste (FCW) used in this research that were supplied by a local lightweight concrete producing industry. The workability and compressive strength of concrete containing various percentage of foamed concrete waste as partial sand replacement has been investigated. Prior to the use, the foamed concrete waste were crushed to produce finer particles. Six concrete mixes containing various content of crushed foamed concrete waste that are 0%, 10%, 20%, 30%, 40% and 50% were used in this experimental work. Then the prepared specimens were placed in water curing until the testing age. Compressive strength test and flexural strength tests were conducted at 7, 14 and 28 days. The result shows that integration of crushed foamed concrete waste as partial sand replacement in concrete reduces the mix workability. It is interesting to note that both compressive strength and flexural strength of concrete improves when 30% crushed foamed concrete waste is added as partial sand replacement.

  3. Parametric Criticality Safety Calculations for Arrays of TRU Waste Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Sean T.

    The Nuclear Criticality Safety Division (NCSD) has performed criticality safety calculations for finite and infinite arrays of transuranic (TRU) waste containers. The results of these analyses may be applied in any technical area onsite (e.g., TA-54, TA-55, etc.), as long as the assumptions herein are met. These calculations are designed to update the existing reference calculations for waste arrays documented in Reference 1, in order to meet current guidance on calculational methodology.

  4. Differential lead retention in zircons: implications for nuclear waste containment.

    PubMed

    Gentry, R V; Sworski, T J; McKown, H S; Smith, D H; Eby, R E; Christie, W H

    1982-04-16

    An innovative ultrasensitive technique was used for lead isotopic analysis of individual zircons extracted from granite core samples at depths of 960, 2170, 2900, 3930, and 4310 meters. The results show that lead, a relatively mobile element compared to the nuclear waste-related actinides uranium and thorium, has been highly retained at elevated temperatures (105 degrees to 313 degrees C) under conditions relevant to the burial of synthetic rock waste containers in deep granite holes.

  5. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  6. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  7. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  8. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  9. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  10. Corrosion Behavior of Titanium Grade 7 in Fluoride-Containing NaCl Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NA

    2004-05-18

    Titanium Grade 7 (UNS R52400) is a titanium-based alloy with 0.12-0.25% Pd. The addition of the small amount of palladium is to ennoble the corrosion potential of Ti, thus improving the corrosion resistance of titanium in reducing environments. In most aqueous environments, Ti and Ti alloys demonstrate excellent corrosion resistance due to the protective oxide film that forms spontaneously and remains stable on the surface. However, Ti and Ti alloys are susceptible to corrosion in fluoride-containing environments due to the formation of complexes such as TiF{sub 6}{sup 2-} and TiF{sub 6}{sup 3-}, which are stable and soluble in electrolyte solutions.more » Without the presence of fluoride, only slight effects from [Cl{sup -}], pH and temperature have been reported [1]. It has been reported that the kinetics of passive corrosion of titanium in neutral solutions and controlled by the migration of the defects in the oxide across the surface film [2]. Thus, the increase in thickness and improvement in film properties, by thermal oxidation, would lead to a significant decrease in the susceptibility to film breakdown and in the passive corrosion rate. This report summarizes recent experiment results in studies of the environmental influence on the corrosion behavior of Titanium Grade 7 (Ti-7) in NaCl brines containing fluoride. The environmental factors to be studied include temperature, pH, chloride and fluoride concentration. This report also includes the effects of oxide film, formed during an anneal treatment, on the corrosion behavior of Ti-7. Polarization measurement techniques including potentiodynamic and potentiostatic scans were use3d to characterize corrosion kinetics and susceptibility. Due to the unique alloying in Titanium Grade 7, the long-term corrosion behavior is heavily influenced by the surface enrichment of Pd. Use of electrochemical impedance spectroscopy in conjunction with a potentiostatic scan will reveal the transformation in the corrosion

  11. Natural variability in Drosophila larval and pupal NaCl tolerance.

    PubMed

    Riedl, Craig A L; Oster, Sara; Busto, Macarena; Mackay, Trudy F C; Sokolowski, Marla B

    2016-05-01

    The regulation of NaCl is essential for the maintenance of cellular tonicity and functionality, and excessive salt exposure has many adverse effects. The fruit fly, Drosophila melanogaster, is a good osmoregulator and some strains can survive on media with very low or high NaCl content. Previous analyses of mutant alleles have implicated various stress signaling cascades in NaCl sensitivity or tolerance; however, the genes influencing natural variability of NaCl tolerance remain for the most part unknown. Here, we use two approaches to investigate natural variation in D. melanogaster NaCl tolerance. We describe four D. melanogaster lines that were selected for different degrees of NaCl tolerance, and present data on their survival, development, and pupation position when raised on varying NaCl concentrations. After finding evidence for natural variation in salt tolerance, we present the results of Quantitative Trait Loci (QTL) mapping of natural variation in larval and pupal NaCl tolerance, and identify different genomic regions associated with NaCl tolerance during larval and pupal development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Kinetin Reversal of NaCl Effects

    PubMed Central

    Katz, Adriana; Dehan, Klara; Itai, Chanan

    1978-01-01

    Leaf discs of Nicotiana rustica L. were floated on NaCl in the presence of kinetin or abscisic acid. On the 5th day 14CO2 fixation, [3H]leucine incorporation, stomatal conductance, and chlorophyll content were determined. Kinetin either partially or completely reversed the inhibitory effects of NaCl while ABA had no effect. PMID:16660618

  13. Equilibrium, Kinetics, and Spectroscopic Studies of SF6 Hydrate in NaCl Electrolyte Solution.

    PubMed

    Seo, Youngrok; Moon, Donghyun; Lee, Changho; Park, Jeong-Woo; Kim, Byeong-Soo; Lee, Gang-Woo; Dotel, Pratik; Lee, Jong-Won; Cha, Minjun; Yoon, Ji-Ho

    2015-05-19

    Many studies have focused on desalination via hydrate formation; however, for their potential application, knowledge pertaining to thermodynamic stability, formation kinetics, and guest occupation behavior in clathrate hydrates needs to be determined. Herein, the phase equilibria of SF6 hydrates in the presence of NaCl solutions (0, 2, 4, and 10 wt %) were monitored in the temperature range of 277-286 K and under pressures of up to 1.4 MPa. The formation kinetics of SF6 hydrates in the presence of NaCl solutions (0, 2, and 4 wt %) was also investigated. Gas consumption curves of SF6 hydrates showed that a pure SF6 hydrate system allowed fast hydrate growth as well as high conversion yield, whereas SF6 hydrate in the presence of NaCl solutions showed retarded hydrate growth rate as well as low conversion yield. In addition, structural identification of SF6 hydrates with and without NaCl solutions was performed using spectroscopic tools such as Raman spectroscopy and X-ray diffraction. The Raman spectrometer was also used to evaluate the temperature-dependent release behavior of guest molecules in SF6 and SF6 + 4 wt % NaCl hydrates. The results indicate that whereas SF6 hydrate starts to decompose at around 240 K, the escape of SF6 molecules in SF6 + 4 wt % NaCl hydrate is initiated rapidly at around 205 K. The results of this study can provide a better understanding of guest-host interaction in electrolyte-containing systems.

  14. Corrosion of inconel in high-temperature borosilicate glass melts containing simulant nuclear waste

    NASA Astrophysics Data System (ADS)

    Mao, Xianhe; Yuan, Xiaoning; Brigden, Clive T.; Tao, Jun; Hyatt, Neil C.; Miekina, Michal

    2017-10-01

    The corrosion behaviors of Inconel 601 in the borosilicate glass (MW glass) containing 25 wt.% of simulant Magnox waste, and in ZnO, Mn2O3 and Fe2O3 modified Mg/Ca borosilicate glasses (MZMF and CZMF glasses) containing 15 wt.% of simulant POCO waste, were evaluated by dimensional changes, the formation of internal defects and changes in alloy composition near corrosion surfaces. In all three kinds of glass melts, Cr at the inconel surface forms a protective Cr2O3 scale between the metal surface and the glass, and alumina precipitates penetrate from the metal surface or formed in-situ. The corrosion depths of inconel 601 in MW waste glass melt are greater than those in the other two glass melts. In MW glass, the Cr2O3 layer between inconel and glass is fragmented because of the reaction between MgO and Cr2O3, which forms the crystal phase MgCr2O4. In MZMF and CZMF waste glasses the layers are continuous and a thin (Zn, Fe, Ni, B)-containing layer forms on the surface of the chromium oxide layer and prevents Cr2O3 from reacting with MgO or other constituents. MgCr2O4 was observed in the XRD analysis of the bulk MW waste glass after the corrosion test, and ZrSiO4 in the MZMF waste glass, and ZrSiO4 and CaMoO4 in the CZMF waste glass.

  15. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1986-12-01

    At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations.« less

  16. Desorption isotherms of salted minced pork using K-lactate as a substitute for NaCl.

    PubMed

    Muñoz, I; Arnau, J; Costa-Corredor, A; Gou, P

    2009-12-01

    The aim of this study was to obtain and compare water desorption isotherms of ground meat containing NaCl (0.107kg NaCl/kg raw-meat dry matter) and/or K-lactate as NaCl substitute at two different levels of molar substitution (30% and 100%). A thin layer of salted ground meat was dried and sampled at pre-determined times. The moisture content of the samples and their water activities (a(w)) were measured at 5°C and 25°C. Results showed that ground meat with NaCl and/or different K-lactate contents had a similar water desorption isotherm for a(w) ranging from 0.7 to 1.0. Below 0.7, the water equilibrium content fell with small decreases in a(w) faster for meat with NaCl than for meat with K-lactate. K-lactate could reduce the excessive hardening at the surface of salted meat products. Experimental desorption isotherms were compared to those estimated using two approaches of the Ross equation. Models provided a good fit for the experimental data.

  17. Electron scattering in graphene with adsorbed NaCl nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drabińska, Aneta, E-mail: Aneta.Drabinska@fuw.edu.pl; Kaźmierczak, Piotr; Bożek, Rafał

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The mainmore » inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.« less

  18. Segmented Gamma Scanner for Small Containers of Uranium Processing Waste- 12295

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, K.E.; Smith, S.K.; Gailey, S.

    2012-07-01

    The Segmented Gamma Scanner (SGS) is commonly utilized in the assay of 55-gallon drums containing radioactive waste. Successfully deployed calibration methods include measurement of vertical line source standards in representative matrices and mathematical efficiency calibrations. The SGS technique can also be utilized to assay smaller containers, such as those used for criticality safety in uranium processing facilities. For such an application, a Can SGS System is aptly suited for the identification and quantification of radionuclides present in fuel processing wastes. Additionally, since the significant presence of uranium lumping can confound even a simple 'pass/fail' measurement regimen, the high-resolution gamma spectroscopymore » allows for the use of lump-detection techniques. In this application a lump correction is not required, but the application of a differential peak approach is used to simply identify the presence of U-235 lumps. The Can SGS is similar to current drum SGSs, but differs in the methodology for vertical segmentation. In the current drum SGS, the drum is placed on a rotator at a fixed vertical position while the detector, collimator, and transmission source are moved vertically to effect vertical segmentation. For the Can SGS, segmentation is more efficiently done by raising and lowering the rotator platform upon which the small container is positioned. This also reduces the complexity of the system mechanism. The application of the Can SGS introduces new challenges to traditional calibration and verification approaches. In this paper, we revisit SGS calibration methodology in the context of smaller waste containers, and as applied to fuel processing wastes. Specifically, we discuss solutions to the challenges introduced by requiring source standards to fit within the confines of the small containers and the unavailability of high-enriched uranium source standards. We also discuss the implementation of a previously used technique for

  19. Secretory NaCl and volume flow in renal tubules.

    PubMed

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  20. NaCl intake and preference threshold of spontaneously hypertensive rats.

    PubMed

    Fregly, M J

    1975-09-01

    Both male and female spontaneously hypertensive (SH) rats have an appetite for NaCl solution. The appetite is present when a choice is offered between distilled water and either isotonic or hypertonic (0.25 M) NaCl solution to drink. Total fluid intake (water plus NaCl solution) was greater for SH rats than for controls while food intakes (g/100 g body wt/day) of SH rats were not different from controls. Mean body weight of SH rats was always less than that of controls. The appetite for NaCl solution was accompanied by a significant reduction in preference (detection) threshold. SH rats could detect the difference between distilled water and NaCl solution when the concentration of the latter was 12 mEq/liter compared to a control threshold of 30 mEq/liter. The NaCl appetite and reduced NaCl preference threshold induced by spontaneous hypertension is in marked contrast to the NaCl aversion induced by other types of experimentally induced hypertension in rats. The mechanism or mechanisms responsible for these differences remain for further study.

  1. Drug waste minimization as an effective strategy of cost-containment in Oncology

    PubMed Central

    2014-01-01

    Background Sustainability of cancer care is a crucial issue for health care systems worldwide, even more during a time of economic recession. Low-cost measures are highly desirable to contain and reduce expenditures without impairing the quality of care. In this paper we aim to demonstrate the efficacy of drug waste minimization in reducing drug-related costs and its importance as a structural measure in health care management. Methods We first recorded intravenous cancer drugs prescription and amount of drug waste at the Oncology Department of Udine, Italy. Than we developed and applied a protocol for drug waste minimization based on per-pathology/per-drug scheduling of chemotherapies and pre-planned rounding of dosages. Results Before the protocol, drug wastage accounted for 8,3% of the Department annual drug expenditure. Over 70% of these costs were attributable to six drugs (cetuximab, docetaxel, gemcitabine, oxaliplatin, pemetrexed and trastuzumab) that we named ‘hot drugs’. Since the protocol introduction, we observed a 45% reduction in the drug waste expenditure. This benefit was confirmed in the following years and drug waste minimazion was able to limit the impact of new pricely drugs on the Department expenditures. Conclusions Facing current budgetary constraints, the application of a drug waste minimization model is effective in drug cost containment and may produce durable benefits. PMID:24507545

  2. 5. View, oxidizer waste tanks and containment basin in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View, oxidizer waste tanks and containment basin in foreground with Systems Integration Laboratory (T-28) uphill in background, looking northeast. - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  3. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  4. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  5. Contained recovery of oily waste

    DOEpatents

    Johnson, Jr., Lyle A.; Sudduth, Bruce C.

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  6. Solubility of NaCl in aqueous electrolyte solutions from 10 to 100°C

    USGS Publications Warehouse

    Clynne, M.A.; Potter, R.W.; Haas, J.L.

    1981-01-01

    The solubilities of NaCl in aqueous KCl, MgCl2, CaCl2, and mixed CaCl2-KCl solutions have been determined from 10 to 100??C. The data were fit to an equation, and the equation was used to calculate values of the change in solubility of NaCl, ???[NaCl]/???T. These values are required for calculations of the rate of migration of fluids in a thermal gradient in rock salt. The data obtained here indicate that the values of ???[NaCl]/???T are 36-73% greater for solutions containing divalent ions than for the NaCl-H2O system.

  7. Lid design for low level waste container

    DOEpatents

    Holbrook, Richard H.; Keener, Wendell E.

    1995-01-01

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.

  8. Lid design for low level waste container

    DOEpatents

    Holbrook, R.H.; Keener, W.E.

    1995-02-28

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.

  9. High Pressure Strength Study on NaCl

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group

    2010-12-01

    Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.

  10. Analysis of temperature and pressure distribution of containers for nuclear waste material disposal in space

    NASA Technical Reports Server (NTRS)

    Vanbibber, L. E.; Parker, W. G.

    1973-01-01

    A computer program was adapted from a previous generation program to analyze the temperature and internal pressure response of a radioactive nuclear waste material disposal container following impact on the earth. This program considers component melting, LiH dissociation, temperature dependent properties and pressure and container stress response. Analyses were performed for 21 cases with variations in radioactive power level, container geometry, degree of deformation of the container, degree of burial and soil properties. Results indicated that the integrity of SS-316 containers could be maintained with partial burials of either underformed or deformed containers. Results indicated that completely buried waste containers, with power levels above 5 kW, experienced creep stress rupture failures in 4 to 12 days.

  11. Mechanical and toxicological evaluation of concrete artifacts containing waste foundry sand.

    PubMed

    Mastella, Miguel Angelo; Gislon, Edivelton Soratto; Pelisser, Fernando; Ricken, Cláudio; da Silva, Luciano; Angioletto, Elídio; Montedo, Oscar Rubem Klegues

    2014-08-01

    The creation of metal parts via casting uses molds that are generally made from sand and phenolic resin. The waste generated after the casting process is called waste foundry sand (WFS). Depending on the mold composition and the casting process, WFS can contain substances that prevent its direct emission to the environment. In Brazil, this waste is classified according to the Standard ABNT NBR 10004:2004 as a waste Class II (Non-Inert). The recycling of this waste is limited because its characteristics change significantly after use. Although the use (or reuse) of this byproduct in civil construction is a technically feasible alternative, its effects must be evaluated, especially from mechanical and environmental points of view. Thus, the objective of this study is to investigate the effect of the use of WFS in the manufacture of cement artifacts, such as masonry blocks for walls, structural masonry blocks, and paving blocks. Blocks containing different concentrations of WFS (up to 75% by weight) were produced and evaluated using compressive strength tests (35 MPa at 28 days) and toxicity tests on Daphnia magna, Allium cepa (onion root), and Eisenia foetida (earthworm). The results showed that there was not a considerable reduction in the compressive strength, with values of 35 ± 2 MPa at 28 days. The toxicity study with the material obtained from leaching did not significantly interfere with the development of D. magna and E. foetida, but the growth of the A. cepa species was reduced. The study showed that the use of this waste in the production of concrete blocks is feasible from both mechanical and environmental points of view. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Waste collection in developing countries - Tackling occupational safety and health hazards at their source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleck, Daniela, E-mail: bleck.daniela@baua.bund.de; Wettberg, Wieland, E-mail: wettberg.wieland@baua.bund.de

    2012-11-15

    Waste management procedures in developing countries are associated with occupational safety and health risks. Gastro-intestinal infections, respiratory and skin diseases as well as muscular-skeletal problems and cutting injuries are commonly found among waste workers around the globe. In order to find efficient, sustainable solutions to reduce occupational risks of waste workers, a methodological risk assessment has to be performed and counteractive measures have to be developed according to an internationally acknowledged hierarchy. From a case study in Addis Ababa, Ethiopia suggestions for the transferral of collected household waste into roadside containers are given. With construction of ramps to dump collectedmore » household waste straight into roadside containers and an adaptation of pushcarts and collection procedures, the risk is tackled at the source.« less

  13. Paraffin tissue microarrays constructed with a cutting board and cutting board arrayer.

    PubMed

    Vogel, Ulrich Felix

    2010-05-01

    Paraffin tissue microarrays (PTMAs) are blocks of paraffin containing up to 1300 paraffin tissue core biopsies (PTCBs). Normally, these PTCBs are punched from routine paraffin tissue blocks, which contain tissues of differing thicknesses. Therefore, the PTCBs are of different lengths. In consequence, the sections of the deeper portions of the PTMA do not contain all of the desired PTCBs. To overcome this drawback, cutting boards were constructed from panels of plastic with a thickness of 4 mm. Holes were drilled into the plastic and filled completely with at least one PTCB per hole. After being trimmed to a uniform length of 4 mm, these PTCBs were pushed from the cutting board into corresponding holes in a recipient block by means of a plate with steel pins. Up to 1000 sections per PTMA were cut without any significant loss of PTCBs, thereby increasing the efficacy of the PTMA technique.

  14. 8. View, fuel waste tanks and containment basin associated with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View, fuel waste tanks and containment basin associated with Components Test Laboratory (T-27) located uphill to the left, looking northwest. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  15. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    PubMed Central

    Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa

    2016-01-01

    The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed. PMID:28773823

  16. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials.

    PubMed

    Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa

    2016-08-18

    The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  17. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to themore » Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs

  18. Effect of halide salts on development of surface browning on fresh-cut 'Granny Smith' (Malus × domestica Borkh) apple slices during storage at low temperature.

    PubMed

    Li, Yongxin; Wills, Ron B H; Golding, John B; Huque, Roksana

    2015-03-30

    The postharvest life of fresh-cut apple slices is limited by browning on cut surfaces. Dipping in halide salt solutions was examined for their inhibition of surface browning on 'Granny Smith' apple slices and the effects on biochemical factors associated with browning. Delay in browning by salts was greatest with chloride = phosphate > sulfate > nitrate with no difference between sodium, potassium and calcium ions. The effectiveness of sodium halides on browning was fluoride > chloride = bromide > iodide = control. Polyphenol oxidase (PPO) activity of tissue extracted from chloride- and fluoride-treated slices was not different to control but when added into the assay solution, NaF > NaCl both showed lower PPO activity at pH 3-5 compared to control buffer. The level of polyphenols in treated slices was NaF > NaCl > control. Addition of chlorogenic acid to slices enhanced browning but NaCl and NaF counteracted this effect. There was no effect of either halide salt on respiration, ethylene production, ion leakage, and antioxidant activity. Dipping apple slices in NaCl is a low cost treatment with few impediments to commercial use and could be a replacement for other anti-browning additives. The mode of action of NaCl and NaF is through decreasing PPO activity resulting in reduced oxidation of polyphenols. © 2014 Society of Chemical Industry.

  19. Characterizing the biotransformation of sulfur-containing wastes in simulated landfill reactors.

    PubMed

    Sun, Wenjie; Sun, Mei; Barlaz, Morton A

    2016-07-01

    Landfills that accept municipal solid waste (MSW) in the U.S. may also accept a number of sulfur-containing wastes including residues from coal or MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, microbially mediated processes can convert sulfate to hydrogen sulfide (H2S). The presence of H2S in landfill gas is problematic for several reasons including its low odor threshold, human toxicity, and corrosive nature. The objective of this study was to develop and demonstrate a laboratory-scale reactor method to measure the H2S production potential of a range of sulfur-containing wastes. The H2S production potential was measured in 8-L reactors that were filled with a mixture of the target waste, newsprint as a source of organic carbon required for microbial sulfate reduction, and leachate from decomposed residential MSW as an inoculum. Reactors were operated with and without N2 sparging through the reactors, which was designed to reduce H2S accumulation and toxicity. Both H2S and CH4 yields were consistently higher in reactors that were sparged with N2 although the magnitude of the effect varied. The laboratory-measured first order decay rate constants for H2S and CH4 production were used to estimate constants that were applicable in landfills. The estimated constants ranged from 0.11yr(-1) for C&D fines to 0.38yr(-1) for a mixed fly ash and bottom ash from MSW combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mechanochemical pre-treatment for viable recycling of plastic waste containing haloorganics.

    PubMed

    Cagnetta, Giovanni; Zhang, Kunlun; Zhang, Qiwu; Huang, Jun; Yu, Gang

    2018-05-01

    Chemical recycling technologies are the most promising for a waste-to-energy/material recovery of plastic waste. However, 30% of such waste cannot be treated in this way due to the presence of halogenated organic compounds, which are often utilized as flame retardants. In fact, high quantities of hydrogen halides and dioxin would form. In order to enabling such huge amount of plastic waste as viable feedstock for recycling, an investigation on mechanochemical pre-treatment by high energy ball milling is carried out on polypropylene containing decabromodiphenyl ether. Results demonstrate that co-milling with zero valent iron and quartz sand ensures complete debromination and mineralization of the flame retardant. Furthermore, a comparative experiment demonstrates that the mechanochemical debromination kinetics is roughly proportional to the polymer-to-haloorganics mass ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    1991-09-10

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solution and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal. 18 figures.

  2. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    1991-01-01

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solutin and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal.

  3. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  4. Biochemical process of low level radioactive liquid simulation waste containing detergent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundari, Noor Anis, E-mail: nooranis@batan.go.id; Putra, Sugili; Mukaromah, Umi

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive elementmore » in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of

  5. Thermal-gradient migration of brine inclusions in salt crystals. [Synthetic single crystals of NaCl and KCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of bothmore » all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables.« less

  6. Assessment of two thermally treated drill mud wastes for landfill containment applications.

    PubMed

    Carignan, Marie-Pierre; Lake, Craig B; Menzies, Todd

    2007-10-01

    Offshore oil and gas drilling operations generate significant amounts of drill mud waste, some of which is transported onshore for subsequent thermal treatment (i.e. via thermal remediation). This treatment process results in a mineral waste by-product (referred to as thermally treated drill mud waste; TTDMW). Bentonites are originally present in many of the drill mud products and it is hypothesized that TTDMW can be utilized in landfill containment applications (i.e. cover or base liner). The objective of this paper is to examine the feasibility of this application by performing various physical and chemical tests on two TTDMW samples. It is shown that the two TTDMW samples contained relatively small amounts of clay-sized minerals although hydraulic conductivity values are found to be less than 10(-8) m/s. Organic carbon contents of the samples were approximately 2%. Mineralogy characterization of the samples confirmed varying amounts of smectite, however, peak friction angles for a TTDMW sample was greater than 36 degrees. Chemical characterization of the TTDMW samples show potential leaching of barium and small amounts of other heavy metals. Discussion is provided in the paper on suggestions to assist in overcoming regulatory issues associated with utilization of TTDMW in landfill containment applications.

  7. Effect of NaCl induced floc disruption on biological disintegration of sludge for enhanced biogas production.

    PubMed

    Kavitha, S; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-09-01

    In the present study, the influence of NaCl mediated bacterial disintegration of waste activated sludge (WAS) was evaluated in terms of disintegration and biodegradability of WAS. Floc disruption was efficient at 0.03 g/g SS of NaCl, promoting the shifts of extracellular proteins and carbohydrates from inner layers to extractable--soluble layers (90 mg/L), respectively. Outcomes of sludge disintegration reveal that the maximum solubilization achieved was found to be 23%, respectively. The model elucidating the parameter evaluation, explicates that floc disrupted--bacterially disintegrated sludge (S3) showed superior biodegradability of about 0.23 (gCOD/gCOD) than the bacterially disintegrated (S2) and control (S3) sludges of about 0.13 (gCOD/gCOD) and 0.05 (gCOD/gCOD), respectively. Cost evaluation of the present study affords net profits of approximately 2.5 USD and -21.5 USD in S3 and S2 sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Treatments of asbestos containing wastes.

    PubMed

    Spasiano, D; Pirozzi, F

    2017-12-15

    Since the second half of the twentieth century, many studies have indicated inhalation of asbestos fibers as the main cause of deadly diseases including fibrosis and cancer. Consequently, since the beginning of the 80s, many countries started banning production and use of asbestos containing products (ACP), although still present in private and public buildings. Due to some extraordinary catastrophic events and/or the aging of these products, people's health and environmental risk associated with the inhalation of asbestos fibers keeps being high even in those countries where it was banned. For these reasons, many communities are developing plans for an environmental and sanitary safe asbestos removal and management. Asbestos containing wastes (ACW) are usually disposed in controlled landfills, but this practice does not definitively eliminate the problems related with asbestos fiber release and conflicts with the ideas of sustainable land use, recycling, and closing material cycles. Consequently, many scientific papers and patents proposed physical, chemical, and biological treatments aimed to the detoxification of ACW (or the reduction of their health effects) and looking for the adoption of technologies, which allow the reuse of the end-products. By including recent relevant bibliography, this report summarizes the status of the most important and innovative treatments of ACW, providing main operating parameters, advantages, and disadvantages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Stabilisation/solidification of synthetic petroleum drill cuttings.

    PubMed

    Al-Ansary, Marwa S; Al-Tabbaa, Abir

    2007-03-15

    This paper presents the results of an experimental investigation into the use of stabilisation/solidification (S/S) to treat synthetic drill cuttings as a pre-treatment to landfilling or for potential re-use as construction products. Two synthetic mixes were used based on average concentrations of specific contaminates present in typical drill cuttings from the North Sea and the Red Sea areas. The two synthetic drill cuttings contained similar chloride content of 2.03% and 2.13% by weight but different hydrocarbon content of 4.20% and 10.95% by weight, respectively; hence the mixes were denoted as low and high oil content mixes, respectively. A number of conventional S/S binders were tested including Portland cement (PC), lime and blast-furnace slag (BFS), in addition to novel binders such as microsilica and magnesium oxide cement. Physical, chemical and microstructural analyses were used to compare the relative performance of the different binder mixes. The unconfined compressive strength (UCS) values were observed to cover a wide range depending on the binder used. Despite the significant difference in the hydrocarbon content in the two synthetic cuttings, the measured UCS values of the mixes with the same binder type and content were similar. The leachability results showed the reduction of the synthetic drill cuttings to a stable non-reactive hazardous waste, compliant with the UK acceptance criteria for non-hazardous landfills: (a) by most of the binders for chloride concentrations, and (b) by the 20% BFS-PC and 30% PC binders for the low oil content mix. The 30% BFS-PC binder successfully reduced the leached oil concentration of the low oil content mix to inert levels. Finally, the microstructural analysis offered valuable information on the morphology and general behaviour of the mixes that were not depicted by the other tests.

  10. Recycling stabilised/solidified drill cuttings for forage production in acidic soils.

    PubMed

    Kogbara, Reginald B; Dumkhana, Bernard B; Ayotamuno, Josiah M; Okparanma, Reuben N

    2017-10-01

    Stabilisation/solidification (S/S), which involves fixation and immobilisation of contaminants using cementitious materials, is one method of treating drill cuttings before final fate. This work considers reuse of stabilised/solidified drill cuttings for forage production in acidic soils. It sought to improve the sustainability of S/S technique through supplementation with the phytoremediation potential of plants, eliminate the need for landfill disposal and reduce soil acidity for better plant growth. Drill cuttings with an initial total petroleum hydrocarbon (TPH) concentration of 17,125 mg kg -1 and low concentrations of metals were treated with 5%, 10%, and 20% cement dosages. The treated drill cuttings were reused in granular form for growing a forage, elephant grass (Pennisetum purpureum), after mixing with uncontaminated soil. The grasses were also grown in uncontaminated soil. The phytoremediation and growth potential of the plants was assessed over a 12-week period. A mix ratio of one part drill cuttings to three parts uncontaminated soil was required for active plant growth. The phytoremediation ability of elephant grass (alongside abiotic losses) reduced the TPH level (up to 8795 mg kg -1 ) in the soil-treated-drill cuttings mixtures below regulatory (1000 mg kg -1 ) levels. There were also decreased concentrations of metals. The grass showed better heights and leaf lengths in soil containing drill cuttings treated with 5% cement dosage than in uncontaminated soil. The results suggest that recycling S/S treated drill cuttings for forage production may be a potential end use of the treated waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bioremediation of oil-based drill cuttings by a halophilic consortium isolated from oil-contaminated saline soil.

    PubMed

    Rezaei Somee, Maryam; Shavandi, Mahmoud; Dastgheib, Seyed Mohammad Mehdi; Amoozegar, Mohammad Ali

    2018-05-01

    Oil-based drill cuttings are hazardous wastes containing complex hydrocarbons, heavy metals, and brine. Their remediation is a crucial step before release to the environment. In this work, we enriched a halophilic consortium, from oil-polluted saline soil, which is capable of degrading diesel as the main pollutant of oil-based drill cuttings. The degradation ability of the consortium was evaluated in microcosms using two different diluting agents (fine sand and biologically active soil). During the bioremediation process, the bacterial community dynamics of the microcosms was surveyed using PCR amplification of a fragment of 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE). The diesel degradation rates were monitored by total petroleum hydrocarbon (TPH) measurement and the total count of heterotrophic and diesel-degrading bacteria. After 3 months, the microcosm containing fine sand and drill cuttings with the ratio of 1:1 (initial TPH of 36,000 mg/kg) showed the highest TPH removal (40%) and its dominant bacterial isolates belonged to the genera Dietzia, Arthrobacter , and Halomonas . DGGE results also confirmed the role of these genera in drill cuttings remediation. DGGE analysis of the bacterial diversity showed that Propionibacterium, Salinimicrobium, Marinobacter , and Dietzia are dominant in active soil microcosm; whereas Bacillus, Salinibacillus , and Marinobacter are abundant in sand microcosm. Our results suggest that the bioaugmentation strategy would be more successful if the diluting agent does not contain a complex microbial community.

  12. QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES. Project Summary

    EPA Science Inventory

    It is generally agreed that both quality assurance (QA) and quality control (QC) are essential to the proper installation and eventual performance of environmentally safe and secure waste containment systems. Even further, there are both manufacturing and construction aspects to...

  13. Characterisation of debris from laser and mechanical cutting of bone.

    PubMed

    Rachmanis, Nikolaos; McGuinness, Garrett B; McGeough, Joseph A

    2014-07-01

    Laser cutting of bones has been proposed as a technology in orthopaedic surgery. In this short study, the laser-bone interaction was examined using a pulsed erbium-doped yttrium aluminium garnet laser and compared to a conventional cutting technique. Microscopic analysis revealed the nature of waste debris and showed higher proportions of finer particles for conventional sagittal sawing compared to laser cutting. © IMechE 2014.

  14. Carcass and cut yields of broiler chickens fed diet containing purslane meal rich in omega-3 fats

    NASA Astrophysics Data System (ADS)

    Kartikasari, LR; Hertanto, B. S.; Nuhriawangsa, A. MP

    2018-01-01

    The aim of the research was to investigate the effect of diets containing Portulaca oleraceae (purslane) as a source of omega-3 fats on carcass and cut yields of broiler chickens. One-day old unsexed Lohmann broiler chickens (n = 180) were used and randomly allocated into 30 pens (each pen contained 6 birds). The pens were randomly assigned to five experimental diets with 6 replicates (36 birds per treatment). The diets were formulated by supplementing a basal diet with purslane meal at a level of 0, 1.5, 3.0, 4.5 and 6.0%. For a period of 42 days, water and diets were provided ad libitum. Feed intake and body weight gain were collected weekly to determine feed conversion ratio. The collected data were analysed using analysis of variance. If there were significant differences between treatment means, the analysis was continued by Duncan’s New Multiple Range Test. Findings showed that diets enriched with omega-3 fats, alpha-linolenic acid did not change body weight and carcass percentage of broilers. In terms of cuts yield, there was no significant different on the percentage of breast, back and wings by feeding diets supplemented with purslane meal. However, the inclusion levels of dietary purslane meal significantly affected the percentage of thighs (P<0.05) with the highest weight achieved for diets supplemented with 3% purslane meal. Drumsticks tended to increase (P = 0.056) by feeding the experimental diets. It was concluded that the inclusion level of 6% purslane meal didn’t have negative effect on carcass and cut yields of broiler chickens.

  15. NaCl responsive taste cells in the mouse fungiform taste buds.

    PubMed

    Yoshida, R; Horio, N; Murata, Y; Yasumatsu, K; Shigemura, N; Ninomiya, Y

    2009-03-17

    Previous studies have demonstrated that rodents' chorda tympani (CT) nerve fibers responding to NaCl can be classified according to their sensitivities to the epithelial sodium channel (ENaC) blocker amiloride into two groups: amiloride-sensitive (AS) and -insensitive (AI). The AS fibers were shown to respond specifically to NaCl, whereas AI fibers broadly respond to various electrolytes, including NaCl. These data suggest that salt taste transduction in taste cells may be composed of at least two different systems; AS and AI ones. To further address this issue, we investigated the responses to NaCl, KCl and HCl and the amiloride sensitivity of mouse fungiform papilla taste bud cells which are innervated by the CT nerve. Comparable with the CT data, the results indicated that 56 NaCl-responsive cells tested were classified into two groups; 25 cells ( approximately 44%) narrowly responded to NaCl and their NaCl response were inhibited by amiloride (AS cells), whereas the remaining 31 cells ( approximately 56%) responded not only to NaCl, but to KCl and/or HCl and showed no amiloride inhibition of NaCl responses (AI cells). Amiloride applied to the basolateral side of taste cells had no effect on NaCl responses in the AS and AI cells. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated that ENaC subunit mRNA was expressed in a subset of AS cells. These findings suggest that the mouse fungiform taste bud is composed of AS and AI cells that can transmit taste information differently to their corresponding types of CT fibers, and apical ENaCs may be involved in the NaCl responses of AS cells.

  16. Alcohol-free alkoxide process for containing nuclear waste

    DOEpatents

    Pope, James M.; Lahoda, Edward J.

    1984-01-01

    Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

  17. Hazards Associated with Legacy Nitrate Salt Waste Drums Managed under the Container Isolation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, David John; Clark, David Lewis

    At present, there are 29 drums of nitrate waste salts (oxidizers with potentially acidic liquid bearing RCRA characteristics D001 and D002) that are awaiting processing, specifically to eliminate these characteristics and to allow for ultimate disposition at WIPP. As a result of the Feb. 14th, 2014 drum breach at WIPP, and the subsequent identification of the breached drum as a product ofLANL TRU waste disposition on May 15th, 2014, these 29 containers were moved into the Perrnacon in Dome 231 at TA-54 Area G, as part of the New Mexico Environment Department (NMED) approved container isolation plan. The plan ismore » designed to mitigate hazards associated with the nitrate salt bearing waste stream. The purpose of this document is to articulate the hazards associated with un-remediated nitrate salts while in storage at LANL. These hazards are distinctly different from the Swheat-remediated nitrate salt bearing drums, and this document is intended to support the request to remove the un-remediated drums from management under the container isolation plan. Plans to remediate and/or treat both of these waste types are being developed separately, and are beyond the scope of this document.« less

  18. Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement

    NASA Astrophysics Data System (ADS)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Sumandi, Khairul Azwa Syafiq Mohd; Mazenan, Puteri Natasya

    2017-10-01

    Many construction and development activities today consume large amounts of concrete. The amount of construction waste is also increasing because of the demolition process. Much of this waste can be recycled to produce new products and increase the sustainability of construction projects. As recyclable construction wastes, concrete and ceramic can replace the natural aggregate in concrete because of their hard and strong physical properties. This research used 25%, 35%, and 45% recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate in producing concrete. Several tests, such as concrete cube compression and splitting tensile tests, were also performed to determine and compare the mechanical properties of the recycled concrete with those of the normal concrete that contains 100% natural aggregate. The concrete containing 35% RCA and 35% ceramic waste showed the best properties compared with the normal concrete.

  19. Application of EIS and SECM Studies for Investigation of Anticorrosion Properties of Epoxy Coatings Containing Zinc Oxide Nanoparticles on Mild Steel in 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Raj, X. Joseph

    2017-07-01

    The effect of corrosion protection performance of epoxy coatings containing ZnO nanoparticle on mild steel in 3.5% NaCl solution was analyzed using scanning electrochemical microscopy and electrochemical impedance spectroscopy (EIS). Line profile and topographic image analysis were measured by applying -0.70 and +0.60 V as the tip potential for the cathodic and anodic reactions, respectively. The tip current at -0.70 V for the epoxy-coated sample with ZnO nanoparticles decreased rapidly, which is due to cathodic reduction in dissolved oxygen. The EIS measurements were taken in 3.5% NaCl after wet and dry cyclic corrosion test. The increase in the film resistance ( R f) and charge transfer resistance ( R ct) values was confirmed by the addition of ZnO nanoparticles in the epoxy coating. SEM/EDX analysis showed that complex oxide layer of zinc was enriched in corrosion products at a scratched area of the coated steel after corrosion testing. FIB-TEM analysis confirmed the presence of the nanoscale complex oxide layer of Zn in the rust of the steel that had a beneficial effect on the corrosion resistance of coated steel by forming protective corrosion products in the wet/dry cyclic test.

  20. 4. View, fuel waste tanks and containment basin in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View, fuel waste tanks and containment basin in foreground with Systems Integration Laboratory (T-28) uphill in background, looking southeast. At the extreme right is the Long-Term Oxidizer Silo (T-28B) and the Oxidizer Conditioning Structure (T-28D). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  1. Containing Hair During Cutting In Zero Gravity

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1992-01-01

    Proposed device collects loose hair during barbering and shaving in zero gravity to prevent hair clippings from contaminating cabin of spacecraft. Folds for storage, opens into clear, bubblelike plastic dome surrounding user's head, tray fits around user's throat, and fanlike ring surrounds back of neck. Device fits snugly but comfortably around neck, preventing hair from escaping to outside. Flow of air into hose connected to suction pump removes hair from bubble as cut. Filter at end of hose collects hair.

  2. Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine.

    PubMed

    Liu, Jinyong; Choe, Jong Kwon; Sasnow, Zachary; Werth, Charles J; Strathmann, Timothy J

    2013-01-01

    Concentrated sodium chloride (NaCl) brines are often used to regenerate ion-exchange (IX) resins applied to treat drinking water sources contaminated with perchlorate (ClO(4)(-)), generating large volumes of contaminated waste brine. Chemical and biological processes for ClO(4)(-) reduction are often inhibited severely by high salt levels, making it difficult to recycle waste brines. Recent work demonstrated that novel rhenium-palladium bimetallic catalysts on activated carbon support (Re-Pd/C) can efficiently reduce ClO(4)(-) to chloride (Cl(-)) under acidic conditions, and here the applicability of the process for treating waste IX brines was examined. Experiments conducted in synthetic NaCl-only brine (6-12 wt%) showed higher Re-Pd/C catalyst activity than in comparable freshwater solutions, but the rate constant for ClO(4)(-) reduction measured in a real IX waste brine was found to be 65 times lower than in the synthetic NaCl brine. Through a series of experiments, co-contamination of the IX waste brine by excess NO(3)(-) (which the catalyst reduces principally to NH(4)(+)) was found to be the primary cause for deactivation of the Re-Pd/C catalyst, most likely by altering the immobilized Re component. Pre-treatment of NO(3)(-) using a different bimetallic catalyst (In-Pd/Al(2)O(3)) improved selectivity for N(2) over NH(4)(+) and enabled facile ClO(4)(-) reduction by the Re-Pd/C catalyst. Thus, sequential catalytic treatment may be a promising strategy for enabling reuse of waste IX brine containing NO(3)(-) and ClO(4)(-). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts*

    PubMed Central

    Guo, Rong-fang; Yuan, Gao-feng; Wang, Qiao-mei

    2013-01-01

    To understand the regulation mechanism of NaCl on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCl were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCl. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCl at relatively low concentrations (20, 40, and 60 mmol/L). NaCl treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCl treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCl could be desirable for human nutrition. PMID:23365011

  4. Part 1: Participatory Ergonomics Approach to Waste Container Handling Utilizing a Multidisciplinary Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalk, D.M.; Tittiranonda, P.; Burastero, S.

    2000-02-07

    This multidisciplinary team approach to waste container handling, developed within the Grassroots Ergonomics process, presents participatory ergonomic interpretations of quantitative and qualitative aspects of this process resulting in a peer developed training. The lower back, shoulders, and wrists were identified as frequently injured areas, so these working postures were a primary focus for the creation of the workers' training. Handling procedures were analyzed by the team to identify common cycles involving one 5 gallon (60 pounds), two 5 gallons (60 and 54 pounds), 30 gallon (216 pounds), and 55 gallon (482 pounds) containers: lowering from transporting to/from transport vehicles, loading/unloadingmore » on transport vehicles, and loading onto pallet. Eleven experienced waste container handlers participated in this field analysis. Ergonomic exposure assessment tools measuring these field activities included posture analysis, posture targeting, Lumbar Motion Monitor{trademark} (LMM), and surface electromyography (sEMG) for the erector spinae, infraspinatus, and upper trapezius muscles. Posture analysis indicates that waste container handlers maintained non-neutral lower back postures (flexion, lateral bending, and rotation) for a mean of 51.7% of the time across all activities. The right wrist was in non-neutral postures (radial, ulnar, extension, and flexion) a mean of 30.5% of the time and the left wrist 31.4%. Non-neutral shoulder postures (elevation) were the least common, occurring 17.6% and 14.0% of the time in the right and left shoulders respectively. For training applications, each cycle had its own synchronized posture analysis and posture target diagram. Visual interpretations relating to the peak force modifications of the posture target diagrams proved to be invaluable for the workers' understanding of LMM and sEMG results (refer to Part II). Results were reviewed by the team's field technicians and their interpretations were developed into

  5. Superconductivity could occur Na-supersaturated NaCl

    NASA Astrophysics Data System (ADS)

    Hanaki, Koji

    1997-04-01

    A flow-into electron and a flow-out hole mean flow-into of two unit electric c harges. Even if an exciton consisting of an electron and a hole is a neutral q uasi-particle, overlapping of excitons, namely, the bose condensation changes into a superconductor where half the electric current is due to holes moving t oward the reverse direction. The Meisner effect of the bose condensation comes from the precession of the each exciton under the magnetic field^1. Moreo ver, the present mechanism is supported with that superconducting material alw ays has two kinds of carriers. The superconductivity of NaCl comes from the ab ove-mentioned theory. Free stable holes at first and then electrons are produc ed in NaCl when considerable number of Cl^- lattice vacancies are brought in NaCl mainly because some electrons in the Cl-3p filled band fall into the v acancies. The coexistence of two kinds of stable carriers does not always mean the presence of excitons like VO with electrons not paired and localized in e ach V atom though. While, the absorption spectrum of the NaCl has already conf irmed the presence of excitons; the strength of the spectrum seems to indicate the formation of the bose condensation. Thus we could expect a new supercondu ctor. 1) Hanaki B.Am.P.Soc.,40-1(1995)568

  6. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    NASA Astrophysics Data System (ADS)

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of

  7. TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES

    EPA Science Inventory

    This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. he document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic drai...

  8. TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES

    EPA Science Inventory

    This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. The document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic dr...

  9. A multiobjective modeling approach to locate multi-compartment containers for urban-sorted waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tralhao, Lino, E-mail: lmlrt@inescc.p; Coutinho-Rodrigues, Joao, E-mail: coutinho@dec.uc.p; Alcada-Almeida, Luis, E-mail: alcada@inescc.p

    2010-12-15

    The location of multi-compartment sorted waste containers for recycling purposes in cities is an important problem in the context of urban waste management. The costs associated with those facilities and the impacts placed on populations are important concerns. This paper introduces a mixed-integer, multiobjective programming approach to identify the locations and capacities of such facilities. The approach incorporates an optimization model in a Geographical Information System (GIS)-based interactive decision support system that includes four objectives. The first objective minimizes the total investment cost; the second one minimizes the average distance from dwellings to the respective multi-compartment container; the last twomore » objectives address the 'pull' and 'push' characteristics of the decision problem, one by minimizing the number of individuals too close to any container, and the other by minimizing the number of dwellings too far from the respective multi-compartment container. The model determines the number of facilities to be opened, the respective container capacities, their locations, their respective shares of the total waste of each type to be collected, and the dwellings assigned to each facility. The approach proposed was tested with a case study for the historical center of Coimbra city, Portugal, where a large urban renovation project, addressing about 800 buildings, is being undertaken. This paper demonstrates that the models and techniques incorporated in the interactive decision support system (IDSS) can be used to assist a decision maker (DM) in analyzing this complex problem in a realistically sized urban application. Ten solutions consisting of different combinations of underground containers for the disposal of four types of sorted waste in 12 candidate sites, were generated. These solutions and tradeoffs among the objectives are presented to the DM via tables, graphs, color-coded maps and other graphics. The DM can then use this

  10. Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution

    PubMed Central

    Zhou, Aifen; Baidoo, Edward; He, Zhili; Mukhopadhyay, Aindrila; Baumohl, Jason K; Benke, Peter; Joachimiak, Marcin P; Xie, Ming; Song, Rong; Arkin, Adam P; Hazen, Terry C; Keasling, Jay D; Wall, Judy D; Stahl, David A; Zhou, Jizhong

    2013-01-01

    Desulfovibrio vulgaris Hildenborough strains with significantly increased tolerance to NaCl were obtained via experimental evolution. A NaCl-evolved strain, ES9-11, isolated from a population cultured for 1200 generations in medium amended with 100 mM NaCl, showed better tolerance to NaCl than a control strain, EC3-10, cultured for 1200 generations in parallel but without NaCl amendment in medium. To understand the NaCl adaptation mechanism in ES9-11, we analyzed the transcriptional, metabolite and phospholipid fatty acid (PLFA) profiles of strain ES9-11 with 0, 100- or 250 mM-added NaCl in medium compared with the ancestral strain and EC3-10 as controls. In all the culture conditions, increased expressions of genes involved in amino-acid synthesis and transport, energy production, cation efflux and decreased expression of flagellar assembly genes were detected in ES9-11. Consistently, increased abundances of organic solutes and decreased cell motility were observed in ES9-11. Glutamate appears to be the most important osmoprotectant in D. vulgaris under NaCl stress, whereas, other organic solutes such as glutamine, glycine and glycine betaine might contribute to NaCl tolerance under low NaCl concentration only. Unsaturation indices of PLFA significantly increased in ES9-11. Branched unsaturated PLFAs i17:1 ω9c, a17:1 ω9c and branched saturated i15:0 might have important roles in maintaining proper membrane fluidity under NaCl stress. Taken together, these data suggest that the accumulation of osmolytes, increased membrane fluidity, decreased cell motility and possibly an increased exclusion of Na+ contribute to increased NaCl tolerance in NaCl-evolved D. vulgaris. PMID:23575373

  11. Volume reduction of hot cell plastic wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, F W; Henscheid, J P; Lewis, L C

    1989-09-19

    The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.

  12. Leaching and geochemical behavior of fired bricks containing coal wastes.

    PubMed

    Taha, Yassine; Benzaazoua, Mostafa; Edahbi, Mohamed; Mansori, Mohammed; Hakkou, Rachid

    2018-03-01

    High amounts of mine wastes are continuously produced by the mining industry all over the world. Recycling possibility of some wastes in fired brick making has been investigated and showed promising results. However, little attention is given to the leaching behavior of mine wastes based fired bricks. The objective of this paper is to evaluate the geochemical behavior of fired bricks containing different types of coal wastes. The leachates were analyzed for their concentration of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn and sulfates using different leaching tests; namely Tank Leaching tests (NEN 7375), Toxicity Characteristic Leaching Procedure (TCLP) and pH dependence test (EPA, 1313). The results showed that the release of constituents of potential interest was highly reduced after thermal treatment and were immobilized within the glassy matrix of the fired bricks. Moreover, it was also highlighted that the final pH of all fired samples changed and stabilized around 8-8.5 when the initial pH of leaching solution was in the range 2.5-11.5. The release of heavy metals and metalloids (As) tended to decrease with the increase of pH from acidic to alkaline solutions while Mo displayed a different trend. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Magnesite Solubility at 800 ºC, 10 kbar, in H2O-CO2± NaCl solutions: implications for carbon transport in the mantle

    NASA Astrophysics Data System (ADS)

    Fineman, D.; Manning, C. E.

    2017-12-01

    Magnesite (MgCO3) is an important carbon reservoir in the upper mantle. It can be a product of interaction with mantle fluids, but its solubility has not been determined at high P and T. We measured magnesite solubility at 800 ºC, 10 kbar, in H2O-CO2± NaCl solutions. The NaCl mole fraction (XNaCl) ranged from 0 to 0.4. XCO2 = 0.05 was fixed by addition of hydrous oxalic acid and low fH2 generated by hematite or Mn oxide sealed in inner Pt capsules, added along with a crimped Pt capsule containing pure natural magnesite crystals to a larger Pt capsule containing H2O-CO2± NaCl fluid. Solubility was determined after quenching by the weight loss of the capsule containing magnesite. Magnesite solubility in pure water is 0.02 molal, nearly the same as calcite, 0.025 molal. Solubility rises to 0.37 molal with addition of NaCl to XNaCl =0.3. This value is 1/3 that of calcite at the same XNaCl. Graphite precipitated in experiments at XNaCl > 0.3 and resulted in inconsistent solubility measurements. There are two probable causes: (1) reduction of H2O activity and increase in CO2 activity via NaCl addition, or (2) exhaustion of the fO2 buffer. The experiments demonstrate that transport of Mg+2 and carbonate are substantially increased by saline solutions in the mantle.

  14. EVALUATION USING AN ORGANOPHILIC CLAY TO CHEMICALLY STABILIZE WASTE CONTAINING ORGANIC COMPOUNDS

    EPA Science Inventory

    A modified clay (organophilic) was utilized to evaluate the potential for chemically stabilizing a waste containing organic compounds. hemical bonding between the binder and the contaminants was indicated. eachate testing also indicated strong binding. Copy available at NTIS as ...

  15. Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

    PubMed Central

    Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of γ-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration. PMID:26761294

  16. Risks to farm animals from pathogens in composted catering waste containing meat.

    PubMed

    Gale, P

    2004-07-17

    Uncooked meat may contain animal pathogens, including bovine spongiform encephalopathy, foot-and-mouth disease virus, African swine fever virus and classical swine fever virus, and to prevent outbreaks of these diseases in farm animals, the disposal of meat from catering waste is controlled under the Animal By-Products Regulations. This paper estimates the risks to farm animals of grazing land on to which compost, produced by the composting of catering waste containing meat, has been applied. The factors controlling the level of risk are the separation of the meat at source, the efficiency of the composting process, and the decay and dilution of the pathogens in soil. The net pathogen destruction by the composting process is determined largely by the degree of bypass, and to accommodate the possibility of large joints or even whole carcases being discarded uncooked to catering waste, a time/temperature condition of 60 degrees C for two days is recommended. Where data are lacking, worst-case assumptions have been applied. According to the model, classical swine fever virus constitutes the highest risk, but the assessment shows that a two-barrier composting approach, together with a two-month grazing ban, reduces the risk to one infection in pigs every 190 years in England and Wales. This work defined the operational conditions for the composting of catering waste as set out in the Animal By-Products Regulations 2003 (SI 1482).

  17. Production of volatiles in fresh-cut apple: effect of applying alginate coatings containing linoleic acid or isoleucine.

    PubMed

    Maya-Meraz, Irma O; Espino-Díaz, Miguel; Molina-Corral, Francisco J; González-Aguilar, Gustavo A; Jacobo-Cuellar, Juan L; Sepulveda, David R; Olivas, Guadalupe I

    2014-11-01

    One of the main quality parameters in apples is aroma, its main precursors are fatty acids (FA) and amino acids (AA). In this study, alginate edible coatings were used as carriers of linoleic acid or isoleucine to serve as precursors for the production of aroma in cut apples. Apple wedges were immersed in a CaCl2 solution and coated with one of the following formulations: alginate solution (Alg-Ca), Alg-Ca-low-level linoleic acid (0.61 g/Lt), (LFA), Alg-Ca-high-level linoleic acid (2.44 g/L; HFA), Alg-Ca-low-level isoleucine (0.61 g/L; LAA), and Alg-Ca-high-level isoleucine (2.44 g/L; HAA). Apple wedges were stored at 3 °C and 85% relative humidity for 21 d and key volatiles were studied during storage. Addition of precursors, mainly isoleucine, showed to increase the production of some key volatiles on coated fresh-cut apples during storage. The concentration of 2-methyl-1-butanol was 4 times higher from day 12 to day 21 in HAA, while 2-methyl butyl acetate increased from day 12 to day 21 in HAA. After 21 d, HAA-apples presented a 40-fold value of 2-methyl-butyl acetate, compared to Alg-Ca cut apples. Values of hexanal increased during cut apple storage when the coating carried linoleic acid, mainly on HFA, from 3 to 12 d. The ability of apples to metabolize AA and FA depends on the concentration of precursors, but also depends on key enzymes, previous apple storage, among others. Further studies should be done to better clarify the behavior of fresh-cut apples as living tissue to metabolize precursors contained in edible coatings for the production of volatiles. © 2014 Institute of Food Technologists®

  18. Sodium relations in desert plants: 8. Differential effects of NaCl and Na/sub 2/SO/sub 4/ on growth and composition of Atriplex hymenelytra (desert holly)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufi, S.M.; Wallace, A.

    1982-07-01

    Maximum growth over a period of 3 months of Atriplex hymenelytra (Torr.) Wats. (desert holly) in solution culture was obtained when the nutrient solution contained 5 x 10/sup -2/ N NaCl. Sodium concentratons in leaves at maximum yield was 7.88% and that of Cl was also 7.88%. In the presence of 10/sup -2/ N Na/sub 2/SO/sub 4/, there was much less growth than with 10/sup -2/ N NaCl. The highest NaCl level depressed levels of K, Ca, and Mg in leaves, stems, and roots. The highest NaCl level also decreased levels of micronutrients in many of the plants.

  19. Magnetic iron oxides in the cementation technology of the boron-containing radioactive waste

    NASA Astrophysics Data System (ADS)

    Fedotov, M. A.; Gorbunova, O. A.; Fedorova, O. V.; Folmanis, G. E.; Kovalenko, L. V.

    2015-04-01

    Two ways of synthesis of non-detachable dispersed particles of magnetic materials useful for the boron-containing waste cementation process regulation were developed. Powder XRD showed that the method of carbothermic recovery of nanoscale iron hydroxide allows obtaining a mixture of iron oxides with content of the magnetic phase up to 70%. Method of low-temperature hydrogen reduction of the raw materials allows obtaining various compositions of a-iron and iron oxides with the possibility to change the size of the final particles in a wide range. The possibility of using composites of magnetic iron oxides and metal oxide compositions instead of ferromagnetic rods with VEP of boron-containing liquid radioactive waste in the fluidized field was studied. It was shown that the use of fine and nano particles of the iron oxides in the pre-treatment of the boron-containing LRW increases the strength of the final compounds and accelerates the cement setting compounds from 13 to 5-9 days.

  20. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOEpatents

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  1. A novel technique for finding gas bubbles in the nuclear waste containers using Muon Scattering Tomography

    NASA Astrophysics Data System (ADS)

    Dobrowolska, M.; Velthuis, J.; Frazão, L.; Kikoła, D.

    2018-05-01

    Nuclear waste is deposited for many years in the concrete or bitumen-filled containers. With time hydrogen gas is produced, which can accumulate in bubbles. These pockets of gas may result in bitumen overflowing out of the waste containers and could result in spread of radioactivity. Muon Scattering Tomography is a non-invasive scanning method developed to examine the unknown content of nuclear waste drums. Here we present a method which allows us to successfully detect bubbles larger than 2 litres and determine their size with a relative uncertainty resolution of 1.55 ± 0.77%. Furthermore, the method allows to make a distinction between a conglomeration of bubbles and a few smaller gas volumes in different locations.

  2. Sawtooth forces in cutting tropical hardwoods native to South America

    Treesearch

    S. P. Loehnertz; I. V. Cooz

    As a result of design, operation, and maintenance, sawblades used in tropical sawmills can cause many problems. Improvements in these areas are needed to reduce the waste associated with sawing of tropical species that are regarded as difficult to cut. In this study, cutting experiments that simulated bandsawing of tropical hardwoods showed the effect of chip...

  3. How to Cut Publications Costs.

    ERIC Educational Resources Information Center

    Carter, Virginia L., Ed.; Alberger, Patricia A., Ed.

    This handbook on how to cut costs in college publications contains the following articles: "Stretching Your Publications Dollar: The Basics," by Kelvin J. Arden and William J. Whalen; "How to Print Cheaper," by M. Frederic Volkmann; "How Your Colleagues Cut Costs," by Robert S. Topor; "Printing Specifications: Writing Them Right," by M. Frederic…

  4. Classification and management of asbestos-containing waste: European legislation and the Italian experience.

    PubMed

    Paglietti, Federica; Malinconico, Sergio; della Staffa, Beatrice Conestabile; Bellagamba, Sergio; De Simone, Paolo

    2016-04-01

    Production of a new classification of Asbestos Containing Products (ACPs), materials (ACM) and Asbestos Containing Waste (ACW), in addition to a correct identification of landfills where ACW should be disposed of in Europe. Analysis of the European and Italian legislation, study of waste classification and management in the main European countries, data analysis of mapping of Italian landfills and quantification of ACW disposed there. Classification according to unique criteria (physical state, substances with which asbestos minerals have been blended, function of the asbestos, etc.). Highlights of cases of incorrect management of ACW in Europe, specifying the Italian ones. Considering the significant inconsistencies between the European and national regulations and the actual implementation of those regulations, this paper provide some precise indications for the proper assignment to ACW of the European Waste Catalogue (EWC) codes. Lastly, suitable types of landfills at which ACW should be disposed of have been identified, in order to assisting the persons involved in ACW management to avoid undue exposition and their improper disposal. This study reports a useful manual for classifying worldwide ACPs based on their physical state and considering the substances with which the asbestos minerals have been blended. Moreover several clear tables allow the asbestos remediation and waste management operators to suitably classify and dispose of ACW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paff, S. W; Doody, S.

    2003-02-25

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, themore » goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and

  6. Proteome Analyses of Staphylococcus aureus Biofilm at Elevated Levels of NaCl

    PubMed Central

    Islam, Nazrul; Ross, Julia M; Marten, Mark R

    2016-01-01

    Our studies demonstrate that sodium chloride (NaCl) induces changes in biofilm, mediated by increased production of polysaccharides intercellular adhesion (PIA). We identified 12 proteins that showed higher abundance in increased level of NaCl. This includes one important protein (IsaA) known to be associated with biofilm stability. In addition, we also found higher abundance of a cold shock protein, CspA, at higher NaCl. We have also identified several other proteins that are differentially expressed to the elevated levels of NaCl and mapped them in the regulatory pathways of PIA. The majority of proteins are involved with various aspects bacterial metabolic function. Our results demonstrated that NaCl influences gene regulatory networks controlling exopolysaccharide expression. PMID:26973848

  7. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    DOEpatents

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  8. Composition, Production Rate and Management of Dental Solid Waste in 2017 in Birjand, Iran.

    PubMed

    Momeni, Habibe; Tabatabaei Fard, Seyyedeh Fatemeh; Arefinejad, Aliye; Afzali, Afsane; Talebi, Farkhonde; Rahmanpour Salmani, Elham

    2018-01-01

    The presence of toxic and pathogenic agents in the dental waste products has made it to be classified as "hazardous waste." To assess dental waste production rate and composition and approaches used to manage these waste products in 2017 in Birjand, Iran. 48 dental clinics were evaluated in two months of 2017. Sampling was performed from each clinic 3 times a week. Samples were manually divided into 5 categories of chemical-pharmaceutical, infectious, semi-household, sharp and cutting materials, and toxic waste products, and weighed. A checklist containing 25 questions was used to evaluate the aspects of waste management in dental clinics. The total amount of waste products generated in dental clinics was 7848.02 kg/ year in which semi-household waste had the highest quantity (4263.411 kg/year) and toxic waste had the lowest quantity (9.275 kg/year). Components with the highest amounts in dentistry waste products were nylon gloves (16.7%), paper and cardboard (13.4%), latex gloves (10.8%), and pharmaceuticals (10.2%). Waste separation was restricted to sharp and cutting waste. More than half (57%) of dental units were equipped with amalgam filter. Fixing solutions were directly discharged to sewage in 48.6% of clinics. There was no program to reduce waste generation in 54% of the clinics. Autoclave was the main tool for sterilizing dental instruments. This study showed a remarkable share of recyclable materials in the composition of dental waste and lack of special approach to manage waste in dental clinics. It is necessary to plan for minimizing generation of, separating, and recycling waste at source.

  9. Solid waste containing persistent organic pollutants in Serbia: From precautionary measures to the final treatment (case study).

    PubMed

    Stevanovic-Carapina, Hristina; Milic, Jelena; Curcic, Marijana; Randjelovic, Jasminka; Krinulovic, Katarina; Jovovic, Aleksandar; Brnjas, Zvonko

    2016-07-01

    Sustainable solid waste management needs more dedicated attention in respect of environmental and human health protection. Solid waste containing persistent organic pollutants is of special concern, since persistent organic pollutants are persistent, toxic and of high risk to human health and the environment. The objective of this investigation was to identify critical points in the Serbian system of solid waste and persistent organic pollutants management, to assure the life cycle management of persistent organic pollutants and products containing these chemicals, including prevention and final destruction. Data were collected from the Serbian competent authorities, and led us to identify preventive actions for solid waste management that should reduce or minimise release of persistent organic pollutants into the environment, and to propose actions necessary for persistent organic pollutants solid waste. The adverse impact of persistent organic pollutants is multidimensional. Owing to the lack of treatment or disposal plants for hazardous waste in Serbia, the only option at the moment to manage persistent organic pollutants waste is to keep it in temporary storage and when conditions are created (primarily financial), such waste should be exported for destruction in hazardous waste incinerators. Meanwhile, it needs to be assured that any persistent organic pollutants management activity does not negatively impact recycling flows or disturb progress towards a more circular economy in Serbia. © The Author(s) 2016.

  10. Water-Soluble Epitaxial NaCl Thin Film for Fabrication of Flexible Devices.

    PubMed

    Lee, Dong Kyu; Kim, Sungjoo; Oh, Sein; Choi, Jae-Young; Lee, Jong-Lam; Yu, Hak Ki

    2017-08-18

    We studied growth mechanisms of water-soluble NaCl thin films on single crystal substrates. Epitaxial growth of NaCl(100) on Si(100) and domain-matched growth of NaCl(111) on c-sapphire were obtained at thicknesses below 100 nm even at room temperature from low lattice mismatches in both cases. NaCl thin film, which demonstrates high solubility selectivity for water, was successfully applied as a water-soluble sacrificial layer for fabrication of several functional materials, such as WO 3 nano-helix and Sn doped In 2 O 3 nano-branches.

  11. High NaCl- and urea-induced posttranslational modifications that increase glycerophosphocholine by inhibiting GDPD5 phosphodiesterase.

    PubMed

    Topanurak, Supachai; Ferraris, Joan D; Li, Jinxi; Izumi, Yuichiro; Williams, Chester K; Gucek, Marjan; Wang, Guanghui; Zhou, Xiaoming; Burg, Maurice B

    2013-04-30

    Glycerophosphocholine (GPC) is high in cells of the renal inner medulla where high interstitial NaCl and urea power concentration of the urine. GPC protects inner medullary cells against the perturbing effects of high NaCl and urea by stabilizing intracellular macromolecules. Degradation of GPC is catalyzed by the glycerophosphocholine phosphodiesterase activity of glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5). We previously found that inhibitory posttranslational modification (PTM) of GDPD5 contributes to high NaCl- and urea-induced increase of GPC. The purpose of the present studies was to identify the PTM(s). We find at least three such PTMs in HEK293 cells: (i) Formation of a disulfide bond between C25 and C571. High NaCl and high urea increase reactive oxygen species (ROS). The ROS increase disulfide bonding between GDPD5-C25 and -C571, which inhibits GDPD5 activity, as supported by the findings that the antioxidant N-acetylcysteine prevents high NaCl- and urea-induced inhibition of GDPD5; GDPD5-C25S/C571S mutation or over expression of peroxiredoxin increases GDPD5 activity; H2O2 inhibits activity of wild type GDPD5, but not of GDPD5-C25S/C571S; and peroxiredoxin is relatively low in the renal inner medulla where GPC is high. (ii) Dephosphorylation of GDPD5-T587. GDPD5 threonine 587 is constitutively phosphorylated. High NaCl and high urea dephosphorylate GDPD5-T587. Mutation of GDPD5-T587 to alanine, which cannot be phosphorylated, decreases GPC-PDE activity of GDPD5. (iii) Alteration at an unknown site mediated by CDK1. Inhibition of CDK1 protein kinase reduces GDE-PDE activity of GDPD5 without altering phosphorylation at T587, and CDK1/5 inhibitor reduces activity of GDPD5- C25S/C571S-T587A.

  12. High NaCl- and urea-induced posttranslational modifications that increase glycerophosphocholine by inhibiting GDPD5 phosphodiesterase

    PubMed Central

    Topanurak, Supachai; Ferraris, Joan D.; Li, Jinxi; Izumi, Yuichiro; Williams, Chester K.; Gucek, Marjan; Wang, Guanghui; Zhou, Xiaoming; Burg, Maurice B.

    2013-01-01

    Glycerophosphocholine (GPC) is high in cells of the renal inner medulla where high interstitial NaCl and urea power concentration of the urine. GPC protects inner medullary cells against the perturbing effects of high NaCl and urea by stabilizing intracellular macromolecules. Degradation of GPC is catalyzed by the glycerophosphocholine phosphodiesterase activity of glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5). We previously found that inhibitory posttranslational modification (PTM) of GDPD5 contributes to high NaCl- and urea-induced increase of GPC. The purpose of the present studies was to identify the PTM(s). We find at least three such PTMs in HEK293 cells: (i) Formation of a disulfide bond between C25 and C571. High NaCl and high urea increase reactive oxygen species (ROS). The ROS increase disulfide bonding between GDPD5-C25 and -C571, which inhibits GDPD5 activity, as supported by the findings that the antioxidant N-acetylcysteine prevents high NaCl- and urea-induced inhibition of GDPD5; GDPD5-C25S/C571S mutation or over expression of peroxiredoxin increases GDPD5 activity; H2O2 inhibits activity of wild type GDPD5, but not of GDPD5-C25S/C571S; and peroxiredoxin is relatively low in the renal inner medulla where GPC is high. (ii) Dephosphorylation of GDPD5-T587. GDPD5 threonine 587 is constitutively phosphorylated. High NaCl and high urea dephosphorylate GDPD5-T587. Mutation of GDPD5-T587 to alanine, which cannot be phosphorylated, decreases GPC-PDE activity of GDPD5. (iii) Alteration at an unknown site mediated by CDK1. Inhibition of CDK1 protein kinase reduces GDE-PDE activity of GDPD5 without altering phosphorylation at T587, and CDK1/5 inhibitor reduces activity of GDPD5- C25S/C571S-T587A. PMID:23589856

  13. Container Approval for the Disposal of Radioactive Waste with Negligible Heat Generation in the German Konrad Repository - 12148

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voelzke, Holger; Nieslony, Gregor; Ellouz, Manel

    Since the license for the Konrad repository was finally confirmed by legal decision in 2007, the Federal Institute for Radiation Protection (BfS) has been performing further planning and preparation work to prepare the repository for operation. Waste conditioning and packaging has been continued by different waste producers as the nuclear industry and federal research institutes on the basis of the official disposal requirements. The necessary prerequisites for this are approved containers as well as certified waste conditioning and packaging procedures. The Federal Institute for Materials Research and Testing (BAM) is responsible for container design testing and evaluation of quality assurancemore » measures on behalf of BfS under consideration of the Konrad disposal requirements. Besides assessing the container handling stability (stacking tests, handling loads), design testing procedures are performed that include fire tests (800 deg. C, 1 hour) and drop tests from different heights and drop orientations. This paper presents the current state of BAM design testing experiences about relevant container types (box shaped, cylindrical) made of steel sheets, ductile cast iron or concrete. It explains usual testing and evaluation methods which range from experimental testing to analytical and numerical calculations. Another focus has been laid on already existing containers and packages. The question arises as to how they can be evaluated properly especially with respect to lack of completeness of safety assessment and fabrication documentation. At present BAM works on numerous applications for container design testing for the Konrad repository. Some licensing procedures were successfully finished in the past and BfS certified several container types like steel sheet, concrete until cast iron containers which are now available for waste packaging for final disposal. However, large quantities of radioactive wastes had been placed into interim storage using containers

  14. Cut Costs! Not Corners! The Helping Hand Series.

    ERIC Educational Resources Information Center

    Nash, Claire

    This guide is intended to help employees in the hotel and catering industry to cut costs without cutting corners by showing more concern to cost containment measures and increasing personal productivity. The first three sections discuss the importance of the individual employee's behavior to overall cost containment in the workplace, and different…

  15. Tolerability and effects on quality of life of liposomal nasal spray treatment compared to nasal ointment containing dexpanthenol or isotonic NaCl spray in patients with rhinitis sicca.

    PubMed

    Hahn, C; Böhm, M; Allekotte, S; Mösges, R

    2013-09-01

    This study aimed to investigate symptom reduction via the liposomal nasal spray LipoNasal (LN) in patients with rhinitis sicca. Tolerability and the impact on quality of life were also examined. The same parameters were established in parallel for treatment approaches with Bepanthen (BP) nasal ointment containing dexpanthenol and the Rhinomer (RH) nasal spray containing NaCl. This prospective, controlled, open-label observation study was a multicenter trial. 92 patients with rhinitis sicca were allocated to three arms according to their symptoms: LN: n = 33; BP: n = 32 and RH: n = 27. The study comprised three visits at an interval of 14 days. Efficacy was examined by the Rhinitis Sicca Symptom Score (RSSS) documented daily and at the visits based on an endoscopic evaluation. The nasal spray sensory scale was used to investigate the tolerability. Quality of life (QoL) was measured by means of the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) and the "Short Form 12" of the "Impact on Health-Related Quality of Life (HRQL)" questionnaire on general quality of life. Nasal symptoms improved significantly (p = 0.001) under all three treatment approaches, reflected by the reduction in the RSSS and the Endoscopy Sum Score. A comparison of the three groups showed that no therapy was significantly superior to any of the others (p = 0.410). The tolerability of all treatments was good. Concerning the nasal moisturization, LipoNasal was evaluated better than Bepanthen and Rhinomer. Quality of life improved in all groups, but not significantly. The results show good efficacy and tolerability of the liposomal nasal spray compared to generally recognized treatments of rhinitis sicca with dexpanthenol nasal ointment and NaCl nasal spray. LipoNasal therefore constitutes a good treatment for patients suffering from dry nose.

  16. NaCl and water responses across the frog tongue epithelium in vitro.

    PubMed

    Soeda, H; Sakudo, F

    1990-01-01

    Isolated dorsal epithelium of the frog tongue elicited transepithelial NaCl and water responses across the tissue when NaCl was added to or removed from the adapting Ringer solution in the mucosal surface, respectively. The NaCl response which was a negative polarization in the mucosa with respect to the serosa was associated with a decrease in resistance across the tissue, whereas the water response which was a positive polarization was associated with an increase in the resistance. The decrease and increase in the tissue resistance remained unchanged by various polarizations of the transepithelial potential difference across the tissue. Characteristics of the NaCl and water responses were similar in many respects to those in the taste cells and nerves of frogs. Thus the NaCl and water responses may relate to taste reception.

  17. 9. View, oxidizer waste tanks and containment basin associated with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View, oxidizer waste tanks and containment basin associated with Components Test Laboratory (T-27) located directly uphill, looking north. Located uphill in the upper left portion of the photograph (from right to left) are the Oxidizer Conditioning Structure (T-28D), Long-Term Oxidizer Silo (T-28B), and Systems Integration Laboratory (T-28). - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  18. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1987-01-01

    At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition.« less

  19. Sorption isotherms of salted minced pork and of lean surface of dry-cured hams at the end of the resting period using KCl as substitute for NaCl.

    PubMed

    Comaposada, J; Arnau, J; Gou, P

    2007-12-01

    The effect of KCl on sorption isotherms was determined on salted minced meat (with 0%, 30% and 100% molar substitution of NaCl by KCl) at 5°C and 25°C and meat from a 3mm thick slice from the surface of dry-cured hams (with 0% and 35% molar substitution of NaCl by KCl) held at 70-75%, 75-80% and 80-85% air relative humidity during the resting period. The sorption isotherms were determined gravimetrically by exposing the meat samples to several atmospheres of known relative humidity controlled by different saturated salts according to the COST90 method. The sorption equipment consisted of a chamber containing 11 containers, covering the water activity (a(w)) range from 0.112 to 0.946 at 25°C. The hermetically closed sorption containers filled with KCl and minced meat samples were irradiated at 3kGrey (gamma irradiation (60)Co). The water content at equilibrium was higher in minced meat with NaCl than in minced meat with KCl (100% molar substitution of NaCl by KCl) at 5°C within the range of 0.4313 and 0.7565 a(w). However, when substitution was 30% in minced meat and 35% in hams the isotherms were similar to isotherm without substitution.

  20. Light Moderates the Induction of Phosphoenolpyruvate Carboxylase by NaCl and Abscisic Acid in Mesembryanthemum crystallinum 1

    PubMed Central

    McElwain, Elizabeth F.; Bohnert, Hans J.; Thomas, John C.

    1992-01-01

    In Mesembryanthemum crystallinum, phosphoenolpyruvate carboxylase is synthesized de novo in response to osmotic stress, as part of the switch from C3-photosynthesis to Crassulacean acid metabolism. To better understand the environmental signals involved in this pathway, we have investigated the effects of light on the induced expression of phosphoenolpyruvate carboxylase mRNA and protein in response to stress by 400 millimolar NaCl or 10 micromolar abscisic acid in hydroponically grown plants. When plants were grown in high-intensity fluorescent or incandescent light (850 microeinsteins per square meter per second), NaCl and abscisic acid induced approximately an eightfold accumulation of phosphoenolpyruvate carboxylase mRNA when compared to untreated controls. Levels of phosphoenolpyruvate carboxylase protein were high in these abscisic acid- and NaCl-treated plants, and detectable in the unstressed control. Growth in high-intensity incandescent (red) light resulted in approximately twofold higher levels of phosphoenolpyruvate carboxylase mRNA in the untreated plants when compared to control plants grown in high-intensity fluorescent light. In low light (300 microeinsteins per square meter per second fluorescent), only NaCl induced mRNA levels significantly above the untreated controls. Low light grown abscisic acid- and NaCl-treated plants contained a small amount of phosphoenolpyruvate carboxylase protein, whereas the (untreated) control plants did not contain detectable amounts of phosphoenolpyruvate carboxylase. Environmental stimuli, such as light and osmotic stress, exert a combined effect on gene expression in this facultative halophyte. ImagesFigure 1Figure 2 PMID:16668999

  1. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  2. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  3. The catalytic pyrolysis of food waste by microwave heating.

    PubMed

    Liu, Haili; Ma, Xiaoqian; Li, Longjun; Hu, ZhiFeng; Guo, Pingsheng; Jiang, Yuhui

    2014-08-01

    This study describes a series of experiments that tested the use of microwave pyrolysis for treating food waste. Characteristics including rise in temperature, and the three-phase products, were analyzed at different microwave power levels, after adding 5% (mass basis) metal oxides and chloride salts to the food waste. Results indicated that, the metal oxides MgO, Fe₂O₃ and MnO₂ and the chloride salts CuCl₂ and NaCl can lower the yield of bio-oil and enhance the yield of gas. Meanwhile, the metal oxides MgO and MnO₂ can also lower the low heating value (LHV) of solid residues and increase the pH values of the lower layer bio-oils. However, the chloride salts CuCl₂ and NaCl had the opposite effects. The optimal microwave power for treating food waste was 400W; among the tested catalysts, CuCl₂ was the best catalyst and had the largest energy ratio of production to consumption (ERPC), followed by MnO₂. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned,more » access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were

  5. Anaerobic digestion of municipal solid wastes containing variable proportions of waste types.

    PubMed

    Akunna, J C; Abdullahi, Y A; Stewart, N A

    2007-01-01

    In many parts of the world there are significant seasonal variations in the production of the main organic wastes, food and green wastes. These waste types display significant differences in their biodegradation rates. This study investigated the options for ensuring process stability during the start up and operation of thermophilic high-solids anaerobic digestion of feedstock composed of varying proportions of food and green wastes. The results show that high seed sludge to feedstock ratio (or low waste loading rate) is necessary for ensuring process pH stability without chemical addition. It was also found that the proportion of green wastes in the feedstock can be used to regulate process pH, particularly when operating at high waste loading rates (or low seed sludge to feedstock ratios). The need for chemical pH correction during start-up and digestion operation decreased with increase in green wastes content of the feedstock. Food wastes were found to be more readily biodegradable leading to higher solids reduction while green wastes brought about pH stability and higher digestate solid content. Combining both waste types in various proportions brought about feedstock with varying buffering capacity and digestion performance. Thus, careful selection of feedstock composition can minimise the need for chemical pH regulation as well as reducing the cost for digestate dewatering for final disposal.

  6. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOEpatents

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  7. Energetics of acclimation to NaCl by submerged, anoxic rice seedlings

    PubMed Central

    Kurniasih, Budiastuti; Greenway, Hank; Colmer, Timothy David

    2017-01-01

    Background and aims Our aim was to elucidate how plant tissues under a severe energy crisis cope with imposition of high NaCl, which greatly increases ion fluxes and hence energy demands. The energy requirements for ion regulation during combined salinity and anoxia were assessed to gain insights into ion transport processes in the anoxia-tolerant coleoptile of rice. Methods We studied the combined effects of anoxia plus 50 or 100 mm NaCl on tissue ions and growth of submerged rice (Oryza sativa) seedlings. Excised coleoptiles allowed measurements in aerated or anoxic conditions of ion net fluxes and O2 consumption or ethanol formation and by inference energy production. Key Results Over 80 h of anoxia, coleoptiles of submerged intact seedlings grew at 100 mm NaCl, but excised coleoptiles, with 50 mm exogenous glucose, survived only at 50 mm NaCl, possibly due to lower energy production with glucose than for intact coleoptiles with sucrose as substrate. Rates of net uptake of Na+ and Cl− by coleoptiles in anoxia were about half those in aerated solution. Ethanol formation in anoxia and O2 uptake in aerobic solution were each increased by 13–15 % at 50 mm NaCl, i.e. ATP formation was stimulated. For acclimation to 50 mm NaCl, the anoxic tissues used only 25 % of the energy that was expended by aerobic tissues. Following return of coleoptiles to aerated non-saline solution, rates of net K+ uptake recovered to those in continuously aerated solution, demonstrating there was little injury during anoxia with 50 mm NaCl. Conclusion Rice seedlings survive anoxia, without the coleoptile incurring significant injury, even with the additional energy demands imposed by NaCl (100 mm when intact, 50 mm when excised). Energy savings were achieved in saline anoxia by less coleoptile growth, reduced ion fluxes as compared to aerobic coleoptiles and apparent energy-economic ion transport systems. PMID:27694332

  8. Treatment and resource recovery from inorganic fluoride-containing waste produced by the pesticide industry.

    PubMed

    Li, Yang; Zhang, Hua; Zhang, Zhiqi; Shao, Liming; He, Pinjing

    2015-05-01

    The rapid development of the fluorinated pesticide industry has produced a large amount of fluorine-containing hazardous waste, especially inorganic fluoride-containing waste (IFCW). A two-step process, including extraction and recovery, was developed to recover fluorine as synthetic cryolite from IFCW produced by the pesticide industry. The optimum conditions for extraction were found to be a temperature of 75°C, an initial pH (pHi) of 12, a 4-hr incubation time and a liquid-to-solid ratio of 40mL/g; these conditions resulted in a fluorine extraction ratio of 99.0%. The effects of pH and the F/Al molar ratio on fluorine recovery and the compositional, mineralogical and morphological characteristics of the cryolite products were investigated. Field-emission scanning electron microscopy of recovered precipitates showed changes in morphology with the F/Al molar ratio. Coupling Fourier transform and infrared spectroscopy, X-ray diffraction indicated that the formation of AlF6(3-) was restricted as increasing pH. Both the amount of fluorine recovered and the quality of the cryolite were optimized at initial pH=3 and a F/Al molar ratio 5.75. This study proposed a reliable and environmentally friendly method for the treatment of fluoride-containing wastes, which could be suitable for industrial applications. Copyright © 2015. Published by Elsevier B.V.

  9. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  10. Effect of concentration of hyaluronic acid and NaCl on corrosion behavior of 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Bansod, Ankur V.; Khobragade, Nilay N.; Giradkar, Karansagar V.; Patil, Awanikumar P.

    2017-11-01

    Due to low cost and easily available material, 316L stainless steel (SS) is used for biomedical implants. The electrochemical corrosion behavior of 316L (SS) was studied as a function of the concentration of simulated biological fluid (hyaluronic acid), the influence of Cl- and the combined effect of NaCl and hyaluronic acid (HA). For the electrochemical tests, potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were undertaken. With the increase in HA concentration, corrosion rate increases. Whereas, with the addition of NaCl to HA the solution, the corrosion resistance of the sample was enhanced. Also, in pure NaCl solution, the corrosion current density (i corr) increased as compared to bare HA and HA  +  NaCl. This is due to the adhesion property of the HA on the sample surface. EIS result agrees with the findings of potentiodynamic polarization tests. X-ray photoelectron spectroscopy (XPS) was executed to analyze the passive film formed in the solution of HA and NaCl on 316L SS. XPS spectra confirms the formation of the passive film containing chromium oxide and hydroxides. Also, the formation of MoO2 helps in improving better corrosion resistance. The peak of nitrogen was observed in the sample immersed in HA solution. Scanning electron microscope (SEM) was carried out to analyze the surface morphology.

  11. Evaporation of NaCl solution from porous media with mixed wettability

    NASA Astrophysics Data System (ADS)

    Bergstad, Mina; Shokri, Nima

    2016-05-01

    Evaporation of saline water from porous media is ubiquitous in many processes including soil salinization, crop production, and CO2 sequestration in deep saline acquirer. It is controlled by the transport properties of porous media, atmospheric conditions, and properties of the evaporating saline solution. In the present study, the effects of mixed wettability conditions on the general dynamics of water evaporation from porous media saturated with NaCl solution were investigated. To do so, we conducted a comprehensive series of evaporation experiments using sand mixtures containing different fractions of hydrophobic grains saturated with NaCl solutions. Our results showed that increasing fraction of hydrophobic grains in the mixed wettability sand pack had minor impact on the evaporative mass losses due to the presence of salt whose precipitation patterns were significantly influenced by the mixed wettability condition. Through macroscale and microscale investigations, we found formation of patchy efflorescence in the case of mixed wettability sand pack as opposed to crusty efflorescence in the case of completely hydrophilic porous media. Furthermore, the presence of salty water and hydrophobic grains in the sand pack significantly influenced the general dynamics and morphology of the receding drying front. Our results extend the understanding of the saline water evaporation from porous media with direct applications to various hydrological and engineering processes.

  12. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    PubMed

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society

  13. Temperature dependence of thermal pressure for NaCl

    NASA Astrophysics Data System (ADS)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  14. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  15. Cutting process simulation of flat drill

    NASA Astrophysics Data System (ADS)

    Tamura, Shoichi; Matsumura, Takashi

    2018-05-01

    Flat drills at a point angle of 180 deg. have recently been developed for drilling of automobile parts with the inclination of the workpiece surfaces. The paper studies the cutting processes of the flat drills in the analytical simulation. A predictive force model is applied to simulation of the cutting force with the chip flow direction. The chip flow model is piled up with orthogonal cuttings in the plane containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined in the chip flow model. The typical cutting force of the flat drill is discussed with comparing to that of the standard drill. The typical differences are confirmed in the cutting force change during the tool engagement and disengagement. The cutting force, then, is simulated in drilling for an inclined workpiece with a flat drill. The horizontal components in the cutting forces are simulated with changing the inclination angle of the plate. The horizontal force component in the flat drilling is stable to be controlled in terms of the machining accuracy and the tool breakage.

  16. Method for treating waste containing stainless steel

    DOEpatents

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1999-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  17. Method for treating waste containing stainless steel

    DOEpatents

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1999-03-02

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  18. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions.

    PubMed

    Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  19. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    NASA Astrophysics Data System (ADS)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  20. Analysis of chemical weapons decontamination waste from old ton containers from Johnston Atoll using multiple analytical methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creasy, W.R.; Brickhouse, M.D.; Morrisse, K.M.

    1999-07-01

    Decontamination waste from chemical weapons (CW) agents has been stored in ton containers on Johnston Atoll since 1971. The waste was recently sampled and analyzed to determine its chemical composition in preparation for future cleanups. Due to the range of products and analytical requirements, multiple chromatographic and spectroscopic methods were necessary, including gas chromatography/mass spectrometry (GC/MS), gas chromatography/atomic emission detection (GC/AED), liquid chromatography/mass spectrometry (LC/MS), capillary electrophoresis (CE), and nuclear magnetic resonance spectroscopy (NMR). The samples were screened for residual agents. No residual sarin (GB) or VX was found to detection limits of 20 ng/mL, but 3% of the samplesmore » contained residual sulfur mustard (HD) at < 140 ng/mL. Decontamination products of agents were identified. The majority (74%) of the ton containers were documented correctly, in that the observed decontamination products were in agreement with the labeled agent type, but for a number of the containers, the contents were not in agreement with the labels. In addition, arsenic compounds that are decontamination products of the agent lewisite (L) were observed in a few ton containers, suggesting that lewisite was originally present but not documented. This study was a prototype to demonstrate the level of effort required to characterize old bulk CW-related waste.« less

  1. Iron Phosphate Glass-Containing Hanford Waste Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that ismore » high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.« less

  2. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulm, Franz-Josef

    2000-03-31

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)

  3. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.

    PubMed

    Boxall, N J; Adamek, N; Cheng, K Y; Haque, N; Bruckard, W; Kaksonen, A H

    2018-04-01

    Lithium ion battery (LIB) waste contains significant valuable resources that could be recovered and reused to manufacture new products. This study aimed to develop an alternative process for extracting metals from LIB waste using acidic solutions generated by electrolysis for leaching. Results showed that solutions generated by electrolysis of 0.5 M NaCl at 8 V with graphite or mixed metal oxide (MMO) electrodes were weakly acidic and leach yields obtained under single stage (batch) leaching were poor (<10%). This was due to the highly acid-consuming nature of the battery waste. Multistage leaching with the graphite electrolyte solution improved leach yields overall, but the electrodes corroded over time. Though yields obtained with both electrolyte leach solutions were low when compared to the 4 M HCl control, there still remains potential to optimise the conditions for the generation of the acidic anolyte solution and the solubilisation of valuable metals from the LIB waste. A preliminary value proposition indicated that the process has the potential to be economically feasible if leach yields can be improved, especially based on the value of recoverable cobalt and lithium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Viscoplasticity of simulated high-level radioactive waste glass containing platinum group metal particles

    NASA Astrophysics Data System (ADS)

    Uruga, Kazuyoshi; Usami, Tsuyoshi; Tsukada, Takeshi; Komamine, Satoshi; Ochi, Eiji

    2014-09-01

    The shear rate dependency of the viscosity of three simulated high-level radioactive waste glasses containing 0, 1.2 and 4.5 wt% platinum group metals (PGMs) was examined at a temperature range of 1173-1473 K by a rotating viscometer. Shear stress when the shear rate equals zero, i.e. yield stress, was also measured by capillary method. The viscosity of the glass containing no PGM was shear rate-independent Newtonian fluid. On the other hand, the apparent viscosity of the glasses containing PGMs increased with decreasing shear rate, and nonzero amount of yield stresses were detected from both glasses. The viscosity and yield stress of the glass containing 4.5 wt% PGMs was roughly one to two orders of magnitude greater than the glass containing 1.2 wt% PGMs. These viscoplastic properties were numerically expressed by Casson equation.

  5. Inhibition of Clostridium perfringens spore germination and outgrowth by lemon juice and vinegar product in reduced NaCl roast beef

    USDA-ARS?s Scientific Manuscript database

    Inhibition of Clostridium perfringens spore germination and outgrowth in reduced sodium roast beef by a blend of buffered lemon juice concentrate and vinegar (MoStatin LV) during abusive exponential cooling was evaluated. Roast beef containing salt (NaCl; 1, 1.5, or 2%, wt/wt), blend of sodium pyro-...

  6. Recycling of LiCl-KCl eutectic based salt wastes containing radioactive rare earth oxychlorides or oxides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Cho, Y. Z.; Son, S. M.; Lee, T. K.; Yang, H. C.; Kim, I. T.; Lee, H. S.

    2012-01-01

    Recycling of LiCl-KCl eutectic salt wastes containing radioactive rare earth oxychlorides or oxides was studied to recover renewable salts from the salt wastes and to minimize the radioactive wastes by using a vacuum distillation method. Vaporization of the LiCl-KCl eutectic salt was effective above 900 °C and at 5 Torr. The condensations of the vaporized salt were largely dependent on temperature gradient. Based on these results, a recycling system of the salt wastes as a closed loop type was developed to obtain a high efficiency of the salt recovery condition. In this system, it was confirmed that renewable salt was recovered at more than 99 wt.% from the salt wastes, and the changes in temperature and pressure in the system could be utilized to understand the present condition of the system operation.

  7. CONTAINMENT TECHNOLOGIES

    EPA Science Inventory

    Hazardous waste containment's primary objective is to isolate wastes deemed as hazardous from man and environmental systems of air, soil, and water. Hazardous wastes differ from other waste classifications due to their increased potential to cause human health effects or environ...

  8. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet

    NASA Astrophysics Data System (ADS)

    Jiang, Dayong; Bai, Yun

    2018-01-01

    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  9. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks.

    PubMed

    Belmonte, Louise Josefine; Ottosen, Lisbeth M; Kirkelund, Gunvor Marie; Jensen, Pernille Erland; Vestbø, Andreas Peter

    2016-11-10

    In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e., residues from the mineral resource industry) from Greenland were screened in order to determine their suitability as secondary resources in clay-based brick production. Small clay discs, containing 20 or 40% of the different particulate waste materials, were fired and material properties and heavy metal leaching tests were conducted before and after firing. Remediation techniques (washing in distilled water and electrodialytical treatment) applied to the fly ash reduced leaching before firing. The mine tailings and bottom ash brick discs obtained satisfactory densities (1669-2007 kg/m 3 ) and open porosities (27.9-39.9%). In contrast, the fly ash brick discs had low densities (1313-1578 kg/m 3 ) and high open porosities (42.1-51. %). However, leaching tests on crushed brick discs revealed that heavy metals generally became more available after firing for all the investigated materials and that further optimisation is therefore necessary prior to incorporation in bricks.

  10. Valorisation of different types of boron-containing wastes for the production of lightweight aggregates.

    PubMed

    Kavas, T; Christogerou, A; Pontikes, Y; Angelopoulos, G N

    2011-01-30

    Four boron-containing wastes (BW), named as Sieve (SBW), Dewatering (DBW), Thickener (TBW) and Mixture (MBW) waste, from Kirka Boron plant in west Turkey were investigated for the formation of artificial lightweight aggregates (LWA). The characterisation involved chemical, mineralogical and thermal analyses as well as testing of their bloating behaviour by means of heating microscopy. It was found that SBW and DBW present bloating behaviour whereas TBW and MBW do not. Following the above results two mixtures M1 and M2 were prepared with (in wt.%): 20 clay mixture, 40 SBW, 40 DBW and 20 clay mixture, 35 SBW, 35 DBW, 10 quartz sand, respectively. Two different firing modes were applied: (a) from room temperature till 760 °C and (b) abrupt heating at 760 °C. The obtained bulk density for M1 and M2 pellets is 1.2g/cm(3) and 0.9 g/cm(3), respectively. The analysis of microstructure with electron microscopy revealed a glassy phase matrix and an extended formation of both interconnected and isolated, closed pores. The results indicate that SBW and DBW boron-containing wastes combined with a clay mixture and quartz sand can be valorised for the manufacturing of lightweight aggregates. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Proposed Objective Odor Control Test Methodology for Waste Containment

    NASA Technical Reports Server (NTRS)

    Vos, Gordon

    2010-01-01

    The Orion Cockpit Working Group has requested that an odor control testing methodology be proposed to evaluate the odor containment effectiveness of waste disposal bags to be flown on the Orion Crew Exploration Vehicle. As a standardized "odor containment" test does not appear to be a matter of record for the project, a new test method is being proposed. This method is based on existing test methods used in industrial hygiene for the evaluation of respirator fit in occupational settings, and takes into consideration peer reviewed documentation of human odor thresholds for standardized contaminates, industry stardnard atmostpheric testing methodologies, and established criteria for laboratory analysis. The proposed methodology is quantitative, though it can readily be complimented with a qualitative subjective assessment. Isoamyl acetate (IAA - also known at isopentyl acetate) is commonly used in respirator fit testing, and there are documented methodologies for both measuring its quantitative airborne concentrations. IAA is a clear, colorless liquid with a banana-like odor, documented detectable smell threshold for humans of 0.025 PPM, and a 15 PPB level of quantation limit.

  12. Crystallization of D-mannitol in binary mixtures with NaCl: phase diagram and polymorphism.

    PubMed

    Telang, Chitra; Suryanarayanan, Raj; Yu, Lian

    2003-12-01

    To study the crystallization, polymorphism, and phase behavior of D-mannitol in binary mixtures with NaCl to better understand their interactions in frozen aqueous solutions. Differential scanning calorimetry, hot-stage microscopy, Raman microscopy, and variable-temperature X-ray diffractometry were used to characterize D-mannitol-NaCl mixtures. NaCl and D-mannitol exhibited significant melt miscibility (up to 7.5% w/w or 0.20 mole fraction of NaCl) and a eutectic phase diagram (eutectic composition 7.5% w/w NaCl; eutectic temperature 150 degrees C for the alpha and beta polymorphs of D-mannitol and 139 degrees C for the delta). The presence of NaCl did not prevent mannitol from crystallizing but, depending on sample size, affected the polymorph crystallized: below 10 mg, delta was obtained; above 100 mg, alpha was obtained. Pure mannitol crystallized under the same conditions first as the delta polymorph and then as the a polymorph, with the latter nucleating on the former. KCl showed similar eutectic points and melt miscibility with D-mannitol as NaCl. LiCl yielded lower eutectic melting points, inhibited the crystallization of D-mannitol during cooling, and enabled the observation of its glass transition. Despite their structural dissimilarity, significant melt miscibility exists between D-mannitol and NaCl. Their phase diagram has been determined and features polymorph-dependent eutectic points. NaCl influences the polymorphic behavior of mannitol, and the effect is linked to the crystallization of mannitol in two polymorphic stages.

  13. Dental cutting behaviour of mica-based and apatite-based machinable glass-ceramics.

    PubMed

    Taira, M; Wakasa, K; Yamaki, M; Matsui, A

    1990-09-01

    Some recently developed industrial ceramics have excellent machinability properties. The objective of this study was to evaluate the dental cutting behaviour of two machinable glass-ceramics, mica-containing Macor-M and apatite- and diopside-containing Bioram-M, and to compare them with the cutting behaviour of a composite resin typodont tooth enamel and bovine enamel. Weight-load cutting tests were conducted, using a diamond point driven by an air-turbine handpiece, While the transverse load applied on the point was varied, the handpiece speed during cutting and the volume of removal upon cutting were measured. In general, an increase in the applied load caused a decrease in cutting speed and an increase in cutting volume. However, the intensity of this trend was found to differ between four workpieces. Cutting Macor-M resulted in the second-most reduced cutting speed and the maximum cutting volume. Cutting Bioram-M gave the least reduced cutting speed and the minimum cutting volume. It was suggested that two machinable glass-ceramics could be employed as typodont teeth. This study may also contribute to the development of new restorative dental ceramic materials, prepared by machining.

  14. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu; Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000more » coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.« less

  15. TECHNICAL GUIDANCE DOCUMENT: CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. In ge...

  16. Atomic-scale imaging of the dissolution of NaCl islands by water at low temperature

    NASA Astrophysics Data System (ADS)

    Peng, Jinbo; Guo, Jing; Ma, Runze; Meng, Xiangzhi; Jiang, Ying

    2017-03-01

    The dissolution of sodium chloride (NaCl) in water is a frequently encountered process in our daily lives. While the NaCl dissolution process in liquid water has been extensively studied, whether and how the dissolution occurs below the freezing point is still not clear. Using a low-temperature scanning tunneling microscope (STM), here we were able to directly visualize the dissolution of Au-supported NaCl (0 0 1) bilayer islands by water at atomic level. We found that the single water molecule on the STM tip can assist the extraction of single Na+ from the NaCl surface even at 5 K, while leaving the Cl- intact. When covered with a full water monolayer, the NaCl islands started to dissolve from the step edges and also showed evidence of dissolution inside the terraces as the temperature was raised up to 145 K. At 155 K, the water molecules completely desorbed from the surface, which was accompanied with the decomposition and restructuring of the bilayer NaCl islands. Those results suggest that the dissolution of NaCl may occur well below the freezing point at the ice/NaCl interfaces and is mainly driven by the interaction between the water molecules and the Na+, which is in clear contrast with the NaCl dissolution in liquid water.

  17. Effect of NaCl Concentration and Cooking Temperature on the Color and Pigment Characteristics of Presalted Ground Chicken Breasts

    PubMed Central

    Bae, Su Min; Cho, Min Guk; Hong, Gi Taek; Jeong, Jong Youn

    2018-01-01

    Abstract This study was conducted to determine the effects of NaCl concentration and cooking temperature on the color and pigment characteristics of presalted ground chicken breasts. Four treatments with different salt concentrations (0%, 1%, 2%, and 3%) were prepared and stored for 7 d prior to cooking. Each sample was cooked to four endpoint temperatures (70°C, 75°C, 80°C, and 85°C). The salt concentration affected the color and pigment properties of the cooked ground chicken breasts. As the salt concentration increased, the cooking yield and residual nitrite content also increased. However, the samples with 1%, 2%, and 3% NaCl showed similar nitrosyl hemochrome and total pigment contents. Among the products containing salt, the samples with 3% NaCl showed the lowest percentage myoglobin denaturation (PMD) and the lowest CIE a* values. The cooking temperature had limited effects on the pigment properties of cooked ground chicken breasts. The oxidation-reduction potential and residual nitrite contents increased with cooking temperature, while the PMD, nitrosyl hemochrome, total pigment contents and CIE a* values were similar in the samples cooked at different temperatures. These results indicated that the addition of up to 2% salt to ground chicken breasts and storage for 7 d could cause the pink color defect of cooked products. However, the addition of 3% NaCl could reduce the redness of the cooked products. PMID:29805289

  18. The use of NaCl addition for the improvement of polyhydroxyalkanoate production by Cupriavidus necator.

    PubMed

    Passanha, Pearl; Kedia, Gopal; Dinsdale, Richard M; Guwy, Alan J; Esteves, Sandra R

    2014-07-01

    External stress factors in the form of ionic species or temperature increases have been shown to produce a stress response leading to enhanced PHA production. The effect of five different NaCl concentrations, namely 3.5, 6.5, 9, 12 and 15 g/l NaCl on PHA productivity using Cupriavidus necator has been investigated alongside a control (no added NaCl). A dielectric spectroscopy probe was used to measure PHA accumulation online in conjunction with the chemical offline analysis of PHA. The highest PHA production was obtained with the addition of 9 g/l NaCl, which yielded 30% higher PHA than the control. Increasing the addition of NaCl to 15 g/l was found to inhibit the production of PHA. NaCl addition can therefore be used as a simple, low cost, sustainable, non toxic and non reactive external stress strategy for increasing PHA productivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Corrosion Behavior of Ti60 Alloy under a Solid NaCl Deposit in Wet Oxygen Flow at 600 °C

    PubMed Central

    Fan, Lei; Liu, Li; Yu, Zhongfen; Cao, Min; Li, Ying; Wang, Fuhui

    2016-01-01

    The corrosion behavior of Ti60 alloy covered with a solid NaCl deposit in wet oxygen flow at 600 °C has been studied further by SEM, EDX, XPS, XRD, TEM and EPMA analysis. The results show that solid NaCl and H2O react with Ti oxides, which destroyed the Ti oxide scale to yield the non-protective Na4Ti5O12 and other volatile species. The resulting corrosion product scale was multilayered and contained abundant rapid diffusion channels leading to the fast diffusion which improved the corrosion rate. A possible mechanism has been proposed for the NaCl-covered Ti60 alloy, based on the experimental results. PMID:27357732

  20. Restoration guidelines for riparian areas using dormant stock "pole" cuttings

    Treesearch

    Tony Barron

    1996-01-01

    The Open Space Division manages seven thousand acres of riparian areas comprising the Rio Grande Valley State Park. In 1988. Open Space began experimenting with dormant stock cuttings. This paper contains methods and procedures for establishing dormant stock cuttings. Dormant stock cuttings will be referred to as "poles" in this paper.

  1. Calcium signals recorded from cut frog twitch fibers containing antipyrylazo III

    PubMed Central

    1987-01-01

    The Ca indicator antipyrylazo III was introduced into cut frog twitch fibers by diffusion (Maylie, J., M. Irving, N. L. Sizto, and W. K. Chandler. 1987. Journal of General Physiology. 89:41-81). Like arsenazo III, antipyrylazo III was largely bound to or sequestered by intracellular constituents; on average, a fraction 0.68 was so immobilized. After action potential stimulation, there was an early change in absorbance, with a wavelength dependence that nearly matched a cuvette Ca-difference spectrum. As with arsenazo III, this signal became prolonged as experiments progressed. In a freshly prepared cut fiber containing 0.3 mM indicator, the absorbance change had an average half-width of 10 ms at 18 degrees C. The peak amplitude of this Ca signal depended on the indicator concentration in a roughly parabolic manner, which is consistent with a 1:2 stoichiometry for Ca:indicator complexation and, for indicator concentrations less than or equal to 0.4 mM, constant peak free [Ca]. If all the antipyrylazo III inside a fiber can react normally with Ca, peak free [Ca] is 3 microM at 18 degrees C. If only freely diffusible indicator can react, the estimate is 42 microM. The true amplitude probably lies somewhere in between. The time course of Ca binding to intracellular buffers and of Ca release from the sarcoplasmic reticulum is estimated from the 3- and 42- microM myoplasmic [Ca] transients. After action potential stimulation, the release waveform is rapid and brief; its latency after the surface action potential is 2-3 ms and its half-width is 2-4 ms. This requires rapid coupling between the action potential in the transverse tubular system and Ca release from the sarcoplasmic reticulum. The peak fractional occupancy calculated for Ca-regulatory sites on troponin is 0.46 for the 3-microM transient and 0.93 for the 42-microM transient. During a 100-ms tetanus at 100 Hz, the corresponding fractional occupancies are 0.56 and 0.94. The low value of occupancy associated with

  2. Sanitation Can Be A Foundation Disease Management Tool: Potential Of Spreading Binucleate Rhizoctonia from Nursery Propagation Floors To Trays Containing Azalea Stem Cuttings

    USDA-ARS?s Scientific Manuscript database

    Binucelate Rhizoctonia spp. (BNR), the cause of web blight, are present all year on container-grown azaleas in the southern U.S. BNR can be eliminated during vegetative propagation by submerging stem cuttings in 50°C water for 21 minutes. The objective was to evaluate risk of rooting trays being con...

  3. Determination of germanium by AAS in chloride-containing matrices.

    PubMed

    Anwari, M A; Abbasi, H U; Volkan, M; Ataman, O Y

    1996-06-01

    Interference effects of NaCl on the ET-AAS determination of Ge have been studied. The use of several matrix modifiers to alleviate this problem such as Ni and Zn perchlorates and nitrates, nitric acid, ammonium nitrate are reported. The stabilizing effect of Zn and Ni perchlorates allows the use of high pretreatment temperatures. NaCl is thus thermally volatilized from the atomizer by employing pretreatment temperatures higher than 1500 degrees C resulting in an improved sensitivity. Germanium levels in zinc plant slag samples, have been determined and compared to those obtained for the same samples spiked with NaCl with platform and wall atomization using nickel perchlorate as a matrix modifier. The results were compared with those from a hydride generation system equipped with a liquid nitrogen trap. The recoveries for germanium have been almost complete and amount to 99% for the original slag samples and 80% for 15% (w/w) NaCl containing spiked samples.

  4. Automated Cell-Cutting for Cell Cloning

    NASA Astrophysics Data System (ADS)

    Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro

    We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.

  5. Environmental performance, mechanical and microstructure analysis of concrete containing oil-based drilling cuttings pyrolysis residues of shale gas.

    PubMed

    Wang, Chao-Qiang; Lin, Xiao-Yan; He, Ming; Wang, Dan; Zhang, Si-Lan

    2017-09-15

    The overall objective of this research project is to investigate the feasibility of incorporating oil-based drilling cuttings pyrolysis residues (ODPR) and fly ash serve as replacements for fine aggregates and cementitious materials in concrete. Mechanical and physical properties, detailed environmental performances, and microstructure analysis were carried out. Meanwhile, the early hydration process and hydrated products of ODPR concrete were analyzed with X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that ODPR could not be categorize into hazardous wastes. ODPR had specific pozzolanic characteristic and the use of ODPR had certain influence on slump and compressive strength of concrete. The best workability and optimal compressive strength were achieved with the help of 35% ODPR. Environmental performance tests came to conclusion that ODPR as recycled aggregates and admixture for the preparation of concrete, from the technique perspective, were the substance of mere environmental contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. An environmentally friendly ball milling process for recovery of valuable metals from e-waste scraps.

    PubMed

    Zhang, Zhi-Yuan; Zhang, Fu-Shen; Yao, TianQi

    2017-10-01

    The present study reports a mechanochemical (MC) process for effective recovery of copper (Cu) and precious metals (i.e. Pd and Ag) from e-waste scraps. Results indicated that the mixture of K 2 S 2 O 8 and NaCl (abbreviated as K 2 S 2 O 8 /NaCl hereafter) was the most effective co-milling reagents in terms of high recovery rate. After co-milling with K 2 S 2 O 8 /NaCl, soluble metallic compounds were produced and consequently benefit the subsequent leaching process. 99.9% of Cu and 95.5% of Pd in the e-waste particles could be recovered in 0.5mol/L diluted HCl in 15min. Ag was concentrated in the leaching residue as AgCl and then recovered in 1mol/L NH 3 solution. XRD and XPS analysis indicated that elemental metals in the raw materials were transformed into their corresponding oxidation state during ball milling process at low temperature, implying that solid-solid phase reactions is the reaction mechanism. Based on the results and thermodynamic parameters of the probable reactions, possible reaction pathways during ball milling were proposed. Suggestion on category of e-waste for ball milling process was put forward according to the experiment results. The designed metal recovery process of this study has the advantages of highly recovery rate and quick leaching speed. Thus, this study offers a promising and environmentally friendly method for recovering valuable metals from e-waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fabrication of large binary colloidal crystals with a NaCl structure

    PubMed Central

    Vermolen, E. C. M.; Kuijk, A.; Filion, L. C.; Hermes, M.; Thijssen, J. H. J.; Dijkstra, M.; van Blaaderen, A.

    2009-01-01

    Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (≈0.002 kBT). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder. PMID:19805259

  8. EQCM analysis of titanium corrosion in peroxide- or fluoride-containing solutions.

    PubMed

    Hattori, Masayuki; Oda, Yutaka

    2013-01-01

    Although offering superior resistance to corrosion, titanium is unable to withstand discoloration with exposure to peroxide or fluoride. The mechanism of this discoloration, however, remains to be clarified. The purpose of this study was to investigate the mechanism underlying discoloration of titanium with immersion in peroxide- or fluoride-containing solutions based on electrochemical quartz crystal microbalance (EQCM) analysis. A 9-MHz titanium-deposited quartz crystal was used as for the electrodes. Four test solutions were prepared for immersion of the electrodes: 154 mM (0.9%) NaCl; 150 mM H2O2+154 mM NaCl (pH=4 by addition of lactic acid); 150 mM H2O2+154 mM NaCl (pH=8 by addition of sodium hydroxide solution); and 48 mM (0.2%) NaF+154 mM NaCl (pH=5.0 by addition of lactic acid). A WinEchem electrochemistry software-controlled quartz crystal analyzer (QCA922) and the Potentiostat/Galvanostat (Princeton Applied Research) on Windows XP were used to measure concurrently the resonance frequency and potential of the electrodes. The EQCM data differed among solutions. In the acidulated fluoride-containing solution, the electrode showed lower open circuit potential and a gradual increase in electrode frequency, indicating a loss of mass by titanium dissolution. In the peroxide-containing solution, although open circuit potential showed no marked difference, electrode frequency showed a gentle decrease in acidic solution, indicating a gain in mass by oxidation; but an increase in alkaline solution, indicating a loss of mass by dissolution. These results confirmed that exposure to acidulated fluoride- or alkaline peroxide-containing solutions causes dissolution-induced discoloration, while that to acidulated peroxide-containing solutions resulted in the formation of an oxide film together with discoloration.

  9. Constant Enthalpy Change Value during Pyrophosphate Hydrolysis within the Physiological Limits of NaCl*

    PubMed Central

    Wakai, Satoshi; Kidokoro, Shun-ichi; Masaki, Kazuo; Nakasone, Kaoru; Sambongi, Yoshihiro

    2013-01-01

    A decrease in water activity was thought to result in smaller enthalpy change values during PPi hydrolysis, indicating the importance of solvation for the reaction. However, the physiological significance of this phenomenon is unknown. Here, we combined biochemistry and calorimetry to solve this problem using NaCl, a physiologically occurring water activity-reducing reagent. The pyrophosphatase activities of extremely halophilic Haloarcula japonica, which can grow at ∼4 m NaCl, and non-halophilic Escherichia coli and Saccharomyces cerevisiae were maximal at 2.0 and 0.1 m NaCl, respectively. Thus, halophilic and non-halophilic pyrophosphatases exhibit distinct maximal activities at different NaCl concentration ranges. Upon calorimetry, the same exothermic enthalpy change of −35 kJ/mol was obtained for the halophile and non-halophiles at 1.5–4.0 and 0.1–2.0 m NaCl, respectively. These results show that solvation changes caused by up to 4.0 m NaCl (water activity of ∼0.84) do not affect the enthalpy change in PPi hydrolysis. It has been postulated that PPi is an ATP analog, having a so-called high energy phosphate bond, and that the hydrolysis of both compounds is enthalpically driven. Therefore, our results indicate that the hydrolysis of high energy phosphate compounds, which are responsible for biological energy conversion, is enthalpically driven within the physiological limits of NaCl. PMID:23965994

  10. Age related decreases in neural sensitivity to NaCl in SHR-SP.

    PubMed

    Osada, Kazumi; Komai, Michio; Bryant, Bruce P; Suzuki, Hitoshi; Tsunoda, Kenji; Furukawa, Yuji

    2003-03-01

    To determine whether neurophysiological taste responses of young and old rats are different, recordings were made from the whole chorda tympani nerve which innervates taste buds on the anterior tongue. SHR-SP (Stroke-Prone Spontaneously Hypertensive Rats) in two age groups were studied. Chemical stimuli included single concentrations of 250 mM NH(4)Cl, 100 mM NaCl, 100 mM KCl, 500 mM sucrose, 20 mM quinine-hydrochloride, 10 mM HCl, 10 mM monosodium glutamate (MSG), 10 mM L- glutamic acid (L-Glu) and an NaCl concentration series. The magnitude of the neural response (response ratio) was calculated by dividing the amplitude of the integrated response by the amplitude of the spontaneous activity that preceded it. Substantial neural responses to all chemicals were obtained at both ages. The responses to KCl, sucrose, quinine-hydrochloride, HCl, monosodium glutamate (MSG) and glutamic acid (Glu) did not change with age, but the response to NaCl did decrease significantly. The profile of the response/concentration function for NaCl differed with age. In particular, the responses to solutions more concentrated than 100 mM NaCl were significantly weaker in aged than in young SHR-SPs. We also observed that recovery from amiloride treatment on the tongue of SHR-SPs was faster in aged rats than in young ones, suggesting that there is some functional difference in the sodium-specific channels on the taste cell. These results suggest that aged SHR-SP may be less able than young SHR-SPs to discriminate among higher concentrations of NaCl solutions.

  11. Performance and microbial diversity of an expanded granular sludge bed reactor for high sulfate and nitrate waste brine treatment.

    PubMed

    Liao, Runhua; Li, Yan; Yu, Xuemin; Shi, Peng; Wang, Zhu; Shen, Ke; Shi, Qianqian; Miao, Yu; Li, Wentao; Li, Aimin

    2014-04-01

    The disposal of waste brines has become a major challenge that hinders the wide application of ion-exchange resins in the water industry in recent decades. In this study, high sulfate removal efficiency (80%-90%) was achieved at the influent sulfate concentration of 3600 mg/L and 3% NaCl after 145 days in an expanded granular sludge bed (EGSB) reactor. Furthermore, the feasibility of treating synthetic waste brine containing high levels of sulfate and nitrate was investigated in a single EGSB reactor during an operation period of 261 days. The highest nitrate and sulfate loading rate reached 6.38 and 5.78 kg/(m(3)·day) at SO(2-)4-S/NO(-)3-N mass ratio of 4/3, and the corresponding removal efficiency was 99.97% and 82.26% at 3% NaCl, respectively. Meanwhile, 454-pyrosequencing technology was used to analyze the bacterial diversity of the sludge on the 240th day for stable operation of phase X. Results showed that a total of 9194 sequences were obtained, which could be affiliated to 14 phyla, including Proteobacteria, Firmicutes, Chlorobi, Bacteroidetes, Synergistetes and so on. Proteobacteria (77.66%) was the dominant microbial population, followed by Firmicutes (12.23%) and Chlorobi (2.71%). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Seal welded cast iron nuclear waste container

    DOEpatents

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  13. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  14. Membrane technology for treating of waste nanofluids coolant: A review

    NASA Astrophysics Data System (ADS)

    Mohruni, Amrifan Saladin; Yuliwati, Erna; Sharif, Safian; Ismail, Ahmad Fauzi

    2017-09-01

    The treatment of cutting fluids wastes concerns a big number of industries, especially from the machining operations to foster environmental sustainability. Discharging cutting fluids, waste through separation technique could protect the environment and also human health in general. Several methods for the separation emulsified oils or oily wastewater have been proposed as three common methods, namely chemical, physicochemical and mechanical and membrane technology application. Membranes are used into separate and concentrate the pollutants in oily wastewater through its perm-selectivity. Meanwhile, the desire to compensate for the shortcomings of the cutting fluid media in a metal cutting operation led to introduce the using of nanofluids (NFs) in the minimum quantity lubricant (MQL) technique. NFs are prepared based on nanofluids technology by dispersing nanoparticles (NPs) in liquids. These fluids have potentially played to enhance the performance of traditional heat transfer fluids. Few researchers have studied investigation of the physical-chemical, thermo-physical and heat transfer characteristics of NFs for heat transfer applications. The use of minimum quantity lubrication (MQL) technique by NFs application is developed in many metal cutting operations. MQL did not only serve as a better alternative to flood cooling during machining operation and also increases better-finished surface, reduces impact loads on the environment and fosters environmental sustainability. Waste coolant filtration from cutting tools using membrane was treated by the pretreated process, coagulation technique and membrane filtration. Nanomaterials are also applied to modify the membrane structure and morphology. Polyvinylidene fluoride (PVDF) is the better choice in coolant wastewater treatment due to its hydrophobicity. Using of polyamide nanofiltration membranes BM-20D and UF-PS-100-100, 000, it resulted in the increase of permeability of waste coolant filtration. Titanium dioxide

  15. Grading technologies for the manufacture of innovative cutting blades

    NASA Astrophysics Data System (ADS)

    Rostek, Tim; Homberg, Werner

    2018-05-01

    Cutting blades for harvesting applications are used in a variety of agricultural machines. These parts are in contact with highly abrasive lawn clippings and often wear out within hours which results in high expensive re-sharpening maintenance. This paper relates to manufacturing techniques enhancing the durability of cutting blades based on a structural analysis of the prevailing wear mechanisms containing chipping and abrasive wear. Each mechanism results in specific demands on the cutting edge's mechanical characteristics. The design of evaluation methods respectively is one issue of the paper. This is basis for approaches to improve the cutting edge performance on purpose. On option to improve abrasive wear resistance and, thus, service life is the application of locally graded steel materials as semi-finished products for self-sharpening cutting blades. These materials comprise a layered structure consisting of a hard, wear resistant layer and a relatively softer layer which is lesser wear resistant. As the cutting blade is subjected to wear conditions, the less wear resistant layer wears faster than the relatively more wear resistant harder layer revealing a durable cross section of the cutting edge and, thus, cutting performance. Anyways, chipping is another key issue on the cutting edge's lifetime. Here, the cutting edges cross section by means of geometry and grind respectively as well as its mechanical properties matter. FEM analysis reveal innovative options to optimize the cross section of the blade as well as thermomechanical strengthening add further strength to reduce chipping. This paper contains a comprehensive strategy to improve cutting blades with use of innovative manufacturing technologies which apply application-specific graded mechanical characteristics and, thus, significantly improved performance characteristics.

  16. Fermentation of cucumbers brined with calcium chloride instead of sodium chloride.

    PubMed

    McFeeters, Roger F; Pérez-Díaz, Ilenys

    2010-04-01

    Waste water containing high levels of NaCl from cucumber fermentation tank yards is a continuing problem for the pickled vegetable industry. A major reduction in waste salt could be achieved if NaCl were eliminated from the cucumber fermentation process. The objectives of this project were to ferment cucumbers in brine containing CaCl(2) as the only salt, to determine the course of fermentation metabolism in the absence of NaCl, and to compare firmness retention of cucumbers fermented in CaCl(2) brine during subsequent storage compared to cucumbers fermented in brines containing both NaCl and CaCl(2) at concentrations typically used in commercial fermentations. The major metabolite changes during fermentation without NaCl were conversion of sugars in the fresh cucumbers primarily to lactic acid which caused pH to decrease to less than 3.5. This is the same pattern that occurs when cucumbers are fermented with NaCl as the major brining salt. Lactic acid concentration and pH were stable during storage and there was no detectable production of propionic acid or butyric acid that would indicate growth of spoilage bacteria. Firmness retention in cucumbers fermented with 100 to 300 mM CaCl(2) during storage at a high temperature (45 degrees C) was not significantly different from that obtained in fermented cucumbers with 1.03 M NaCl and 40 mM CaCl(2). In closed jars, cucumber fermentations with and without NaCl in the fermentation brine were similar both in the chemical changes caused by the fermentative microorganisms and in the retention of firmness in the fermented cucumbers.

  17. The Salty Scrambled Egg: Detection of NaCl Toward CRL 2688

    NASA Astrophysics Data System (ADS)

    Highberger, J. L.; Thomson, K. J.; Young, P. A.; Arnett, D.; Ziurys, L. M.

    2003-08-01

    NaCl has been detected toward the circumstellar envelope of the post-AGB star CRL 2688 using the IRAM 30 m telescope, the first time this molecule has been identified in a source other than IRC +10216. The J=7-->6, 11-->10, 12-->11, and 18-->17 transitions of NaCl at 1, 2, and 3 mm have been observed, as well as the J=8-->7 line of the 37Cl isotopomer. The J=12-->11 line was also measured at the ARO 12 m telescope. An unsuccessful search was additionally conducted for AlCl toward CRL 2688, although in the process new transitions of NaCN were observed. Both NaCl and NaCN were found to be present in the AGB remnant wind, as suggested by their U-shaped line profiles, indicative of emission arising from an optically thin, extended shell-like source of radius ~10"-12". These data contrast with past results in IRC +10216, where the distribution of both molecules is confined to within a few arcseconds of the star. A high degree of excitation is required for the transitions observed for NaCl and NaCN; therefore, these two species likely arise in the region where the high-velocity outflow has collided with the remnant wind. Here the effects of shocks and clumping due to Rayleigh-Taylor instabilities have raised the densities and temperatures significantly. The shell source is thus likely to be clumpy and irregular. The chemistry producing the sodium compounds is consequently more complex than simple LTE formation. Abundances of NaCl and NaCN, relative to H2, are f~1.6×10-10 and ~5.2×10-9, respectively, while the upper limit to AlCl is f<2×10-9. These values differ substantially from those in IRC +10216, where AlCl has an abundance near 10-7. The NaCl observations additionally indicate a chlorine isotope ratio of 35Cl/37Cl=2.1+/-0.8 in CRL 2688, suggestive of s-process enhancement of chlorine 37.

  18. Detection of tiny amounts of fissile materials in large-sized containers with radioactive waste

    NASA Astrophysics Data System (ADS)

    Batyaev, V. F.; Skliarov, S. V.

    2018-01-01

    The paper is devoted to non-destructive control of tiny amounts of fissile materials in large-sized containers filled with radioactive waste (RAW). The aim of this work is to model an active neutron interrogation facility for detection of fissile ma-terials inside NZK type containers with RAW and determine the minimal detectable mass of U-235 as a function of various param-eters: matrix type, nonuniformity of container filling, neutron gen-erator parameters (flux, pulse frequency, pulse duration), meas-urement time. As a result the dependence of minimal detectable mass on fissile materials location inside container is shown. Nonu-niformity of the thermal neutron flux inside a container is the main reason of the space-heterogeneity of minimal detectable mass in-side a large-sized container. Our experiments with tiny amounts of uranium-235 (<1 g) confirm the detection of fissile materials in NZK containers by using active neutron interrogation technique.

  19. Demonstration of close-coupled barriers for subsurface containment of buried waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.

    1996-05-01

    A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed wastemore » remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system.« less

  20. Shape-memory NiTi foams produced by replication of NaCl space-holders.

    PubMed

    Bansiddhi, A; Dunand, D C

    2008-11-01

    NiTi foams were created with a structure (32-36% open pores 70-400 microm in size) and mechanical properties (4-25 GPa stiffness, >1000 MPa compressive strength, >42% compressive ductility, and shape-memory strains up to 4%) useful for bone implant applications. A mixture of NiTi and NaCl powders was hot-isostatically pressed at 950 and 1065 degrees C and the NaCl phase was then dissolved in water. The resulting NiTi foams show interconnected pores that replicate the shape and size of the NaCl powders, indicating that NiTi powders densified significantly before NaCl melted at 801 degrees C. Densifying NiTi or other metal powders above the melting point of the space-holder permits the use of NaCl, with the following advantages compared with higher-melting, solid space-holders such as oxides and fluorides used to date: (i) no temperature limit for densification; (ii) lower cost; (iii) greater flexibility in powder (and thus pore) shape; (iv) faster dissolution; (v) reduced metal corrosion during dissolution; (vi) lower toxicity if space-holder residues remain in the foam.

  1. Removal of organic dyes using Cr-containing activated carbon prepared from leather waste.

    PubMed

    Oliveira, Luiz C A; Coura, Camila Van Zanten; Guimarães, Iara R; Gonçalves, Maraisa

    2011-09-15

    In this work, hydrogen peroxide decomposition and oxidation of organics in aqueous medium were studied in the presence of activated carbon prepared from wet blue leather waste. The wet blue leather waste, after controlled pyrolysis under CO(2) flow, was transformed into chromium-containing activated carbons. The carbon with Cr showed high microporous surface area (up to 889 m(2)g(-1)). Moreover, the obtained carbon was impregnated with nanoparticles of chromium oxide from the wet blue leather. The chromium oxide was nanodispersed on the activated carbon, and the particle size increased with the activation time. It is proposed that these chromium species on the carbon can activate H(2)O(2) to generate HO radicals, which can lead to two competitive reactions, i.e. the hydrogen peroxide decomposition or the oxidation of organics in water. In fact, in this work we observed that activated carbon obtained from leather waste presented high removal of methylene blue dye combining the adsorption and oxidation processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The European Eel NCCβ Gene Encodes a Thiazide-resistant Na-Cl Cotransporter*

    PubMed Central

    Moreno, Erika; Plata, Consuelo; Rodríguez-Gama, Alejandro; Argaiz, Eduardo R.; Vázquez, Norma; Leyva-Ríos, Karla; Islas, León; Cutler, Christopher; Pacheco-Alvarez, Diana; Mercado, Adriana; Cariño-Cortés, Raquel; Castañeda-Bueno, María; Gamba, Gerardo

    2016-01-01

    The thiazide-sensitive Na-Cl cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule. NCC plays a key role in the regulation of blood pressure. Its inhibition with thiazides constitutes the primary baseline therapy for arterial hypertension. However, the thiazide-binding site in NCC is unknown. Mammals have only one gene encoding for NCC. The eel, however, contains a duplicate gene. NCCα is an ortholog of mammalian NCC and is expressed in the kidney. NCCβ is present in the apical membrane of the rectum. Here we cloned and functionally characterized NCCβ from the European eel. The cRNA encodes a 1043-amino acid membrane protein that, when expressed in Xenopus oocytes, functions as an Na-Cl cotransporter with two major characteristics, making it different from other known NCCs. First, eel NCCβ is resistant to thiazides. Single-point mutagenesis supports that the absence of thiazide inhibition is, at least in part, due to the substitution of a conserved serine for a cysteine at position 379. Second, NCCβ is not activated by low-chloride hypotonic stress, although the unique Ste20-related proline alanine-rich kinase (SPAK) binding site in the amino-terminal domain is conserved. Thus, NCCβ exhibits significant functional differences from NCCs that could be helpful in defining several aspects of the structure-function relationship of this important cotransporter. PMID:27587391

  3. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D.

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion;more » sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.« less

  4. First principles molecular dynamics of molten NaCl

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-03-01

    First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.

  5. Low-field NMR determination of water distribution in meat batters with NaCl and polyphosphate addition.

    PubMed

    Shao, Jun-Hua; Deng, Ya-Min; Jia, Na; Li, Ru-Ren; Cao, Jin-Xuan; Liu, Deng-Yong; Li, Jian-Rong

    2016-06-01

    The objective was to elucidate the influence of NaCl and polyphosphates in the stage of protein swelling on the water-holding capacity (WHC) of meat batter. The meat batters were formulated with salt in different ways by adding established amounts of only NaCl, only polyphosphates, jointly adding NaCl and polyphosphates, and a control without any salt. An increase (p<0.05) in water retention was found when a combination of NaCl and polyphosphates was used. A high textural parameter was observed in the two treatments with NaCl, but not in the group with only polyphosphate. For the polyphosphate group, T22 was lower (p<0.05) than in the other three before heating; however, after heating, T21 and T22 were both significantly decreased, and a new component emerged, T23, which was significantly lower than the others. For the NaCl treatment, heated or not, T22 was always the highest. It was revealed that NaCl had affected the WHC by increasing the mobility and distribution of water, particularly with polyphosphate, but polyphosphate could not be an equal substitute for NaCl given its resulting lowest textural properties and poor microstructure. By presenting different hydration states in the protein swelling stage, the meat batter qualities were differentiated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  7. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition modelsmore » form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO 2, Na 2O, and Cs 2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO 2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO 2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and

  8. Dehydration process in NaCl solutions under various external electric fields

    NASA Astrophysics Data System (ADS)

    Kadota, Kazunori; Shimosaka, Atsuko; Shirakawa, Yoshiyuki; Hidaka, Jusuke

    2007-06-01

    Ionic motions at solid-liquid interface in supersaturated NaCl solutions have been investigated by molecular dynamics (MD) simulation for understanding crystal growth processes. The density profile in the vicinity of the interfaces between NaCl(100) and the supersaturated NaCl solution was calculated. Diffusion coefficients of water molecules in the solution were estimated as a function of distance from the crystal interface. It turned out that the structure and dynamics of the solution in the interfaces was different from those of bulk solution owing to electric fields depending on the surface charge. Therefore, the electric field was applied to the supersaturated solutions and dehydration phenomenon occurring in the process of the crystal growth was discussed. As the electric field increased, it was observed that the Na+ keeping strongly hydration structure broke out by the electric force. In supersaturated concentration, the solution structure is significantly different from that of dilution and has a complicated structure with hydration ions and clusters of NaCl. If the electric fields were applied to the solutions, the breakout of hydration structure was not affected with increasing the supersaturated ratio. This reason is that the cluster structures are destroyed by the electric force. The situation depends on the electric field or crystal surface structure.

  9. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsui, Takashi; Miura, Noriaki; Oowaki, Katsura

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter suchmore » as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)« less

  10. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Prokaryotic complex of newly formed soils on nepheline-containing industrial waste

    NASA Astrophysics Data System (ADS)

    Evdokimova, G. A.; Kalmykova, V. V.

    2010-06-01

    The characteristics are given of the prokaryotic complex participating in the processes of the primary soil formation on nepheline-containing waste and depending on the time of the waste disposal and degree of reclamation. The total population density of the bacteria determined with the method of fluorescent microscopy in “pure” sand ranged within 0.34—0.60 billion CFU/g soil; in the reclaimed sand under different vegatation communities, from 2.6 to 7.2 billion CFU/g soil. Gram-positive bacteria dominate in the prokaryotic complex of the nepheline sands, whereas the Grarrmegative ones dominate in the zonal soils. The bacteria predominating in the nepheline sands were classified on the basis of the comparative analysis of the nucleotide sequences in the 16S rRNA genes within the Actinobacteria class (Arthrobacter boritolerans, A. ramosus, Rhodococcusfascians, Micrococcus luteus, and Streptomyces spp.). The evolution of the microbial community in the nepheline sands in the course of their reclamation and in the course of their overgrowing by plants proceeds in way toward the microbial communities of the zonal soils on moraine deposits.

  12. Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherkas, Dmytro

    2011-10-01

    As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, andmore » lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during

  13. 40 CFR 148.10 - Waste specific prohibitions-solvent wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... injection unless the solvent waste is a solvent-water mixture or solvent-containing sludge containing less...

  14. Determination of oxidative stress in wheat leaves as influenced by boron toxicity and NaCl stress.

    PubMed

    Masood, Sajid; Saleh, Livia; Witzel, Katja; Plieth, Christoph; Mühling, Karl H

    2012-07-01

    Boron (B) toxicity symptoms are visible in the form of necrotic spots and may worsen the oxidative stress caused by salinity. Hence, the interactive effects of combined salinity and B toxicity stress on antioxidative activities (TAC, LUPO, SOSA, CAT, and GR) were investigated by novel luminescence assays and standard photometric procedures. Wheat plants grown under hydroponic conditions were treated with 2.5 μM H₃BO₃ (control), 75 mM NaCl, 200 μM H₃BO₃, or 75 mM NaCl + 200 μM H₃BO₃, and analysed 6 weeks after germination. Shoot fresh weight (FW), shoot dry weight (DW), and relative water content (RWC) were significantly reduced, whereas the antioxidative activity of all enzymes was increased under salinity compared with the control. High B application led to necrotic leaf spots but did not influence growth parameters. Following NaCl + B treatment, shoot DW, RWC, SOSA, GR, and CAT activities remained the same compared with NaCl alone, whereas the TAC and LUPO activities were increased under the combined stress compared with NaCl alone. However, shoot FW was significantly reduced under NaCl + B compared with NaCl alone, as an additive effect of combined stress. Thus, we found an adjustment of antioxidative enzyme activity to the interactive effects of NaCl and high B. The stress factor "salt" mainly produced more oxidative stress than that of the factor "high B". Furthermore, addition of higher B in the presence of NaCl increases TAC and LUPO demonstrating that increased LUPO activity is an important physiological response in wheat plants against multiple stresses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Effects of dilute aqueous NaCl solution on caffeine aggregation

    NASA Astrophysics Data System (ADS)

    Sharma, Bhanita; Paul, Sandip

    2013-11-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  16. Kinetics Study on the Effect of NaCl on the CaSO4 Dissolution Behavior

    NASA Astrophysics Data System (ADS)

    Song, Jingyao; Shi, Peiyang; Wang, Yeguang; Jiang, Maofa

    2018-01-01

    The study of the dissolution kinetics of CaSO4 is essential for the control of the dissolution and recrystallization behavior of CaSO4. In this work, the kinetic behavior of CaSO4 dissolved in NaCl solution was investigated by means of conductivity meter. The results show that with the increase of concentration of NaCl, the temperature rise and the time prolonged, the dissolution rate of dihydrate CaSO4 gradually increases, and the dissolved apparent activation energy is gradually decreased. When the NaCl concentration is 1.8%, the dissolution kinetic equation is 1-(1-α) 1/3=5.46*10-4exp (-9147/RT) t; When the NaCl concentration is 3.0%, the dissolution kinetic equation is 1-(1-α) 1/3=2.81×10-4 exp (-6753/RT)t; When the NaCl concentration is 3.6%, the dissolution kinetic equation is 1-(1-α) 1/3=3.07×l0-4exp(-6103/RT)t.

  17. Cutting

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Cutting KidsHealth / For Teens / Cutting What's in this article? ... Getting Help Print en español Cortarse What Is Cutting? Emma's mom first noticed the cuts when Emma ...

  18. A high-throughput method to measure NaCl and acid taste thresholds in mice.

    PubMed

    Ishiwatari, Yutaka; Bachmanov, Alexander A

    2009-05-01

    To develop a technique suitable for measuring NaCl taste thresholds in genetic studies, we conducted a series of experiments with outbred CD-1 mice using conditioned taste aversion (CTA) and two-bottle preference tests. In Experiment 1, we compared conditioning procedures involving either oral self-administration of LiCl or pairing NaCl intake with LiCl injections and found that thresholds were the lowest after LiCl self-administration. In Experiment 2, we compared different procedures (30-min and 48-h tests) for testing conditioned mice and found that the 48-h test is more sensitive. In Experiment 3, we examined the effects of varying strength of conditioned (NaCl or LiCl taste intensity) and unconditioned (LiCl toxicity) stimuli and concluded that 75-150 mM LiCl or its mixtures with NaCl are the optimal stimuli for conditioning by oral self-administration. In Experiment 4, we examined whether this technique is applicable for measuring taste thresholds for other taste stimuli. Results of these experiments show that conditioning by oral self-administration of LiCl solutions or its mixtures with other taste stimuli followed by 48-h two-bottle tests of concentration series of a conditioned stimulus is an efficient and sensitive method to measure taste thresholds. Thresholds measured with this technique were 2 mM for NaCl and 1 mM for citric acid. This approach is suitable for simultaneous testing of large numbers of animals, which is required for genetic studies. These data demonstrate that mice, like several other species, generalize CTA from LiCl to NaCl, suggesting that they perceive taste of NaCl and LiCl as qualitatively similar, and they also can generalize CTA of a binary mixture of taste stimuli to mixture components.

  19. NaCl strongly modifies the physicochemical properties of aluminum hydroxide vaccine adjuvants.

    PubMed

    Art, Jean-François; Vander Straeten, Aurélien; Dupont-Gillain, Christine C

    2017-01-30

    The immunostimulation capacity of most vaccines is enhanced through antigen adsorption on aluminum hydroxide (AH) adjuvants. Varying the adsorption conditions, i.e. pH and ionic strength (I), changes the antigen adsorbed amount and therefore the ability of the vaccine to stimulate the immune system. Vaccine formulations are thus resulting from an empirical screening of the adsorption conditions. This work aims at studying the physicochemical effects of adjusting the ionic strength of commercial AH adjuvant particles suspensions with sodium chloride (NaCl). X-ray photoelectron spectroscopy data show that AH particles surface chemical composition is neither altered by I adjustment with NaCl nor by deposition on gold surfaces. The latter result provides the opportunity to use AH-coated gold surfaces as a platform for advanced surface analysis of adjuvant particles, e.g. by atomic force microscopy (AFM). The morphology of adjuvant particles recovered from native and NaCl-treated AH suspensions, as studied by scanning electron microscopy and AFM, reveals that AH particles aggregation state is significantly altered by NaCl addition. This is further confirmed by nitrogen adsorption experiments: I adjustment to 150mM with NaCl strongly promotes AH particles aggregation leading to a strong decrease of the developed specific surface area. This work thus evidences the effect of NaCl on AH adjuvant structure, which may lead to alteration of formulated vaccines and to misinterpretation of data related to antigen adsorption on adjuvant particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The mechanical properties of brick containing recycled concrete aggregate and polyethylene terephthalate waste as sand replacement

    NASA Astrophysics Data System (ADS)

    Sheikh Khalid, Faisal; Bazilah Azmi, Nurul; Natasya Mazenan, Puteri; Shahidan, Shahiron; Ali, Noorwirdawati

    2018-03-01

    This research focuses on the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. This study aims to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate (RCA) and polyethylene terephthalate (PET) waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 0.5%, 1.0% and 1.5% by weight of natural sand. Based on the results of compressive strength, only RCA 25% with 0.5% PET achieve lower strength than normal bricks while others showed a high strength. However, all design mix reaches strength more than 7N/mm2 as expected. Besides that, the most favorable mix design that achieves high compressive strength is 75% of RCA with 0.5% PET.

  1. "JCE" Classroom Activity Connections: NaCl or CaCl[subscript 2], Smart Polymer Gel Tells More

    ERIC Educational Resources Information Center

    Chen, Yueh-Huey; Lin, Jia-Ying; Wang, Yu-Chen; Yaung, Jing-Fun

    2010-01-01

    This classroom activity connection demonstrates the differences between the effects of NaCl (a salt of monovalent metal ions) and CaCl[subscript 2] (a salt of polyvalent metal ions) on swollen superabsorbent polymer gels. Being ionic compounds, NaCl and CaCl[subscript 2] both collapse the swollen polymer gels. The gel contracted by NaCl reswells…

  2. Short communication: Effect of storage temperature on the solubility of milk protein concentrate 80 (MPC80) treated with NaCl or KCl.

    PubMed

    Sikand, V; Tong, P S; Walker, J; Wang, T; Rodriguez-Saona, L E

    2016-03-01

    A previous study in our laboratory showed that addition of 150 mM NaCl or KCl into diafiltration water improved the solubility of freshly made milk protein concentrate 80 (MPC80). In the present study, the objectives were (1) to evaluate the solubility of NaCl- or KCl-treated MPC80 samples kept at varying temperatures and then stored for extensive periods at room temperature (21 °C ± 1 °C); and (2) to determine if MPC80 samples stored at different temperatures and protein conformation can be grouped or categorized together. Freshly manufactured MPC80 samples were untreated (control), processed with NaCl, or processed with KCl. One set of sample bags was stored at 4 °C; second and third sets of bags were kept at 25 °C and 55 °C for 1 mo (31 d) and then transferred to room temperature (21 °C ± 1 °C) storage conditions for 1 yr (365 d). Samples were tested for nitrogen solubility index (NSI) and for protein changes by Fourier-transform infrared (FTIR) spectroscopy. Analysis of variance results for NSI showed 2 significantly different groupings of MPC80 samples. The more soluble group contained samples treated with NaCl or KCl and stored at either 4 °C or 25 °C. These samples had mean NSI >97.5%. The less soluble groups contained all control samples, regardless of storage temperature, and NaCl- or KCl-treated samples stored at 55 °C. These samples had mean NSI from 39.5 to 58%. Within each of these groups (more soluble and less soluble), no significant differences in solubility were detected. Pattern recognition analysis by soft independent modeling of class analogy (SIMCA) was used to assess protein changes during storage by monitoring the amide I and amide II (1,700(-1) to 1,300 cm(-1)) regions. Dominant bands were observed at 1,385 cm(-1) for control, 1,551 cm(-1) for KCl-treated samples, and 1,694 cm(-1) for NaCl-treated samples. Moreover, SIMCA clustered the MPC80 samples stored at 4 °C separately from samples stored at 25 °C and 55 °C. This study

  3. A proposal to improve e-waste collection efficiency in urban mining: Container loading and vehicle routing problems - A case study of Poland.

    PubMed

    Nowakowski, Piotr

    2017-02-01

    Waste electrical and electronic equipment (WEEE), also known as e-waste, is one of the most important waste streams with high recycling potential. Materials used in these products are valuable, but some of them are hazardous. The urban mining approach attempts to recycle as many materials as possible, so efficiency in collection is vital. There are two main methods used to collect WEEE: stationary and mobile, each with different variants. The responsibility of WEEE organizations and waste collection companies is to assure all resources required for these activities - bins, containers, collection vehicles and staff - are available, taking into account cost minimization. Therefore, it is necessary to correctly determine the capacity of containers and number of collection vehicles for an area where WEEE need to be collected. There are two main problems encountered in collection, storage and transportation of WEEE: container loading problems and vehicle routing problems. In this study, an adaptation of these two models for packing and collecting WEEE is proposed, along with a practical implementation plan designed to be useful for collection companies' guidelines for container loading and route optimization. The solutions are presented in the case studies of real-world conditions for WEEE collection companies in Poland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of ENaC Modulators on Rat Neural Responses to NaCl

    PubMed Central

    Mummalaneni, Shobha; Qian, Jie; Phan, Tam-Hao T.; Rhyu, Mee-Ra; Heck, Gerard L.; DeSimone, John A.; Lyall, Vijay

    2014-01-01

    The effects of small molecule ENaC activators N,N,N-trimethyl-2-((4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanoyl)oxy)ethanaminium iodide (Compound 1) and N-(2-hydroxyethyl)-4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanamide (Compound 2), were tested on the benzamil (Bz)-sensitive NaCl chorda tympani (CT) taste nerve response under open-circuit conditions and under ±60 mV applied lingual voltage-clamp, and compared with the effects of known physiological activators (8-CPT-cAMP, BAPTA-AM, and alkaline pH), and an inhibitor (ionomycin+Ca2+) of ENaC. The NaCl CT response was enhanced at −60 mV and suppressed at +60 mV. In every case the CT response (r) versus voltage (V) curve was linear. All ENaC activators increased the open-circuit response (ro) and the voltage sensitivity (κ, negative of the slope of the r versus V curve) and ionomycin+Ca2+ decreased ro and κ to zero. Compound 1 and Compound 2 expressed a sigmoidal-saturating function of concentration (0.25–1 mM) with a half-maximal response concentration (k) of 0.49 and 1.05 mM, respectively. Following treatment with 1 mM Compound 1, 8-CPT-cAMP, BAPTA-AM and pH 10.3, the Bz-sensitive NaCl CT response to 100 mM NaCl was enhanced and was equivalent to the Bz-sensitive CT response to 300 mM NaCl. Plots of κ versus ro in the absence and presence of the activators or the inhibitor were linear, suggesting that changes in the affinity of Na+ for ENaC under different conditions are fully compensated by changes in the apical membrane potential difference, and that the observed changes in the Bz-sensitive NaCl CT response arise exclusively from changes in the maximum CT response (rm). The results further suggest that the agonists enhance and ionomycin+Ca2+ decreases ENaC function by increasing or decreasing the rate of release of Na+ from its ENaC binding site to the receptor cell cytosol, respectively. Irrespective of agonist type, the Bz-sensitive NaCl CT response demonstrated a maximum response enhancement

  5. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  6. The Effect of COD Concentration Containing Leaves Litter, Canteen and Composite Waste to the Performance of Solid Phase Microbial Fuel Cell (SMFC)

    NASA Astrophysics Data System (ADS)

    Samudro, Ganjar; Syafrudin; Nugraha, Winardi Dwi; Sutrisno, Endro; Priyambada, Ika Bagus; Muthi'ah, Hilma; Sinaga, Glory Natalia; Hakiem, Rahmat Tubagus

    2018-02-01

    This research is conducted to analyze and determine the optimum of COD concentration containing leaves litter, canteen and composite waste to power density and COD removal efficiency as the indicator of SMFC performance. COD as the one of organic matter parameters perform as substrate, nutrient and dominating the whole process of SMFC. Leaves litter and canteen based food waste were obtained from TPST UNDIP in Semarang and treated in SMFC reactor. Its reactor was designed 2 liter volume and equipped by homemade graphene electrodes that were utilized at the surface of organic waste as cathode and in a half of reactor height as anode. COD concentration was initially characterized and became variations of initial COD concentration. Waste volume was maintained 2/3 of volume of reactor. Bacteria sources as the important process factor in SMFC were obtained from river sediment which contain bacteroides and exoelectrogenic bacteria. Temperature and pH were not maintained while power density and COD concentration were periodically observed and measured during 44 days. The results showed that power density up to 4 mW/m2 and COD removal efficiency performance up to 70% were reached by leaves litter, canteen and composite waste at days 11 up to days 44 days. Leaves litter contain 16,567 mg COD/l providing higher COD removal efficiency reached approximately 87.67%, more stable power density reached approximately 4.71 mW/m2, and faster optimum time in the third day than canteen based food waste and composite waste. High COD removal efficiency has not yet resulted in high power density.

  7. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOEpatents

    Pinson, Paul A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  8. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOEpatents

    Pinson, P.A.

    1998-02-24

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs.

  9. Redistribution of distal tubule Na+-Cl- cotransporter (NCC) in response to a high-salt diet.

    PubMed

    Sandberg, Monica B; Maunsbach, Arvid B; McDonough, Alicia A

    2006-08-01

    The distal convoluted tubule (DCT) apical Na(+)-Cl(-) cotransporter (NCC) is responsible for the reabsorption of 5-10% of filtered NaCl and is the target for thiazide diuretics. NCC abundance is increased during dietary NaCl restriction and by aldosterone and decreased during a high-salt (HS) diet and mineralocorticoid blockade. This study tested the hypothesis that subcellular distribution of NCC is also regulated in response to changes in dietary salt. Six-week-old Sprague-Dawley rats were fed a normal-salt diet (NS; 0.4% NaCl) for 3 wk, then switched to a HS diet (4% NaCl) for 3 wk or a low-salt diet (LS; 0.07% NaCl) for 1 wk. Under anesthesia, kidneys were excised, renal cortex was dissected, and NCC was analyzed with specific antibodies after either 1) density gradient centrifugation followed by immunoblotting or 2) fixation followed by immunoelectron microscopy. The HS diet decreased NCC abundance to 0.50 +/- 0.10 of levels in LS diet (1.00 +/- 0.23). The HS diet also caused a redistribution of NCC from low to higher density membranes. Immunoelectron microscopy revealed that NCC resides predominantly in the apical membrane in rats fed the LS diet and increases in subapical vesicles in rats fed the HS diet. In conclusion, a HS diet provokes a rapid and persistent redistribution of NCC from apical to subapical membranes, a mechanism that would facilitate a homeostatic decrease in NaCl reabsorption in the DCT to compensate for increased dietary salt.

  10. Different blocking effects of HgCl2 and NaCl on aquaporins of pepper plants.

    PubMed

    Martínez-Ballesta, M Carmen; Diaz, Rafael; Martínez, Vicente; Carvajal, Micaela

    2003-12-01

    In this study we have compared the short-term effects of both NaCl and HgCl2 on aquaporins of Capsicum annuum L. plants, in order to determine whether or not they are similar. Stomatal conductance, turgor, root hydraulic conductance and water status were measured after 0.5, 2, 4 and 6 h of NaCl (60 mmol/L) or HgCl2 (50 micromol/L) treatment. When 60 mmol/L NaCl was added to the nutrient solution, a large decrease in stomatal conductance was observed after 2 h. However, when HgCl2 (50 micromol/L) was added, the decrease occurred after 4 h. The number of open stomata closed was always lower in plants treated with HgCl2 than in plants treated with NaCl. The water content of the Hg(2+)-treated plants was decreased, compared with controls and NaCl-treated. The root hydraulic conductance decreased after HgCl2 and NaCl treatment plants. Turgor of leaf epidermal cells was greatly reduced in plants treated with HgCl2, but remained constant in the NaCl treatment, compared with control plants. The fact that the stomatal conductance was reduced more rapidly after NaCl addition, followed by the stomatal closure, and that both water content and turgor did not differ from the control suggests that in NaCl-treated plants there must be a signal moving from root to shoot. Therefore, the control of plant homeostasis through a combined regulation of root and stomatal exchanges may be dependent on aquaporin regulation.

  11. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF CUTTING AND WELDING EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot program to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so in an effort to assist these manufacturers Waste Minimization Assessment Cent...

  12. Cinnamaldehyde inhibits phenylalanine ammonia-lyase and enzymatic browning of cut lettuce.

    PubMed

    Fujita, Narumi; Tanaka, Eriko; Murata, Masatsune

    2006-03-01

    Stored cut lettuce gradually turns brown on the cut section after several days of storage, because cutting induces phenylalanine ammonia-lyase (PAL) activity, the biosynthesis of polyphenol is promoted, and the polyphenols are oxidized by polyphenol oxidase. In this study, we screened for inhibitors of PAL derived from fermented broths of microbes and from foods and found that a cinnamon extract definitely inhibited PLA of cut lettuce. An active component was isolated by chromatographic procedures and was identified as trans-cinnamaldehyde. Browning of cut lettuce immersed in a solution containing trans-cinnamaldehyde was definitely repressed.

  13. Gustatory Plasticity in "C. elegans" Involves Integration of Negative Cues and NaCl Taste Mediated by Serotonin, Dopamine, and Glutamate

    ERIC Educational Resources Information Center

    Hukema, Renate K.; Rademakers, Suzanne; Jansen, Gert

    2008-01-01

    While naive "Caenorhabditis elegans" individuals are attracted to 0.1-200 mM NaCl, they become strongly repelled by these NaCl concentrations after prolonged exposure to 100 mM NaCl. We call this behavior gustatory plasticity. Here, we show that "C. elegans" displays avoidance of low NaCl concentrations only when pre-exposure to NaCl is combined…

  14. Interaction of chromatin with NaCl and MgCl2. Solubility and binding studies, transition to and characterization of the higher-order structure.

    PubMed

    Ausio, J; Borochov, N; Seger, D; Eisenberg, H

    1984-08-15

    Chicken erythrocyte chromatin containing histones H1 and H5 was carefully separated into a number of well-characterized fractions. A distinction could be made between chromatin insoluble in NaCl above about 80 mM, and chromatin soluble at all NaCl concentrations. Both chromatin forms were indistinguishable electrophoretically and both underwent the transition from the low salt "10 nm" coil to the "30 nm" higher-order structure solenoid by either raising the MgCl2 concentration to about 0.3 mM or the NaCl concentration to about 75 mM. The transitions were examined in detail by elastic light-scattering procedures. It could be shown that the 10 nm form is a flexible coil. For the 30 nm solenoid, the assumption of a rigid cylindrical structure was in good agreement with 5.7 nucleosomes per helical turn. However, disagreement of calculated frictional parameters with values derived from quasielastic light-scattering and sedimentation introduced the possibility that the higher-order structure, under these conditions, is more extended, flexible, or perhaps a mixture of structures. Values for density and refractive index increments of chromatin are also given. To understand the interaction of chromatin with NaCl and with MgCl2, a number of experiments were undertaken to study solubility, precipitation, conformational transitions and binding of ions over a wide range of experimental conditions, including chromatin concentration.

  15. Reduction of 68Ge activity containing liquid waste from 68Ga PET chemistry in nuclear medicine and radiopharmacy by solidification.

    PubMed

    de Blois, Erik; Chan, Ho Sze; Roy, Kamalika; Krenning, Eric P; Breeman, Wouter A P

    PET with 68 Ga from the TiO 2 - or SnO 2 - based 68 Ge/ 68 Ga generators is of increasing interest for PET imaging in nuclear medicine. In general, radionuclidic purity ( 68 Ge vs. 68 Ga activity) of the eluate of these generators varies between 0.01 and 0.001%. Liquid waste containing low amounts of 68 Ge activity is produced by eluting the 68 Ge/ 68 Ga generators and residues from PET chemistry. Since clearance level of 68 Ge activity in waste may not exceed 10 Bq/g, as stated by European Directive 96/29/EURATOM, our purpose was to reduce 68 Ge activity in solution from >10 kBq/g to <10 Bq/g; which implies the solution can be discarded as regular waste. Most efficient method to reduce the 68 Ge activity is by sorption of TiO 2 or Fe 2 O 3 and subsequent centrifugation. The required 10 Bq per mL level of 68 Ge activity in waste was reached by Fe 2 O 3 logarithmically, whereas with TiO 2 asymptotically. The procedure with Fe 2 O 3 eliminates ≥90% of the 68 Ge activity per treatment. Eventually, to simplify the processing a recirculation system was used to investigate 68 Ge activity sorption on TiO 2 , Fe 2 O 3 or Zeolite. Zeolite was introduced for its high sorption at low pH, therefore 68 Ge activity containing waste could directly be used without further interventions. 68 Ge activity containing liquid waste at different HCl concentrations (0.05-1.0 M HCl), was recirculated at 1 mL/min. With Zeolite in the recirculation system, 68 Ge activity showed highest sorption.

  16. Polymer-Cement Composites Containing Waste Perlite Powder

    PubMed Central

    Łukowski, Paweł

    2016-01-01

    Polymer-cement composites (PCCs) are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction. PMID:28773961

  17. Drill cuttings mount formation study

    NASA Astrophysics Data System (ADS)

    Teh, Su Yean; Koh, Hock Lye

    2014-07-01

    Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.

  18. Targeted Health Assessment for Wastes Contained at the Niagara Falls Storage Site to Guide Planning for Remedial Action Alternatives - 13428

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busse, John; Keil, Karen; Staten, Jane

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) is evaluating potential remedial alternatives at the 191-acre Niagara Falls Storage Site (NFSS) in Lewiston, New York, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) brought radioactive wastes to the site during the 1940's and 1950's, and the U.S. Department of Energy (US DOE) consolidated these wastes into a 10-acre interim waste containment structure (IWCS) in the southwest portion of the site during the 1980's. The USACE is evaluating remedial alternatives for radioactive waste contained within the IWCS at the NFSS undermore » the Feasibility Study phase of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process. A preliminary evaluation of the IWCS has been conducted to assess potential airborne releases associated with uncovered wastes, particularly during waste excavation, as well as direct exposures to uncovered wastes. Key technical issues for this assessment include: (1) limitations in waste characterization data; (2) representative receptors and exposure routes; (3) estimates of contaminant emissions at an early stage of the evaluation process; (4) consideration of candidate meteorological data and air dispersion modeling approaches; and (5) estimates of health effects from potential exposures to both radionuclides and chemicals that account for recent updates of exposure and toxicity factors. Results of this preliminary health risk assessment indicate if the wastes were uncovered and someone stayed at the IWCS for a number of days to weeks, substantial doses and serious health effects could be incurred. Current controls prevent such exposures, and the controls that would be applied to protect onsite workers during remedial action at the IWCS would also effectively protect the public nearby. This evaluation provides framing context for the upcoming development and detailed evaluation of

  19. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  20. Development of a testing method for asbestos fibers in treated materials of asbestos containing wastes by transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Takashi, E-mail: tyama@nies.go.jp; Kida, Akiko; Noma, Yukio

    Highlights: • A high sensitive and selective testing method for asbestos in treated materials of asbestos containing wastes was developed. • Asbestos can be determined at a limits are a few million fibers per gram and a few μg g{sup −1}. • High temperature melting treatment samples were determined by this method. Asbestos fiber concentration were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup 6} g{sup −1}. - Abstract: Appropriate treatment of asbestos-containing wastes is a significant problem. In Japan, the inertization of asbestos-containing wastes based on new treatment processes approvedmore » by the Minister of the Environment is promoted. A highly sensitive method for testing asbestos fibers in inertized materials is required so that these processes can be approved. We developed a method in which fibers from milled treated materials are extracted in water by shaking, and are counted and identified by transmission electron microscopy. Evaluation of this method by using asbestos standards and simulated slag samples confirmed that the quantitation limits are a few million fibers per gram and a few μg/g in a sample of 50 mg per filter. We used this method to assay asbestos fibers in slag samples produced by high-temperature melting of asbestos-containing wastes. Fiber concentrations were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup −6} f/g. Because the evaluation of treated materials by TEM is difficult owing to the limited amount of sample observable, this testing method should be used in conjunction with bulk analytical methods for sure evaluation of treated materials.« less

  1. Effects of fibre type and structure of longissimus lumborum (Ll), biceps femoris (Bf) and semimembranosus (Sm) deer muscles salting with different Nacl addition on proteolysis index and texture of dry-cured meats.

    PubMed

    Żochowska-Kujawska, J

    2016-11-01

    The aim of the present study was to describe the effect of fibre type and structure as well as NaCl level on the proteolysis index and texture parameters observed in dry-cured meats produced from individual deer muscles. The biceps femoris, semimembranosus and longissimus lumborum muscles were cut from deer main elements, shaped into blocks by trimming off the edges, cured by adding 4, 6 and 8% of salt (w/w) and dried in a ripening chamber for 29days. The results indicated that deer dry-cured muscles with higher percentage of red fibres (type I) showed higher texture parameters, proteolysis index as well as lower moisture losses than muscles with higher amount of white fibres (type IIB). Dry-cured deer muscles with lower NaCl content showed higher values of proteolysis index and lower hardness, cohesiveness, springiness, and chewiness, as well as lower changes in structure elements. Copyright © 2016. Published by Elsevier Ltd.

  2. Automated internal pipe cutting device

    DOEpatents

    Godlewski, William J.; Haffke, Gary S.; Purvis, Dale; Bashar, Ronald W.; Jones, Stewart D.; Moretti, Jr., Henry; Pimentel, James

    2003-01-21

    The invention is a remotely controlled internal pipe cutting device primarily used for cutting pipes where the outside of the pipe is inaccessible at the line where the cut is to be made. The device includes an axial ram within a rotational cylinder which is enclosed in a housing. The housing is adapted for attachment to an open end of the pipe and for supporting the ram and cylinder in cantilever fashion within the pipe. A radially movable cutter, preferably a plasma arc torch, is attached to the distal end of the ram. A drive mechanism, containing motors and mechanical hardware for operating the ram and cylinder, is attached to the proximal end of the housing. The ram and cylinder provide for moving the cutter axially and circumferentially, and a cable assembly attached to a remote motor provide for the movement of the cutter radially, within the pipe. The control system can be adjusted and operated remotely to control the position and movement of the cutter to obtain the desired cut. The control system can also provide automatic standoff control for a plasma arc torch.

  3. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed,more » include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.« less

  4. Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almond, P. M.; Stefanko, D. B.; Langton, C. A.

    2013-03-01

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO 4 - in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases [Shuh, et al., 1994, Shuh, et al., 2000, Shuh, et al., 2003]. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O 4 -, which is very soluble. Consequently the rate of technetium oxidation front advancementmore » into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate was used as a non-radioactive surrogate for pertechnetate in simulated waste form samples. Depth discrete subsamples were cut from material exposed to Savannah River Site (SRS) field cured conditions. The subsamples were prepared and analyzed for both reduction capacity and chromium leachability. Results from field-cured samples indicate that the depth at which leachable chromium was detected advanced further into the sample exposed for 302 days compared to the sample exposed to air for 118 days (at least 50 mm compared to at least 20 mm). Data for only two exposure time intervals is currently available. Data for additional exposure times are required to develop an equation for the oxidation front progression. Reduction capacity measurements (per the Angus-Glasser method, which is a measurement of the ability of a material to chemically reduce Ce(IV) to Ce(III) in solution) performed on depth

  5. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    NASA Astrophysics Data System (ADS)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  6. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.

    PubMed

    Lü, Y J; Wei, B

    2006-10-14

    The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions.

  7. Commissioning a hobby cutting device for radiochromic film preparation.

    PubMed

    Zolfaghari, Somayeh; Francis, Kirby E; Kairn, Tanya; Crowe, Scott B

    2017-06-01

    In addition to a high spatial resolution and well characterised dose response, one of the major advantages of radiochromic film as a dosimeter is that sheets of film can be cut into pieces suitable for use as calibration films, and for in vivo and phantom measurements. The cutting of film is typically done using scissors or a guillotine, and this process can be time-consuming, limited in precision, requires extensive handling and does not allow holes to be cut from the film without cutting from an existing edge. This study investigated the use of a Brother ScanNCut hobby cutting system for EBT3 film preparation. The optimal operating parameters (blade size, pressure, speed) that resulted in precise cuts with minimal delamination at cut edges were identified using test cutting patterns. These parameters were then used to cut a large film insert for a stereotactic head phantom for comparison against an insert cut with scissors. While the hobby cutting system caused a wider region of delamination at the film edge (1.8 mm) compared to scissors (1 mm), the hobby cutting system was found to be able to produce reproducible cuts more efficiently and more accurately than scissors. The use of the hobby cutting system is recommended for complex phantom inserts (containing sharp corners or holes for alignment rods) or in situations where large numbers of film pieces need to be prepared.

  8. Core Cutting Test with Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Osman Yilmaz, Ali

    2017-12-01

    Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.

  9. Control of water erosion and sediment in open cut coal mines in tropical areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, T.; Nugraha, C.; Matsui, K.

    2005-07-01

    The purpose is to reduce the environmental impacts from open cut mining in tropical areas, such as Indonesia and Vietnam. Research conducted on methods for the control of water erosion and sediment from open cut coal mines is described. Data were collected on climate and weathering in tropical areas, mechanism of water erosion and sedimentation, characteristics of rocks in coal measures under wet conditions, water management at pits and haul roads and ramps, and construction of waste dumps and water management. The results will be applied to the optimum control and management of erosion and sediments in open cut mining.more » 6 refs., 8 figs.« less

  10. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  11. Interaction of stress and dietary NaCl intake in hypertension: renal neural mechanisms.

    PubMed

    DiBona, Gerald F

    2013-10-01

    A synthesizing concept of the development of primary hypertension is that it arises from an interaction of genetic and environmental factors. Of the environmental factors, dietary NaCl intake and mental stress are among the most thoroughly investigated. This review will focus on the interaction between genetic predisposition and the environmental influences of dietary NaCl intake and mental stress in the development of primary hypertension.

  12. [Health care waste management of potentially infectious medical waste by healthcare professionals in a private medical practice: a study of practices].

    PubMed

    Brunot, Alain; Thompson, Céline

    2010-01-01

    A cross-sectional study was conducted with a sample of 278 health professionals (GPs and specialists, dentists, physical therapists and nurses) in a private medical practice in Paris to study the medical waste management practices related to the production and disposal of potentially hazardous health care waste. With the exception of physical therapists, most professionals produced medical waste (72% to 96,2% according to occupation), with a monthly median of 3 liters (inter-quartile range 1-15 liters). All sharp objects and needles were separated and 91% of them eliminated via a specific process for that sector. These percentages were respectively 84% and 69% concerning contaminated waste that was neither needles or used for cutting. 48% of the professionals reported the existence of documents that could track the disposal of their medical waste. To improve practice, professionals cited collection on-site at the office (74%) and reliability of the contracted service provider to collect the waste (59%). The study showed that health professionals need information on the regulations regarding potentially infectious medical waste, in particular on the traceability of its elimination. They also noted the lack of clarity and precision with regard to the definition of risk of infection: 31,7% of professionals only declare the production of sharp or cutting waste without having specified criteria for risk of infection.

  13. Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution.

    PubMed

    Hadzima, Branislav; Mhaede, Mansour; Pastorek, Filip

    2014-05-01

    Magnesium alloys suffer from their high reactivity in common environments. Protective layers are widely created on the surface of magnesium alloys to improve their corrosion resistance. This article evaluates the influence of a calcium-phosphate layer on the electrochemical characteristics of AZ31 magnesium alloy in 0.9 % NaCl solution. The calcium phosphate (CaP) layer was electrochemically deposited in a solution containing 0.1 M Ca(NO3)2, 0.06 M NH4H2PO4 and 10 ml l(-1) of H2O2. The formed surface layer was composed mainly of brushite [(dicalcium phosphate dihidrate (DCPD)] as proved by energy-dispersive X-ray analysis. The surface morphology was observed by scanning electron microscopy. Immersion test was performed in order to observe degradation of the calcium phosphatized surfaces. The influence of the phosphate layer on the electrochemical characteristics of AZ31, in 0.9 % NaCl solution, was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy. The obtained results were analysed by the Tafel-extrapolation method and equivalent circuits method. The results showed that the polarization resistance of the DCPD-coated surface is about 25 times higher than that of non-coated surface. The CaP electro-deposition process increased the activation energy of corrosion process.

  14. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  15. Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete.

    PubMed

    Sua-iam, Gritsada; Makul, Natt

    2013-10-15

    For several decades, cathode ray tubes (CRTs) were the primary display component of televisions and computers. The CRT glass envelope contains sufficient levels of lead oxide (PbO) to be considered hazardous, and there is a need for effective methods of permanently encapsulating this material during waste disposal. We examined the effect of adding limestone powder (LS) on the fresh and cured properties of self-compacting concrete (SCC) mixtures containing waste CRT glass. The SCC mixtures were prepared using Type 1 Portland cement at a constant cement content of 600 kg/m(3) and a water-to-cement ratio (w/c) of 0.38. CRT glass waste cullet was blended with river sand in proportions of 20 or 40% by weight. To suppress potential viscosity effects limestone powder was added at levels of 5, 10, or 15% by weight. The slump flow time, slump flow diameter, V-funnel flow time, Marsh cone flow time, and setting time of the fresh concrete were tested, as well as the compressive strength and ultrasonic pulse velocity of the hardened concrete. Addition of limestone powder improved the fresh and hardened properties. Pb leaching levels from the cured concrete were within US EPA allowable limits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The containment of toxic wastes: I. Long term metal movement in soils over a covered metalliferous waste heap at Parc lead-zinc mine, North Wales.

    PubMed

    Shu, J; Bradshaw, A D

    1995-01-01

    In order to stabilise and contain a toxic metalliferous waste heap at Parc Mine, North Wales, it was covered with 30-40 cm layer of quarry waste in 1977-1978, and sown with a grass/clover seed mixture. This study has examined subsequent metal movement in the cover material and its effect on vegetation. The results, especially when compared with previous observations, give no evidence of upward migration of metals by capillarity in the cover material. Sideways movement of leachate, however, appears to be carrying the metals into the cover material on the sloping sides, giving rise to increasing concentrations of heavy metals in the vegetation and dieback in some places. Root growth on the flat top of the heap is greater than on the slope, but the roots have not penetrated the waste and the contents of Pb, Zn and Cd in surface vegetation remain low. Surface covering of toxic waste with coarse materials restricting capillary rise is therefore a valid reclamation technique so long as lateral movement of toxic leachate can be controlled.

  17. USEPA'S RESEARCH PROGRAM ON REMEDIATION AND CONTAINMENT OF ARSENIC AND MERCURY IN SOILS, INDUSTRIAL WASTES, AND GROUNDWATER

    EPA Science Inventory

    In the U.S. and around the world, mercury and arsenic contaminated soils, industrial wastes, and groundwater are difficult to effectively and cheaply remediate and contain. Mercury is a serious health concern and has been identified as a contaminant in the air, soil, sediment, su...

  18. Clinically lean; "cutting the crap".

    PubMed

    Caldwell, G

    2012-01-01

    Proponents of Lean Philosophy believe that successful businesses must reduce waste in working time and resources to a minimum, and maximise their use in productive work. The productive work of the Acute Medical Unit is to provide effective clinical management to a daily cohort of acutely ill patients. Many Clinicians are cynical about Lean. In this article, Dr Caldwell discusses how many clinicians complain of too much crap in the workplace, which gets in the way of swift, safe high quality clinical care. He argues that "Cutting the Crap" in the Acute Medical Unit is entirely consistent with Lean approaches to management of complex systems.

  19. Leaching behaviour of hazardous demolition waste.

    PubMed

    Roussat, Nicolas; Méhu, Jacques; Abdelghafour, Mohamed; Brula, Pascal

    2008-11-01

    Demolition wastes are generally disposed of in unlined landfills for inert waste. However, demolition wastes are not just inert wastes. Indeed, a small fraction of demolition waste contains components that are hazardous to human health and the environment, e.g., lead-based paint, mercury-contained in fluorescent lamps, treated wood, and asbestos. The objective of this study is to evaluate the release potential of pollutants contained in these hazardous components when they are mixed with inert wastes in unlined landfills. After identification of the different building products which can contain hazardous elements and which can be potentially pollutant in landfill scenario, we performed leaching tests using three different lysimeters: one lysimeter containing only inert wastes and two lysimeters containing inert wastes mixed with hazardous demolition wastes. The leachates from these lysimeters were analysed (heavy metals, chlorides, sulphates fluoride, DOC (Dissolved Organic Carbon), phenol index, and PAH). Finally, we compared concentrations and cumulative releases of elements in leachates with the limits values of European regulation for the acceptance of inert wastes at landfill. Results indicate that limit values are exceeded for some elements. We also performed a percolation column test with only demolition hazardous wastes to evaluate the specific contribution of these wastes in the observed releases.

  20. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Fivemore » priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs.« less

  1. [Hygienic requirements for transportation of industrial waste and consumption residues].

    PubMed

    Metel'skiĭ, S V; Sin'kova, N V

    2009-01-01

    All wishing legal persons and individual entrepreneurs are presently engaged in garbage disposal Sanitary-and-epidemiological examination of activities in transportation of waste is complicated by that the existing sanitary regulations lack no requirements for storage, repair, washing, sanitization of waste-carrying transport, particularly epidemiologically dangerous (domestic, food, and biological waste, animal excreta, cut hair, etc.).

  2. Corrosion Properties of SAC305 Solder in Different Solution of HCl and NaCl

    NASA Astrophysics Data System (ADS)

    Nurwahida, M. Z.; Mukridz, M. M.; Ahmad, A. M.; Muhammad, F. M. N.

    2018-03-01

    Potentiodynamic polarization was used to studied the corrosion properties of SAC305 solder in different solution of 1.0 M HCl and 3.5 wt.% NaCl using the same scanning rate of 1.0 mV/s. The polarization curves indicated that corrosion in NaCl was less severe than in HCl solution based on corrosion current and passivation behavior obtained. Morphology and phases obtained after corrosion using SEM and XRD were analyzed. Microstructure analysis shows the present of compact corrosion product with presence of larger flake for polarization in NaCl compared to HCl. Phases present in XRD analysis confirmed the present of SnO and SnO2 corrosion product for sample from both solutions.

  3. NaCl stress impact on the key enzymes in glycolysis from Lactobacillus bulgaricus during freeze-drying.

    PubMed

    Li, Chun; Sun, Jinwei; Qi, Xiaoxi; Liu, Libo

    2015-01-01

    The viability of Lactobacillus bulgaricus in freeze-drying is of significant commercial interest to dairy industries. In the study, L.bulgaricus demonstrated a significantly improved (p < 0.05) survival rate during freeze-drying when subjected to a pre-stressed period under the conditions of 2% (w/v) NaCl for 2 h in the late growth phase. The main energy source for the life activity of lactic acid bacteria is related to the glycolytic pathway. To investigate the phenomenon of this stress-related viability improvement in L. bulgaricus, the activities and corresponding genes of key enzymes in glycolysis during 2% NaCl stress were studied. NaCl stress significantly enhanced (p < 0.05) glucose utilization. The activities of glycolytic enzymes (phosphofructokinase, pyruvate kinase, and lactate dehydrogenase) decreased during freeze-drying, and NaCl stress were found to improve activities of these enzymes before and after freeze-drying. However, a transcriptional analysis of the corresponding genes suggested that the effect of NaCl stress on the expression of the pfk2 gene was not obvious. The increased survival of freeze-dried cells of L. bulgaricus under NaCl stress might be due to changes in only the activity or translation level of these enzymes in different environmental conditions but have no relation to their mRNA transcription level.

  4. Heterogeneous Ice Nucleation Ability of NaCl and Sea Salt Aerosol Particles at Cirrus Temperatures

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Kaufmann, Julia; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Ullrich, Romy; Leisner, Thomas

    2018-03-01

    In situ measurements of the composition of heterogeneous cirrus ice cloud residuals have indicated a substantial contribution of sea salt in sampling regions above the ocean. We have investigated the heterogeneous ice nucleation ability of sodium chloride (NaCl) and sea salt aerosol (SSA) particles at cirrus cloud temperatures between 235 and 200 K in the Aerosol Interaction and Dynamics in the Atmosphere aerosol and cloud chamber. Effloresced NaCl particles were found to act as ice nucleating particles in the deposition nucleation mode at temperatures below about 225 K, with freezing onsets in terms of the ice saturation ratio, Sice, between 1.28 and 1.40. Above 225 K, the crystalline NaCl particles deliquesced and nucleated ice homogeneously. The heterogeneous ice nucleation efficiency was rather similar for the two crystalline forms of NaCl (anhydrous NaCl and NaCl dihydrate). Mixed-phase (solid/liquid) SSA particles were found to act as ice nucleating particles in the immersion freezing mode at temperatures below about 220 K, with freezing onsets in terms of Sice between 1.24 and 1.42. Above 220 K, the SSA particles fully deliquesced and nucleated ice homogeneously. Ice nucleation active surface site densities of the SSA particles were found to be in the range between 1.0 · 1010 and 1.0 · 1011 m-2 at T < 220 K. These values are of the same order of magnitude as ice nucleation active surface site densities recently determined for desert dust, suggesting a potential contribution of SSA particles to low-temperature heterogeneous ice nucleation in the atmosphere.

  5. Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.

    PubMed

    Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2016-01-01

    Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (P<0.05). Our study demonstrated that in UKA, cutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  7. Girdling and Applying Chemicals Promote Rapid Rooting of Sycamore Cuttings

    Treesearch

    Robert C. Hare

    1975-01-01

    Shoots of 6- and 13-year-old sycamore (Platanus occidentalis L.) were girdled and treated with rooting powder 4 weeks before cuttings were taken. The powder, which contained auxins, sucrose, and cap tan, was also applied basally to nongirdled cuttings immediately before iwertion in a rooting medium. Thirteen days later, 100 percent of the...

  8. Gaseous emissions from the combustion of a waste mixture containing a high concentration of N2O.

    PubMed

    Dong, Changqing; Yang, Yongping; Zhang, Junjiao; Lu, Xuefeng

    2009-01-01

    This paper is focused on reducing the emissions from the combustion of a waste mixture containing a high concentration of N2O. A rate model and an equilibrium model were used to predict gaseous emissions from the combustion of the mixture. The influences of temperature and methane were considered, and the experimental research was carried out in a tabular reactor and a pilot combustion furnace. The results showed that for the waste mixture, the combustion temperature should be in the range of 950-1100 degrees C and the gas residence time should be 2s or higher to reduce emissions.

  9. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and...

  10. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and...

  11. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste...

  12. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste...

  13. Effects of high NaCl diet on arterial pressure in Sprague-Dawley rats with hepatic and sinoaortic denervation.

    PubMed

    Gao, Shuang; Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu

    2005-08-01

    The Na(+) receptor that exists in the hepatoportal region plays an important role in postprandial natriuresis and the regulation of Na(+) balance during NaCl load. Thus it would be considered that a dysfunction of the hepatic Na(+) receptor might result in the elevation of arterial pressure under a condition of high NaCl diet. To elucidate this hypothesis, arterial pressure was continuously measured during three weeks of high NaCl diet (8% NaCl) in four groups of rats: (i) intact rats, (ii) rats with hepatic denervation (HD), (iii) rats with sinoaortic denervation (SAD), and (iv) rats with SAD+HD. During a 1-week normal NaCl diet period, there was no difference in arterial pressure among the four groups. A high NaCl diet had no influence on arterial pressure in intact or HD rats; however, it significantly increased by 11 +/- 3 mmHg in SAD rats. The addition of HD to SAD had no synergistic effect on arterial pressure; i.e., in SAD+HD rats, mean arterial pressure increased by 13 +/- 1 mmHg. In conclusion, sinoaortic baroreceptor, but not hepatic Na(+) receptor, has a significant role in the long-term regulation of arterial pressure on a high NaCl diet.

  14. Characterization and identification of Na-Cl sources in ground water

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Hwang, H.-H.; Greenberg, S.E.; Krapac, I.G.; Landsberger, S.; O'Kelly, D. J.

    2006-01-01

    Elevated concentrations of sodium (Na+) and chloride (Cl -) in surface and ground water are common in the United States and other countries, and can serve as indicators of, or may constitute, a water quality problem. We have characterized the most prevalent natural and anthropogenic sources of Na+ and Cl- in ground water, primarily in Illinois, and explored techniques that could be used to identify their source. We considered seven potential sources that included agricultural chemicals, septic effluent, animal waste, municipal landfill leachate, sea water, basin brines, and road deicers. The halides Cl-, bromide (Br-), and iodide (I-) were useful indicators of the sources of Na+-Cl- contamination. Iodide enrichment (relative to Cl-) was greatest in precipitation, followed by uncontaminated soil water and ground water, and landfill leachate. The mass ratios of the halides among themselves, with total nitrogen (N), and with Na+ provided diagnostic methods for graphically distinguishing among sources of Na+ and Cl- in contaminated water. Cl/Br ratios relative to Cl- revealed a clear, although overlapping, separation of sample groups. Samples of landfill leachate and ground water known to be contaminated by leachate were enriched in I- and Br-; this provided an excellent fingerprint for identifying leachate contamination. In addition, total N, when plotted against Cl/Br ratios, successfully separated water contaminated by road salt from water contaminated by other sources. Copyright ?? 2005 National Ground Water Association.

  15. Halophytic plants as a component of a bioregenerative life support system for recycling of NaCl contained in human liquid waste.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    Currently, the closure of matter turnover is one of the urgent problems of bioregenerative life support system (BLSS) designing. The important aspect of the problem is involving of substances contained in liquid and solid exometabolites of humans inhabiting BLSS into intrasystem matter turnover. Recycling of Na+ and Cl- contained in human liquid exometabolites, i.e. urine is acknowledged to be among the main tasks of the matter turnover in BLSS. The ions excreted with urine may be returned to human organism with food. A way to allow this is including edible halophytic plants into the phototrophic compartment of BLSS. Halophytes are defined as plants which can grow on saline soils and produce high biomass under these conditions. Some halophytes can take up high quantities of Na+ and Cl- and accumulate the ions in the shoots or extrude them to leaf surface by means of salt glands. To allow Na+ and Cl- recycling through halophyte utilization, the following principal steps should be accomplished: (i) mineralization of the exometabolites by physicochemical methods; (ii) oxidation of ammonia formed during the exometabolite mineralization to nitrate by nitrifying bacteria, (iii) growing the halophyte on the nutrient solution prepared on the basis of the mineralized exometabolites, (iv) introducing the halophyte green biomass into human food. The present work is devoted to the following problems: (i) selection of a salt-accumulating/extruding halophytic plant suitable for Na+ and Cl- recycling in BLSS and (ii) parameter evaluation of a plant conveyor containing the halophytic plants at various ages. Halophytic plants selected for BLSS should meet the following criteria: (i) ability to grow under 24-hour-illumination, (ii) high productivity, (iii) ability to accumulate Na+ and Cl- in high quantities in shoots or to excrete salts to leaf surface, (iv) edibility, and (v) high nutritive value of the biomass. Relying on these criteria, salt-accumulating halophyte Salicornia

  16. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    NASA Astrophysics Data System (ADS)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  17. Synthesis of graphene nanoflakes by grinding natural graphite together with NaCl in a planetary ball mill

    NASA Astrophysics Data System (ADS)

    Alinejad, Babak; Mahmoodi, Korosh

    Natural graphite is a soft material that conventional milling methods fail to grind into nanoparticles. We found that adding NaCl into graphite during milling allows obtaining graphene nanoflakes of about 50×200nm2 as evidenced by Transmission Electron Microscope (TEM). NaCl particles are substantially brittle and harder than graphite, serving as milling agents by both helping to chop graphite into smaller pieces and preventing graphite particles from agglomeration. After milling, NaCl can be easily washed away by water. Probable mechanism for exfoliation of graphene during the modified ball milling may be explained by NaCl and graphene slipping or sliding against and over each other, exfoliating the graphene particles into thin layers.

  18. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    NASA Astrophysics Data System (ADS)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  19. Environmental security control of resource utilization of shale gas' drilling cuttings containing heavy metals.

    PubMed

    Wang, Chao-Qiang; Lin, Xiao-Yan; Zhang, Chun; Mei, Xu-Dong

    2017-09-01

    The overall objective of this research project was to investigate the heavy metals environmental security control of resource utilization of shale gas' drilling cuttings. To achieve this objective, we got through theoretical calculation and testing, ultimately and preliminarily determine the content of heavy metals pollutants, and compared with related standards at domestically and abroad. The results indicated that using the second Fike's law, the theoretical model of the release amount of heavy metal can be made, and the groundwater environmental risk as main point compared with soil. This study can play a role of standard guidance on environmental security control of drilling cuttings resource utilization by the exploration and development of shale gas in our country.

  20. 40 CFR 265.173 - Management of containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Management of containers. 265.173... DISPOSAL FACILITIES Use and Management of Containers § 265.173 Management of containers. (a) A container... waste. (b) A container holding hazardous waste must not be opened, handled, or stored in a manner which...

  1. Computerized Machine for Cutting Space Shuttle Thermal Tiles

    NASA Technical Reports Server (NTRS)

    Ramirez, Luis E.; Reuter, Lisa A.

    2009-01-01

    A report presents the concept of a machine aboard the space shuttle that would cut oversized thermal-tile blanks to precise sizes and shapes needed to replace tiles that were damaged or lost during ascent to orbit. The machine would include a computer-controlled jigsaw enclosed in a clear acrylic shell that would prevent escape of cutting debris. A vacuum motor would collect the debris into a reservoir and would hold a tile blank securely in place. A database stored in the computer would contain the unique shape and dimensions of every tile. Once a broken or missing tile was identified, its identification number would be entered into the computer, wherein the cutting pattern associated with that number would be retrieved from the database. A tile blank would be locked into a crib in the machine, the shell would be closed (proximity sensors would prevent activation of the machine while the shell was open), and a "cut" command would be sent from the computer. A blade would be moved around the crib like a plotter, cutting the tile to the required size and shape. Once the tile was cut, an astronaut would take a space walk for installation.

  2. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    PubMed Central

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  3. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  4. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  5. Effects of selective lingual gustatory deafferentation on suprathreshold taste intensity discrimination of NaCl in rats.

    PubMed

    Colbert, Connie L; Garcea, Mircea; Spector, Alan C

    2004-12-01

    In rats, chorda tympani nerve transection (CTX) greatly increases the detection threshold of sodium chloride (NaCl) and severely disrupts salt discriminability. Here it is shown that CTX has surprisingly little effect, if any, on suprathreshold intensity discrimination. Glossopharyngeal nerve transection (GLX), which has no reported effect on salt sensibility, also did not affect performance. Rats were tested in a 2-response, operant taste intensity discrimination task. Difference thresholds for CTX rats were only slightly higher (-0.15 log/10 unit) than those for GLX and sham-transected rats, when 0.05 M served as the standard, and did not significantly differ when 0.1 M NaCl was the standard. Although the perceived intensity of NaCl might be reduced by CTX, input from remaining taste nerves sufficiently maintains the relative discriminability of suprathreshold NaCl concentrations.

  6. Spread potential of binucleate Rhizoctonia from nursery propagation floors to trays containing azalea stem cuttings and sanitary control options

    USDA-ARS?s Scientific Manuscript database

    Binucelate Rhizoctonia sp. (BNR), the cause of web blight, can be spread on azalea stem cuttings into propagation houses, but can be eliminated from stems by submerging cuttings in 50°C water for 21 minutes. The overall objective was to evaluate risk of rooting cuttings in trays becoming contaminate...

  7. Testing Of Choiced Ceramics Cutting Tools At Irregular Interrupted Cut

    NASA Astrophysics Data System (ADS)

    Kyncl, Ladislav; Malotová, Šárka; Nováček, Pavel; Nicielnik, Henryk; Šoková, Dagmar; Hemžský, Pavel; Pitela, David; Holubjak, Jozef

    2015-12-01

    This article discusses the test of removable ceramic cutting inserts during machining irregular interrupted cut. Tests were performed on a lathe, with the preparation which simulated us the interrupted cut. By changing the number of plates mounted in a preparation it simulate us a regular or irregular interrupted cut. When with four plates it was regular interrupted cut, the remaining three variants were already irregular cut. It was examined whether it will have the irregular interrupted cutting effect on the insert and possibly how it will change life of inserts during irregular interrupted cut (variable delay between shocks).

  8. In-situ vitrification of waste materials

    DOEpatents

    Powell, James R.; Reich, Morris; Barletta, Robert

    1997-11-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed.

  9. A comparative study of functional properties of normal and wooden breast broiler chicken meat with NaCl addition.

    PubMed

    Xing, Tong; Zhao, Xue; Han, Minyi; Cai, Linlin; Deng, Shaolin; Zhou, Guanghong; Xu, Xinglian

    2017-09-01

    The selection of broilers for augmented growth rate and breast has brought about wooden-breast (WB) muscle abnormalities, which caused substantial economic losses. The objective of this study was to compare water holding capacity, water mobility and distribution, salt-soluble protein (SSP) content, and protein profiles of normal and WB chicken meat with different additions of NaCl. Thirty WB and 30 normal chicken breasts were selected from a deboning line of a major Chinese processing plant at 2 to 3 h post mortem. Two different meat batters were formulated to 150 mg/g meat protein and different NaCl contents (0%, 1%, 2%, 3%, and 4%). Results indicated that as NaCl contents increased, the cooking loss of meat batters decreased (P < 0.05). Increasing the NaCl content to 3% or more increased the solubility of myofibrillar protein and the extraction of SSPs, which resulted in the improving of cooking yield. Over a range of salt concentrations, normal and WB meat showed different protein profiles, with myosin heavy chain exhibiting a higher intensity at ≥3% salt level. Low-field nuclear magnetic resonance (LF-NMR)revealed an increased T22 and higher P22 in raw WB meat compared to normal meat (P < 0.05). Regarding the meat batters, WB meat batters had reduced T21 and lower immobilized water proportions at low NaCl contents (<2%). After heating, T2 shifted towards higher relaxation times with increasing NaCl contents in meat gels. Meat gels prepared from WB had a lower proportion of water within the myofibrillar protein matrix and a greater proportion of exuded bulk water at NaCl contents <3% (P < 0.05), while at higher NaCl contents the difference was eliminated, thus improving water retention capacity. In conclusion, for raw meat, meat batters and gels, water distribution and mobility of WB exhibited significant differences compared to normal meat. The addition of NaCl affected water mobility and distributions in meat batters, with a level of 3% NaCl eliminating the

  10. Characteristics of injury and recovery of net NO3- transport of barley seedlings from treatments of NaCl

    NASA Technical Reports Server (NTRS)

    Klobus, G.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The nature of the injury and recovery of nitrate uptake (net uptake) from NaCl stress in young barley (Hordeum vulgare L, var CM 72) seedlings was investigated. Nitrate uptake was inhibited rapidly by NaCl, within 1 minute after exposure to 200 millimolar NaCl. The duration of exposure to saline conditions determined the time of recovery of NO3- uptake from NaCl stress. Recovery was dependent on the presence of NO3- and was inhibited by cycloheximide, 6-methylpurine, and cerulenin, respective inhibitors of protein, RNA, and sterol/fatty acid synthesis. These inhibitors also prevented the induction of the NO3- uptake system in uninduced seedlings. Uninduced seedlings exhibited endogenous NO3- transport activity that appeared to be constitutive. This constitutive activity was also inhibited by NaCl. Recovery of constitutive NO3- uptake did not require the presence of NO3-.

  11. Fibre laser cutting stainless steel: Fluid dynamics and cut front morphology

    NASA Astrophysics Data System (ADS)

    Pocorni, Jetro; Powell, John; Deichsel, Eckard; Frostevarg, Jan; Kaplan, Alexander F. H.

    2017-01-01

    In this paper the morphology of the laser cut front generated by fibre lasers was investigated by observation of the 'frozen' cut front, additionally high speed imaging (HSI) was employed to study the fluid dynamics on the cut front while cutting. During laser cutting the morphology and flow properties of the melt film on the cut front affect cut quality parameters such as cut edge roughness and dross (residual melt attached to the bottom of the cut edge). HSI observation of melt flow down a laser cutting front using standard cutting parameters is experimentally problematic because the cut front is narrow and surrounded by the kerf walls. To compensate for this, artificial parameters are usually chosen to obtain wide cut fronts which are unrepresentative of the actual industrial process. This paper presents a new experimental cutting geometry which permits HSI of the laser cut front using standard, commercial parameters. These results suggest that the cut front produced when cutting medium section (10 mm thick) stainless steel with a fibre laser and a nitrogen assist gas is covered in humps which themselves are covered by a thin layer of liquid. HSI observation and theoretical analysis reveal that under these conditions the humps move down the cut front at an average speed of approximately 0.4 m/s while the covering liquid flows at an average speed of approximately 1.1 m/s, with an average melt depth at the bottom of the cut zone of approximately 0.17 mm.

  12. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure.

    PubMed

    Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D

    2017-09-15

    Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater

  13. Green route for the utilization of chrome shavings (chromium-containing solid waste) in tanning industry.

    PubMed

    Rao, Jonnalagadda Raghava; Thanikaivelan, Palanisamy; Sreeram, Kalarical Janardhanan; Nair, Balachandran Unni

    2002-03-15

    Chromium-containing wastes from various industrial sectors are under critical review. Leather processing is one such industrial activity that generates chromium-bearing wastes in different forms. One of them is chrome shavings, and this contributes to an extent of 10% of the quantum of raw skins/hides processed, amounting to 0.8 million ton globally. In this study, the high protein content of chrome shavings has been utilized for reduction of chromium(VI) in the preparation of chrome tanning agent. This approach has been exploited for the development of two products: one with chrome shavings alone as reducing agent and the other with equal proportion of chrome shavings and molasses. The developed products exhibit more masking due to the formation of intermediate organic oligopeptides. This has been corroborated through the spectral, hydrolysis, and species-wise distribution studies. The formation of these organic masking agents helps in chrome tanning by shifting the precipitation point of chromium to relatively higher pH levels. Hence, the developed products find use as chrome tanning agents for leather processing, thus providing a means for better utilization of chrome shaving wastes.

  14. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  15. In-situ vitrification of waste materials

    DOEpatents

    Powell, J.R.; Reich, M.; Barletta, R.

    1997-10-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs.

  16. AN EXPERIMENTAL INVESTIGATION INTO THE EFFECT OF PROCESS CONDITIONS ON THE MASS CONCENTRATION OF CUTTING FLUID MIST IN TURNING. (R825370C057)

    EPA Science Inventory

    Cutting fluid mists that are generated during machining processes represent a significant waste stream as well as a health hazard to humans. Epidemiological studies have shown a link between worker exposure to cutting fluid mist and an increase in respiratory ailments and seve...

  17. Covering surface nanobubbles with a NaCl nanoblanket.

    PubMed

    Berkelaar, Robin P; Zandvliet, Harold J W; Lohse, Detlef

    2013-09-10

    By letting a NaCl aqueous solution of low (0.01 M) concentration evaporate on a highly oriented pyrolytic graphite (HOPG) surface, it is possible to form a thin film of salt. However, pre-existing surface nanobubbles prevent the homogeneous coverage of the surface with the salt, keeping the footprint areas on the substrate pristine. Comparing the surface nanobubbles in the salt solution with their associated footprint after drying, provides information on the shrinkage of nanobubbles during the hours-long process of drying the liquid film. At a slightly higher NaCl concentration and thus salt layer thickness, the nanobubbles are covered with a thin blanket of salt. Once the liquid film has evaporated until a water film remains that is smaller than the height of the nanobubbles, the blanket of salt cracks and unfolds into a flower-like pattern of salt flakes that is located at the rim of the nanobubble footprint. The formation of a blanket of salt covering the nanobubbles is likely to considerably or even completely block the gas out-flux from the nanobubble, partially stabilizing the nanobubbles against dissolution.

  18. NaCl osmotic perturbation can modulate hydration control in rabbit cornea.

    PubMed

    Ruberti, Jeffrey W; Klyce, Stephen D

    2003-03-01

    The corneal endothelium transports solute from the stroma to the aqueous humor, maintaining corneal hydration. Currently, little is known about how this active transport system is controlled. The purpose of this study is to investigate in greater detail the corneal response to small NaCl osmotic perturbations using a more refined automatic thickness measurement system in a search for response signatures of transport control. Adult New Zealand White rabbit corneas were debrided of their epithelium, excised and mounted in perfusion chambers. The endothelium, thus isolated, was bathed in isotonic Glutathione Bicarbonate Ringer's (GBR) solution and the bare anterior stroma was covered with silicone oil. Following stabilization in isotonic GBR, the endothelial perfusate was altered by +/-15 mOsm or+/-45 mOsm for 1 hr and 45 min by addition or removal of NaCl and returned (reversal) to GBR for 1 hr and 45 min. An enhanced, automatic scanning specular microscope monitored stromal thickness. The effective membrane transport coefficients were determined from the stromal thickness vs. time curves using an established numerical model of corneal hydration dynamics. It was found that the small (+/-15 mOsm) NaCl perturbations of the rabbit corneal endothelium resulted in a rapid trans-endothelial stromal volume control response that was not reversible after return to GBR. Long after the expected dissipation of the induced transients, this thickness 'controlling' response ultimately resulted in a sustained net thinning of 14 microm following the hypotonic perturbation and reversal, and a net swelling of 16 microm following the hypertonic perturbation and reversal. Model calculations indicated that the change induced by the perturbation could be explained by an immediate and persistent reduction of the passive endothelial NaCl permeability by 26% for the -15 mOsm perturbation compared to the +15 mOsm perturbation. This change persisted even after return to GBR. In contrast, the

  19. Method for primary containment of cesium wastes

    DOEpatents

    Angelini, Peter; Lackey, Walter J.; Stinton, David P.; Blanco, Raymond E.; Bond, Walter D.; Arnold, Jr., Wesley D.

    1983-01-01

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zeolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600.degree. C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1,000.degree. C. for a suitable duration.

  20. Cell growth and water relations of the halophyte, Atriplex nummularia L., in response to NaCl.

    PubMed

    Casas, A M; Bressan, R A; Hasegawa, P M

    1991-06-01

    Growth reduction or cessation is an initial response of Atriplex nummularia L. cells to NaCl. However, A. nummularia L. cells that are adapted to 342 and 428 mM NaCl are capable of sustained growth in the presence of salt. Cells that are adapted to NaCl exhibit a reduced rate of division compared to unadapted cells. Unlike salt adapted cells of the glycophyte Nicotiana tabacum L., A. nummularia L. cells do not exhibit reduced rate of cell expansion after adaptation. However, the cell expansion rate of unadapted A. nummularia L. cells is considerably slower than that of unadapted glycophyte cells and this normally low rate of cell expansion may contribute to the enhanced capacity of the halophyte to tolerate salt. Turgor of NaCl adapted cells was equivalent to unadapted cells indicating that the cells of the halophyte do not respond to salt by osmotic "over adjustment" as reported for the glycophyte tobacco (Binzel et al. 1985, Plant Physiol. 79:118-125).

  1. Exposure to toxic waste containing high concentrations of hydrogen sulphide illegally dumped in Abidjan, Côte d'Ivoire.

    PubMed

    Dongo, Kouassi; Tiembré, Issiaka; Koné, Blaise Atioumonou; Zurbrügg, Christian; Odermatt, Peter; Tanner, Marcel; Zinsstag, Jakob; Cissé, Guéladio

    2012-09-01

    On August 2006, a cargo ship illegally dumped 500 t of toxic waste containing high concentrations of hydrogen sulphide in numerous sites across Abidjan. Thousands of people became ill. Seventeen deaths were associated with toxic waste exposure. This study reports on environmental and health problems associated with the incident. A cross-sectional transect study was conducted in five waste dumping site areas. Of the households, 62.1% (n = 502) were exposed to the effects of the pollutants and 51.1% of the interviewed people (n = 2,368) in these households showed signs of poisoning. Most important symptoms were cough (37.1%), asthenia (33.1%), pruritus (29.9%) and nausea (29.1%). The health effects showed different frequencies in the five waste impact sites. Among the poisoned persons, 21.1% (n = 532) presented symptoms on the survey day (i.e., 4 months after incident). Transect sampling allowed to determine a radius of vulnerability to exposure of up to 3 km from the point of toxic waste disposal. The area of higher vulnerability is influenced by various environmental factors, such as size and severity of pollution site, duration of toxic waste pollution on the impact site and locally climatic conditions. The surveillance of effects on environment and human health is warranted to monitor the development.

  2. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment. 273.4 Section 273.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury...-containing components have been removed. (c) Generation of waste mercury-containing equipment. (1) Used...

  3. Waste from grocery stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieb, K.

    1993-11-01

    The Community Recycling Center, Inc., (CRC, Champaign, Ill.), last year conducted a two-week audit of waste generated at two area grocery stores. The stores surveyed are part of a 10-store chain. For two of the Kirby Foods Stores, old corrugated containers (OCC) accounted for 39-45% of all waste. The summary drew correlations between the amount of OCC and the sum of food and garbage waste. The study suggested that one can reasonably estimate volumes of waste based on the amount of OCC because most things come in a box. Auditors set up a series of containers to make the collectionmore » process straightforward. Every day the containers were taken to local recycling centers and weighed. Approximate waste breakdowns for the two stores were as follows: 45% OCC; 35% food waste; 20% nonrecyclable or noncompostable items; and 10% other.« less

  4. Antioxidant enrichment and antimicrobial protection of fresh-cut fruits using their own byproducts: looking for integral exploitation.

    PubMed

    Ayala-Zavala, J F; Rosas-Domínguez, C; Vega-Vega, V; González-Aguilar, G A

    2010-10-01

    Fresh-cut fruit consumption is increasing due to the rising public demand for convenience and awareness of fresh-cut fruit's health benefits. The entire tissue of fruits and vegetables is rich in bioactive compounds, such as phenolic compounds, carotenoids, and vitamins. The fresh-cut fruit industry deals with the perishable character of its products and the large percentage of byproducts, such as peels, seeds, and unused flesh that are generated by different steps of the industrial process. In most cases, the wasted byproducts can present similar or even higher contents of antioxidant and antimicrobial compounds than the final produce can. In this context, this hypothesis article finds that the antioxidant enrichment and antimicrobial protection of fresh-cut fruits, provided by the fruit's own byproducts, could be possible.

  5. The characterization of radioactive waste: a critical review of techniques implemented or under development at CEA, France

    NASA Astrophysics Data System (ADS)

    Pérot, Bertrand; Jallu, Fanny; Passard, Christian; Gueton, Olivier; Allinei, Pierre-Guy; Loubet, Laurent; Estre, Nicolas; Simon, Eric; Carasco, Cédric; Roure, Christophe; Boucher, Lionel; Lamotte, Hervé; Comte, Jérôme; Bertaux, Maïté; Lyoussi, Abdallah; Fichet, Pascal; Carrel, Frédérick

    2018-03-01

    This review paper describes the destructive and non-destructive measurements implemented or under development at CEA, in view to perform the most complete radioactive waste characterization. First, high-energy photon imaging (radiography, tomography) brings essential information on the waste packages, such as density, position and shape of the waste inside the container and in the possible binder, quality of coating and blocking matrices, presence of internal shields or structures, presence of cracks, voids, or other defects in the container or in the matrix, liquids or other forbidden materials, etc. Radiological assessment is then performed using a series of non-destructive techniques such as gamma-ray spectroscopy, which allows characterizing a wide range of radioactive and nuclear materials, passive neutron coincidence counting and active neutron interrogation with the differential die-away technique, or active photon interrogation with high-energy photons (photofission), to measure nuclear materials. Prompt gamma neutron activation analysis (PGNAA) can also be employed to detect toxic chemicals or elements which can greatly influence the above measurements, such as neutron moderators or absorbers. Digital auto-radiography can also be used to detect alpha and beta contaminated waste. These non-destructive assessments can be completed by gas measurements, to quantify the radioactive and radiolysis gas releases, and by destructive examinations such as coring homogeneous waste packages or cutting the heterogeneous ones, in view to perform visual examination and a series of physical, chemical, and radiochemical analyses on samples. These last allow for instance to check the mechanical and containment properties of the package envelop, or of the waste binder, to measure toxic chemicals, to assess the activity of long-lived radionuclides or pure beta emitters, to determine the isotopic composition of nuclear materials, etc.

  6. Incident Waste Decision Support Tool - Waste Materials ...

    EPA Pesticide Factsheets

    Report This is the technical documentation to the waste materials estimator module of I-WASTE. This document outlines the methodology and data used to develop the Waste Materials Estimator (WME) contained in the Incident Waste Decision Support Tool (I-WASTE DST). Specifically, this document reflects version 6.4 of the I-WASTE DST. The WME is one of four primary features of the I-WASTE DST. The WME is both a standalone calculator that generates waste estimates in terms of broad waste categories, and is also integrated into the Incident Planning and Response section of the tool where default inventories of specific waste items are provided in addition to the estimates for the broader waste categories. The WME can generate waste estimates for both common materials found in open spaces (soil, vegetation, concrete, and asphalt) and for a vast array of items and materials found in common structures.

  7. Cephradine as corrosion inhibitor for copper in 0.9% NaCl solution

    NASA Astrophysics Data System (ADS)

    Tasić, Žaklina Z.; Petrović Mihajlović, Marija B.; Radovanović, Milan B.; Simonović, Ana T.; Antonijević, Milan M.

    2018-05-01

    The effect of (6R,7R)-7-[[(2R)-2-amino-2-cyclohexa-1,4-dien-1-ylacetyl]amino]-3-methyl-8-oxo-5-thia-1-azobicyclo[4.2.0]oct-2-ene-2-carboxylic acid (cephradine) on corrosion behavior of copper in 0.9% NaCl solution was investigated. The electrochemical methods including the open circuit potential measurements, potentiodynamic polarization and electrochemical impedance spectroscopy measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy and quantum chemical calculations were used for this investigation. According to the results obtained by potentiodynamic polarization, cephradine acts as mixed type inhibitor. Also, the results obtained by electrochemical impedance spectroscopy indicate that cephradine provides good copper protection in 0.9% NaCl solution. The inhibition efficiency of cephradine increases with increasing its concentration. The scanning electron microscopy with energy dispersive X-ray spectroscopy confirms that a protective layer is formed on the copper surface due to the adsorption of cephradine on the active sites on the copper surface. Adsorption of cephradine in 0.9% NaCl solution follows the Langmuir adsorption isotherm. Quantum chemical calculations are in agreement with results obtained by electrochemical measurements.

  8. Radiation crosslinking of styrene-butadiene rubber containing waste tire rubber and polyfunctional monomers

    NASA Astrophysics Data System (ADS)

    Yasin, Tariq; Khan, Sara; Shafiq, Muhammad; Gill, Rohama

    2015-01-01

    The objective of this study was to investigate the influence of polyfunctional monomers (PFMs) and absorbed dose on the final characteristics of styrene-butadiene rubber (SBR) mixed with waste tire rubber (WTR). A series of SBR/WTR blends were prepared by varying the ratios of WTR in the presence of PFMs, namely trimethylolpropane trimethacrylate (TMPTMA) and trimethylolpropane triacrylate (TMPTA) and crosslinked using gamma rays. The physicochemical characteristics of the prepared blends were investigated. It was observed that tensile strength, hardness and gel content of the blends increased with absorbed dose while the blends containing TMPTA showed higher tensile strength, gel content and thermal stability as compared to the blends containing TMPTMA. Higher thermal stability was observed in the blends which were crosslinked by radiation as compared to the blends crosslinked by sulfur. These blends exhibited higher rate of swelling in organic solvents, whereas negligible swelling was observed in acidic and basic environment.

  9. Wedge cutting of mild steel by CO 2 laser and cut-quality assessment in relation to normal cutting

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Karatas, C.; Uslan, I.; Keles, O.; Usta, Y.; Yilbas, Z.; Ahsan, M.

    2008-10-01

    In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO 2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.

  10. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulm, Franz-Josef

    2000-06-30

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 4. The analysis of the effect of cracks on the acceleration of the calcium leaching process of cement-based materials has been pursued. During the last period (Technical Progress Report No 3), we have introduced a modeling accounting for the high diffusivity of fractures in comparison with the weak solid material diffusivity. It has been shown through dimensional and asymptotic analysis that small fractures do not significantly accelerate the material aging process. This important result for the overall structural aging kinetics of containment structure has beenmore » developed in a paper submitted to the international journal ''Transport in Porous Media''.« less

  11. 40 CFR 267.1105 - What do I do if my containment building contains areas both with and without secondary containment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operating log a written description of the operating procedures used to maintain the integrity of areas... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Containment...

  12. 40 CFR 267.1105 - What do I do if my containment building contains areas both with and without secondary containment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating log a written description of the operating procedures used to maintain the integrity of areas... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Containment...

  13. 40 CFR 267.1105 - What do I do if my containment building contains areas both with and without secondary containment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating log a written description of the operating procedures used to maintain the integrity of areas... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Containment...

  14. 40 CFR 267.1105 - What do I do if my containment building contains areas both with and without secondary containment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating log a written description of the operating procedures used to maintain the integrity of areas... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Containment...

  15. 40 CFR 267.1105 - What do I do if my containment building contains areas both with and without secondary containment?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating log a written description of the operating procedures used to maintain the integrity of areas... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Containment...

  16. NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.

    PubMed

    Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M

    1993-11-01

    NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant.

  17. NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.

    PubMed Central

    Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M

    1993-01-01

    NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant. PMID:8022933

  18. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    2000-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  19. Method for recovering materials from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  20. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1998-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300.degree.-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000.degree.-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  1. Method for recovering metals from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1998-12-01

    A method is described for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800 C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000--1,550 C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification. 2 figs.

  2. Effects of waste glass and waste foundry sand additions on reclaimed tiles containing sewage sludge ash.

    PubMed

    Lin, Deng-Fong; Luo, Huan-Lin; Lin, Kuo-Liang; Liu, Zhe-Kun

    2017-07-01

    Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.

  3. Bidirectional motility of the fission yeast kinesin-5, Cut7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edamatsu, Masaki, E-mail: cedam@mail.ecc.u-tokyo.ac.jp

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules,more » but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.« less

  4. Orthogonal cutting of laser beam melted parts

    NASA Astrophysics Data System (ADS)

    Götze, Elisa; Zanger, Frederik; Schulze, Volker

    2018-05-01

    The finishing process of parts manufactured by laser beam melting is of high concern due to the lack of surface accuracy. Therefore, the focus of this work lies on the influence of the build-up direction of the parts and their effect on the finishing process. The orthogonal cutting reveals findings in the fields of chip formation, involved forces and temperatures appearing during machining. In the investigations, the cutting depth was varied between 0.05 and 0.15 mm representing a finishing process and the cutting velocity ranges from 30 to 200 m/min depending on the material. The experiments contain the materials stainless steel (AISI 316L), titanium (Ti6Al4V) and nickel-base alloy (IN718). The two materials named latter are of high interest in the aerospace sector and at the same time titanium is used in the medical field due to its biocompatibility. For the materials IN718 and Ti6Al4V a negative rake angle of -7.5° and for stainless steel a rake angle of 12.5° are chosen for the cutting experiments. The results provide the base for processing strategies. Therefore, the specimens were solely laser beam melted without post-processing like heat treatment. The evaluation of the experiments shows that an increase in cutting speed has different effects depending on the material. For stainless steel the measured forces regarding the machining direction to the layers approach the same values. In contrast, the influence of the layers regarding the forces appearing during orthogonal cutting of the materials IN718 and Ti6Al4V differ for lower cutting speeds.

  5. Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation.

    PubMed

    Fan, Jianhua; Zheng, Lvhong

    2017-09-01

    Salt stress has been proven very effective in enhancing the lipid content among many photoautotrophically grown microalgae species including marine and freshwater algae. Nevertheless, its effect on heterotrophic grown cells and lipid accumulation is scarcely known. This study sought to demonstrate a new train of thought for cost-effective biofuels production by heterotrophic culture of Chlamydomonas reinhardtii coupling with subsequent salt and light stress. NaCl treatments (25-200 mM) gradually suppressed the cell growth. After one day's acclimation, the cells restored slow growth with light supplement (200 μmol/m2/s) in low salt concentration (0-50 mM). However, high concentration of NaCl (200 mM) dose caused permanent damage, with over 47% cells death after 3 days treatment. The highest lipid content of 35.8% and lipid productivity of 28.6 mg/L/d were achieved by 50 mM NaCl stress and light treatment upon heterotrophic grown cells. Cells lost their green pigmentation and became yellowish under 100-200 mM NaCl conditions, whereas cells grown in 0-50 mM NaCl retained their dark-green pigmentation. Variable-to-maximum fluorescence ratio (Fv/Fm) and non-photochemical quenching (NPQ) value were markedly influenced under salt and light stress, indicating that severe inhibition of photosynthetic ability was occurred. Moreover, we further demonstrated the dynamic changes of cell growth and lipid accumulation would potentially be caused by the increase of intracellular redox state. To our knowledge, this study is the first instance in which C. reinhardtii was applied to oil accumulation by using combination of heterotrophic culture and multiple stress, and opened up a new territory for the further development of microalgae-based biofuels production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Growth responses and ion accumulation in the halophytic legume Prosopis strombulifera are determined by Na2SO4 and NaCl.

    PubMed

    Reginato, M; Sosa, L; Llanes, A; Hampp, E; Vettorazzi, N; Reinoso, H; Luna, V

    2014-01-01

    Halophytes are potential gene sources for genetic manipulation of economically important crop species. This study addresses the physiological responses of a widespread halophyte, Prosopis strombulifera (Lam.) Benth to salinity. We hypothesised that increasing concentrations of the two major salts present in soils of central Argentina (Na2SO4, NaCl, or their iso-osmotic mixture) would produce distinct physiological responses. We used hydroponically grown P. strombulifera to test this hypothesis, analysing growth parameters, water relations, photosynthetic pigments, cations and anions. These plants showed a halophytic response to NaCl, but strong general inhibition of growth in response to iso-osmotic solutions containing Na2SO4. The explanation for the adaptive success of P. strombulifera in high NaCl conditions seems to be related to a delicate balance between Na(+) accumulation (and its use for osmotic adjustment) and efficient compartmentalisation in vacuoles, the ability of the whole plant to ensure sufficient K(+) supply by maintaining high K(+)/Na(+) discrimination, and maintenance of normal Ca(2+) levels in leaves. The three salt treatments had different effects on the accumulation of ions. Findings in bi-saline-treated plants were of particular interest, where most of the physiological parameters studied showed partial alleviation of SO4(2-)-induced toxicity by Cl(-). Thus, discussions on physiological responses to salinity could be further expanded in a way that more closely mimics natural salt environments. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. [Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves].

    PubMed

    Li, Xu-Xin; Liu, Bing-Xiang; Guo, Zhi-Tao; Chang, Yue-Xia; He, Lei; Chen, Fang; Lu, Bing-She

    2013-09-01

    By using fast chlorophyll fluorescence induction dynamics analysis technique (JIP-test), this paper studied the photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of 1-year old Pistacia chinensis seedlings under the stress of NaCl at the concentrations 0% (CK), 0.15%, 0.3%, 0.45%, and 0.6%. With the increasing concentration of NaCl, the contents of Chl a, Chl b, and Chl (a+b) in the seedlings leaves decreased, the Chl a/b ratio decreased after an initial increase, and the carotenoid content increased. The net photosynthetic rate (P(n)) and stomatal conductance (g(s)) decreased gradually with increasing NaCl concentration. The decrease of P(n) was mainly attributed to the stomatal limitation when the NaCl concentration was lower than 0.3%, and to the non-stomatal limitation when the NaCl concentration was higher than 0.3%. The trapped energy flux per RC (TR0/CS0), electron transport flux per RC (ET0/CS0), density of RCs (RC/CS0), and yield or flux ratio (psi(0) or phi(E0)) decreased, but the absorption flux per CS (ABS/CS0) and the K phase (W(k)) and J phase (V) in the O-J-I-P chlorophyll fluorescence induction curves increased distinctly, indicating that NaCl stress damaged the leaf oxygen-evolving complex (OEC), donor sides, and PS II reaction centers. When the NaCl concentration reached 0.3%, the maximum photochemical efficiency (F(v)/F(m)) and performance index (PI(ABS)) decreased 17.7% and 36.6%, respectively, as compared with the control.

  8. Trehalose-producing enzymes MTSase and MTHase in Anabaena 7120 under NaCl stress.

    PubMed

    Asthana, Ravi K; Nigam, Subhasha; Maurya, Archana; Kayastha, Arvind M; Singh, Sureshwar P

    2008-05-01

    Salt tolerance, a multigenic trait, necessitates knowledge about biosynthesis and function of candidate gene(s) at the cellular level. Among the osmolytes, trehalose biosynthesis in cyanobacteria facing NaCl stress is little understood. Anabaena 7120 filaments exposed to 150 mM: NaCl fragmented and recovered on transfer to -NaCl medium with the increased heterocysts frequency (7%) over the control (4%). Cells failed to retain Na+ beyond a threshold [2.19 mM/cm3 (PCV)]. Whereas NaCl-stressed cells exhibited a marginal rise in K+ (1.1-fold) only at 30 h, for Na+ it was 130-fold at 48 h over cells in control. A time-course study (0-54 h) revealed reduction in intracellular Na+ beyond 48 h [0.80 mM/cm3 (PCV)] suggestive of ion efflux. The NaCl-stressed cells showed differential expression of maltooligosyltrehalose synthase (MTSase; EC 5.4.99.15) and maltooligosyltrehalose trehalohydrolase (MTHase; EC 3.2.1.141) depending on the time and the extent of intracellular Na+ buildup.

  9. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.

    PubMed

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2018-01-28

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  10. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  11. Surface chemical properties of eutectic and frozen NaCl solutions probed by XPS and NEXAFS.

    PubMed

    Křepelová, Adéla; Huthwelker, Thomas; Bluhm, Hendrik; Ammann, Markus

    2010-12-17

    We study the surface of sodium chloride-water mixtures above, at, and below the eutectic temperature using X-ray photoelectron spectroscopy (XPS) and electron-yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NaCl frozen solutions are mimicking sea-salt deposits in ice or snow. Sea-salt particles emitted from the oceans are a major contributor to the global aerosol burden and can act as a catalyst for heterogeneous chemistry or as cloud condensation nuclei. The nature of halogen ions at ice surfaces and their influence on surface melting of ice are of significant current interest. We found that the surface of the frozen solution, depending on the temperature, consists of ice and different NaCl phases, that is, NaCl, NaCl·2H(2)O, and surface-adsorbed water.

  12. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    NASA Astrophysics Data System (ADS)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

  13. Efficiency Assessment of Using Flammable Compounds from Water Treatment and Methanol Production Waste for Plasma Synthesis of Iron-Containing Pigments

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, Anastasia P.; Karengin, Alexander G.

    2016-08-01

    This article describes the possibility of applying the low-temperature plasma for obtaining iron-containing pigments from water purification and flammable methanol production waste. In this paper were calculated combustion parameters of water-saltorganic compositions (WSOC) with different consists. Authors determined the modes of energy- efficient processing of the previously mentioned waste in an air plasma. Having considered the obtained results there were carried out experiments with flammable dispersed water-saltorganic compositions on laboratory plasma stand. All the experimental results are confirmed by calculations.

  14. Discovering the Giant Nest Architecture of Grass-Cutting Ants, Atta capiguara (Hymenoptera, Formicidae)

    PubMed Central

    Forti, Luiz Carlos; Protti de Andrade, Ana Paula; Camargo, Roberto da Silva; Caldato, Nadia; Moreira, Aldenise Alves

    2017-01-01

    Atta capiguara is a grass-cutting ant species frequently found in Cerrado biome. However, little is known about the giant nest architecture of this ant. In this study, we investigated the architecture of three A. capiguara nests from a fragment of Cerrado in Botucatu, São Paulo, Brazil. Casts were made of the nests by filling them with cement to permit better visualization of internal structures such as chambers and tunnels. After excavation, the depth and dimensions (length, width, and height) of the chambers were measured. The results showed the shape of Atta capiguara nests consisting of mounds of loose soil with unique features resembling a conic section. The fungus chambers were found distant from the mound of loose soil and were spaced apart and distributed laterally at the soil profile. The waste chambers were located beneath the largest mound of loose soil. Both the fungus and waste chambers were separated and distant. Our study contributes to a better understanding of the so far unknown nest architecture of the grass-cutting ant A. capiguara. PMID:28350352

  15. Frequent Questions About Universal Waste

    EPA Pesticide Factsheets

    Frequent questions such as Who is affected by the universal waste regulations? What is “mercury-containing equipment”? How are waste batteries managed under universal waste? How are waste pesticides managed under universal waste?

  16. Variations of water's local-structure induced by solvation of NaCl

    NASA Astrophysics Data System (ADS)

    Gu, Bin; Zhang, Feng-Shou; Huang, Yu-Gai; Fang, Xia

    2010-03-01

    The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and presented quantitatively with some order parameters and visualized with 2-body and 3-body correlation functions. The results show that, after the NaCl are solvated, the translational order t of water is decreased for the suppression of the second hydration shells around H2O molecules; the tetrahedral order (q) of water is also decreased and its favorite distribution peak moves from 0.76 to 0.5. In addition, the orientational freedom k and the diffusion coefficient D of water molecules are reduced because of new formed hydrogen-bonding structures between water and solvated ions.

  17. A study on practical use of underwater abrasive water jet cutting

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hitoshi; Demura, Kenji

    1993-09-01

    The practicality of underwater abrasive water jet cutting technology was studied in experiments. A study of abrasives in slurried form showed that optimum polymer concentration can be selected to suit underwater conditions. For the long-distance transport of slurry from the ocean surface to the ocean floor, a direct supply system by hose proved to be practical. This system takes advantage of the insolubility of the slurry in water due to a difference in specific gravity. For cutting thick steel plate at great ocean depths, a simulation with a pressurized container revealed the requirements for actual cutting. Confirmation of remote cutting operations will become the most important technology in field applications. Underwater sound vibration characteristics were found to change significantly in direct response to modifications in cutting conditions. This will be important basic data to develop an effective sensoring method.

  18. CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY

    EPA Science Inventory

    This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...

  19. CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY

    EPA Science Inventory

    This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with Mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction ...

  20. Effect of Cutting Tool Properties and Depth of Cut in Rock Cutting: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Rostamsowlat, Iman

    2018-06-01

    The current paper is designed to investigate the effect of worn (blunt) polycrystalline diamond compact cutter properties on both the contact stress (σ) and friction coefficient ( μ) mobilized at the wear flat-rock interface at different inclination angles of the wear flat surface and at a wide range of depths of cut. An extensive and comprehensive set of cutting experiments is carried out on two sedimentary rocks (one limestone and one sandstone) using a state-of-the-art rock cutting equipment (Wombat) and various blunt cutters. Experiments with blunt cutters are characterized by different wear flat inclination angles (β), different wear flat surface roughness (Ra), different wear flat material, and different cutting tool velocities ({\\varvec{v}}) were conducted. The experimental results show that both the contact stress and friction coefficient are predominantly affected by the wear flat roughness at all inclination angles of the wear flat; however, the cutting tool velocity has a negligible influence on both the contact stress and friction coefficient. Further investigations suggest that the contact stress is greatly affected by the depth of cut within the plastic regime of frictional contact while the contact stress is insensitive to the depth of cut within the elastic regime.

  1. Aerosol-Assisted Extraction of Silicon Nanoparticles from Wafer Slicing Waste for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Jang, Hee Dong; Kim, Hyekyoung; Chang, Hankwon; Kim, Jiwoong; Roh, Kee Min; Choi, Ji-Hyuk; Cho, Bong-Gyoo; Park, Eunjun; Kim, Hansu; Luo, Jiayan; Huang, Jiaxing

    2015-03-01

    A large amount of silicon debris particles are generated during the slicing of silicon ingots into thin wafers for the fabrication of integrated-circuit chips and solar cells. This results in a significant loss of valuable materials at about 40% of the mass of ingots. In addition, a hazardous silicon sludge waste is produced containing largely debris of silicon, and silicon carbide, which is a common cutting material on the slicing saw. Efforts in material recovery from the sludge and recycling have been largely directed towards converting silicon or silicon carbide into other chemicals. Here, we report an aerosol-assisted method to extract silicon nanoparticles from such sludge wastes and their use in lithium ion battery applications. Using an ultrasonic spray-drying method, silicon nanoparticles can be directly recovered from the mixture with high efficiency and high purity for making lithium ion battery anode. The work here demonstrated a relatively low cost approach to turn wafer slicing wastes into much higher value-added materials for energy applications, which also helps to increase the sustainability of semiconductor material and device manufacturing.

  2. Aerosol-Assisted Extraction of Silicon Nanoparticles from Wafer Slicing Waste for Lithium Ion Batteries

    PubMed Central

    Jang, Hee Dong; Kim, Hyekyoung; Chang, Hankwon; Kim, Jiwoong; Roh, Kee Min; Choi, Ji-Hyuk; Cho, Bong-Gyoo; Park, Eunjun; Kim, Hansu; Luo, Jiayan; Huang, Jiaxing

    2015-01-01

    A large amount of silicon debris particles are generated during the slicing of silicon ingots into thin wafers for the fabrication of integrated-circuit chips and solar cells. This results in a significant loss of valuable materials at about 40% of the mass of ingots. In addition, a hazardous silicon sludge waste is produced containing largely debris of silicon, and silicon carbide, which is a common cutting material on the slicing saw. Efforts in material recovery from the sludge and recycling have been largely directed towards converting silicon or silicon carbide into other chemicals. Here, we report an aerosol-assisted method to extract silicon nanoparticles from such sludge wastes and their use in lithium ion battery applications. Using an ultrasonic spray-drying method, silicon nanoparticles can be directly recovered from the mixture with high efficiency and high purity for making lithium ion battery anode. The work here demonstrated a relatively low cost approach to turn wafer slicing wastes into much higher value-added materials for energy applications, which also helps to increase the sustainability of semiconductor material and device manufacturing. PMID:25819285

  3. Body Temperatures During Exercise in Deconditioned Dogs: Effect of NACL and Glucose Infusion

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kruk, B.; Nazar, K.; Kaciuba-Usciko, H.

    2000-01-01

    Infusion of glucose (Glu) into normal exercising dogs attenuates the rise in rectal temperature (Delta-Tre) when compared with delta-Tre during FFA infusion or no infusion. Rates of rise and delta-=Tre levels are higher during exercise after confinement. Therefore, the purpose of this study was to determine if Glu infusion would attenuate the exercise-induced excess hyperthermia after deconditioning. Rectal and quadricep femoris muscle temperatures (Tmu) were measured in 7 male, mongrel dogs dogs (19.6 +/- SD 3.0 kg) during 90 minutes of treadmill exercise (3.1 +/-SD 0.2 W/kg) with infusion (30ml/min/kg) of 40% Glu or 0.9% NaCL before BC) and after confinement (AC) in cages (40 x 110 x 80 cm) for 8 wk. Mean (+/-SE body wt. were 19.6 +/- 1.1 kg BC and 19.5 +/- 1.1kg AC, exercise VO2 were not different (40.0 - 42.0 mi/min/kg-1). With NaCl AC, NaCl BC, GluAC, and GluBC: Delta-Tre were, 1.8, 1.4, 1.3 and 0.9C respectively; and Delta-Tmu were 2.3, 1.9, 1.6, and 1.4C. respectively (P<0.05 from GluBC). Compared with NaCl infusion, attenuated both Delta-Tre and Delta-Tmu BC and AC, respectively. Compared with GluBC, GluAC attenuated Delta-Tmu but not Delta-Tre. Thus. with similar heat production, the mechanism for attenuation at bad body temperature with Glu infusion must affect avenues of heat dissipation.

  4. Temperature invariance of NaCl solubility in water: inferences from salt-water cluster behavior of NaCl, KCl, and NH4Cl.

    PubMed

    Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind

    2012-09-27

    The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.

  5. Antioxidant Enrichment and Antimicrobial Protection of Fresh-Cut Fruits Using Their Own Byproducts: Looking for Integral Exploitation

    PubMed Central

    Ayala-Zavala, JF; Rosas-Domínguez, C; Vega-Vega, V; González-Aguilar, GA

    2010-01-01

    Fresh-cut fruit consumption is increasing due to the rising public demand for convenience and awareness of fresh-cut fruit's health benefits. The entire tissue of fruits and vegetables is rich in bioactive compounds, such as phenolic compounds, carotenoids, and vitamins. The fresh-cut fruit industry deals with the perishable character of its products and the large percentage of byproducts, such as peels, seeds, and unused flesh that are generated by different steps of the industrial process. In most cases, the wasted byproducts can present similar or even higher contents of antioxidant and antimicrobial compounds than the final produce can. In this context, this hypothesis article finds that the antioxidant enrichment and antimicrobial protection of fresh-cut fruits, provided by the fruit's own byproducts, could be possible. PMID:21535513

  6. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  7. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  8. Remote vacuum compaction of compressible hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1996-12-31

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  9. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  10. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  11. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  12. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  13. Inhibition effect of sugar-based amphiphiles on eutectic formation in the freezing-thawing process of aqueous NaCl solution.

    PubMed

    Ogawa, Shigesaburo; Osanai, Shuichi

    2007-04-01

    DSC and simultaneous XRD-DSC measurements were carried out to clarify the interaction among the ingredients in a ternary aqueous solution composed of NaCl, a sugar-based amphiphile or free sugar, and water. Two aspects of the inhibition of eutectic formation were suggested through the addition of the sugar amphiphile. One was the retention of the glass state of the eutectic phase, and the other was the trapping of NaCl hydrate into the sugar moiety of the amphiphilic aggregate. The difference between the free sugar and the amphiphilic one in terms of the trapping of NaCl hydrate was attributable to their dissimilarity in the dissolution state. The results indicated that the free sugars in water could interact with NaCl hydrate on the basis of their various hydroxyl groups. On the other hand, the sugar-based amphiphiles generated a self-assembly aggregate in the system, and interacted with NaCl hydrate by a salting-in effect with their sugar moiety in the freezing-thawing process. It was confirmed that the number of sugar units played an important role in trapping NaCl hydrate in the system. The effects of the structural isomerism in the sugars were slight with regard to the inhibition of eutectic formation.

  14. What energy functions can be minimized via graph cuts?

    PubMed

    Kolmogorov, Vladimir; Zabih, Ramin

    2004-02-01

    In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a general-purpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.

  15. Statistical approaches for the determination of cut points in anti-drug antibody bioassays.

    PubMed

    Schaarschmidt, Frank; Hofmann, Matthias; Jaki, Thomas; Grün, Bettina; Hothorn, Ludwig A

    2015-03-01

    Cut points in immunogenicity assays are used to classify future specimens into anti-drug antibody (ADA) positive or negative. To determine a cut point during pre-study validation, drug-naive specimens are often analyzed on multiple microtiter plates taking sources of future variability into account, such as runs, days, analysts, gender, drug-spiked and the biological variability of un-spiked specimens themselves. Five phenomena may complicate the statistical cut point estimation: i) drug-naive specimens may contain already ADA-positives or lead to signals that erroneously appear to be ADA-positive, ii) mean differences between plates may remain after normalization of observations by negative control means, iii) experimental designs may contain several factors in a crossed or hierarchical structure, iv) low sample sizes in such complex designs lead to low power for pre-tests on distribution, outliers and variance structure, and v) the choice between normal and log-normal distribution has a serious impact on the cut point. We discuss statistical approaches to account for these complex data: i) mixture models, which can be used to analyze sets of specimens containing an unknown, possibly larger proportion of ADA-positive specimens, ii) random effects models, followed by the estimation of prediction intervals, which provide cut points while accounting for several factors, and iii) diagnostic plots, which allow the post hoc assessment of model assumptions. All methods discussed are available in the corresponding R add-on package mixADA. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Carbonized waste for the cut-down of environmental pollution with heavy metals

    NASA Astrophysics Data System (ADS)

    Gmucová, K.; Morvová, M.; Havránek, E.; Kliman, J.; Košinár, I.; Kunecová, D.; Malakhov, A. I.; Anisimov, Yu. S.; Morva, I.; Siváček, I.; Sýkorová, M.; Šatka, A.

    2011-07-01

    Nowadays, an increasing concern about the treatment and disposal of waters contaminated by toxic heavy metals is noticed. The toxic pollutants must be removed from the sewage water which then is fed back into the materials cycle. Any candidate technology should result in reusable by-products. With this in mind, the aim of the present study is to test a low cost procedure for utilization of the carbonized waste, a product of PET (polyethylene terephthalate) bottles pyrolysis on sand bedding, for this purpose. Both the water present in PET bottles waste and combustion exhaust probably contribute to the conversion of carbon char to activated carbon directly within the pyrolysis oven. Preliminary results, obtained for several heavy metal ions under laboratory conditions are presented and discussed. Adsorption of heavy metals on the carbonized PET waste is tested by both the electrochemical methods and X-ray fluorescence spectrometry. A simple desorption procedure for the regeneration of prepared active carbon is proposed.

  17. Changes in growth, carbon and nitrogen enzyme activity and mRNA accumulation in the halophilic microalga Dunaliella viridis in response to NaCl stress

    NASA Astrophysics Data System (ADS)

    Wang, Dongmei; Wang, Weiwei; Xu, Nianjun; Sun, Xue

    2016-12-01

    Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaCl stress on the growth, activity and mRNA level of carbon and nitrogen metabolism enzymes of D. viridis. The alga could grow over a salinity range of 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the most rapid growth was observed at 1.00 mol L-1 NaCl, followed by 2.00 mol L-1 NaCl. Paralleling these growth patterns, the highest initial and total Rubisco activities were detected in the presence of 1.00 mol L-1 NaCl, decreasing to 37.33% and 26.39% of those values, respectively, in the presence of 3.00 mol L-1 NaCl, respectively. However, the highest extracellular carbonic anhydrase (CA) activity was measured in the presence of 2.00 mol L-1 NaCl, followed by 1.00 mol L-1 NaCl. Different from the two carbon enzymes, nitrate reductase (NR) activity showed a slight change under different NaCl concentrations. At the transcriptional level, the mRNAs of Rubisco large subunit ( rbcL), and small subunit ( rbcS), attained their highest abundances in the presence of 1.00 and 2.00 mol L-1 NaCl, respectively. The CA mRNA accumulation was induced from 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the NR mRNA showed the decreasing tendency with the increasing salinity. In conclusion, the growth and carbon fixation enzyme of Rubisco displayed similar tendency in response to NaCl stress, CA was proved be salt-inducible within a certain salinity range and NR showed the least effect by NaCl in D. viridis.

  18. 78 FR 53159 - Standard for Welding, Cutting, and Brazing; Extension of the Office of Management and Budget's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ...] Standard for Welding, Cutting, and Brazing; Extension of the Office of Management and Budget's (OMB... collection requirements contained in the Standard for Welding, Cutting, and Brazing (29 CFR Part 1910, Subpart Q). The information collected is used by employers and workers whenever welding, cutting, and...

  19. Quantification of the inevitable: the influence of soil macrofauna on soil water movement in rehabilitated open-cut mine land

    NASA Astrophysics Data System (ADS)

    Arnold, S.; Williams, E. R.

    2015-08-01

    Recolonisation of soil by macrofauna (especially ants and termites) in rehabilitated open-cut mine sites is inevitable. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration and seepage. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end-goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, soil macrofauna are typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions are required to quantify (i) macrofauna - soil structure interactions, (ii) functional dynamics of macrofauna taxa, and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.

  20. Destruction behavior of hexabromocyclododecanes during incineration of solid waste containing expanded and extruded polystyrene insulation foams.

    PubMed

    Takigami, Hidetaka; Watanabe, Mafumi; Kajiwara, Natsuko

    2014-12-01

    Hexabromocyclododecanes (HBCDs) have been used for flame retardation mainly in expanded polystyrene (EPS) and extruded polystyrene (XPS) insulation foams. Controlled incineration experiments with solid wastes containing each of EPS and XPS were conducted using a pilot-scale incinerator to investigate the destruction behavior of HBCDs and their influence on the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/DFs). EPS and XPS materials were respectively blended with refuse derived fuel (RDF) as input wastes for incineration. Concentrations of HBCDs contained in the EPS- and XPS-added RDFs, were 140 and 1100 mg kg(-1), respectively. In which γ-HBCD was dominant (68% of the total HBCD content) in EPS-added RDF and α-HBCD accounted for 73% of the total HBCDs in XPS-added RDF. During the incineration experiments with EPS and XPS, primary and secondary combustion zones were maintained at temperatures of 840 °C and 900 °C. The residence times of waste in the primary combustion zone and flue gas in the secondary combustion zone was 30 min and three seconds, respectively. HBCDs were steadily degraded in the combustion chambers and α-, β-, and γ-HBCD behaved similarly. Concentration levels of the total HBCDs in the bag filter exit gas for the two experiments with EPS and XPS were 0.7 and 0.6ngmN(-3), respectively. HBCDs were also not detected (<0.2 ng g(-1)) in the bottom and fly ash samples. From the obtained results, it was calculated that HBCDs were sufficiently destroyed in the whole incineration process with destruction efficiencies of more than 99.9999 for both of EPS and XPS cases. For PBDD/DFs, the levels detected in the bottom and fly ash samples were very low (0.028 ng g(-1) at maximum). In the case of XPS-added experiment, 2,3,7,8-TeBDD and 2,3,7,8-TeBDF were determined in the flue gas at levels (0.05-0.07 ng mN(-3)) slightly over the detection limits in the environmental emission gas samples, suggesting HBCDs in XPS are possibly a

  1. Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress.

    PubMed

    Siddiqui, Manzer H; Mohammad, Firoz; Khan, M Masrooor A; Al-Whaibi, Mohamed H

    2012-01-01

    In the present study, N and S assimilation, antioxidant enzymes activity, and yield were studied in N and S-treated plants of Brassica juncea (L.) Czern. & Coss. (cvs. Chuutki and Radha) under salt stress. The treatments were given as follows: (1) NaCl(90) mM+N(0)S(0) mg kg(-1) sand (control), (2) NaCl(90) mM+N(60)S(0) mg kg(-1) sand, (3) NaCl(90) mM+N(60)S(20) mg kg(-1) sand, (4) NaCl(90) mM+N(60)S(40) mg kg(-1) sand, and (5) NaCl(90) mM+N(60)S(60) mg kg(-1) sand. The combined application of N (60 mg kg(-1) sand) and S (40 mg kg(-1) sand) proved beneficial in alleviating the adverse effect of salt stress on growth attributes (shoot length plant(-1), fresh weight plant(-1), dry weight plant(-1), and area leaf(-1)), physio-biochemical parameters (carbonic anhydrase activity, total chlorophyll, adenosine triphosphate-sulphurylase activity, leaf N, K and Na content, K/Na ratio, activity of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase, and content of glutathione and ascorbate), and yield attributes (pods plant(-1), seeds pod(-1), and seed yield plant(-1)). Therefore, it is concluded that combined application of N and S induced the physiological and biochemical mechanisms of Brassica. The stimulation of antioxidant enzymes activity and its synergy with N and S assimilation may be one of the important mechanisms that help the plants to tolerate the salinity stress and resulted in an improved yield.

  2. EARTHSAWtm IN-SITU CONTAINMENT OF PITS AND TRENCHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest E. Carter, P.E.

    2002-09-20

    EarthSaw{trademark} is a proposed technology for construction of uniform high quality barriers under and around pits and trenches containing buried radioactive waste without excavating or disturbing the waste. The method works by digging a deep vertical trench around the perimeter of a site, filling that trench with high specific gravity grout sealant, and then cutting a horizontal bottom pathway at the base of the trench with a simple cable saw mechanism. The severed block of earth becomes buoyant in the grout and floats on a thick layer of grout, which then cures into an impermeable barrier. The ''Interim Report onmore » task 1 and 2'' which is incorporated into this report as appendix A, provided theoretical derivations, field validation of formulas, a detailed quantitative engineering description of the technique, engineering drawings of the hardware, and a computer model of how the process would perform in a wide variety of soil conditions common to DOE waste burial sites. The accomplishments of task 1 and 2 are also summarized herein Task 3 work product provides a comprehensive field test plan in Appendix B and a health and safety plan in Appendix C and proposal for a field-scale demonstration of the EarthSaw barrier technology. The final report on the subcontracted stress analysis is provided in Appendix D. A copy of the unified computer model is provided as individual non-functional images of each sheet of the spreadsheet and separately as a Microsoft Excel 2000 file.« less

  3. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    PubMed

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  4. Solubility of KF and NaCl in water by molecular simulation.

    PubMed

    Sanz, E; Vega, C

    2007-01-07

    The solubility of two ionic salts, namely, KF and NaCl, in water has been calculated by Monte Carlo molecular simulation. Water has been modeled with the extended simple point charge model (SPC/E), ions with the Tosi-Fumi model and the interaction between water and ions with the Smith-Dang model. The chemical potential of the solute in the solution has been computed as the derivative of the total free energy with respect to the number of solute particles. The chemical potential of the solute in the solid phase has been calculated by thermodynamic integration to an Einstein crystal. The solubility of the salt has been calculated as the concentration at which the chemical potential of the salt in the solution becomes identical to that of the pure solid. The methodology used in this work has been tested by reproducing the results for the solubility of KF determined previously by Ferrario et al. [J. Chem. Phys. 117, 4947 (2002)]. For KF, it was found that the solubility of the model is only in qualitative agreement with experiment. The variation of the solubility with temperature for KF has also been studied. For NaCl, the potential model used predicts a solubility in good agreement with the experimental value. The same is true for the hydration chemical potential at infinite dilution. Given the practical importance of solutions of NaCl in water the model used in this work, whereas simple, can be of interest for future studies.

  5. Solubility of NaCl and KCl in aqueous HCl from 20 to 85°C

    USGS Publications Warehouse

    Potter, Robert W.; Clynne, Michael A.

    1980-01-01

    The solubilities of NaCl and KCl in aqueous HCl solutions were determined from 20 to 85°C at concentrations ranging from 0 to 20 g of HCl/100 g of solution. Equations are given that describe the solubilities over the range of conditions studied. For NaCl and KCl respectively measured solubilities show an average deviation from these equations of ??0.10 and ??0.08 g/100 g of saturated solution.

  6. 75 FR 52037 - Welding, Cutting and Brazing Standard; Extension of the Office of Management and Budget's (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ...] Welding, Cutting and Brazing Standard; Extension of the Office of Management and Budget's (OMB) Approval... requirements contained in the Welding, Cutting and Brazing Standard (29 CFR part 1910, subpart Q). The information collected is used by employers and workers whenever welding, cutting and brazing are performed...

  7. Physical-chemical treatment of wastes: a way to close turnover of elements in LSS

    NASA Astrophysics Data System (ADS)

    Kudenko, Yu A.; Gribovskaya, I. V.; Zolotukhin, I. G.

    2000-05-01

    "Man-plants-physical-chemical unit" system designed for space stations or terrestrial ecohabitats to close steady-state mineral, water and gas exchange is proposed. The physical-chemical unit is to mineralize all inedible plant wastes and physiological human wastes (feces, urine, gray water) by electromagnetically activated hydrogen peroxide in an oxidation reactor. The final product is a mineralized solution containing all elements balanced for plants' requirements. The solution has been successfully used in experiments to grow wheat, beans and radish. The solution was reusable: the evaporated moisture was replenished by the phytotron condensate. Sodium salination of plants was precluded by evaporating reactor-mineralized urine to sodium saturation concentration to crystallize out NaCl which can be used as food for the crew. The remaining mineralized product was brought back for nutrition of plants. The gas composition of the reactor comprises O 2, N 2, CO 2, NH 3, H 2. At the reactor's output hydrogen and oxygen were catalyzed into water, NH 3 was converted in a water trap into NH 4 and used for nutrition of plants. A special accessory at the reactor's output may produce hydrogen peroxide from intrasystem water and gas which makes possible to close gas loops between LSS components.

  8. Oil Based Drilling Fluid Waste: An Overview on Environmentally Persistent Pollutants

    NASA Astrophysics Data System (ADS)

    Siddique, Shohel; Kwoffie, Lorraine; Addae-Afoakwa, Kofi; Yates, Kyari; Njuguna, James

    2017-05-01

    Operational discharges of spent drilling fluid, produced water, and accumulated drill cuttings from oil and gas industry are a continuous point source of environmental pollution. To meet the strict environmental standard for waste disposal, oil and gas industry is facing a numerous challenges in technological development to ensure a clean and safe environment. Oil and gas industry generates a large amount of spent drilling fluid, produced water, and drill cuttings, which are very different in every drilling operation in terms of composition and characterisation. This review article highlights the knowledge gap in identifying the different sources of waste streams in combined drilling waste. This paper also emphasises how different chemicals turn into environmentally significant pollutants after serving great performance in oil and gas drilling operations. For instance, oil based drilling fluid performs excellent in deeper drilling and drilling in the harsh geological conditions, but ended with (produces) a significant amount of persistent toxic pollutants in the environment. This review paper provides an overview on the basic concepts of drilling fluids and their functions, sources and characterisation of drilling wastes, and highlights some environmentally significant elements including different minerals present in drilling waste stream.

  9. Improvement of cutting performance for thick stainless steel plates by step-like cutting speed increase in high-power fiber laser cutting

    NASA Astrophysics Data System (ADS)

    Seon, Sangwoo; Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan

    2018-07-01

    A study was conducted to improve the cutting performance of a 60-mm thick stainless steel plate using a 6-kW fiber laser. Two techniques for improving the initial cutting performance were evaluated by preheating the work piece with a waiting time and step-like cutting speed increase. Both techniques showed improved cutting results compared to constant speed cutting. Among them, the method with a step-like cutting speed increase showed the better result in terms of cutting performance. As a result, a 60-mm thick stainless steel plate was cut at a maximum cutting speed of 72 mm/min with a preheating cutting speed of 24 mm/min. In order to confirm the effect of preheating, an additional experiment was performed to measure the temperature variation during the cutting process. Through this experiment, preheating temperature conditions were found to allow the specimen to be cut. It is expected that the results of this work will contribute to improving the cutting performance of thick metal structures in various industrial fields, as well as the dismantling of nuclear facilities using lasers in the future.

  10. Ecotoxicological evaluation of three deicers (NaCl, NaFo, CMA)-effect on terrestrial organisms.

    PubMed

    Robidoux, P Y; Delisle, C E

    2001-02-01

    The use of chemical deicers such as sodium chloride (NaCl) has increased significantly during the past three decades. Deicers induce metal corrosion and alter the physicochemical properties of soils and water. Environmental damage caused by the use of NaCl has prompted government agencies to find alternative deicers. This article presents a comparative ecotoxicological study of three deicers on soil organisms. Sodium formiate (NaFo) and calcium-magnesium acetate (CMA) are the most interesting commercially available deicers based upon their characteristics and potential toxicity. Organisms used in this study were four species of macrophytes (cress (Lepidium sativum), barley (Ordeum vulgare), red fescue grass (Festuca rubra), Kentucky bluegrass (Poa pratensis)) and an invertebrate (Eisenia fetida). Using standardized and modified methods, the relative toxicity of deicers was CMA < NaFo congruent with NaCl. The results demonstrate that these chemicals could have similar impacts in terrestrial environments since similar quantities of NaFo and greater amounts of CMA are necessary to achieve the same efficiency as NaCl. The toxicity of the tested substances was lower in natural composted soil than in artificial substrate (silica or OECD soil), indicating decreased environmental bioavailability. The response of the organisms changed according to endpoint, species, and soil characteristics (artificial substrate as compared to natural organic soil). The most sensitive endpoint measured was macrophyte growth with Kentucky bluegrass being the most sensitive species. Copyright 2001 Academic Press.

  11. Influence of NaCl Concentrations on Coagulation, Temperature, and Electrical Conductivity Using a Perfusion Radiofrequency Ablation System: An Ex Vivo Experimental Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aube, Christophe, E-mail: ChAube@chu-angers.fr; Schmidt, Diethard; Brieger, Jens

    2007-02-15

    Purpose. To determine, by means of an ex vivo study, the effect of different NaCl concentrations on the extent of coagulation obtained during radiofrequency (RF) ablation performed using a digitally controlled perfusion device. Method. Twenty-eight RF ablations were performed with 40 W for 10 min using continuous NaCl infusion in fresh excised bovine liver. For perfusion, NaCl concentrations ranging from 0 (demineralized water) to 25% were used. Temperature, the amount of energy, and the dimensions of thermal-induced white coagulation were assessed for each ablation. These parameters were compared using the nonparametric Mann-Whitney test. Correlations were calculated according to the Spearmanmore » test. Results. RF ablation performed with 0.9% to 25% concentrations of NaCl produced a mean volume of coagulation of 30.7 {+-} 3.8 cm{sup 3}, with a mean short-axis diameter of 3.6 {+-} 0.2 cm. The mean amount of energy was 21,895 {+-} 1,674 W and the mean temperature was 85.4 {+-} 12.8 deg. C. Volume of coagulation, short-axis diameter, and amount of energy did not differ significantly among NaCl concentrations (p > 0.5). A correlation was found between the NaCl concentration and the short-axis diameter of coagulation (r = 0.64) and between the NaCl concentration and the mean temperature (r = 0.67), but not between the NaCl concentration and volume of coagulation. Conclusion. In an ex vivo model, continuous perfusion with high NaCl concentrations does not significantly improve the volume of thermal-induced coagulation. This may be because the use of a low-power generator cannot sufficiently exploit the potential advantage of better tissue conductivity provided by NaCl perfusion.« less

  12. Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route.

    PubMed

    Benavides, A L; Aragones, J L; Vega, C

    2016-03-28

    The solubility of NaCl in water is evaluated by using three force field models: Joung-Cheatham for NaCl dissolved in two different water models (SPC/E and TIP4P/2005) and Smith Dang NaCl model in SPC/E water. The methodology based on free-energy calculations [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] and [J. L. Aragones et al., J. Chem. Phys. 136, 244508 (2012)] has been used, except, that all calculations for the NaCl in solution were obtained by using molecular dynamics simulations with the GROMACS package instead of homemade MC programs. We have explored new lower molalities and made longer runs to improve the accuracy of the calculations. Exploring the low molality region allowed us to obtain an analytical expression for the chemical potential of the ions in solution as a function of molality valid for a wider range of molalities, including the infinite dilute case. These new results are in better agreement with recent estimations of the solubility obtained with other methodologies. Besides, two empirical simple rules have been obtained to have a rough estimate of the solubility of a certain model, by analyzing the ionic pairs formation as a function of molality and/or by calculating the difference between the NaCl solid chemical potential and the standard chemical potential of the salt in solution.

  13. Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution

    DOE PAGES

    Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; ...

    2016-05-21

    Monosulfoaluminate (Ca 4Al 2(SO 4)(OH) 12∙6H 2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO 4 2- and OH -) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formedmore » ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.« less

  14. Growth and cellular ion content of a salt-sensitive symbiotic system Azolla pinnata-Anabaena azollae under NaCl stress.

    PubMed

    Rai, Vandna; Sharma, Naveen Kumar; Rai, Ashwani K

    2006-09-01

    Salinity, at a concentration of 10 mM NaCl affected the growth of Azolla pinnata-Anabaena azollae association and became lethal at 40 mM. Plants exposed up to 30 mM NaCl exhibited longer roots than the control, especially during the beginning of incubation. Average root number in plants exposed to 10 and 20 mM NaCl remained almost the same as in control. A further rise in NaCl concentration to 30 mM reduced the root number, and roots shed off at 40 mM NaCl. Presence of NaCl in the nutrient solution increased the cellular Na+ of the intact association exhibiting differential accumulation by individual partners, while it reduced the cellular Ca2+ level. However, cellular K+ content did not show significant change. Cellular Na+ based on fresh weight of respective individual partners (host tissues and cyanobiont) remained higher in the host tissues than the cyanobiont, while reverse was true for K+ and Ca2+ contents. The contribution of A. azollae in the total cellular ion content of the association was a little because of meagre contribution of the cyanobiont mass (19-21%). High salt sensitivity of Azolla-Anabaena complex is due to an inability of the association to maintain low Na+ and high Ca2+ cellular level.

  15. Purification of proteins from solutions containing residual host cell proteins via preparative crystallization.

    PubMed

    Hekmat, Dariusch; Breitschwerdt, Peter; Weuster-Botz, Dirk

    2015-09-01

    To investigate quantitatively and reproducibly a scalable, preparative crystallization method in novel stirred tanks using three different protein solutions containing residual microbial host cell proteins (HCP). Lysozyme from solutions being spiked with up to 15% host cell proteins (HCP) (corresponding to 176,500 ppm) was crystallized within a 2.4-4.6 h at 93.7% yield using NaCl and glycerol. Lipase was crystallized under comparable conditions using NaCl and a mixture of two polyethylene glycols (PEG). Enhanced green fluorescent protein (eGFP) was overexpressed in E. coli yielding a solution containing 23% target protein. Residual HCP content after pre-treatment was 7-16%. eGFP was crystallized from these solutions within 1.75-4 h at 88.7% step yield using ethanol and the same mixture of two PEG as in the case of lipase. HCP contained in the solvent channels of the protein crystals could be removed by diffusive washing yielding final purities at or above 99%. Preparative crystallization can be carried out with fast kinetics and high yields from solutions containing residual impurities and may represent an attractive alternative purification method compared to preparative chromatography, especially at large production scales.

  16. Portable cutting apparatus

    DOEpatents

    Gilmore, Richard F.

    1986-01-01

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engageable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  17. Portable cutting apparatus

    DOEpatents

    Gilmore, R.F.

    1984-07-17

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engagable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  18. Portable cutting apparatus

    DOEpatents

    Gilmore, Richard F.

    1986-04-01

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engageable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  19. Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration.

    PubMed

    Kiura, Hiromasa; Sano, Kouichi; Morimatsu, Shinichi; Nakano, Takashi; Morita, Chizuko; Yamaguchi, Masaki; Maeda, Toyoyuki; Katsuoka, Yoji

    2002-05-01

    Electrolyzed strong acid water (ESW) containing free chlorine at various concentrations is becoming to be available in clinical settings as a disinfectant. ESW is prepared by electrolysis of a NaCl solution, and has a corrosive activity against medical instruments. Although lower concentrations of NaCl and free chlorine are desired to eliminate corrosion, the germicidal effect of ESW with low NaCl and free-chlorine concentrations (ESW-L) has not been fully clarified. In this study, we demonstrated that ESW-L possesses bactericidal activity against Mycobacteria and spores of Bacillus subtilis. The effect was slightly weaker than that of ESW containing higher NaCl and free-chlorine concentrations (ESW-H), but acceptable as a disinfectant. To clarify the mechanism of the bactericidal activity, we investigated ESW-L-treated Pseudomonas aeruginosa by transmission electron microscopy, a bacterial enzyme assay and restriction fragment length polymorphism pattern (RFLP) assay. Since the bacterium, whose growth was completely inhibited by ESW-L, revealed the inactivation of cytoplasmic enzyme, blebs and breaks in its outer membrane and remained complete RFLP of DNA, damage of the outer membrane and inactivation of cytoplasmic enzyme are the important determinants of the bactericidal activity.

  20. A Time Series Study of Lophelia pertusa and Reef Megafauna Responses to Drill Cuttings Exposure on the Norwegian Margin

    PubMed Central

    Purser, Autun

    2015-01-01

    As hotspots of local biodiversity in the deep sea, preservation of cold-water coral reef communities is of great importance. In European waters the most extensive reefs are found at depths of 300 – 500 m on the continental margin. In Norwegian waters many of these reefs are located in areas of interest for oil and gas exploration and production. In this study drilling was carried out in the Morvin drill field in proximity to a number of small Lophelia pertusa coral reefs (closest reefs 100 m upstream and 350 m downstream of point of waste drill material release). In a novel monitoring study, ROV video surveys of 9 reefs were conducted prior, during, immediately after and >1 year after drilling operations. Behavior of coral polyps inhabiting reefs exposed to differing concentrations of drill cuttings and drilling fluids (waste drilling material) were compared. Levels of expected exposure to these waste materials were determined for each reef by modelling drill cutting transport following release, using accurate in-situ hydrodynamic data collected during the drilling period and drill cutting discharge data as parameters of a dispersal model. The presence / absence of associate reef species (Acesta excavata, Paragorgia arborea and Primnoa resedaeformis) were also determined from each survey video. There were no significant differences in Lophelia pertusa polyp behavior in corals modelled to have been exposed to pulses of >25 ppm drill cutting material and those modelled to be exposed to negligible concentrations of material. From the video data collected, there were no observed degradations of reef structure over time, nor reductions of associate fauna abundance, regardless of modelled exposure concentration at any of the surveyed reefs. This study focused exclusively on adult fauna, and did not assess the potential hazard posed by waste drilling material to coral or other larvae. Video data was collected by various ROV’s, using different camera and lighting

  1. Crevice corrosion - NaCl concentration map for grade-2 titanium at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujikawa, Shigeo; Kojima, Yoichi

    1993-12-31

    The repassivation potential, ER, for metal/metal-crevice of Commercially Pure Titanium, C.P.Ti, was determined in NaCl solutions at temperatures up to 250C. The ER has its least noble value near 100C and becomes more noble as the temperature increases. As shown in previous research, the shrinkage of the repassivation region should continue with increasing temperatures. However, in conducting this same experiment at temperatures higher than 100C, an examination of the NaCl concentration - temperature - crevice corrosion map verifies that the repassivation region began to expand again when the temperature exceeded 140C. This expansion continued as the temperature continued to increase.

  2. Domain structure of human complement C4b extends with increasing NaCl concentration: implications for its regulatory mechanism.

    PubMed

    Fung, Ka Wai; Wright, David W; Gor, Jayesh; Swann, Marcus J; Perkins, Stephen J

    2016-12-01

    During the activation of complement C4 to C4b, the exposure of its thioester domain (TED) is crucial for the attachment of C4b to activator surfaces. In the C4b crystal structure, TED forms an Arg 104 -Glu 1032 salt bridge to tether its neighbouring macroglobulin (MG1) domain. Here, we examined the C4b domain structure to test whether this salt bridge affects its conformation. Dual polarisation interferometry of C4b immobilised at a sensor surface showed that the maximum thickness of C4b increased by 0.46 nm with an increase in NaCl concentration from 50 to 175 mM NaCl. Analytical ultracentrifugation showed that the sedimentation coefficient s 20,w of monomeric C4b of 8.41 S in 50 mM NaCl buffer decreased to 7.98 S in 137 mM NaCl buffer, indicating that C4b became more extended. Small angle X-ray scattering reported similar R G values of 4.89-4.90 nm for C4b in 137-250 mM NaCl. Atomistic scattering modelling of the C4b conformation showed that TED and the MG1 domain were separated by 4.7 nm in 137-250 mM NaCl and this is greater than that of 4.0 nm in the C4b crystal structure. Our data reveal that in low NaCl concentrations, both at surfaces and in solution, C4b forms compact TED-MG1 structures. In solution, physiologically relevant NaCl concentrations lead to the separation of the TED and MG1 domain, making C4b less capable of binding to its complement regulators. These conformational changes are similar to those seen previously for complement C3b, confirming the importance of this salt bridge for regulating both C4b and C3b. © 2016 The Author(s).

  3. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds.

    PubMed

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Properties of lightweight cement-based composites containing waste polypropylene

    NASA Astrophysics Data System (ADS)

    Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.

  5. Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1.

    PubMed

    Vallon, Volker; Schroth, Jana; Lang, Florian; Kuhl, Dietmar; Uchida, Shinichi

    2009-09-01

    The Na-Cl cotransporter NCC is expressed in the distal convoluted tubule, activated by phosphorylation, and has been implicated in renal NaCl and K(+) homeostasis. The serum and glucocorticoid inducible kinase 1 (SGK1) contributes to renal NaCl retention and K(+) excretion, at least in part, by stimulating the epithelial Na(+) channel and Na(+)-K(+)-ATPase in the downstream segments of aldosterone-sensitive Na(+)/K(+) exchange. In this study we confirmed in wild-type mice (WT) that dietary NaCl restriction increases renal NCC expression and its phosphorylation at Thr(53), Thr(58), and Ser(71), respectively. This response, however, was attenuated in mice lacking SGK1 (Sgk1(-/-)), which may contribute to impaired NaCl retention in those mice. Total renal NCC expression and phosphorylation at Thr(53), Thr(58), and Ser(71) in WT were greater under low- compared with high-K(+) diet. This finding is consistent with a regulation of NCC to modulate Na(+) delivery to downstream segments of Na(+)/K(+) exchange, thereby modulating K(+) excretion. Dietary K(+)-dependent variation in renal expression of total NCC and phosphorylated NCC were not attenuated in Sgk1(-/-) mice. In fact, high-K(+) diet-induced NCC suppression was enhanced in Sgk1(-/-) mice. The hyperkalemia induced in Sgk1(-/-) mice by a high-K(+) diet may have augmented NCC suppression, thereby increasing Na(+) delivery and facilitating K(+) excretion in downstream segments of impaired Na(+)/K(+) exchange. In summary, changes in NaCl and K(+) intake altered NCC expression and phosphorylation, an observation consistent with a role of NCC in NaCl and K(+) homeostasis. The two maneuvers dissociated plasma aldosterone levels from NCC expression and phosphorylation, implicating additional regulators. Regulation of NCC expression and phosphorylation by dietary NaCl restriction appears to involve SGK1.

  6. Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties.

    PubMed

    Jisha, K C; Puthur, Jos T

    2014-07-01

    The investigation was carried out to study the effect of halopriming on NaCl and polyethylene glycol-6000 (PEG-6000) induced stress tolerance potential of three Vigna radiata (L.) Wilczek varieties, with varied abiotic stress tolerance potential. Halopriming is a seed priming technique in which the seeds were soaked in various salt solutions (in this study NaCl was used). The results of the study indicated that the application of stresses (both NaCl and PEG) induced retardation of growth attributes (measured in terms of shoot length, fresh weight, dry weight) and decrease in physiological attributes like total chlorophyll content, metabolites, photosynthetic and mitochondrial activity of the seedlings in all three V. radiata (L.) varieties. However, halopriming of the seeds could reduce the extent of decrease in these biological attributes. NaCl and PEG stress also caused increase in MDA content (a product of membrane lipid peroxidation) in all the varieties studied and this increase was significantly minimized under halopriming. From the present investigation it was evident that among the green gram varieties studied, Pusa Vishal, a NaCl tolerant variety showed enhanced tolerance to NaCl and PEG induced stress, when the seeds were subjected to halopriming followed by Pusa Ratna (stress sensitive variety). Pusa 9531 (drought tolerant variety) also showed positive halopriming effects but it was less significant when compared to other two varieties. It could be concluded that halopriming improved the drought and salinity stress tolerance potential of all varieties and it was significantly higher in the Pusa Vishal as compared to Pusa 9531 and Pusa Ratna.

  7. Radioactive waste processing apparatus

    DOEpatents

    Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  8. Simplified NaCl based (68)Ga concentration and labeling procedure for rapid synthesis of (68)Ga radiopharmaceuticals in high radiochemical purity.

    PubMed

    Mueller, Dirk; Klette, Ingo; Baum, Richard P; Gottschaldt, M; Schultz, Michael K; Breeman, Wouter A P

    2012-08-15

    A simple sodium chloride (NaCl) based (68)Ga eluate concentration and labeling method that enables rapid, high-efficiency labeling of DOTA conjugated peptides in high radiochemical purity is described. The method utilizes relatively few reagents and comprises minimal procedural steps. It is particularly well-suited for routine automated synthesis of clinical radiopharmaceuticals. For the (68)Ga generator eluate concentration step, commercially available cation-exchange cartridges and (68)Ga generators were used. The (68)Ga generator eluate was collected by use of a strong cation exchange cartridge. 98% of the total activity of (68)Ga was then eluted from the cation exchange cartridge with 0.5 mL of 5 M NaCl solution containing a small amount of 5.5 M HCl. After buffering with ammonium acetate, the eluate was used directly for radiolabeling of DOTATOC and DOTATATE. The (68)Ga-labeled peptides were obtained in higher radiochemical purity compared to other commonly used procedures, with radiochemical yields greater than 80%. The presence of (68)Ge could not be detected in the final product. The new method obviates the need for organic solvents, which eliminates the required quality control of the final product by gas chromatography, thereby reducing postsynthesis analytical effort significantly. The (68)Ga-labeled products were used directly, with no subsequent purification steps, such as solid-phase extraction. The NaCl method was further evaluated using an automated fluid handling system and it routinely facilitates radiochemical yields in excess of 65% in less than 15 min, with radiochemical purity consistently greater than 99% for the preparation of (68)Ga-DOTATOC.

  9. 45 CFR 671.11 - Waste storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... containers or tanks labeled to indicate their contents and the beginning date of accumulation of such waste... McMurdo Station or other disposition, for a period not to exceed 28 months; (4) Containers holding... ability of the containers to contain such waste is not impaired; (iii) Stored in a manner that allows...

  10. 45 CFR 671.11 - Waste storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... containers or tanks labeled to indicate their contents and the beginning date of accumulation of such waste... McMurdo Station or other disposition, for a period not to exceed 28 months; (4) Containers holding... ability of the containers to contain such waste is not impaired; (iii) Stored in a manner that allows...

  11. 45 CFR 671.11 - Waste storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... containers or tanks labeled to indicate their contents and the beginning date of accumulation of such waste... McMurdo Station or other disposition, for a period not to exceed 28 months; (4) Containers holding... ability of the containers to contain such waste is not impaired; (iii) Stored in a manner that allows...

  12. 45 CFR 671.11 - Waste storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... containers or tanks labeled to indicate their contents and the beginning date of accumulation of such waste... McMurdo Station or other disposition, for a period not to exceed 28 months; (4) Containers holding... ability of the containers to contain such waste is not impaired; (iii) Stored in a manner that allows...

  13. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.

    PubMed

    Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F

    2013-01-01

    In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Applications of fiber reinforced concrete containers in France and in Slovakia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdier, A.; Delgrande, J.; Remias, V.

    Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by COGEMA culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber reinforced concrete containers satisfy all French safetymore » requirements relating to waste immobilization and disposal, and have been certified by ANDRA, the national radioactive waste management agency. The fiber reinforced concrete containers have been fabricated on a production scale since July 1990 by Sogefibre, a jointly-owned subsidiary of SGN and Campaign Generale des Eaux. This technology is being transferred to Slovenske Elektrarne (Slovak Power Plant) to intern the waste produced by Bohunice and Mochovce power plants in cubical fiber reinforced concrete containers.« less

  15. Lyophilization -Solid Waste Treatment

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  16. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  17. Pyrolysis of polyethylene terephthalate containing real waste plastics using Ni loaded zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Al-asadi, M.; Miskolczi, N.

    2018-05-01

    In this work the pyrolysis of polyethylene terephthalate (PET) containing real waste plastic was investigated using different Ni loaded catalysts: Ni/ZSM-5, Ni/y-zeolite, Ni/β-zeolite and Ni/natural zeolite (clinoptilolite). Raw materials were pyrolyzed in a horizontal tubular reactor between 600 and 900°C using 10% of catalysts. It was found, that both temperature increasing and catalysts presence can increase the gas yields, however owing to gasification reactions, the pyrolysis oil yield decreased with increasing temperature. Ni/y-zeolite catalyst had the most benefit in gas yield increasing at low temperature; however Ni/ZSM-5 showed advanced property in gas yield increasing at high temperature. Gases contained hydrogen, carbon oxides and hydrocarbons, which composition was significantly affected by catalysts. Ni loaded zeolites favoured to the formation of hydrogen and branched hydrocarbons; furthermore the concentrations of both CO and CO2 were also increased as function of elevated temperature. That phenomenon was attributed to the further decomposition of PET, especially to the side chain scission reactions. Owing to the Boudouard reaction, the ratio of CO2/CO can increased with temperature. Pyrolysis oils were the mixtures of n-saturated, n-unsaturated, branched, oxygen free aromatics and oxygenated hydrocarbons. Temperature increasing has a significant effect to the aromatization and isomerization reactions, while the catalysts can efficiently decreased the concentration of oxygen containing compounds.

  18. Effects of dilute aqueous NaCl solution on caffeine aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhanita; Paul, Sandip, E-mail: sandipp@iitg.ernet.in

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogenmore » bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.« less

  19. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-10-05

    This report summarizes existing analytical data gleaned from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shellmore » tanks B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature. This report supercedes and replaces PNNL-14832.« less

  20. Plasma-membrane H(+)-ATPase gene expression is regulated by NaCl in cells of the halophyte Atriplex nummularia L.

    PubMed

    Niu, X; Zhu, J K; Narasimhan, M L; Bressan, R A; Hasegawa, P M

    1993-01-01

    An Atriplex nummularia L. cDNA probe encoding the partial sequence of an isoform of the plasma-membrane H(+)-ATPase was isolated, and used to characterize the NaCl regulation of mRNA accumulation in cultured cells of this halophyte. The peptide (477 amino acids) translated from the open reading frame has the highest sequence homology to the Nicotiana plumbaginifolia plasma-membrane H(+)-ATPase isoform pma4 (greater than 80% identity) and detected a transcript of approximately 3.7 kb on Northern blots of both total and poly(A)+ RNA. The mRNA levels were comparable in unadapted cells, adapted cells (cells adapted to and growing in 342 mM NaCl) and deadapted cells (cells previously adapted to 342 mM NaCl that are now growing without salt). Increased mRNA abundance was detected in deadapted cells within 24 h after exposure to NaCl but not in unadapted cells with similar salt treatments. The NaCl up-regulation of message abundance in deadapted cells was subject to developmental control. Analogous to those reported for glycophytes, the plasma-membrane H(+)-ATPase are encoded by a multigene family in the halophyte.

  1. The Cathodic Behavior of Ti(III) Ion in a NaCl-2CsCl Melt

    NASA Astrophysics Data System (ADS)

    Song, Yang; Jiao, Shuqiang; Hu, Liwen; Guo, Zhancheng

    2016-02-01

    The cathodic behavior of Ti(III) ions in a NaCl-2CsCl melt was investigated by cyclic voltammetry, chronopotentiometry, and square wave voltammetry with a tungsten electrode being the working electrode at different temperatures. The results show that the cathodic behavior of Ti(III) ion consists of two irreversible steps: Ti3+ + e = Ti2+ and Ti2+ + 2 e = Ti. The diffusion coefficient for the Ti(III) ion in the NaCl-2CsCl eutectic is 1.26 × 10-5 cm2 s-1 at 873 K (600 °C), increases to be 5.57 × 10-5 cm2 s-1 at 948K (675°C), and further rises to 10.8 × 10-5 cm2 s-1 at 1023 (750 °C). Moreover, galvanostatic electrolysis performed on a titanium electrode further presents the feasibility of electrodepositing metallic titanium in the molten NaCl-2CsCl-TiCl3 system.

  2. Cutting efficiency of instruments with different movements: a comparative study.

    PubMed

    Tocci, Luigi; Plotino, Gianluca; Al-Sudani, Dina; Rubini, Alessio Giansiracusa; Sannino, Gianpaolo; Piasecki, Lucila; Putortì, Ermanno; Testarelli, Luca; Gambarini, Gianluca

    2015-01-01

    The aim of the present study was to evaluate the cutting efficiency of two new reciprocating instruments, Twisted File Adaptive and WaveOne Primary. 10 new Twisted File Adaptive (TF Adaptive) (SybronEndo, Glendora, CA, USA) and 10 new WaveOne Primary files (Dentsply Maillefer, Ballaigues, Switzerland) were activated using a torque-controlled motor, respectively TFA motor (SybronEndo, Glendora, CA, USA) and Silver motor (VDW, Munich, Germany). The device used for the cutting test consisted on a mainframe to which a mobile plastic support for the hand-piece is connected and a stainless-steel block containing a Plexiglas block against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Mean and standard deviations of each group were calculated and data were statistically analyzed with one-way ANOVA and Bonferroni t test (P < 0.05). TF Adaptive displayed significantly greater maximum penetration depth than WaveOne Primary (P < 0.05). In fact, TF Adaptive instruments (Group 1) cut the Plexiglas block to a mean depth of 8.7 (SD 0.5) mm, while WaveOne Primary instruments cut the Plexiglas block to a mean depth of 6.4 (SD 0.3) mm. Twisted File Adaptive instruments demonstrated statistically higher cutting efficiency than WaveOne instruments.

  3. Quantification of the inevitable: the influence of soil macrofauna on soil water movement in rehabilitated open-cut mined lands

    NASA Astrophysics Data System (ADS)

    Arnold, S.; Williams, E. R.

    2016-01-01

    Recolonisation of soil by macrofauna (especially ants, termites and earthworms) in rehabilitated open-cut mine sites is inevitable and, in terms of habitat restoration and function, typically of great value. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration, seepage, runoff generation and soil erosion. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, the soil macrofauna is typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions and field trials on post-mining lands are required to quantify (i) macrofauna-soil structure interactions, (ii) functional dynamics of macrofauna taxa, and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.

  4. Mining the Midden: A Facility for Dynamic Waste Harvesting at the Cedar Hills Regional Landfill

    NASA Astrophysics Data System (ADS)

    Allan, Aaron

    Mining the Midden intends to re-frame the sanitary landfill as a new typology of public land containing an embodied energy of cultural and material value. By reconnecting the public with the landfill and seriously exposing its layers of history and then digesting both mined and new waste within an industrial facility of materials recovery and plasma gasification technology waste-to-energy plant. The sequence of experience for a public visitor begins where the waste is transformed to energy and flows in the opposite direction of the trash through the facility and then into the active landfill mining operation which is the large site component of the project. The mine is flanked by the visitor path, which is suspended from the soldier piles of the excavation system and allows the visitor to interpret along the 1/3 mile path their personal connection to the waste stream and the consumption patterns which drive our waste. Interpretation results from multi-sensory experience of the open mine and its connection to the processing structure as one hovers above, through moments of seeing through structural glass lagging directly into the sectional cut of the landfill, and through cultural artifacts harvested by landfill archaeologists which are displayed in rhythm with the structure and lagging. The culmination of the prescribed path is a narrow cut which frames the view of Mt. Rainier in the distance and opens up a visual connection with the remaining majority of the landfill which have up to this point been blocked by the small mountain of trash which they just walked up and through. This thesis intends that by confronting people with the juxtapositions of 2 potentially destructive mounds or mountains, and how we as a culture value and protect land while we simultaneously dump our rubbish on other lands, this experience will make the visitor more conscious of ones personal contribution to our culture of disposable commodities.

  5. γ-Adducin Stimulates the Thiazide-sensitive NaCl Cotransporter

    PubMed Central

    Dimke, Henrik; San-Cristobal, Pedro; de Graaf, Mark; Lenders, Jacques W.; Deinum, Jaap; Hoenderop, Joost G.J.

    2011-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) plays a key role in renal salt reabsorption and the determination of systemic BP, but the molecular mechanisms governing the regulation of NCC are not completely understood. Here, through pull-down experiments coupled to mass spectrometry, we found that γ-adducin interacts with the NCC transporter. γ-Adducin colocalized with NCC to the distal convoluted tubule. 22Na+ uptake experiments in the Xenopus laevis oocyte showed that γ-adducin stimulated NCC activity in a dose-dependent manner, an effect that occurred upstream from With No Lysine (WNK) 4 kinase. The binding site of γ-adducin mapped to the N terminus of NCC and encompassed three previously reported phosphorylation sites. Supporting this site of interaction, competition with the N-terminal domain of NCC abolished the stimulatory effect of γ-adducin on the transporter. γ-Adducin failed to increase NCC activity when these phosphorylation sites were constitutively inactive or active. In addition, γ-adducin bound only to the dephosphorylated N terminus of NCC. Taken together, our observations suggest that γ-adducin dynamically regulates NCC, likely by amending the phosphorylation state, and consequently the activity, of the transporter. These data suggest that γ-adducin may influence BP homeostasis by modulating renal NaCl transport. PMID:21164023

  6. Treatability Variance for Containerised Liquids in Mixed Debris Waste - 12101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alstatt, Catherine M.

    2012-07-01

    The TRU Waste Processing Center (TWPC) is a Department of Energy facility whose mission is to receive and process for appropriate disposal legacy Contact Handled (CH) and Remote Handled (RH) waste, including debris waste stored at various DOE Oak Ridge facilities. Acceptable Knowledge (AK) prepared for the waste characterizes the waste as mixed waste, meaning it is both radioactive and regulated under the Resource Conservation and Recovery Act (RCRA). The AK also indicates that a number of the debris waste packages contain small amounts of containerised liquids. The documentation indicates liquid wastes generated in routine lab operations were typically collectedmore » for potential recovery of valuable isotopes. However, during activities associated with decontamination and decommissioning (D and D), some containers with small amounts of liquids were placed into the waste containers with debris waste. Many of these containers now hold from 2.5 milliliters (ml) to 237 ml of liquid; a few contain larger volumes. At least some of these containers were likely empty at the time of generation, but documentation of this condition is lacking. Since WIPP compliant AK is developed on a waste stream basis, rather than an individual container basis, and includes every potential RCRA hazardous constituent within the waste stream, it is insufficient for the purpose of characterizing individual containers of liquid. Debris waste is defined in 40 CFR 268.2(g) as 'solid material exceeding a 60 mm particle size that is intended for disposal and that is: a manufactured object; or plant or animal matter; or natural geologic material'. The definition further states that intact containers of hazardous waste that are not ruptured and that retain at least 75% of their original volume are not debris. The prescribed treatment is removal of intact containers from the debris waste, and treatment of their contents to meet specific Land Disposal Restrictions (LDR) standards. This is true for

  7. Biodegradable containers from green waste materials

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Schettini, Evelia; Pandini, Stefano; Bignotti, Fabio; Vox, Giuliano; D'Amore, Alberto

    2016-05-01

    Novel biodegradable polymeric materials based on protein hydrolysate (PH), derived from waste products of the leather industry, and poly(ethylene glycol) diglycidyl ether (PEG) or epoxidized soybean oil (ESO) were obtained and their physico-chemical properties and mechanical behaviour were evaluated. Different processing conditions and the introduction of fillers of natural origin, as saw dust and wood flour, were used to tailor the mechanical properties and the environmental durability of the product. The biodegradable products, which are almost completely manufactured from renewable-based raw materials, look promising for several applications, particularly in agriculture for the additional fertilizing action of PH or in packaging.

  8. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of themore » 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  9. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of themore » 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  10. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of themore » 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  11. Considerations for Net Zero Waste Installations: Treatment of Municipal Solid Waste

    DTIC Science & Technology

    2015-09-01

    plastic) containers or reusable drink containers (such as thermoses) can reduce the amount of metals in the waste stream. Foun- tain drink loyalty ...alternatives are needed to give customers outlets to safely dispose of unwanted HHHW. Periodic turn-in days can be valuable for this pur- pose... restaurants , schools, hospitals, and dining halls) and family housing areas where food waste is continually generated. ERDC/CERL TR-15-21 24

  12. Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, V.

    Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton,more » Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.« less

  13. Rethinking Cuts in Public Education: An American Example.

    ERIC Educational Resources Information Center

    Fenton, Richard J.; Gardner, John; Singh, Sandeep

    2001-01-01

    Recent public higher education spending cuts have often been matched by tuition increases, resulting in possible declines in college graduates and in personal income tax receipts. Applying a net present-value model to quantify New York State data suggests that potential revenue losses quickly dwarf short-term budgetary savings. (Contains 21…

  14. Cutting roller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, G.; Weikert, N.B.

    1984-05-29

    A cutting roller for a mining machine, having a substantially conical closure member arranged to face the workings and a tubular body member which has a larger diameter at the end nearer the face working face than at the discharge end. The tubular member carries at least one cutting blade, and the closure member mounts at least one cutting blade; each blade is provided at its edge region with a plurality of bit holders for the attachment of cutter bits. The outer surface of the body member merges into the substantially conical closure member in a smooth, even curve, somore » that the outside diameter of the body member in the region of the working face is substantially greater than the diameter in the region of the discharge end of the cutting roller. The roller is provided with liquid distribution channels on each cutting blade, which channels are connected to a single liquid distribution ring channel in the region of the substantially conical closure member.« less

  15. A prototype scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Jebali, Ramsey; Mahon, David; Clarkson, Anthony

    2015-07-01

    A prototype scintillating-fibre detector system has been developed at the University of Glasgow in collaboration with the UK National Nuclear Laboratory (NNL) for the nondestructive assay of UK legacy nuclear waste containers. This system consists of two tracking modules above, and two below, the container under interrogation. Each module consists of two orthogonal planes of 2 mm-pitch fibres yielding one space point. Per plane, 128 fibres are read out by a single Hamamatsu H8500 64-channel MAPMT with two fibres multiplexed onto each pixel. A dedicated mapping scheme has been developed to avoid space point ambiguities and retain the high spatialmore » resolution provided by the fibres. The configuration allows the reconstruction of the incoming and scattered muon trajectories, thus enabling the container content, with respect to atomic number Z, to be determined. Results are shown from experimental data collected for high-Z objects within an air matrix and, for the first time, within a shielded, concrete-filled container. These reconstructed images show clear discrimination between the low, medium and high-Z materials present, with dimensions and positions determined with sub-centimetre precision. (authors)« less

  16. Phytostabilization of a landfill containing coal combustion waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, Christopher; Marx, Donald; Adriano, Domy

    2005-12-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three subsurface treatments (blocks) and five surface amendments (treatments) was implemented. The three blocks included (1) ripping and compost amended, (2) ripping only, and (3) control. Surface treatments included (1) topsoil, (2) fly ash, (3) compost, (4) apatite, and (5) control. Inoculated loblolly (Pinus taeda) and Virginia (Pinus virginiana) pinemore » trees were planted on each plot. After three growing seasons, certain treatments were shown to be favorable for the establishment of vegetation on the basin. Seedlings located on block A developed a rooting system that penetrated into the basin media without significant adverse effects to the plant. However, seedlings on blocks B and C displayed poor rooting conditions and high mortality, regardless of surface treatment. Pore-water samples from lysimeters in block C were characterized by high acidity, Fe, Mn, Al, sulfate, and traceelement concentrations. Water-quality characteristics of the topsoil plots in block A, however, conformed to regulatory protocols. A decrease in soil-moisture content was observed in the rooting zone of plots that were successfully revegetated, which suggests that the trees, in combination with the surface treatments, influenced the water balance by facilitating water loss through transpiration and thereby reducing the likelihood of unwanted surface runoff and/or drainage effluent.« less

  17. The effect of NaCl 0.9% and NaCl 0.45% on sodium, chloride, and acid-base balance in a PICU population.

    PubMed

    Almeida, Helena Isabel; Mascarenhas, Maria Inês; Loureiro, Helena Cristina; Abadesso, Clara S; Nunes, Pedro S; Moniz, Marta S; Machado, Maria Céu

    2015-01-01

    To study the effect of two intravenous maintenance fluids on plasma sodium (Na), and acid-base balance in pediatric intensive care patients during the first 24h of hospitalization. A prospective randomized controlled study was performed, which allocated 233 patients to groups: (A) NaCl 0.9% or (B) NaCl 0.45%. Patients were aged 1 day to 18 years, had normal electrolyte concentrations, and suffered an acute insult (medical/surgical). change in plasma sodium. Parametric tests: t-tests, ANOVA, X(2) statistical significance level was set at α=0.05. Group A (n=130): serum Na increased by 2.91 (±3.9)mmol/L at 24h (p<0.01); 2% patients had Na higher than 150 mmol/L. Mean urinary Na: 106.6 (±56.8)mmol/L. No change in pH at 0 and 24h. Group B (n=103): serum Na did not display statistically significant changes. Fifteen percent of the patients had Na<135 mmol/L at 24h. The two fluids had different effects on respiratory and post-operative situations. The use of saline 0.9% was associated with a lower incidence of electrolyte disturbances. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  18. Portable propellant cutting assembly, and method of cutting propellant with assembly

    NASA Technical Reports Server (NTRS)

    Sharp, Roger A. (Inventor); Hoskins, Shawn W. (Inventor); Payne, Brett D. (Inventor)

    2002-01-01

    A propellant cutting assembly and method of using the assembly to cut samples of solid propellant in a repeatable and consistent manner is disclosed. The cutting assembly utilizes two parallel extension beams which are shorter than the diameter of a central bore of an annular solid propellant grain and can be loaded into the central bore. The assembly is equipped with retaining heads at its respective ends and an adjustment mechanism to position and wedge the assembly within the central bore. One end of the assembly is equipped with a cutting blade apparatus which can be extended beyond the end of the extension beams to cut into the solid propellant.

  19. Electrical and electronic plastics waste co-combustion with municipal solid waste for energy recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehlow, J.; Mark, F.E.

    1997-12-01

    The recovery or disposal of end-of-life electrical and electronic (E+E) equipment is receiving considerable attention from industry organisations such as APME in order to supply factual information which can be used in the development of a clear industry strategy. It is hoped that such information will persuade EU member states to define the best management practices for this waste stream. One of the difficulties regarding the recovery or disposal of E+E waste is a lack of data regarding its behaviour when incinerated. This lack of data has led to unfounded conclusions by sonic parties that plastic wastes contain harmful halogenatedmore » species which are difficult to treat and remove, and when incinerated contribute to the emission of halogenated species and are responsible for the major portion of emissions. APME has a comprehensive testing program investigating the impact of plastics on municipal solid waste (MSW) incineration. APME`s previous work has demonstrated the positive, beneficial effects of mixed waste plastics in the MSW energy recovery process as well as studying halogen behaviour during the combustion of packaging plastics waste and construction foam from the building industry. The current study was designed to evaluate the incineration of MSW containing typical levels of electrical and electronic (E+E) plastic waste, as well as MSW containing E+E waste in amounts up to 12%.« less

  20. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-08-31

    This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanksmore » B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.« less