Sample records for nadh-dependent ascorbate regeneration

  1. Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stufano, Paolo; Paris, Aubrey R.; Bocarsly, Andrew

    Cofactor regeneration in enzymatic reductions is crucial for the application of enzymes to both biological and energy-related catalysis. Specifically, regenerating NADH from NAD + is of great interest, and using electrochemistry to achieve this end is considered a promising option. Here in this paper, we report the first example of photoelectrochemical NADH regeneration at the illuminated (λ >600 nm), metal-modified p-type semiconductor electrode Pt/p-GaAs. Although bare p-GaAs electrodes produce only enzymatically inactive NAD 2, NADH was produced at the illuminated Pt-modified p-GaAs surface. At low overpotential (–0.75 V vs. Ag/AgCl), Pt/p-GaAs exhibited a seven-fold greater Faradaic efficiency for the formationmore » of NADH than Pt alone, with reduced competition from the hydrogen evolution reaction. Improved Faradaic efficiency and low overpotential suggest the possible utility of Pt/p-GaAs in energy-related NADH-dependent enzymatic processes.« less

  2. Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes

    DOE PAGES

    Stufano, Paolo; Paris, Aubrey R.; Bocarsly, Andrew

    2017-02-22

    Cofactor regeneration in enzymatic reductions is crucial for the application of enzymes to both biological and energy-related catalysis. Specifically, regenerating NADH from NAD + is of great interest, and using electrochemistry to achieve this end is considered a promising option. Here in this paper, we report the first example of photoelectrochemical NADH regeneration at the illuminated (λ >600 nm), metal-modified p-type semiconductor electrode Pt/p-GaAs. Although bare p-GaAs electrodes produce only enzymatically inactive NAD 2, NADH was produced at the illuminated Pt-modified p-GaAs surface. At low overpotential (–0.75 V vs. Ag/AgCl), Pt/p-GaAs exhibited a seven-fold greater Faradaic efficiency for the formationmore » of NADH than Pt alone, with reduced competition from the hydrogen evolution reaction. Improved Faradaic efficiency and low overpotential suggest the possible utility of Pt/p-GaAs in energy-related NADH-dependent enzymatic processes.« less

  3. A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD(+) regeneration.

    PubMed

    Wang, Jizhong; Yang, Chengli; Chen, Xing; Bao, Bingxin; Zhang, Xuan; Li, Dali; Du, Xingfan; Shi, Ruofu; Yang, Junfang; Zhu, Ronghui

    2016-08-01

    To find an efficient and cheap system for NAD(+) regeneration A NADH-ferricyanide dehydrogenase was obtained from an isolate of Escherichia coli. Optimal activity of the NADH dehydrogenase was at 45 °C and pH 7.5, with a K m value for NADH of 10 μM. By combining the NADH dehydrogenase, potassium ferricyanide and laccase, a bi-enzyme system for NAD(+) regeneration was established. The system is attractive in that the O2 consumed by laccase is from air and the sole byproduct of the reaction is water. During the reaction process, 10 mM NAD(+) was transformed from NADH in less than 2 h under the condition of 0.5 U NADH dehydrogenase, 0.5 U laccase, 0.1 mM potassium ferricyanide at pH 5.6, 30 °C CONCLUSION: The bi-enzyme system employed the NADH-ferricyanide dehydrogenase and laccase as catalysts, and potassium ferricyanide as redox mediator, is a promising alternative for NAD(+) regeneration.

  4. Rational design of engineered microbial cell surface multi-enzyme co-display system for sustainable NADH regeneration from low-cost biomass.

    PubMed

    Han, Lei; Liang, Bo; Song, Jianxia

    2018-02-01

    As an important cofactor, NADH is essential for most redox reactions and biofuel cells. However, supply of exogenous NADH is challenged, due to the low production efficiency and high cost of NADH regeneration system, as well as low stability of NADH. Here, we constructed a novel cell surface multi-enzyme co-display system with ratio- and space-controllable manner as exogenous NADH regeneration system for the sustainable NADH production from low-cost biomass. Dockerin-fused glucoamylase (GA) and glucose dehydrogenase (GDH) were expressed and assembled on the engineered bacterial surfaces, which displayed protein scaffolds with various combinations of different cohesins. When the ratio of GA and GDH was 3:1, the NADH production rate of the whole-cell biocatalyst reached the highest level using starch as substrate, which was three times higher than that of mixture of free enzymes, indicating that the highly ordered spatial organization of enzymes would promote reactions, due to the ratio of enzymes and proximity effect. To confirm performance of the established NADH regeneration system, the highly efficient synthesis of L-lactic acid (L-LA) was conducted by the system and the yield of L-LA (16 g/L) was twice higher than that of the mixture of free enzymes. The multi-enzyme co-display system showed good stability in the cyclic utilization. In conclusion, the novel sustainable NADH system would provide a cost-effective strategy to regenerate cofactor from low-cost biomass.

  5. Visible light-driven NADH regeneration sensitized by proflavine for biocatalysis.

    PubMed

    Nam, Dong Heon; Park, Chan Beum

    2012-06-18

    Harvest time: Proflavine drives the reduction of NAD(+) in the presence of a Rh-based electron mediator. Photoregenerated NADH was enzymatically active for oxidation by NADH-dependent L-glutamate dehydrogenase for the synthesis of L-glutamate. This work suggests that proflavine has the potential to become an efficient light-harvesting component in biocatalytic photosynthesis driven by solar energy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Syntrophomonas wolfei Uses an NADH-Dependent, Ferredoxin-Independent [FeFe]-Hydrogenase To Reoxidize NADH

    PubMed Central

    Losey, Nathaniel A.; Mus, Florence; Peters, John W.; Le, Huynh M.

    2017-01-01

    ABSTRACT Syntrophomonas wolfei syntrophically oxidizes short-chain fatty acids (four to eight carbons in length) when grown in coculture with a hydrogen- and/or formate-using methanogen. The oxidation of 3-hydroxybutyryl-coenzyme A (CoA), formed during butyrate metabolism, results in the production of NADH. The enzyme systems involved in NADH reoxidation in S. wolfei are not well understood. The genome of S. wolfei contains a multimeric [FeFe]-hydrogenase that may be a mechanism for NADH reoxidation. The S. wolfei genes for the multimeric [FeFe]-hydrogenase (hyd1ABC; SWOL_RS05165, SWOL_RS05170, SWOL_RS05175) and [FeFe]-hydrogenase maturation proteins (SWOL_RS05180, SWOL_RS05190, SWOL_RS01625) were coexpressed in Escherichia coli, and the recombinant Hyd1ABC was purified and characterized. The purified recombinant Hyd1ABC was a heterotrimer with an αβγ configuration and a molecular mass of 115 kDa. Hyd1ABC contained 29.2 ± 1.49 mol of Fe and 0.7 mol of flavin mononucleotide (FMN) per mole enzyme. The purified, recombinant Hyd1ABC reduced NAD+ and oxidized NADH without the presence of ferredoxin. The HydB subunit of the S. wolfei multimeric [FeFe]-hydrogenase lacks two iron-sulfur centers that are present in known confurcating NADH- and ferredoxin-dependent [FeFe]-hydrogenases. Hyd1ABC is a NADH-dependent hydrogenase that produces hydrogen from NADH without the need of reduced ferredoxin, which differs from confurcating [FeFe]-hydrogenases. Hyd1ABC provides a mechanism by which S. wolfei can reoxidize NADH produced during syntrophic butyrate oxidation when low hydrogen partial pressures are maintained by a hydrogen-consuming microorganism. IMPORTANCE Our work provides mechanistic understanding of the obligate metabolic coupling that occurs between hydrogen-producing fatty and aromatic acid-degrading microorganisms and their hydrogen-consuming partners in the process called syntrophy (feeding together). The multimeric [FeFe]-hydrogenase used NADH without the

  7. Engineering of a functional human NADH-dependent cytochrome P450 system

    PubMed Central

    Döhr, Olaf; Paine, Mark J. I.; Friedberg, Thomas; Roberts, Gordon C. K.; Wolf, C. Roland

    2001-01-01

    A functional human NADH-dependent cytochrome P450 system has been developed by altering the cofactor preference of human NADPH cytochrome P450 reductase (CPR), the redox partner for P450s. This has been achieved by a single amino acid change of the conserved aromatic amino acid Trp-676, which covers the re-side of the FAD isoalloxazine ring in the nicotinamide-binding site. Of the mutations made, the substitution of Trp-676 with alanine (W676A) resulted in a functional NADH-dependent enzyme, which catalyzed the reduction of cytochrome c and ferricyanide as well as facilitated the metabolism of 7-ethoxyresorufin by CYP1A2. Kinetic analysis measuring cytochrome c activity revealed that the NADH-dependent kcat of W676A is equivalent (90%) to the NADPH-dependent kcat of the wild-type enzyme, with W676A having an approximately 1,000-fold higher specificity for NADH. The apparent KMNADPH and KMNADH values of W676A are 80- and 150-fold decreased, respectively. In accordance with structural data, which show a bipartite binding mode of NADPH, substitution of Trp-676 does not affect 2′-AMP binding as seen by the inhibition of both wild-type CPR and the W676A mutant. Furthermore, NADPH was a potent inhibitor of the W676A NADH-dependent cytochrome c reduction and CYP1A2 activity. Overall, the results show that Trp-676 of human CPR plays a major role in cofactor discrimination, and substitution of this conserved aromatic residue with alanine results in an efficient NADH-dependent cytochrome P450 system. PMID:11136248

  8. Stimulation of NADH-dependent microsomal DNA strand cleavage by rifamycin SV.

    PubMed

    Kukiełka, E; Cederbaum, A I

    1995-04-15

    Rifamycin SV is an antibiotic anti-bacterial agent used in the treatment of tuberculosis. This drug can autoxidize, especially in the presence of metals, and generate reactive oxygen species. A previous study indicated that rifamycin SV can increase NADH-dependent microsomal production of reactive oxygen species. The current study evaluated the ability of rifamycin SV to interact with iron and increase microsomal production of hydroxyl radical, as detected by conversion of supercoiled plasmid DNA into the relaxed open circular state. The plasmid used was pBluescript II KS(-), and the forms of DNA were separated by agarose-gel electrophoresis. Incubation of rat liver microsomes with plasmid plus NADH plus ferric-ATP caused DNA strand cleavage. The addition of rifamycin SV produced a time- and concentration-dependent increase in DNA-strand cleavage. No stimulation by rifamycin SV occurred in the absence of microsomes, NADH or ferric-ATP. Stimulation occurred with other ferric complexes besides ferric-ATP, e.g. ferric-histidine, ferric-citrate, ferric-EDTA, and ferric-(NH4)2SO4. Rifamycin SV did not significantly increase the high rates of DNA strand cleavage found with NADPH as the microsomal reductant. The stimulation of NADH-dependent microsomal DNA strand cleavage was completely blocked by catalase, superoxide dismutase, GSH and a variety of hydroxyl-radical-scavenging agents, but not by anti-oxidants that prevent microsomal lipid peroxidation. Redox cycling agents, such as menadione and paraquat, in contrast with rifamycin SV, stimulated the NADPH-dependent reaction; menadione and rifamycin SV were superior to paraquat in stimulating the NADH-dependent reaction. These results indicate that rifamycin SV can, in the presence of an iron catalyst, increase microsomal production of reactive oxygen species which can cause DNA-strand cleavage. In contrast with other redox cycling agents, the stimulation by rifamycin SV is more pronounced with NADH than with NADPH as the

  9. Nitric Oxide in Plants: The Roles of Ascorbate and Hemoglobin

    PubMed Central

    Wang, Xiaoguang; Hargrove, Mark S.

    2013-01-01

    Ascorbic acid and hemoglobins have been linked to nitric oxide metabolism in plants. It has been hypothesized that ascorbic acid directly reduces plant hemoglobin in support of NO scavenging, producing nitrate and monodehydroascorbate. In this scenario, monodehydroascorbate reductase uses NADH to reduce monodehydroascorbate back to ascorbate to sustain the cycle. To test this hypothesis, rates of rice nonsymbiotic hemoglobin reduction by ascorbate were measured directly, in the presence and absence of purified rice monodehydroascorbate reductase and NADH. Solution NO scavenging was also measured methodically in the presence and absence of rice nonsymbiotic hemoglobin and monodehydroascorbate reductase, under hypoxic and normoxic conditions, in an effort to gauge the likelihood of these proteins affecting NO metabolism in plant tissues. Our results indicate that ascorbic acid slowly reduces rice nonsymbiotic hemoglobin at a rate identical to myoglobin reduction. The product of the reaction is monodehydroascorbate, which can be efficiently reduced back to ascorbate in the presence of monodehydroascorbate reductase and NADH. However, our NO scavenging results suggest that the direct reduction of plant hemoglobin by ascorbic acid is unlikely to serve as a significant factor in NO metabolism, even in the presence of monodehydroascorbate reductase. Finally, the possibility that the direct reaction of nitrite/nitrous acid and ascorbic acid produces NO was measured at various pH values mimicking hypoxic plant cells. Our results suggest that this reaction is a likely source of NO as the plant cell pH drops below 7, and as nitrite concentrations rise to mM levels during hypoxia. PMID:24376554

  10. A water-forming NADH oxidase from Lactobacillus pentosus suitable for the regeneration of synthetic biomimetic cofactors

    PubMed Central

    Nowak, Claudia; Beer, Barbara; Pick, André; Roth, Teresa; Lommes, Petra; Sieber, Volker

    2015-01-01

    The cell-free biocatalytic production of fine chemicals by oxidoreductases has continuously grown over the past years. Since especially dehydrogenases depend on the stoichiometric use of nicotinamide pyridine cofactors, an integrated efficient recycling system is crucial to allow process operation under economic conditions. Lately, the variety of cofactors for biocatalysis was broadened by the utilization of totally synthetic and cheap biomimetics. Though, to date the regeneration has been limited to chemical or electrochemical methods. Here, we report an enzymatic recycling by the flavoprotein NADH-oxidase from Lactobacillus pentosus (LpNox). Since this enzyme has not been described before, we first characterized it in regard to its optimal reaction parameters. We found that the heterologously overexpressed enzyme only contained 13% FAD. In vitro loading of the enzyme with FAD, resulted in a higher specific activity towards its natural cofactor NADH as well as different nicotinamide derived biomimetics. Apart from the enzymatic recycling, which gives water as a by-product by transferring four electrons onto oxygen, unbound FAD can also catalyze the oxidation of biomimetic cofactors. Here a two electron process takes place yielding H2O2 instead. The enzymatic and chemical recycling was compared in regard to reaction kinetics for the natural and biomimetic cofactors. With LpNox and FAD, two recycling strategies for biomimetic cofactors are described with either water or hydrogen peroxide as by-product. PMID:26441891

  11. Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae.

    PubMed

    Santos-Ocaña, C; Navas, P; Crane, F L; Córdoba, F

    1995-12-01

    The presence of yeast cells in the incubation medium prevents the oxidation of ascrobate catalyzed by copper ions. Ethanol increases ascorbate retention. Pyrazole, an alcohol dehydrogenase inhibitor, prevents ascorbate stabilization by cells. Chelation of copper ions does not account for stabilization, since oxidation rates with broken or boiled cells or conditioned media are similar to control rates in the absence of cells. Protoplast integrity is needed to reach optimal values of stabilization. Chloroquine, a known inhibitor of plasma membrane redox systems, inhibits the ascorbate stabilization, the inhibition being partially reversed by coenzyme Q6. Chloroquine does not inhibit ferricyanide reduction. Growth of yeast in iron-deficient media to increase ferric ion reductase activity also increases the stabilization. In conclusion, extracellular ascorbate stabilization by yeast cells can reflect a coenzyme Q dependent transplasmalemma electron transfer which uses NADH as electron donor. Iron deficiency increases the ascorbate stabilization but the transmembrane ferricyanide reduction system can act independently of ascorbate stabilization.

  12. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH

    DOE PAGES

    Brinkmann-Chen, Sabine; Flock, Tilman; Cahn, Jackson K. B.; ...

    2013-06-17

    To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymesmore » having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. As a result, high-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.« less

  13. Enzyme-dependent fluorescence recovery of NADH after photobleaching to assess dehydrogenase activity of isolated perfused hearts

    NASA Astrophysics Data System (ADS)

    Moreno, Angel; Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Kay, Matthew W.

    2017-03-01

    Reduction of NAD+ by dehydrogenase enzymes to form NADH is a key component of cellular metabolism. In cellular preparations and isolated mitochondria suspensions, enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) of NADH has been shown to be an effective approach for measuring the rate of NADH production to assess dehydrogenase enzyme activity. Our objective was to demonstrate how dehydrogenase activity could be assessed within the myocardium of perfused hearts using NADH ED-FRAP. This was accomplished using a combination of high intensity UV pulses to photobleach epicardial NADH. Replenishment of epicardial NADH fluorescence was then imaged using low intensity UV illumination. NADH ED-FRAP parameters were optimized to deliver 23.8 mJ of photobleaching light energy at a pulse width of 6 msec and a duty cycle of 50%. These parameters provided repeatable measurements of NADH production rate during multiple metabolic perturbations, including changes in perfusate temperature, electromechanical uncoupling, and acute ischemia/reperfusion injury. NADH production rate was significantly higher in every perturbation where the energy demand was either higher or uncompromised. We also found that NADH production rate remained significantly impaired after 10 min of reperfusion after global ischemia. Overall, our results indicate that myocardial NADH ED-FRAP is a useful optical non-destructive approach for assessing dehydrogenase activity.

  14. Sodium ascorbate kills Candida albicans in vitro via iron-catalyzed Fenton reaction: importance of oxygenation and metabolism

    PubMed Central

    Avci, Pinar; Freire, Fernanda; Banvolgyi, Andras; Mylonakis, Eleftherios; Wikonkal, Norbert M; Hamblin, Michael R

    2016-01-01

    Aim: Ascorbate can inhibit growth and even decrease viability of various microbial species including Candida albicans. However the optimum conditions and the mechanism of action are unclear. Materials/methodology: Candida albicans shaken for 90 min in a buffered solution of ascorbate (90 mM) gave a 5-log reduction of cell viability, while there was no killing without shaking, in growth media with different carbon sources or at 4°C. Killing was inhibited by the iron chelator 2,2′-bipyridyl. Hydroxyphenyl fluorescein probe showed the intracellular generation of hydroxyl radicals. Results/conclusion: Ascorbate-mediated killing of C. albicans depends on oxygenation and metabolism, involves iron-catalyzed generation of hydroxyl radicals via Fenton reaction and depletion of intracellular NADH. Ascorbate could serve as a component of a topical antifungal therapy. PMID:27855492

  15. Metabolism of hydroxypyruvate in a mutant of barley lacking NADH-dependent hydroxypyruvate reductase, an important photorespiratory enzyme activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, A.J.S.; Blackwell, R.D.; Lea, P.J.

    1989-09-01

    A mutant of barley (Hordeum vulgare L.), LaPr 88/29, deficient in NADH-dependent hydroxypyruvate reductase (HPR) activity has been isolated. The activities of both NADH (5%) and NADPH-dependent (19%) HPR were severely reduced in this mutant compared to the wild type. Although lacking an enzyme in the main carbon pathway of photorespiration, this mutant was capable of CO{sub 2} fixation rates equivalent to 75% of that of the wild type, in normal atmospheres and 50% O{sub 2}. There also appeared to be little disruption to the photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{supmore » 14}C)serine feeding were similar in both mutant and wild-type leaves. When leaves of LaPr 88/29 were fed either ({sup 14}C)serine or {sup 14}CO{sub 2}, the accumulation of radioactivity was in serine and not in hydroxypyruvate, although the mutant was still able to metabolize over 25% of the supplied ({sup 14}C)serine into sucrose. After 3 hours in air the soluble amino acid pool was almost totally dominated by serine and glycine. LaPr 88/29 has also been used to show that NADH-glyoxylate reductase and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-dependent HPR activity is due to the NADH-dependent enzyme. We also suggest that the alternative NADPH activity can metabolize a proportion, but not all, of the hydroxypyruvate produced during photorespiration and may thus form a useful backup to the NADH-dependent enzyme under conditions of maximal photorespiration.« less

  16. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with l-ascorbic acid, as materials for soft tissue regeneration.

    PubMed

    Kucinska-Lipka, J; Gubanska, I; Strankowski, M; Cieśliński, H; Filipowicz, N; Janik, H

    2017-06-01

    In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4'-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with l-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy ( 1 HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test with

  17. The study of ascorbate peroxidase, catalase and peroxidase during in vitro regeneration of Argyrolobium roseum.

    PubMed

    Habib, Darima; Chaudhary, Muhammad Fayyaz; Zia, Muhammad

    2014-01-01

    Here, we demonstrate the micropropagation protocol of Argyrolobium roseum (Camb.), an endangered herb exhibiting anti-diabetic and immune-suppressant properties, and antioxidant enzymes pattern is evaluated. Maximum callogenic response (60 %) was observed from leaf explant at 1.0 mg L(-1) 1-nephthalene acetic acid (NAA) and 0.5 mg L(-1) 6-benzyl aminopurine (BA) in Murashige and Skoog (MS) medium using hypocotyl and root explants (48 % each). Addition of AgNO3 and PVP in the culture medium led to an increase in callogenic response up to 86 % from leaf explant and 72 % from hypocotyl and root explants. The best shooting response was observed in the presence of NAA, while maximum shoot length and number of shoots were achieved based on BA-supplemented MS medium. The regenerated shoots were rooted and successfully acclimatized under greenhouse conditions. Catalase and peroxidase enzymes showed ascending pattern during in vitro plant development from seed while ascorbate peroxidase showed descending pattern. Totally reverse response of these enzymes was observed during callus induction from three different explants. During shoot induction, catalase and peroxidase increased at high rate while there was a mild reduction in ascorbate peroxidase activity. Catalase and peroxidase continuously increased; on the other hand, ascorbate peroxidase activity decreased during root development and acclimatization states. The protocol described here can be employed for the mass propagation and genetic transformation of this rare herb. This study also highlights the importance and role of ascorbate peroxidase, catalase, and peroxidase in the establishment of A. roseum in vitro culture through callogenesis and organogenesis.

  18. Renewable Molecular Flasks with NADH Models: Combination of Light-Driven Proton Reduction and Biomimetic Hydrogenation of Benzoxazinones.

    PubMed

    Zhao, Liang; Wei, Jianwei; Lu, Junhua; He, Cheng; Duan, Chunying

    2017-07-17

    Using small molecules with defined pockets to catalyze chemical transformations resulted in attractive catalytic syntheses that echo the remarkable properties of enzymes. By modulating the active site of a nicotinamide adenine dinucleotide (NADH) model in a redox-active molecular flask, we combined biomimetic hydrogenation with in situ regeneration of the active site in a one-pot transformation using light as a clean energy source. This molecular flask facilitates the encapsulation of benzoxazinones for biomimetic hydrogenation of the substrates within the inner space of the flask using the active sites of the NADH models. The redox-active metal centers provide an active hydrogen source by light-driven proton reduction outside the pocket, allowing the in situ regeneration of the NADH models under irradiation. This new synthetic platform, which offers control over the location of the redox events, provides a regenerating system that exhibits high selectivity and efficiency and is extendable to benzoxazinone and quinoxalinone systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. [Light-dependent changes in the enzyme activity of the ascorbate-glutathione cycle and ascorbate oxidase in the leaves of pea].

    PubMed

    Mittova, V O; Igamberdiev, A U

    2000-01-01

    Light-determined activation of ferments of ascorbate-glutation cycle, ascorbate-oxidase in chloroplasts and cytosol is demonstrated as well as ascorbate-peroxidase, monodehydroascorbate-reductase, glutation-reductase and ascorbate-oxydase in mitochondria. On the other hands activity of mitochondrial dehydroascorbate-reductase increased on reduction of light most likely due to function of electron transport from glutation to dehydroascorbate in mitochondria. Glutation metabolism is proved to be endogenic catalytic process where the amount reconstructed glutation changes slowly with a delay and gradually follow light changes. Light dependable changes of glutation content in chloroplasts ensure resistance of ferment system again hydrogen peroxide and superoxide radicals that generate intensively at light.

  20. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae.

    PubMed

    Salusjärvi, Laura; Kaunisto, Sanna; Holmström, Sami; Vehkomäki, Maija-Leena; Koivuranta, Kari; Pitkänen, Juha-Pekka; Ruohonen, Laura

    2013-12-01

    Deviation from optimal levels and ratios of redox cofactors NAD(H) and NADP(H) is common when microbes are metabolically engineered. The resulting redox imbalance often reduces the rate of substrate utilization as well as biomass and product formation. An example is the metabolism of D-xylose by recombinant Saccharomyces cerevisiae strains expressing xylose reductase and xylitol dehydrogenase encoding genes from Scheffersomyces stipitis. This pathway requires both NADPH and NAD(+). The effect of overexpressing the glycosomal NADH-dependent fumarate reductase (FRD) of Trypanosoma brucei in D-xylose-utilizing S. cerevisiae alone and together with an endogenous, cytosol directed NADH-kinase (POS5Δ17) was studied as one possible solution to overcome this imbalance. Expression of FRD and FRD + POS5Δ17 resulted in 60 and 23 % increase in ethanol yield, respectively, on D-xylose under anaerobic conditions. At the same time, xylitol yield decreased in the FRD strain suggesting an improvement in redox balance. We show that fumarate reductase of T. brucei can provide an important source of NAD(+) in yeast under anaerobic conditions, and can be useful for metabolic engineering strategies where the redox cofactors need to be balanced. The effects of FRD and NADH-kinase on aerobic and anaerobic D-xylose and D-glucose metabolism are discussed.

  1. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    PubMed

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A mutant of barley lacking NADH-hydroxypyruvate reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwell, R.; Lea, P.

    1989-04-01

    A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used tomore » show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.« less

  3. Seasonal- and temperature-dependent variation in CNS ascorbate and glutathione levels in anoxia-tolerant turtles.

    PubMed

    Pérez-Pinzón, M A; Rice, M E

    1995-12-24

    We determined the ascorbic acid (ascorbate) and glutathione (GSH) contents of eight regions of the CNS from anoxia-tolerant turtles collected in summer and in winter. Ascorbate was of special interest because it is found in exceptionally high levels in the turtle CNS. The temperature-dependence of CNS ascorbate content was established by comparing levels in animals collected from two geographic zones with different average winter temperatures and in animals re-acclimated to different temperatures in the laboratory. The analytical method was liquid chromatography with electrochemical detection. Turtle ascorbate levels were 30-40% lower in animals acclimatized to winter (2 degrees C) than to summer (23 degrees C) in all regions of the CNS. Similarly, GSH levels were 20-30% lower in winter than in summer. Winter ascorbate levels were higher in turtles from Louisiana (19 degrees C) than in turtles acclimatized to winter in Wisconsin (2 degrees C). Summer and winter levels of ascorbate could be reversed by re-acclimating animals to cold (1 degree C) or warm (23 degrees C) temperatures for at least one week. CNS water content did not differ between cold- and warm-acclimated turtles. Taken together, the data indicated that ascorbate and GSH undergo significant seasonal variation and that the catalyst for change is environmental temperature. Steady-state ascorbate content showed a linear dependence on temperature, with a slope of 1.5% per degree C that was independent of CNS region. Lower levels of cerebral antioxidants in turtles exposed to colder temperatures were consistent with the decreased rate of cerebral metabolism that accompanies winter hibernation. Cerebral ascorbate and GSH levels in the turtle remained similar to or higher than those in mammals, even during winter, however. These findings support the notion that unique mechanisms of antioxidant regulation in the turtle contribute to their tolerance of the hypoxia-reoxygenation that characterizes diving

  4. Polymorphisms in sodium-dependent vitamin C transporter genes and plasma, aqueous humor and lens nucleus ascorbate concentrations in an ascorbate depleted setting.

    PubMed

    Senthilkumari, Srinivasan; Talwar, Badri; Dharmalingam, Kuppamuthu; Ravindran, Ravilla D; Jayanthi, Ramamurthy; Sundaresan, Periasamy; Saravanan, Charu; Young, Ian S; Dangour, Alan D; Fletcher, Astrid E

    2014-07-01

    We have previously reported low concentrations of plasma ascorbate and low dietary vitamin C intake in the older Indian population and a strong inverse association of these with cataract. Little is known about ascorbate levels in aqueous humor and lens in populations habitually depleted of ascorbate and no studies in any setting have investigated whether genetic polymorphisms influence ascorbate levels in ocular tissues. Our objectives were to investigate relationships between ascorbate concentrations in plasma, aqueous humor and lens and whether these relationships are influenced by Single Nucleotide Polymorphisms (SNPs) in sodium-dependent vitamin C transporter genes (SLC23A1 and SLC23A2). We enrolled sixty patients (equal numbers of men and women, mean age 63 years) undergoing small incision cataract surgery in southern India. We measured ascorbate concentrations in plasma, aqueous humor and lens nucleus using high performance liquid chromatography. SLC23A1 SNPs (rs4257763, rs6596473) and SLC23A2 SNPs (rs1279683 and rs12479919) were genotyped using a TaqMan assay. Patients were interviewed for lifestyle factors which might influence ascorbate. Plasma vitamin C was normalized by a log10 transformation. Statistical analysis used linear regression with the slope of the within-subject associations estimated using beta (β) coefficients. The ascorbate concentrations (μmol/L) were: plasma ascorbate, median and inter-quartile range (IQR), 15.2 (7.8, 34.5), mean (SD) of aqueous humor ascorbate, 1074 (545) and lens nucleus ascorbate, 0.42 (0.16) (μmol/g lens nucleus wet weight). Minimum allele frequencies were: rs1279683 (0.28), rs12479919 (0.30), rs659647 (0.48). Decreasing concentrations of ocular ascorbate from the common to the rare genotype were observed for rs6596473 and rs12479919. The per allele difference in aqueous humor ascorbate for rs6596473 was -217 μmol/L, p < 0.04 and a per allele difference in lens nucleus ascorbate of -0.085 μmol/g, p < 0

  5. Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds

    NASA Astrophysics Data System (ADS)

    Weckbecker, Andrea; Gröger, Harald; Hummel, Werner

    Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of "designed" cells by heterologous expression of appropriate genes.

  6. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.

    PubMed

    Castro, Maite A; Beltrán, Felipe A; Brauchi, Sebastián; Concha, Ilona I

    2009-07-01

    In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.

  7. Local infusion of ascorbate augments NO-dependent cutaneous vasodilatation during intense exercise in the heat

    PubMed Central

    Meade, Robert D; Fujii, Naoto; Alexander, Lacy M; Paull, Gabrielle; Louie, Jeffrey C; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Abstract Nitric oxide (NO)-dependent cutaneous vasodilatation is reportedly diminished during exercise performed at a high (700 W) relative to moderate (400 W) rate of metabolic heat production. The present study evaluated whether this impairment results from increased oxidative stress associated with an accumuluation of reactive oxygen species (ROS) during high intensity exercise. On two separate days, 11 young (mean ± SD, 24 ± 4 years) males cycled in the heat (35°C) at a moderate (500 W) or high (700 W) rate of metabolic heat production. Each session included two 30 min exercise bouts followed by 20 and 40 min of recovery, respectively. Cutaneous vascular conductance (CVC) was monitored at four forearm skin sites continuously perfused via intradermal microdialysis with: (1) lactated Ringer solution (Control); (2) 10 mm ascorbate (Ascorbate); (3) 10 mm l-NAME; or (4) 10 mm ascorbate + 10 mm l-NAME (Ascorbate + l-NAME). At the end of each 500 W exercise bout, CVC was attenuated with l-NAME (∼35% CVCmax) and Ascorbate + l-NAME (∼43% CVCmax) compared to Control (∼60% CVCmax; all P < 0.04); however, Ascorbate did not modulate CVC during exercise (∼60% CVCmax; both P > 0.87). Conversely, CVC was elevated with Ascorbate (∼72% CVCmax; both P < 0.03) but remained similar to Control (∼59% CVCmax) with l-NAME (∼50% CVCmax) and Ascorbate + l-NAME (∼47% CVCmax; all P > 0.05) at the end of both 700 W exercise bouts. We conclude that oxidative stress associated with an accumulation of ascorbate-sensitive ROS impairs NO-dependent cutaneous vasodilatation during intense exercise. Key points Recent work demonstrates that nitric oxide (NO) contributes to cutaneous vasodilatation during moderate (400 W of metabolic heat production) but not high (700 W of metabolic heat production) intensity exercise bouts performed in the heat (35°C). The present study evaluated whether the impairment in NO-dependent cutaneous vasodilatation

  8. Ascorbic acid efflux and re-uptake in endothelial cells: maintenance of intracellular ascorbate.

    PubMed

    May, James M; Qu, Zhi-chao

    2009-05-01

    Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70-80% of ascorbate to the medium over several hours at 37 degrees C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel.

  9. Oral atorvastatin therapy increases nitric oxide-dependent cutaneous vasodilation in humans by decreasing ascorbate-sensitive oxidants.

    PubMed

    Holowatz, Lacy A; Kenney, W Larry

    2011-09-01

    Elevated low-density lipoproteins (LDL) are associated with cutaneous microvascular dysfunction partially mediated by increased arginase activity, which is decreased following a systemic atorvastatin therapy. We hypothesized that increased ascorbate-sensitive oxidant stress, partially mediated through uncoupled nitric oxide synthase (NOS) induced by upregulated arginase, contributes to cutaneous microvascular dysfunction in hypercholesterolemic (HC) humans. Four microdialysis fibers were placed in the skin of nine HC (LDL = 177 ± 6 mg/dl) men and women before and after 3 mo of a systemic atorvastatin intervention and at baseline in nine normocholesterolemic (NC) (LDL = 95 ± 4 mg/dl) subjects. Sites served as control, NOS inhibited, L-ascorbate, and arginase-inhibited+L-ascorbate. Skin blood flow was measured while local skin heating (42°C) induced NO-dependent vasodilation. After the established plateau in all sites, 20 mM ≪ngname≫ was infused to quantify NO-dependent vasodilation. Data were normalized to maximum cutaneous vascular conductance (CVC) (sodium nitroprusside + 43°C). The plateau in vasodilation during local heating (HC: 78 ± 4 vs. NC: 96 ± 2% CVC(max), P < 0.01) and NO-dependent vasodilation (HC: 40 ± 4 vs. NC: 54 ± 4% CVC(max), P < 0.01) was reduced in the HC group. Acute L-ascorbate alone (91 ± 5% CVC(max), P < 0.001) or combined with arginase inhibition (96 ± 3% CVC(max), P < 0.001) augmented the plateau in vasodilation in the HC group but not the NC group (ascorbate: 96 ± 2; combo: 93 ± 4% CVC(max), both P > 0.05). After the atorvastatin intervention NO-dependent vasodilation was augmented in the HC group (HC postatorvastatin: 64 ± 4% CVC(max), P < 0.01), and there was no further effect of ascorbate alone (58 ± 4% CVC(max,) P > 0.05) or combined with arginase inhibition (67 ± 4% CVC(max,) P > 0.05). Increased ascorbate-sensitive oxidants contribute to hypercholesteromic associated cutaneous microvascular dysfunction which is

  10. Oral atorvastatin therapy increases nitric oxide-dependent cutaneous vasodilation in humans by decreasing ascorbate-sensitive oxidants

    PubMed Central

    Kenney, W. Larry

    2011-01-01

    Elevated low-density lipoproteins (LDL) are associated with cutaneous microvascular dysfunction partially mediated by increased arginase activity, which is decreased following a systemic atorvastatin therapy. We hypothesized that increased ascorbate-sensitive oxidant stress, partially mediated through uncoupled nitric oxide synthase (NOS) induced by upregulated arginase, contributes to cutaneous microvascular dysfunction in hypercholesterolemic (HC) humans. Four microdialysis fibers were placed in the skin of nine HC (LDL = 177 ± 6 mg/dl) men and women before and after 3 mo of a systemic atorvastatin intervention and at baseline in nine normocholesterolemic (NC) (LDL = 95 ± 4 mg/dl) subjects. Sites served as control, NOS inhibited, L-ascorbate, and arginase-inhibited+L-ascorbate. Skin blood flow was measured while local skin heating (42°C) induced NO-dependent vasodilation. After the established plateau in all sites, 20 mM ≪ngname≫ was infused to quantify NO-dependent vasodilation. Data were normalized to maximum cutaneous vascular conductance (CVC) (sodium nitroprusside + 43°C). The plateau in vasodilation during local heating (HC: 78 ± 4 vs. NC: 96 ± 2% CVCmax, P < 0.01) and NO-dependent vasodilation (HC: 40 ± 4 vs. NC: 54 ± 4% CVCmax, P < 0.01) was reduced in the HC group. Acute L-ascorbate alone (91 ± 5% CVCmax, P < 0.001) or combined with arginase inhibition (96 ± 3% CVCmax, P < 0.001) augmented the plateau in vasodilation in the HC group but not the NC group (ascorbate: 96 ± 2; combo: 93 ± 4% CVCmax, both P > 0.05). After the atorvastatin intervention NO-dependent vasodilation was augmented in the HC group (HC postatorvastatin: 64 ± 4% CVCmax, P < 0.01), and there was no further effect of ascorbate alone (58 ± 4% CVCmax, P > 0.05) or combined with arginase inhibition (67 ± 4% CVCmax, P > 0.05). Increased ascorbate-sensitive oxidants contribute to hypercholesteromic associated cutaneous microvascular dysfunction which is partially reversed

  11. Ascorbic Acid Efflux and Re-uptake in Endothelial Cells: Maintenance of Intracellular Ascorbate

    PubMed Central

    May, James M.; Qu, Zhi-chao

    2013-01-01

    Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70–80% of ascorbate to the medium over several hours at 37 °C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel. PMID:19148707

  12. The steady-state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K 12. Nitrite and hydroxylamine reduction.

    PubMed Central

    Jackson, R H; Cole, J A; Cornish-Bowden, A

    1981-01-01

    The reduction of both NO2- and hydroxylamine by the NADH-dependent nitrite reductase of Escherichia coli K 12 (EC 1.6.6.4) appears to follow Michaelis-Menten kinetics over a wide range of NADH concentrations. Substrate inhibition can, however, be detected at low concentrations of the product NAD+. In addition, NAD+ displays mixed product inhibition with respect to NADH and mixed or uncompetitive inhibition with respect to hydroxylamine. These inhibition characteristics are consistent with a mechanism in which hydroxylamine binds during catalysis to a different enzyme form from that generated when NAD+ is released. The apparent maximum velocity with NADH as varied substrate increases as the NAD+ concentration increases from 0.05 to 0.7 mM with 1 mM-NO2- or 100 mM-hydroxylamine as oxidized substrate. This increase is more marked for hydroxylamine reduction than for NO2- reduction. Models incorporating only one binding site for NAD can account for the variation in the Michaelis-Menten parameters for both NADH and hydroxylamine with [NAD+] for hydroxylamine reduction. According to these models, activation of the reaction occurs by reversal of an over-reduction of the enzyme by NADH. If the observed activation of the enzyme by NAD+ derives both from activation of the generation of the enzyme-hydroxylamine complex from the enzyme-NO2- complex during NO2- reduction and from activation of the reduction of the enzyme-hydroxylamine complex to form NH4+, then the variation of Vapp. for NO2- or hydroxylamine with [NAD+] is consistent with the occurrence of the same enzyme-hydroxylamine complex as an intermediate in both reactions. PMID:6279095

  13. Ascorbate and low concentrations of FeSO4 induce Ca2+-dependent pore in rat liver mitochondria.

    PubMed

    Brailovskaya, I V; Starkov, A A; Mokhova, E N

    2001-08-01

    Oxidative stress is one of the most frequent causes of tissue and cell injury in various pathologies. The molecular mechanism of mitochondrial damage under conditions of oxidative stress induced in vitro with low concentrations of FeSO4 and ascorbate (vitamin C) was studied. FeSO4 (1-4 microM) added to rat liver mitochondria that were incubated in the presence of 2.3 mM ascorbate induced (with a certain delay) a decrease in membrane potential and high-amplitude swelling. It also significantly decreased the ability of mitochondria to accumulate exogenous Ca2+. All the effects of FeSO4 + ascorbate were essentially prevented by cyclosporin A, a specific inhibitor of the mitochondrial Ca2+-dependent pore (also known as the mitochondrial permeability transition). EGTA restored the membrane potential of mitochondria de-energized with FeSO4 + ascorbate. We hypothesize that oxidative stress induced in vitro with FeSO4 and millimolar concentrations of ascorbate damages mitochondria by inducing the cyclosporin A-sensitive Ca2+-dependent pore in the inner mitochondrial membrane.

  14. Over-expression of NADH-dependent oxidoreductase (fucO) for increasing furfural or 5-hydroxymethylfurfural tolerance

    DOEpatents

    Miller, Elliot N.; Zhang, Xueli; Yomano, Lorraine P.; Wang, Xuan; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2015-10-13

    The subject invention pertains to the discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural. This allows for a new approach to improve furfural tolerance in bacterial and/or yeast cells used to produce desired products. Thus, novel biocatalysts (bacterial, fungal or yeast cells) exhibiting increased tolerance to furfural and 5-hydroxymethylfurfural (5-HMF) are provided as are methods of making and using such biocatalysts for the production of a desired product.

  15. H2O2 Production in Species of the Lactobacillus acidophilus Group: a Central Role for a Novel NADH-Dependent Flavin Reductase

    PubMed Central

    Hertzberger, Rosanne; Arents, Jos; Dekker, Henk L.; Pridmore, R. David; Gysler, Christof; Kleerebezem, Michiel

    2014-01-01

    Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H2O2, inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H2O2 production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 μM, in accordance with its proposed in vivo role in H2O2 production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H2O2 production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H2O2 production in L. johnsonii. PMID:24487531

  16. The Kinetic Reaction Mechanism of the Vibrio cholerae Sodium-dependent NADH Dehydrogenase*♦

    PubMed Central

    Tuz, Karina; Mezic, Katherine G.; Xu, Tianhao; Barquera, Blanca; Juárez, Oscar

    2015-01-01

    The sodium-dependent NADH dehydrogenase (Na+-NQR) is the main ion transporter in Vibrio cholerae. Its activity is linked to the operation of the respiratory chain and is essential for the development of the pathogenic phenotype. Previous studies have described different aspects of the enzyme, including the electron transfer pathways, sodium pumping structures, cofactor and subunit composition, among others. However, the mechanism of the enzyme remains to be completely elucidated. In this work, we have studied the kinetic mechanism of Na+-NQR with the use of steady state kinetics and stopped flow analysis. Na+-NQR follows a hexa-uni ping-pong mechanism, in which NADH acts as the first substrate, reacts with the enzyme, and the oxidized NAD leaves the catalytic site. In this conformation, the enzyme is able to capture two sodium ions and transport them to the external side of the membrane. In the last step, ubiquinone is bound and reduced, and ubiquinol is released. Our data also demonstrate that the catalytic cycle involves two redox states, the three- and five-electron reduced forms. A model that gathers all available information is proposed to explain the kinetic mechanism of Na+-NQR. This model provides a background to understand the current structural and functional information. PMID:26004776

  17. Identification of the Catalytic Ubiquinone-binding Site of Vibrio cholerae Sodium-dependent NADH Dehydrogenase

    PubMed Central

    Tuz, Karina; Li, Chen; Fang, Xuan; Raba, Daniel A.; Liang, Pingdong; Minh, David D. L.; Juárez, Oscar

    2017-01-01

    The sodium-dependent NADH dehydrogenase (Na+-NQR) is a key component of the respiratory chain of diverse prokaryotic species, including pathogenic bacteria. Na+-NQR uses the energy released by electron transfer between NADH and ubiquinone (UQ) to pump sodium, producing a gradient that sustains many essential homeostatic processes as well as virulence factor secretion and the elimination of drugs. The location of the UQ binding site has been controversial, with two main hypotheses that suggest that this site could be located in the cytosolic subunit A or in the membrane-bound subunit B. In this work, we performed alanine scanning mutagenesis of aromatic residues located in transmembrane helices II, IV, and V of subunit B, near glycine residues 140 and 141. These two critical glycine residues form part of the structures that regulate the site's accessibility. Our results indicate that the elimination of phenylalanine residue 211 or 213 abolishes the UQ-dependent activity, produces a leak of electrons to oxygen, and completely blocks the binding of UQ and the inhibitor HQNO. Molecular docking calculations predict that UQ interacts with phenylalanine 211 and pinpoints the location of the binding site in the interface of subunits B and D. The mutagenesis and structural analysis allow us to propose a novel UQ-binding motif, which is completely different compared with the sites of other respiratory photosynthetic complexes. These results are essential to understanding the electron transfer pathways and mechanism of Na+-NQR catalysis. PMID:28053088

  18. Ascorbate in the guinea pig lens: dependence on drinking water supplementation.

    PubMed

    Mody, Vino C; Kakar, Manoj; Elfving, Ase; Söderberg, Per G; Löfgren, Stefan

    2005-04-01

    To investigate whether lens ascorbate concentration can be elevated with drinking water supplementation. Pigmented guinea pigs received drinking water supplemented with L-ascorbate, concentration 0.00, 2.84, 5.68 or 8.52 mm for a duration of 4 weeks. In addition, the chow fed to all animals contained 125 mmol L-ascorbate per kg of chow. At the end of the supplementation period, the guinea pigs were killed. Each lens was extracted. The lens was processed and ascorbate concentration was measured using high performance liquid chromatography (HPLC) with 254 nm ultraviolet radiation detection. The data were analysed with regression. At the end of the test period, all lenses were devoid of cataract as observed by slit-lamp examination. All lenses contained a detectable concentration of ascorbate. Estimated 95% confidence intervals for mean animal-averaged lens ascorbate concentrations (micromol/g wet weight of whole lens) per group were 0.51 +/- 0.04 (0.00 mm; n = 6), 0.70 +/- 0.18 (2.84 mm; n = 6), 0.71 +/- 0.11 (5.68 mm; n = 5), and 0.71 +/- 0.06 (8.52 mm; n = 6). Animal-averaged lens ascorbate concentration [Asc(lens)] (micromol/g wet weight lens) increased with ascorbate supplementation in drinking water [Asc(water)] (M), in agreement with the model: [Asc(lens)] = A - Be(-kAsc(water)]. Lens ascorbate concentration increases with drinking water supplementation in the guinea pig without cataract development. The currently presented method for measurement of whole lens ascorbate content is suitable.

  19. Investigation of the NADH/NAD+ ratio in Ralstonia eutropha using the fluorescence reporter protein Peredox.

    PubMed

    Tejwani, Vijay; Schmitt, Franz-Josef; Wilkening, Svea; Zebger, Ingo; Horch, Marius; Lenz, Oliver; Friedrich, Thomas

    2017-01-01

    Ralstonia eutropha is a hydrogen-oxidizing ("Knallgas") bacterium that can easily switch between heterotrophic and autotrophic metabolism to thrive in aerobic and anaerobic environments. Its versatile metabolism makes R. eutropha an attractive host for biotechnological applications, including H 2 -driven production of biodegradable polymers and hydrocarbons. H 2 oxidation by R. eutropha takes place in the presence of O 2 and is mediated by four hydrogenases, which represent ideal model systems for both biohydrogen production and H 2 utilization. The so-called soluble hydrogenase (SH) couples reversibly H 2 oxidation with the reduction of NAD + to NADH and has already been applied successfully in vitro and in vivo for cofactor regeneration. Thus, the interaction of the SH with the cellular NADH/NAD + pool is of major interest. In this work, we applied the fluorescent biosensor Peredox to measure the [NADH]:[NAD + ] ratio in R. eutropha cells under different metabolic conditions. The results suggest that the sensor operates close to saturation level, indicating a rather high [NADH]:[NAD + ] ratio in aerobically grown R. eutropha cells. Furthermore, we demonstrate that multicomponent analysis of spectrally-resolved fluorescence lifetime data of the Peredox sensor response to different [NADH]:[NAD + ] ratios represents a novel and sensitive tool to determine the redox state of cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Putting together a plasma membrane NADH oxidase: a tale of three laboratories.

    PubMed

    Löw, Hans; Crane, Frederick L; Morré, D James

    2012-11-01

    The observation that high cellular concentrations of NADH were associated with low adenylate cyclase activity led to a search for the mechanism of the effect. Since cyclase is in the plasma membrane, we considered the membrane might have a site for NADH action, and that NADH might be oxidized at that site. A test for NADH oxidase showed very low activity, which could be increased by adding growth factors. The plasma membrane oxidase was not inhibited by inhibitors of mitochondrial NADH oxidase such as cyanide, rotenone or antimycin. Stimulation of the plasma membrane oxidase by iso-proterenol or triiodothyronine was different from lack of stimulation in endoplasmic reticulum. After 25 years of research, three components of a trans membrane NADH oxidase have been discovered. Flavoprotein NADH coenzyme Q reductases (NADH cytochrome b reductase) on the inside, coenzyme Q in the middle, and a coenzyme Q oxidase on the outside as a terminal oxidase. The external oxidase segment is a copper protein with unique properties in timekeeping, protein disulfide isomerase and endogenous NADH oxidase activity, which affords a mechanism for control of cell growth by the overall NADH oxidase and the remarkable inhibition of oxidase activity and growth of cancer cells by a wide range of anti-tumor drugs. A second trans plasma membrane electron transport system has been found in voltage dependent anion channel (VDAC), which has NADH ferricyanide reductase activity. This activity must be considered in relation to ferricyanide stimulation of growth and increased VDAC antibodies in patients with autism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin*

    PubMed Central

    Parker, William H.; Qu, Zhi-chao; May, James M.

    2015-01-01

    Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. PMID:26152729

  2. Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin.

    PubMed

    Parker, William H; Qu, Zhi-chao; May, James M

    2015-08-28

    Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence

    PubMed

    Danylovych, H V

    2016-01-01

    We prove the feasibility of evaluation of mitochondrial electron transport chain function in isolated mitochondria of smooth muscle cells of rats from uterus using fluorescence of NADH and FAD coenzymes. We found the inversely directed changes in FAD and NADH fluorescence intensity under normal functioning of mitochondrial electron transport chain. The targeted effect of inhibitors of complex I, III and IV changed fluorescence of adenine nucleotides. Rotenone (5 μM) induced rapid increase in NADH fluorescence due to inhibition of complex I, without changing in dynamics of FAD fluorescence increase. Antimycin A, a complex III inhibitor, in concentration of 1 μg/ml caused sharp increase in NADH fluorescence and moderate increase in FAD fluorescence in comparison to control. NaN3 (5 mM), a complex IV inhibitor, and CCCP (10 μM), a protonophore, caused decrease in NADH and FAD fluorescence. Moreover, all the inhibitors caused mitochondria swelling. NO donors, e.g. 0.1 mM sodium nitroprusside and sodium nitrite similarly to the effects of sodium azide. Energy-dependent Ca2+ accumulation in mitochondrial matrix (in presence of oxidation substrates and Mg-ATP2- complex) is associated with pronounced drop in NADH and FAD fluorescence followed by increased fluorescence of adenine nucleotides, which may be primarily due to Ca2+- dependent activation of dehydrogenases of citric acid cycle. Therefore, the fluorescent signal of FAD and NADH indicates changes in oxidation state of these nucleotides in isolated mitochondria, which may be used to assay the potential of effectors of electron transport chain.

  4. A soluble NADH-dependent fumarate reductase in the reductive tricarboxylic acid cycle of Hydrogenobacter thermophilus TK-6.

    PubMed

    Miura, Akane; Kameya, Masafumi; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2008-11-01

    Fumarate reductase (FRD) is an enzyme that reduces fumarate to succinate. In many organisms, it is bound to the membrane and uses electron donors such as quinol. In this study, an FRD from a thermophilic chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6, was purified and characterized. FRD activity using NADH as an electron donor was not detected in the membrane fraction but was found in the soluble fraction. The purified enzyme was demonstrated to be a novel type of FRD, consisting of five subunits. One subunit showed high sequence identity to the catalytic subunits of known FRDs. Although the genes of typical FRDs are assembled in a cluster, the five genes encoding the H. thermophilus FRD were distant from each other in the genome. Furthermore, phylogenetic analysis showed that the H. thermophilus FRD was located in a distinct position from those of known soluble FRDs. This is the first report of a soluble NADH-dependent FRD in Bacteria and of the purification of a FRD that operates in the reductive tricarboxylic acid cycle.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tam, Tsz Kin; Chen, Baowei; Lei, Chenghong

    NAD/NADH is a coenzyme found in all living cells, carrying electrons from one reaction to another. We report on characterizations of in situ regeneration of NADH via lipoamide dehydrogenase (LD)-catalyzed electron transfer reaction to regenerate NADH using UV-vis spectroelectrochemistry. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) of NADH regeneration were measured as 0.80 {+-} 0.15 mM and 1.91 {+-} 0.09 {micro}M s-1 in a 1-mm thin-layer spectroelectrochemical cell using gold gauze as the working electrode at the applied potential -0.75 V (vs. Ag/AgCl). The electrocatalytic reduction of the NAD system was further coupled with the enzymatic conversion of pyruvatemore » to lactate by lactate dehydrogenase to examine the coenzymatic activity of the regenerated NADH. Although the reproducible electrocatalytic reduction of NAD into NADH is known to be difficult compared to the electrocatalytic oxidation of NADH, our spectroelectrochemical results indicate that the in situ regeneration of NADH via LD-catalyzed electron transfer reaction is fast and sustainable and can be potentially applied to many NAD/NADH-dependent enzyme systems.« less

  6. Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio.

    PubMed

    Anderson, Kristin A; Madsen, Andreas S; Olsen, Christian A; Hirschey, Matthew D

    2017-12-01

    NAD + is a dinucleotide cofactor with the potential to accept electrons in a variety of cellular reduction-oxidation (redox) reactions. In its reduced form, NADH is a ubiquitous cellular electron donor. NAD + , NADH, and the NAD + /NADH ratio have long been known to control the activity of several oxidoreductase enzymes. More recently, enzymes outside those participating directly in redox control have been identified that sense these dinucleotides, including the sirtuin family of NAD + -dependent protein deacylases. In this review, we highlight examples of non-redox enzymes that are controlled by NAD + , NADH, or NAD + /NADH. In particular, we focus on the sirtuin family and assess the current evidence that the sirtuin enzymes sense these dinucleotides and discuss the biological conditions under which this might occur; we conclude that sirtuins sense NAD + , but neither NADH nor the ratio. Finally, we identify future studies that might be informative to further interrogate physiological and pathophysiological changes in NAD + and NADH, as well as enzymes like sirtuins that sense and respond to redox changes in the cell. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Role of the Ascorbate-Glutathione Cycle of Mitochondria and Peroxisomes in the Senescence of Pea Leaves1

    PubMed Central

    Jiménez, Ana; Hernández, José A.; Pastori, Gabriela; del Río, Luis A.; Sevilla, Francisca

    1998-01-01

    We investigated the relationship between H2O2 metabolism and the senescence process using soluble fractions, mitochondria, and peroxisomes from senescent pea (Pisum sativum L.) leaves. After 11 d of senescence the activities of Mn-superoxide dismutase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR) present in the matrix, and ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities localized in the mitochondrial membrane, were all substantially decreased in mitochondria. The mitochondrial ascorbate and dehydroascorbate pools were reduced, whereas the oxidized glutathione levels were maintained. In senescent leaves the H2O2 content in isolated mitochondria and the NADH- and succinate-dependent production of superoxide (O2·−) radicals by submitochondrial particles increased significantly. However, in peroxisomes from senescent leaves both membrane-bound APX and MDHAR activities were reduced. In the matrix the DHAR activity was enhanced and the GR activity remained unchanged. As a result of senescence, the reduced and the oxidized glutathione pools were considerably increased in peroxisomes. A large increase in the glutathione pool and DHAR activity were also found in soluble fractions of senescent pea leaves, together with a decrease in GR, APX, and MDHAR activities. The differential response to senescence of the mitochondrial and peroxisomal ascorbate-glutathione cycle suggests that mitochondria could be affected by oxidative damage earlier than peroxisomes, which may participate in the cellular oxidative mechanism of leaf senescence longer than mitochondria. PMID:9847106

  8. Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species

    PubMed Central

    Aguilar-Arnal, Lorena; Ranjit, Suman; Stringari, Chiara; Orozco-Solis, Ricardo; Gratton, Enrico; Sassone-Corsi, Paolo

    2016-01-01

    Sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase that functions as metabolic sensor of cellular energy and modulates biochemical pathways in the adaptation to changes in the environment. SIRT1 substrates include histones and proteins related to enhancement of mitochondrial function as well as antioxidant protection. Fluctuations in intracellular NAD+ levels regulate SIRT1 activity, but how SIRT1 enzymatic activity impacts on NAD+ levels and its intracellular distribution remains unclear. Here, we show that SIRT1 determines the nuclear organization of protein-bound NADH. Using multiphoton microscopy in live cells, we show that free and bound NADH are compartmentalized inside of the nucleus, and its subnuclear distribution depends on SIRT1. Importantly, SIRT6, a chromatin-bound deacetylase of the same class, does not influence NADH nuclear localization. In addition, using fluorescence fluctuation spectroscopy in single living cells, we reveal that NAD+ metabolism in the nucleus is linked to subnuclear dynamics of active SIRT1. These results reveal a connection between NAD+ metabolism, NADH distribution, and SIRT1 activity in the nucleus of live cells and pave the way to decipher links between nuclear organization and metabolism. PMID:27791113

  9. Regulation of NADH/CoQ oxidoreductase: do phosphorylation events affect activity?

    PubMed

    Maj, Mary C; Raha, Sandeep; Myint, Tomoko; Robinson, Brian H

    2004-01-01

    We had previously suggested that phosphorylation of proteins by mitochondrial kinases regulate the activity of NADH/CoQ oxidoreductase. Initial data showed that pyruvate dehydrogenase kinase (PDK) and cAMP-dependent protein kinase A (PKA) phosphorylate mitochondrial membrane proteins. Upon phosphorylation with crude PDK, mitochondria appeared to be deficient in NADH/cytochrome c reductase activity associated with increased superoxide production. Conversely, phosphorylation by PKA resulted in increased NADH/cytochrome c reductase activity and decreased superoxide formation. Current data confirms PKA involvement in regulating Complex I activity through phosphorylation of an 18 kDa subunit. Beef heart NADH/ cytochrome c reductase activity increases to 150% of control upon incubation with PKA and ATP-gamma-S. We have cloned the four human isoforms of PDK and purified beef heart Complex I. Incubation of mitochondria with PDK isoforms and ATP did not alter Complex I activity or superoxide production. Radiolabeling of mitochondria and purified Complex I with PDK failed to reveal phosphorylated proteins.

  10. A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei.

    PubMed

    Coustou, Virginie; Besteiro, Sébastien; Rivière, Loïc; Biran, Marc; Biteau, Nicolas; Franconi, Jean-Michel; Boshart, Michael; Baltz, Théo; Bringaud, Frédéric

    2005-04-29

    Trypanosoma brucei is a parasitic protist responsible for sleeping sickness in humans. The procyclic stage of T. brucei expresses a soluble NADH-dependent fumarate reductase (FRDg) in the peroxisome-like organelles called glycosomes. This enzyme is responsible for the production of about 70% of the excreted succinate, the major end product of glucose metabolism in this form of the parasite. Here we functionally characterize a new gene encoding FRD (FRDm1) expressed in the procyclic stage. FRDm1 is a mitochondrial protein, as evidenced by immunolocalization, fractionation of digitonin-permeabilized cells, and expression of EGFP-tagged FRDm1 in the parasite. RNA interference was used to deplete FRDm1, FRDg, or both together. The analysis of the resulting mutant cell lines showed that FRDm1 is responsible for 30% of the cellular NADH-FRD activity, which solves a long standing debate regarding the existence of a mitochondrial FRD in trypanosomatids. FRDg and FRDm1 together account for the total NADH-FRD activity in procyclics, because no activity was measured in the double mutant lacking expression of both proteins. Analysis of the end products of 13C-enriched glucose excreted by these mutant cell lines showed that FRDm1 contributes to the production of between 14 and 44% of the succinate excreted by the wild type cells. In addition, depletion of one or both FRD enzymes results in up to 2-fold reduction of the rate of glucose consumption. We propose that FRDm1 is involved in the maintenance of the redox balance in the mitochondrion, as proposed for the ancestral soluble FRD presumably present in primitive anaerobic cells.

  11. A Soluble NADH-Dependent Fumarate Reductase in the Reductive Tricarboxylic Acid Cycle of Hydrogenobacter thermophilus TK-6▿

    PubMed Central

    Miura, Akane; Kameya, Masafumi; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2008-01-01

    Fumarate reductase (FRD) is an enzyme that reduces fumarate to succinate. In many organisms, it is bound to the membrane and uses electron donors such as quinol. In this study, an FRD from a thermophilic chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6, was purified and characterized. FRD activity using NADH as an electron donor was not detected in the membrane fraction but was found in the soluble fraction. The purified enzyme was demonstrated to be a novel type of FRD, consisting of five subunits. One subunit showed high sequence identity to the catalytic subunits of known FRDs. Although the genes of typical FRDs are assembled in a cluster, the five genes encoding the H. thermophilus FRD were distant from each other in the genome. Furthermore, phylogenetic analysis showed that the H. thermophilus FRD was located in a distinct position from those of known soluble FRDs. This is the first report of a soluble NADH-dependent FRD in Bacteria and of the purification of a FRD that operates in the reductive tricarboxylic acid cycle. PMID:18757546

  12. Mitochondrial NADH Fluorescence is Enhanced by Complex I Binding

    PubMed Central

    Blinova, Ksenia; Levine, Rodney L.; Boja, Emily S.; Griffiths, Gary L.; Shi, Zhen-Dan; Ruddy, Brian; Balaban, Robert S.

    2012-01-01

    Mitochondrial NADH fluorescence has been a useful tool in evaluating mitochondrial energetics both in vitro and in vivo. Mitochondrial NADH fluorescence is enhanced several fold in the matrix through extended fluorescence lifetimes (EFL). However, the actual binding sites responsible for NADH EFL are unknown. We tested the hypothesis that NADH binding to Complex I is a significant source of mitochondrial NADH fluorescence enhancement. To test this hypothesis, the effect of Complex I binding on NADH fluorescence efficiency was evaluated in purified protein, and in native gels of the entire porcine heart mitochondria proteome. To avoid the oxidation of NADH in these preparations, we conducted the binding experiments under anoxic conditions in a specially designed apparatus. Purified intact Complex I enhanced NADH fluorescence in native gels approximately 10 fold. However, no enhancement was detected in denatured individual Complex I subunit proteins. In the Clear and Ghost native gels of the entire mitochondrial proteome, NADH fluorescence enhancement was localized to regions where NADH oxidation occurred in the presence of oxygen. Inhibitor and mass spectroscopy studies revealed that the fluorescence enhancement was specific to Complex I proteins. No fluorescence enhancement was detected for MDH or other dehydrogenases in this assay system, at physiological mole fractions of the matrix proteins. These data suggest that NADH associated with Complex I significantly contributes to the overall mitochondrial NADH fluorescence signal and provides an explanation for the well established close correlation of mitochondrial NADH fluorescence and the metabolic state. PMID:18702505

  13. Pharmacological Stimulation of NADH Oxidation Ameliorates Obesity and Related Phenotypes in Mice

    PubMed Central

    Hwang, Jung Hwan; Kim, Dong Wook; Jo, Eun Jin; Kim, Yong Kyung; Jo, Young Suk; Park, Ji Hoon; Yoo, Sang Ku; Park, Myung Kyu; Kwak, Tae Hwan; Kho, Young Lim; Han, Jin; Choi, Hueng-Sik; Lee, Sang-Hee; Kim, Jin Man; Lee, InKyu; Kyung, Taeyoon; Jang, Cholsoon; Chung, Jongkyeong; Kweon, Gi Ryang; Shong, Minho

    2009-01-01

    OBJECTIVE Nicotinamide adenine dinucleotides (NAD+ and NADH) play a crucial role in cellular energy metabolism, and a dysregulated NAD+-to-NADH ratio is implicated in metabolic syndrome. However, it is still unknown whether a modulating intracellular NAD+-to-NADH ratio is beneficial in treating metabolic syndrome. We tried to determine whether pharmacological stimulation of NADH oxidation provides therapeutic effects in rodent models of metabolic syndrome. RESEARCH DESIGN AND METHODS We used β-lapachone (βL), a natural substrate of NADH:quinone oxidoreductase 1 (NQO1), to stimulate NADH oxidation. The βL-induced pharmacological effect on cellular energy metabolism was evaluated in cells derived from NQO1-deficient mice. In vivo therapeutic effects of βL on metabolic syndrome were examined in diet-induced obesity (DIO) and ob/ob mice. RESULTS NQO1-dependent NADH oxidation by βL strongly provoked mitochondrial fatty acid oxidation in vitro and in vivo. These effects were accompanied by activation of AMP-activated protein kinase and carnitine palmitoyltransferase and suppression of acetyl-coenzyme A (CoA) carboxylase activity. Consistently, systemic βL administration in rodent models of metabolic syndrome dramatically ameliorated their key symptoms such as increased adiposity, glucose intolerance, dyslipidemia, and fatty liver. The treated mice also showed higher expressions of the genes related to mitochondrial energy metabolism (PPARγ coactivator-1α, nuclear respiratory factor-1) and caloric restriction (Sirt1) consistent with the increased mitochondrial biogenesis and energy expenditure. CONCLUSIONS Pharmacological activation of NADH oxidation by NQO1 resolves obesity and related phenotypes in mice, opening the possibility that it may provide the basis for a new therapy for the treatment of metabolic syndrome. PMID:19136651

  14. Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant.

    PubMed

    Wang, Jinling; Lad, Latesh; Poulos, Thomas L; Ortiz de Montellano, Paul R

    2005-01-28

    The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase.

  15. Ascorbate transport in pig coronary artery smooth muscle: Na(+) removal and oxidative stress increase loss of accumulated cellular ascorbate.

    PubMed

    Holmes, M E; Samson, S E; Wilson, J X; Dixon, S J; Grover, A K

    2000-01-01

    Pig deendothelialized coronary artery rings and smooth muscle cells cultured from them accumulated ascorbate from medium containing Na(+). The accumulated material was determined to be ascorbate using high-performance liquid chromatography. We further characterized ascorbate uptake in the cultured cells. The data fitted best with a Hill coefficient of 1 for ascorbate (K(asc) = 22 +/- 2 microM) and 2 for Na(+) (K(Na) = 84 +/- 10 mM). The anion transport inhibitors sulfinpyrazone and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) inhibited the uptake. Transferring cultured cells loaded with (14)C-ascorbate into an ascorbate-free solution resulted in a biphasic loss of radioactivity - an initial sulfinpyrazone-insensitive faster phase and a late sulfinpyrazone-sensitive slower phase. Transferring loaded cells into a Na(+)-free medium increased the loss in the initial phase in a sulfinpyrazone-sensitive manner, suggesting that the ascorbate transporter is bidirectional. Including peroxide or superoxide in the solution increased the loss of radioactivity. Thus, ascorbate accumulated in coronary artery smooth muscle cells by a Na(+)-dependent transporter was lost in an ascorbate-free solution, and the loss was increased by removing Na(+) from the medium or by oxidative stress. Copyright 2000 S. Karger AG, Basel

  16. Gravity Responsive NADH Oxidase of the Plasma Membrane

    NASA Technical Reports Server (NTRS)

    Morre, D. James (Inventor)

    2002-01-01

    A method and apparatus for sensing gravity using an NADH oxidase of the plasma membrane which has been found to respond to unit gravity and low centrifugal g forces. The oxidation rate of NADH supplied to the NADH oxidase is measured and translated to represent the relative gravitational force exerted on the protein. The NADH oxidase of the plasma membrane may be obtained from plant or animal sources or may be produced recombinantly.

  17. Characterization of Frex as an NADH sensor for in vivo applications in the presence of NAD+ and at various pH values.

    PubMed

    Wilkening, Svea; Schmitt, Franz-Josef; Horch, Marius; Zebger, Ingo; Lenz, Oliver; Friedrich, Thomas

    2017-09-01

    The fluorescent biosensor Frex, recently introduced as a sensitive tool to quantify the NADH concentration in living cells, was characterized by time-integrated and time-resolved fluorescence spectroscopy regarding its applicability for in vivo measurements. Based on the purified sensor protein, it is shown that the NADH dependence of Frex fluorescence can be described by a Hill function with a concentration of half-maximal sensor response of K D  ≈ 4 µM and a Hill coefficient of n ≈ 2. Increasing concentrations of NADH have moderate effects on the fluorescence lifetime of Frex, which changes by a factor of two from about 500 ps in the absence of NADH to 1 ns under fluorescence-saturating NADH concentrations. Therefore, the observed sevenfold rise of the fluorescence intensity is primarily ascribed to amplitude changes. Notably, the dynamic range of Frex sensitivity towards NADH highly depends on the NAD + concentration, while the apparent K D for NADH is only slightly affected. We found that NAD + has a strong inhibitory effect on the fluorescence response of Frex during NADH sensing, with an apparent NAD + dissociation constant of K I  ≈ 400 µM. This finding was supported by fluorescence lifetime measurements, which showed that the addition of NAD + hardly affects the fluorescence lifetime, but rather reduces the number of Frex molecules that are able to bind NADH. Furthermore, the fluorescence responses of Frex to NADH and NAD + depend critically on pH and temperature. Thus, for in vivo applications of Frex, temperature and pH need to be strictly controlled or considered during data acquisition and analysis. If all these constraints are properly met, Frex fluorescence intensity measurements can be employed to estimate the minimum NADH concentration present within the cell at sufficiently low NAD + concentrations below 100 µM.

  18. The Transcription Factor ABI4 Is Required for the Ascorbic Acid–Dependent Regulation of Growth and Regulation of Jasmonate-Dependent Defense Signaling Pathways in Arabidopsis[C][W

    PubMed Central

    Kerchev, Pavel I.; Pellny, Till K.; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D.; Foyer, Christine H.

    2011-01-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation. PMID:21926335

  19. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio.

    PubMed

    Titov, Denis V; Cracan, Valentin; Goodman, Russell P; Peng, Jun; Grabarek, Zenon; Mootha, Vamsi K

    2016-04-08

    A decline in electron transport chain (ETC) activity is associated with many human diseases. Although diminished mitochondrial adenosine triphosphate production is recognized as a source of pathology, the contribution of the associated reduction in the ratio of the amount of oxidized nicotinamide adenine dinucleotide (NAD(+)) to that of its reduced form (NADH) is less clear. We used a water-forming NADH oxidase from Lactobacillus brevis (LbNOX) as a genetic tool for inducing a compartment-specific increase of the NAD(+)/NADH ratio in human cells. We used LbNOX to demonstrate the dependence of key metabolic fluxes, gluconeogenesis, and signaling on the cytosolic or mitochondrial NAD(+)/NADH ratios. Expression of LbNOX in the cytosol or mitochondria ameliorated proliferative and metabolic defects caused by an impaired ETC. The results underscore the role of reductive stress in mitochondrial pathogenesis and demonstrate the utility of targeted LbNOX for direct, compartment-specific manipulation of redox state. Copyright © 2016, American Association for the Advancement of Science.

  20. Stereospecificity of NAD+/NADH Reactions: A Project Experiment for Advanced Undergraduates.

    ERIC Educational Resources Information Center

    Lowrey, Jonathan S.; And Others

    1981-01-01

    Presents background information, materials needed, and experimental procedures to study enzymes dependent on pyridine nucleotide coenzymes (NAD/NADH). The experiments, suitable for advanced organic or biochemistry courses, require approximately 10-15 hours to complete. (SK)

  1. Streptococcus mutans NADH oxidase lies at the intersection of overlapping regulons controlled by oxygen and NAD+ levels.

    PubMed

    Baker, J L; Derr, A M; Karuppaiah, K; MacGilvray, M E; Kajfasz, J K; Faustoferri, R C; Rivera-Ramos, I; Bitoun, J P; Lemos, J A; Wen, Z T; Quivey, R G

    2014-06-01

    NADH oxidase (Nox, encoded by nox) is a flavin-containing enzyme used by the oral pathogen Streptococcus mutans to reduce diatomic oxygen to water while oxidizing NADH to NAD(+). The critical nature of Nox is 2-fold: it serves to regenerate NAD(+), a carbon cycle metabolite, and to reduce intracellular oxygen, preventing formation of destructive reactive oxygen species (ROS). As oxygen and NAD(+) have been shown to modulate the activity of the global transcription factors Spx and Rex, respectively, Nox is potentially poised at a critical junction of two stress regulons. In this study, microarray data showed that either addition of oxygen or loss of nox resulted in altered expression of genes involved in energy metabolism and transport and the upregulation of genes encoding ROS-metabolizing enzymes. Loss of nox also resulted in upregulation of several genes encoding transcription factors and signaling molecules, including the redox-sensing regulator gene rex. Characterization of the nox promoter revealed that nox was regulated by oxygen, through SpxA, and by Rex. These data suggest a regulatory loop in which the roles of nox in reduction of oxygen and regeneration of NAD(+) affect the activity levels of Spx and Rex, respectively, and their regulons, which control several genes, including nox, crucial to growth of S. mutans under conditions of oxidative stress. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation.

    PubMed

    Su, Liqiu; Shen, Yanbing; Zhang, Wenkai; Gao, Tian; Shang, Zhihua; Wang, Min

    2017-10-30

    Cofactor engineering is involved in the modification of enzymes related to nicotinamide adenine dinucleotides (NADH and NAD + ) metabolism, which results in a significantly altered spectrum of metabolic products. Cofactor engineering plays an important role in metabolic engineering but is rarely reported in the sterols biotransformation process owing to its use of multi-catabolic enzymes, which promote multiple consecutive reactions. Androst-4-ene-3, 17-dione (AD) and androst-1, 4-diene-3, 17-dione (ADD) are important steroid medicine intermediates that are obtained via the nucleus oxidation and the side chain degradation of phytosterols by Mycobacterium. Given that the biotransformation from phytosterols to AD (D) is supposed to be a NAD + -dependent process, this work utilized cofactor engineering in Mycobacterium neoaurum and investigated the effect on cofactor and phytosterols metabolism. Through the addition of the coenzyme precursor of nicotinic acid in the phytosterols fermentation system, the intracellular NAD + /NADH ratio and the AD (D) production of M. neoaurum TCCC 11978 (MNR M3) were higher than in the control. Moreover, the NADH: flavin oxidoreductase was identified and was supposed to exert a positive effect on cofactor regulation and phytosterols metabolism pathways via comparative proteomic profiling of MNR cultured with and without phytosterols. In addition, the NADH: flavin oxidoreductase and a water-forming NADH oxidase from Lactobacillus brevis, were successfully overexpressed and heterologously expressed in MNR M3 to improve the intracellular ratio of NAD + /NADH. After 96 h of cultivation, the expression of these two enzymes in MNR M3 resulted in the decrease in intracellular NADH level (by 51 and 67%, respectively) and the increase in NAD + /NADH ratio (by 113 and 192%, respectively). Phytosterols bioconversion revealed that the conversion ratio of engineered stains was ultimately improved by 58 and 147%, respectively. The highest AD (D

  3. Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid

    PubMed Central

    Meredith, M. Elizabeth; May, James M.

    2013-01-01

    Scope: Ascorbic acid (ascorbate) is required to recycle tetrahydrobiopterin, which is necessary for neurotransmitter synthesis by the rate-limiting enzymes tyrosine and tryptophan hydroxylases. We sought to determine whether ascorbate might regulate embryonic brain cortex monoamine synthesis utilizing transgenic mouse models with varying intracellular ascorbate levels. Methods and Results: In embryos lacking the sodium-dependent vitamin C transporter 2 (SVCT2), very low levels of brain ascorbate decreased cortex levels of norepinephrine and dopamine by approximately 33%, but had no effect on cortex serotonin or its metabolite, 5-hydroxyindole acetic acid. This decrease in ascorbate also led to a decrease in protein levels of tyrosine hydroxylase, but not of tryptophan hydroxylase. Increased cortex ascorbate in embryos carrying extra copies of the SVCT2 resulted in increased levels of dopamine and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), as well as serotonin and 5-hydroxyindole acetic acid. Conclusion: The dependence of embryonic brain cortex neurotransmitter synthesis and tyrosine hydroxylase expression on intracellular ascorbate emphasizes the importance of receiving adequate ascorbate during development. PMID:24095796

  4. Bioinspired Design of Alcohol Dehydrogenase@nano TiO₂ Microreactors for Sustainable Cycling of NAD⁺/NADH Coenzyme.

    PubMed

    Lin, Sen; Sun, Shiyong; Wang, Ke; Shen, Kexuan; Ma, Biaobiao; Ren, Yuquan; Fan, Xiaoyu

    2018-02-24

    The bioinspired design and construction of enzyme@capsule microreactors with specific cell-like functionality has generated tremendous interest in recent years. Inspired by their fascinating complexity, scientists have endeavored to understand the essential aspects of a natural cell and create biomimicking microreactors so as to immobilize enzymes within the hierarchical structure of a microcapsule. In this study, simultaneous encapsulation of alcohol dehydrogenase (ADH) was achieved during the preparation of microcapsules by the Pickering emulsion method using amphiphilic modified TiO₂ nanoparticles (NPs) as building blocks for assembling the photocatalytic microcapsule membrane. The ADH@TiO₂ NP microreactors exhibited dual catalytic functions, i.e., spatially confined enzymatic catalysis and the membrane-associated photocatalytic oxidation under visible light. The sustainable cycling of nicotinamide adenine dinucleotide (NAD) coenzyme between NADH and NAD⁺ was realized by enzymatic regeneration of NADH from NAD⁺ reduction, and was provided in a form that enabled further photocatalytic oxidation to NAD⁺ under visible light. This bioinspired ADH@TiO₂ NP microreactor allowed the linking of a semiconductor mineral-based inorganic photosystem to enzymatic reactions. This is a first step toward the realization of sustainable biological cycling of NAD⁺/NADH coenzyme in synthetic functional microsystems operating under visible light irradiation.

  5. Facilitation of NADH Electrooxidation at Treated Carbon Nanotubes

    PubMed Central

    Wooten, Marilyn; Gorski, Waldemar

    2010-01-01

    The relationship between the state of the surface of carbon nanotubes (CNT) and their electrochemical activity was investigated using the enzyme cofactor dihydronicotinamide adenine dinucleotide (NADH) as a redox probe. The boiling of CNT in water, while nondestructive, activated them toward the oxidation of NADH as indicated by a shift in the anodic peak potential of NADH (ENADH) from 0.4 to 0.0 V. The shift in ENADH was due to the redox mediation of NADH oxidation by traces of quinone species that were formed on the surface of treated CNT. The harsher treatment that comprised of microwaving of CNT in concentrated nitric acid had a similar effect on the ENADH and, additionally, it increased the anodic peak current of NADH. The latter correlated with the formation of defects on the surface of acid-microwaved CNT as indicated by their Raman spectra. The increase in current was discussed considering a role of surface mediators on the buckled graphene sheets of acid-microwaved CNT. The other carbon allotropes including the edge plane pyrolytic graphite, graphite powder, and glassy carbon did not display a comparable activation toward the oxidation of NADH. PMID:20088562

  6. Contribution of the NADH-oxidase (Nox) to the aerobic life of Lactobacillus sanfranciscensis DSM20451T.

    PubMed

    Jänsch, André; Freiding, Simone; Behr, Jürgen; Vogel, Rudi F

    2011-02-01

    Lactobacillus sanfranciscensis is the key bacterium in traditional sourdough fermentation. The molecular background of its oxygen tolerance was investigated by comparison of wild type and NADH-oxidase (Nox) knock out mutants. The nox gene of L. sanfranciscensis DSM20451(T) coding for a NADH-oxidase (Nox) was inactivated by single crossover integration to yield strain L. sanfranciscensis DSM20451Δnox. By inactivation of the native NADH-oxidase gene, it was ensured that besides fructose, O(2) can react as an electron acceptor. In aerated cultures the mutant strain was only able to grow in MRS media supplemented with fructose as electron acceptor, whereas the wild type strain showed a fructose independent growth response. The use of oxygen as an external electron acceptor enables L. sanfranciscensis to shift from acetyl-phosphate into the acetate branch and gain an additionally ATP, while the reduced cofactors were regenerated by Nox-activity. In aerated cultures the wild type strain formed a fermentation ratio of lactate to acetate of 1.09 in MRS supplemented with fructose after 24 h of fermentation, while the mutant strain formed a fermentation ratio of 3.05. Additionally, L. sanfranciscensis showed manganese-dependent growth response in aerated cultures, the final OD and growth velocity was increased in media supplemented with manganese. The expression of two predicted Mn(2+)/Fe(2+) transporters MntH1 and MntH2 in L. sanfranciscensis DSM20451(T) was verified by amplification of a 318 bp fragment of MntH1 and a 239 bp fragment of MntH2 from cDNA library obtained from aerobically, exponentially growing cells of L. sanfranciscensis DSM20451(T) in MRS. Moreover, the mutant strain DSM20451Δnox was more sensitive to the superoxide generating agent paraquat and showed inhibition of growth on diamide-treated MRS-plates without fructose supplementation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. An activity transition from NADH dehydrogenase to NADH oxidase during protein denaturation.

    PubMed

    Huston, Scott; Collins, John; Sun, Fangfang; Zhang, Ting; Vaden, Timothy D; Zhang, Y-H Percival; Fu, Jinglin

    2018-05-01

    A decrease in the specific activity of an enzyme is commonly observed when the enzyme is inappropriately handled or is stored over an extended period. Here, we reported a functional transition of an FMN-bound diaphorase (FMN-DI) that happened during the long-term storage process. It was found that FMN-DI did not simply lose its β-nicotinamide adenine diphosphate (NADH) dehydrogenase activity after a long-time storage, but obtained a new enzyme activity of NADH oxidase. Further mechanistic studies suggested that the alteration of the binding strength of an FMN cofactor with a DI protein could be responsible for this functional switch of the enzyme. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  8. A novel bioactive osteogenesis scaffold delivers ascorbic acid, β-glycerophosphate, and dexamethasone in vivo to promote bone regeneration.

    PubMed

    Wang, Chao; Cao, Xuecheng; Zhang, Yongxian

    2017-05-09

    Ascorbic acid, β-glycerophosphate, and dexamethasone have been used in osteogenesis differentiation medium for in vitro cell culture, nothing is known for delivering these three bioactive compounds in vivo. In this study, we synthesized a novel bioactive scaffold by combining these three compounds with a lysine diisocyanate-based polyurethane. These bioactive compounds were released from the scaffold during the degradation process. The cell culture showed that the sponge-like structure in the scaffold was critical in providing a large surface area to support cell growth and all degradation products of the polymer were non-toxic. This bioactive scaffold enhanced the bone regeneration as evidenced by increasing the expression of three bone-related genes including collagen type I, Runx-2 and osteocalcin in rabbit bone marrow stem cells (BMSCs) in vitro and in vivo. The osteogenesis differentiation of BMSCs cultured in this bioactive scaffold was similar to that in osteogenesis differentiation medium and more extensive in this bioactive scaffold compared to the scaffold without these three bioactive compounds. These results indicated that the scaffold containing three bioactive compounds was a good osteogenesis differentiation promoter to enhance the osteogenesis differentiation and new bone formation in vivo.

  9. A novel bioactive osteogenesis scaffold delivers ascorbic acid, β-glycerophosphate, and dexamethasone in vivo to promote bone regeneration

    PubMed Central

    Wang, Chao; Cao, Xuecheng; Zhang, Yongxian

    2017-01-01

    Ascorbic acid, β-glycerophosphate, and dexamethasone have been used in osteogenesis differentiation medium for in vitro cell culture, nothing is known for delivering these three bioactive compounds in vivo. In this study, we synthesized a novel bioactive scaffold by combining these three compounds with a lysine diisocyanate-based polyurethane. These bioactive compounds were released from the scaffold during the degradation process. The cell culture showed that the sponge-like structure in the scaffold was critical in providing a large surface area to support cell growth and all degradation products of the polymer were non-toxic. This bioactive scaffold enhanced the bone regeneration as evidenced by increasing the expression of three bone-related genes including collagen type I, Runx-2 and osteocalcin in rabbit bone marrow stem cells (BMSCs) in vitro and in vivo. The osteogenesis differentiation of BMSCs cultured in this bioactive scaffold was similar to that in osteogenesis differentiation medium and more extensive in this bioactive scaffold compared to the scaffold without these three bioactive compounds. These results indicated that the scaffold containing three bioactive compounds was a good osteogenesis differentiation promoter to enhance the osteogenesis differentiation and new bone formation in vivo. PMID:28404942

  10. Aminobacter aminovorans NADH:flavin oxidoreductase His140: a highly conserved residue critical for NADH binding and utilization.

    PubMed

    Russell, Thomas R; Tu, Shiao-Chun

    2004-10-12

    Homodimeric FRD(Aa) Class I is an NADH:flavin oxidoreductase from Aminobacter aminovorans. It is unusual because it contains an FMN cofactor but utilizes a sequential-ordered kinetic mechanism. Because little is known about NADH-specific flavin reductases in general and FRD(Aa) in particular, this study aimed to further explore FRD(Aa) by identifying the functionalities of a key residue. A sequence alignment of FRD(Aa) with several known and hypothetical flavoproteins in the same subfamily reveals within the flavin reductase active-site domain a conserved GDH motif, which is believed to be responsible for the enzyme and NADH interaction. Mutation of the His140 in this GDH motif to alanine reduced FRD(Aa) activity to <3%. An ultrafiltration assay and fluorescence quenching demonstrated that H140A FRD(Aa) binds FMN in the same 1:1 stoichiometric ratio as the wild-type enzyme, but with slightly weakened affinity (K(d) = 0.9 microM). Anaerobic stopped-flow studies were carried out using both the native and mutated FRD(Aa). Similar to the native enzyme, H140A FRD(Aa) was also able to reduce the FMN cofactor by NADH although much less efficiently. Kinetic analysis of anaerobic reduction measurements indicated that the His140 residue of FRD(Aa) was essential to NADH binding, as well as important for the reduction of the FMN cofactor. For the native enzyme, the cofactor reduction was followed by at least one slower step in the catalytic pathway.

  11. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration.

    PubMed

    Xiang, Jinyi; Bandura, Jennifer; Zhang, Peng; Jin, Yinhua; Reuter, Hanna; Edgar, Bruce A

    2017-05-09

    Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair.

  12. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration

    PubMed Central

    Xiang, Jinyi; Bandura, Jennifer; Zhang, Peng; Jin, Yinhua; Reuter, Hanna; Edgar, Bruce A.

    2017-01-01

    Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair. PMID:28485389

  13. NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise

    PubMed Central

    White, Amanda T.

    2012-01-01

    The pyridine nucleotides, NAD+ and NADH, are coenzymes that provide oxidoreductive power for the generation of ATP by mitochondria. In skeletal muscle, exercise perturbs the levels of NAD+, NADH, and consequently, the NAD+/NADH ratio, and initial research in this area focused on the contribution of redox control to ATP production. More recently, numerous signaling pathways that are sensitive to perturbations in NAD+(H) have come to the fore, as has an appreciation for the potential importance of compartmentation of NAD+(H) metabolism and its subsequent effects on various signaling pathways. These pathways, which include the sirtuin (SIRT) proteins SIRT1 and SIRT3, the poly(ADP-ribose) polymerase (PARP) proteins PARP1 and PARP2, and COOH-terminal binding protein (CtBP), are of particular interest because they potentially link changes in cellular redox state to both immediate, metabolic-related changes and transcriptional adaptations to exercise. In this review, we discuss what is known, and not known, about the contribution of NAD+(H) metabolism and these aforementioned proteins to mitochondrial adaptations to acute and chronic endurance exercise. PMID:22436696

  14. JNK signalling is necessary for a Wnt- and stem cell-dependent regeneration programme

    PubMed Central

    Tejada-Romero, Belen; Carter, Jean-Michel; Mihaylova, Yuliana; Neumann, Bjoern; Aboobaker, A. Aziz

    2015-01-01

    Regeneration involves the integration of new and old tissues in the context of an adult life history. It is clear that the core conserved signalling pathways that orchestrate development also play central roles in regeneration, and further study of conserved signalling pathways is required. Here we have studied the role of the conserved JNK signalling cascade during planarian regeneration. Abrogation of JNK signalling by RNAi or pharmacological inhibition blocks posterior regeneration and animals fail to express posterior markers. While the early injury-induced expression of polarity markers is unaffected, the later stem cell-dependent phase of posterior Wnt expression is not established. This defect can be rescued by overactivation of the Hh or Wnt signalling pathway to promote posterior Wnt activity. Together, our data suggest that JNK signalling is required to establish stem cell-dependent Wnt expression after posterior injury. Given that Jun is known to be required in vertebrates for the expression of Wnt and Wnt target genes, we propose that this interaction may be conserved and is an instructive part of planarian posterior regeneration. PMID:26062938

  15. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics.

    PubMed

    Elmore, Amy R

    2005-01-01

    L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate function in cosmetic formulations primarily as antioxidants. Ascorbic Acid is commonly called Vitamin C. Ascorbic Acid is used as an antioxidant and pH adjuster in a large variety of cosmetic formulations, over 3/4 of which were hair dyes and colors at concentrations between 0.3% and 0.6%. For other uses, the reported concentrations were either very low (<0.01%) or in the 5% to 10% range. Calcium Ascorbate and Magnesium Ascorbate are described as antioxidants and skin conditioning agents--miscellaneous for use in cosmetics, but are not currently used. Sodium Ascorbyl Phosphate functions as an antioxidant in cosmetic products and is used at concentrations ranging from 0.01% to 3%. Magnesium Ascorbyl Phosphate functions as an antioxidant in cosmetics and was reported being used at concentrations from 0.001% to 3%. Sodium Ascorbate also functions as an antioxidant in cosmetics at concentrations from 0.0003% to 0.3%. Related ingredients (Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and Sodium Erythorbate) have been previously reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel and found "to be safe for use as cosmetic ingredients in the present practices of good use." Ascorbic Acid is a generally recognized as safe (GRAS) substance for use as a chemical preservative in foods and as a nutrient and/or dietary supplement. Calcium Ascorbate and Sodium Ascorbate are listed as GRAS substances for use as chemical preservatives. L-Ascorbic Acid is readily and reversibly oxidized to L-dehydroascorbic acid and both forms exist in equilibrium in the body. Permeation rates of Ascorbic Acid through whole and stripped mouse skin were 3.43 +/- 0.74 microg/cm(2)/h and 33.2 +/- 5.2 microg/cm(2)/h. Acute oral and parenteral studies in mice, rats, rabbits, guinea pigs, dogs, and cats demonstrated little toxicity

  16. Non-enzymatic oxidation of NADH by quinones

    NASA Astrophysics Data System (ADS)

    Scherbak, Nikolai; Strid, Åke; Eriksson, Leif A.

    2005-10-01

    Non-enzymatic oxidation of NADH by a large number of different quinones has been explored both theoretically and experimentally. It is concluded that the smaller benzo- and naphtho-quinones are capable of oxidising NADH in aqueous solution, whereas the larger anthraquinone is not. The mechanisms of stepwise electron and proton transfers are explored, and ruled out in favour of direct hydride transfer. For menadione (2-methyl-1,4-naphthoquinone), no reaction is observed experimentally; theoretically we find that there is a very close balance between the energetic cost of hydride removal from NADH and the energy gain of formation of the menadione semiquinone radical anion.

  17. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri.

    PubMed

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K

    2008-02-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0' = -410 mV) with NADH (E0' = -320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0' = -10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.

  18. Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration.

    PubMed

    Farkas, Johanna E; Freitas, Polina D; Bryant, Donald M; Whited, Jessica L; Monaghan, James R

    2016-08-01

    The Mexican axolotl (Ambystoma mexicanum) is capable of fully regenerating amputated limbs, but denervation of the limb inhibits the formation of the post-injury proliferative mass called the blastema. The molecular basis behind this phenomenon remains poorly understood, but previous studies have suggested that nerves support regeneration via the secretion of essential growth-promoting factors. An essential nerve-derived factor must be found in the blastema, capable of rescuing regeneration in denervated limbs, and its inhibition must prevent regeneration. Here, we show that the neuronally secreted protein Neuregulin-1 (NRG1) fulfills all these criteria in the axolotl. Immunohistochemistry and in situ hybridization of NRG1 and its active receptor ErbB2 revealed that they are expressed in regenerating blastemas but lost upon denervation. NRG1 was localized to the wound epithelium prior to blastema formation and was later strongly expressed in proliferating blastemal cells. Supplementation by implantation of NRG1-soaked beads rescued regeneration to digits in denervated limbs, and pharmacological inhibition of NRG1 signaling reduced cell proliferation, blocked blastema formation and induced aberrant collagen deposition in fully innervated limbs. Taken together, our results show that nerve-dependent NRG1/ErbB2 signaling promotes blastemal proliferation in the regenerating limb and may play an essential role in blastema formation, thus providing insight into the longstanding question of why nerves are required for axolotl limb regeneration. © 2016. Published by The Company of Biologists Ltd.

  19. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.

    PubMed

    Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M

    2011-12-20

    The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.

  20. Environment Dictates Dependence on Mitochondrial Complex I for NAD+ and Aspartate Production and Determines Cancer Cell Sensitivity to Metformin.

    PubMed

    Gui, Dan Y; Sullivan, Lucas B; Luengo, Alba; Hosios, Aaron M; Bush, Lauren N; Gitego, Nadege; Davidson, Shawn M; Freinkman, Elizaveta; Thomas, Craig J; Vander Heiden, Matthew G

    2016-11-08

    Metformin use is associated with reduced cancer mortality, but how metformin impacts cancer outcomes is controversial. Although metformin can act on cells autonomously to inhibit tumor growth, the doses of metformin that inhibit proliferation in tissue culture are much higher than what has been described in vivo. Here, we show that the environment drastically alters sensitivity to metformin and other complex I inhibitors. We find that complex I supports proliferation by regenerating nicotinamide adenine dinucleotide (NAD)+, and metformin's anti-proliferative effect is due to loss of NAD+/NADH homeostasis and inhibition of aspartate biosynthesis. However, complex I is only one of many inputs that determines the cellular NAD+/NADH ratio, and dependency on complex I is dictated by the activity of other pathways that affect NAD+ regeneration and aspartate levels. This suggests that cancer drug sensitivity and resistance are not intrinsic properties of cancer cells, and demonstrates that the environment can dictate sensitivity to therapies that impact cell metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Pulmonary bioavailability of ascorbic acid in an ascorbate-synthesising species, the horse.

    PubMed

    Deaton, Christopher M; Marlin, David J; Smith, Nicola C; Roberts, Colin A; Harris, Pat A; Kelly, Frank J; Schroter, Robert C

    2003-04-01

    Vitamin C (ascorbic acid) is a non-enzymatic antioxidant important in protecting the lung against oxidative damage and is decreased in lung lining fluid of horses with airway inflammation. To examine possible therapeutic regimens in a species with ascorbate-synthesising capacity, we studied the effects of oral supplementation of two forms of ascorbic acid, (each equivalent to 20 mg ascorbic acid per kg body weight) on the pulmonary and systemic antioxidant status of six healthy ponies in a 3 x 3 Latin square design. Two weeks supplementation with ascorbyl palmitate significantly increased mean plasma ascorbic acid concentrations compared to control (29 +/- 5 and 18 +/- 7 micromol/l, respectively; p < 0.05). Calcium ascorbyl-2-monophosphate, a more stable form of ascorbic acid, also increased mean plasma ascorbic acid concentrations, but not significantly (23 +/- 1 micromol/l; p = 0.07). The concentration of ascorbic acid in bronchoalveolar lavage fluid increased in five out of six ponies following supplementation with either ascorbyl palmitate or calcium ascorbyl-2-monophosphate compared with control (30 +/- 10, 25 +/- 4 and 18 +/- 8 micromol/l, respectively; p < 0.01). Neither supplement altered the concentration of glutathione, uric acid or alpha-tocopherol in plasma or bronchoalveolar lavage fluid. In conclusion, the concentration of lung lining fluid ascorbic acid is increased following ascorbic acid supplementation (20 mg/kg body weight) in an ascorbate-synthesising species.

  2. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    PubMed

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.

    PubMed

    Lerchner, Alexandra; Jarasch, Alexander; Meining, Winfried; Schiefner, André; Skerra, Arne

    2013-11-01

    The NADP⁺-dependent alcohol dehydrogenase from Ralstonia sp. (RasADH) belongs to the protein superfamily of short-chain dehydrogenases/reductases (SDRs). As an enzyme that accepts different types of substrates--including bulky-bulky as well as small-bulky secondary alcohols or ketones--with high stereoselectivity, it offers potential as a biocatalyst for industrial biotechnology. To understand substrate and cosubstrate specificities of RasADH we determined the crystal structure of the apo-enzyme as well as its NADP⁺-bound state with resolutions down to 2.8 Å. RasADH displays a homotetrameric quaternary structure that can be described as a dimer of homodimers while in each subunit a seven-stranded parallel β-sheet, flanked by three α-helices on each side, forms a Rossmann fold-type dinucleotide binding domain. Docking of the well-known substrate (S)-1-phenylethanol clearly revealed the structural determinants of stereospecificity. To favor practical RasADH application in the context of established cofactor recycling systems, for example, those involving an NADH-dependent amino acid dehydrogenase, we attempted to rationally change its cosubstrate specificity from NADP⁺ to NAD⁺ utilizing the structural information that NADP⁺ specificity is largely governed by the residues Asn15, Gly37, Arg38, and Arg39. Furthermore, an extensive sequence alignment with homologous dehydrogenases that have different cosubstrate specificities revealed a modified general SDR motif ASNG (instead of NNAG) at positions 86-89 of RasADH. Consequently, we constructed mutant enzymes with one (G37D), four (N15G/G37D/R38V/R39S), and six (N15G/G37D/R38V/R39S/A86N/S88A) amino acid exchanges. RasADH (N15G/G37D/R38V/R39S) was better able to accept NAD⁺ while showing much reduced catalytic efficiency with NADP⁺, leading to a change in NADH/NADPH specificity by a factor of ∼3.6 million. © 2013 Wiley Periodicals, Inc.

  4. Cloning and expression profile of FLT3 gene during progenitor cell-dependent liver regeneration.

    PubMed

    Aydin, Iraz T; Tokcaer, Zeynep; Dalgic, Aydin; Konu, Ozlen; Akcali, Kamil C

    2007-12-01

    The liver has a unique capacity to regenerate upon exposure to viral infections, toxic reactions and cancer formation. Liver regeneration is a complex phenomenon in which several factors participate during its onset. Cellular proliferation is an important component of this process and the factors that regulate this proliferation have a vital role. FLT3, a well-known hematopoietic stem cell and hepatic lineage surface marker, is involved in proliferative events of hematopoietic stem cells. However, its contribution to liver regeneration is not known. Therefore, the aim of this study was to clone and examine the role of FLT3 during liver regeneration in rats. Partial cDNA of rat homolog of FLT3 gene was cloned from thymus and the tissue specific expression of this gene at mRNA and protein levels was examined by RT-PCR and Western blot. After treating with 2-AAF and performing hepatectomy in rats to induce progenitor-dependent liver regeneration, the mRNA and protein expression profile of FLT3 was investigated by real-time PCR and Western blot during liver regeneration. In addition, cellular localization of FLT3 protein was determined by immunohistochemistry. The results indicated that rat FLT3 cDNA has high homology with mouse and human FLT3 cDNA. It was also found that FLT3 is expressed in most of the rat tissues and during liver regeneration. In addition, its intracellular localization is altered during the late stages of liver regeneration. The FLT3 receptor is activated at the late stages of liver regeneration and participates in the proliferation response that is observed during progenitor-dependent liver regeneration.

  5. Polarized fluorescence in NADH under two-photon excitation with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Vasyutinskii, O. S.; Smolin, A. G.; Oswald, C.; Gericke, K. H.

    2017-04-01

    Polarized fluorescence decay in NADH molecules in aqueous solution under two-photon excitation by femtosecond laser pulses has been studied. The excitation was carried out by linear and circularly polarized radiation at four wavelengths: 720, 730, 740, and 750 nm. Time-dependent polarized fluorescence signals were recorded as a function of the excitation light polarization and used for determination of a set of molecular parameters, two lifetimes characterizing the molecular excited states, and the rotation correlation time τrot. The results obtained can be used to create and prove theoretical models describing the intensity and polarization of fluorescence in NADH involved in the regulation of the redox reactions in cells and tissues of living organisms.

  6. Reverse electron transport effects on NADH formation and metmyoglobin reduction.

    PubMed

    Belskie, K M; Van Buiten, C B; Ramanathan, R; Mancini, R A

    2015-07-01

    The objective was to determine if NADH generated via reverse electron flow in beef mitochondria can be used for electron transport-mediated reduction and metmyoglobin reductase pathways. Beef mitochondria were isolated from bovine hearts (n=5) and reacted with combinations of succinate, NAD, and mitochondrial inhibitors to measure oxygen consumption and NADH formation. Mitochondria and metmyoglobin were reacted with succinate, NAD, and mitochondrial inhibitors to measure electron transport-mediated metmyoglobin reduction and metmyoglobin reductase activity. Addition of succinate and NAD increased oxygen consumption, NADH formation, electron transport-mediated metmyoglobin reduction, and reductase activity (p<0.05). Addition of antimycin A prevented electron flow beyond complex III, therefore, decreasing oxygen consumption and electron transport-mediated metmyoglobin reduction. Addition of rotenone prevented reverse electron flow, increased oxygen consumption, increased electron transport-mediated metmyoglobin reduction, and decreased NADH formation. Succinate and NAD can generate NADH in bovine tissue postmortem via reverse electron flow and this NADH can be used by both electron transport-mediated and metmyoglobin reductase pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo.

    PubMed

    Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun; Park, Jeong-Sook; Myung, Chang-Seon

    2018-01-01

    Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the C max value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their T max values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders.

  8. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo

    PubMed Central

    Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun

    2018-01-01

    Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the Cmax value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their Tmax values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders. PMID:29302210

  9. Smed-Evi/Wntless is required for beta-catenin-dependent and -independent processes during planarian regeneration.

    PubMed

    Adell, Teresa; Salò, Emili; Boutros, Michael; Bartscherer, Kerstin

    2009-03-01

    Planarians can regenerate a whole animal from only a small piece of their body, and have become an important model for stem cell biology. To identify regenerative processes dependent on Wnt growth factors in the planarian Schmidtea mediterranea (Smed), we analyzed RNAi phenotypes of Evi, a transmembrane protein specifically required for the secretion of Wnt ligands. We show that, during regeneration, Smed-evi loss-of-function prevents posterior identity, leading to two-headed planarians that resemble Smed-beta-catenin1 RNAi animals. In addition, we observe regeneration defects of the nervous system that are not found after Smed-beta-catenin1 RNAi. By systematic knockdown of all putative Smed Wnts in regenerating planarians, we identify Smed-WntP-1 and Smed-Wnt11-2 as the putative posterior organizers, and demonstrate that Smed-Wnt5 is a regulator of neuronal organization and growth. Thus, our study provides evidence that planarian Wnts are major regulators of regeneration, and that they signal through beta-catenin-dependent and -independent pathways.

  10. Genetically encoded probes for NAD+/NADH monitoring.

    PubMed

    Bilan, Dmitry S; Belousov, Vsevolod V

    2016-11-01

    NAD + and NADH participate in many metabolic reactions. The NAD + /NADH ratio is an important parameter reflecting the general metabolic and redox state of different types of cells. For a long time, in situ and in vivo NAD + /NADH monitoring has been hampered by the lack of suitable tools. The recent development of genetically encoded indicators based on fluorescent proteins linked to specific nucleotide-binding domains has already helped to address this monitoring problem. In this review, we will focus on four available indicators: Peredox, Frex family probes, RexYFP and SoNar. Each indicator has advantages and limitations. We will also discuss the most important points that should be considered when selecting a suitable indicator for certain experimental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri▿ †

    PubMed Central

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K.

    2008-01-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0′ = −410 mV) with NADH (E0′ = −320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0′ = −10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper. PMID:17993531

  12. Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices.

    PubMed

    Masia, Ricard; McCarty, William J; Lahmann, Carolina; Luther, Jay; Chung, Raymond T; Yarmush, Martin L; Yellen, Gary

    2018-01-01

    Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD + ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD + ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD + ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD + ratio, and this increase is mitigated by the presence of NAD + -generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD + ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD + ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real

  13. Study the oxidative injury of yeast cells by NADH autofluorescence

    NASA Astrophysics Data System (ADS)

    Liang, Ju; Wu, Wen-Lan; Liu, Zhi-Hong; Mei, Yun-Jun; Cai, Ru-Xiu; Shen, Ping

    2007-06-01

    Autofluorescence has an advantage over the extrinsic fluorescence of an unperturbed environment during investigation, especially in complex system such as biological cells and tissues. NADH is an important fluorescent substance in living cells. The time courses of intracellular NADH autofluorescence in the process of yeast cells exposed to H 2O 2 and ONOO - have been recorded in detail in this work. In the presence of different amounts of H 2O 2 and ONOO -, necrosis, apoptosis and reversible injury are initiated in yeast cells, which are confirmed by acridine orange/ethidum bromide and Annexin V/propidium iodide staining. It is found that intracellular NADH content increases momently in the beginning of the apoptotic process and then decreases continually till the cell dies. The most remarkable difference between the apoptotic and the necrotic process is that the NADH content in the latter case changes much more sharply. Further in the case of reversible injury, the time course of intracellular NADH content is completely different from the above two pathways of cell death. It just decreases to some degree firstly and then resumes to the original level. Based on the role of NADH in mitochondrial respiratory chain, the time course of intracellular NADH content is believed to have reflected the response of mitochondrial redox state to oxidative stress. Thus, it is found that the mitochondrial redox state changes differently in different pathways of oxidative injury in yeast cells.

  14. Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria

    PubMed Central

    Adler, Carolyn E; Seidel, Chris W; McKinney, Sean A; Sánchez Alvarado, Alejandro

    2014-01-01

    Planarian flatworms regenerate every organ after amputation. Adult pluripotent stem cells drive this ability, but how injury activates and directs stem cells into the appropriate lineages is unclear. Here we describe a single-organ regeneration assay in which ejection of the planarian pharynx is selectively induced by brief exposure of animals to sodium azide. To identify genes required for pharynx regeneration, we performed an RNAi screen of 356 genes upregulated after amputation, using successful feeding as a proxy for regeneration. We found that knockdown of 20 genes caused a wide range of regeneration phenotypes and that RNAi of the forkhead transcription factor FoxA, which is expressed in a subpopulation of stem cells, specifically inhibited regrowth of the pharynx. Selective amputation of the pharynx therefore permits the identification of genes required for organ-specific regeneration and suggests an ancient function for FoxA-dependent transcriptional programs in driving regeneration. DOI: http://dx.doi.org/10.7554/eLife.02238.001 PMID:24737865

  15. Purification and Kinetics of Higher Plant NADH:Nitrate Reductase.

    PubMed

    Campbell, W H; Smarrelli, J

    1978-04-01

    Squash cotyledon (Cucurbita pepo L.) NADH:nitrate reductase (NR) was purified 150-fold with 50% recovery by a single step procedure based on the affinity of the NR for blue-Sepharose. Blue-Sepharose, which is prepared by direct coupling of Cibacron blue to Sepharose, appears to bind squash NR at the NADH site. The NR can be purified in 2 to 3 hours to a specific activity of 2 mumol of NADH oxidized/minute * milligram of protein. Corn (Zea mays L.) leaf NR was also purified to a specific activity of 6.9 mumol of NADH oxidized/minute * milligram of protein using a blue-Sepharose affinity step. The blue-Sepharose method offers the advantages of a rapid purification of plant NR to a high specific activity with reasonable recovery of total activity.The kinetic mechanism of higher plant NR was investigated using these highly purified squash and corn NR preparations. Based on initial velocity and product inhibition studies utilizing both enzymes, a two-site ping-pong mechanism is proposed for NR. This kinetic mechanism incorporates the concept of the reduced NR transferring electrons from the NADH site to a physically separated nitrate site.

  16. Intracellular ascorbate tightens the endothelial permeability barrier through Epac1 and the tubulin cytoskeleton

    PubMed Central

    Parker, William H.; Rhea, Elizabeth Meredith; Qu, Zhi-Chao; Hecker, Morgan R.

    2016-01-01

    Vitamin C, or ascorbic acid, both tightens the endothelial permeability barrier in basal cells and also prevents barrier leak induced by inflammatory agents. Barrier tightening by ascorbate in basal endothelial cells requires nitric oxide derived from activation of nitric oxide synthase. Although ascorbate did not affect cyclic AMP levels in our previous study, there remains a question of whether it might activate downstream cyclic AMP-dependent pathways. In this work, we found in both primary and immortalized cultured endothelial cells that ascorbate tightened the endothelial permeability barrier by ∼30%. In human umbilical vein endothelial cells, this occurred at what are likely physiologic intracellular ascorbate concentrations. In so doing, ascorbate decreased measures of oxidative stress and also flattened the cells to increase cell-to-cell contact. Inhibition of downstream cyclic AMP-dependent proteins via protein kinase A did not prevent ascorbate from tightening the endothelial permeability barrier, whereas inhibition of Epac1 did block the ascorbate effect. Although Epac1 was required, its mediator Rap1 was not activated. Furthermore, ascorbate acutely stabilized microtubules during depolymerization induced by colchicine and nocodazole. Over several days in culture, ascorbate also increased the amount of stable acetylated α-tubulin. Microtubule stabilization was further suggested by the finding that ascorbate increased the amount of Epac1 bound to α-tubulin. These results suggest that physiologic ascorbate concentrations tighten the endothelial permeability barrier in unstimulated cells by stabilizing microtubules in a manner downstream of cyclic AMP that might be due both to increasing nitric oxide availability and to scavenging of reactive oxygen or nitrogen species. PMID:27605450

  17. Ascorbic acid: Chemistry, biology and the treatment of cancer☆

    PubMed Central

    Du, Juan; Cullen, Joseph J.; Buettner, Garry R.

    2013-01-01

    Since the discovery of vitamin C, the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes, for example via the HIF system, as well as via the epigenetic landscape of cells and tissues. In fact, all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH− an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H2O2). In the presence of catalytic metals this oxidation is accelerated. In this review, we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H2O2 to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer. PMID:22728050

  18. Novel DLK-independent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth

    PubMed Central

    Awal, Mehraj R.; Shay, James; McLoed, Melissa M.; Mazur, Eric; Gabel, Christopher V.

    2016-01-01

    During development, a neuron transitions from a state of rapid growth to a stable morphology, and neurons within the adult mammalian CNS lose their ability to effectively regenerate in response to injury. Here, we identify a novel form of neuronal regeneration, which is remarkably independent of DLK-1/DLK, KGB-1/JNK, and other MAPK signaling factors known to mediate regeneration in Caenorhabditis elegans, Drosophila, and mammals. This DLK-independent regeneration in C. elegans has direct genetic and molecular links to a well-studied form of endogenous activity-dependent ectopic axon outgrowth in the same neuron type. Both neuron outgrowth types are triggered by physical lesion of the sensory dendrite or mutations disrupting sensory activity, calcium signaling, or genes that restrict outgrowth during neuronal maturation, such as SAX-1/NDR kinase or UNC-43/CaMKII. These connections suggest that ectopic outgrowth represents a powerful platform for gene discovery in neuronal regeneration. Moreover, we note numerous similarities between C. elegans DLK-independent regeneration and lesion conditioning, a phenomenon producing robust regeneration in the mammalian CNS. Both regeneration types are triggered by lesion of a sensory neurite via reduction of neuronal activity and enhanced by disrupting L-type calcium channels or elevating cAMP. Taken as a whole, our study unites disparate forms of neuronal outgrowth to uncover fresh molecular insights into activity-dependent control of the adult nervous system’s intrinsic regenerative capacity. PMID:27078101

  19. Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity

    PubMed Central

    Bisetto, Sara; Newberg, Andrew; Doria, Cataldo; Levine, Mark; Monti, Daniel A.; Hoek, Jan B.

    2016-01-01

    We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacological dose (5-20 mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1 mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance. PMID:27036367

  20. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase.

    PubMed

    Bulley, Sean; Wright, Michele; Rommens, Caius; Yan, Hua; Rassam, Maysoon; Lin-Wang, Kui; Andre, Christelle; Brewster, Di; Karunairetnam, Sakuntala; Allan, Andrew C; Laing, William A

    2012-05-01

    Ascorbate, or vitamin C, is obtained by humans mostly from plant sources. Various approaches have been made to increase ascorbate in plants by transgenic means. Most of these attempts have involved leaf material from model plants, with little success reported using genes from the generally accepted l-galactose pathway of ascorbate biosynthesis. We focused on increasing ascorbate in commercially significant edible plant organs using a gene, GDP-l-galactose phosphorylase (GGP or VTC2), that we had previously shown to increase ascorbate concentration in tobacco and Arabidopsis thaliana. The coding sequence of Actinidia chinensis GGP, under the control of the 35S promoter, was expressed in tomato and strawberry. Potato was transformed with potato or Arabidopsis GGP genes under the control of the 35S promoter or a polyubiquitin promoter (potato only). Five lines of tomato, up to nine lines of potato, and eight lines of strawberry were regenerated for each construct. Three lines of tomato had a threefold to sixfold increase in fruit ascorbate, and all lines of strawberry showed a twofold increase. All but one line of each potato construct also showed an increase in tuber ascorbate of up to threefold. Interestingly, in tomato fruit, increased ascorbate was associated with loss of seed and the jelly of locular tissue surrounding the seed which was not seen in strawberry. In both strawberry and tomato, an increase in polyphenolic content was associated with increased ascorbate. These results show that GGP can be used to raise significantly ascorbate concentration in commercially significant edible crops. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  1. Interaction between NADH and electron-transferring flavoprotein from Megasphaera elsdenii.

    PubMed

    Sato, Kyosuke; Nishina, Yasuzo; Shiga, Kiyoshi

    2013-06-01

    Electron-transferring flavoprotein (ETF) from the anaerobic bacterium Megasphaera elsdenii is a heterodimer containing two FAD cofactors. Isolated ETF contains only one FAD molecule, FAD-1, because the other, FAD-2, is lost during purification. FAD-2 is recovered by adding FAD to the isolated ETF. The two FAD molecules in holoETF were characterized using NADH. Spectrophotometric titration of isolated ETF with NADH showed a two-electron reduction of FAD-1 according to a monophasic profile indicating that FAD-1 receives electrons from NADH without involvement of FAD-2. When holoETF was titrated with NADH, FAD-2 was reduced to an anionic semiquinone and then was fully reduced before the reduction of FAD-1. The midpoint potential values at pH 7 were +81, -136 and -279 mV for the reduction of oxidized FAD-2 to semiquinone, semiquinone to the fully reduced FAD-2 and the two-electron reduction of FAD-1, respectively. Both FAD-1 and FAD-2 in holoETF were reduced by excess NADH very rapidly. The reduction of FAD-2 was slowed by replacement of FAD-1 with 8-cyano-FAD indicating that FAD-2 receives electrons from FAD-1 but not from NADH directly. The present results suggest that FAD-2 is the counterpart of the FAD in human ETF, which contains one FAD and one AMP.

  2. Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity.

    PubMed

    Rouleau, Lauren; Antony, Anil Noronha; Bisetto, Sara; Newberg, Andrew; Doria, Cataldo; Levine, Mark; Monti, Daniel A; Hoek, Jan B

    2016-06-01

    We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacologic dose (5-20mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Aortic wall damage in mice unable to synthesize ascorbic acid

    PubMed Central

    Maeda, Nobuyo; Hagihara, Hiroyuki; Nakata, Yukiko; Hiller, Sylvia; Wilder, Jennifer; Reddick, Robert

    2000-01-01

    By inactivating the gene for l-gulono-γ-lactone oxidase, a key enzyme in ascorbic acid synthesis, we have generated mice that, like humans, depend on dietary vitamin C. Regular chow, containing about 110 mg/kg of vitamin C, is unable to support the growth of the mutant mice, which require l-ascorbic acid supplemented in their drinking water (330 mg/liter). Upon withdrawal of supplementation, plasma and tissue ascorbic acid levels decreased to 10–15% of normal within 2 weeks, and after 5 weeks the mutants became anemic, began to lose weight, and die. Plasma total antioxidative capacities were approximately 37% normal in homozygotes after feeding the unsupplemented diet for 3–5 weeks. As plasma ascorbic acid decreased, small, but significant, increases in total cholesterol and decreases in high density lipoprotein cholesterol were observed. The most striking effects of the marginal dietary vitamin C were alterations in the wall of aorta, evidenced by the disruption of elastic laminae, smooth muscle cell proliferation, and focal endothelial desquamation of the luminal surface. Thus, marginal vitamin C deficiency affects the vascular integrity of mice unable to synthesize ascorbic acid, with potentially profound effects on the pathogenesis of vascular diseases. Breeding the vitamin C-dependent mice with mice carrying defined genetic mutations will provide numerous opportunities for systematic studies of the role of antioxidants in health and disease. PMID:10639167

  4. Aortic wall damage in mice unable to synthesize ascorbic acid.

    PubMed

    Maeda, N; Hagihara, H; Nakata, Y; Hiller, S; Wilder, J; Reddick, R

    2000-01-18

    By inactivating the gene for L-gulono-gamma-lactone oxidase, a key enzyme in ascorbic acid synthesis, we have generated mice that, like humans, depend on dietary vitamin C. Regular chow, containing about 110 mg/kg of vitamin C, is unable to support the growth of the mutant mice, which require L-ascorbic acid supplemented in their drinking water (330 mg/liter). Upon withdrawal of supplementation, plasma and tissue ascorbic acid levels decreased to 10-15% of normal within 2 weeks, and after 5 weeks the mutants became anemic, began to lose weight, and die. Plasma total antioxidative capacities were approximately 37% normal in homozygotes after feeding the unsupplemented diet for 3-5 weeks. As plasma ascorbic acid decreased, small, but significant, increases in total cholesterol and decreases in high density lipoprotein cholesterol were observed. The most striking effects of the marginal dietary vitamin C were alterations in the wall of aorta, evidenced by the disruption of elastic laminae, smooth muscle cell proliferation, and focal endothelial desquamation of the luminal surface. Thus, marginal vitamin C deficiency affects the vascular integrity of mice unable to synthesize ascorbic acid, with potentially profound effects on the pathogenesis of vascular diseases. Breeding the vitamin C-dependent mice with mice carrying defined genetic mutations will provide numerous opportunities for systematic studies of the role of antioxidants in health and disease.

  5. Lactate metabolism and cytosolic NADH reducing equivalents in ovine adipocytes.

    PubMed

    Yang, Y T; White, L S; Muir, L A

    1982-01-01

    1. Isolated ovine adipocytes, unlike rat adipose tissue, could utilize lactate at a high rate. 2. When the rate of fatty acid synthesis was attenuated with 5-(tetradecyloxy)-2-furoic acid, a fatty acid synthesis inhibitor, there was a good positive correlation between the rates of lactate oxidation to CO2 and lactate incorporation into fatty acids. 3. Addition of 2,4-dinitrophenol enhanced lactate oxidation to CO2 independent of fatty acid synthesis. Under this condition, estimated cytosolic NADH formation from lactate dehydrogenation exceeded the need of NADH for cytosolic oxaloacetate reduction and for glyceride glycerol formation. 4. Mitochondria isolated from ovine adipocytes oxidized added NADH rapidly in a reconstituted alpha-glycerophosphate shuttle system. 5. It is possible that the ability of ovine adipocytes to utilize lactate may be related to the active alpha-glycerophosphate shuttle for cytosolic NADH reoxidation.

  6. Nicotinamide pre-treatment ameliorates NAD(H) hyperoxidation and improves neuronal function after severe hypoxia

    PubMed Central

    Shetty, Pavan K; Galeffi, Francesca; Turner, Dennis A.

    2014-01-01

    Prolonged hypoxia leads to irreversible loss of neuronal function and metabolic impairment of nicotinamide adenine dinucleotide recycling (between NAD+ and NADH) immediately after reoxygenation, resulting in NADH hyperoxidation. We test whether addition of nicotinamide (to enhance NAD+ levels) or PARP-1 inhibition (to prevent consumption of NAD+) can be effective in improving either loss of neuronal function or hyperoxidation following severe hypoxic injury in hippocampal slices. After severe, prolonged hypoxia (maintained for 3 min after spreading depression) there was hyperoxidation of NADH following reoxygenation, an increased soluble NAD+/NADH ratio, loss of neuronal field excitatory post-synaptic potential (fEPSP) and decreased ATP content. Nicotinamide incubation (5 mM) 2 hr prior to hypoxia significantly increased total NAD(H) content, improved neuronal recovery, enhanced ATP content, and prevented NADH hyperoxidation. The nicotinamide-induced increase in total soluble NAD(H) was more significant in the cytosolic compartment than within mitochondria. Prolonged incubation with PJ-34 (>1hr) led to enhanced baseline NADH fluorescence prior to hypoxia, as well as improved neuronal recovery, NADH hyperoxidation and ATP content on recovery from severe hypoxia and reoxygenation. In this acute model of severe neuronal dysfunction prolonged incubation with either nicotinamide or PJ-34 prior to hypoxia improved recovery of neuronal function, enhanced NADH reduction and ATP content, but neither treatment restored function when administered during or after prolonged hypoxia and reoxygenation. PMID:24184921

  7. An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization.

    PubMed

    Ooi, Toshihiko; Shibata, Takeshi; Sato, Reiko; Ohno, Hiroaki; Kinoshita, Shinichi; Thuoc, Tran Linh; Taguchi, Seiichi

    2007-05-01

    The gene coding for an azoreductase, designated as an azrA, was cloned by polymerase chain reaction amplification from the genomic DNA of Bacillus sp. strain B29 isolated from soil. The azrA encoded a protein of 208 amino acids with calculated molecular mass of 22,766 Da. The enzyme was heterologously expressed in Escherichia coli with a strong band of 23 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Purified recombinant AzrA was a homodimer with a native molecular mass of 48 kDa containing two molecules of flavin mononucleotide (FMN; oxidized). This activity was oxygen insensitive and was nicotinamide adenine dinucleotide (reduced form; NADH) dependent. Recombinant AzrA exhibited a broad pH stability between 6 and 10 with a temperature optimum of 60-80 degrees C. The enzyme cleaved the model azo compound of methyl red [MR, 4'-(dimethylamino)-azobenzene-2-carboxylic acid] into 2-aminobenzoic acid and N, N'-dimethyl-p-phenylenediamine by ping-pong mechanism. The enzyme was not only able to decolorize MR but also able to decolorize sulfonated azo dyes such as Orange I and Acid Red 88.

  8. Perceived neighborhood ethnic diversity and social outcomes: Context-dependent effects within a postindustrial city undergoing regeneration

    PubMed Central

    Kearns, Ade; Whitley, Elise

    2018-01-01

    ABSTRACT This article examines whether perceived neighborhood ethnic diversity is associated with a range of social outcomes in a postindustrial city undergoing regeneration. The research included a survey in 3 types of deprived area in Glasgow: those undergoing regeneration, those directly adjoining regeneration areas, and those further removed from regeneration areas. In areas undergoing regeneration, perceived diversity was positively associated with many residential, cohesion, safety, and empowerment outcomes. This was also true, although to a lesser extent, in deprived areas at some distance from regeneration areas. In areas immediately surrounding the regeneration areas, perceived diversity had mixed associations with residential and safety outcomes and few associations with cohesion and empowerment outcomes. The results suggest that the effects of perceived diversity are context dependent within a city. Moreover, regeneration processes alter neighborhood contexts and therefore enable scale, timing, and duration of diversity to mediate the relationships between perceived diversity and social outcomes. PMID:29479290

  9. Vitamin C Function in the Brain: Vital Role of the Ascorbate Transporter (SVCT2)

    PubMed Central

    Harrison, Fiona E.; May, James M.

    2009-01-01

    Ascorbate (vitamin C) is a vital antioxidant molecule in the brain. However, it also has a number of other important functions, participating as a co-factor in several enzyme reactions including catecholamine synthesis, collagen production and regulation of HIF-1α. Ascorbate is transported into the brain and neurons via the Sodium-dependent Vitamin C Transporter-2 (SVCT2), which causes accumulation of ascorbate within cells against a concentration gradient. Dehydroascorbic acid, the oxidized form of ascorbate, is transported via glucose transporters of the GLUT family. Once in cells, it is rapidly reduced to ascorbate. The highest concentrations of ascorbate in the body are found in the brain and neuroendocrine tissues such as adrenal, although the brain is the most difficult organ to deplete of ascorbate. Combined with regional asymmetry in ascorbate distribution within different brain areas, these facts suggest an important role for ascorbate in the brain. Ascorbate is proposed as a neuromodulator of glutamatergic, dopaminergic, cholinergic and GABAergic transmission and related behaviors. Neurodegenerative diseases typically involve high levels of oxidative stress and thus ascorbate has been posited to have potential therapeutic roles against ischemic stroke, Alzheimer's disease, Parkinson's disease and Huntingdon's disease. PMID:19162177

  10. Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery.

    PubMed Central

    Brandes, R; Bers, D M

    1996-01-01

    The oxidative phosphorylation rate in isolated mitochondria is stimulated by increased [ADP], resulting in decreased [NADH]. In intact hearts, however, increased mechanical work has generally not been shown to cause an increase in [ADP]. Therefore, increased [NADH] has been suggested as an alternative for stimulating the phosphorylation rate. Such a rise in [NADH] could result from stimulation of various substrate dehydrogenases by increased intracellular [Ca2+] (e.g., during increased pacing frequency). We have monitored mitochondrial [NADH] in isolated rat ventricular trabeculae, using a novel fluorescence spectroscopy method where a native fluorescence signal was used to correct for motion artifacts. Work was controlled by increased pacing frequency and assessed using time-averaged force. At low-pacing rates (approximately 0.1 Hz), [NADH] immediately decreased during contraction and then slowly recovered (approximately 5 s) before the next contraction. At higher rates, [NADH] initially decreased by an amount related to pacing rate (i.e., work). However, during prolonged stimulation, [NADH] slowly (approximately 60 s) recovered to a new steady-state level below the initial level. We conclude that 1) during increased work, oxidative phosphorylation is not initially stimulated by increased mitochondrial [NADH]; and 2) increased pacing frequency slowly causes stimulation of NADH production. Images FIGURE 2 FIGURE 4 PMID:8842239

  11. Effects of ascorbate on leucocytes: Part II. Effects of ascorbic acid and calcium and sodium ascorbate on neutrophil phagocytosis and post-phagocytic metabolic activity.

    PubMed

    Anderson, R

    1979-09-01

    The effects of ascorbic acid and calcium and sodium ascorbate at a concentration range of 10(-6)M - 10(-1)M on polymorphonuclear leucocyte (PMN) phagocytosis of Candida albicans and post-phagocytic nitroblue tetrazolium (NBT) reduction, hexose monophosphate shunt (HMS) activity and myeloperoxidase-mediated iodination of ingested protein were investigated. Phagocytosis of C. albicans was unaffected by ascorbate concentrations of 10(-6)M - 10(-2)M; however, progressive inhibition was observed at concentrations of 10(-2)M upwards. Enhancement of resting and stimulated HMS activity and NBT reduction was evident at ascorbate concentrations of 10(-5) M - 10(-2)M. The stimulations of HMS activity and NBT reduction was independent of myeloperoxidase iodination of ingested protein and this latter function was strongly inhibited by ascorbate. Concentrations of ascorbic acid and calcium and sodium ascorbate which caused inhibition of phagocytosis and HMS activity were the same as those which mediated stimulation of cell motility, indicating that independent cellular mechanisms may govern motility and phagocytosis.

  12. Leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent regeneration.

    PubMed

    Takayama, Kazuya; Muto, Akihiko; Kikuchi, Yutaka

    2018-05-29

    In animal regeneration, control of position-dependent cell proliferation is crucial for the complete restoration of patterned appendages in terms of both, shape and size. However, detailed mechanisms of this process are largely unknown. In this study, we identified leucine/glutamine and v-ATPase/lysosomal acidification, via mechanistic target of rapamycin complex 1 (mTORC1) activation, as effectors of amputation plane-dependent zebrafish caudal fin regeneration. mTORC1 activation, which functions in cell proliferation, was regulated by lysosomal acidification possibly via v-ATPase activity at 3 h post amputation (hpa). Inhibition of lysosomal acidification resulted in reduced growth factor-related gene expression and suppression of blastema formation at 24 and 48 hpa, respectively. Along the proximal-distal axis, position-dependent lysosomal acidification and mTORC1 activation were observed from 3 hpa. We also report that Slc7a5 (L-type amino acid transporter), whose gene expression is position-dependent, is necessary for mTORC1 activation upstream of lysosomal acidification during fin regeneration. Furthermore, treatment with leucine and glutamine, for both proximal and distal fin stumps, led to an up-regulation in cell proliferation via mTORC1 activation, indicating that leucine/glutamine signaling possesses the ability to change the position-dependent regeneration. Our findings reveal that leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent zebrafish fin regeneration.

  13. Characterization of the NADH:ubiquinone oxidoreductase (complex I) in the trypanosomatid Phytomonas serpens (Kinetoplastida).

    PubMed

    Cermáková, Petra; Verner, Zdenek; Man, Petr; Lukes, Julius; Horváth, Anton

    2007-06-01

    NADH dehydrogenase activity was characterized in the mitochondrial lysates of Phytomonas serpens, a trypanosomatid flagellate parasitizing plants. Two different high molecular weight NADH dehydrogenases were characterized by native PAGE and detected by direct in-gel activity staining. The association of NADH dehydrogenase activities with two distinct multisubunit complexes was revealed in the second dimension performed under denaturing conditions. One subunit present in both complexes cross-reacted with the antibody against the 39 kDa subunit of bovine complex I. Out of several subunits analyzed by MS, one contained a domain characteristic for the LYR family subunit of the NADH:ubiquinone oxidoreductases. Spectrophotometric measurement of the NADH:ubiquinone 10 and NADH:ferricyanide dehydrogenase activities revealed their different sensitivities to rotenone, piericidin, and diphenyl iodonium.

  14. Insulin/IGF1 Signaling Inhibits Age-Dependent Axon Regeneration

    PubMed Central

    Byrne, Alexandra B.; Walradt, Trent; Gardner, Kathryn E.; Hubbert, Austin; Reinke, Valerie; Hammarlund, Marc

    2014-01-01

    Summary The ability of injured axons to regenerate declines with age yet the mechanisms that regulate axon regeneration in response to age are not known. Here we show that axon regeneration in aging C. elegans motor neurons is inhibited by the conserved insulin/IGF1 receptor DAF-2. DAF-2’s function in regeneration is mediated by intrinsic neuronal activity of the forkhead transcription factor DAF-16/FOXO. DAF-16 regulates regeneration independently of lifespan, indicating that neuronal aging is an intrinsic, neuron specific, and genetically regulated process. In addition, we found that daf-18/PTEN inhibits regeneration independently of age and FOXO signaling, via the TOR pathway. Finally, DLK-1, a conserved regulator of regeneration, is downregulated by insulin/IGF1 signaling, bound by DAF-16 in neurons, and is required for both DAF-16- and DAF-18-mediated regeneration. Together, our data establish that insulin signaling specifically inhibits regeneration in aging adult neurons, and that this mechanism is independent of PTEN and TOR. PMID:24440228

  15. Dietary ascorbic acid and subsequent change in body weight and waist circumference: associations may depend on genetic predisposition to obesity - a prospective study of three independent cohorts

    PubMed Central

    2014-01-01

    Background Cross-sectional data suggests that a low level of plasma ascorbic acid positively associates with both Body Mass Index (BMI) and Waist Circumference (WC). This leads to questions about a possible relationship between dietary intake of ascorbic acid and subsequent changes in anthropometry, and whether such associations may depend on genetic predisposition to obesity. Hence, we examined whether dietary ascorbic acid, possibly in interaction with the genetic predisposition to a high BMI, WC or waist-hip ratio adjusted for BMI (WHR), associates with subsequent annual changes in weight (∆BW) and waist circumference (∆WC). Methods A total of 7,569 participants’ from MONICA, the Diet Cancer and Health study and the INTER99 study were included in the study. We combined 50 obesity associated single nucleotide polymorphisms (SNPs) in four genetic scores: a score of all SNPs and a score for each of the traits (BMI, WC and WHR) with which the SNPs associate. Linear regression was used to examine the association between ascorbic acid intake and ΔBW or ΔWC. SNP-score × ascorbic acid interactions were examined by adding product terms to the models. Results We found no significant associations between dietary ascorbic acid and ∆BW or ∆WC. Regarding SNP-score × ascorbic acid interactions, each additional risk allele of the 14 WHR associated SNPs associated with a ∆WC of 0.039 cm/year (P = 0.02, 95% CI: 0.005 to 0.073) per 100 mg/day higher ascorbic acid intake. However, the association to ∆WC only remained borderline significant after adjustment for ∆BW. Conclusion In general, our study does not support an association between dietary ascorbic acid and ∆BW or ∆WC, but a diet with a high content of ascorbic acid may be weakly associated to higher WC gain among people who are genetically predisposed to a high WHR. However, given the quite limited association any public health relevance is questionable. PMID:24886192

  16. Stabilized NADH as a Countermeasure for Jet Lag

    NASA Technical Reports Server (NTRS)

    Kay, Gary G.; Viirre, Erik; Clark, Jonathan

    2001-01-01

    Current remedies for jet lag (phototherapy, melatonin, stimulant, and sedative medications) are limited in efficacy and practicality. The efficacy of a stabilized, sublingual form of reduced nicotin amide adenine dinucleotide (NADH, ENADAlert, Menuco Corp.) as a countermeasure for jet lag was examined. Because NADH increases cellular production of ATP and facilitates dopamine synthesis, it may counteract the effects of jet lag on cognitive functioning and sleepiness. Thirty-five healthy, employed subjects participated in this double-blind, placebo-controlled study. Training and baseline testing were conducted on the West Coast before subjects flew overnight to the East Coast, where they would experience a 3-hour time difference. Upon arrival, individuals were randomly assigned to receive either 20 mg of sublingual stabilized ADH (n=18) or identical placebo tablets (n=17). All participants completed computer-administered tests (including CogScreen7) to assess changes in cognitive functioning, mood, and sleepiness in the morning and afternoon. Jet lag resulted in increased sleepiness for over half the participants and deterioration of cognitive functioning for approximately one third. The morning following the flight, subjects experienced lapses of attention in addition to disruptions in working memory, divided attention, and visual perceptual speed. Individuals who received NADH performed significantly better on 5 of 8 cognitive and psychomotor test measures (P less than or equal to 0.5) and showed a trend for better performance on the other three measures (P less than or equal to .l0). Subjects also reported less sleepiness compared with those who received placebo. No adverse effects were observed with NADH treatment. Stabilized NADH significantly reduced jet lag-induced disruptions of cognitive functioning, was easily administered, and was found to have no adverse side effects.

  17. Columnar alterations of NADH fluorescence during hypoxia-ischemia in immature rat brain.

    PubMed

    Welsh, F A; Vannucci, R C; Brierley, J B

    1982-01-01

    Cerebral hypoxia-ischemia was produced in 7-day postnatal rats by unilateral carotid artery ligation combined with systemic hypoxia (8% O2). Levels of high energy phosphates, which were only slightly altered in the contralateral hemisphere, were nearly depleted in the ipsilateral hemisphere during the 3-h hypoxic insult. With hypoxia of between 1 and 3 hours' duration, columnar alterations of cortical NADH fluorescence occurred in the same location and regional pattern as did histologic damage demonstrated previously (Rice et al., 1981). In regions exhibiting columns of NADH fluorescence, there was no evidence of a columnar reduction of high energy phosphates as levels of ATP and phosphocreatine were nearly zero. Recovery from 3 h of hypoxia was accompanied by partial and regionally heterogeneous restoration of ATP within the ipsilateral hemisphere. Columnar variations of NADH fluorescence were not detected in the recovery period; rather, regions with impaired restitution of high energy phosphates exhibited NADH fluorescence that was diminished diffusely compared to the contralateral hemisphere. The correlation between depressed NADH fluorescence and depleted ATP, present as cortical columns during hypoxia and as larger regions during recovery, suggests that decreased formation of NADH may be limiting the resynthesis of high energy phosphates.

  18. [Membrane lipids and electron transfer. Effects of four detergents on NADH-ferricyanide reductase and NADH-cytochrome c reductase activities of potato tuber microsomes].

    PubMed

    Jolliot, A; Mazliak, P

    1977-10-17

    The NADH-ferricyanure reductase activity of Potato microsomes is stimulated by non ionic detergents (Triton X100 and Tween80) and is partially inhibited by ionic detergents (sodium-cholate and deoxycholate). All these four detergents progressively decreased the NADH-cytochrome c reductase in the following order: sodium deoxycholate greater than Triton X100 greater than sodium cholate greater than Tween80.

  19. Enhanced production of mineralized nodules and collagenous proteins in vitro by calcium ascorbate supplemented with vitamin C metabolites.

    PubMed

    Rowe, D J; Ko, S; Tom, X M; Silverstein, S J; Richards, D W

    1999-09-01

    of mineralized tissue was significantly greater than in ascorbate-treated cultures, but was less than that observed in cultures treated with metabolite-supplemented ascorbate. In vitro treatment with ascorbate containing vitamin C metabolites enhanced the formation of mineralized nodules and collagenous proteins. Calcium threonate may be one of the metabolites influencing the mineralization process. Identifying factors which facilitate the formation of mineralized tissue has significant clinical ramifications in terms of wound healing and bone regeneration.

  20. Enhancement of succinate yield by manipulating NADH/NAD+ ratio and ATP generation.

    PubMed

    Li, Jiaojiao; Li, Yikui; Cui, Zhiyong; Liang, Quanfeng; Qi, Qingsheng

    2017-04-01

    We previously engineered Escherichia coli YL104 to efficiently produce succinate from glucose. In this study, we investigated the relationships between the NADH/NAD + ratio, ATP level, and overall yield of succinate production by using glucose as the carbon source in YL104. First, the use of sole NADH dehydrogenases increased the overall yield of succinate by 7% and substantially decreased the NADH/NAD + ratio. Second, the soluble fumarate reductase from Saccharomyces cerevisiae was overexpressed to manipulate the anaerobic NADH/NAD + ratio and ATP level. Third, another strategy for reducing the ATP level was applied by introducing ATP futile cycling for improving succinate production. Finally, a combination of these methods exerted a synergistic effect on improving the overall yield of succinate, which was 39% higher than that of the previously engineered strain YL104. The study results indicated that regulation of the NADH/NAD + ratio and ATP level is an efficient strategy for succinate production.

  1. Müller stem cell dependent retinal regeneration.

    PubMed

    Chohan, Annu; Singh, Usha; Kumar, Atul; Kaur, Jasbir

    2017-01-01

    Müller Stem cells to treat ocular diseases has triggered enthusiasm across all medical and scientific communities. Recent development in the field of stem cells has widened the prospects of applying cell based therapies to regenerate ocular tissues that have been irreversibly damaged by disease or injury. Ocular tissues such as the lens and the retina are now known to possess cell having remarkable regenerative abilities. Recent studies have shown that the Müller glia, a cell found in all vertebrate retinas, is the primary source of new neurons, and therefore are considered as the cellular basis for retinal regeneration in mammalian retinas. Here, we review the current status of retinal regeneration of the human eye by Müller stem cells. This review elucidates the current status of retinal regeneration by Müller stem cells, along with major retinal degenerative diseases where these stem cells play regenerative role in retinal repair and replacement. Copyright © 2016. Published by Elsevier B.V.

  2. Connective Tissue Fibroblast Properties Are Position-Dependent during Mouse Digit Tip Regeneration

    PubMed Central

    Wu, Yuanyuan; Wang, Karen; Karapetyan, Adrine; Fernando, Warnakulusuriya Akash; Simkin, Jennifer; Han, Manjong; Rugg, Elizabeth L.; Muneoka, Ken

    2013-01-01

    A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3) leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2), fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3) and incompetent (P2) levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of connective tissue

  3. Ascorbic acid reduces noise-induced nitric oxide production in the guinea pig ear.

    PubMed

    Heinrich, Ulf-Rüdiger; Fischer, Ilka; Brieger, Jürgen; Rümelin, Andreas; Schmidtmann, Irene; Li, Huige; Mann, Wolf J; Helling, Kai

    2008-05-01

    Noise-induced hearing loss can be caused, among other causes, by increased nitric oxide (NO) production in the inner ear leading to nitroactive stress and cell destruction. Some studies in the literature suggest that the degree of hearing loss (HL) could be reduced in an animal model through ascorbic acid supplementation. To identify the effect of ascorbic acid on tissue-dependent NO content in the inner ear of the guinea pig, we determined the local NO production in the organ of Corti and the lateral wall separately 6 hours after noise exposure. Prospective animal study in guinea pigs. Over a period of 7 days, male guinea pigs were supplied with minimum (25 mg/kg body weight/day) and maximum (525 mg/kg body weight/day) ascorbic acid doses, and afterwards exposed to noise (90 dB sound pressure level for 1 hour). The acoustic-evoked potentials were recorded before and after noise exposure. The organ of Corti and the lateral wall were incubated differently for 6 hours in culture medium, and the degree of NO production was determined by chemiluminescence. Ascorbic acid treatment reduced the hearing threshold shift after noise exposure depending on concentration. When the maximum ascorbic acid dose was substituted, NO production was significantly reduced in the lateral wall after noise exposure and slightly reduced in the organ of Corti. Oral supplementation of the natural radical scavenger ascorbic acid reduces the NO-production rate in the inner ear in noisy conditions. This finding supports the concept of inner ear protection by ascorbic acid supplementation.

  4. In vitro assessment of anticholinesterase and NADH oxidase inhibitory activities of an edible fern, Diplazium esculentum.

    PubMed

    Roy, Subhrajyoti; Dutta, Somit; Chaudhuri, Tapas Kumar

    2015-07-01

    Diplazium esculentum is the most commonly consumed edible fern throughout Asia and Oceania. Several studies have been performed so far to determine different functional properties of this plant, but there have been no reports on the anticholinesterase and nicotinamide adenine dinucleotide (NADH) oxidase inhibitory activities of this plant. Therefore, the present study was conducted to determine the anticholinesterase and NADH oxidase inhibitory activities of 70% methanolic extract of D. esculentum. The D. esculentum extract was investigated for its acetylcholinesterase and NADH oxidase inhibitory activities as well as its free radical scavenging and total antioxidant activities in the linoleic acid system. The free radical scavenging activity of the extract was determined by the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) method. The total antioxidant activity of the extract was evaluated by ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods. The D. esculentum extract inhibited acetylcholinesterase and NADH oxidase in a dose-dependent manner, with IC50 values of 272.97±19.38 and 265.81±21.20 μg/mL, respectively. The extract also showed a potent DPPH radical scavenging activity with an IC50 value of 402.88±12.70 μg/mL. Moreover, the extract showed 27.41% and 33.22% of total antioxidant activities determined by FTC and TBA methods, respectively. Results indicated that 70% methanolic extract of D. esculentum effectively inhibited the enzymes acetylcholinesterase and NADH oxidase and acted as a potent antioxidant and free radical scavenger. These in vitro assays indicate that this plant extract is a significant source of natural antioxidants, which may be helpful in preventing the progression of various neurodegenerative disorders associated with oxidative stress.

  5. Multiphoton fluorescence imaging of NADH to quantify metabolic changes in epileptic tissue in vitro

    NASA Astrophysics Data System (ADS)

    Chia, Thomas H.; Zinter, Joseph; Spencer, Dennis D.; Williamson, Anne; Levene, Michael J.

    2007-02-01

    A powerful advantage of multiphoton microscopy is its ability to image endogenous fluorophores such as the ubiquitous coenzyme NADH in discrete cellular populations. NADH is integral in both oxidative and non-oxidative cellular metabolism. NADH loses fluorescence upon oxidation to NAD +; thus changes in NADH fluorescence can be used to monitor metabolism. Recent studies have suggested that hypo metabolic astrocytes play an important role in cases of temporal lobe epilepsy (TLE). Current theories suggest this may be due to defective and/or a reduced number of mitochondria or dysfunction of the neuronal-astrocytic metabolic coupling. Measuring NADH fluorescence changes following chemical stimulation enables the quantification of the cellular distribution of metabolic anomalies in epileptic brain tissue compared to healthy tissue. We present what we believe to be the first multiphoton microscopy images of NADH from the human brain. We also present images of NADH fluorescence from the hippocampus of the kainate-treated rat TLE model. In some experiments, human and rat astrocytes were selectively labeled with the fluorescent dye sulforhodamine 101 (SR101). Our results demonstrate that multiphoton microscopy is a powerful tool for assaying the metabolic pathologies associated with temporal lobe epilepsy in humans and in rodent models.

  6. Structural Basis for NADH/NAD+ Redox Sensing by a Rex Family Repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, K.J.; Soares, A.; Strain-Damerell, C. M.

    2010-05-28

    Nicotinamide adenine dinucleotides have emerged as key signals of the cellular redox state. Yet the structural basis for allosteric gene regulation by the ratio of reduced NADH to oxidized NAD{sup +} is poorly understood. A key sensor among Gram-positive bacteria, Rex represses alternative respiratory gene expression until a limited oxygen supply elevates the intracellular NADH:NAD{sup +} ratio. Here we investigate the molecular mechanism for NADH/NAD{sup +} sensing among Rex family members by determining structures of Thermus aquaticus Rex bound to (1) NAD{sup +}, (2) DNA operator, and (3) without ligand. Comparison with the Rex/NADH complex reveals that NADH releases Rexmore » from the DNA site following a 40{sup o} closure between the dimeric subunits. Complementary site-directed mutagenesis experiments implicate highly conserved residues in NAD-responsive DNA-binding activity. These rare views of a redox sensor in action establish a means for slight differences in the nicotinamide charge, pucker, and orientation to signal the redox state of the cell.« less

  7. Mitochondria, Energy and Cancer: The Relationship with Ascorbic Acid

    PubMed Central

    González, Michael J.; Rosario-Pérez, Glorivee; Guzmán, Angélica M.; Miranda-Massari, Jorge R.; Duconge, Jorge; Lavergne, Julio; Fernandez, Nadia; Ortiz, Norma; Quintero, Ana; Mikirova, Nina; Riordan, Neil H.; Ricart, Carlos M.

    2012-01-01

    Ascorbic Acid (AA) has been used in the prevention and treatment of cancer with reported effectiveness. Mitochondria may be one of the principal targets of ascorbate's cellular activity and it may play an important role in the development and progression of cancer. Mitochondria, besides generating adenosine triphosphate (ATP), has a role in apoptosis regulation and in the production of regulatory oxidative species that may be relevant in gene expression. At higher concentrations AA may increase ATP production by increasing mitochondrial electron flux, also may induce apoptotic cell death in tumor cell lines, probably via its pro-oxidant action In contrast, at lower concentrations AA displays antioxidant properties that may prevent the activation of oxidant-induced apoptosis. These concentration dependent activities of ascorbate may explain in part the seemingly contradictory results that have been reported previously. PMID:23565030

  8. Beta-glycerophosphate accelerates RANKL-induced osteoclast formation in the presence of ascorbic acid.

    PubMed

    Noh, A Long Sae Mi; Yim, Mijung

    2011-03-01

    Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.

  9. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. [Phaseolus vulgaris L. ; Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loewus, M.W.; Bedgar, D.L.; Saito, Kazumi

    An NADP-dependent dehydrogenase catalyzing the conversion of L-sorbosone to L-ascorbic acid has been isolated from Phaseolus vulgaris L. and Spinacia oleracea L. and partially purified. It is stable at {minus}20{degree}C for up to 8 months. Molecular masses, as determined by gel filtration, were 21 and 29 kilodaltons for bean and spinach enzymes, respectively. K{sub m} for sorbosone were 12 {plus minus} 2 and 18 {plus minus} 2 millimolar and for NADP{sup +}, 0.14 {plus minus} 0.05 and 1.2 {plus minus} 0.5 millimolar, for bean and spinach, respectively. Lycorine, a purported inhibitor of L-ascorbic acid biosynthesis, had no effect on themore » reaction.« less

  10. Treatment of Pancreatic Cancer with Pharmacological Ascorbate

    PubMed Central

    Cieslak, John A.; Cullen, Joseph J.

    2016-01-01

    The prognosis for patients diagnosed with pancreatic cancer remains dismal, with less than 3% survival at 5 years. Recent studies have demonstrated that high-dose, intravenous pharmacological ascorbate (ascorbic acid, vitamin C) induces cytotoxicity and oxidative stress selectively in pancreatic cancer cells vs. normal cells, suggesting a promising new role of ascorbate as a therapeutic agent. At physiologic concentrations, ascorbate functions as a reducing agent and antioxidant. However, when pharmacological ascorbate is given intravenously, it is possible to achieve millimolar plasma concentration. At these pharmacological levels, and in the presence of catalytic metal ions, ascorbate can induce oxidative stress through the generation of hydrogen peroxide (H2O2). Recent in vitro and in vivo studies have demonstrated ascorbate oxidation occurs extracellularly, generating H2O2 flux into cells resulting in oxidative stress. Pharmacologic ascorbate also inhibits the growth of pancreatic tumor xenografts and displays synergistic cytotoxic effects when combined with gemcitabine in pancreatic cancer. Phase I trials of pharmacological ascorbate in pancreatic cancer patients have demonstrated safety and potential efficacy. In this chapter, we will review the mechanism of ascorbate-induced cytotoxicity, examine the use of pharmacological ascorbate in treatment and assess the current data supporting its potential as an adjuvant in pancreatic cancer. PMID:26201606

  11. Enzymatic properties of the membrane-bound NADH oxidase system in the aerobic respiratory chain of Bacillus cereus.

    PubMed

    Kim, Man Suk; Kim, Young Jae

    2004-11-30

    Membranes prepared from Bacillus cereus KCTC 3674, grown aerobically on a complex medium, oxidized NADH exclusively, whereas deamino-NADH was little oxidized. The respiratory chain-linked NADH oxidase exhibited an apparent K(m) value of approximately 65 microM for NADH. The maximum activity of the NADH oxidase was obtained at about pH 8.5 in the presence of 0.1 M KCl (or NaCl). Respiratory chain inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) inhibited the activity of the NADH oxidase by about 90% at a concentration of 40 microM. Interestingly, rotenone and capsaicin inhibited the activity of the NADH oxidase by about 60% at a concentration of 40 microM and the activity was also highly sensitive to Ag(+).

  12. Ascorbic Acid Prevents VEGF-induced Increases in Endothelial Barrier Permeability

    PubMed Central

    Ulker, Esad; Parker, William H.; Raj, Amita; Qu, Zhi-chao; May, James M.

    2015-01-01

    Vascular endothelial growth factor (VEGF) increases endothelial barrier permeability, an effect that may contribute to macular edema in diabetic retinopathy. Since vitamin C, or ascorbic acid, can tighten the endothelial permeability barrier, we examined whether it could prevent the increase in permeability due to VEGF in human umbilical vein endothelial cells (HUVECs). As previously observed, VEGF increased HUVEC permeability to radiolabeled inulin within 60 min in a concentration-dependent manner. Loading the cells with increasing concentrations of ascorbate progressively prevented the leakage caused by 100 ng/ml VEGF, with a significant inhibition at 13 μM and complete inhibition at 50 μM. Loading cells with 100 μM ascorbate also decreased basal generation of reactive oxygen species and prevented the increase caused by both 100 ng/ml VEGF. VEGF treatment decreased intracellular ascorbate by 25%, thus linking ascorbate oxidation to its prevention of VEGF-induced barrier leakage. The latter was blocked by treating the cells with 60 μM L-NAME (but not D-NAME) as well as by 30 μM sepiapterin, a precursor of tetrahydrobiopterin that is required for proper function of endothelial nitric oxide synthase (eNOS). These findings suggest that VEGF-induced barrier leakage uncouples eNOS. Ascorbate inhibition of the VEGF effect could thus be due either to scavenging superoxide or to peroxynitrite generated by the uncoupled eNOS, or more likely to its ability to recycle tetrahydrobiopterin, thus avoiding enzyme uncoupling in the first place. Ascorbate prevention of VEGF-induced increases in endothelial permeability opens the possibility that its repletion could benefit diabetic macular edema. PMID:26590088

  13. The invertebrate Caenorhabditis elegans biosynthesizes ascorbate

    PubMed Central

    Patananan, Alexander N.; Budenholzer, Lauren M.; Pedraza, Maria E.; Torres, Eric R.; Adler, Lital N.; Clarke, Steven G.

    2015-01-01

    L-ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete 13C-labeling of ascorbate when C. elegans was grown with 13C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role. PMID:25668719

  14. A New Insight into the Mechanism of NADH Model Oxidation by Metal Ions in Non-Alkaline Media.

    PubMed

    Yang, Jin-Dong; Chen, Bao-Long; Zhu, Xiao-Qing

    2018-06-11

    For a long time, it has been controversial that the three-step (e-H+-e) or two-step (e-H•) mechanism was used for the oxidations of NADH and its models by metal ions in non-alkaline media. The latter mechanism has been accepted by the majority of researchers. In this work, 1-benzyl-1,4-dihydronicotinamide (BNAH) and 1-phenyl-l,4-dihydronicotinamide (PNAH) are used as NADH models, and ferrocenium (Fc+) metal ion as an electron acceptor. The kinetics for oxidations of the NADH models by Fc+ in pure acetonitrile were monitored by using UV-Vis absorption and quadratic relationship between of kobs and the concentrations of NADH models were found for the first time. The rate expression of the reactions developed according to the three-step mechanism is quite consistent with the quadratic curves. The rate constants, thermodynamic driving forces and KIEs of each elementary step for the reactions were estimated. All the results supported the three-step mechanism. The intrinsic kinetic barriers of the proton transfer from BNAH+• to BNAH and the hydrogen atom transfer from BNAH+• to BNAH+• were estimated, the results showed that the former is 11.8 kcal/mol, and the latter is larger than 24.3 kcal/mol. It is the large intrinsic kinetic barrier of the hydrogen atom transfer that makes the reactions choose the three-step rather than two-step mechanism. Further investigation of the factors affecting the intrinsic kinetic barrier of chemical reactions indicated that the large intrinsic kinetic barrier of the hydrogen atom transfer originated from the repulsion of positive charges between BNAH+• and BNAH+•. The greatest contribution of this work is the discovery of the quadratic dependence of kobs on the concentrations of the NADH models, which is inconsistent with the conventional viewpoint of the "two-step mechanism" on the oxidations of NADH and its models by metal ions in the non-alkaline media.

  15. Elicitor induction of a microsomal 5-O-(4-coumaroyl)shikimate 3'-hydroxylase in parsley cell suspension cultures.

    PubMed

    Heller, W; Kühnl, T

    1985-09-01

    Microsomal preparations from parsley cell suspension cultures challenged with an elicitor from Phytophthora megasperma f.sp. glycinea (Pmg) catalyze the formation of trans-5-O-caffeoylshikimate from trans-5-O-(4-coumaroyl)shikimate. Neither the cis isomer nor free 4-coumarate, 4-coumaroyl-CoA, or 5-O-(4-coumaroyl)quinate are substrates for this enzyme. The reaction is strictly dependent on NADPH as a reducing cofactor and on molecular oxygen. NADH, ascorbic acid, and 6,7-dimethyl-5,6,7,8-tetrahydropterine cannot substitute for NADPH. However, NADH enhances enzyme activity observed in the presence of NADPH. Cytochrome c and carbon monoxide inhibit the hydroxylation reaction, suggesting a cytochrome P-450-dependent mixed-function monooxygenase.

  16. Role of ascorbic acid in stratum corneum lipid models exposed to UV irradiation.

    PubMed

    Trommer, Hagen; Böttcher, Roif; Pöppl, Andreas; Hoentsch, Joachim; Wartewig, Siegfried; Neubert, Reinhard H H

    2002-07-01

    The effects of ascorbic acid on Stratum corneum lipid models following ultraviolet irradiation were studied adding iron ions as transition metal catalysts. Lipid peroxidation was quantified by the thiobarbituric acid assay. The qualitative changes were studied on a molecular level by mass spectrometry. To elucidate the nature of free radical involvement we carried out electron paramagnetic resonance studies. The influence of ascorbic acid on the concentration of hydroxyl radicals was examined using the spin trapping technique. Moreover, we checked the vitamin's ability to react with stable radicals. Ascorbic acid was found to have prooxidative effects in all lipid systems in a concentration dependent manner. The degradation products of ascorbic acid after its prooxidative action were detected. The concentration of the hydroxyl radicals in the Fenton assay was decreased by ascorbic acid. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate showed reduced concentration levels of the stable radical caused by ascorbic acid. Considering human skin and its constant exposure to UV light and oxygen, an increased pool of iron ions in irradiated skin and the depletion of co-antioxidants, the administration of ascorbic acid in cosmetic formulations or in sunscreens could unfold adverse effects among the Stratum corneum lipids.

  17. Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence.

    PubMed

    Li, Dong; Zheng, Wei; Qu, Jianan Y

    2008-10-15

    A time-resolved spectroscopic imaging system is built to study the fluorescence characteristics of nicotinamide adenine dinucleotide (NADH), an important metabolic coenzyme and endogenous fluorophore in cells. The system provides a unique approach to measure fluorescence signals in different cellular organelles and cytoplasm. The ratios of free over protein-bound NADH signals in cytosol and nucleus are slightly higher than those in mitochondria. The mitochondrial fluorescence contributes about 70% of overall cellular fluorescence and is not a completely dominant signal. Furthermore, NADH signals in mitochondria, cytosol, and the nucleus respond to the changes of cellular activity differently, suggesting that cytosolic and nuclear fluorescence may complicate the well-known relationship between mitochondrial fluorescence and cellular metabolism.

  18. Ascorbic Acid Determination in Commercial Fruit Juice Samples by Cyclic Voltammetry

    PubMed Central

    Pisoschi, Aurelia Magdalena; Danet, Andrei Florin; Kalinowski, Slawomir

    2008-01-01

    A method was developed for assessing ascorbic acid concentration in commercial fruit juice by cyclic voltammetry. The anodic oxidation peak for ascorbic acid occurs at about 490 mV on a Pt disc working electrode (versus SCE). The influence of the potential sweep speed on the peak height was studied. The obtained calibration graph shows a linear dependence between peak height and ascorbic acid concentration in the domain (0.1–10 mmol·L−1). The equation of the calibration graph was y = 6.391x + 0.1903 (where y represents the value of intensity measured for the anodic peak height, expressed as μA and x the analyte concentration, as mmol·L−1, r2 = 0.9995, r.s.d. = 1.14%, n = 10, Cascorbic acid = 2 mmol·L−1). The developed method was applied to ascorbic acid assessment in fruit juice. The ascorbic acid content determined ranged from 0.83 to 1.67 mmol·L−1 for orange juice, from 0.58 to 1.93 mmol·L−1 for lemon juice, and from 0.46 to 1.84 mmol·L−1 for grapefruit juice. Different ascorbic acid concentrations (from standard solutions) were added to the analysed samples, the degree of recovery being comprised between 94.35% and 104%. Ascorbic acid determination results obtained by cyclic voltammetry were compared with those obtained by the volumetric method with dichlorophenol indophenol. The results obtained by the two methods were in good agreement. PMID:19343183

  19. Fluorophores advanced glycation end products (AGEs)-to-NADH ratio is predictor for diabetic chronic kidney and cardiovascular disease.

    PubMed

    Ciobanu, Dana M; Olar, Loredana E; Stefan, Razvan; Veresiu, Ioan A; Bala, Cornelia G; Mircea, Petru A; Roman, Gabriela

    2015-01-01

    An imbalance in advanced glycation end products (AGEs) and NADH formation has been associated with diabetic chronic kidney disease (CKD) and cardiovascular disease (CVD). No data have been reported on simultaneous measurement of AGEs and NADH in type 2 diabetes (T2DM) patients. We aimed to compare AGEs, NADH and the AGEs-to-NADH ratio in T2DM and controls, and to assess its relationship with diabetic CKD and CVD. In this cross-sectional study, we measured serum AGEs (370/435nm) and NADH (370/460nm) in T2DM patients (n=63) and controls (n=25) using fluorescence spectroscopy. The AGEs-to-NADH ratio was analyzed according to diabetic CKD and CVD. We found significantly higher AGEs-to-NADH ratio in T2DM compared to controls. The AGEs-to-NADH ratio was significantly associated with triglycerides, blood glucose, HDL-cholesterol, estimated glomerular filtration rate. The AGEs-to-NADH ratio was a significant predictor for the presence of diabetic CKD and CVD when using ROC curves. Multivariate analysis showed that triglycerides and the presence of T2DM were predictors for the AGEs-to-NADH ratio. These findings suggest that the fluorophores AGEs-to-NADH ratio could be a new biomarker for the presence of diabetic CKD and CVD. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A highly sensitive kinetic spectrophotometric method for the determination of ascorbic Acid in pharmaceutical samples.

    PubMed

    Shishehbore, Masoud Reza; Aghamiri, Zahra

    2014-01-01

    In this study, a new reaction system for quantitative determination of ascorbic acid was introduced. The developed method is based on inhibitory effect of ascorbic acid on the Orange G-bromate system. The change in absorbance was followed spectrophotometrically at 478 nm. The dependence of sensitivity on the reaction variables including reagents concentration, temperature and time was investigated. Under optimum experimental conditions, calibration curve was linear over the range 0.7 - 33.5 μg mL(-1) of ascorbic acid including two linear segments and the relative standard deviations (n = 6) for 5.0 and 20.0 μg mL(-1) of ascorbic acid were 1.08 and 1.02%, respectively. The limit of detection was 0.21 μg mL(-) (1) of ascorbic acid. The effect of diverse species was also investigated. The developed method was successfully applied for the determination of ascorbic acid in pharmaceutical samples. The results were in a good agreement with those of reference method.

  1. Characterization of the Regulation and Function of Zinc-Dependent Histone Deacetylases During Mouse Liver Regeneration

    PubMed Central

    Huang, Jiansheng; Barr, Emily; Rudnick, David A.

    2013-01-01

    The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC mRNA and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA-treatment suppressed the effects of PH on histone deacetylation and hepatocellular BrdU incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. Conclusion The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction. PMID:23258575

  2. A possible role of NADPH-dependent cytochrome P450nor isozyme in glycolysis under denitrifying conditions.

    PubMed

    Watsuji, Tomo-o; Takaya, Naoki; Nakamura, Akira; Shoun, Hirofumi

    2003-05-01

    The denitrifying fungus Cylindrocarpon tonkinense contains two isozymes of cytochrome P450nor. One isozyme, P450nor1, uses NADH specifically as its electron donor whereas the other isozyme P450nor2 prefers NADPH to NADH. Here we show that P450nor1 is localized in both cytosol and mitochondria, like P450nor of Fusarium oxysporum, while P450nor2 is exclusively in cytosol. We also found that the addition of glucose as a carbon source to the culture media leads to the production of much more P450nor2 in the fungal cells than a non-fermentable substrate (glycerol or acetate) does. These results suggest that the NADP-dependent pentose phosphate cycle acts predominantly in C. tonkinense as the glycolysis pathway under the denitrifying conditions, which was confirmed by the observation that glucose induced enzyme activities involved in the cycle. These results showed that P450nor2 should act as the electron sink under anaerobic, denitrifying conditions to regenerate NADP+ for the pentose phosphate cycle.

  3. Involvement of NADH Oxidase in Competition and Endocarditis Virulence in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Yu, Yang; Zhang, Min; Chen, Lei; Chen, Weihua; Elrami, Fadi; Kong, Fanxiang; Kitten, Todd

    2016-01-01

    Here, we report for the first time that the Streptococcus sanguinis nox gene encoding NADH oxidase is involved in both competition with Streptococcus mutans and virulence for infective endocarditis. An S. sanguinis nox mutant was found to fail to inhibit the growth of Streptococcus mutans under microaerobic conditions. In the presence of oxygen, the recombinant Nox protein of S. sanguinis could reduce oxygen to water and oxidize NADH to NAD+. The oxidation of NADH to NAD+ was diminished in the nox mutant. The nox mutant exhibited decreased levels of extracellular H2O2; however, the intracellular level of H2O2 in the mutant was increased. Furthermore, the virulence of the nox mutant was attenuated in a rabbit endocarditis model. The nox mutant also was shown to be more sensitive to blood killing, oxidative and acid stresses, and reduced growth in serum. Thus, NADH oxidase contributes to multiple phenotypes related to competitiveness in the oral cavity and systemic virulence. PMID:26930704

  4. Involvement of NADH Oxidase in Competition and Endocarditis Virulence in Streptococcus sanguinis.

    PubMed

    Ge, Xiuchun; Yu, Yang; Zhang, Min; Chen, Lei; Chen, Weihua; Elrami, Fadi; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-05-01

    Here, we report for the first time that the Streptococcus sanguinis nox gene encoding NADH oxidase is involved in both competition with Streptococcus mutans and virulence for infective endocarditis. An S. sanguinis nox mutant was found to fail to inhibit the growth of Streptococcus mutans under microaerobic conditions. In the presence of oxygen, the recombinant Nox protein of S. sanguinis could reduce oxygen to water and oxidize NADH to NAD(+) The oxidation of NADH to NAD(+) was diminished in the nox mutant. The nox mutant exhibited decreased levels of extracellular H2O2; however, the intracellular level of H2O2 in the mutant was increased. Furthermore, the virulence of the nox mutant was attenuated in a rabbit endocarditis model. The nox mutant also was shown to be more sensitive to blood killing, oxidative and acid stresses, and reduced growth in serum. Thus, NADH oxidase contributes to multiple phenotypes related to competitiveness in the oral cavity and systemic virulence. Copyright © 2016 Ge et al.

  5. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  7. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...

  8. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  11. 21 CFR 582.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  12. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...

  13. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...

  15. 21 CFR 182.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...

  17. 21 CFR 182.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is generally...

  18. 21 CFR 582.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...

  19. 21 CFR 182.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is generally...

  20. 21 CFR 582.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...

  1. 21 CFR 182.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is generally...

  2. 21 CFR 582.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...

  3. Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice.

    PubMed

    Hu, Lingxiang; Lu, Jingrong; Chiang, Hao; Wu, Hao; Edge, Albert S B; Shi, Fuxin

    2016-09-07

    Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear β-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of β-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant because insufficient

  4. Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice

    PubMed Central

    Hu, Lingxiang; Lu, Jingrong; Chiang, Hao; Shi, Fuxin

    2016-01-01

    Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear β-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of β-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. SIGNIFICANCE STATEMENT Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant

  5. Role of intracellular Ca2+ signal in the ascorbate-induced apoptosis in a human hepatoma cell line.

    PubMed

    Lee, Yong Soo

    2004-12-01

    Although ascorbate (vitamin C) has been shown to have anti-cancer actions, its effect on human hepatoma cells has not yet been investigated, and thus, the exact mechanism of this action is not fully understood. In this study, the mechanism by which ascorbate induces apoptosis using HepG2 human hepatoblastoma cells is investigated. Ascorbate induced apoptotic cell death in a dose-dependent manner in the cells, was assessed through flow cytometric analysis. Contrary to expectation, ascorbate did not alter the cellular redox status, and treatment with antioxidants (N-acetyl cysteine and N,N-diphenyl-p-phenylenediamine) had no influence on the ascorbate-induced apoptosis. However, ascorbate induced a rapid and sustained increase in intracellular Ca2+ concentration. EGTA, an extracellular Ca2+ chelator did not significantly alter the ascorbate-induced intracellular Ca2+ increase and apoptosis, whereas dantrolene, an intracellular Ca2+ release blocker, completely blocked these actions of ascorbate. In addition, phospholipase C (PLC) inhibitors (U-73122 and manoalide) significantly suppressed the intracellular Ca2+ release and apoptosis induced by ascorbate. Collectively, these results suggest that ascorbate induced apoptosis without changes in the cellular redox status in HepG2 cells, and that the PLC-coupled intracellular Ca2+ release mechanism may mediate ascorbate-induced apoptosis.

  6. 21 CFR 182.3189 - Calcium ascorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food... GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance...

  7. 21 CFR 182.8013 - Ascorbic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a) Product. Ascorbic acid. (b) Conditions...

  8. 21 CFR 582.3013 - Ascorbic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ascorbic acid. 582.3013 Section 582.3013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Ascorbic acid. (a) Product. Ascorbic acid. (b) Conditions of use. This substance is generally recognized as...

  9. Characterization of the regulation and function of zinc-dependent histone deacetylases during rodent liver regeneration.

    PubMed

    Huang, Jiansheng; Barr, Emily; Rudnick, David A

    2013-05-01

    The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC messenger RNA (mRNA) and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however, HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA treatment suppressed the effects of PH on histone deacetylation and hepatocellular bromodeoxyuridine (BrdU) incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction. Copyright © 2012 American Association for the Study of Liver Diseases.

  10. Effect of ascorbic acid on the stability of beta-carotene and capsanthin in paprika (Capsicum annuum) powder.

    PubMed

    Morais, H; Rodrigues, P; Ramos, C; Forgács, E; Cserháti, T; Oliveira, J

    2002-10-01

    The effect of ascorbic acid, light, and storage on the stability of the pigments beta-carotene and capsanthin in red pepper (Capsicum annuum) powder has been elucidated by determining the amount of pigment in samples treated by various concentrations of ascorbic acid. Determination of pigment concentration has been performed after different storage times using high-performance liquid chromatography. The dependence of the concentration of pigments on the concentration of ascorbic acid, presence of light and the storage time has been assessed by stepwise regression analysis. The concentration of pigments decreased at longer storage time and increased at higher concentration of ascorbic acid, beta-carotene being more sensitive towards storage time and concentration of ascorbic acid than capsanthin. Interaction between the effects of light and storage time, and light and concentration of ascorbic acid has been established.

  11. Fed-batch control based upon the measurement of intracellular NADH

    NASA Technical Reports Server (NTRS)

    Armiger, W. B.; Lee, J. F.; Montalvo, L. M.; Forro, J. R.

    1987-01-01

    A series of experiments demonstrating that on-line measurements of intracellular NADH by culture fluorescence can be used to monitor and control the fermentation process are described. A distinct advantage of intercellular NADH measurements over other monitoring techniques such as pH and dissolved oxygen is that it directly measures real time events occurring within the cell rather than changes in the environment. When coupled with other measurement parameters, it can provide a finer degree of sophistication in process control.

  12. NADH oxidase activity of rat and human liver xanthine oxidoreductase: potential role in superoxide production.

    PubMed

    Maia, Luisa; Duarte, Rui O; Ponces-Freire, Ana; Moura, José J G; Mira, Lurdes

    2007-08-01

    To characterise the NADH oxidase activity of both xanthine dehydrogenase (XD) and xanthine oxidase (XO) forms of rat liver xanthine oxidoreductase (XOR) and to evaluate the potential role of this mammalian enzyme as an O2*- source, kinetics and electron paramagnetic resonance (EPR) spectroscopic studies were performed. A steady-state kinetics study of XD showed that it catalyses NADH oxidation, leading to the formation of one O2*- molecule and half a H(2)O(2) molecule per NADH molecule, at rates 3 times those observed for XO (29.2 +/- 1.6 and 9.38 +/- 0.31 min(-1), respectively). EPR spectra of NADH-reduced XD and XO were qualitatively similar, but they were quantitatively quite different. While NADH efficiently reduced XD, only a great excess of NADH reduced XO. In agreement with reductive titration data, the XD specificity constant for NADH (8.73 +/- 1.36 microM(-1) min(-1)) was found to be higher than that of the XO specificity constant (1.07 +/- 0.09 microM(-1) min(-1)). It was confirmed that, for the reducing substrate xanthine, rat liver XD is also a better O2*- source than XO. These data show that the dehydrogenase form of liver XOR is, thus, intrinsically more efficient at generating O2*- than the oxidase form, independently of the reducing substrate. Most importantly, for comparative purposes, human liver XO activity towards NADH oxidation was also studied, and the kinetics parameters obtained were found to be very similar to those of the XO form of rat liver XOR, foreseeing potential applications of rat liver XOR as a model of the human liver enzyme.

  13. NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2

    USDA-ARS?s Scientific Manuscript database

    ALDH2 catalyzes oxidation of toxic aldehydes to their corresponding carboxylic acids. Magnesium ions influence enzyme activity in part by increasing NADH binding affinity. Traditional fluorescence measurements have monitored the blue shift of the NADH fluorescence spectrum to elucidate the extent of...

  14. NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2

    USDA-ARS?s Scientific Manuscript database

    Aldehyde dehydrogenase 2 (ALDH2) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence enzyme activity in part by increasing NADH binding affinity. Traditional fluorescence measurements monitor the blue shift of the NADH fluorescence spectrum to study ...

  15. Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange juice during storage.

    PubMed

    Remini, Hocine; Mertz, Christian; Belbahi, Amine; Achir, Nawel; Dornier, Manuel; Madani, Khodir

    2015-04-15

    The stability of ascorbic acid and colour intensity in pasteurised blood orange juice (Citrus sinensis [L.] Osbeck) during one month of storage was investigated at 4-37 °C. The effects of ascorbic acid fortification (at 100, 200 mg L(-1)) and deaeration, temperature/time storage on the kinetic behaviour were determined. Ascorbic acid was monitored by HPLC-DAD and colour intensity by spectrophotometric measurements. Degradation kinetics were best fitted by first-order reaction models for both ascorbic acid and colour intensity. Three models (Arrhenius, Eyring and Ball) were used to assess the temperature-dependent degradation. Following the Arrhenius model, activation energies were ranged from 51 to 135 kJ mol(-1) for ascorbic acid and from 49 to 99 kJ mol(-1) for colour intensity. The effect of storage temperature and deaeration are the most influent factors on kinetics degradation, while the fortification revealed no significant effect on ascorbic acid content and colour intensity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.

    PubMed

    Hou, Jin; Vemuri, Goutham N; Bao, Xiaoming; Olsson, Lisbeth

    2009-04-01

    During growth of Saccharomyces cerevisiae on glucose, the redox cofactors NADH and NADPH are predominantly involved in catabolism and biosynthesis, respectively. A deviation from the optimal level of these cofactors often results in major changes in the substrate uptake and biomass formation. However, the metabolism of xylose by recombinant S. cerevisiae carrying xylose reductase and xylitol dehydrogenase from the fungal pathway requires both NADH and NADPH and creates cofactor imbalance during growth on xylose. As one possible solution to overcoming this imbalance, the effect of overexpressing the native NADH kinase (encoded by the POS5 gene) in xylose-consuming recombinant S. cerevisiae directed either into the cytosol or to the mitochondria was evaluated. The physiology of the NADH kinase containing strains was also evaluated during growth on glucose. Overexpressing NADH kinase in the cytosol redirected carbon flow from CO(2) to ethanol during aerobic growth on glucose and to ethanol and acetate during anaerobic growth on glucose. However, cytosolic NADH kinase has an opposite effect during anaerobic metabolism of xylose consumption by channeling carbon flow from ethanol to xylitol. In contrast, overexpressing NADH kinase in the mitochondria did not affect the physiology to a large extent. Overall, although NADH kinase did not increase the rate of xylose consumption, we believe that it can provide an important source of NADPH in yeast, which can be useful for metabolic engineering strategies where the redox fluxes are manipulated.

  17. Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases.

    PubMed

    Li, Qunrui; Metthew Lam, L K; Xun, Luying

    2011-11-01

    Lignocellulosic biomass is usually converted to hydrolysates, which consist of sugars and sugar derivatives, such as furfural. Before yeast ferments sugars to ethanol, it reduces toxic furfural to non-inhibitory furfuryl alcohol in a prolonged lag phase. Bioreduction of furfural may shorten the lag phase. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase (FurX) at the expense of ethanol (Li et al. 2011). The mechanism of the ethanol-dependent reduction of furfural by FurX and three homologous alcohol dehydrogenases was investigated. The reduction consisted of two individual reactions: ethanol-dependent reduction of NAD(+) to NADH and then NADH-dependent reduction of furfural to furfuryl alcohol. The kinetic parameters of the coupled reaction and the individual reactions were determined for the four enzymes. The data indicated that limited NADH was released in the coupled reaction. The enzymes had high affinities for NADH (e.g., K ( d ) of 0.043 μM for the FurX-NADH complex) and relatively low affinities for NAD(+) (e.g., K ( d ) of 87 μM for FurX-NAD(+)). The kinetic data suggest that the four enzymes are efficient "furfural reductases" with either ethanol or NADH as the reducing power. The standard free energy change (ΔG°') for ethanol-dependent reduction of furfural was determined to be -1.1 kJ mol(-1). The physiological benefit for ethanol-dependent reduction of furfural is likely to replace toxic and recalcitrant furfural with less toxic and more biodegradable acetaldehyde.

  18. Ascorbate as a Biosynthetic Precursor in Plants

    PubMed Central

    Debolt, Seth; Melino, Vanessa; Ford, Christopher M.

    2007-01-01

    Background and Aims l-Ascorbate (vitamin C) has well-documented roles in many aspects of redox control and anti-oxidant activity in plant cells. This Botanical Briefing highlights recent developments in another aspect of l-ascorbate metabolism: its function as a precursor for specific processes in the biosynthesis of organic acids. Scope The Briefing provides a summary of recent advances in our understanding of l-ascorbate metabolism, covering biosynthesis, translocation and functional aspects. The role of l-ascorbate as a biosynthetic precursor in the formation of oxalic acid, l-threonic acid and l-tartaric acid is described, and progress in elaborating the mechanisms of the formation of these acids is reviewed. The potential conflict between the two roles of l-ascorbate in plant cells, functional and biosynthetic, is highlighted. Conclusions Recent advances in the understanding of l-ascorbate catabolism and the formation of oxalic and l-tartaric acids provide compelling evidence for a major role of l-ascorbate in plant metabolism. Combined experimental approaches, using classic biochemical and emerging ‘omics’ technologies, have provided recent insight to previously under-investigated areas. PMID:17098753

  19. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    PubMed

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  20. Imaging the NADH:NAD+ Homeostasis for Understanding the Metabolic Response of Mycobacterium to Physiologically Relevant Stresses.

    PubMed

    Bhat, Shabir A; Iqbal, Iram K; Kumar, Ashwani

    2016-01-01

    The NADH:NAD + ratio is the primary indicator of the metabolic state of bacteria. NAD(H) homeostasis is critical for Mycobacterium tuberculosis (Mtb) survival and is thus considered an important drug target, but the spatio-temporal measurements of NAD(H) remain a challenge. Genetically encoded fluorescent biosensors of the NADH:NAD + ratios were recently described, paving the way for investigations of the metabolic state of pathogens during infection. Here we have adapted the genetically encoded biosensor Peredox for measurement of the metabolic state of Mtb in vitro and during infection of macrophage cells. Using Peredox, here we show that inhibition of the electron transport chain, disruption of the membrane potential and proton gradient, exposure to reactive oxygen species and treatment with antimycobacterial drugs led to the accumulation of NADH in mycobacterial cells. We have further demonstrated that Mtb residing in macrophages displays higher NADH:NAD + ratios, that may indicate a metabolic stress faced by the intracellular Mtb. We also demonstrate that the Mtb residing in macrophages display a metabolic heterogeneity, which may perhaps explain the tolerance displayed by intracellular Mtb. Next we studied the effect of immunological modulation by interferon gamma on metabolism of intracellular Mtb, since macrophage activation is known to restrict mycobacterial growth. We observed that activation of resting macrophages with interferon-gamma results in higher NADH:NAD + levels in resident Mtb cells. We have further demonstrated that exposure of Isoniazid, Bedaquiline, Rifampicin, and O-floxacin results in higher NADH:NAD + ratios in the Mtb residing in macrophages. However, intracellular Mtb displays lower NADH:NAD + ratio upon exposure to clofazimine. In summary, we have generated reporter strains capable of measuring the metabolic state of Mtb cells in vitro and in vivo with spatio-temporal resolution. We believe that this tool will facilitate further

  1. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1

    PubMed Central

    2013-01-01

    Lactobacillus panis strain PM1 is an obligatory heterofermentative and aerotolerant microorganism that also produces 1,3-propanediol from glycerol. This study investigated the metabolic responses of L. panis PM1 to oxidative stress under aerobic conditions. Growth under aerobic culture triggered an early entrance of L. panis PM1 into the stationary phase along with marked changes in end-product profiles. A ten-fold higher concentration of hydrogen peroxide was accumulated during aerobic culture compared to microaerobic culture. This H2O2 level was sufficient for the complete inhibition of L. panis PM1 cell growth, along with a significant reduction in end-products typically found during anaerobic growth. In silico analysis revealed that L. panis possessed two genes for NADH oxidase and NADH peroxidase, but their expression levels were not significantly affected by the presence of oxygen. Specific activities for these two enzymes were observed in crude extracts from L. panis PM1. Enzyme assays demonstrated that the majority of the H2O2 in the culture media was the product of NADH: H2O2 oxidase which was constitutively-active under both aerobic and microaerobic conditions; whereas, NADH peroxidase was positively-activated by the presence of oxygen and had a long induction time in contrast to NADH oxidase. These observations indicated that a coupled NADH oxidase - NADH peroxidase system was the main oxidative stress resistance mechanism in L. panis PM1, and was regulated by oxygen availability. Under aerobic conditions, NADH is mainly reoxidized by the NADH oxidase - peroxidase system rather than through the production of ethanol (or 1,3-propanediol or succinic acid production if glycerol or citric acid is available). This system helped L. panis PM1 directly use oxygen in its energy metabolism by producing extra ATP in contrast to homofermentative lactobacilli. PMID:23369580

  2. Ischemia/reperfusion-induced injury of forebrain mitochondria and protection by ascorbate.

    PubMed

    Sciamanna, M A; Lee, C P

    1993-09-01

    Complete, reversible forebrain ischemia was induced with a seven-vessel occlusion rat model. Previous studies of ischemic (M. A. Sciamanna, J. Zinkel, A. Y. Fabi, and C. P. Lee, 1992, Biochim. Biophys. Acta 1134, 223-232) rat brain mitochondria (RBM) showed that ischemia of 30 min caused an approximately 60% decrease in State 3 respiratory rates with both succinate and NAD-linked substrates and also in energy-linked Ca2+ transport. No significant change was seen in the State 4 rates. The inhibition of respiration could be prevented by EGTA or ruthenium red. In this paper it is shown that reperfusion (5 h) following ischemia (30 min) further impaired RBM respiratory activities (succinate and NAD-linked substrates). The presence of EGTA or ruthenium red in the assay medium did not protect against ischemia/reperfusion-induced injury. The effects of ascorbate, an oxygen radical scavenger, were studied. RBM isolated from ascorbate-treated animals (0.8 mg ascorbate/kg body weight) after ischemia (30 min) alone showed only a slight increase in State 3 (approximately 25%) and a decrease in State 4 (approximately 20%) activities with succinate, when compared to untreated 30-min ischemic animals, whereas, with glutamate+malate little or no effect was seen. The respiratory activities of RBM from ascorbate-treated, ischemic/reperfused (30 min/5 h) rats were restored to approximately 65% of controls levels. Ascorbate protection was dose-dependent with maximum protection at 0.8 mg ascorbate/kg body weight of rat. The k of succinate oxidase-supported Ca2+ uptake also returned to 62% of control values. Protection by ascorbate was most effective when administered prior to the onset of ischemia and provided partial protection when administered after the onset of reperfusion. These results suggest that ischemia-induced injury is primarily mediated by disruption of cellular Ca2+ homeostasis, and reperfusion-induced injury by peroxidative events.

  3. Human sperm NADH and NADPH diaphorase cytochemistry: correlation with sperm motility.

    PubMed

    Zini, A; O'Bryan, M K; Israel, L; Schlegel, P N

    1998-03-01

    We have examined the correlation between the retention of residual sperm cytoplasm and sperm motility in semen from men presenting for infertility evaluation. Semen samples (n = 12) were obtained from nonazoospermic men presenting for infertility evaluation at our institution. Samples were fractionated into high-, intermediate-, and low-density subpopulations by Percoll gradients in order to examine the correlation between the retention of residual sperm cytoplasm and sperm motility. Residual sperm cytoplasm retention was detected by cytochemical staining of sperm for nicotinamide adenine dinucleotide (NADH)- or nicotinamide adenine dinucleotide phosphate (NADPH)-dependent diaphorase activity. The different sperm subpopulations (low, intermediate, and high density) had significantly different percentages of sperm with droplet retention (analysis of variance, P < 0.05). Using either NADH or NADPH diaphorase staining as a marker of the cytoplasmic space, a significant negative correlation was observed between the percentage of sperm with residual cytoplasmic droplets and the percentage of motile sperm (r = -0.58 and -0.61, respectively, P < 0.05). Assessment of residual sperm cytoplasm retention is a simple diagnostic test. Although this test is of unproven value in the management of infertile men, this and other studies suggest that it may provide useful data on sperm function.

  4. Changes in Oxidative Damage, Inflammation and [NAD(H)] with Age in Cerebrospinal Fluid

    PubMed Central

    Guest, Jade; Grant, Ross; Mori, Trevor A.; Croft, Kevin D.

    2014-01-01

    An extensive body of evidence indicates that oxidative stress and inflammation play a central role in the degenerative changes of systemic tissues in aging. However a comparatively limited amount of data is available to verify whether these processes also contribute to normal aging within the brain. High levels of oxidative damage results in key cellular changes including a reduction in available nicotinamide adenine dinucleotide (NAD+), an essential molecule required for a number of vital cellular processes including DNA repair, immune signaling and epigenetic processing. In this study we quantified changes in [NAD(H)] and markers of inflammation and oxidative damage (F2-isoprostanes, 8-OHdG, total antioxidant capacity) in the cerebrospinal fluid (CSF) of healthy humans across a wide age range (24–91 years). CSF was collected from consenting patients who required a spinal tap for the administration of anesthetic. CSF of participants aged >45 years was found to contain increased levels of lipid peroxidation (F2-isoprostanes) (p = 0.04) and inflammation (IL-6) (p = 0.00) and decreased levels of both total antioxidant capacity (p = 0.00) and NAD(H) (p = 0.05), compared to their younger counterparts. A positive association was also observed between plasma [NAD(H)] and CSF NAD(H) levels (p = 0.03). Further analysis of the data identified a relationship between alcohol intake and CSF [NAD(H)] and markers of inflammation. The CSF of participants who consumed >1 standard drink of alcohol per day contained lower levels of NAD(H) compared to those who consumed no alcohol (p<0.05). An increase in CSF IL-6 was observed in participants who reported drinking >0–1 (p<0.05) and >1 (p<0.05) standard alcoholic drinks per day compared to those who did not drink alcohol. Taken together these data suggest a progressive age associated increase in oxidative damage, inflammation and reduced [NAD(H)] in the brain which may be exacerbated by alcohol intake. PMID

  5. Hypotonic shock stimulates ascorbate release from coronary artery endothelial cells by a Ca2+ -independent pathway.

    PubMed

    Davis, Kim A; Samson, Sue E; Wilson, John X; Grover, Ashok K

    2006-10-24

    In endothelial cells, anion channels open upon osmotic swelling during shear stress and hypotonic shock. Therefore, we examined the effects of hypotonic shock on release of the antioxidant anion ascorbate from pig coronary artery endothelial cells. Hypotonic shock potentiated ascorbate release from freshly isolated or cultured pig coronary artery endothelial cells; subsequently cultured endothelial cells were used. The hypotonic shock-induced increase in Asc release was rapid, depended on the degree of hypotonic shock, and not due to membrane leakiness. Stimulating P2Y2 like receptors in endothelial cells with ATP causes ascorbate release via a Ca2+ -mediated pathway. Hypotonic shock-induced release differed from the Ca2+-mediated Asc release because: (a) the increase in release with hypotonic shock was additive to that with ATP or A23187 (Ca2+ -ionophore), (b) apyrase, suramin or removing extracellular Ca2+ did not affect the hypotonic shock-stimulated release, (c) anion channel blockers inhibited the release by the two pathways differently, and (d) hypotonic shock increased the ascorbate release from endothelial cells and cultured smooth muscle cells whereas the Ca2+ -mediated ascorbate release occurred only in endothelial cells. Accumulation of ascorbate by endothelial cells was examined at extracellular ascorbate concentrations of 10 (Na+ -ascorbate symporter not saturated) and 5000 microM (Na+ -ascorbate symporter saturated). Hypotonic shock and A23187 decreased ascorbate accumulation at 10 microM ascorbate but increased it at 5000 microM. The effects of the two treatments were additive and also differed from each other with substitution of gluconate for extracellular chloride. Thus, ascorbate release from endothelial cells can be potentiated by two distinct pathways - hypotonic shock mediated and ATP/Ca2+ stimulated.

  6. Characterization of keratinocyte differentiation induced by ascorbic acid: protein kinase C involvement and vitamin C homeostasis.

    PubMed

    Savini, Isabella; Catani, Maria Valeria; Rossi, Antonello; Duranti, Guglielmo; Melino, Gerry; Avigliano, Luciana

    2002-02-01

    Epidermal keratinocytes undergo differentiation in response to several stimuli to form the cornified envelope, a structure that contributes to the barrier function of skin. Although differentiation has been extensively analyzed, the precise role of vitamin C during this process is still not defined. Ascorbic acid, besides acting as a radical scavenger, has been shown to promote mesenchymal differentiation. In this study, we found that keratinocytes grown in ascorbate-supplemented medium developed a differentiated phenotype, as demonstrated by enhanced expression of marker genes and increase in cornified envelope content. The pro-differentiating effects of ascorbate were mediated by the protein-kinase-C-dependent induction of activating protein 1 DNA binding activity; indeed, down-modulation of protein kinase C activity abolished differentiation triggered by ascorbic acid. Although vitamin C appeared to regulate the same signaling pathway modulated by calcium, a classical in vitro inducer of epidermal differentiation, nonetheless terminally differentiated keratinocytes exhibited different ascorbate homeostasis and cellular antioxidant status. Indeed, we found that, unlike calcium, differentiation promoted by ascorbate was accompanied by (i) an enhanced ascorbate transport, due to overexpression of specific transporters, (ii) a great efficiency of dehydroascorbate uptake, and (iii) an increase in glutathione content with respect to proliferating cells. Ascorbic acid may be useful to promote epidermal differentiation, avoiding depletion of hydrophilic antioxidant stores.

  7. Interference of ascorbic acid with chemical analytes.

    PubMed

    Meng, Qing H; Irwin, William C; Fesser, Jennifer; Massey, K Lorne

    2005-11-01

    Ascorbic acid can interfere with methodologies involving redox reactions, while comprehensive studies on main chemistry analysers have not been reported. We therefore attempted to determine the interference of ascorbic acid with analytes on the Beckman Synchron LX20. Various concentrations of ascorbic acid were added to serum, and the serum analytes were measured on the LX20. With a serum ascorbic acid concentration of 12.0 mmol/L, the values for sodium, potassium, calcium and creatinine increased by 43%, 58%, 103% and 26%, respectively (P<0.01). With a serum ascorbic acid concentration of 12.0 mmol/L, the values for chloride, total bilirubin and uric acid decreased by 33%, 62% and 83%, respectively (P<0.01), and were undetectable for total cholesterol, triglyceride, ammonia and lactate. There was no definite influence of ascorbic acid on analytical values for total CO(2), urea, glucose, phosphate, total protein, albumin, amylase, creatine kinase, creatine kinase-MB, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total iron, unbound iron-binding capacity or magnesium. Ascorbic acid causes a false increase in sodium, potassium, calcium and creatinine results and a false decrease in chloride, total bilirubin, uric acid, total cholesterol, triglyceride, ammonia and lactate results.

  8. Effect of platelets on apparent leucocyte ascorbic acid content.

    PubMed

    Evans, R M; Currie, L; Campbell, A

    1980-09-01

    The leucocyte ascorbic acid content is widely used as a measure of tissue ascorbic acid status. Standard methods of analysis, however, isolate both leucocytes and platelets (buffy layer), with consequent overestimation, since platelet ascorbic acid is attributed to the leucocytes. Fourteen healthy individuals on ascorbic acid supplements and 11 patients on mega dose ascorbic acid therapy were studied. A significant correlation was demonstrated between the 'leucocyte' ascorbic acid content and the platelet: leucocyte ratio (r = 0.70, P < 0.001). It is suggested that changes in the relative distribution of platelets and leucocytes in the blood will result in an apparent change in the 'leucocyte' ascorbic acid content regardless of any actual change in the ascorbic acid content of the cells.

  9. Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate.

    PubMed

    Nelson, Michael T; Joksovic, Pavle M; Su, Peihan; Kang, Ho-Won; Van Deusen, Amy; Baumgart, Joel P; David, Laurence S; Snutch, Terrance P; Barrett, Paula Q; Lee, Jung-Ha; Zorumski, Charles F; Perez-Reyes, Edward; Todorovic, Slobodan M

    2007-11-14

    T-type Ca2+ channels (T-channels) are involved in the control of neuronal excitability and their gating can be modulated by a variety of redox agents. Ascorbate is an endogenous redox agent that can function as both an anti- and pro-oxidant. Here, we show that ascorbate selectively inhibits native Ca(v)3.2 T-channels in peripheral and central neurons, as well as recombinant Ca(v)3.2 channels heterologously expressed in human embryonic kidney 293 cells, by initiating the metal-catalyzed oxidation of a specific, metal-binding histidine residue in domain 1 of the channel. Our biophysical experiments indicate that ascorbate reduces the availability of Ca(v)3.2 channels over a wide range of membrane potentials, and inhibits Ca(v)3.2-dependent low-threshold-Ca2+ spikes as well as burst-firing in reticular thalamic neurons at physiologically relevant concentrations. This study represents the first mechanistic demonstration of ion channel modulation by ascorbate, and suggests that ascorbate may function as an endogenous modulator of neuronal excitability.

  10. Therapeutic review: is ascorbic acid of value in chromium poisoning and chromium dermatitis?

    PubMed

    Bradberry, S M; Vale, J A

    1999-01-01

    Repeated topical exposure to chromium(VI) may cause an allergic contact dermatitis or the formation of chrome ulcers. Systemic toxicity may occur following the ingestion of a chromium(VI) salt, from chromium(VI)-induced skin burns, or from inhalation of chromium(VI) occurring occupationally. Soluble chromium(VI) salts are usually absorbed more easily and cross cell membranes more readily than trivalent chromium salts, and, therefore chromium(VI) is more toxic than chromium(III). In experimental studies, endogenous ascorbic acid in rat lung, liver, and kidney and human plasma, effectively reduces chromium(VI) to chromium(III). The administration of exogenous ascorbic acid has been advocated therefore in the treatment of systemic chromium poisoning and chromium dermatitis to enhance the extracellular reduction of chromium(VI) to the less bioavailable chromium(III). In vitro experiments confirm that the addition of ascorbic acid to plasma containing chromium(VI) leads to a dose-dependent reduction of chromium(VI) to chromium(III). In animal studies, parenteral ascorbic acid 0.5-5 g/kg significantly reduced chromium-induced nephrotoxicity when administered 30 minutes before parenteral sodium dichromate and up to 1 hour after parenteral sodium chromate dosing. Parenteral ascorbic acid 0.5-5 g/kg also reduced mortality when given orally up to 2 hours after oral potassium dichromate dosing. However, the administration of parenteral ascorbic acid more than 2 hours after parenteral chromate in these experimental studies did not protect against renal damage, and parenteral ascorbic acid given 3 hours postparenteral chromate increased toxicity. In addition, there is no confirmed clinical evidence that the administration of ascorbic acid lessens morbidity or mortality in systemic chromium poisoning. A possible reason for the lack of benefit of ascorbic acid when administration is delayed, is that chromium(VI) cellular uptake has occurred prior to ascorbic acid administration

  11. Determining the Extremes of the Cellular NAD(H) Level by Using an Escherichia coli NAD+-Auxotrophic Mutant ▿

    PubMed Central

    Zhou, Yongjin; Wang, Lei; Yang, Fan; Lin, Xinping; Zhang, Sufang; Zhao, Zongbao K.

    2011-01-01

    NAD (NAD+) and its reduced form (NADH) are omnipresent cofactors in biological systems. However, it is difficult to determine the extremes of the cellular NAD(H) level in live cells because the NAD+ level is tightly controlled by a biosynthesis regulation mechanism. Here, we developed a strategy to determine the extreme NAD(H) levels in Escherichia coli cells that were genetically engineered to be NAD+ auxotrophic. First, we expressed the ntt4 gene encoding the NAD(H) transporter in the E. coli mutant YJE001, which had a deletion of the nadC gene responsible for NAD+ de novo biosynthesis, and we showed NTT4 conferred on the mutant strain better growth in the presence of exogenous NAD+. We then constructed the NAD+-auxotrophic mutant YJE003 by disrupting the essential gene nadE, which is responsible for the last step of NAD+ biosynthesis in cells harboring the ntt4 gene. The minimal NAD+ level was determined in M9 medium in proliferating YJE003 cells that were preloaded with NAD+, while the maximal NAD(H) level was determined by exposing the cells to high concentrations of exogenous NAD(H). Compared with supplementation of NADH, cells grew faster and had a higher intracellular NAD(H) level when NAD+ was fed. The intracellular NAD(H) level increased with the increase of exogenous NAD+ concentration, until it reached a plateau. Thus, a minimal NAD(H) level of 0.039 mM and a maximum of 8.49 mM were determined, which were 0.044× and 9.6× those of wild-type cells, respectively. Finally, the potential application of this strategy in biotechnology is briefly discussed. PMID:21742902

  12. Establishment of the regeneration system for Vicia faba L.

    PubMed

    Bahgat, Shimaa; Shabban, Omer A; El-Shihy, Osama; Lightfoot, David A; El-Shemy, Hany A

    2009-01-01

    A reliable regeneration system for faba bean has been difficult to establish and therefore, the genetic improvement of Vicia faba L. was delayed. The paper describes a method of somatic embryo induction in callus of V. faba. Two Egyptian faba bean cultivars 'Giza 2' and '24 Hyto' were used. Callus was induced from epicotyls and shoot tips cultured on MS or Gamborg medium supplemented with 3% sucrose and 0.025% (w/v) for each of ascorbic and citric acid, 0.8% agar and different concentrations of 10 mg/l BAP, 0.5 mg/l of each NAA and 2,4-dichlorophenoxyacetic acid (M1) and 1 mg/l BAP and 0.5 mg/l NAA (M2) . The media with BAP, NAA and 2,4-D were optimal for embryogenic callus induction. Somatic embryos developed after transfer of the callus to 1/2 B5 medium with no plant growth regulators. There were various stages of somatic embryo development present including globular, heart-shaped, torpedo, and cotyledonary stages. Embryos developed into plantlets and plants were regenerated. RAPD analyses were performed to investigate the genetic stability of the regenerated plants obtained from different treatments and different explants. The cultivar Giza 2 exhibited more genetic stability than cultivar 24 Hyto. In conclusion, a regeneration system was established suitable for both gene transformation and the isolation of somaclonal mutants. The regeneration system will be used in order to improve the nutritional value of faba bean.

  13. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase.

    PubMed Central

    Jespersen, H M; Kjaersgård, I V; Ostergaard, L; Welinder, K G

    1997-01-01

    Ascorbate peroxidases are haem proteins that efficiently scavenge H2O2 in the cytosol and chloroplasts of plants. Database analyses retrieved 52 expressed sequence tags coding for Arabidopsis thaliana ascorbate peroxidases. Complete sequencing of non-redundant clones revealed three novel types in addition to the two cytosol types described previously in Arabidopsis. Analysis of sequence data available for all plant ascorbate peroxidases resulted in the following classification: two types of cytosol soluble ascorbate peroxidase designated cs1 and cs2; three types of cytosol membrane-bound ascorbate peroxidase, namely cm1, bound to microbodies via a C-terminal membrane-spanning segment, and cm2 and cm3, both of unknown location; two types of chloroplast ascorbate peroxidase with N-terminal transit sequences, the stromal ascorbate peroxidase (chs), and the thylakoid-bound ascorbate peroxidase showing a C-terminal transmembrane segment and designated cht. Further comparison of the patterns of conserved residues and the crystal structure of pea ascorbate peroxidase showed that active site residues are conserved, and three peptide segments implicated in interaction with reducing substrate are similar, excepting cm2 and cm3 types. A change of Phe-175 in cytosol types to Trp-175 in chloroplast types might explain the greater ascorbate specificity of chloroplast compared with cytosol ascorbate peroxidases. Residues involved in homodimeric subunit interaction are conserved only in cs1, cs2 and cm1 types. The proximal cation (K+)-binding site observed in pea ascorbate peroxidase seems to be conserved. In addition, cm1, cm2, cm3, chs and cht ascorbate peroxidases contain Asp-43, Asn-57 and Ser-59, indicative of a distal monovalent cation site. The data support the hypothesis that present-day peroxidases evolved by an early gene duplication event. PMID:9291097

  14. Imaging the NADH:NAD+ Homeostasis for Understanding the Metabolic Response of Mycobacterium to Physiologically Relevant Stresses

    PubMed Central

    Bhat, Shabir A.; Iqbal, Iram K.; Kumar, Ashwani

    2016-01-01

    The NADH:NAD+ ratio is the primary indicator of the metabolic state of bacteria. NAD(H) homeostasis is critical for Mycobacterium tuberculosis (Mtb) survival and is thus considered an important drug target, but the spatio-temporal measurements of NAD(H) remain a challenge. Genetically encoded fluorescent biosensors of the NADH:NAD+ ratios were recently described, paving the way for investigations of the metabolic state of pathogens during infection. Here we have adapted the genetically encoded biosensor Peredox for measurement of the metabolic state of Mtb in vitro and during infection of macrophage cells. Using Peredox, here we show that inhibition of the electron transport chain, disruption of the membrane potential and proton gradient, exposure to reactive oxygen species and treatment with antimycobacterial drugs led to the accumulation of NADH in mycobacterial cells. We have further demonstrated that Mtb residing in macrophages displays higher NADH:NAD+ ratios, that may indicate a metabolic stress faced by the intracellular Mtb. We also demonstrate that the Mtb residing in macrophages display a metabolic heterogeneity, which may perhaps explain the tolerance displayed by intracellular Mtb. Next we studied the effect of immunological modulation by interferon gamma on metabolism of intracellular Mtb, since macrophage activation is known to restrict mycobacterial growth. We observed that activation of resting macrophages with interferon-gamma results in higher NADH:NAD+ levels in resident Mtb cells. We have further demonstrated that exposure of Isoniazid, Bedaquiline, Rifampicin, and O-floxacin results in higher NADH:NAD+ ratios in the Mtb residing in macrophages. However, intracellular Mtb displays lower NADH:NAD+ ratio upon exposure to clofazimine. In summary, we have generated reporter strains capable of measuring the metabolic state of Mtb cells in vitro and in vivo with spatio-temporal resolution. We believe that this tool will facilitate further studies on

  15. Paper-Based Device for Rapid Visualization of NADH Based on Dissolution of Gold Nanoparticles.

    PubMed

    Liang, Pingping; Yu, Haixiang; Guntupalli, Bhargav; Xiao, Yi

    2015-07-15

    We describe a paper-based device that enables rapid and sensitive room-temperature detection of dihydronicotinamide adenine dinucleotide (NADH) via a colorimetric readout and demonstrate its value for monitoring NAD+-driven enzymatic reactions. Our system is based on NADH-mediated inhibition of gold nanoparticle (AuNPs) dissolution in a Au3+-cetyltrimethylammonium bromide (CTAB) solution. We fabricated a device consisting of a mixed cellulose ester paper featuring a wax-encircled, AuNP-coated film atop a cotton absorbent layer sandwiched between two plastic cover layers. In the absence of NADH, the Au3+-CTAB complex dissolves the AuNP layer completely, generating a white color in the test zone. In the presence of NADH, Au3+ is rapidly reduced to Au+, greatly decreasing the dissolution of AuNPs and yielding a red color that becomes stronger at increasing concentrations of NADH. This device exploits capillary force-assisted vertical diffusion, allowing us to apply a 25 μL sample to a surface-confined test zone to achieve a detection limit of 12.5 μM NADH. We used the enzyme glucose dehydrogenase as a model to demonstrate that our paper-based device can monitor NAD+-driven biochemical processes with and without selective dehydrogenase inhibitors by naked-eye observation within 4 min at room temperature in a small sample volume. We believe that our paper-based device could offer a valuable and low-cost analytical tool for monitoring NAD+-associated enzymatic reactions and screening for dehydrogenase inhibitors in a variety of testing contexts.

  16. Determination of NAD + and NADH level in a Single Cell Under H 2O 2 Stress by Capillary Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Wenjun

    2008-01-01

    A capillary electrophoresis (CE) method is developed to determine both NAD + and NADH levels in a single cell, based on an enzymatic cycling reaction. The detection limit can reach down to 0.2 amol NAD + and 1 amol NADH on a home-made CE-LIF setup. The method showed good reproducibility and specificity. After an intact cell was injected into the inlet of a capillary and lysed using a Tesla coil, intracellular NAD + and NADH were separated, incubated with the cycling buffer, and quantified by the amount of fluorescent product generated. NADH and NAD + levels of single cells ofmore » three cell lines and primary astrocyte culture were determined using this method. Comparing cellular NAD + and NADH levels with and without exposure to oxidative stress induced by H 2O 2, it was found that H9c2 cells respond to the stress by reducing both cellular NAD + and NADH levels, while astrocytes respond by increasing cellular NADH/NAD + ratio.« less

  17. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis.

    PubMed

    Watanabe, Seiya; Abu Saleh, Ahmed; Pack, Seung Pil; Annaluru, Narayana; Kodaki, Tsutomu; Makino, Keisuke

    2007-09-01

    A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis (PsXR and PsXDH, respectively) has the ability to convert xylose to ethanol together with the unfavourable excretion of xylitol, which may be due to intercellular redox imbalance caused by the different coenzyme specificity between NADPH-preferring XR and NAD(+)-dependent XDH. In this study, we focused on the effect(s) of mutated NADH-preferring PsXR in fermentation. The R276H and K270R/N272D mutants were improved 52- and 146-fold, respectively, in the ratio of NADH/NADPH in catalytic efficiency [(k(cat)/K(m) with NADH)/(k(cat)/K(m) with NADPH)] compared with the wild-type (WT), which was due to decrease of k(cat) with NADPH in the R276H mutant and increase of K(m) with NADPH in the K270R/N272D mutant. Furthermore, R276H mutation led to significant thermostabilization in PsXR. The most positive effect on xylose fermentation to ethanol was found by using the Y-R276H strain, expressing PsXR R276H mutant and PsXDH WT: 20 % increase of ethanol production and 52 % decrease of xylitol excretion, compared with the Y-WT strain expressing PsXR WT and PsXDH WT. Measurement of intracellular coenzyme concentrations suggested that maintenance of the of NADPH/NADP(+) and NADH/NAD(+) ratios is important for efficient ethanol fermentation from xylose by recombinant S. cerevisiae.

  18. Alterations in cerebral metabolism observed in living rodents using fluorescence lifetime microscopy of intrinsic NADH (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Sakadžić, Sava; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Boas, David A.

    2017-02-01

    Monitoring cerebral energy metabolism at a cellular level is essential to improve our understanding of healthy brain function and its pathological alterations. In this study, we resolve specific alterations in cerebral metabolism utilizing minimally-invasive 2-Photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence, collected in vivo from anesthetized rats and mice. Time-resolved lifetime measurements enables distinction of different components contributing to NADH autofluorescence. These components reportedly represent different enzyme-bound formulations of NADH. Our observations from this study confirm the hypothesis that NADH FLIM can identify specific alterations in cerebral metabolism. Using time-correlated single photon counting (TCSPC) equipment and a custom-built multimodal imaging system, 2-photon fluorescence lifetime imaging (FLIM) was performed in cerebral tissue with high spatial and temporal resolution. Multi-exponential fits for NADH fluorescence lifetimes indicate 4 distinct components, or 'species.' We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in anaerobic glycolysis and aerobic oxidative metabolism. Classification models developed with experimental data correctly predict the metabolic impairments associated with bicuculline-induced focal seizures in separate experiments. Compared to traditional intensity-based NADH measurements, lifetime imaging of NADH is less susceptible to the adverse effects of overlying blood vessels. Evaluating NADH measurements will ultimately lead to a deeper understanding of cerebral energetics and its pathology-related alterations. Such knowledge will likely aid development of therapeutic strategies for neurodegenerative diseases such as Alzheimer's Disease, Parkinson's disease, and stroke.

  19. Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide.

    PubMed Central

    Hiner, A N; Rodríguez-López, J N; Arnao, M B; Lloyd Raven, E; García-Cánovas, F; Acosta, M

    2000-01-01

    The activity of ascorbate peroxidase (APX) has been studied with H(2)O(2) and various reducing substrates. The activity decreased in the order pyrogallol>ascorbate>guaiacol>2, 2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS). The inactivation of APX with H(2)O(2) as the sole substrate was studied. The number of H(2)O(2) molecules required for maximal inactivation of the enzyme was determined as approx. 2.5. Enzymic activity of approx. 20% of the original remained at the end of the inactivation process (i.e. approx. 20% resistance) when ascorbate or ABTS was used as the substrate in activity assays. With pyrogallol or guaiacol no resistance was seen. Inactivation by H(2)O(2) followed over time with ascorbate or pyrogallol assays exhibited single-exponential decreases in enzymic activity. Hyperbolic saturation kinetics were observed in both assay systems; a similar dissociation constant (0.8 microM) for H(2)O(2) was obtained in each case. However, the maximum rate constant (lambda(max)) obtained from the plots differed depending on the assay substrate. The presence of reducing substrate in addition to H(2)O(2) partly or completely protected the enzyme from inactivation, depending on how many molar equivalents of reducing substrate were added. An oxygen electrode system has been used to confirm that APX does not exhibit a catalase-like oxygen-releasing reaction. A kinetic model was developed to interpret the experimental results; both the results and the model are compared and contrasted with previously obtained results for horseradish peroxidase C. The kinetic model has led us to the conclusion that the inactivation of APX by H(2)O(2) represents an unusual situation in which no enzyme turnover occurs but there is a partition of the enzyme between two forms, one inactive and the other with activity towards reducing substrates such as ascorbate and ABTS only. The partition ratio is less than 1. PMID:10816425

  20. Dairy cheese consumption ameliorates single-meal sodium-induced cutaneous microvascular dysfunction by reducing ascorbate-sensitive oxidants in healthy older adults

    PubMed Central

    Stanhewicz, Anna E.; Alba, Billie K.; Kenney, W. Larry; Alexander, Lacy M.

    2018-01-01

    Chronic dairy intake is associated with improved cardiovascular outcomes while high dietary-sodium impairs endothelial function through increased oxidative stress and reduced nitric oxide (NO) bioavailability. The purpose of this study was to compare the effect of acute cheese consumption with consumption of sodium from non-dairy sources on microvascular function. We hypothesized that dairy-cheese ingestion would augment NO-dependent vasodilation compared to sodium from non-dairy sources. On 5 separate visits, 14 healthy subjects (61±2yrs, 8M/6F) consumed either 85g dairy cheese (560mg Na), 85g soy cheese (560mg Na), 65g pretzels (560mg Na), 170g dairy cheese (1120mg Na), or 130g pretzels (1120mg Na). Two intradermal microdialysis fibers were inserted in the ventral forearm for delivery of lactated Ringer’s or 10mM ascorbate (antioxidant) during local skin heating (~50 min). Red cell flux was measured continuously by laser-Doppler flowmetry (LDF) and cutaneous vascular conductance (CVC=LDF/MAP) was normalized as %CVCmax (28mM sodium nitroprusside). Following a plateau in CVC, 15mM NG-nitro-L-arginine methyl ester was perfused to quantify NO-dependent vasodilation (~45 min). NO-dependent vasodilation was greater following dairy (560mg Na 57±3%) (1120mg Na 55±5%) compared to soy (560mg Na 42±3%; p=0.002) or pretzel (560mg Na 43±4%; p=0.004) (1120mg Na 46±3%; p=0.04). Ascorbate augmented NO-dependent vasodilation following soy (control: 42±3 vs. ascorbate: 54±3%; p=0.01) or pretzel (560mg Na; control: 43±4 vs. ascorbate: 56±3%; p=0.006) (1120mg Na; control: 46±5 vs. ascorbate: 56±3%; p=0.02), but not dairy. Sodium ingestion in dairy was associated with greater NO-dependent vasodilation compared to non-dairy sodium, a difference that was ameliorated with ascorbate perfusion. Dairy nutrients may protect against sodium-induced reductions in NO-dependent dilation through ascorbate-sensitive mechanisms. PMID:27363679

  1. Supercritical fluid regeneration of adsorbents

    NASA Astrophysics Data System (ADS)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  2. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    NASA Astrophysics Data System (ADS)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  3. Engineering Ascorbate Peroxidase Activity Into Cytochrome C Peroxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meharenna, Y.T.; Oertel, P.; Bhaskar, B.

    2009-05-26

    Cytochrome c peroxidase (CCP) and ascorbate peroxidase (APX) have very similar structures, and yet neither CCP nor APX exhibits each others activities with respect to reducing substrates. APX has a unique substrate binding site near the heme propionates where ascorbate H-bonds with a surface Arg and one heme propionate (Sharp et al. (2003) Nat. Struct. Biol. 10, 303--307). The corresponding region in CCP has a much longer surface loop, and the critical Arg residue that is required for ascorbate binding in APX is Asn in CCP. In order to convert CCP into an APX, the ascorbate-binding loop and critical argininemore » were engineered into CCP to give the CCP2APX mutant. The mutant crystal structure shows that the engineered site is nearly identical to that found in APX. While wild-type CCP shows no APX activity, CCP2APX catalyzes the peroxidation of ascorbate at a rate of {approx}12 min{sup -1}, indicating that the engineered ascorbate-binding loop can bind ascorbate.« less

  4. Global Kinetic Analysis of Mammalian E3 Reveals pH-dependent NAD+/NADH Regulation, Physiological Kinetic Reversibility, and Catalytic Optimum*

    PubMed Central

    Moxley, Michael A.; Beard, Daniel A.; Bazil, Jason N.

    2016-01-01

    Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD+/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD+ activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat. PMID:26644471

  5. Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery.

    PubMed

    Hou, Shaoping; Nicholson, LaShae; van Niekerk, Erna; Motsch, Melanie; Blesch, Armin

    2012-09-19

    Previous studies have shown that injured dorsal column sensory axons extend across a spinal cord lesion site if axons are guided by a gradient of neurotrophin-3 (NT-3) rostral to the lesion. Here we examined whether continuous NT-3 delivery is necessary to sustain regenerated axons in the injured spinal cord. Using tetracycline-regulated (tet-off) lentiviral gene delivery, NT-3 expression was tightly controlled by doxycycline administration. To examine axon growth responses to regulated NT-3 expression, adult rats underwent a C3 dorsal funiculus lesion. The lesion site was filled with bone marrow stromal cells, tet-off-NT-3 virus was injected rostral to the lesion site, and the intrinsic growth capacity of sensory neurons was activated by a conditioning lesion. When NT-3 gene expression was turned on, cholera toxin β-subunit-labeled sensory axons regenerated into and beyond the lesion/graft site. Surprisingly, the number of regenerated axons significantly declined when NT-3 expression was turned off, whereas continued NT-3 expression sustained regenerated axons. Quantification of axon numbers beyond the lesion demonstrated a significant decline of axon growth in animals with transient NT-3 expression, only some axons that had regenerated over longer distance were sustained. Regenerated axons were located in white matter and did not form axodendritic synapses but expressed presynaptic markers when closely associated with NG2-labeled cells. A decline in axon density was also observed within cellular grafts after NT-3 expression was turned off possibly via reduction in L1 and laminin expression in Schwann cells. Thus, multiple mechanisms underlie the inability of transient NT-3 expression to fully sustain regenerated sensory axons.

  6. Methemoglobinemia and ascorbate deficiency in hemoglobin E β thalassemia: metabolic and clinical implications

    PubMed Central

    Allen, Angela; Fisher, Christopher; Premawardhena, Anuja; Bandara, Dayananda; Perera, Ashok; Allen, Stephen; St Pierre, Timothy; Olivieri, Nancy

    2012-01-01

    During investigations of the phenotypic diversity of hemoglobin (Hb) E β thalassemia, a patient was encountered with persistently high levels of methemoglobin associated with a left-shift in the oxygen dissociation curve, profound ascorbate deficiency, and clinical features of scurvy; these abnormalities were corrected by treatment with vitamin C. Studies of erythropoietin production before and after treatment suggested that, as in an ascorbate-deficient murine model, the human hypoxia induction factor pathway is not totally dependent on ascorbate levels. A follow-up study of 45 patients with HbE β thalassemia showed that methemoglobin levels were significantly increased and that there was also a significant reduction in plasma ascorbate levels. Haptoglobin levels were significantly reduced, and the high frequency of the 2.2 haptoglobin genotype may place an additional pressure on ascorbate as a free-radical scavenger in this population. There was, in addition, a highly significant correlation between methemoglobin levels, splenectomy, and factors that modify the degree of globin-chain imbalance. Because methemoglobin levels are modified by several mechanisms and may play a role in both adaptation to anemia and vascular damage, there is a strong case for its further study in other forms of thalassemia and sickle-cell anemia, particularly when splenic function is defective. PMID:22885163

  7. Enhancement of neurite outgrowth in PC12 cells stimulated with cyclic AMP and NGF by 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), novel lipophilic ascorbate derivatives.

    PubMed

    Zhou, Xiaohua; Tai, Akihiro; Yamamoto, Itaru

    2003-03-01

    It has been shown that ascorbate (AsA) and its stable derivative, ascorbic acid 2-O-alpha-glucoside (AA-2G), do not elicit neurite outgrowth in PC12 cells. However, these ascorbates are synergistically enhanced by both dibutyryl cyclic AMP (Bt(2)cAMP)- and nerve growth factor (NGF)-induced neurite outgrowth in this model. In the present study, the effects of a series of novel lipophilic ascorbate derivatives, 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), on neurite outgrowth induced by Bt(2)cAMP and NGF were examined in PC12 cells. We found that all the tested acylated ascorbate derivatives enhanced neurite formation induced by both agents in a dose-dependent manner. Of the 6-Acyl-AA-2G derivatives, 6-octanoyl ascorbic acid 2-O-alpha-glucoside (6-Octa-AA-2G) enhanced the Bt(2)cAMP-induced phosphorylated MAPK p44 and p42 expression. A alpha-glucosidase inhibitor, castanospermine, completely abrogated the promotion of neurite outgrowth and MAPK expression by 6-Octa-AA-2G. Addition of 6-Octa-AA-2G (0.5 mM) to PC12 cells caused a rapid and significant increase in intracellular AsA content, which reached a maximum and was maintained from 12 to 24 h after the culture. These findings suggest that 6-Acyl-AA-2G is rapidly hydrolyzed to AsA within the cell and enhances neurite differentiation through the interaction with the inducer-activated MAPK pathway.

  8. Construction of an amperometric ascorbate biosensor using epoxy resin membrane bound Lagenaria siceraria fruit ascorbate oxidase.

    PubMed

    Pundir, C S; Chauhan, Nidhi; Jyoti

    2011-06-01

    Ascorbate oxidase purified from Lagenaria siceraria fruit was immobilized onto epoxy resin "Araldite" membrane with 79.4% retention of initial activity of free enzyme. The biosensor showed optimum response within 15s at pH 5.8 and 35°C, which was directly proportional to ascorbate concentration ranging from 1-100μM. There was a good correlation (R(2) = 0.99) between serum ascorbic acid values by standard enzymic colorimetric method and the present method. The enzyme electrode was used for 200 times without considerable loss of activity during the span of 90 days when stored at 4°C.

  9. Detection of ATP and NADH: A Bioluminescent Experience.

    ERIC Educational Resources Information Center

    Selig, Ted C.; And Others

    1984-01-01

    Described is a bioluminescent assay for adenosine triphosphate (ATP) and reduced nicotineamide-adenine dinucleotide (NADH) that meets the requirements of an undergraduate biochemistry laboratory course. The 3-hour experiment provides students with experience in bioluminescence and analytical biochemistry yet requires limited instrumentation,…

  10. Site-directed mutagenesis of conserved cysteine residues in NqrD and NqrE subunits of Na+-translocating NADH:quinone oxidoreductase.

    PubMed

    Fadeeva, M S; Bertsova, Y V; Verkhovsky, M I; Bogachev, A V

    2008-02-01

    Each of two hydrophobic subunits of Na+-translocating NADH:quinone oxidoreductase (NQR), NqrD and NqrE, contain a pair of strictly conserved cysteine residues within their transmembrane alpha-helices. Site-directed mutagenesis showed that substitutions of these residues in NQR of Vibrio harveyi blocked the Na+-dependent and 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive quinone reductase activity of the enzyme. However, these mutations did not affect the interaction of NQR with NADH and menadione. It was demonstrated that these conserved cysteine residues are necessary for the correct folding and/or the stability of the NQR complex. Mass and EPR spectroscopy showed that NQR from V. harveyi bears only a 2Fe-2S cluster as a metal-containing prosthetic group.

  11. Aluminum and its effect in the equilibrium between folded/unfolded conformation of NADH.

    PubMed

    Formoso, Elena; Mujika, Jon I; Grabowski, Slawomir J; Lopez, Xabier

    2015-11-01

    Nicotinamide adenine dinucleotide (NADH) is one of the most abundant cofactor employed by proteins and enzymes. The molecule is formed by two nucleotides that can lead to two main conformations: folded/closed and unfolded/open. Experimentally, it has been determined that the closed form is about 2 kcal/mol more stable than the open formed. Computationally, a correct description of the NADH unfolding process is challenging due to different reasons: 1) The unfolding process shows a very low energy difference between the two conformations 2) The molecule can form a high number of internal hydrogen bond interactions 3) Subtle effects such as dispersion may be important. In order to tackle all these effects, we have employed a number of different state of the art computational techniques, including: a) well-tempered metadynamics, b) geometry optimizations, and c) Quantum Theory of Atoms in Molecules (QTAIM) calculations, to investigate the conformational change of NADH in solution and interacting with aluminum. All the results indicate that aluminum indeed favors the closed conformation of NADH, due mainly to the formation of a more rigid structure through key hydrogen bond interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Crystallization and preliminary crystallographic analysis of a flavoprotein NADH oxidase from Lactobacillus brevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzu, Mutlu; Niefind, Karsten; Hummel, Werner

    2005-05-01

    The water-forming flavoenzyme NADH oxidase was crystallized successfully for the first time. The crystals diffract X-rays to at least 4.0 Å resolution. NADH oxidase (NOX) from Lactobacillus brevis is a homotetrameric flavoenzyme composed of 450 amino acids per subunit. The molecular weight of each monomer is 48.8 kDa. The enzyme catalyzes the oxidation of two equivalents of NADH and reduces one equivalent of oxygen to yield two equivalents of water, without releasing hydrogen peroxide after the reduction of the first equivalent of NADH. Crystals of this protein were grown in the presence of 34% polyethylene glycol monomethyl ether 2000, 0.1more » M sodium acetate and 0.2 M ammonium sulfate at pH 5.4. They belong to the tetragonal space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 74.8, b = 95.7, c = 116.9 Å, α = γ = 90, β = 103.8°. The current diffraction limit is 4.0 Å. The self-rotation function of the native data set is consistent with a NOX tetramer in the asymmetric unit.« less

  13. Ascorbic Acid Efflux from Human Brain Microvascular Pericytes: Role of Re-uptake

    PubMed Central

    May, James M.; Qu, Zhi-chao

    2015-01-01

    Microvascular pericytes take up ascorbic acid on the ascorbate transporter SVCT2. Intracellular ascorbate then protects the cells against apoptosis induced by culture at diabetic glucose concentrations. To investigate whether pericytes might also provide ascorbate to the underlying endothelial cells, we studied ascorbate efflux from human pericytes. When loaded with ascorbate to intracellular concentrations of 0.8–1.0 mM, almost two-thirds of intracellular ascorbate effluxed from the cells over 2 h. This efflux was opposed by ascorbate re-uptake from the medium, since preventing re-uptake by destroying extracellular ascorbate with ascorbate oxidase increased ascorbate loss even further. Ascorbate re-uptake occurred on the SVCT2, since its blockade by replacing medium sodium with choline, by the SVCT2 inhibitor sulfinpyrazone, or by extracellular ascorbate accelerated ascorbate loss from the cells. This was supported by finding that net efflux of radiolabeled ascorbate was increased by unlabeled extracellular ascorbate with a half-maximal effect in the range of the high affinity Km of the SVCT2. Intracellular ascorbate did not inhibit its efflux. To assess the mechanism of ascorbate efflux, known inhibitors of volume-regulated anion channels (VRACs) were tested. These potently inhibited ascorbate transport into cells on the SVCT2, but not its efflux. An exception was the anion transport inhibitor DIDS, which, despite inhibition of ascorbate uptake, also inhibited net efflux at 25–50 µM. These results suggest that ascorbate efflux from vascular pericytes occurs on a DIDS-inhibitable transporter or channel different from VRACs. Further, ascorbate efflux is opposed by re-uptake of ascorbate on the SVCT2, providing a potential regulatory mechanism. PMID:26340060

  14. Novel roles of ascorbate in plants: induction of cytosolic Ca2+ signals and efflux from cells via anion channels.

    PubMed

    Makavitskaya, M; Svistunenko, D; Navaselsky, I; Hryvusevich, P; Mackievic, V; Rabadanova, C; Tyutereva, E; Samokhina, V; Straltsova, D; Sokolik, A; Voitsekhovskaja, O; Demidchik, V

    2018-02-17

    Ascorbate is not often considered as a signalling molecule in plants. This study demonstrates that, in Arabidopsis roots, exogenous L-ascorbic acid triggers a transient increase of the cytosolic free calcium activity ([Ca2+]cyt.) that is central to plant signalling. Exogenous copper and iron stimulates the ascorbate-induced [Ca2+]cyt. elevation while cation channel blockers, free radical scavengers, low extracellular [Ca2+], transition metal chelators and removal of the cell wall inhibit this reaction. These data show that apoplastic redox-active transition metals are involved in the ascorbate-induced [Ca2+]cyt. elevation. Exogenous ascorbate also induces a moderate increase in programmed cell death symptoms in intact roots, but it does not activate Ca2+ influx currents in patch-clamped root protoplasts. Intriguingly, the replacement of gluconate with ascorbate in the patch-clamp pipette reveales a large ascorbate efflux current, which shows sensitivity to the anion channel blocker, anthracene-9-carboxylic acid (A9C), indicative of the ascorbate release via anion channels. EPR spectroscopy measurements demonstrates that salinity (NaCl) triggers the accumulation of root apoplastic ascorbyl radicals in A9C-dependent manner, confirming that L-ascorbate leaks through anion channels under depolarisation. This mechanism may underlie ascorbate release, signalling phenomena, apoplastic redox reactions, iron acquisition and control the ionic and electrical equilibrium (together K+ efflux via GORK channels).

  15. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Nicotinamide-ascorbic acid complex. 172.315... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed conditions...

  16. Cloning and mRNA Expression of NADH Dehydrogenase during Ochlerotatus taeniorhynchus Development and Pesticide Response

    USDA-ARS?s Scientific Manuscript database

    NADH dehydrogenase, the largest of the respiratory complexes, is the first enzyme of the mitochondrial electron transport chain. We have cloned and sequenced cDNA of NADH dehydrogenase gene from Ochlerotatus (Ochlerotatus) taeniorhynchus (Wiedemann) adult (GeneBank Accession number: FJ458415). The ...

  17. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2)*

    PubMed Central

    Elguindy, Mahmoud M.; Nakamaru-Ogiso, Eiko

    2015-01-01

    Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O2 activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC50 = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O2 activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O2 activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells. PMID:26063804

  18. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2).

    PubMed

    Elguindy, Mahmoud M; Nakamaru-Ogiso, Eiko

    2015-08-21

    Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O₂ activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC₅₀ = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O₂ activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O₂ activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Single sample extraction and HPLC processing for quantification of NAD and NADH levels in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sporty, J; Kabir, M M; Turteltaub, K

    A robust redox extraction protocol for quantitative and reproducible metabolite isolation and recovery has been developed for simultaneous measurement of nicotinamide adenine dinucleotide (NAD) and its reduced form, NADH, from Saccharomyces cerevisiae. Following culture in liquid media, approximately 10{sup 8} yeast cells were harvested by centrifugation and then lysed under non-oxidizing conditions by bead blasting in ice-cold, nitrogen-saturated 50-mM ammonium acetate. To enable protein denaturation, ice cold nitrogen-saturated CH{sub 3}CN + 50-mM ammonium acetate (3:1; v:v) was added to the cell lysates. After sample centrifugation to pellet precipitated proteins, organic solvent removal was performed on supernatants by chloroform extraction. Themore » remaining aqueous phase was dried and resuspended in 50-mM ammonium acetate. NAD and NADH were separated by HPLC and quantified using UV-VIS absorbance detection. Applicability of this procedure for quantifying NAD and NADH levels was evaluated by culturing yeast under normal (2% glucose) and calorie restricted (0.5% glucose) conditions. NAD and NADH contents are similar to previously reported levels in yeast obtained using enzymatic assays performed separately on acid (for NAD) and alkali (for NADH) extracts. Results demonstrate that it is possible to perform a single preparation to reliably and robustly quantitate both NAD and NADH contents in the same sample. Robustness of the protocol suggests it will be (1) applicable to quantification of these metabolites in mammalian and bacterial cell cultures; and (2) amenable to isotope labeling strategies to determine the relative contribution of specific metabolic pathways to total NAD and NADH levels in cell cultures.« less

  20. Age-Dependent Decline in Mouse Lung Regeneration with Loss of Lung Fibroblast Clonogenicity and Increased Myofibroblastic Differentiation

    PubMed Central

    Paxson, Julia A.; Gruntman, Alisha; Parkin, Christopher D.; Mazan, Melissa R.; Davis, Airiel; Ingenito, Edward P.; Hoffman, Andrew M.

    2011-01-01

    While aging leads to a reduction in the capacity for regeneration after pneumonectomy (PNX) in most mammals, this biological phenomenon has not been characterized over the lifetime of mice. We measured the age-specific (3, 9, 24 month) effects of PNX on physiology, morphometry, cell proliferation and apoptosis, global gene expression, and lung fibroblast phenotype and clonogenicity in female C57BL6 mice. The data show that only 3 month old mice were fully capable of restoring lung volumes by day 7 and total alveolar surface area by 21 days. By 9 months, the rate of regeneration was slower (with incomplete regeneration by 21 days), and by 24 months there was no regrowth 21 days post-PNX. The early decline in regeneration rate was not associated with changes in alveolar epithelial cell type II (AECII) proliferation or apoptosis rate. However, significant apoptosis and lack of cell proliferation was evident after PNX in both total cells and AECII cells in 24 mo mice. Analysis of gene expression at several time points (1, 3 and 7 days) post-PNX in 9 versus 3 month mice was consistent with a myofibroblast signature (increased Tnc, Lox1, Col3A1, Eln and Tnfrsf12a) and more alpha smooth muscle actin (αSMA) positive myofibroblasts were present after PNX in 9 month than 3 month mice. Isolated lung fibroblasts showed a significant age-dependent loss of clonogenicity. Moreover, lung fibroblasts isolated from 9 and 17 month mice exhibited higher αSMA, Col3A1, Fn1 and S100A expression, and lower expression of the survival gene Mdk consistent with terminal differentiation. These data show that concomitant loss of clonogenicity and progressive myofibroblastic differentiation contributes to the age-dependent decline in the rate of lung regeneration. PMID:21912590

  1. Degradation of histamine in the presence of ascorbic acid and Cu2+ ion; involvement of hydrogen peroxide.

    PubMed

    Yamamoto, I; Ohmori, H

    1981-01-01

    In the presence, but not in the absence of Cu2+, ascorbate decomposes histamine in citrate phosphate buffer (pH 6.5) at 37 degrees, but not at 0 degrees. The breakdown is completely inhibited by catalase, but only slightly by superoxide dismutase, and scavengers of OH. like benzoic acid, ethanol or potassium iodide. A1 O2 scavenger, alpha-tocopherol also did not show significant effects on the reaction. On the other hand, addition of H2O2 to the reaction mixture markedly enhances the rate of histamine breakdown induced by ascorbate or ascorbate-Cu2+ systems. However, H2O2 alone cannot breakdown histamine even in the presence of Cu2+. Histamine breakdown induced by ascorbate appears to be dependent upon the autooxidation of this vitamin. From these results and the findings reported by Chatterjee et al. that the products of its aerobic oxidation, dehydroascorbic acid and H2O2 were ineffective in reacting with histamine in the presence of Cu2+, it is concluded that the combination of H2O2 and the intermediate of ascorbate oxidation (monodehydroascorbic acid or other unstable species), both of which are produced during the autooxidation of ascorbate, plays a major role in the histamine transformation by ascorbate-Cu2+ system.

  2. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans.

    PubMed

    Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki

    2017-03-01

    Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD + , NADH, NADP + , and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P) + in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.

  3. Lutein, Trolox, ascorbic acid and combination of Trolox with ascorbic acid can improve boar semen quality during cryopreservation.

    PubMed

    Varo-Ghiuru, Florin; Miclea, Ileana; Hettig, Andrea; Ladoşi, Ioan; Miclea, Vasile; Egerszegi, István; Zăhan, Marius

    2015-01-01

    Due to pour quality of cryopreserved boar semen, artificial innsemination with frozen-thawed semen is quite limited. Developing protocols of boar semen cryopreservation represents a priority but also a challange. The goal of the present study was to evaluate the antioxidant potential of lutein, Trolox, ascorbic acid, and certain combinations of Trolox with ascorbic acid on boar semen cryopreservation procedure. Antioxidants were added to lactose-egg yolk extender, containing a final concentration of 3% glycerol and 0.5% Equex-STM. Semen of six boars was cryopreserved using straw-freezing procedure. After cryopreservation semen was thawed and evaluated for motility, normal apical ridge (NAR), hypo-osmotic swelling test (HOST) and DNA fragmentation index (DFI). Data were analyzed by one-way ANOVA. The results showed better motility after thawing at the concentration of 10 μM lutein, 200 μM Trolox, 200 μM ascorbic acid and 400-200 μM Trolox and ascorbic acid. The supplementation on boar freezing extender with 10 μM lutein increased post-thawed motility, NAR and HOST values (P < 0.01), and decrease DFI (P < 0.05) in comparison with control group. Similar results were obtained using 400-200 μM Trolox and ascorbic acid, with better results in the case of DFI (P < 0.01). In comparison with the control group, a concentration of 200 μM Trolox and 200 μM ascorbic acid provided significant differences (P < 0.01) of motility and NAR. The analysis of sperm characteristics showed that lutein and the mix between Trolox and ascorbic acid used in boar semen cryopreservation can improve the quality of spermatozoa.

  4. Ascorbic acid prevents vascular dysfunction induced by oral glucose load in healthy subjects.

    PubMed

    De Marchi, Sergio; Prior, Manlio; Rigoni, Anna; Zecchetto, Sara; Rulfo, Fanny; Arosio, Enrico

    2012-01-01

    To examine the effects of oral glucose load on forearm circulatory regulation before and after ascorbic acid administration in healthy subjects. Microcirculation study with laser Doppler was performed at the hand in basal conditions, after ischemia and after acetylcholine and nitroprusside; strain gauge plethysmography was performed at basal and after ischemia. The tests were repeated in the same sequence 2 hour after oral administration of glucose (75 g). The subjects were randomised for administration of ascorbic acid (1 g bid) or placebo (sodium bicarbonate 1 g bid) for 10 days. After that, the tests were repeated before and after a new oral glucose load. Blood pressure and heart rate were monitored. Macrocirculatory flux, pressure values and heart rate were unvaried throughout the study. The glucose load caused a reduction in the hyperemic peak flow with laser Doppler and plethysmography; it reduced flux recovery time and hyperemic curve area after ischemia; acetylcholine elicited a minor increase in flux with laser Doppler. The response to nitroprusside was unvaried after glucose load as compared to basal conditions. Treatment with ascorbic acid prevented the decrease in hyperemia after glucose, detected with laser Doppler and plethysmography. Ascorbic acid prevented the decreased response to acetylcholine after glucose, the response to nitroprusside was unaffected by ascorbic acid. Results after placebo were unvaried. Oral glucose load impairs endothelium dependent dilation and hyperaemia at microcirculation, probably via oxidative stress; ascorbic acid can prevent it. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  5. High prevalence of ascorbate deficiency in an Australian peritoneal dialysis population.

    PubMed

    Singer, Richard; Rhodes, Helen C; Chin, George; Kulkarni, Hemant; Ferrari, Paolo

    2008-02-01

    An adequate total body pool of ascorbate is essential for optimum health in humans. Requirements for ascorbate are increased in peritoneal dialysis (PD) patients most likely due to a combination of poor nutrition and increased dialysate losses. We measured serum ascorbate levels in 45 clinically stable PD patients to assess the prevalence of ascorbate insufficiency (level between 2 and 4 mg/L) and deficiency (level <2 mg/L). We also assessed the efficacy of subsequent supplementation and patients' adherence to the prescribed supplementation. All patients were advised on commencement of dialysis to take a multivitamin tablet containing 100-120 mg ascorbate. Eighteen (41%) PD patients were regularly taking ascorbate-containing multivitamins, while 27 (59%) patients did not take ascorbate supplements. Serum ascorbate levels ranged from <0.2 to 41 mg/L, with wide variations in serum ascorbate at any given intake level. Ascorbate deficiency was present in 1/3 of the current PD population (44% of patients not taking supplements and in 16% of those on supplements), although none of the patients demonstrated clinical manifestations of scurvy. Targeted supplementation of ascorbate insufficient patients increased the median serum ascorbate level from 1.7 mg/L (IQR 1.2-2.2) to 22.5 mg/L (IQR 16.7-32.9). Our results show that, in PD patients, ascorbate deficiency is common and can readily be identified with serum ascorbate measurements. Oral supplements in the form of inexpensive multivitamin preparations restore adequate serum ascorbate levels in the majority of these patients. We therefore suggest measurement of ascorbate levels in all PD patients at the commencement of dialysis with a target level in the normal range (4-14 mg/L).

  6. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  7. Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors.

    PubMed

    Vogg, Matthias C; Owlarn, Suthira; Pérez Rico, Yuvia A; Xie, Jianlei; Suzuki, Yoko; Gentile, Luca; Wu, Wei; Bartscherer, Kerstin

    2014-06-15

    Planarians can regenerate their head within days. This process depends on the direction of adult stem cells to wound sites and the orchestration of their progenitors to commit to appropriate lineages and to arrange into patterned tissues. We identified a zinc finger transcription factor, Smed-ZicA, as a downstream target of Smed-FoxD, a Forkhead transcription factor required for head regeneration. Smed-zicA and Smed-FoxD are co-expressed with the Wnt inhibitor notum and the Activin inhibitor follistatin in a cluster of cells at the anterior-most tip of the regenerating head - the anterior regeneration pole - and in surrounding stem cell progeny. Depletion of Smed-zicA and Smed-FoxD by RNAi abolishes notum and follistatin expression at the pole and inhibits head formation downstream of initial polarity decisions. We suggest a model in which ZicA and FoxD transcription factors synergize to control the formation of Notum- and Follistatin-producing anterior pole cells. Pole formation might constitute an early step in regeneration, resulting in a signaling center that orchestrates cellular events in the growing tissue. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Phasor Fluorescence Lifetime Microscopy of Free and Protein-Bound NADH Reveals Neural Stem Cell Differentiation Potential

    PubMed Central

    Stringari, Chiara; Nourse, Jamison L.; Flanagan, Lisa A.; Gratton, Enrico

    2012-01-01

    In the stem cell field there is a lack of non invasive and fast methods to identify stem cell’s metabolic state, differentiation state and cell-lineage commitment. Here we describe a label-free method that uses NADH as an intrinsic biomarker and the Phasor approach to Fluorescence Lifetime microscopy to measure the metabolic fingerprint of cells. We show that different metabolic states are related to different cell differentiation stages and to stem cell bias to neuronal and glial fate, prior the expression of lineage markers. Our data demonstrate that the NADH FLIM signature distinguishes non-invasively neurons from undifferentiated neural progenitor and stem cells (NPSCs) at two different developmental stages (E12 and E16). NPSCs follow a metabolic trajectory from a glycolytic phenotype to an oxidative phosphorylation phenotype through different stages of differentiation. NSPCs are characterized by high free/bound NADH ratio, while differentiated neurons are characterized by low free/bound NADH ratio. We demonstrate that the metabolic signature of NPSCs correlates with their differentiation potential, showing that neuronal progenitors and glial progenitors have a different free/bound NADH ratio. Reducing conditions in NPSCs correlates with their neurogenic potential, while oxidative conditions correlate with glial potential. For the first time we show that FLIM NADH metabolic fingerprint provides a novel, and quantitative measure of stem cell potential and a label-free and non-invasive means to identify neuron- or glial- biased progenitors. PMID:23144844

  9. Ascorbate stimulates endothelial nitric oxide synthase enzyme activity by rapid modulation of its phosphorylation status

    PubMed Central

    Ladurner, Angela; Schmitt, Christoph A.; Schachner, Daniel; Atanasov, Atanas G.; Werner, Ernst R.; Dirsch, Verena M.; Heiss, Elke H.

    2012-01-01

    Long-term exposure to ascorbate is known to enhance endothelial nitric oxide synthase (eNOS) activity by stabilizing the eNOS cofactor tetrahydrobiopterin (BH4). We investigated acute effects of ascorbate on eNOS function in primary (HUVEC) and immortalized human endothelial cells (EA.hy926), aiming to provide a molecular explanation for the rapid vasodilatation seen in vivo upon administration of ascorbate. Enzymatic activity of eNOS and intracellular BH4 levels were assessed by means of an arginine–citrulline conversion assay and HPLC analysis, respectively. Over a period of 4 h, ascorbate steadily increased eNOS activity, although endothelial BH4 levels remained unchanged compared to untreated control cells. Immunoblot analyses revealed that as early as 5 min after treatment ascorbate dose-dependently increased phosphorylation at eNOS-Ser1177 and concomitantly decreased phosphorylation at eNOS-Thr495, a phosphorylation pattern indicative of increased eNOS activity. By employing pharmacological inhibitors, siRNA-mediated knockdown approaches, and overexpression of the catalytic subunit of protein phosphatase 2A (PP2A), we show that this effect was at least partly owing to reduction of PP2A activity and subsequent activation of AMP-activated kinase. In this report, we unravel a novel mechanism for how ascorbate rapidly activates eNOS independent of its effects on BH4 stabilization. PMID:22542797

  10. Ascorbate protects endothelial barrier function during septic insult: Role of protein phosphatase type 2A.

    PubMed

    Han, Min; Pendem, Suresh; Teh, Suet Ling; Sukumaran, Dinesh K; Wu, Feng; Wilson, John X

    2010-01-01

    Endothelial barrier dysfunction contributes to morbidity in sepsis. We tested the hypothesis that raising the intracellular ascorbate concentration protects the endothelial barrier from septic insult by inhibiting protein phosphatase type 2A. Monolayer cultures of microvascular endothelial cells were incubated with ascorbate, dehydroascorbic acid (DHAA), the NADPH oxidase inhibitors apocynin and diphenyliodonium, or the PP2A inhibitor okadaic acid and then were exposed to septic insult (lipopolysaccharide and interferon-gamma). Under standard culture conditions that depleted intracellular ascorbate, septic insult stimulated oxidant production and PP2A activity, dephosphorylated phosphoserine and phosphothreonine residues in the tight junction-associated protein occludin, decreased the abundance of occludin at cell borders, and increased monolayer permeability to albumin. NADPH oxidase inhibitors prevented PP2A activation and monolayer leak, showing that these changes required reactive oxygen species. Okadaic acid, at a concentration that inhibited PP2A activity and monolayer leak, prevented occludin dephosphorylation and redistribution, implicating PP2A in the response of occludin to septic insult. Incubation with ascorbate or DHAA raised intracellular ascorbate concentrations and mitigated the effects of septic insult. In conclusion, ascorbate acts within microvascular endothelial cells to inhibit septic stimulation of oxidant production by NADPH oxidase and thereby prevents PP2A activation, PP2A-dependent dephosphorylation and redistribution of occludin, and disruption of the endothelial barrier. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Comparing the moisturizing effects of ascorbic acid and calcium ascorbate against that of tocopherol in emulsions.

    PubMed

    Gönüllü, U; Sensoy, D; Uner, M; Yener, G; Altinkurt, T

    2006-01-01

    Calcium ascorbate (CAAS), which is a hydrophilic and stable derivative of ascorbic acid (vitamin C) (AA), is commonly used in foods as an antioxidative agent. There are very limited reports on its dermatological use in the literature. In this paper, it is reported that CAAS could be used in place of ascorbic acid, which has chemical stability problems in topicals due to degradation by oxidation. The aim of this study was to investigate the skin-hydrating effect of CAAS compared to those of ascorbic acid and tocopherol (vitamin E) (T), which is a potential skin moisturizer and commonly used in dermocosmetics. Vitamins are incorporated into two kinds of base creams (o/w and w/o emulsion creams), alone and in combinations. Formulations were applied to the inner forearms of volunteers, and skin conductance was measured by using a corneometer. Data obtained were statistically evaluated. It was found that the skin-hydrating effect of CAAS was higher than that of AA and lower than that of T. However, its effect was very close to that of T.

  12. 21 CFR 182.3013 - Ascorbic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ascorbic acid. 182.3013 Section 182.3013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3013 Ascorbic...

  13. 21 CFR 182.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3731 Sodium ascorbate. (a) Product. Sodium...

  14. Selective Amperometric Recording of Endogenous Ascorbate Secretion from a Single Rat Adrenal Chromaffin Cell with Pretreated Carbon Fiber Microelectrodes.

    PubMed

    Wang, Kai; Xiao, Tongfang; Yue, Qingwei; Wu, Fei; Yu, Ping; Mao, Lanqun

    2017-09-05

    Quantitative description of ascorbate secretion at a single-cell level is of great importance in physiological studies; however, most studies on the ascorbate secretion have so far been performed through analyzing cell extracts with high performance liquid chromatography, which lacks time resolution and analytical performance on a single-cell level. This study demonstrates a single-cell amperometry with carbon fiber microelectrodes (CFEs) to selectively monitor amperometric vesicular secretion of endogenous ascorbate from a single rat adrenal chromaffin cell. The CFEs are electrochemically pretreated in a weakly basic solution (pH 9.5), and such pretreatment essentially enables the oxidation of ascorbate to occur at a relatively low potential (i.e., 0.0 V vs Ag/AgCl), and further a high selectivity for ascorbate measurement over endogenously existing electroactive species such as epinephrine, norepinephrine, and dopamine. The selectivity is ensured by much larger amperometric response at the pretreated CFEs toward ascorbate over those toward other endogenously existing electroactive species added into the solution or ejected to the electrode with a micropuffer pipet, and by the totally suppressed current response by adding ascorbate oxidase into the cell lysate. With the pretreated CFE-based single-cell amperometry developed here, exocytosis of endogenous ascorbate of rat adrenal chromaffin cells is directly observed and ensured with the calcium ion-dependent high K + -induced secretion of endogenous ascorbate from the cells. Moreover, the quantitative information on the exocytosis of endogenous ascorbate is provided.

  15. Antioxidation activities of pteridines in mammalian cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Shen, R.

    1991-03-11

    L-erythro-5,6,7,8-Tetrahydrobiopterin (BH{sub 4}), the cofactor for aromatic amino acid hydroxylases (AAA-H), is a predominant form of pteridines which occur ubiquitously in nature. When BH{sub 4} is oxidized to quinonoid dihydrobiopterin by AAA-H, it is regenerated by dihydropteridine reductase (DHPR) at the expense of NADH. The role of BH{sub 4} other than serving as the hydroxylase cofactor is not clear. The existence of BH{sub 4} and DHPR in tissues which are devoid of AAA-H suggests that BH{sub 4} may play an as yet undiscovered physiological function. This study demonstrates a BH{sub 4}-mediated antioxidation system, which consists of BH{sub 4}, DHPR, peroxidasemore » and NADH in rat pheochromocytoma PC 12 cells and mouse macrophages J774A.1. This system was as effective as catalase and ascorbic acid in protecting cells against H{sub 2}O{sub 2} and xanthine/xanthine oxidase-induced toxicity and was more effective than catalase in defense against nitrofurantoin-induced toxicity. The antioxidation effect of this system was not due to peroxidase and was improved when synthetic pteridines were substituted for BH{sub 4}. Since BH{sub 4}, DHPR, peroxidases and NADH are widely distributed in major organs and blood cells, they may constitute an as yet little known antioxidation system in mammalian cells.« less

  16. 21 CFR 182.8013 - Ascorbic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a...

  17. 21 CFR 182.8013 - Ascorbic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a...

  18. 21 CFR 182.8013 - Ascorbic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a...

  19. 21 CFR 182.8013 - Ascorbic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a...

  20. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions

    PubMed Central

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p50 of 3.4±0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution. PMID:20859293

  1. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.

    PubMed

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.

  2. 21 CFR 182.3013 - Ascorbic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ascorbic acid. 182.3013 Section 182.3013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... acid. (a) Product. Ascorbic acid. (b) Conditions of use. This substance is generally recognized as safe...

  3. Supplementation of Ascorbic Acid in Weanling Horses Following Prolonged Transportation

    PubMed Central

    Ralston, Sarah; Stives, Michelle

    2012-01-01

    Simple Summary Horses normally synthesize adequate amounts of ascorbic acid (vitamin C) in their liver to meet their needs for the vitamin. However, prolonged stress results in low plasma concentrations and reduced immune function. Weanling horses were supplemented with ascorbic acid for 5 or 10 days or no ascorbic acid (4 per group) following 50+ hours of transportation. Supplementation caused increases in plasma concentrations but both supplemented groups had decreased plasma ascorbic acid for 1 to 3 weeks following cessation of supplementation, possibly due to suppressed synthesis. Supplementation of ascorbic acid following prolonged stress will increase plasma concentrations, but prolonged supplementation should be avoided. Abstract Though horses synthesize ascorbic acid in their liver in amounts that meet their needs under normal circumstances, prolonged stress results in low plasma concentrations due to enhanced utilization and renal excretion and can reduce immune function. It was hypothesized that plasma ascorbic acid could be maintained in weanling horses by oral supplementation following prolonged transportation. Weanlings were supplemented with no ascorbic acid (Tx 0: n = 4), 5 grams ascorbic acid twice daily for 5 days (Tx 1: n = 4) or for 10 days (Tx 2: n = 4) following >50 hours of transportation. Supplementation caused slight (P < 0.2) increases in plasma ascorbic acid concentrations. Both supplemented groups had decreased (P < 0.05) plasma concentrations for 1 to 3 weeks following cessation of supplementation, possibly due to increased renal excretion or suppressed hepatic synthesis. Supplementation of ascorbic acid following prolonged stress will increase plasma concentrations, but prolonged supplementation should be avoided. PMID:26486916

  4. Investigation of the Ionization Mechanism of NAD+/NADH-Modified Gold Electrodes in ToF-SIMS Analysis.

    PubMed

    Hua, Xin; Zhao, Li-Jun; Long, Yi-Tao

    2018-06-04

    Analysis of nicotinamide adenine dinucleotide (NAD + /NADH)-modified electrodes is important for in vitro monitoring of key biological processes. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to analyze NAD + /NADH-modified gold electrodes. Interestingly, no obvious characteristic peaks of nicotinamide fragment could be observed in the mass spectra of NAD + /NADH in their neutral sodium pyrophosphate form. However, after acidification, the characteristic peaks for both NAD + and NADH were detected. This was due to the suppression effect of inner pyrophosphoric salts in both neutral molecules. Besides, it was proved that the suppression by inner salt was intramolecular. No obvious suppression was found between neighboring molecules. These results demonstrated the suppression effect of inner salts in ToF-SIMS analysis, providing useful evidence for the study of ToF-SIMS ionization mechanism of organic molecule-modified electrodes. Graphical Abstract ᅟ.

  5. Furfural reduction mechanism of a zinc-dependent alcohol dehydrogenase from Cupriavidus necator JMP134

    PubMed Central

    Kang, ChulHee; Hayes, Robert; Sanchez, Emiliano J.; Webb, Brian N.; Li, Qunrui; Hooper, Travis; Nissen, Mark S.; Xun, Luying

    2012-01-01

    Summary FurX is a tetrameric Zn-dependent alcohol dehydrogenase (ADH) from Cupriavidus necator JMP134. The enzyme rapidly reduces furfural with NADH as the reducing power. For the first time among characterized ADHs, the high-resolution structures of all reaction steps were obtained in a time-resolved manner, thereby illustrating the complete catalytic events of NADH-dependent reduction of furfural and the dynamic Zn2+ coordination among Glu66, water, substrate and product. In the fully closed conformation of the NADH complex, the catalytic turnover proved faster than observed for the partially closed conformation due to an effective proton transfer network. The domain motion triggered by NAD(H) association/dissociation appeared to facilitate dynamic interchanges in Zn2+ coordination with substrate and product molecules, ultimately increasing the enzymatic turnover rate. NAD+ dissociation appeared to be a slow process, involving multiple steps in concert with a domain opening and reconfiguration of Glu66. This agrees with the report that the cofactor is not dissociated from FurX during ethanol-dependent reduction of furfural, in which ethanol reduces NAD+ to NADH that is subsequently used for furfural reduction. PMID:22081946

  6. Equilibrium constant for calcium ion and ascorbate ion.

    PubMed

    Tsao, C S

    1984-02-15

    The combination of calcium and ascorbic acid in water at 25 degrees C has been examined by measuring the change of free calcium ion concentration as ascorbate was added in small increment to a solution of calcium. The data show clearly that complex formation between calcium ion and ascorbate ion occurred. At ionic strength mu = 0.1-0.2, the equilibrium constant of Ca++ and the singly-charged ascorbate ion has been measured to be 2.1 M-1. The precision of the result is better than 5% and the accuracy is estimated to be better than 20%. The application of the equilibrium constants is discussed.

  7. Mycoplasma bovis NADH oxidase functions as both a NADH oxidizing and O2 reducing enzyme and an adhesin.

    PubMed

    Zhao, Gang; Zhang, Hui; Chen, Xi; Zhu, Xifang; Guo, Yusi; He, Chenfei; Anwar Khan, Farhan; Chen, Yingyu; Hu, Changmin; Chen, Huanchun; Guo, Aizhen

    2017-03-03

    Mycoplasma bovis causes considerable economic losses in the cattle industry worldwide. In mycoplasmal infections, adhesion to the host cell is of the utmost importance. In this study, the amino acid sequence of NOX was predicted to have enzymatic domains. The nox gene was then cloned and expressed in Escherichia coli. The enzymatic activity of recombinant NOX (rNOX) was confirmed based on its capacity to oxidize NADH to NAD + and reduce O 2 to H 2 O 2 . The adherence of rNOX to embryonic bovine lung (EBL) cells was confirmed with confocal laser scanning microscopy, enzyme-linked immunosorbent assay, and flow cytometry. Both preblocking EBL cells with purified rNOX and preneutralizing M. bovis with polyclonal antiserum to rNOX significantly reduced the adherence of M. bovis to EBL cells. Mycoplasma bovis NOX- expressed a truncated NOX protein at a level 10-fold less than that of the wild type. The capacities of M. bovis NOX- for cell adhesion and H 2 O 2 production were also significantly reduced. The rNOX was further used to pan phage displaying lung cDNA library and fibronectin was determined to be potential ligand. In conclusion, M. bovis NOX functions as both an active NADH oxidase and adhesin, and is therefore a potential virulence factor.

  8. Crosstalk of Signaling and Metabolism Mediated by the NAD(+)/NADH Redox State in Brain Cells.

    PubMed

    Winkler, Ulrike; Hirrlinger, Johannes

    2015-12-01

    The energy metabolism of the brain has to be precisely adjusted to activity to cope with the organ's energy demand, implying that signaling regulates metabolism and metabolic states feedback to signaling. The NAD(+)/NADH redox state constitutes a metabolic node well suited for integration of metabolic and signaling events. It is affected by flux through metabolic pathways within a cell, but also by the metabolic state of neighboring cells, for example by lactate transferred between cells. Furthermore, signaling events both in neurons and astrocytes have been reported to change the NAD(+)/NADH redox state. Vice versa, a number of signaling events like astroglial Ca(2+) signals, neuronal NMDA-receptors as well as the activity of transcription factors are modulated by the NAD(+)/NADH redox state. In this short review, this bidirectional interdependence of signaling and metabolism involving the NAD(+)/NADH redox state as well as its potential relevance for the physiology of the brain and the whole organism in respect to blood glucose regulation and body weight control are discussed.

  9. NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from Sulfolobus acidocaldarius.

    PubMed

    Chen, Chin-Yu; Ko, Tzu-Ping; Lin, Kuan-Fu; Lin, Bo-Lin; Huang, Chun-Hsiang; Chiang, Cheng-Hung; Horng, Jia-Cherng

    2018-05-08

    Ketol-acid reductoisomerase (KARI) is a bifunctional enzyme in the second step of branched-chain amino acids biosynthetic pathway. Most KARIs prefer NADPH as a cofactor. However, KARI with a preference for NADH is desirable in industrial applications including anaerobic fermentation for the production of branched-chain amino acids or biofuels. Here, we characterize a thermoacidophilic archaeal Sac-KARI from Sulfolobus acidocaldarius and present its crystal structure at a 1.75-Å resolution. By comparison with other holo-KARI structures, one sulphate ion is observed in each binding site for the 2'-phosphate of NADPH, implicating its NADPH preference. Sac-KARI has very high affinity for NADPH and NADH, with K M values of 0.4 μM for NADPH and 6.0 μM for NADH, suggesting that both are good cofactors at low concentrations although NADPH is favoured over NADH. Furthermore, Sac-KARI can catalyze 2(S)-acetolactate (2S-AL) with either cofactor from 25 to 60 °C, but the enzyme has higher activity by using NADPH. In addition, the catalytic activity of Sac-KARI increases significantly with elevated temperatures and reaches an optimum at 60 °C. Bi-cofactor utilization and the thermoactivity of Sac-KARI make it a potential candidate for use in metabolic engineering or industrial applications under anaerobic or harsh conditions.

  10. The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration.

    PubMed

    Szarka, András; Bánhegyi, Gábor; Asard, Han

    2013-09-20

    Ascorbate, this multifaceted small molecular weight carbohydrate derivative, plays important roles in a range of cellular processes in plant cells, from the regulation of cell cycle, through cell expansion and senescence. Beyond these physiological functions, ascorbate has a critical role in responses to abiotic stresses, such as high light, high salinity, or drought. The biosynthesis, recycling, and intracellular transport are important elements of the balancing of ascorbate level to the always-changing conditions and demands. A bidirectional tight relationship was described between ascorbate biosynthesis and the mitochondrial electron transfer chain (mETC), since L-galactono-1,4-lactone dehydrogenase (GLDH), the enzyme catalyzing the ultimate step of ascorbate biosynthesis, uses oxidized cytochrome c as the only electron acceptor and has a role in the assembly of Complex I. A similar bidirectional relationship was revealed between the photosynthetic apparatus and ascorbate biosynthesis since the electron flux through the photosynthetic ETC affects the biosynthesis of ascorbate and the level of ascorbate could affect photosynthesis. The details of this regulatory network of photosynthetic electron transfer, respiratory electron transfer, and ascorbate biosynthesis are still not clear, as are the potential regulatory role and the regulation of intracellular ascorbate transport and fluxes. The elucidation of the role of ascorbate as an important element of the network of photosynthetic, respiratory ETC and tricarboxylic acid cycle will contribute to understanding plant cell responses to different stress conditions.

  11. Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols.

    PubMed

    Wei, Ping; Gao, Jia-Xin; Zheng, Gao-Wei; Wu, Hong; Zong, Min-Hua; Lou, Wen-Yong

    2016-07-20

    The novel anti-Prelog stereospecific carbonyl reductase from Acetobacter sp. CCTCC M209061 was successfully expressed in E. coli combined with glucose dehydrogenase (GDH) to construct an efficient whole-cell biocatalyst with coenzyme NADH regeneration. The enzymatic activity of GAcCR (AcCR with a GST tag) reached 304.9U/g-dcw, even 9 folds higher than that of wild strain, and the activity of GDH for NADH regeneration recorded 46.0U/mg-protein in the recombinant E. coli. As a whole-cell biocatalyst, the recombinant E. coli BL21(DE3)pLysS (pETDuet-gaccr-gdh) possessed a broad substrate spectrum for kinds of carbonyl compounds with encouraging yield and stereoselectivity. Besides, the asymmetric reduction of ethyl 4-chloroacetoacetate (COBE) to optically pure ethyl 4-chloro-3-hydroxybutyrate (CHBE) catalyzed by the whole-cell biocatalyst was systematically investigated. Under the optimal reaction conditions, the optical purity of CHBE was over 99% e.e. for (S)-enantiomer, and the initial rate and product yield reached 8.04μmol/min and 99.4%, respectively. Moreover, the space-time yield was almost 20 folds higher than that catalyzed by the wild strain. Therefore, a new, high efficiency biocatalyst for asymmetric reductions was constructed successfully, and the enantioselective reduction of prochiral compounds using the biocatalyst was a promising approach for obtaining enantiopure chiral alcohols. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ascorbic acid deficiency in patients with lichen planus.

    PubMed

    Nicolae, Ilinca; Mitran, Cristina Iulia; Mitran, Madalina Irina; Ene, Corina Daniela; Tampa, Mircea; Georgescu, Simona Roxana

    2017-01-01

    Recent studies have highlighted the role of oxidative stress in the pathogenesis of lichen planus (LP). In the present study, the interest of the authors is focused on the investigation of ascorbic acid status in patients with LP and identification of parameters that might influence the level of this vitamin. We analyzed the level of urinary ascorbic acid (reflectometric method) in 77 patients with LP (cutaneous LP (CLP)-49 cases; oral LP (OLP)-28 cases) and 50 control subjects. The evaluation of all participants included clinical examination and laboratory and imaging tests. Compared to the control group (19.82 mg/dl) the level of ascorbic acid was significantly lower both in patients with CLP (8.47 mg/dl, p = 0.001) and in those with OLP (8.04 mg/dl, p = 0.001). In patients with LP it was found that the deficiency of ascorbic acid increases with age (r = -0.318, p = 0.032). The urinary concentrations of ascorbic acid were significantly lower in patients with LP associated with infections compared to patients with LP without infections. The urinary ascorbic acid level may be a useful parameter in identifying patients with LP who are at risk of developing viral or bacterial infections.

  13. NADH induces the generation of superoxide radicals in leaf peroxisomes. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Rio, L.A.; Sandalio, L.M.; Palma, J.M.

    1989-03-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O{sub 2}{sup {minus}}) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O{sub 2}{sup {minus}} radicals. In the soluble fractions of peroxisomes, no generation of O{sub 2}{sup {minus}} radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive againstmore » xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes suggests that O{sub 2}{sup {minus}} generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related roles for peroxisomes in cellular metabolism.« less

  14. Crystallization and preliminary crystallographic analysis of a flavoprotein NADH oxidase from Lactobacillus brevis

    PubMed Central

    Kuzu, Mutlu; Niefind, Karsten; Hummel, Werner; Schomburg, Dietmar

    2005-01-01

    NADH oxidase (NOX) from Lactobacillus brevis is a homotetrameric flavoenzyme composed of 450 amino acids per subunit. The molecular weight of each monomer is 48.8 kDa. The enzyme catalyzes the oxidation of two equivalents of NADH and reduces one equivalent of oxygen to yield two equivalents of water, without releasing hydrogen peroxide after the reduction of the first equivalent of NADH. Crystals of this protein were grown in the presence of 34% polyethylene glycol monomethyl ether 2000, 0.1 M sodium acetate and 0.2 M ammonium sulfate at pH 5.4. They belong to the tetragonal space group P43212, with unit-cell parameters a = 74.8, b = 95.7, c = 116.9 Å, α = γ = 90, β = 103.8°. The current diffraction limit is 4.0 Å. The self-rotation function of the native data set is consistent with a NOX tetramer in the asymmetric unit. PMID:16511087

  15. Inhibition of cell proliferation and migration by oxidative stress from ascorbate-driven juglone redox cycling in human bladder-derived T24 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kviecinski, M.R., E-mail: mrkviecinski@hotmail.com; Pedrosa, R.C., E-mail: rozangelapedrosa@gmail.com; Felipe, K.B., E-mail: kakabettega@yahoo.com.br

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer The cytotoxicity of juglone is markedly increased by ascorbate. Black-Right-Pointing-Pointer T24 cell death by oxidative stress is necrosis-like. Black-Right-Pointing-Pointer Redox cycling by juglone/ascorbate inhibits cell proliferation. Black-Right-Pointing-Pointer Cellular migration is impaired by juglone/ascorbate. -- Abstract: The effects of juglone on T24 cells were assessed in the presence and absence of ascorbate. The EC{sub 50} value for juglone at 24 h decreased from 28.5 {mu}M to 6.3 {mu}M in the presence of ascorbate. In juglone-treated cells, ascorbate increased ROS formation (4-fold) and depleted GSH (65%). N-acetylcysteine or catalase restricted the juglone/ascorbate-mediated effects, highlighting the role of oxidative stress inmore » juglone cytotoxicity. Juglone alone or associated with ascorbate did not cause caspase-3 activation or PARP cleavage, suggesting necrosis-like cell death. DNA damage and the mild ER stress caused by juglone were both enhanced by ascorbate. In cells treated with juglone (1-5 {mu}M), a concentration-dependent decrease in cell proliferation was observed. Ascorbate did not impair cell proliferation but its association with juglone led to a clonogenic death state. The motility of ascorbate-treated cells was not affected. Juglone slightly restricted motility, but cells lost their ability to migrate most noticeably when treated with juglone plus ascorbate. We postulate that juglone kills cells by a necrosis-like mechanism inhibiting cell proliferation and the motility of T24 cells. These effects are enhanced in the presence of ascorbate.« less

  16. Contrasting effects of low versus high ascorbate doses on blood pressure responses to oral nitrite in L-NAME-induced hypertension.

    PubMed

    Pinheiro, Lucas C; Ferreira, Graziele C; Vilalva, Kelvin H; Toledo, José C; Tanus-Santos, Jose E

    2018-04-01

    Nitrite reduces blood pressure (BP) in both clinical and experimental hypertension. This effect is attributable to the formation of nitric oxide (NO) and other NO-related species, which may be improved by ascorbate or other antioxidants. However, the BP responses to oral nitrite result, at least in part, of increased gastric S-nitrosothiol formation. This study tested the hypothesis that ascorbate may destroy S-nitrosothiols and therefore not all doses of ascorbate enhance the BP responses to oral nitrite. We assessed the BP responses to oral sodim nitrite (0.2 mmol/kg) in L-NAME hypertensive rats pretreated with ascorbate (0, 0.02, 0.2, or 2 mmol/kg). Plasma and gastric wall concentrations of nitrite and nitroso compounds concentrations were determined using an ozone-based reductive chemiluminescence assay. Nitrate concentrations were determined using the Griess reaction. Free thiol concentrations were determined by a colorimetric assay. The BP responses to nitrite exhibited a bell-shape profile as they were not modified by ascorbate 0.02 mmol/l, whereas the 0.2 mmol/kg dose enhanced and the 2 mmol/kg dose attenuated BP responses. In parallel with BP responses, nitrite-induced increases in plasma nitrite and RSNO species were not modified by ascorbate 0.02 mmol/l, whereas the 0.2 mmol/kg dose enhanced and the 2 mmol/kg dose attenuated them. Similar experiments were carried out with an equimolar dose of S-nitrosogluthathione. Ascorbate dose-dependently impaired the BP responses to S-nitrosogluthathione, and the corresponding increases in plasma RSNO, but not in plasma nitrite concentrations. This is the first study to show that while ascorbate dose-dependently impairs the BP responses to oral S-nitrosogluthathione, there are contrasting effects when low versus high ascorbate doses are compared with respect to its effects on the blood pressure responses to oral nitrite administration. Our findings may have special implications to patients taking

  17. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    PubMed

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Treatment of Irradiated Mice with High-Dose Ascorbic Acid Reduced Lethality

    PubMed Central

    Sato, Tomohito; Kinoshita, Manabu; Yamamoto, Tetsuo; Ito, Masataka; Nishida, Takafumi; Takeuchi, Masaru; Saitoh, Daizoh; Seki, Shuhji; Mukai, Yasuo

    2015-01-01

    Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure. PMID:25651298

  19. Localization of Ubiquinone-8 in the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae*

    PubMed Central

    Casutt, Marco S.; Nedielkov, Ruslan; Wendelspiess, Severin; Vossler, Sara; Gerken, Uwe; Murai, Masatoshi; Miyoshi, Hideto; Möller, Heiko M.; Steuber, Julia

    2011-01-01

    Na+ is the second major coupling ion at membranes after protons, and many pathogenic bacteria use the sodium-motive force to their advantage. A prominent example is Vibrio cholerae, which relies on the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) as the first complex in its respiratory chain. The Na+-NQR is a multisubunit, membrane-embedded NADH dehydrogenase that oxidizes NADH and reduces quinone to quinol. Existing models describing redox-driven Na+ translocation by the Na+-NQR are based on the assumption that the pump contains four flavins and one FeS cluster. Here we show that the large, peripheral NqrA subunit of the Na+-NQR binds one molecule of ubiquinone-8. Investigations of the dynamic interaction of NqrA with quinones by surface plasmon resonance and saturation transfer difference NMR reveal a high affinity, which is determined by the methoxy groups at the C-2 and C-3 positions of the quinone headgroup. Using photoactivatable quinone derivatives, it is demonstrated that ubiquinone-8 bound to NqrA occupies a functional site. A novel scheme of electron transfer in Na+-NQR is proposed that is initiated by NADH oxidation on subunit NqrF and leads to quinol formation on subunit NqrA. PMID:21885438

  20. Coulometric determination of NAD+ and NADH in normal and cancer cells using LDH, RVC and a polymer mediator.

    PubMed

    Torabi, F; Ramanathan, K; Larsson, P O; Gorton, L; Svanberg, K; Okamoto, Y; Danielsson, B; Khayyami, M

    1999-11-15

    An electrochemical method for the measurement of NAD(+) and NADH in normal and cancer tissues using flow injection analysis (FIA) is reported. Reticulated vitreous carbon (RVC) electrodes with entrapped l-lactate dehydrogenase (LDH) and a new redox polymer containing covalently bound toluidine blue O (TBO) were employed for this purpose. Both NAD(+) and NADH were estimated coulometrically based on their reaction with LDH. The latter was immobilized on controlled pore glass (CPG) by cross-linking with glutaraldehyde and packed within the RVC. The concentrations of NAD(+) and NADH in the tissues, estimated using different electron mediators such as ferricyanide (FCN), meldola blue (MB) and TBO have also been compared. The effects of flow rate, pH, applied potential (versus Ag/AgCl reference) and adsorption of the mediators have also been investigated. Based on the measurements of NAD(+) and NADH in normal and cancer tissues it has been concluded that the NADH concentration is lower, while the NAD(+) concentration is higher in cancer tissues. Amongst the electron mediators TBO was found to be a more stable mediator for such measurements.

  1. Activity of a sodium-dependent vitamin C transporter (SVCT) in MDCK-MDR1 cells and mechanism of ascorbate uptake

    PubMed Central

    Luo, Shuanghui; Wang, Zhiying; Kansara, Viral; Pal, Dhananjay; Mitra, Ashim. K.

    2008-01-01

    The objective of this research was to functionally characterize sodium-dependent vitamin C transporter (SVCT) in MDCK-MDR1 cells and to study the effect of substituted benzene derivatives on the intracellular accumulation of ascorbic acid (AA). Mechanism of AA uptake and transport was delineated. Uptake of [14C]ascorbic acid ([14C]AA) was studied in the absence and presence of excess unlabelled AA, anion transporter inhibitors, and a series of mono- and di- substituted benzenes. Transepithelial transport of [14C]AA across polarized cell membrane has been studied for the first time. Role of cellular protein kinase mediated pathways on the regulation of AA uptake has been investigated. The cellular localizations of SVCTs were observed using confocal microscopy. Uptake of AA was found to be saturable with a Km of 83.2 μM and Vmax of 94.2 pmol/min/mg protein for SVCT1. The process was pH, sodium, temperature, and energy dependent. It was under the regulation of cellular protein kinase C (PKC) and Ca2+/CaM mediated pathways. [14C]AA uptake was significantly inhibited in the presence of excess unlabelled AA and a series of electron-withdrawing group i.e. halogen- and nitro- substituted benzene derivatives. AA appears to translocate across polarized cell membrane from apical to basal side (A−B) as well as basal to apical side (B−A) at a similar permeability. It appears that SVCT1 was mainly expressed on the apical side and SVCT2 may be located on both apical and basal sides. In conclusion, SVCT has been functionally characterized in MDCK-MDR1 cells. The interference of a series of electrophile substituted benzenes on the AA uptake process may be explained by their structural similarity. SVCT may be targeted to facilitate the delivery of drugs with low bioavailability by conjugating with AA and its structural analogs. MDCK-MDR1 cell line may be utilized as an in vitro model to study the permeability of AA conjugated prodrugs. PMID:18417304

  2. Formation of an ascorbate-apatite composite layer on titanium.

    PubMed

    Ito, Atsuo; Sogo, Yu; Ebihara, Yuko; Onoguchi, Masahiro; Oyane, Ayako; Ichinose, Noboru

    2007-09-01

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 degrees C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 microg mm(-2), which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute.

  3. Kinetic mechanism and quaternary structure of Aminobacter aminovorans NADH:flavin oxidoreductase: an unusual flavin reductase with bound flavin.

    PubMed

    Russell, Thomas R; Demeler, Borries; Tu, Shiao-Chun

    2004-02-17

    The homodimeric NADH:flavin oxidoreductase from Aminobacter aminovorans is an NADH-specific flavin reductase herein designated FRD(Aa). FRD(Aa) was characterized with respect to purification yields, thermal stability, isoelectric point, molar absorption coefficient, and effects of phosphate buffer strength and pH on activity. Evidence from this work favors the classification of FRD(Aa) as a flavin cofactor-utilizing class I flavin reductase. The isolated native FRD(Aa) contained about 0.5 bound riboflavin-5'-phosphate (FMN) per enzyme monomer, but one bound flavin cofactor per monomer was obtainable in the presence of excess FMN or riboflavin. In addition, FRD(Aa) holoenzyme also utilized FMN, riboflavin, or FAD as a substrate. Steady-state kinetic results of substrate titrations, dead-end inhibition by AMP and lumichrome, and product inhibition by NAD(+) indicated an ordered sequential mechanism with NADH as the first binding substrate and reduced FMN as the first leaving product. This is contrary to the ping-pong mechanism shown by other class I flavin reductases. The FMN bound to the native FRD(Aa) can be fully reduced by NADH and subsequently reoxidized by oxygen. No NADH binding was detected using 90 microM FRD(Aa) apoenzyme and 300 microM NADH. All results favor the interpretation that the bound FMN was a cofactor rather than a substrate. It is highly unusual that a flavin reductase using a sequential mechanism would require a flavin cofactor to facilitate redox exchange between NADH and a flavin substrate. FRD(Aa) exhibited a monomer-dimer equilibrium with a K(d) of 2.7 microM. Similarities and differences between FRD(Aa) and certain flavin reductases are discussed.

  4. In vitro regeneration and ploidy level analysis of Eulophia ochreata Lindl.

    PubMed

    Shriram, Varsha; Nanekar, Vikas; Kumar, Vinay; Kavi Kishor, P B

    2014-11-01

    Various parameters including explant-type, medium compositions, use of phytohormones and additives were optimized for direct and indirect regeneration of E. ochreata, a medicinal orchid under threat. Protocorm-like-bodies (PLBs) proved to be the best explants for shoot initiation, proliferation and callus induction. Murashige and Skoog's (MS) medium containing 2.5 mg L(-1) 6-benzylaminopurine (BAP), 1.0 mg L(-1) kinetin (Kin) and additives (adenine sulfate, arginine, citric acid, 30 mg L(-1) each and 50 mg L(-1) ascorbic acid) was optimal for shoot multiplication (12.1 shoots and 7.1 PLBs per explant with synchronized growth), which also produced callus. Shoot number was further increased with three successive subcultures on same media and approximately 40 shoots per explant were achieved after 3 cycles of 30 days each. Additives and casein hydrolysate (CH) showed advantageous effects on indirect shoot regeneration via protocorm-derived callus. Optimum indirect regeneration was achieved on MS containing additives, 500 mg L(-1) CH, 2.5 mg L(-1) BAP and 1.0 mg L(-1) Kin with 30 PLBs and 6 shoots per callus mass (approximately 5 mm size). The shoots were rooted (70% frequency) on one by fourth-MS medium containing 2.0 mg L(-1) indole-3-butyric acid, 200 mg L(-1) activated charcoal and additives. The rooted plantlets were hardened and transferred to greenhouse with 63% survival rate. Flow-cytometry based DNA content analysis revealed that the ploidy levels were maintained in in vitro regenerated plants. This is the first report for in vitro plant regeneration in E. ochreata.

  5. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio

  6. Hsp47 mediates Cx43-dependent skeletal growth and patterning in the regenerating fin.

    PubMed

    Bhadra, Joyita; Iovine, M Kathryn

    2015-11-01

    Skeletal morphogenesis describes how bones achieve their correct shape and size and appropriately position joints. We use the regenerating caudal fin of zebrafish to study this process. Our examination of the fin length mutant short fin (sof (b123)) has revealed that the gap junction protein Cx43 is involved in skeletal morphogenesis by promoting cell proliferation and inhibiting joint formation, thereby coordinating skeletal growth and patterning. Here we demonstrate that serpinh1b is molecularly and functionally downstream of cx43. The gene serpinh1b codes for a protein called Hsp47, a molecular chaperone responsible for proper folding of procollagen molecules. Knockdown of Hsp47 in regenerating fins recapitulates the sof (b123) phenotypes of reduced fin length, reduced segment length and reduced level of cell proliferation. Furthermore, Hsp47 knockdown affects the organization and localization of the collagen-based actinotrichia. Together, our findings reveal that serpinh1b acts in a cx43 dependent manner to regulate cell proliferation and joint formation. We conclude that disruption of the collagen-based extracellular matrix influences signaling events required for cell proliferation, as well as the patterning of skeletal precursor cells that influences segment length. Therefore, we suggest that Hsp47 function is necessary for skeletal growth and patterning during fin regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A light-responsive and periodic NADH oxidase activity of the cell surface of Tetrahymena and of human buffy coat cells

    NASA Technical Reports Server (NTRS)

    Peter, A. D.; Morre, D. J.; Morre, D. M.

    2000-01-01

    Oxidation of external NADH (NADH is an impermeant substrate) by cells of Tetrahymena pyriformis oscillated with a period of 24-26 min. The period length in darkness (25.6 min) appeared to be slightly longer than the period in light (approximately 24 min). When Tetrahymena were placed in darkness for 30-50 min and then returned to light, a new maximum in the rate of NADH oxidation was observed 36-38 min (13 + 24) min after the beginning of the light treatment. The cell-surface NADH oxidase of human buffy coats (a mixture of white cells and platelets) also was periodic and light responsive.

  8. Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus.

    PubMed

    Hektor, Harm J; Kloosterman, Harm; Dijkhuizen, Lubbert

    2002-12-06

    The Bacillus methanolicus methanol dehydrogenase (MDH) is a decameric nicotinoprotein alcohol dehydrogenase (family III) with one Zn(2+) ion, one or two Mg(2+) ions, and a tightly bound cofactor NAD(H) per subunit. The Mg(2+) ions are essential for binding of cofactor NAD(H) in MDH. A B. methanolicus activator protein strongly stimulates the relatively low coenzyme NAD(+)-dependent MDH activity, involving hydrolytic removal of the NMN(H) moiety of cofactor NAD(H) (Kloosterman, H., Vrijbloed, J. W., and Dijkhuizen, L. (2002) J. Biol. Chem. 277, 34785-34792). Members of family III of NAD(P)-dependent alcohol dehydrogenases contain three unique, conserved sequence motifs (domains A, B, and C). Domain C is thought to be involved in metal binding, whereas the functions of domains A and B are still unknown. This paper provides evidence that domain A constitutes (part of) a new magnesium-dependent NAD(P)(H)-binding domain. Site-directed mutants D100N and K103R lacked (most of the) bound cofactor NAD(H) and had lost all coenzyme NAD(+)-dependent MDH activity. Also mutants G95A and S97G were both impaired in cofactor NAD(H) binding but retained coenzyme NAD(+)-dependent MDH activity. Mutant G95A displayed a rather low MDH activity, whereas mutant S97G was insensitive to activator protein but displayed "fully activated" MDH reaction rates. The various roles of these amino acid residues in coenzyme and/or cofactor NAD(H) binding in MDH are discussed.

  9. Mutational analysis of the hyc-operon determining the relationship between hydrogenase-3 and NADH pathway in Enterobacter aerogenes.

    PubMed

    Pi, Jian; Jawed, Muhammad; Wang, Jun; Xu, Li; Yan, Yunjun

    2016-01-01

    In this study, the hydrogenase-3 gene cluster (hycDEFGH) was isolated and identified from Enterobacter aerogenes CCTCC AB91102. All gene products were highly homologous to the reported bacterial hydrogenase-3 (Hyd-3) proteins. The genes hycE, hycF, hycG encoding the subunits of hydrogenase-3 were targeted for genetic knockout to inhibit the FHL hydrogen production pathway via the Red recombination system, generating three mutant strains AB91102-E (ΔhycE), AB91102-F (ΔhycF) and AB91102-G (ΔhycG). Deletion of the three genes affected the integrity of hydrogenase-3. The hydrogen production experiments with the mutant strains showed that no hydrogen was detected compared with the wild type (0.886 mol/mol glucose), demonstrating that knocking out any of the three genes could inhibit NADH hydrogen production pathway. Meanwhile, the metabolites of the mutant strains were significantly changed in comparison with the wild type, indicating corresponding changes in metabolic flux by mutation. Additionally, the activity of NADH-mediated hydrogenase was found to be nil in the mutant strains. The chemostat experiments showed that the NADH/NAD(+) ratio of the mutant strains increased nearly 1.4-fold compared with the wild type. The NADH-mediated hydrogenase activity and NADH/NAD(+) ratio analysis both suggested that NADH pathway required the involvement of the electron transport chain of hydrogenase-3. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate.

    PubMed

    Wang, X; Miller, E N; Yomano, L P; Zhang, X; Shanmugam, K T; Ingram, L O

    2011-08-01

    Furfural is an important fermentation inhibitor in hemicellulose sugar syrups derived from woody biomass. The metabolism of furfural by NADPH-dependent oxidoreductases, such as YqhD (low K(m) for NADPH), is proposed to inhibit the growth and fermentation of xylose in Escherichia coli by competing with biosynthesis for NADPH. The discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural provided a new approach to improve furfural tolerance. Strains that produced ethanol or lactate efficiently as primary products from xylose were developed. These strains included chromosomal mutations in yqhD expression that permitted the fermentation of xylose broths containing up to 10 mM furfural. Expression of fucO from plasmids was shown to increase furfural tolerance by 50% and to permit the fermentation of 15 mM furfural. Product yields with 15 mM furfural were equivalent to those of control strains without added furfural (85% to 90% of the theoretical maximum). These two defined genetic traits can be readily transferred to enteric biocatalysts designed to produce other products. A similar strategy that minimizes the depletion of NADPH pools by native detoxification enzymes may be generally useful for other inhibitory compounds in lignocellulosic sugar streams and with other organisms.

  11. Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered for the Production of Ethanol and Lactate▿

    PubMed Central

    Wang, X.; Miller, E. N.; Yomano, L. P.; Zhang, X.; Shanmugam, K. T.; Ingram, L. O.

    2011-01-01

    Furfural is an important fermentation inhibitor in hemicellulose sugar syrups derived from woody biomass. The metabolism of furfural by NADPH-dependent oxidoreductases, such as YqhD (low Km for NADPH), is proposed to inhibit the growth and fermentation of xylose in Escherichia coli by competing with biosynthesis for NADPH. The discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural provided a new approach to improve furfural tolerance. Strains that produced ethanol or lactate efficiently as primary products from xylose were developed. These strains included chromosomal mutations in yqhD expression that permitted the fermentation of xylose broths containing up to 10 mM furfural. Expression of fucO from plasmids was shown to increase furfural tolerance by 50% and to permit the fermentation of 15 mM furfural. Product yields with 15 mM furfural were equivalent to those of control strains without added furfural (85% to 90% of the theoretical maximum). These two defined genetic traits can be readily transferred to enteric biocatalysts designed to produce other products. A similar strategy that minimizes the depletion of NADPH pools by native detoxification enzymes may be generally useful for other inhibitory compounds in lignocellulosic sugar streams and with other organisms. PMID:21685167

  12. Electrochemical impedance based chiral analysis of anti-ascorbutic drug: l-Ascorbic acid and d-ascorbic acid using C-dots decorated conductive polymer nano-composite electrode.

    PubMed

    Pandey, Indu; Kant, Rama

    2016-03-15

    Clinical manifestations owing to l-ascorbic acid for scurvy as comparison to d-ascorbic acid and challenges of chiral purity are overcome by using chiral selective conductive polymer nanocomposite which mimics antibodies and enzymes. A novel chiral selective imprinted polyaniline-ferrocene-sulfonic acid film has been electrochemically fabricated on C-dots modified pencil graphite electrode. The performance of the obtained l-ascorbic acid or d-ascorbic acid chiral selective sensor was investigated by electrochemical impedance spectroscopy, cyclic and differential pulse voltammetry. The surface characteristics of the C-dots, chiral sensor before and after the de-doping of chiral d- and l-ascorbic acid were characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction spectroscopy. Excellent recognition results were obtained by difference in electron transfer resistance. The proposed chiral sensor is capable of measuring d-ascorbic acid or l-ascorbic acid in aqueous as well as in real and commercial samples within the range of 0.020-0.187 nM and 0.003-0.232 nM with detection limit of 0.00073 nM and 0.00016 nM, respectively. The proposed method has also been examined for the chiral selective recognition of ascorbic acid isomers (d- and l-) quantitatively, in complicated matrices of real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The use of cyclic voltammetry to study the oxidation of l-5-methyltetrahydrofolate and its preservation by ascorbic acid.

    PubMed

    Rozoy, Elodie; Simard, Stephan; Liu, Yazheng; Kitts, David; Lessard, Jean; Bazinet, Laurent

    2012-06-01

    A cyclic voltammetry study of 1mM l-5-methyltetrahydrofolate (l-5-MTHF) was performed in pH 5.5 Britton-Robinson buffer at room temperature to study the stability of l-5-MTHF alone and in combination with ascorbic acid (AA). The degradation of l-5-MTHF and AA over a period of 12h both followed first order reaction kinetics. Using this technique, oxidation peaks of l-5-MTHF were identified at +0.17 and +1.18V, and another oxidation peak appeared after 4h under air at +0.89V. Cyclic voltammetry and HPLC quantification enable us to confirm that l-5-MTHF can be highly preserved by the addition of an equimolar concentration of AA. This treatment was equivalent to a purge of nitrogen used to remove oxygen and thus minimise oxidation of l-5-MTHF when present in aqueous solutions. HPLC confirmed the fact that a full regeneration of oxidised l-5-MTHF occurred with the addition of sodium ascorbate, thus denoting that the redox character of l-5-MTHF can be controlled by the presence of reducing agents. Cyclic voltammetry proved to be a sensitive and accurate method for characterising l-5-MTHF oxidation and potential preservation with ascorbic acid. To our knowledge, this is the first study that has demonstrated the number of oxidation sites on l-5-MTHF. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Direct spectrophotometric measurement of supra-physiological levels of ascorbate in plasma.

    PubMed

    Witmer, Jordan R; Wetherell, Bailey J; Wagner, Brett A; Du, Juan; Cullen, Joseph J; Buettner, Garry R

    2016-08-01

    Supra-physiological concentrations of ascorbate, vitamin C, in blood, greater than 1mM, achieved through intravenous administration (IV), are being tested in clinical trials to treat human disease, e.g. cancer. These trials need information on the high levels of ascorbate achieved in blood upon IV administration of pharmacological ascorbate so appropriate clinical decisions can be made. Here we demonstrate that in the complex matrix of human blood plasma supra-physiological levels of ascorbate can be quantified by direct UV spectroscopy with use of a microvolume UV-vis spectrophotometer. Direct quantitation of ascorbate in plasma in the range of 2.9mM, lower limit of detection, up to at least 35mM can be achieved without any sample processing, other than centrifugation. This approach is rapid, economical, and can be used to quantify supraphysiological blood levels of ascorbate associated with the use of IV administration of pharmacological ascorbate to treat disease. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Manipulations to regenerate aspen ecosystems

    Treesearch

    Wayne D. Shepperd

    2001-01-01

    Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...

  16. Removal of H2O2 and generation of superoxide radical: Role of cytochrome c and NADH

    PubMed Central

    Velayutham, Murugesan; Hemann, Craig; Zweier, Jay L.

    2011-01-01

    In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD•, which in turn donates an electron to O2 resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release (RIRR)” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical

  17. Nutritional aspects of ascorbic acid: uses and abuses.

    PubMed

    Vilter, R W

    1980-12-01

    Ascorbic acid in physiological doses is essential for the normal functioning of the human body. Larger doses are required to treat a severe deficiency of vitamin C intake, as in the case of scurvy. Occasionally, massive doses may be required to treat a metabolic defect involving ascorbic acid. There has been some mention of megadose therapy with ascorbic acid for the prevention of colds, the improved healing of wounds and even the treatment of cancer, but no acceptable scientific data have been presented. In fact, in a few instances, such therapy has proved injurious.

  18. Ascorbate-mediated regulation of growth, photoprotection and photoinhibition in Arabidopsis thaliana.

    PubMed

    Plumb, William; Townsend, Alexandra J; Rasool, Brwa; Alomrani, Sarah; Razak, Nurhayati; Karpinska, Barbara; Ruban, Alexander V; Foyer, Christine H

    2018-05-03

    The requirements of growth and photosynthesis for ascorbate were assessed under low (LL; 250 μmol m-2 s-1) or high (HL; 1600 μmol m-2 s-1) irradiance in wild type Arabidopsis thaliana and two ascorbate synthesis mutants (vtc2-1 and vtc2-4) that have 30% wild type ascorbate levels. The low ascorbate mutants had the same numbers of leaves but lower rosette area and biomass than the wild type under LL. Wild type plants experiencing HL had higher leaf ascorbate, anthocyanin and xanthophyll pigments than under LL. In contrast, leaf ascorbate levels were not increased under HL in the mutant lines. While the degree of oxidation measured using an in vivo redox reporter in the nuclei and cytosol of the leaf epidermal and stomatal cells was similar under both irradiances in all lines, anthocyanin levels were significantly lower than in the low ascorbate mutants than the wild type under HL. Differences in the photosynthetic responses of vtc2-1 and vtc2-4 mutants were observed. Unlike vtc2-1, the vtc2-4 mutants had wild type zeaxanthin contents. While both low ascorbate mutants had lower NPQ levels than the wild type under HL, qPd values were greater only in vtc2-1 leaves. Ascorbate is therefore essential for growth but not photoprotection.

  19. Rabbit aortic endothelial dysfunction by low-density lipoprotein is attenuated by L-arginine, L-ascorbate and pyridoxine

    PubMed Central

    Ji, Yong; Han, Yi; Diao, Jianxin; Huang, Yan; Chen, Qi; Ferro, Albert

    2003-01-01

    We investigated the relative effectiveness of L-arginine, L-ascorbate and pyridoxine in preventing the impairment of endothelium-mediated vasorelaxation induced by native low-density lipoprotein (nLDL) from healthy subjects, oxidised LDL (oxLDL, formed by oxidation of nLDL) or nLDL from type II diabetic patients (dLDL). Rabbit aortic rings were exposed to nLDL, dLDL or oxLDL (50–200 mg protein l−1), or corresponding vehicle, following which they were constricted with noradrenaline 10−6 M; concentration–relaxation curves were determined to acetylcholine (ACh), A23187, or sodium nitroprusside (NP), in the absence or presence of L-arginine (10−5–10−3 M), L-ascorbate (10−5–10−3 M) and pyridoxine (0.5–2.0 mM). nLDL, dLDL and oxLDL all inhibited relaxant responses to ACh and A23187, but not to NP, in a concentration-dependent manner (oxLDL>dLDL>nLDL). In the presence of all LDL preparations, L-arginine, L-ascorbate or pyridoxine each improved ACh and A23187 responses, although none completely normalised endothelium-dependent relaxations. The maximal effect of L-arginine occurred at 10−4 M. The combination of L-arginine 10−4 M, L-ascorbate 10−5 M and pyridoxine 2.0 mM was equally effective as L-arginine 10−4 M alone. Our results confirm that nLDL, dLDL and oxLDL exert inhibitory effects on endothelium dependent, but not endothelium independent, relaxation of rabbit aorta. ACh and A23187 responses in the presence of any LDL species can be ameliorated by supplementation with L-arginine, L-ascorbate or pyridoxine, either singly or in combination, with no agent or combination proving superior to L-arginine alone. Nevertheless, ACh and A23187 responses are not completely normalised with such supplements, suggesting that there also exists a component of LDL-induced inhibition of endothelium-mediated vasorelaxation that is independent of the nitric oxide system. PMID:14597596

  20. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  1. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-01-01

    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587

  2. Studies of a Halophilic NADH Dehydrogenase. 1: Purification and Properties of the Enzyme

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Dalton, Bonnie P.

    1973-01-01

    An NADH dehydrogenase obtained from an extremely halophilic bacterium was purified 570-fold by a combination of gel filtration, chromatography on hydroxyapatite, and ion-exchange chromatography on QAE-Sephadex. The purified enzyme appeared to be FAD-linked and bad an apparent molecular weight of 64000. Even though enzyme activity was stimulated by NaCl, considerable activity (430 % of the maximum activity observed in the presence of 2.5 M NaCl) was observed in the absence of added NaCl. The enzyme was unstable when incubated in solutions of low ionic strength. The presence of NADH enhanced the stability of the enzyme.

  3. Degradation of L-Ascorbic Acid in the Amorphous Solid State.

    PubMed

    Sanchez, Juan O; Ismail, Yahya; Christina, Belinda; Mauer, Lisa J

    2018-03-01

    Ascorbic acid degradation in amorphous solid dispersions was compared to its degradation in the crystalline state. Physical blends and lyophiles of ascorbic acid and polymers (pectins and polyvinylpyrrolidone [PVP]) were prepared initially at 50:50 (w/w), with further studies using the polymer that best inhibited ascorbic acid crystallization in the lyophiles in 14 vitamin : PVP ratios. Samples were stored in controlled environments (25 to 60 °C, 0% to 23% RH) for 1 mo and analyzed periodically to track the physical appearance, change in moisture content, physical state (powder x-ray diffraction and polarized light microscopy), and vitamin loss (high performance liquid chromatography) over time. The glass transition temperatures of select samples were determined using differential scanning calorimetry, and moisture sorption profiles were generated. Ascorbic acid in the amorphous form, even in the glassy amorphous state, was more labile than in the crystalline form in some formulations at the highest storage temperature. Lyophiles stored at 25 and 40 °C and those in which ascorbic acid had crystallized at 60 °C (≥70% ascorbic acid : PVP) had no significant difference in vitamin loss (P > 0.05) relative to physical blend controls, and the length of storage had little effect. At 60 °C, amorphous ascorbic acid lyophiles (≤60% ascorbic acid : PVP) lost significantly more vitamin (P < 0.05) relative to physical blend controls after 1 wk, and vitamin loss significantly increased over time. In these lyophiles, vitamin degradation also significantly increased (P < 0.05) at lower proportions of ascorbic acid, a scenario likely encountered in foods wherein vitamins are naturally present or added at low concentrations and production practices may promote amorphization of the vitamin. Vitamin C is one of the most unstable vitamins in foods. This study documents that amorphous ascorbic acid is less stable than crystalline ascorbic acid in some environments (for example

  4. Dissection of the Caffeate Respiratory Chain in the Acetogen Acetobacterium woodii: Identification of an Rnf-Type NADH Dehydrogenase as a Potential Coupling Site▿

    PubMed Central

    Imkamp, Frank; Biegel, Eva; Jayamani, Elamparithi; Buckel, Wolfgang; Müller, Volker

    2007-01-01

    The anaerobic acetogenic bacterium Acetobacterium woodii couples caffeate reduction with electrons derived from hydrogen to the synthesis of ATP by a chemiosmotic mechanism with sodium ions as coupling ions, a process referred to as caffeate respiration. We addressed the nature of the hitherto unknown enzymatic activities involved in this process and their cellular localization. Cell extract of A. woodii catalyzes H2-dependent caffeate reduction. This reaction is strictly ATP dependent but can be activated also by acetyl coenzyme A (CoA), indicating that there is formation of caffeyl-CoA prior to reduction. Two-dimensional gel electrophoresis revealed proteins present only in caffeate-grown cells. Two proteins were identified by electrospray ionization-mass spectrometry/mass spectrometry, and the encoding genes were cloned. These proteins are very similar to subunits α (EtfA) and β (EtfB) of electron transfer flavoproteins present in various anaerobic bacteria. Western blot analysis demonstrated that they are induced by caffeate and localized in the cytoplasm. Etf proteins are known electron carriers that shuttle electrons from NADH to different acceptors. Indeed, NADH was used as an electron donor for cytosolic caffeate reduction. Since the hydrogenase was soluble and used ferredoxin as an electron acceptor, the missing link was a ferredoxin:NAD+ oxidoreductase. This activity could be determined and, interestingly, was membrane bound. A search for genes that could encode this activity revealed DNA fragments encoding subunits C and D of a membrane-bound Rnf-type NADH dehydrogenase that is a potential Na+ pump. These data suggest the following electron transport chain: H2 → ferredoxin → NAD+ → Etf → caffeyl-CoA reductase. They also imply that the sodium motive step in the chain is the ferredoxin-dependent NAD+ reduction catalyzed by Rnf. PMID:17873051

  5. Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance.

    PubMed

    Gautier, Hélène; Massot, Capucine; Stevens, Rebecca; Sérino, Sylvie; Génard, Michel

    2009-02-01

    The mechanisms involving light control of vitamin C content in fruits are not yet fully understood. The present study aimed to evaluate the impact of fruit and leaf shading on ascorbate (AsA) accumulation in tomato fruit and to determine how fruit sugar content (as an AsA precursor) affected AsA content. Cherry tomato plants were grown in a glasshouse. The control treatment (normally irradiated fruits and irradiated leaves) was compared with the whole-plant shading treatment and with leaf or fruit shading treatments in fruits harvested at breaker stage. In a second experiment, the correlation between sugars and AsA was studied during ripening. Fruit shading was the most effective treatment in reducing fruit AsA content. Under normal conditions, AsA and sugar content were correlated and increased with the ripening stage. Reducing fruit irradiance strongly decreased the reduced AsA content (-74 %), without affecting sugars, so that sugar and reduced AsA were no longer correlated. Leaf shading delayed fruit ripening: it increased the accumulation of oxidized AsA in green fruits (+98 %), whereas it decreased the reduced AsA content in orange fruits (-19 %), suggesting that fruit AsA metabolism also depends on leaf irradiance. Under fruit shading only, the absence of a correlation between sugars and reduced AsA content indicated that fruit AsA content was not limited by leaf photosynthesis or sugar substrate, but strongly depended on fruit irradiance. Leaf shading most probably affected fruit AsA content by delaying fruit ripening, and suggested a complex regulation of AsA metabolism which depends on both fruit and leaf irradiance and fruit ripening stage.

  6. Effects of ascorbic acid enrichment by immersion of rainbow trout (Oncorhynchus mykiss, Walbaum 1792) eggs and embryos

    USGS Publications Warehouse

    Falahatkar, B.; Dabrowski, K.; Arslan, M.; Rinchard, J.

    2006-01-01

    This study was conducted to examine the effects of different forms and concentrations of ascorbic acid (vitamin C), and different enrichment times (24 and 48 h post ovulation) on egg, embryo and alevin ascorbate concentrations and survival of rainbow trout (enrichment was at the ova stage). In experiments 1 and 2, fertilized eggs were immersed in water containing ascorbate at 0 (control), 100, 1000 mg L-1 l-ascorbic acid (AA) and 2000 mg L -1 l-ascorbyl monophosphate (AP). In experiment 3, 0 (control), 500 and 1000 mg L-1 AA neutralized (N) with NaOH, 1000 mg L-1 AA non-neutralized (NN), 1000 and 2000 mg L-1 AP immersions were used. The mean total ascorbic acid (TAA) and dehydroascorbic acid (DHA) concentrations were measured before fertilization, at 3 and 24 h after fertilization, at the eyed stage, and in hatched alevins. We observed significant differences in TAA concentration at different immersion levels at 3 and 24 h after fertilization. Survival decreased significantly depending on the level of vitamin C, pH of the solutions and immersion time. We suggest that when broodstock rainbow trout do not have enough vitamin C in their ovaries, immersion of eggs in 1000 mg L-1 of neutralized AA may be useful. ?? 2006 Blackwell Publishing Ltd.

  7. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate

    PubMed Central

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth

  8. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate.

    PubMed

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth

  9. MSC/ECM Cellular Complexes Induce Periodontal Tissue Regeneration.

    PubMed

    Takewaki, M; Kajiya, M; Takeda, K; Sasaki, S; Motoike, S; Komatsu, N; Matsuda, S; Ouhara, K; Mizuno, N; Fujita, T; Kurihara, H

    2017-08-01

    Transplantation of mesenchymal stem cells (MSCs), which possess self-renewing properties and multipotency, into a periodontal defect is thought to be a useful option for periodontal tissue regeneration. However, developing more reliable and predictable implantation techniques is still needed. Recently, we generated clumps of an MSC/extracellular matrix (ECM) complex (C-MSC), which consisted of cells and self-produced ECM. C-MSCs can regulate their cellular functions in vitro and can be grafted into a defect site, without any artificial scaffold, to induce bone regeneration. Accordingly, this study aimed to evaluate the effect of C-MSC transplantation on periodontal tissue regeneration in beagle dogs. Seven beagle dogs were employed to generate a premolar class III furcation defect model. MSCs isolated from dog ilium were seeded at a density of 7.0 × 10 4 cells/well into 24-well plates and cultured in growth medium supplemented with 50 µg/mL ascorbic acid for 4 d. To obtain C-MSCs, confluent cells were scratched using a micropipette tip and were then torn off as a cellular sheet. The sheet was rolled up to make round clumps of cells. C-MSCs were maintained in growth medium or osteoinductive medium (OIM) for 5 or 10 d. The biological properties of C-MSCs were evaluated in vitro, and their periodontal tissue regenerative activity was tested by using a dog class III furcation defect model. Immunofluorescence analysis revealed that type I collagen fabricated the form of C-MSCs. OIM markedly elevated calcium deposition in C-MSCs at day 10, suggesting its osteogenic differentiation capacity. Both C-MSCs and C-MSCs cultured with OIM transplantation without an artificial scaffold into the dog furcation defect induced periodontal tissue regeneration successfully compared with no graft, whereas osteogenic-differentiated C-MSCs led to rapid alveolar bone regeneration. These findings suggested that the use of C-MSCs refined by self-produced ECM may represent a novel

  10. Inhibiting poly(ADP-ribosylation) improves axon regeneration.

    PubMed

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-10-04

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration.

  11. Comparison of oral nicotinamide adenine dinucleotide (NADH) versus conventional therapy for chronic fatigue syndrome.

    PubMed

    Santaella, María L; Font, Ivonne; Disdier, Orville M

    2004-06-01

    To compare effectiveness of oral therapy with reduced nicotinamide adenine dinucleotide (NADH) to conventional modalities of treatment in patients with chronic fatigue syndrome (CFS). CFS is a potentially disabling condition of unknown etiology. Although its clinical presentation is associated to a myriad of symptoms, fatigue is a universal and essential finding for its diagnosis. No therapeutic regimen has proven effective for this condition. A total of 31 patients fulfilling the Centers for Disease Control criteria for CFS, were randomly assigned to either NADH or nutritional supplements and psychological therapy for 24 months. A thorough medical history, physical examination and completion of a questionnaire on the severity of fatigue and other symptoms were performed each trimester of therapy. In addition, all of them underwent evaluation in terms of immunological parameters and viral antibody titers. Statistical analysis was applied to the demographic data, as well as to symptoms scores at baseline and at each trimester of therapy. The twelve patients who received NADH had a dramatic and statistically significant reduction of the mean symptom score in the first trimester (p < 0.001). However, symptom scores in the subsequent trimesters of therapy were similar in both treatment groups. Elevated IgG and Ig E antibody levels were found in a significant number of patients. Observed effectiveness of NADH over conventional treatment in the first trimester of the trial and the trend of improvement of that modality in the subsequent trimesters should be further assessed in a larger patient sample.

  12. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex...: (a) The additive is the product of the controlled reaction between ascorbic acid and nicotinamide...

  13. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex...: (a) The additive is the product of the controlled reaction between ascorbic acid and nicotinamide...

  14. Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene.

    PubMed

    Bai, Y; Hájek, P; Chomyn, A; Chan, E; Seo, B B; Matsuno-Yagi, A; Yagi, T; Attardi, G

    2001-10-19

    The gene for the single subunit, rotenone-insensitive, and flavone-sensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae (NDI1) can completely restore the NADH dehydrogenase activity in mutant human cells that lack the essential mitochondrial DNA (mtDNA)-encoded subunit ND4. In particular, the NDI1 gene was introduced into the nuclear genome of the human 143B.TK(-) cell line derivative C4T, which carries a homoplasmic frameshift mutation in the ND4 gene. Two transformants with a low or high level of expression of the exogenous gene were chosen for a detailed analysis. In these cells the corresponding protein is localized in mitochondria, its NADH-binding site faces the matrix compartment as in yeast mitochondria, and in perfect correlation with its abundance restores partially or fully NADH-dependent respiration that is rotenone-insensitive, flavone-sensitive, and antimycin A-sensitive. Thus the yeast enzyme has become coupled to the downstream portion of the human respiratory chain. Furthermore, the P:O ratio with malate/glutamate-dependent respiration in the transformants is approximately two-thirds of that of the wild-type 143B.TK(-) cells, as expected from the lack of proton pumping activity in the yeast enzyme. Finally, whereas the original mutant cell line C4T fails to grow in medium containing galactose instead of glucose, the high NDI1-expressing transformant has a fully restored capacity to grow in galactose medium. The present observations substantially expand the potential of the yeast NDI1 gene for the therapy of mitochondrial diseases involving complex I deficiency.

  15. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed conditions: (a) The additive is the product of...

  16. Inhibiting poly(ADP-ribosylation) improves axon regeneration

    PubMed Central

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-01-01

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration. DOI: http://dx.doi.org/10.7554/eLife.12734.001 PMID:27697151

  17. Alternation of light/dark period priming enhances clomazone tolerance by increasing the levels of ascorbate and phenolic compounds and ROS detoxification in tobacco (Nicotiana tabacum L.) plantlets.

    PubMed

    Darwish, Majd; Lopez-Lauri, Félicie; Vidal, Véronique; El Maâtaoui, Mohamed; Sallanon, Huguette

    2015-07-01

    The effect of the alternation of light/dark periods (AL) (16/8 min light/dark cycles and a photosynthetic photon flux density (PPFD) of 50 μmol photons m(-2) s(-1) for three days) to clarify the mechanisms involved in the clomazone tolerance of tobacco plantlets primed with AL was studied. Clomazone decreased PSII activity, the net photosynthetic rate (Pn), and the ascorbate and total polyphenol contents and increased H2O2 and starch grain accumulation and the number of the cells that underwent programmed cell death (PCD). The pretreatment with AL reduced the inhibitory effect of clomazone on the PSII activity and photosynthesis, as indicated by the decreases in the H2O2 and starch grain accumulation and the PCD levels, and increased the content of ascorbate and certain phenolic compounds, such as chlorogenic acid, neochlorogenic acid and rutin. The AL treatment could promote photorespiration via post-illumination burst (PIB) effects. This alternative photorespiratory electron pathway may reduce H2O2 generation via the consumption of photochemical energy, such as NADH+H(+). At 10 days (D10) of AL treatment, this process induced moderate stress which stimulates H2O2 detoxification systems by increasing the activity of antioxidant enzymes and the biosynthesis of antioxidant components. Therefore, the PCD levels provoked by clomazone were noticeably decreased. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Changes in the Ascorbate System during Seed Development of Vicia faba L. 1

    PubMed Central

    Arrigoni, Oreste; De Gara, Laura; Tommasi, Franca; Liso, Rosalia

    1992-01-01

    Large changes occur in the ascorbate system during the development of Vicia faba seed and these appear closely related to what are generally considered to be the three stages of embryogenesis. During the first stage, characterized by embryonic cells with high mitotic activity, the ascorbic acid/dehydroascorbic acid ratio is about 7, whereas in the following stage, characterized by rapid cell elongation (stage 2), it is lower than 1. The different ascorbic/dehydroascorbic ratio may be correlated with the level of ascorbate free radical reductase activity, which is high in stage 1 and lower in stage 2. Ascorbate peroxidase activity is high and remains constant throughout stages 1 and 2, but it decreases when the water content of the seed begins to decline (stage 3). In the dry seed, the enzyme disappears together with ascorbic acid. Ascorbate peroxidase activity is observed to be 10 times higher than that of catalase, suggesting that ascorbate peroxidase, rather than catalase, is utilized in scavenging the H2O2 produced in the cell metabolism. There is no ascorbate oxidase in the seed of V. faba. V. faba seeds acquire the capability to synthesize ascorbic acid only after 30 days from anthesis, i.e. shortly before the onset of seed desiccation. This suggests that (a) the young seed is furnished with ascorbic acid by the parent plant throughout the period of intense growth, and (b) it is necessary for the seed to be endowed with the ascorbic acid biosynthetic system before entering the resting state so that the seed can promptly synthesize the ascorbic acid needed to reestablish metabolic activity when germination starts. PMID:16668855

  19. Effect of ascorbate and dehydroascorbate on tissue uptake of glucose.

    PubMed

    Mooradian, A D

    1987-09-01

    In vitro studies have suggested that ascorbate or dehydroascorbate share with glucose the same tissue-transport carrier. To determine if ascorbic acid or its oxidized form can inhibit tissue uptake of glucose, the brain uptake index (BUI) and muscle uptake index of glucose were determined by single arterial injection tissue-sampling technique. The injectate was either buffered Ringer's solution with varying concentrations of ascorbate, dehydroascorbate (pH 7.4), or 70% serum from individuals on vitamin C supplements. Ascorbic acid over a wide range of concentrations (0-10,000 mg/L) did not reduce the BUI. Ascorbic acid reduced BUI from the control value of 33 +/- 3.2 to 20.1 +/- 2.2% (P less than .01) only at 100,000 mg/L; this effect was probably secondary to osmotic disruption of blood-brain barrier. In contrast, dehydroascorbate inhibited the BUI of glucose from baseline value of 32.8 +/- 1.1 to 10.7 +/- 0.67%, with an estimated Ki of 13.0 mM. Masseter muscle glucose uptake was not significantly altered over a wide range of ascorbate or dehydroascorbate concentrations in the injectate. Dehydroascorbate (7500 mg/L) did not significantly reduce the BUI of [14C]phenylalanine (55.2 +/- 4.4 vs. 62.1 +/- 4.2% in controls). When serum from six individuals on calcium ascorbate (3-5 g/day) was compared with that of nine controls, the BUI was not different (19.3 +/- 1.7 vs. 19.3 +/- 1.1%). Similarly, supplementing the diet of eight healthy volunteers with 1 g calcium ascorbate for 8 days did not alter the BUI of glucose.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. A direct ascorbate fuel cell with an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.

    2017-05-01

    Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.

  1. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Nitrate Transport Is Independent of NADH and NAD(P)H Nitrate Reductases in Barley Seedlings 1

    PubMed Central

    Warner, Robert L.; Huffaker, Ray C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings. PMID:11537465

  3. Lambda Red-mediated mutagenesis and efficient large scale affinity purification of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I).

    PubMed

    Pohl, Thomas; Uhlmann, Mareike; Kaufenstein, Miriam; Friedrich, Thorsten

    2007-09-18

    The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.

  4. Ascorbate synthesis pathway, dual role of ascorbate in bone homeostasis

    USDA-ARS?s Scientific Manuscript database

    Using mouse gene knock-out models, we identify aldehyde reductase (EC 1.1.1.2, Akr1a4 (GR)) and aldose reductase (EC 1.1.1.21, Akr1b3 (AR)) as the enzymes responsible for conversion of D-glucuronate to L-gulonate, a key step in the ascorbate (ASC) synthesis pathway in mice. The gene knock-out (KO) m...

  5. Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance

    PubMed Central

    Gautier, Hélène; Massot, Capucine; Stevens, Rebecca; Sérino, Sylvie; Génard, Michel

    2009-01-01

    Background and Aims The mechanisms involving light control of vitamin C content in fruits are not yet fully understood. The present study aimed to evaluate the impact of fruit and leaf shading on ascorbate (AsA) accumulation in tomato fruit and to determine how fruit sugar content (as an AsA precursor) affected AsA content. Methods Cherry tomato plants were grown in a glasshouse. The control treatment (normally irradiated fruits and irradiated leaves) was compared with the whole-plant shading treatment and with leaf or fruit shading treatments in fruits harvested at breaker stage. In a second experiment, the correlation between sugars and AsA was studied during ripening. Key Results Fruit shading was the most effective treatment in reducing fruit AsA content. Under normal conditions, AsA and sugar content were correlated and increased with the ripening stage. Reducing fruit irradiance strongly decreased the reduced AsA content (−74 %), without affecting sugars, so that sugar and reduced AsA were no longer correlated. Leaf shading delayed fruit ripening: it increased the accumulation of oxidized AsA in green fruits (+98 %), whereas it decreased the reduced AsA content in orange fruits (−19 %), suggesting that fruit AsA metabolism also depends on leaf irradiance. Conclusions Under fruit shading only, the absence of a correlation between sugars and reduced AsA content indicated that fruit AsA content was not limited by leaf photosynthesis or sugar substrate, but strongly depended on fruit irradiance. Leaf shading most probably affected fruit AsA content by delaying fruit ripening, and suggested a complex regulation of AsA metabolism which depends on both fruit and leaf irradiance and fruit ripening stage. PMID:19033285

  6. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences

    PubMed Central

    Zhu, Xiao-Hong; Lu, Ming; Lee, Byeong-Yeul; Ugurbil, Kamil; Chen, Wei

    2015-01-01

    NAD is an essential metabolite that exists in NAD+ or NADH form in all living cells. Despite its critical roles in regulating mitochondrial energy production through the NAD+/NADH redox state and modulating cellular signaling processes through the activity of the NAD+-dependent enzymes, the method for quantifying intracellular NAD contents and redox state is limited to a few in vitro or ex vivo assays, which are not suitable for studying a living brain or organ. Here, we present a magnetic resonance (MR) -based in vivo NAD assay that uses the high-field MR scanner and is capable of noninvasively assessing NAD+ and NADH contents and the NAD+/NADH redox state in intact human brain. The results of this study provide the first insight, to our knowledge, into the cellular NAD concentrations and redox state in the brains of healthy volunteers. Furthermore, an age-dependent increase of intracellular NADH and age-dependent reductions in NAD+, total NAD contents, and NAD+/NADH redox potential of the healthy human brain were revealed in this study. The overall findings not only provide direct evidence of declined mitochondrial functions and altered NAD homeostasis that accompany the normal aging process but also, elucidate the merits and potentials of this new NAD assay for noninvasively studying the intracellular NAD metabolism and redox state in normal and diseased human brain or other organs in situ. PMID:25730862

  7. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.

    PubMed

    Abbrescia, Daniela Isabel; La Piana, Gianluigi; Lofrumento, Nicola Elio

    2012-02-15

    In mammalian cells aerobic oxidation of glucose requires reducing equivalents produced in glycolytic phase to be channelled into the phosphorylating respiratory chain for the reduction of molecular oxygen. Data never presented before show that the oxidation rate of exogenous NADH supported by the malate-aspartate shuttle system (reconstituted in vitro with isolated liver mitochondria) is comparable to the rate obtained on activation of the cytosolic NADH/cytochrome c electron transport pathway. The activities of these two reducing equivalent transport systems are independent of each other and additive. NADH oxidation induced by the malate-aspartate shuttle is inhibited by aminooxyacetate and by rotenone and/or antimycin A, two inhibitors of the respiratory chain, while the NADH/cytochrome c system remains insensitive to all of them. The two systems may simultaneously or mutually operate in the transfer of reducing equivalents from the cytosol to inside the mitochondria. In previous reports we suggested that the NADH/cytochrome c system is expected to be functioning in apoptotic cells characterized by the presence of cytochrome c in the cytosol. As additional new finding the activity of reconstituted shuttle system is linked to the amount of α-ketoglutarate generated inside the mitochondria by glutamate dehydrogenase rather than by aspartate aminotransferase. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae

    PubMed Central

    Muras, Valentin; Dogaru-Kinn, Paul; Minato, Yusuke; Häse, Claudia C.

    2016-01-01

    ABSTRACT We searched for a source of reactive oxygen species (ROS) in the cytoplasm of the human pathogen Vibrio cholerae and addressed the mechanism of ROS formation using the dye 2′,7′-dichlorofluorescein diacetate (DCFH-DA) in respiring cells. By comparing V. cholerae strains with or without active Na+-translocating NADH:quinone oxidoreductase (Na+-NQR), this respiratory sodium ion redox pump was identified as a producer of ROS in vivo. The amount of cytoplasmic ROS detected in V. cholerae cells producing variants of Na+-NQR correlated well with rates of superoxide formation by the corresponding membrane fractions. Membranes from wild-type V. cholerae showed increased superoxide production activity (9.8 ± 0.6 μmol superoxide min−1 mg−1 membrane protein) compared to membranes from the mutant lacking Na+-NQR (0.18 ± 0.01 μmol min−1 mg−1). Overexpression of plasmid-encoded Na+-NQR in the nqr deletion strain resulted in a drastic increase in the formation of superoxide (42.6 ± 2.8 μmol min−1 mg−1). By analyzing a variant of Na+-NQR devoid of quinone reduction activity, we identified the reduced flavin adenine dinucleotide (FAD) cofactor of cytoplasmic NqrF subunit as the site for intracellular superoxide formation in V. cholerae. The impact of superoxide formation by the Na+-NQR on the virulence of V. cholerae is discussed. IMPORTANCE In several studies, it was demonstrated that the Na+-NQR in V. cholerae affects virulence in a yet unknown manner. We identified the reduced FAD cofactor in the NADH-oxidizing NqrF subunit of the Na+-NQR as the site of superoxide formation in the cytoplasm of V. cholerae. Our study provides the framework to understand how reactive oxygen species formed during respiration could participate in the regulated expression of virulence factors during the transition from aerobic to microaerophilic (intestinal) habitats. This hypothesis may turn out to be right for many other pathogens which, like V. cholerae, depend on

  9. Plasma and semen ascorbic levels in spermatogenesis.

    PubMed

    Ebesunun, M O; Solademi, B A; Shittu, O B; Anetor, J I; Onuegbu, J A; Olisekodiaka, J M; Agbedana, E O; Onyeaghala, A A

    2004-01-01

    Conflicting reports on the mechanism of action of ascorbic acid level in male reproductive system exist and very little is known about the ascorbic acid status in Nigerian males with weak fertility. Ascorbate that accumulates preferentially in the testis, the lipid and lipoprotein levels were determined in the plasma of Nigerian males. Twenty-seven (27) male with inadequate spermatogenesis (36+/-1.0) years, with mean value of 15.6+/-6.90 million/cm3 sperm count and fourteen (14) controls (34+/-0.6) years, with mean value of 108.0+/-25.42 million/cm3 sperm count were selected for this study. The anthropometric indices were also determined. There were highly significant decreases in sperm cell count, percentage motility and percentage vitality (p<0.001) in each case, while percentage morphologically abnormal sperm cells was significantly elevated (p<0.001) compared with the control values. There were significant decreases in the seminal and plasma ascorbic acid concentrations (p<0.001) in the males who had inadequate spermatogenesis compared with the control values. The plasma total cholesterol (TC) and body mass index (BMI) were not significantly different from the corresponding control values, but the plasma low density lipoprotein (LDLC) (p<0.001) and triglyceride (TG)(p<0.01) concentrations were significantly increased in all the patients. While the plasma high density lipoprotein cholesterol (HDLC)(p<0.001) was significantly decreased compared with the controls. The plasma lipid and lipoprotein levels did not demonstrate any definite pattern with the sperm characteristics. The decreased semen ascorbate level may play a significant role in the reduced sperm characteristics in these patients.

  10. The kinetics of oxidation of bilirubin and ascorbic acid in solution

    NASA Astrophysics Data System (ADS)

    Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.

    2012-07-01

    The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.

  11. Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate.

    PubMed

    Truffault, Vincent; Fry, Stephen C; Stevens, Rebecca G; Gautier, Hélène

    2017-03-01

    Ascorbate content in plants is controlled by its synthesis from carbohydrates, recycling of the oxidized forms and degradation. Of these pathways, ascorbate degradation is the least studied and represents a lack of knowledge that could impair improvement of ascorbate content in fruits and vegetables as degradation is non-reversible and leads to a depletion of the ascorbate pool. The present study revealed the nature of degradation products using [ 14 C]ascorbate labelling in tomato, a model plant for fleshy fruits; oxalate and threonate are accumulated in leaves, as is oxalyl threonate. Carboxypentonates coming from diketogulonate degradation were detected in relatively insoluble (cell wall-rich) leaf material. No [ 14 C]tartaric acid was found in tomato leaves. Ascorbate degradation was stimulated by darkness, and the degradation rate was evaluated at 63% of the ascorbate pool per day, a percentage that was constant and independent of the initial ascorbate or dehydroascorbic acid concentration over periods of 24 h or more. Furthermore, degradation could be partially affected by the ascorbate recycling pathway, as lines under-expressing monodehydroascorbate reductase showed a slight decrease in degradation product accumulation. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Bioelectrocatalytic NAD+/NADH inter-conversion: transformation of an enzymatic fuel cell into an enzymatic redox flow battery.

    PubMed

    Quah, Timothy; Milton, Ross D; Abdellaoui, Sofiene; Minteer, Shelley D

    2017-07-25

    Diaphorase and a benzylpropylviologen redox polymer were combined to create a bioelectrode that can both oxidize NADH and reduce NAD + . We demonstrate how bioelectrocatalytic NAD + /NADH inter-conversion can transform a glucose/O 2 enzymatic fuel cell (EFC) with an open circuit potential (OCP) of 1.1 V into an enzymatic redox flow battery (ERFB), which can be rapidly recharged by operation as an EFC.

  13. Endothelium-dependent vasodilatation and exercise hyperaemia in ageing humans: impact of acute ascorbic acid administration

    PubMed Central

    Kirby, Brett S; Voyles, Wyatt F; Simpson, Carrie B; Carlson, Rick E; Schrage, William G; Dinenno, Frank A

    2009-01-01

    Age-related increases in oxidative stress impair endothelium-dependent vasodilatation in humans, leading to the speculation that endothelial dysfunction contributes to impaired muscle blood flow and vascular control during exercise in older adults. We directly tested this hypothesis in 14 young (22 ± 1 years) and 14 healthy older men and women (65 ± 2 years). We measured forearm blood flow (FBF; Doppler ultrasound) and calculated vascular conductance (FVC) responses to single muscle contractions at 10, 20 and 40% maximum voluntary contraction (MVC) before and during ascorbic acid (AA) infusion, and we also determined the effects of AA on muscle blood flow during mild (10% MVC) continuous rhythmic handgrip exercise. For single contractions, the peak rapid hyperaemic responses to all contraction intensities were impaired ∼45% in the older adults (all P < 0.05), and AA infusion did not impact the responses in either age group. For the rhythmic exercise trial, FBF (∼28%) and FVC (∼31%) were lower (P= 0.06 and 0.05) in older versus young adults after 5 min of steady-state exercise with saline. Subsequently, AA was infused via brachial artery catheter for 10 min during continued exercise. AA administration did not significantly influence FBF or FVC in young adults (1–3%; P= 0.24–0.59), whereas FBF increased 34 ± 7% in older adults at end-exercise, and this was due to an increase in FVC (32 ± 7%; both P < 0.05). This increase in FBF and FVC during exercise in older adults was associated with improvements in vasodilator responses to acetylcholine (ACh; endothelium dependent) but not sodium nitroprusside (SNP; endothelium independent). AA had no effect on ACh or SNP responses in the young. We conclude that acute AA administration does not impact the observed age-related impairment in the rapid hyperaemic response to brief muscle contractions in humans; however, it does significantly increase muscle blood flow during continuous dynamic exercise in older adults

  14. Vitamin C. Biosynthesis, recycling and degradation in mammals.

    PubMed

    Linster, Carole L; Van Schaftingen, Emile

    2007-01-01

    Vitamin C, a reducing agent and antioxidant, is a cofactor in reactions catalyzed by Cu(+)-dependent monooxygenases and Fe(2+)-dependent dioxygenases. It is synthesized, in vertebrates having this capacity, from d-glucuronate. The latter is formed through direct hydrolysis of uridine diphosphate (UDP)-glucuronate by enzyme(s) bound to the endoplasmic reticulum membrane, sharing many properties with, and most likely identical to, UDP-glucuronosyltransferases. Non-glucuronidable xenobiotics (aminopyrine, metyrapone, chloretone and others) stimulate the enzymatic hydrolysis of UDP-glucuronate, accounting for their effect to increase vitamin C formation in vivo. Glucuronate is converted to l-gulonate by aldehyde reductase, an enzyme of the aldo-keto reductase superfamily. l-Gulonate is converted to l-gulonolactone by a lactonase identified as SMP30 or regucalcin, whose absence in mice leads to vitamin C deficiency. The last step in the pathway of vitamin C synthesis is the oxidation of l-gulonolactone to l-ascorbic acid by l-gulonolactone oxidase, an enzyme associated with the endoplasmic reticulum membrane and deficient in man, guinea pig and other species due to mutations in its gene. Another fate of glucuronate is its conversion to d-xylulose in a five-step pathway, the pentose pathway, involving identified oxidoreductases and an unknown decarboxylase. Semidehydroascorbate, a major oxidation product of vitamin C, is reconverted to ascorbate in the cytosol by cytochrome b(5) reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Transmembrane electron transfer systems using ascorbate or NADH as electron donors serve to reduce semidehydroascorbate present in neuroendocrine secretory vesicles and in the extracellular medium. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH. The degradation of vitamin C in mammals is

  15. Crystallization of the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae

    PubMed Central

    Casutt, Marco S.; Wendelspiess, Severin; Steuber, Julia; Fritz, Günter

    2010-01-01

    The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae couples the exergonic oxidation of NADH by membrane-bound quinone to Na+ translocation across the membrane. Na+-NQR consists of six different subunits (NqrA–NqrF) and contains a [2Fe–2S] cluster, a noncovalently bound FAD, a noncovalently bound riboflavin, two covalently bound FMNs and potentially Q8 as cofactors. Initial crystallization of the entire Na+-NQR complex was achieved by the sitting-drop method using a nanolitre dispenser. Optimization of the crystallization conditions yielded flat yellow-coloured crystals with dimensions of up to 200 × 80 × 20 µm. The crystals diffracted to 4.0 Å resolution and belonged to space group P21, with unit-cell parameters a = 94, b = 146, c = 105 Å, α = γ = 90, β = 111°. PMID:21139223

  16. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Morre, Dorothy M.; Ternes, Philipp

    2003-01-01

    The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.

  17. Real-time evaluation of tissue vitality by monitoring of microcirculatory blood flow, HbO2, and mitochondrial NADH redox state

    NASA Astrophysics Data System (ADS)

    Deutsch, Assaf; Pevzner, Eliyahu; Jaronkin, Alex; Mayevsky, Avraham

    2004-06-01

    Monitoring of tissue vitality (oxygen supply/demand) in real time is very rare in clinical practice although its use as an early warning alarming system, for clinical care medicine, is very practical. In our previous communication (SPIE 2003) we described the Tissue Spectroscope - TiSpec02, by which tissue microcirculatory blood flow (TBF) and mitochondrial NADH fluorescence were measured using a single light source (390nm). In order to improve the measurement capabilities as well as to decrease dramatically the size and cost of this clinical device, we have changed the TiSpec02 into a multi-wavelength illumination system in the new TiSpec03. In order to measure microcirculatory blood flow by laser Doppler flowmetry we used a 785nm laser diode. For mitochondrial NADH fluorescence measurement we adopted the 370nm LED. For the determination of the oxygenation level of hemoglobin (HbO2) we used the 2-wavelength reflectance technique. This new monitored parameter that was added to the TiSpec03 increases the accuracy of the diagnosis of tissue vitality. The bundle of optical fibers used to connect the tissue to the TiSpec03, was integrated into a special anchoring methodology depending on the monitored tissue or organ. In order to test the performance of the improved TiSpec we have used it in experimental animals brain models exposed to various pathophysiological conditions. Rats and gerbils were anesthetized and the fiber optic probe was located epidurally used dental acrylic cement. During anoxia and ischemia the lack of O2 led to a clear decrease in TBF and HbO2 while NADH shows a large elevation. When brain activation was induced by cortical spreading depression (SD), the elevated O2 consumption was recorded as a large oxidation (decrease) of mitochondrial NADH while TBF increase dramatically. Blood HbO2 was not affected significantly by the SD wave.

  18. Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donor

    NASA Technical Reports Server (NTRS)

    Morre, D. James

    2002-01-01

    The cell-surface NADH oxidase (NOX) protein of plant and animal cells will utilize both NADH and NADPH as reduced electron donors for activity. The two activities are distinguished by a differential inhibition by the redox inhibitor diphenyleneiodonium chloride (DPI). Using both plasma membranes and cells, activity with NADPH as donor was markedly inhibited by DPI at submicromolar concentrations, whereas with NADH as donor, DPI was much less effective or had no effect on the activity. The possibility of the inhibition being the result of two different enzymes was eliminated by the use of a recombinant NOX protein. The findings support the concept that NOX proteins serve as terminal oxidases for plasma membrane electron transport involving cytosolic reduced pyridine nucleotides as the natural electron donors and with molecular oxygen as the electron acceptor.

  19. Effects of L-ascorbic acid on physicochemical characteristics of wheat starch.

    PubMed

    Majzoobi, Mahsa; Radi, Mohsen; Farahnaky, Asgar; Tongdang, Tawee

    2012-03-01

    The main objective of this study was to determine the effects of l-ascorbic acid, as a permitted additive in bakery products, on characteristics of wheat starch. Suspensions of wheat starch (30%, w/w) in water containing 140 mg/kg ascorbic acid before and after gelatinization were prepared and studied using different techniques. The results of scanning electron microscopy showed that some spots appeared on the surface of the starch granules as a result of the addition of ascorbic acid. However, no changes in the starch crystalline pattern and its degree of crystallinity were observed by X-ray diffraction technique. For ungelatinized samples, no difference in the pasting properties of the samples was determined by the rapid visco analyzer, whereas for the gelatinized samples, peak and final viscosities decreased for the samples contained ascorbic acid. Determination of the intrinsic viscosities of the samples showed that addition of ascorbic acid to the gelatinized samples reduced the intrinsic viscosity. In general, it was found that ascorbic acid had some degradation effects on wheat starch molecules particularly after gelatinization. © 2012 Institute of Food Technologists®

  20. A-FABP and oxidative stress underlie the impairment of endothelium-dependent relaxations to serotonin and the intima-medial thickening in the porcine coronary artery with regenerated endothelium.

    PubMed

    Chan, Calvin K; Zhao, Yingzi; Liao, Song Yan; Zhang, Yue Lin; Lee, Mary Y K; Xu, Aimin; Tse, Hung Fat; Vanhoutte, Paul M

    2013-01-16

    Experiments were designed to determine the cause of the selective dysfunction of G(i) proteins, characterized by a reduced endothelium-dependent relaxation to serotonin (5-hydroxytryptamine), in coronary arteries lined with regenerated endothelial cells. Part of the endothelium of the left anterior descending coronary artery of female pigs was removed in vivo to induce regeneration. The animals were treated chronically with vehicle (control), apocynin (antioxidant), or BMS309403 (A-FABP inhibitor) for 28 days before functional examination and histological analysis of segments of coronary arteries with native or regenerated endothelium of the same hearts. Isometric tension was recorded in organ chambers and cumulative concentration-relaxation curves obtained in response to endothelium-dependent [serotonin (G(i) protein mediated activation of eNOS) and bradykinin (G(q) protein mediated activation of eNOS)] and independent [detaNONOate (cGMP-mediated), isoproterenol (cAMP-mediated)] vasodilators. The two inhibitors tested did not acutely affect relaxations of preparations with either native or regenerated endothelium. In the chronically treated groups, however, both apocynin and BMS309403 abolished the reduction in relaxation to serotonin in segments covered with regenerated endothelium and prevented the intima-medial thickening caused by endothelial regeneration, without affecting responses to bradykinin or endothelium-independent agonists (detaNONOate and isoproterenol). Thus, inhibition of either oxidative stress or A-FABP likely prevents both the selective dysfunction of G(i) protein mediated relaxation to serotonin and the neointimal thickening resulting from endothelial regeneration.

  1. Green reduction of graphene oxide by ascorbic acid

    NASA Astrophysics Data System (ADS)

    Khosroshahi, Zahra; Kharaziha, Mahshid; Karimzadeh, Fathallah; Allafchian, Alireza

    2018-01-01

    Graphene, a single layer of sp2-hybridized carbon atoms in a hexagonal (two-dimensional honey-comb) lattice, has attracted strong scientific and technological interest due to its novel and excellent optical, chemical, electrical, mechanical and thermal properties. The solution-processable chemical reduction of Graphene oxide (GO is considered as the most favorable method regarding mass production of graphene. Generally, the reduction of GO is carried out by chemical approaches using different reductants such as hydrazine and sodium borohydride. These components are corrosive, combustible and highly toxic which may be dangerous for personnel health and the environment. Hence, these reducing agents are not promising choice for reducing of graphene oxide (GO). As a consequence, it is necessary for further development and optimization of eco-friendly, natural reducing agent for clean and effective reduction of GO. Ascorbic acid, an eco-friendly and natural reducing agents, having a mild reductive ability and nontoxic property. So, the aim of this research was to green synthesis of GO with ascorbic acid. For this purpose, the required amount of NaOH and ascorbic acid were added to GO solution (0.5 mg/ml) and were heated at 95 °C for 1 hour. According to the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electrochemical results, GO were reduced with ascorbic acid like hydrazine with better electrochemical properties and ascorbic acid is an ideal substitute for hydrazine in the reduction of graphene oxide process.

  2. Ascorbate oxidation is a prerequisite for its transport into rat liver microsomal vesicles.

    PubMed Central

    Csala, M; Mile, V; Benedetti, A; Mandl, J; Bánhegyi, G

    2000-01-01

    Oxidation and uptake of ascorbate show similar time courses in rat liver microsomal vesicles: a rapid burst phase is followed by a slower process. Inhibitors of ascorbate oxidation (proadifen, econazole or quercetin) also effectively decreased the uptake of ascorbate. The results show that dehydroascorbate is the transport form of ascorbate at the membrane of the endoplasmic reticulum. PMID:10880339

  3. Weak Evidence of Regeneration Habitat but Strong Evidence of Regeneration Niche for a Leguminous Shrub

    PubMed Central

    Delerue, Florian; Gonzalez, Maya; Michalet, Richard; Pellerin, Sylvain; Augusto, Laurent

    2015-01-01

    The identification of an ecological niche specific to the regeneration phase has mobilised significant attention. However, the importance of the regeneration niche concept remains unclear. Our main objective was to study the existence of such a regeneration niche for a leguminous shrub, Ulex europaeus. This study was carried out in southwest France in the context of water and nutrient stresses (mainly phosphorus limitation) due to the presence of nutrient-poor sandy soils. We analysed the regeneration of the species from the germination of seeds and emergence of new seedlings until the seedlings reached young shrub size. Our design included a P fertilisation treatment. We also investigated microsite characteristics (micro-topography and vegetation development) as they can interact with meteorological conditions and determine water availability for seeds and seedlings. We found that P availability controlled seedling growth and the time necessary to reach young shrub size. Water availability appeared to impact the species germination and seedlings survival. We also found that P and water availability depended on the interactions between microsite characteristics and climatic variations. Finally we found evidence that P and water availability are important ecological factors shaping the regeneration niche of the species, but we found weak evidence that any microsite would be appropriate for the regeneration of the species in the long term. Future studies regarding regeneration niches need to distinguish more clearly the ecological factors important for regeneration (the regeneration niche per se) and the physical world where the seedlings appear and develop (the regeneration habitat). PMID:26098877

  4. Effect of ascorbic acid on endothelial dysfunction of epicardial coronary arteries in chronic smokers assessed by cold pressor testing.

    PubMed

    Schindler, T H; Magosaki, N; Jeserich, M; Olschewski, M; Nitzsche, E; Holubarsch, C; Solzbach, U; Just, H

    2000-01-01

    In chronic smokers there is evidence for increased formation of oxygen-derived free radicals within the vessel wall impairing endothelial function. It has been suggested that the inactivation of endothelium-derived nitric oxide by oxygen free radicals contributes to endothelial dysfunction. Hence, we tested the hypothesis that in chronic smokers the antioxidant ascorbic acid could improve abnormal endothelial function of epicardial coronary arteries. Thirty-one patients (mean age 57 +/- 9 years) referred for routine diagnostic catheterization for evaluation of chest pain and without angiographically significant coronary artery stenoses were randomly assigned to one of the study groups to assess vasomotor response of epicardial coronary arteries due to cold pressor testing (CPT) before and after intravenous infusion of 3 g of ascorbic acid or 100 ml x 0.9% saline infusion. In 6 controls (mean age 55 +/- 3 years) CPT led to a similar increase in luminal area before and after ascorbic acid administration (26.5 +/- 15.0 vs. 28.4 +/- 17.7%, p = NS). In 15 chronic smokers (mean age 55 +/- 9 years), CPT induced a decrease in the luminal area of -18.5 +/- 6.3%. This flow-dependent vasoconstriction was significantly reversed to 7.7 +/- 6.2% (p < or = 0.03) vasodilation after intravenous ascorbic acid administration. In 10 chronic smokers (mean age 57 +/- 11 years) saline infusion (placebo) did not have a significant effect on CPT-induced vasoconstriction (-12.7 +/- 5.1 vs. -13.1 +/- 5.1%, p = NS). The CPT-induced increase in luminal area in chronic smokers after ascorbic acid infusion was significant compared to controls and placebo (each p < or = 0.05). Our assessment of endothelium-independent responses to nitroglycerin revealed no significant differences between the single study groups (p = NS). In chronic smokers acute intravenous administration of ascorbic acid significantly improves CPT-induced coronary endothelium-dependent dysfunction. According to the current

  5. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells.

    PubMed

    Sánchez, Mario; Ceci, Maria Laura; Gutiérrez, Daniela; Anguita-Salinas, Consuelo; Allende, Miguel L

    2016-04-07

    Regenerating damaged tissue is a complex process, requiring progenitor cells that must be stimulated to undergo proliferation, differentiation and, often, migratory behaviors and morphological changes. Multiple cell types, both resident within the damaged tissue and recruited to the lesion site, have been shown to participate. However, the cellular and molecular mechanisms involved in the activation of progenitor cell proliferation and differentiation after injury, and their regulation by different cells types, are not fully understood. The zebrafish lateral line is a suitable system to study regeneration because most of its components are fully restored after damage. The posterior lateral line (PLL) is a mechanosensory system that develops embryonically and is initially composed of seven to eight neuromasts distributed along the trunk and tail, connected by a continuous stripe of interneuromastic cells (INCs). The INCs remain in a quiescent state owing to the presence of underlying Schwann cells. They become activated during development to form intercalary neuromasts. However, no studies have described if INCs can participate in a regenerative event, for example, after the total loss of a neuromast. We used electroablation in transgenic larvae expressing fluorescent proteins in PLL components to completely ablate single neuromasts in larvae and adult fish. This injury results in discontinuity of the INCs, Schwann cells, and the PLL nerve. In vivo imaging showed that the INCs fill the gap left after the injury and can regenerate a new neuromast in the injury zone. Further, a single INC is able to divide and form all cell types in a regenerated neuromast and, during this process, it transiently expresses the sox2 gene, a neural progenitor cell marker. We demonstrate a critical role for Schwann cells as negative regulators of INC proliferation and neuromast regeneration, and that this inhibitory property is completely dependent on active ErbB signaling. The potential

  6. Salivary ascorbic acid levels in betel quid chewers: A biochemical study.

    PubMed

    Shetty, Shishir R; Babu, Subhas; Kumari, Suchetha; Prasad, Rajendra; Bhat, Supriya; Fazil, K A

    2013-07-01

    Quid chewing practice has been a part of our tradition since centuries with little known evidence of oral cancer. However, recent trends show a rise in occurrence of oral cancer often associated with tobacco and arecanut usage. Ascorbic acid is an important salivary antioxidant. Betel leaf which is used in quid is known to contain ascorbic acid. The aim of our study was to assess the salivary levels of ascorbic acid in traditional quid chewers so as to determine whether the betel leaf has protective antioxidant action. Salivary ascorbic acid levels of 60 subjects were estimated using the Dinitrophenyl hydrazine method. The results revealed that quid chewers who used betel leaf had higher salivary ascorbic acid content compared to nonbetel leaf quid chewers. This could possibly be due to the protective antioxidants in the betel leaf.

  7. Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase

    PubMed Central

    Pandey, Saurabh; Fartyal, Dhirendra; Agarwal, Aakrati; Shukla, Tushita; James, Donald; Kaul, Tanushri; Negi, Yogesh K.; Arora, Sandeep; Reddy, Malireddy K.

    2017-01-01

    One of the most significant manifestations of environmental stress in plants is the increased production of Reactive Oxygen Species (ROS). These ROS, if allowed to accumulate unchecked, can lead to cellular toxicity. A battery of antioxidant molecules is present in plants for keeping ROS levels under check and to maintain the cellular homeostasis under stress. Ascorbate peroxidase (APX) is a key antioxidant enzyme of such scavenging systems. It catalyses the conversion of H2O2 into H2O, employing ascorbate as an electron donor. The expression of APX is differentially regulated in response to environmental stresses and during normal plant growth and development as well. Different isoforms of APX show differential response to environmental stresses, depending upon their sub-cellular localization, and the presence of specific regulatory elements in the upstream regions of the respective genes. The present review delineates role of APX isoforms with respect to different types of abiotic stresses and its importance as a key antioxidant enzyme in maintaining cellular homeostasis. PMID:28473838

  8. Targeted aerosolized delivery of ascorbate in the lungs of chlorine-exposed rats.

    PubMed

    Bracher, Andreas; Doran, Stephen F; Squadrito, Giuseppe L; Postlethwait, Edward M; Bowen, Larry; Matalon, Sadis

    2012-12-01

    Chlorine (Cl(2))-induced lung injury is a serious public health threat that may result from industrial and household accidents. Post-Cl(2) administration of aerosolized ascorbate in rodents decreased lung injury and mortality. However, the extent to which aerosolized ascorbate augments depleted ascorbate stores in distal lung compartments has not been assessed. We exposed rats to Cl(2) (300 ppm for 30 min) and returned them to room air. Within 15-30 min postexposure, rats breathed aerosolized ascorbate and desferal or vehicle (mean particle size 3.3 μm) through a nose-only exposure system for 60 min and were euthanized. We measured the concentrations of reduced ascorbate in the bronchoalveolar lavage (BAL), plasma, and lung tissues with high-pressure liquid chromatography, protein plasma concentration in the BAL, and the volume of the epithelia lining fluid (ELF). Cl(2)-exposed rats that breathed aerosolized vehicle had lower values of ascorbate in their BAL, ELF, and lung tissues compared to air-breathing rats. Delivery of aerosolized ascorbate increased reduced ascorbate in BAL, ELF, lung tissues, and plasma of both Cl(2) and air-exposed rats without causing lung injury. Based on mean diameter of aerosolized particles and airway sizes we calculated that approximately 5% and 1% of inhaled ascorbate was deposited in distal lung regions of air and Cl(2)-exposed rats, respectively. Significantly higher ascorbate levels were present in the BAL of Cl(2)-exposed rats when aerosol delivery was initiated 1 h post-Cl(2). Aerosol administration is an effective, safe, and noninvasive method for the delivery of low molecular weight antioxidants to the lungs of Cl(2)-exposed individuals for the purpose of decreasing morbidity and mortality. Delivery is most effective when initiated 1 h postexposure when the effects of Cl(2) on minute ventilation subside.

  9. Expression of Ascorbic Acid Oxidase in Zucchini Squash (Cucurbita pepo L.).

    PubMed

    Lin, L S; Varner, J E

    1991-05-01

    The expression of ascorbic acid oxidase was studied in zucchini squash (Cucurbita pepo L.), one of the most abundant natural sources of the enzyme. In the developing fruit, specific activity of ascorbic acid oxidase was highest between 4 and 6 days after anthesis. Protein and mRNA levels followed the same trend as enzyme activity. Highest growth rate of the fruit occurred before 6 days after anthesis. Within a given fruit, ascorbic acid oxidase activity and mRNA level were highest in the epidermis, and lowest in the central placental region. In leaf tissue, ascorbic acid oxidase activity was higher in young leaves, and very low in old leaves. Within a given leaf, enzyme activity was highest in the fast-growing region (approximately the lower third of the blade), and lowest in the slow-growing region (near leaf apex). High expression of ascorbic acid oxidase at a stage when rapid growth is occurring (in both fruits and leaves), and localization of the enzyme in the fruit epidermis, where cells are under greatest tension during rapid growth in girth, suggest that ascorbic acid oxidase might be involved in reorganization of the cell wall to allow for expansion. Based on the known chemistry of dehydroascorbic acid, the end product of the ascorbic acid oxidase-catalyzed reaction, we have proposed several hypotheses to explain how dehydroascorbic acid might cause cell wall "loosening."

  10. Structural Requirements of Alkylglyceryl-l-Ascorbic Acid Derivatives for Melanogenesis Inhibitory Activity.

    PubMed

    Taira, Norihisa; Katsuyama, Yushi; Yoshioka, Masato; Muraoka, Osamu; Morikawa, Toshio

    2018-04-10

    l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C-alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives ( 1 - 28 ) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure-function relationships. Although not the most potent inhibitors, 3- O -(2,3-dihydroxypropyl)-2- O -hexyl-l-ascorbic acid ( 6 , IC 50 = 81.4 µM) and 2- O -(2,3-dihydroxypropyl)-3- O -hexyl-l-ascorbic acid ( 20 , IC 50 = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3- O -alkyl-derivatives ( 2 - 14 ) exhibit stronger inhibitory activity than the corresponding 2- O -alkyl-derivatives ( 16 - 28 ); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1.

  11. Pharmacological ascorbate and ionizing radiation (IR) increase labile iron in pancreatic cancer☆

    PubMed Central

    Moser, Justin C.; Rawal, Malvika; Wagner, Brett A.; Du, Juan; Cullen, Joseph J.; Buettner, Garry R.

    2013-01-01

    Labile iron, i.e. iron that is weakly bound and is relatively unrestricted in its redox activity, has been implicated in both the pathogenesis as well as treatment of cancer. Two cancer treatments where labile iron may contribute to their mechanism of action are pharmacological ascorbate and ionizing radiation (IR). Pharmacological ascorbate has been shown to have tumor-specific toxic effects due to the formation of hydrogen peroxide. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of hydrogen peroxide; labile iron can also react with hydrogen peroxide. Here we have investigated the magnitude of the labile iron pool in tumor and normal tissue. We also examined the ability of pharmacological ascorbate and IR to change the size of the labile iron pool. Although a significant amount of labile iron was seen in tumors (MIA PaCa-2 cells in athymic nude mice), higher levels were seen in murine tissues that were not susceptible to pharmacological ascorbate. Pharmacological ascorbate and irradiation were shown to increase the labile iron in tumor homogenates from this murine model of pancreatic cancer. As both IR and pharmacological ascorbate may rely on labile iron for their effects on tumor tissues, our data suggest that pharmacological ascorbate could be used as a radio-sensitizing agent for some radio-resistant tumors. PMID:24396727

  12. Inhibition of mitochondrial calcium efflux by clonazepam in intact single rat cardiomyocytes and effects on NADH production.

    PubMed

    Griffiths, E J; Wei, S K; Haigney, M C; Ocampo, C J; Stern, M D; Silverman, H S

    1997-04-01

    The aims of this study were to determine: (i) whether clonazepam and CGP37157, which inhibit the Na+/Ca2+ exchanger of isolated mitochondria, could inhibit mitochondrial Ca2+ efflux in intact cells; and (ii) whether any sustained increase in mitochondrial [Ca2+] ([Ca2+]m) could alter mitochondrial NADH levels. [Ca2+]m was measured in Indo-1/AM loaded rat ventricular myocytes where the cytosolic fluorescence signal was quenched by superfusion with Mn2+. NADH levels were determined from cell autofluorescence. Upon exposure of myocytes to 50 nM norepinephrine (NE) and a stimulation rate of 3 Hz, [Ca2+]m increased from 59 +/- 3 nM to a peak of 517 +/- 115 nM (n = 8) which recovered rapidly upon return to low stimulation rate (0.2 Hz) and washout of NE. In the presence of clonazepam, the peak increase in [Ca2+]m was 937 +/- 192 nM (n = 5) which remained elevated at 652 +/- 131 nM upon removal of the stimulus. CGP37157 in some cells did give the same inhibition of mitochondrial Ca2+ efflux as clonazepam, but the effect was inconsistent since not all cells were capable of following the stimulation rate in presence of this compound. NADH levels increased upon exposure to rapid stimulation in the presence of NE alone and recovered upon return to low stimulation rates, whereas in clonazepam treated cells the recovery of NADH was prevented. We conclude that clonazepam is an effective inhibitor of mitochondrial [Ca2+] efflux in intact cells and also maintains the increase in NADH levels which occurs upon rapid stimulation of cells.

  13. Interrelationship of dietary lipids and ascorbic acid with hepatic enzymes of cholesterol metabolic pathway.

    PubMed

    Sen, S; Mukherjee, S

    1997-01-01

    Effect of unsaturated and saturated fats on cholesterol metabolism was studied in ascorbate sufficient and deficient guineapigs. Experimental animals were made chronic ascorbic acid deficient by allowing oral intake of 0.5 mg ascorbic acid/day/animal. Elevation in serum and liver cholesterol and triglyceride along with depression in cholesterol oxidation and 7 alpha-hydroxylation in liver was observed in unsaturated fat fed guineapigs with ascorbate deficiency. Liver microsomal cytochrome P-450 level was found to be low in ascorbate deficient animals. Polyunsaturated fat intake could not lower the serum cholesterol level in ascorbate deficiency. Today polyunsaturated fat in the diet is encouraged all over the world for its hypocholesterolemic effect. This study indicates that polyunsaturated fat intake with ascorbic acid deficiency may produce hypercholesterolemia.

  14. Increased Production of Hydrogen Peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon Aeration: Involvement of an NADH Oxidase in Oxidative Stress

    PubMed Central

    Marty-Teysset, C.; de la Torre, F.; Garel, J.-R.

    2000-01-01

    The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen. PMID:10618234

  15. Non-invasive In-cell Determination of Free Cytosolic [NAD+]/[NADH] Ratios Using Hyperpolarized Glucose Show Large Variations in Metabolic Phenotypes*

    PubMed Central

    Christensen, Caspar Elo; Karlsson, Magnus; Winther, Jakob R.; Jensen, Pernille Rose; Lerche, Mathilde H.

    2014-01-01

    Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyze substrate oxidation and, as such, it plays a key role in various biological processes such as aging, cell death, and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labeled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD+]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/[lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD+]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD+]/[NADH] ratio, the bioprobe will enable better understanding of the origin of diverse pathological states of the cell as well as monitor cellular consequences of diseases and/or treatments. PMID:24302737

  16. Investigation of antioxidant properties of metal ascorbates and their mixtures by voltammetry

    NASA Astrophysics Data System (ADS)

    Vtorushina, A. N.; Nikonova, E. D.

    2015-04-01

    The paper describes modern ways for selection of anti-radical substances. Molding of such components with a carbon-based material decreases the rate of its oxidative destruction. Addition of such a component to a carbon-based material decreases the rate of its oxidative destruction. The purpose of this study is to determine the antioxidant activity of ascorbates metals (Ca, Mg, Li, Co, Fe), used in the practice of medicine, as well as mixtures based on them together with well-known antioxidants. In this article we examine the effect of metals on the process of ascorbate oxygen electroreduction. From these ascorbates lithium and magnesium ascorbate showed the greatest activity toward cathode oxygen reduction process. Also mixtures with well-known examined antioxidants ascorbate (glucose, dihydroquercetin) were investigated at different concentrations of components. It is shown that the multicomponent mixtures exhibit lower activity than the individual drugs. Recommended the creation of drugs on the basis of ascorbate Mg and Li with not more than 3 number of components.

  17. DNA damage induced by ascorbate in the presence of Cu2+.

    PubMed

    Kobayashi, S; Ueda, K; Morita, J; Sakai, H; Komano, T

    1988-01-25

    DNA damage induced by ascorbate in the presence of Cu2+ was investigated by use of bacteriophage phi X174 double-stranded supercoiled DNA and linear restriction fragments as substrates. Single-strand cleavage was induced when supercoiled DNA was incubated with 5 microM-10 mM ascorbate and 50 microM Cu2+ at 37 degrees C for 10 min. The induced DNA damage was analyzed by sequencing of fragments singly labeled at their 5'- or 3'-end. DNA was cleaved directly and almost uniformly at every nucleotide by ascorbate and Cu2+. Piperidine treatment after the reaction showed that ascorbate and Cu2+ induced another kind of DNA damage different from the direct cleavage. The damage proceeded to DNA cleavage by piperidine treatment and was sequence-specific rather than random. These results indicate that ascorbate induces two classes of DNA damage in the presence of Cu2+, one being direct strand cleavage, probably via damage to the DNA backbone, and the other being a base modification labile to alkali treatment. These two classes of DNA damage were inhibited by potassium iodide, catalase and metal chelaters, suggesting the involvement of radicals generated from ascorbate hydroperoxide.

  18. Salivary ascorbic acid levels in betel quid chewers: A biochemical study

    PubMed Central

    Shetty, Shishir R.; Babu, Subhas; Kumari, Suchetha; Prasad, Rajendra; Bhat, Supriya; Fazil, K. A.

    2013-01-01

    Background: Quid chewing practice has been a part of our tradition since centuries with little known evidence of oral cancer. However, recent trends show a rise in occurrence of oral cancer often associated with tobacco and arecanut usage. Ascorbic acid is an important salivary antioxidant. Betel leaf which is used in quid is known to contain ascorbic acid. Aim: The aim of our study was to assess the salivary levels of ascorbic acid in traditional quid chewers so as to determine whether the betel leaf has protective antioxidant action. Materials and Methods: Salivary ascorbic acid levels of 60 subjects were estimated using the Dinitrophenyl hydrazine method. Results: The results revealed that quid chewers who used betel leaf had higher salivary ascorbic acid content compared to nonbetel leaf quid chewers. This could possibly be due to the protective antioxidants in the betel leaf. PMID:24455594

  19. Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of NADH-based biosensors.

    PubMed

    Eguílaz, Marcos; Gutierrez, Fabiana; González-Domínguez, Jose Miguel; Martínez, María T; Rivas, Gustavo

    2016-12-15

    We report for the first time the use of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr) (SWCNT-Polytyr) as a new electrode material for the development of nicotinamide adenine dinucleotide (NADH)-based biosensors. The oxidation of glassy carbon electrodes (GCE) modified with SWCNT-Polytyr at potentials high enough to oxidize the tyrosine residues have allowed the electrooxidation of NADH at low potentials due to the catalytic activity of the quinones generated from the primary oxidation of tyrosine without any additional redox mediator. The amperometric detection of NADH at 0.200V showed a sensitivity of (217±3)µAmM(-1)cm(-2) and a detection limit of 7.9nM. The excellent electrocatalytic activity of SWCNT-Polytyr towards NADH oxidation has also made possible the development of a sensitive ethanol biosensor through the immobilization of alcohol dehydrogenase (ADH) via Nafion entrapment, with excellent analytical characteristics (sensitivity of (5.8±0.1)µAmM(-1)cm(-2), detection limit of 0.67µM) and very successful application for the quantification of ethanol in different commercial beverages. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Intravenous ascorbic acid to prevent and treat cancer-associated sepsis?

    PubMed Central

    2011-01-01

    The history of ascorbic acid (AA) and cancer has been marked with controversy. Clinical studies evaluating AA in cancer outcome continue to the present day. However, the wealth of data suggesting that AA may be highly beneficial in addressing cancer-associated inflammation, particularly progression to systemic inflammatory response syndrome (SIRS) and multi organ failure (MOF), has been largely overlooked. Patients with advanced cancer are generally deficient in AA. Once these patients develop septic symptoms, a further decrease in ascorbic acid levels occurs. Given the known role of ascorbate in: a) maintaining endothelial and suppression of inflammatory markers; b) protection from sepsis in animal models; and c) direct antineoplastic effects, we propose the use of ascorbate as an adjuvant to existing modalities in the treatment and prevention of cancer-associated sepsis. PMID:21375761

  1. Superoxide Dismutase Mimetic GC4419 Enhances the Oxidation of Pharmacological Ascorbate and Its Anticancer Effects in an H₂O₂-Dependent Manner.

    PubMed

    Heer, Collin D; Davis, Andrew B; Riffe, David B; Wagner, Brett A; Falls, Kelly C; Allen, Bryan G; Buettner, Garry R; Beardsley, Robert A; Riley, Dennis P; Spitz, Douglas R

    2018-01-19

    Lung cancer, together with head and neck cancer, accounts for more than one-fourth of cancer deaths worldwide. New, non-toxic therapeutic approaches are needed. High-dose IV vitamin C (aka, pharmacological ascorbate; P-AscH - ) represents a promising adjuvant to radiochemotherapy that exerts its anti-cancer effects via metal-catalyzed oxidation to form H₂O₂. Mn(III)-porphyrins possessing superoxide dismutase (SOD) mimetic activity have been shown to increase the rate of oxidation of AscH - , enhancing the anti-tumor effects of AscH - in several cancer types. The current study demonstrates that the Mn(II)-containing pentaazamacrocyclic selective SOD mimetic GC4419 may serve as an AscH - /O₂ •- oxidoreductase as evidenced by the increased rate of oxygen consumption, steady-state concentrations of ascorbate radical, and H₂O₂ production in complete cell culture media. GC4419, but not CuZnSOD, was shown to significantly enhance the toxicity of AscH - in H1299, SCC25, SQ20B, and Cal27 cancer cell lines. This enhanced cancer cell killing was dependent upon the catalytic activity of the SOD mimetic and the generation of H₂O₂, as determined using conditional overexpression of catalase in H1299T cells. GC4419 combined with AscH - was also capable of enhancing radiation-induced cancer cell killing. Currently, AscH - and GC4419 are each being tested separately in clinical trials in combination with radiation therapy. Data presented here support the hypothesis that the combination of GC4419 and AscH - may provide an effective means by which to further enhance radiation therapy responses.

  2. Stress-induced ascorbic acid depletion and cortisol production in two salmonid fishes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1969-01-01

    Interrenal ascorbic acid and serum cortisol were measured in non-specificity stressed yearling coho salmon and rainbow trout.Interrenal ascorbate was markedly decreased during stress but increased to normal if adaptation occurred.Serum cortisol was elevated by non-specific stress and remained high after interrenal ascorbate had returned to initial levels.

  3. cAMP-responsive Element-binding Protein (CREB) and cAMP Co-regulate Activator Protein 1 (AP1)-dependent Regeneration-associated Gene Expression and Neurite Growth*

    PubMed Central

    Ma, Thong C.; Barco, Angel; Ratan, Rajiv R.; Willis, Dianna E.

    2014-01-01

    To regenerate damaged axons, neurons must express a cassette of regeneration-associated genes (RAGs) that increases intrinsic growth capacity and confers resistance to extrinsic inhibitory cues. Here we show that dibutyrl-cAMP or forskolin combined with constitutive-active CREB are superior to either agent alone in driving neurite growth on permissive and inhibitory substrates. Of the RAGs examined, only arginase 1 (Arg1) expression correlated with the increased neurite growth induced by the cAMP/CREB combination, both of which were AP1-dependent. This suggests that cAMP-induced AP1 activity is necessary and interacts with CREB to drive expression of RAGs relevant for regeneration and demonstrates that combining a small molecule (cAMP) with an activated transcription factor (CREB) stimulates the gene expression necessary to enhance axonal regeneration. PMID:25296755

  4. Ascorbic acid transported by sodium-dependent vitamin C transporter 2 stimulates steroidogenesis in human choriocarcinoma cells.

    PubMed

    Wu, Ximei; Iguchi, Takuma; Itoh, Norio; Okamoto, Kousuke; Takagi, Tatsuya; Tanaka, Keiichi; Nakanishi, Tsuyoshi

    2008-01-01

    Reduced vitamin C [ascorbic acid (AA)], which is taken up into cells by sodium-dependent vitamin C transporter (SVCT) 1 and 2, is believed to be important for hormone synthesis, but its role in generating placental steroids needed to maintain pregnancy and fetal development is not clear. To determine the steroidogenic effect of AA and the role of SVCT2 in AA-induced steroidogenesis, we tested the effects of AA treatment and SVCT2 knockdown on steroidogenesis in human choriocarcinoma cell lines. AA treatment of JEG-3, BeWo, and JAR cells for 48-h dose dependently increased progesterone and estradiol levels. In JEG-3 cells, AA increased the mRNA expression of P450 cholesterol side-chain cleavage enzyme, 3beta-hydroxysteroid dehydrogenase type 1, and aromatase, key enzymes for steroidogenesis. Stable knockdown of SVCT2 in JEG-3 cells by retrovirally mediated RNA interference decreased the maximal velocity of AA uptake by approximately 50%, but apparent affinity values were not affected. SVCT2 knockdown in JEG-3 cells significantly suppressed the AA-induced mRNA expression of placental P450 cholesterol side-chain cleavage enzyme, 3beta-hydroxysteroid dehydrogenase type 1, and aromatase. This suppression of the AA-induced mRNA expression of steroidogenic enzymes subsequently decreased progesterone and estradiol production. In addition, inhibition of MAPK kinase-ERK signaling, which is a major pathway for AA-regulated gene expression, failed to affect AA-induced steroidogenesis. Our observations indicate that SVCT2-mediated AA uptake into cells is necessary for AA-induced steroidogenesis in human choriocarcinoma cell, but MAPK kinase-ERK signaling is not involved in AA-induced steroidogenesis.

  5. Effect of micromolar Ca2+ on NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex and possible role of Ca2+ in signal amplification.

    PubMed

    Lawlis, V B; Roche, T E

    1980-11-20

    NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex was compared at 10 microM free Ca2+ or in the absence of Ca2+ (i.e., less than 1.0 nM free Ca2+). In the presence of Ca2+, NADH inhibition was appreciably decreased for a wide range of NADH:NAD+ ratios. A half-maximal decrease in NADH inhibition occurred at slightly less than 1 microM free Ca/+ (as determined with EGTA-Ca buffers). Of necessity this was observed on top of an effect of Ca2+ on the S0.5 for alpha-ketoglutarate which was decreased by Ca2+ with a half-maximal effect at a similar concentration. The effect of Ca2+ on NADH inhibition was not observed in assays of the dihydrolipoyl dehydrogenase component (using dihydrolipoamide as a substrate) or in assays of bovine kidney pyruvate dehydrogenase complex. This indicates that the overall reaction catalyzed by the alpha-ketoglutarate dehydrogenase complex is required to elicit the effect of Ca2+ on NADH inhibition. At a fixed alpha-ketoglutarate concentration (50 microM), removal of Ca2+ reduced the activity of the alpha-ketoglutarate dehydrogenase complex by 8.5-fold (due to an increase in S0.5 for alpha-ketoglutarate) and, in the presence of different NADH:NAD+ ratios, decreased the activity of the complex by 50 to 100-fold. Effects of the phosphate potential (ATP/ADPxPi) or a combination of the phosphate potential and NADH:NAD+ ratio are also described. The possibility that the level of intramitochondrial free Ca/+ serves as a signal amplifier normally coupled to the energy state of mitochondria is discussed.

  6. A fiber-optic sorbitol biosensor based on NADH fluorescence detection toward rapid diagnosis of diabetic complications.

    PubMed

    Gessei, Tomoko; Arakawa, Takahiro; Kudo, Hiroyuki; Mitsubayashi, Kohji

    2015-09-21

    Accumulation of sorbitol in the tissue is known to cause microvascular diabetic complications. In this paper, a fiber-optic biosensor for sorbitol which is used as a biomarker of diabetic complications was developed and tested. The biosensor used a sorbitol dehydrogenase from microorganisms of the genus Flavimonas with high substrate specificity and detected the fluorescence of reduced nicotinamide adenine dinucleotide (NADH) by the enzymatic reaction. An ultraviolet light emitting diode (UV-LED) was used as the excitation light source of NADH. The fluorescence of NADH was detected using a spectrometer or a photomultiplier tube (PMT). The UV-LED and the photodetector were coupled using a Y-shaped optical fiber. In the experiment, an optical fiber probe with a sorbitol dehydrogenase immobilized membrane was placed in a cuvette filled with a phosphate buffer containing the oxidized form of nicotinamide adenine dinucleotide (NAD(+)). The changes in NADH fluorescence intensity were measured after adding a standard sorbitol solution. According to the experimental assessment, the calibration range of the sorbitol biosensor systems using a spectrometer and a PMT was 5.0-1000 μmol L(-1) and 1.0-1000 μmol L(-1), respectively. The sorbitol biosensor system using the sorbitol dehydrogenase from microorganisms of the genus Flavimonas has high selectivity and sensitivity compared with that from sheep liver. The sorbitol biosensor allows for point-of-care testing applications or daily health care tests for diabetes patients.

  7. Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development

    PubMed Central

    Ni, Zhiyou; Lin, Lijin; Tang, Yi; Wang, Zhihui; Wang, Xun; Wang, Jin; Lv, Xiulan; Xia, Hui

    2017-01-01

    To elucidate metabolism of ascorbic acid (AsA) in sweet cherry fruit (Prunus avium ‘Hongdeng’), we quantified AsA concentration, cloned sequences involved in AsA metabolism and investigated their mRNA expression levels, and determined the activity levels of selected enzymes during fruit development and maturation. We found that AsA concentration was highest at the petal-fall period (0 days after anthesis) and decreased progressively during ripening, but with a slight increase at maturity. AsA did nevertheless continue to accumulate over time because of the increase in fruit fresh weight. Full-length cDNAs of 10 genes involved in the L-galactose pathway of AsA biosynthesis and 10 involved in recycling were obtained. Gene expression patterns of GDP-L-galactose phosphorylase (GGP2), L-galactono-1, 4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX3), ascorbate oxidase (AO2), glutathione reductase (GR1), and dehydroascorbate reductase (DHAR1) were in accordance with the AsA concentration pattern during fruit development, indicating that genes involved in ascorbic acid biosynthesis, degradation, and recycling worked in concert to regulate ascorbic acid accumulation in sweet cherry fruit. PMID:28245268

  8. Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.

    PubMed

    Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M

    2006-04-01

    The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p < 0.001). This suggests that use of ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.

  9. Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice.

    PubMed

    Verrax, Julien; Stockis, Julie; Tison, Aurélie; Taper, Henryk S; Calderon, Pedro Buc

    2006-09-14

    The effect of oxidative stress induced by the ascorbate/menadione-redox association was examined in K562 cells, a human erythromyeloid leukaemia cell line. Our results show that ascorbate enhances menadione redox cycling, leading to the formation of intracellular reactive oxygen species (as shown by dihydrorhodamine 123 oxidation). The incubation of cells in the presence of both ascorbate/menadione and aminotriazole, a catalase inhibitor, resulted in a strong decrease of cell survival, reinforcing the role of H(2)O(2) as the main oxidizing agent killing K562 cells. This cell death was not caspase-3-dependent. Indeed, neither procaspase-3 and PARP were processed and only a weak cytochrome c release was observed. Moreover, we observed only 23% of cells with depolarized mitochondria. In ascorbate/menadione-treated cells, DNA fragmentation was observed without any sign of chromatin condensation (DAPI and TUNEL tests). The cell demise by ascorbate/menadione is consistent with a necrosis-like cell death confirmed by both cytometric profile of annexin-V/propidium iodide labeled cells and by light microscopy examination. Finally, we showed that a single i.p. administration of the association of ascorbate and menadione is able to inhibit the growth of K562 cells by about 60% (in both tumour size and volume) in an immune-deficient mice model. Taken together, these results reinforced our previous claims about a potential application of the ascorbate/menadione association in cancer therapy.

  10. Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress.

    PubMed

    Domazou, Anastasia S; Zelenay, Viviane; Koppenol, Willem H; Gebicki, Janusz M

    2012-10-15

    Ascorbate levels decrease in organisms subjected to oxidative stress, but the responsible reactions have not been identified. Our earlier studies have shown that protein C-centered radicals react rapidly with ascorbate. In aerobes, these radicals can react with oxygen to form peroxyl radicals. To estimate the relative probabilities of the reactions of ascorbate with protein C- and O-centered radicals, we measured by pulse radiolysis the rate constants of the reactions of C-centered radicals in Gly, Ala, and Pro with O₂ and of the resultant peroxyl radicals with ascorbate. Calculations based on the concentrations of ascorbate and oxygen in human tissues show that the relative probabilities of reactions of the C-centered amino acid radicals with O₂ and ascorbate vary between 1:2.6 for the pituitary gland and 1:0.02 for plasma, with intermediate ratios for other tissues. The high frequency of occurrence of Gly, Ala, and Pro in proteins and the similar reaction rate constants of their C-centered radicals with O₂ and their peroxo-radicals with ascorbate suggest that our results are also valid for proteins. Thus, the formation of protein C- or O-centered radicals in vivo can account for the loss of ascorbate in organisms under oxidative stress. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Plasmatic antioxidant capacity due to ascorbate using TEMPO scavenging and electron spin resonance.

    PubMed

    Piehl, Lidia L; Facorro, Graciela B; Huarte, Mónica G; Desimone, Martín F; Copello, Guillermo J; Díaz, Luis E; de Celis, Emilio Rubín

    2005-09-01

    Ascorbate is the most effective water-soluble antioxidant and its plasma concentration is usually measured by different methods including colorimetric assays, HPLC or capillary electrophoresis. Plasma antioxidant capacity is determined by indexes such as total reactive antioxidant potential, total antioxidant reactivity, oxygen radical absorbance capacity, etc. We developed an alternative method for the evaluation of the plasma antioxidant status due to ascorbate. TEMPO kinetics scavenging analyzed by ESR spectroscopy was performed on plasma samples in different antioxidant situations. Plasma ascorbate concentrations were determined by capillary electrophoresis. Ascorbyl radical levels were measured by ESR. Plasma reactivity with TEMPO (PR-T) reflected plasma ascorbate levels. Average PR-T for normal plasmas resulted 85+/-27 micromol/l (n=43). PR-T during ascorbic acid intake (1 g/day) increased to an average value of 130+/-20 micromol/l (p<0.001, n=20). PR-T correlated with the plasmatic ascorbate levels determined by capillary electrophoresis (r=0.92), presenting as an advantage the avoiding of the deproteination step. Plasma ascorbyl radical levels increase from 16+/-2 to 24+/-3 nmol/l (p<0.005, n=14) after ascorbate intake. PR-T could be considered as a measure of the plasmatic antioxidant capacity due to the plasma ascorbate levels and could be useful to investigate different antioxidant situations.

  12. Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs

    PubMed Central

    Weinstein, Edward A.; Yano, Takahiro; Li, Lin-Sheng; Avarbock, David; Avarbock, Andrew; Helm, Douglas; McColm, Andrew A.; Duncan, Ken; Lonsdale, John T.; Rubin, Harvey

    2005-01-01

    Mycobacterium tuberculosis (Mtb) is an obligate aerobe that is capable of long-term persistence under conditions of low oxygen tension. Analysis of the Mtb genome predicts the existence of a branched aerobic respiratory chain terminating in a cytochrome bd system and a cytochrome aa3 system. Both chains can be initiated with type II NADH:menaquinone oxidoreductase. We present a detailed biochemical characterization of the aerobic respiratory chains from Mtb and show that phenothiazine analogs specifically inhibit NADH:menaquinone oxidoreductase activity. The emergence of drug-resistant strains of Mtb has prompted a search for antimycobacterial agents. Several phenothiazines analogs are highly tuberculocidal in vitro, suppress Mtb growth in a mouse model of acute infection, and represent lead compounds that may give rise to a class of selective antibiotics. PMID:15767566

  13. Modulation of tissue repair by regeneration enhancer elements.

    PubMed

    Kang, Junsu; Hu, Jianxin; Karra, Ravi; Dickson, Amy L; Tornini, Valerie A; Nachtrab, Gregory; Gemberling, Matthew; Goldman, Joseph A; Black, Brian L; Poss, Kenneth D

    2016-04-14

    How tissue regeneration programs are triggered by injury has received limited research attention. Here we investigate the existence of enhancer regulatory elements that are activated in regenerating tissue. Transcriptomic analyses reveal that leptin b (lepb) is highly induced in regenerating hearts and fins of zebrafish. Epigenetic profiling identified a short DNA sequence element upstream and distal to lepb that acquires open chromatin marks during regeneration and enables injury-dependent expression from minimal promoters. This element could activate expression in injured neonatal mouse tissues and was divisible into tissue-specific modules sufficient for expression in regenerating zebrafish fins or hearts. Simple enhancer-effector transgenes employing lepb-linked sequences upstream of pro- or anti-regenerative factors controlled the efficacy of regeneration in zebrafish. Our findings provide evidence for 'tissue regeneration enhancer elements' (TREEs) that trigger gene expression in injury sites and can be engineered to modulate the regenerative potential of vertebrate organs.

  14. Effect of ascorbic acid on storage of Greyhound erythrocytes.

    PubMed

    Fontes, Jorge A; Banerjee, Uddyalok; Iazbik, M Cristina; Marín, Liliana M; Couto, C Guillermo; Palmer, Andre F

    2015-09-01

    To assess changes in biochemical and biophysical properties of canine RBCs during cold (1° to 6°C) storage in a licensed RBC additive solution (the RBC preservation solution designated AS-1) supplemented with ascorbic acid. Blood samples from 7 neutered male Greyhounds; all dogs had negative results when tested for dog erythrocyte antigen 1.1. Blood was collected into citrate-phosphate-dextrose and stored in AS-1. Stored RBCs were supplemented with 7.1mM ascorbic acid or with saline (0.9% NaCl) solution (control samples). Several biochemical and biophysical properties of RBCs were measured, including percentage hemolysis, oxygen-hemoglobin equilibrium, and the kinetic rate constants for O2 dissociation, carbon monoxide association, and nitric oxide dioxygenation. Greyhound RBCs stored in AS-1 supplemented with ascorbic acid did not have significantly decreased hemolysis, compared with results for the control samples, during the storage period. In this study, ascorbic acid did not reduce hemolysis during storage. Several changes in stored canine RBCs were identified as part of the hypothermic storage lesion.

  15. Comparative transcriptomic profiling of two tomato lines with different ascorbate content in the fruit.

    PubMed

    Di Matteo, Antonio; Sacco, Adriana; De Stefano, Rosalba; Frusciante, Luigi; Barone, Amalia

    2012-12-01

    In recent years, interest in tomato breeding for enhanced antioxidant content has increased as medical research has pointed to human health benefits from antioxidant dietary intake. Ascorbate is one of the major antioxidants present in tomato, and little is known about mechanisms governing ascorbate pool size in this fruit. In order to provide further insights into genetic mechanisms controlling ascorbate biosynthesis and accumulation in tomato, we investigated the fruit transcriptome profile of the Solanum pennellii introgression line 10-1 that exhibits a lower fruit ascorbate level than its cultivated parental genotype. Our results showed that this reduced ascorbate level is associated with an increased antioxidant demand arising from an accelerated oxidative metabolism mainly involving mitochondria, peroxisomes, and cytoplasm. Candidate genes for controlling ascorbate level in tomato fruit were identified, highlighting the role of glycolysis, glyoxylate metabolism, and purine breakdown in modulating the ascorbate pool size.

  16. Sugars, ascorbic acid, total phenolic content and total antioxidant activity in passion fruit (Passiflora) cultivars.

    PubMed

    Devi Ramaiya, Shiamala; Bujang, Japar Sidik; Zakaria, Muta Harah; King, Wong Sing; Shaffiq Sahrir, Muhd Arif

    2013-03-30

    The levels of sugars, ascorbic acid, total phenolic content (TPC) and total antioxidant activity (TAA) were determined in fruit juices from seven passion fruit (Passiflora spp.) cultivars: P. edulis cultivars Purple, Frederick, Yellow, Pink, P. edulis f. flavicarpa, P. maliformis and P. quadrangularis (we also tested this cultivar's mesocarp). Purple and Yellow P. edulis had significantly higher total sugar, 142.85 ± 0.17 g kg⁻¹ and 139.69 ± 0.12 g kg⁻¹, respectively, than other cultivars. Glucose and fructose content were higher in juice from vine-ripened fruits of Purple, Frederick and Yellow P. edulis, P. quadrangularis and P. maliformis. Sucrose content was significantly higher in juice of non-vine-ripened fruits of P. edulis (Pink) and P. edulis f. flavicarpa. Ascorbic acid, TPC and TAA were significantly higher in vine-ripened Purple and Yellow P. edulis; ranges were 0.22-0.33 g kg⁻¹, 342.80-382.00 mg gallic acid equivalent L⁻¹ and 409.13-586.70 µmol Trolox L⁻¹, respectively. Based on principal component analysis (PCA) and cluster analysis, the main variables - °Brix, total sugar, glucose, fructose, ascorbic acid, TPC and TAA - formed the characteristics for the group comprising Purple and Yellow P. edulis. Glucose, fructose, sucrose, ascorbic acid, TAA and TPC were quantified in passion fruit juices. Variation of the above variables in juices of Passiflora depends on the cultivar and ripeness. © 2012 Society of Chemical Industry.

  17. Effect of CO2 on NADH production of denitrifying microbes via inhibiting carbon source transport and its metabolism.

    PubMed

    Wan, Rui; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Huang, Haining

    2018-06-15

    The potential effect of CO 2 on environmental microbes has drawn much attention recently. As an important section of the nitrogen cycle, biological denitrification requires electron donor to reduce nitrogen oxide. Nicotinamide adenine dinucleotide (NADH), which is formed during carbon source metabolism, is a widely reported electron donor for denitrification. Here we studied the effect of CO 2 on NADH production and carbon source utilization in the denitrifying microbe Paracoccus denitrificans. We observed that NADH level was decreased by 45.5% with the increase of CO 2 concentration from 0 to 30,000ppm, which was attributed to the significantly decreased utilization of carbon source (i.e., acetate). Further study showed that CO 2 inhibited carbon source utilization because of multiple negative influences: (1) suppressing the growth and viability of denitrifier cells, (2) weakening the driving force for carbon source transport by decreasing bacterial membrane potential, and (3) downregulating the expression of genes encoding key enzymes involved in intracellular carbon metabolism, such as citrate synthase, aconitate hydratase, isocitrate dehydrogenase, succinate dehydrogenase, and fumarate reductase. This study suggests that the inhibitory effect of CO 2 on NADH production in denitrifiers might deteriorate the denitrification performance in an elevated CO 2 climate scenario. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Ascorbic acid and tannins from Emblica officinalis Gaertn. Fruits--a revisit.

    PubMed

    Majeed, Muhammed; Bhat, Beena; Jadhav, Atul N; Srivastava, Jyotish S; Nagabhushanam, Kalyanam

    2009-01-14

    The fruits of Emblica officinalis Gaertn. (Euphorbiaceae), also known as amla in Ayurveda, are considered to be a rich source of ascorbic acid. However, the antioxidant activities exhibited by E. officinalis extract are superior to those of ascorbic acid itself. Low molecular hydrolyzable tannins emblicanins A and B have been suggested in the earlier literature to be the contributory antioxidant molecules in the extract. This work finds no evidence for the presence of emblicanins A and B in the extract. In addition, the high content of ascorbic acid is also questionable due to previous nonidentification of coeluting mucic acid gallates. This paper reports a new HPLC method to detect even trace amounts of ascorbic acid in E. officinalis fruit juice or extract.

  19. Mechanism of action of vitamin C in sepsis: Ascorbate modulates redox signaling in endothelium

    PubMed Central

    Wilson, John X.

    2009-01-01

    Circulating levels of vitamin C (ascorbate) are low in patients with sepsis. Parenteral administration of ascorbate raises plasma and tissue concentrations of the vitamin and may decrease morbidity. In animal models of sepsis, intravenous ascorbate injection increases survival and protects several microvascular functions, namely, capillary blood flow, microvascular permeability barrier, and arteriolar responsiveness to vasoconstrictors and vasodilators. The effects of parenteral ascorbate on microvascular function are both rapid and persistent. Ascorbate quickly accumulates in microvascular endothelial cells, scavenges reactive oxygen species, and acts through tetrahydrobiopterin to stimulate nitric oxide production by endothelial nitric oxide synthase. A major reason for the long duration of the improvement in microvascular function is that cells retain high levels of ascorbate, which alter redox-sensitive signaling pathways to diminish septic induction of NADPH oxidase and inducible nitric oxide synthase. These observations are consistent with the hypothesis that microvascular function in sepsis may be improved by parenteral administration of ascorbate as an adjuvant therapy. PMID:19319840

  20. Epoxyeicosanoids promote organ and tissue regeneration.

    PubMed

    Panigrahy, Dipak; Kalish, Brian T; Huang, Sui; Bielenberg, Diane R; Le, Hau D; Yang, Jun; Edin, Matthew L; Lee, Craig R; Benny, Ofra; Mudge, Dayna K; Butterfield, Catherine E; Mammoto, Akiko; Mammoto, Tadanori; Inceoglu, Bora; Jenkins, Roger L; Simpson, Mary A; Akino, Tomoshige; Lih, Fred B; Tomer, Kenneth B; Ingber, Donald E; Hammock, Bruce D; Falck, John R; Manthati, Vijaya L; Kaipainen, Arja; D'Amore, Patricia A; Puder, Mark; Zeldin, Darryl C; Kieran, Mark W

    2013-08-13

    Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium. Normal organ and tissue regeneration require an active paracrine role of the microvascular endothelium, which in turn depends on angiogenic growth factors. Thus, we hypothesize that endothelial cells stimulate organ and tissue regeneration via production of bioactive EETs. To determine whether endothelial-derived EETs affect physiologic tissue growth in vivo, we used genetic and pharmacological tools to manipulate endogenous EET levels. We show that endothelial-derived EETs play a critical role in accelerating tissue growth in vivo, including liver regeneration, kidney compensatory growth, lung compensatory growth, wound healing, corneal neovascularization, and retinal vascularization. Administration of synthetic EETs recapitulated these results, whereas lowering EET levels, either genetically or pharmacologically, delayed tissue regeneration, demonstrating that pharmacological modulation of EETs can affect normal organ and tissue growth. We also show that soluble epoxide hydrolase inhibitors, which elevate endogenous EET levels, promote liver and lung regeneration. Thus, our observations indicate a central role for EETs in organ and tissue regeneration and their contribution to tissue homeostasis.

  1. Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats.

    PubMed

    Wang, Jin-Ye; Sekine, Seiji; Saito, Morio

    2003-04-01

    Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.

  2. Co-expression of cytochrome b561 and ascorbate oxidase in leaves of wild watermelon under drought and high light conditions.

    PubMed

    Nanasato, Yoshihiko; Akashi, Kinya; Yokota, Akiho

    2005-09-01

    Despite carrying out C3 photosynthesis, wild watermelon (Citrullus lanatus sp.) exhibits exceedingly good tolerance to severe drought at high light intensities. However, the mechanism(s) by which this plant protects itself from photodamage has yet to be elucidated. In this study, we characterized wild watermelon cytochrome b561 (cyt b561), which potentially mediates regeneration of apoplastic ascorbate by transferring electrons from cytosolic ascorbate across the plasma membrane. Two cDNA species for wild watermelon cyt b561, designated CLb561A and CLb561B, were isolated. Levels of both CLb561A mRNA and protein were significantly elevated in the leaves during drought at a light intensity of 700 micromol photons m(-2) s(-1). The transcript of CLb561B was detected to a much lesser extent, but no CLb561B protein was produced under any condition used in this study. A transient expression assay with the CLb561A::green fluorescent protein fusion construct showed clear fluorescence on the plasma membrane of onion epidermal cells. The CLb561A protein was enriched in the plasma membrane fraction in leaves of transgenic tobacco expressing CLb561A. Moreover, the high activity of apoplastic ascorbate oxidase (AO), which was able to dispose of cyt b561-transferred reducing equivalents, increased in leaves of wild watermelon grown at high light intensity, but not lower light intensities. Taken together, these observations suggest the occurrence of a novel pathway for excess light energy dissipation in wild watermelon leaves, where excessive energy absorbed by chloroplasts can be transported to and dissipated safely in the apoplasts through the cooperative action of cyt b561 and AO.

  3. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state.

    PubMed

    Zhao, Yuzheng; Wang, Aoxue; Zou, Yejun; Su, Ni; Loscalzo, Joseph; Yang, Yi

    2016-08-01

    NADH and its oxidized form NAD(+) have a central role in energy metabolism, and their concentrations are often considered to be among the most important readouts of metabolic state. Here, we present a detailed protocol to image and monitor NAD(+)/NADH redox state in living cells and in vivo using a highly responsive, genetically encoded fluorescent sensor known as SoNar (sensor of NAD(H) redox). The chimeric SoNar protein was initially developed by inserting circularly permuted yellow fluorescent protein (cpYFP) into the NADH-binding domain of Rex protein from Thermus aquaticus (T-Rex). It functions by binding to either NAD(+) or NADH, thus inducing protein conformational changes that affect its fluorescent properties. We first describe steps for how to establish SoNar-expressing cells, and then discuss how to use the system to quantify the intracellular redox state. This approach is sensitive, accurate, simple and able to report subtle perturbations of various pathways of energy metabolism in real time. We also detail the application of SoNar to high-throughput chemical screening of candidate compounds targeting cell metabolism in a microplate-reader-based assay, along with in vivo fluorescence imaging of tumor xenografts expressing SoNar in mice. Typically, the approximate time frame for fluorescence imaging of SoNar is 30 min for living cells and 60 min for living mice. For high-throughput chemical screening in a 384-well-plate assay, the whole procedure generally takes no longer than 60 min to assess the effects of 380 compounds on cell metabolism.

  4. Reversible Reduction of Nitroxides to Hydroxylamines: the Roles for Ascorbate and Glutathione

    PubMed Central

    Bobko, Andrey A.; Kirilyuk, Igor A.; Grigor'ev, Igor A.; Zweier, Jay L.; Khramtsov, Valery V.

    2007-01-01

    Biological applications of stable nitroxyl radicals, NR, include their use as contrast agents for magnetic resonance imaging, spin labels, superoxide dismutase mimics, and antioxidants. The rapid reduction of NR in biological samples into hydroxylamines, HA, significantly limits their application. In its turn, reoxidation of HA back to the NR has been used for detection of reactive oxygen species, ROS. In this work comparative studies of the reduction of pyrrolidine, imidazoline and imidazolidine NR by ascorbate were performed taking advantage of recently synthesized tetraethyl substituted NR with much higher stability towards reduction both in vitro and in vivo. Surprisingly, these NR kept 10-50% of initial intensity of electron paramagnetic resonance signal for about 1 h in the presence of hundred fold excess of ascorbate. To explain this data, reoxidation of the corresponding HA by ascorbate radical and dehydroascorbic acid back to the NR was proposed. This hypothesis was supported by direct measurement of the NR appearance from the HA upon ascorbate radical generation by ascorbate oxidase, or in the presence of the dehydroascorbic acid. The reversible reaction between NR and ascorbate was observed for the various types of the NR, and the rate constants for direct and reverse reactions were determined. The equilibrium constants for one-electron reduction of the tetraethyl substituted NR by ascorbate were found to be in the range from 2.65×10−6 to 10−5 which is significantly lower than corresponding values for the tetramethyl substituted NR (less or about 10−4). This explains an establishment of EPR-detectable quasi-equilibrium level of tetraethyl substituted NR in the presence of excess of ascorbate. The redox reactions of the NR-HA couple in ascorbate containing medium was found to be significantly affected by glutathione, GSH. This effect was attributed to the reduction of ascorbate radical by GSH, and the rate constant of this reaction was found to be

  5. Regeneration of viable oil palm plants from protoplasts by optimizing media components, growth regulators and cultivation procedures.

    PubMed

    Masani, Mat Yunus Abdul; Noll, Gundula; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2013-09-01

    Oil palm protoplasts are suitable as a starting material for the production of oil palm plants with new traits using approaches such as somatic hybridization, but attempts to regenerate viable plants from protoplasts have failed thus far. Here we demonstrate, for the first time, the regeneration of viable plants from protoplasts isolated from cell suspension cultures. We achieved a protoplast yield of 1.14×10(6) per gram fresh weight with a viability of 82% by incubating the callus in a digestion solution comprising 2% cellulase, 1% pectinase, 0.5% cellulase onuzuka R10, 0.1% pectolyase Y23, 3% KCl, 0.5% CaCl2 and 3.6% mannitol. The regeneration of protoplasts into viable plants required media optimization, the inclusion of plant growth regulators and the correct culture technique. Microcalli derived from protoplasts were obtained by establishing agarose bead cultures using Y3A medium supplemented with 10μM naphthalene acetic acid, 2μM 2,4-dichlorophenoxyacetic acid, 2μM indole-3-butyric acid, 2μM gibberellic acid and 2μM 2-γ-dimethylallylaminopurine. Small plantlets were regenerated from microcalli by somatic embryogenesis after successive subculturing steps in medium with limiting amounts of growth regulators supplemented with 200mg/l ascorbic acid. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Influence of trace elements on stabilization of aqueous solutions of ascorbic acid.

    PubMed

    Dolińska, Barbara; Ostróżka-Cieślik, Aneta; Caban, Artur; Rimantas, Klimas; Leszczyńska, Lucyna; Ryszka, Florian

    2012-12-01

    Together with vitamin C, zinc, selenium, manganese, and magnesium play a vital role in the preservation of organs scheduled for transplantation. In the present study, it is shown that addition of 1 mg/l of these elements influences the stability of 0.3 mM ascorbic acid solutions. The solution's stability was estimated using an accelerated stability test. The concentration of vitamin C was measured using a validated spectrophotometric method, which uses the reduction of 2,6-dichlorophenoloindophenol by ascorbic acid. Elevated temperatures, the factor accelerating substances' decomposition reaction rate, were used in the tests. The research was conducted at two temperatures at intervals of 10 °C: 80 ± 0.1 and 90 ± 0.1 °C. It was stated that the studied substances' decomposition occurred in accordance with the equation for first-order reactions. The function of the logarithmic concentration (log%C) over time was revealed to be rectilinear. This dependence was used to determine the kinetics of decomposition reaction rate parameters. The stabilization of vitamin C solutions was measured as the time in which 10 % of the substance decomposed at 20 and 0 °C. Addition of Se(IV) or Mg(II) ions significantly increase the stability of ascorbic acid solution (∼34 and ∼16 %, respectively), but Zn(II) causes a significant decrease in stability by ∼23 %. Addition of Mn(II) has no significant influence on vitamin C stability.

  7. Inhibition of AcpA phosphatase activity with ascorbate attenuates Francisella tularensis intramacrophage survival.

    PubMed

    McRae, Steven; Pagliai, Fernando A; Mohapatra, Nrusingh P; Gener, Alejandro; Mahmou, Asma Sayed Abdelgeliel; Gunn, John S; Lorca, Graciela L; Gonzalez, Claudio F

    2010-02-19

    Acid phosphatase activity in the highly infectious intracellular pathogen Francisella tularensis is directly related with the ability of these bacteria to survive inside host cells. Pharmacological inactivation of acid phosphatases could potentially help in the treatment of tularemia or even be utilized to neutralize the infection. In the present work, we report inhibitory compounds for three of the four major acid phosphatases produced by F. tularensis SCHU4: AcpA, AcpB, and AcpC. The inhibitors were identified using a catalytic screen from a library of chemicals approved for use in humans. The best results were obtained against AcpA. The two compounds identified, ascorbate (K(i) = 380 +/- 160 microM) and 2-phosphoascorbate (K(i) = 3.2 +/- 0.85 microM) inhibit AcpA in a noncompetitive, nonreversible fashion. A potential ascorbylation site in the proximity of the catalytic pocket of AcpA was identified using site-directed mutagenesis. The effects of the inhibitors identified in vitro were evaluated using bioassays determining the ability of F. tularensis to survive inside infected cells. The presence of ascorbate or 2-phosphoascorbate impaired the intramacrophage survival of F. tularensis in an AcpA-dependent manner as it was probed using knockout strains. The evidence presented herein indicated that ascorbate could be a good alternative to be used clinically to improve treatments against tularemia.

  8. Inhibition of AcpA Phosphatase Activity with Ascorbate Attenuates Francisella tularensis Intramacrophage Survival

    PubMed Central

    McRae, Steven; Pagliai, Fernando A.; Mohapatra, Nrusingh P.; Gener, Alejandro; Abdelgeliel Mahmou, Asma Sayed; Gunn, John S.; Lorca, Graciela L.; Gonzalez, Claudio F.

    2010-01-01

    Acid phosphatase activity in the highly infectious intracellular pathogen Francisella tularensis is directly related with the ability of these bacteria to survive inside host cells. Pharmacological inactivation of acid phosphatases could potentially help in the treatment of tularemia or even be utilized to neutralize the infection. In the present work, we report inhibitory compounds for three of the four major acid phosphatases produced by F. tularensis SCHU4: AcpA, AcpB, and AcpC. The inhibitors were identified using a catalytic screen from a library of chemicals approved for use in humans. The best results were obtained against AcpA. The two compounds identified, ascorbate (Ki = 380 ± 160 μm) and 2-phosphoascorbate (Ki = 3.2 ± 0.85 μm) inhibit AcpA in a noncompetitive, nonreversible fashion. A potential ascorbylation site in the proximity of the catalytic pocket of AcpA was identified using site-directed mutagenesis. The effects of the inhibitors identified in vitro were evaluated using bioassays determining the ability of F. tularensis to survive inside infected cells. The presence of ascorbate or 2-phosphoascorbate impaired the intramacrophage survival of F. tularensis in an AcpA-dependent manner as it was probed using knockout strains. The evidence presented herein indicated that ascorbate could be a good alternative to be used clinically to improve treatments against tularemia. PMID:20028980

  9. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines.

    PubMed

    Schurig-Briccio, Lici A; Yano, Takahiro; Rubin, Harvey; Gennis, Robert B

    2014-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is currently one of the principal multiple drug resistant bacterial pathogens causing serious infections, many of which are life-threatening. Consequently, new therapeutic targets are required to combat such infections. In the current work, we explore the type 2 Nicotinamide adenine dinucleotide reduced form (NADH) dehydrogenases (NDH-2s) as possible drug targets and look at the effects of phenothiazines, known to inhibit NDH-2 from Mycobacterium tuberculosis. NDH-2s are monotopic membrane proteins that catalyze the transfer of electrons from NADH via flavin adenine dinucleotide (FAD) to the quinone pool. They are required for maintaining the NADH/Nicotinamide adenine dinucleotide (NAD(+)) redox balance and contribute indirectly to the generation of proton motive force. NDH-2s are not present in mammals, but are the only form of respiratory NADH dehydrogenase in several pathogens, including S. aureus. In this work, the two putative ndh genes present in the S. aureus genome were identified, cloned and expressed, and the proteins were purified and characterized. Phenothiazines were shown to inhibit both of the S. aureus NDH-2s with half maximal inhibitory concentration (IC50) values as low as 8μM. However, evaluating the effects of phenothiazines on whole cells of S. aureus was complicated by the fact that they are also acting as uncouplers of oxidative phosphorylation. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Monoclonal antibody to a cancer-specific and drug-responsive hydroquinone (NADH) oxidase from the sera of cancer patients

    NASA Technical Reports Server (NTRS)

    Cho, NaMi; Chueh, Pin-Ju; Kim, Chinpal; Caldwell, Sara; Morre, Dorothy M.; Morre, D. James

    2002-01-01

    Monoclonal antibodies were generated in mice to a 34-kDa circulating form of a drug-responsive hydroquinone (NADH) oxidase with a protein disulfide-thiol interchange activity specific to the surface of cancer cells and the sera of cancer patients. Screening used Western blots with purified 34-kDa tNOX from HeLa cells and the sera of cancer patients. Epitopes were sought that inhibited the drug-responsive oxidation of NADH with the sera of cancer patients, but which had no effect on NADH oxidation with the sera of healthy volunteers. Two such antisera were generated. One, designated monoclonal antibody (mAb) 12.1, was characterized extensively. The NADH oxidase activity inhibited by mAb 12.1 also was inhibited by the quinone site inhibitor capsaicin (8-methyl- N-vanillyl-6-noneamide). The inhibition was competitive for the drug-responsive protein disulfide-thiol interchange activity assayed either by restoration of activity to scrambled RNase or by cleavage of a dithiodipyridine substrate, and was uncompetitive for NADH oxidation. Both the mAb 12.1 and the postimmune antisera immunoprecipitated drug-responsive NOX activity and identified the same 34-kDa tNOX protein in the sera of cancer patients that was absent from sera of healthy volunteers, and was utilized as immunogen. Preimmune sera from the same mouse as the postimmune antisera was without effect. Both mouse ascites containing mAb 12.1 and postimmune sera (but not preimmune sera) slowed the growth of human cancer cell lines in culture, but did not affect the growth of non-cancerous cell lines. Immunocytochemical and histochemical findings showed that mAb 12.1 reacted with the surface membranes of human carcinoma cells and tissues.

  11. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells.

    PubMed

    Lin, Shuw-Yuan; Lai, Wan-Wen; Chou, Chi-Chung; Kuo, Hsiu-Maan; Li, Te-Mao; Chung, Jing-Gung; Yang, Jen-Hung

    2006-12-01

    Vitamin C has been reported to be useful in the treatment and prevention of cancer. Inconsistent effects from growth stimulation to induction of apoptosis of malignant tumor cells, however, have been reported. Melanoma is an increasingly common and potentially lethal malignancy. It was reported that melanoma cells were more susceptible to ascorbate toxicity than any other tumor cells. The mechanisms accounting for ascorbate-induced apoptosis in human melanoma cells, however, have remained unclear. This study was undertaken to investigate the effect of sodium ascorbate on cytotoxicity and apoptosis in human malignant melanoma A375.S2 cells. A375.S2 cells were incubated with a certain range of concentrations of sodium ascorbate for various time periods. In order to examine the effects of sodium ascorbate on cell proliferation, cell cycle, apoptosis and necrosis, we performed 4,6-diamidino-2-phenylindole dihydrochloride assays and flow cytometry analysis. Polymerase chain reaction was used to examine the mRNA levels of p53, p21, p27, cyclin A, cyclin E, CDK2 and CDK4, which are associated with cell cycle S-phase arrest and apoptosis. Flow cytometric analysis showed that sodium ascorbate significantly induced cell cycle arrest and apoptosis in the A375.S2 cell line in a dose-dependent manner. The increased expressions of p53 and p21, and the decreased expressions of cyclin A, cyclin E, CDK2 and CDK4, indicated the cell cycle arrest at G1/S phase after the cells had been treated with sodium ascorbate. Induction of apoptosis involved an increase in the levels of p53, p21 and cellular Ca, and a decrease in mitochondrial membrane potential and activation of caspase 3 before culminating in apoptosis in sodium ascorbate-treated A375.S2 cells.

  12. Sodium orthovanadate associated with pharmacological doses of ascorbate causes an increased generation of ROS in tumor cells that inhibits proliferation and triggers apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günther, T-hat nia Mara Fischer; Kviecinski, Maicon Roberto; Baron, Carla Cristine

    2013-01-18

    Graphical abstract: -- Abstract: Pharmacological doses of ascorbate were evaluated for its ability to potentiate the toxicity of sodium orthovanadate (Na{sub 3}VO{sub 4}) in tumor cells. Cytotoxicity, inhibition of cell proliferation, generation of ROS and DNA fragmentation were assessed in T24 cells. Na{sub 3}VO{sub 4} was cytotoxic against T24 cells (EC{sub 50} = 5.8 μM at 24 h), but in the presence of ascorbate (100 μM) the EC{sub 50} fell to 3.3 μM. Na{sub 3}VO{sub 4} plus ascorbate caused a strong inhibition of cell proliferation (up to 20%) and increased the generation of ROS (4-fold). Na{sub 3}VO{sub 4} did notmore » directly cleave plasmid DNA, at this aspect no synergism was found occurring between Na{sub 3}VO{sub 4} and ascorbate once the resulting action of the combination was no greater than that of both substances administered separately. Cells from Ehrlich ascites carcinoma-bearing mice were used to determine the activity of antioxidant enzymes, the extent of the oxidative damage and the type of cell death. Na{sub 3}VO{sub 4} alone, or combined with ascorbate, increased catalase activity, but only Na{sub 3}VO{sub 4} plus ascorbate increased superoxide dismutase activity (up to 4-fold). Oxidative damage on proteins and lipids was higher due to the treatment done with Na{sub 3}VO{sub 4} plus ascorbate (2–3-fold). Ascorbate potentiated apoptosis in tumor cells from mice treated with Na{sub 3}VO{sub 4}. The results indicate that pharmacological doses of ascorbate enhance the generation of ROS induced by Na{sub 3}VO{sub 4} in tumor cells causing inhibition of proliferation and apoptosis. Apoptosis induced by orthovanadate and ascorbate is closer related to inhibition on Bcl-xL and activation of Bax. Our data apparently rule out a mechanism of cell demise p53-dependent or related to Cdk2 impairment.« less

  13. Ascorbic acid, catalase and chlorpromazine reduce cryopreservation-induced damages to crossbred bull spermatozoa.

    PubMed

    Paudel, K P; Kumar, S; Meur, S K; Kumaresan, A

    2010-04-01

    The present study evaluated the effectiveness of ascorbic acid, catalase, chlorpromazine and their combinations in reducing the cryodamages to crossbred bull (Bos taurus x Bos indicus) spermatozoa. A total of 32 ejaculates (eight each from four bulls) were diluted in Tris-citric acid-fructose-egg yolk-glycerol extender. Each ejaculate was split into six parts (five treatment and one control). Treatment groups included 10 mm ascorbic acid, 0.1 mm chlorpromazine, 200 IU/ml catalase, 10 mm ascorbic acid + 0.1 mm chlorpromazine or 200 IU/ml catalase + 0.1 mm chlorpromazine in the extender. Fluorescent probes (Fluorescein isothiocyanate--Pisum sativum agglutinin + Propidium iodide) were used for the assessment of spermatozoa viability and acrosomal status. The proportion of acrosome intact live (AIL), acrosome intact dead, acrosome reacted live and acrosome reacted dead sperm was assessed in fresh, equilibrated and frozen-thawed semen. The functional status of the sperm was assessed using hypo-osmotic sperm swelling test (HOSST). Activities of acrosin and hyaluronidase enzyme were also determined. Lipid peroxidation level was assayed based on the melonaldehyde (MDA) production. In cryopreserved semen, the values of AIL spermatozoa, HOSST response, hyaluronidase and acrosin activity were reduced by 53%, 47%, 34% and 54%, respectively from their initial values in fresh semen. However, MDA level was threefold higher in the frozen-thawed sperm compared with fresh sperm. Significant (p < 0.05) improvement in motility, viability, HOSST response, retention of hyaluonidase and acrosin and reduction in MDA was recorded in ascorbic acid, catalase, ascorbic acid + chlorpromazine and catalase + chlorpromazine incorporated groups. The percentage of AIL sperm was significantly (p < 0.05) higher in ascorbic acid, catalase and ascorbic acid + chlorpromazine incorporated groups compared with the control. Chlorpromazine alone did not improve the post-thaw semen quality but when combined

  14. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.

    PubMed

    Martínez, Irene; Zhu, Jiangfeng; Lin, Henry; Bennett, George N; San, Ka-Yiu

    2008-11-01

    Reactions requiring reducing equivalents, NAD(P)H, are of enormous importance for the synthesis of industrially valuable compounds such as carotenoids, polymers, antibiotics and chiral alcohols among others. The use of whole-cell biocatalysis can reduce process cost by acting as catalyst and cofactor regenerator at the same time; however, product yields might be limited by cofactor availability within the cell. Thus, our study focussed on the genetic manipulation of a whole-cell system by modifying metabolic pathways and enzymes to improve the overall production process. In the present work, we genetically engineered an Escherichia coli strain to increase NADPH availability to improve the productivity of products that require NADPH in its biosynthesis. The approach involved an alteration of the glycolysis step where glyceraldehyde-3-phosphate (GAP) is oxidized to 1,3 bisphophoglycerate (1,3-BPG). This reaction is catalyzed by NAD-dependent endogenous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encoded by the gapA gene. We constructed a recombinant E. coli strain by replacing the native NAD-dependent gapA gene with a NADP-dependent GAPDH from Clostridium acetobutylicum, encoded by the gene gapC. The beauty of this approach is that the recombinant E. coli strain produces 2 mol of NADPH, instead of NADH, per mole of glucose consumed. Metabolic flux analysis showed that the flux through the pentose phosphate (PP) pathway, one of the main pathways that produce NADPH, was reduced significantly in the recombinant strain when compared to that of the parent strain. The effectiveness of the NADPH enhancing system was tested using the production of lycopene and epsilon-caprolactone as model systems using two different background strains. The recombinant strains, with increased NADPH availability, consistently showed significant higher productivity than the parent strains.

  15. Control of enzymatic browning in apple slices by using ascorbic acid under different conditions.

    PubMed

    el-Shimi, N M

    1993-01-01

    Control of phenol oxidase activity in apple slices by the use of ascorbic acid at different pH values, temperature and time of incubation was investigated. The enzyme was almost inactivated at 1% and 1.5% ascorbic acid. Ascorbic acid solution (1%) caused a remarkable inhibition with the increasing acidity up to pH = 1. Heating treatments for apple slices dipped in 1% ascorbic acid caused a reduction of enzymatic browning, optimum temperature for inactivation of the enzyme was between 60-70 degrees C for 15 minutes. Increasing the time of dipping apple slices in 1% ascorbic acid solutions and at different pH values reduce phenolase activity.

  16. An Upstream Open Reading Frame Is Essential for Feedback Regulation of Ascorbate Biosynthesis in Arabidopsis

    PubMed Central

    Laing, William A.; Martínez-Sánchez, Marcela; Wright, Michele A.; Bulley, Sean M.; Brewster, Di; Dare, Andrew P.; Rassam, Maysoon; Wang, Daisy; Storey, Roy; Macknight, Richard C.; Hellens, Roger P.

    2015-01-01

    Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms. PMID:25724639

  17. An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis.

    PubMed

    Laing, William A; Martínez-Sánchez, Marcela; Wright, Michele A; Bulley, Sean M; Brewster, Di; Dare, Andrew P; Rassam, Maysoon; Wang, Daisy; Storey, Roy; Macknight, Richard C; Hellens, Roger P

    2015-03-01

    Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms. © 2015 American Society of Plant Biologists. All rights reserved.

  18. Ascorbic acid glucoside reduces neurotoxicity and glutathione depletion in mouse brain induced by nitrotriazole radiosensitazer.

    PubMed

    Cherdyntseva, Nadezda V; Ivanova, Anna A; Ivanov, Vladimir V; Cherdyntsev, Evgeny; Nair, Cherupally Krishnan Krishnan; Kagiya, Tsutomu V

    2013-01-01

    To investigate the potential of the anti-oxidant ascorbic acid glucoside (AA-2G) to modulate neurotoxicity induced by high doses of nitrotriazole radiosensitizer. Male and female C56Bl/6xCBA hybrid mice aged 8-14 weeks (weight 18-24 g) were used. Nitrotriazole drug radiosensitizer sanazole at a high dose of 2, 1 g/kg was per os administered to induce neurotoxicity at mice. Ascorbic acid glucoside was given 30 min before the sanazole administration. Serum ascorbic acid, brain glutathione level, as well as behavioral performance using open field apparatus were measured. Administration of high (non-therapeutic) doses of the nitrotriazole drug sanazole results in neurotoxicity in mice as evidenced from behavioral performance, emotional activity and depletion of the cellular antioxidant, glutathione, in the brain. The serum levels of ascorbic acid was also found reduced in high dose sanazole treated animals. Per os administration of ascorbic acid glucoside significantly reduced the neurotoxicity. This effect was associated with the prevention of glutathione depletion in mouse brain and restoring the ascorbic acid level in serum. Administration of ascorbic acid glucoside, but not ascorbic acid, before sanazole administration protected from sanazole-induced neurotoxicity by preventing the decrease in the brain reduced glutathione level and providing high level of ascorbic acid in plasma.

  19. Intracellular Redox State Revealed by In Vivo 31P MRS Measurement of NAD+ and NADH Contents in Brains

    PubMed Central

    Lu, Ming; Zhu, Xiao-Hong; Zhang, Yi; Chen, Wei

    2015-01-01

    Purpose Nicotinamide adenine dinucleotide (NAD), in oxidized (NAD+) or reduced (NADH) form, plays key roles in cellular metabolism. Intracellular NAD+/NADH ratio represents the cellular redox state; however, it is difficult to measure in vivo. We report here a novel in vivo 31P MRS method for noninvasive measurement of intracellular NAD concentrations and NAD+/NADH ratio in the brain. Methods It uses a theoretical model to describe the NAD spectral patterns at a given field for quantification. Standard NAD solutions and independent cat brain measurements at 9.4 T and 16.4 T were used to evaluate this method. We also measured T1 values of brain NAD. Results Model simulation and studies of solutions and brains indicate that the proposed method can quantify submillimolar NAD concentrations with reasonable accuracy if adequate 31P MRS signal-to-noise ratio and linewidth were obtained. The NAD concentrations and NAD+/NADH ratio of cat brains measured at 16.4 T and 9.4 T were consistent despite the significantly different T1 values and NAD spectra patterns at two fields. Conclusion This newly established 31P MRS method makes it possible for the first time to noninvasively study the intracellular redox state and its roles in brain functions and diseases, and it can potentially be applied to other organs. PMID:23843330

  20. Determination of the ascorbic acid content of two medicinal plants in Nigeria.

    PubMed

    H A, Okeri; P O, Alonge

    2006-01-01

    The fresh and dried leaves of two edible plants, Oldenlandia corymbosa and Dissotis rotundifolia have been assayed for their ascorbic acid content. They were found to be rich sources of ascorbic acid (vitamin C) when compared with some common garden fruits and vegetables. Students' t-test statistical analysis using INSTAT.EXE program for the results (mean+/-SEM) shows that there was no significant difference for the fresh leaves of the individual plants and also there is no significant difference for the dried leaves (P=0.05). However, there was significant difference between ascorbic acid content of the fresh and dried leaves of the same plant, obviously indicating that the fresh leaves contain more ascorbic acid than the dried leaves.

  1. Ascorbic acid insufficiency induces the severe defect on bone formation via the down-regulation of osteocalcin production

    PubMed Central

    Kim, Won; Bae, Seyeon; Kim, Hyemin; Kim, Yejin; Choi, Jiwon; Lim, Sun Young; Lee, Hei Jin; Lee, Jihyuk; Choi, Jiyea; Jang, Mirim; Lee, Kyoung Eun; Chung, Sun G.; Hwang, Young-il

    2013-01-01

    The L-gulono-γ-lactone oxidase gene (Gulo) encodes an essential enzyme in the synthesis of ascorbic acid from glucose. On the basis of previous findings of bone abnormalities in Gulo-/- mice under conditions of ascorbic acid insufficiency, we investigated the effect of ascorbic acid insufficiency on factors related to bone metabolism in Gulo-/- mice. Four groups of mice were raised for 4 weeks under differing conditions of ascorbic acid insufficiency, namely, wild type; ascorbic acid-sufficient Gulo-/- mice, 3-week ascorbic acid-insufficient Gulo-/- mice, and 4-week ascorbic acid-insufficient Gulo-/- mice. Four weeks of ascorbic acid insufficiency resulted in significant weight loss in Gulo-/- mice. Interestingly, average plasma osteocalcin levels were significantly decreased in Gulo-/- mice after 3 weeks of ascorbic acid insufficiency. In addition, the tibia weight in ascorbic acid-sufficient Gulo-/- mice was significantly higher than that in the other three groups. Moreover, significant decreases in trabecular bone volume near to the growth plate, as well as in trabecular bone attachment to the growth plate, were evident in 3- or 4-week ascorbic acid-insufficient Gulo-/-. In summary, ascorbic acid insufficiency in Gulo-/- mice results in severe defects in normal bone formation, which are closely related to a decrease in plasma osteocalcin levels. PMID:24386598

  2. Theoretical Analysis of a Pulse Tube Regenerator

    NASA Technical Reports Server (NTRS)

    Roach, Pat R.; Kashani, Ali; Lee, J. M.; Cheng, Pearl L. (Technical Monitor)

    1995-01-01

    A theoretical analysis of the behavior of a typical pulse tube regenerator has been carried out. Assuming simple sinusoidal oscillations, the static and oscillatory pressures, velocities and temperatures have been determined for a model that includes a compressible gas and imperfect thermal contact between the gas and the regenerator matrix. For realistic material parameters, the analysis reveals that the pressure and, velocity oscillations are largely independent of details of the thermal contact between the gas and the solid matrix. Only the temperature oscillations depend on this contact. Suggestions for optimizing the design of a regenerator are given.

  3. Immobilization of flavin adenine dinucleotide (FAD) onto carbon cloth and its application as working electrode in an electroenzymatic bioreactor.

    PubMed

    Jayabalan, R; Sathishkumar, M; Jeong, E S; Mun, S P; Yun, S E

    2012-11-01

    A high porosity carbon cloth with immobilized FAD was employed as working electrode in electrochemical NADH-regeneration procedure. Carbon cloth was oxidized with hot acids to create surface carboxyl group and then coupled by adenine amino group of FAD with carbodiimide in the presence of N-hydroxysulfosuccinimide. The bioelectrocatalytic NADH-regeneration was coupled to the conversion of achiral substrate pyruvate into chiral product l-lactate by l-lactate dehydrogenase (l-LDH) within the same reactor. The conversion was completed at 96h in bioreactor with FAD-modified carbon cloth, resulting in about 6mM of l-lactate from 10mM of pyruvate. While with bare carbon cloth, the yield at 120h was around 5mM. Immobilized FAD on the surface of carbon cloth electrode facilitated it to carry electrons from electrode to electron transfer enzymes; thereby NADH-regeneration was accelerated to drive the enzymatic reaction efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion

    PubMed Central

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J. S.; Gray, Joshua P.

    2011-01-01

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7 mM) to stimulatory (8-16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H2O2), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H2O2 inhibit insulin secretion. Menadione, which produces H2O2 via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H2O2 production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H2O2 formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H2O2 and menadione on insulin secretion. PMID:22115979

  5. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion.

    PubMed

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J S; Gray, Joshua P

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7mM) to stimulatory (8-16mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H(2)O(2)), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H(2)O(2) inhibit insulin secretion. Menadione, which produces H(2)O(2) via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H(2)O(2) production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H(2)O(2) formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H(2)O(2) and menadione on insulin secretion. Published by Elsevier Inc.

  6. Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid.

    PubMed

    Pappenberger, Günter; Hohmann, Hans-Peter

    2014-01-01

    L-ascorbic acid (vitamin C) was first isolated in 1928 and subsequently identified as the long-sought antiscorbutic factor. Industrially produced L-ascorbic acid is widely used in the feed, food, and pharmaceutical sector as nutritional supplement and preservative, making use of its antioxidative properties. Until recently, the Reichstein-Grüssner process, designed in 1933, was the main industrial route. Here, D-sorbitol is converted to L-ascorbic acid via 2-keto-L-gulonic acid (2KGA) as key intermediate, using a bio-oxidation with Gluconobacter oxydans and several chemical steps. Today, industrial production processes use additional bio-oxidation steps with Ketogulonicigenium vulgare as biocatalyst to convert D-sorbitol to the intermediate 2KGA without chemical steps. The enzymes involved are characterized by a broad substrate range, but remarkable regiospecificity. This puzzling specificity pattern can be understood from the preferences of these enyzmes for certain of the many isomeric structures which the carbohydrate substrates adopt in aqueous solution. Recently, novel enzymes were identified that generate L-ascorbic acid directly via oxidation of L-sorbosone, an intermediate of the bio-oxidation of D-sorbitol to 2KGA. This opens the possibility for a direct route from D-sorbitol to L-ascorbic acid, obviating the need for chemical rearrangement of 2KGA. Similar concepts for industrial processes apply for the production of D-isoascorbic acid, the C5 epimer of L-ascorbic acid. D-isoascorbic acid has the same conformation at C5 as D-glucose and can be derived more directly than L-ascorbic acid from this common carbohydrate feed stock.

  7. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.

    PubMed

    Taniguchi, Yuka; Watanabe, Kenji; Mochii, Makoto

    2014-06-18

    Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans.

  8. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole

    PubMed Central

    2014-01-01

    Background Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. Results In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. Conclusion As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans. PMID:24941877

  9. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene.

    PubMed

    Li, Nan; Wang, Yuanlong; Zhu, Ping; Liu, Zhenmin; Guo, Benheng; Ren, Jing

    2015-02-01

    Lactobacillus casei LC2W is an exopolysaccharide (EPS)-producing strain with probiotic effects. To investigate the regulation mechanism of EPS biosynthesis and to improve EPS production through cofactor engineering, a H₂O-forming NADH oxidase gene was cloned from Streptococcus mutans and overexpressed in L. casei LC2W under the control of constitutive promoter P₂₃. The recombinant strain LC-nox exhibited 0.854 U/mL of NADH oxidase activity, which was elevated by almost 20-fold in comparison with that of wild-type strain. As a result, overexpression of NADH oxidase resulted in a reduction in growth rate. In addition, lactate production was decreased by 22% in recombinant strain. It was proposed that more carbon source was saved and used for the biosynthesis of EPS, the production of which was reached at 219.4 mg/L, increased by 46% compared to that of wild-type strain. This work provided a novel and convenient genetic approach to manipulate metabolic flux and to increase EPS production. To the best of our knowledge, this is the first report which correlates cofactor engineering with EPS production. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Sodium-dependent Vitamin C transporter 2 deficiency impairs myelination and remyelination after injury: Roles of collagen and demethylation.

    PubMed

    Röhr, Dominik; Halfter, Hartmut; Schulz, Jörg B; Young, Peter; Gess, Burkhard

    2017-07-01

    Peripheral nerve myelination involves rapid production of tightly bound lipid layers requiring cholesterol biosynthesis and myelin protein expression, but also a collagen-containing extracellular matrix providing mechanical stability. In previous studies, we showed a function of ascorbic acid in peripheral nerve myelination and extracellular matrix formation in adult mice. Here, we sought the mechanism of action of ascorbic acid in peripheral nerve myelination using different paradigms of myelination in vivo and in vitro. We found impaired myelination and reduced collagen expression in Sodium-dependent Vitamin C Transporter 2 heterozygous mice (SVCT2 +/- ) during peripheral nerve development and after peripheral nerve injury. In dorsal root ganglion (DRG) explant cultures, hypo-myelination could be rescued by precoating with different collagen types. The activity of the ascorbic acid-dependent demethylating Ten-eleven-translocation (Tet) enzymes was reduced in ascorbic acid deprived and SVCT2 +/- DRG cultures. Further, in ascorbic acid-deprived DRG cultures, methylation of a CpG island in the collagen alpha1 (IV) and alpha2 (IV) bidirectional promoter region was increased compared to wild-type and ascorbic acid treated controls. Taken together, these results provide further evidence for the function of ascorbic acid in myelination and extracellular matrix formation in peripheral nerves and suggest a putative molecular mechanism of ascorbic acid function in Tet-dependent demethylation of collagen promoters. © 2017 Wiley Periodicals, Inc.

  11. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.

    PubMed

    Bekers, K M; Heijnen, J J; van Gulik, W M

    2015-08-01

    With the current quantitative metabolomics techniques, only whole-cell concentrations of NAD and NADH can be quantified. These measurements cannot provide information on the in vivo redox state of the cells, which is determined by the ratio of the free forms only. In this work we quantified free NAD:NADH ratios in yeast under anaerobic conditions, using alcohol dehydrogenase (ADH) and the lumped reaction of glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase as sensor reactions. We showed that, with an alternative accurate acetaldehyde determination method, based on rapid sampling, instantaneous derivatization with 2,4 diaminophenol hydrazine (DNPH) and quantification with HPLC, the ADH-catalysed oxidation of ethanol to acetaldehyde can be applied as a relatively fast and simple sensor reaction to quantify the free NAD:NADH ratio under anaerobic conditions. We evaluated the applicability of ADH as a sensor reaction in the yeast Saccharomyces cerevisiae, grown in anaerobic glucose-limited chemostats under steady-state and dynamic conditions. The results found in this study showed that the cytosolic redox status (NAD:NADH ratio) of yeast is at least one order of magnitude lower, and is thus much more reduced, under anaerobic conditions compared to aerobic glucose-limited steady-state conditions. The more reduced state of the cytosol under anaerobic conditions has major implications for (central) metabolism. Accurate determination of the free NAD:NADH ratio is therefore of importance for the unravelling of in vivo enzyme kinetics and to judge accurately the thermodynamic reversibility of each redox reaction. Copyright © 2015 John Wiley & Sons, Ltd.

  12. An acute study on the relative gastro-intestinal absorption of a novel form of calcium ascorbate.

    PubMed

    Bush, M J; Verlangieri, A J

    1987-07-01

    Several functions of L-ascorbic acid (vitamin C) have been suggested in addition to its role in the prevention of scurvy. Consequently, a controversy has arisen over the daily intake of the vitamin which will afford maximum benefits. Rapid cellular uptake and delayed renal excretion of ascorbic acid would be conducive to providing optimum cellular concentration for biochemical activity. ESTER-C (patent pending), a complex consisting of L-ascorbic acid and Ca++, has been recently developed by Inter-Cal Corporation (421 Miller Road, Prescott, AZ 86301). It has been proposed that the structure of ESTER-C may render it more readily absorbed and less rapidly excreted than the acid or salt form of the vitamin. To test this hypothesis, ESTER-C and L-ascorbic acid were administered to two groups of rats. Blood was sampled at 20, 40, 80, 160 and 240 minutes and plasma analyzed for ascorbic acid. As urine appeared in collection cups, it was tested qualitatively for the presence of ascorbic acid. The plasma concentration of ascorbic acid was higher in ESTER-C treated rats at 20, 40 and 80 minutes than in rats given L-ascorbic acid. Ascorbic acid was detected in the urine of animals administered ESTER-C later than in those treated with L-ascorbic acid. These results support the hypothesis that ESTER-C is absorbed more readily and excreted less rapidly than L-ascorbic acid.

  13. Predicting the regeneration of Appalachian hardwoods: adapting the REGEN model for the Appalachian Plateau

    Treesearch

    Lance A. Vickers; Thomas R. Fox; David L. Loftis; David A. Boucugnani

    2013-01-01

    The difficulty of achieving reliable oak (Quercus spp.) regeneration is well documented. Application of silvicultural techniques to facilitate oak regeneration largely depends on current regeneration potential. A computer model to assess regeneration potential based on existing advanced reproduction in Appalachian hardwoods was developed by David...

  14. Exogenous ascorbic acid improves defence responses of sunflower (Helianthus annuus) exposed to multiple stresses.

    PubMed

    Kaya, Armagan

    2017-09-01

    Ascorbic acid is an important antioxidant that plays role both on growth and development and also stress response of the plant. The purpose of this study was to determine the effect of ascorbate on physiological and biochemical changes of sunflower that was exposed to multiple stresses. Chlorophyll and carotenoid contents decreased and glutathione, ascorbate and malondialdehyde contents as well as antioxidant enzyme activities increased for sunflower plant that was exposed to 50 mM NaCl and pendimethalin at different concentrations. These changes were found to be more significant in groups simultaneously exposed to both stress factors. While malondialdehyde content decreased, chlorophyll, carotenoid, ascorbate, glutathione contents and antioxidant enzyme activities increased in plants treated exogenously with ascorbate, compared to the untreated samples. According to the findings of our study; compared to individual stress, the effect of stress is more pronounced in sunflower exposed to multiple stresses, and treatment with exogenous ascorbate reduces the negative effects of stress.

  15. Characterization of Truncated Tumor-Associated NADH Oxidase (ttNOX)

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Malone, Christine C.; Burk, Melissa; Moore, Blake P.; Achari, Aniruddha; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Bacterial, plant and animal cells possess novel surface proteins that exhibit both NADH oxidation (NOX) or hydroquinone and protein disulfide-thiol interchange. These enzymatic activities alternate to yield oscillating patterns wjth period lengths of approximately 24 minutes. The catalytic period of NOX proteins are temperature compensated and gravity responsive. We report the cloning, expression and characterization of truncated tumor-associated NADH oxidase (ttNOX), in which the membrane spanning region has been deleted. The cDNA (originated from HeLa cells) was cloned into pET-34b and pET-14b (Novagen) vectors for E. coli expression. Optimized expression and purification protocols yielded greater than 300mg per liter of culture with greater than 95% purity. Circular dichroism data was collected from a 2.7mg/ml solution in a 0.1mm cuvette with variable scanning using an Olis RSM CD spectrophotometer. The ellipticity values were scanned from 190 to 260nm. The spectra recorded have characteristics for alpha proteins with band maxima at 216nm and a possible shoulder at 212nm at 12OC and 250 C. Protein crystal screens are in progress and, to date, only small crystals have been observed. The regular periodic oscillatory change in the ttNOX protein is indicative of a possible time-keeping functional role. A single protein possessing alternating catalytic activities, with a potential biological clock function, is unprecedented and structural determination is paramount to understanding this role.

  16. Vitamin C transporter gene polymorphisms, dietary vitamin C and serum ascorbic acid.

    PubMed

    Cahill, Leah E; El-Sohemy, Ahmed

    2009-01-01

    Vitamin C transporter proteins SVCT1 and SVCT2 are required for the absorption and transport of vitamin C in humans. This study aims to determine whether common SVCT genotypes modify the association between dietary vitamin C and serum ascorbic acid. Non-smoking men and women (n=1,046) aged 20-29 were participants of the Toronto Nutrigenomics and Health Study. Overnight fasting blood samples were collected to determine serum ascorbic acid concentrations by HPLC and to genotype for two SVCT1 (rs4257763 and rs6596473) and two SVCT2 (rs6139591 and rs2681116) polymorphisms. No diet-gene interactions were observed for the vitamin C transporter polymorphisms, however, the average (mean+/-SE) serum ascorbic acid concentrations differed between rs4257763 genotypes (GG: 24.4+/-1.3, GA: 26.8+/-1.1, AA: 29.7+/-1.4 micromol/l; p=0.002). For this polymorphism, the correlation between dietary vitamin C and serum ascorbic acid was only significant in subjects with a G allele. The SVCT2 polymorphisms also appeared to modify the strength of the diet-serum correlation. Our findings demonstrate that genetic variation in SVCT1 can influence serum ascorbic acid concentrations and that SVCT1 and SVCT2 genotypes modify the strength of the correlation between dietary vitamin C and serum ascorbic acid. Copyright © 2010 S. Karger AG, Basel.

  17. Ascorbate-apatite composite and ascorbate-FGF-2-apatite composite layers formed on external fixation rods and their effects on cell activity in vitro.

    PubMed

    Wang, Xiupeng; Ito, Atsuo; Sogo, Yu; Li, Xia; Tsurushima, Hideo; Oyane, Ayako

    2009-09-01

    Ascorbate-apatite and ascorbate-fibroblast growth factor-2 (FGF-2)-apatite composite layers were successfully formed on anodically oxidized Ti rods clinically used for external fixation by a one-step procedure at 25 degrees C, using a metastable supersaturated calcium phosphate solution supplemented with l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg) and FGF-2. The AsMg-apatite and AsMg-FGF-2-apatite composite layers were evaluated in vitro using fibroblastic NIH3T3 and osteoblastic MC3T3-E1 cells. The AsMg-FGF-2-apatite composite layer markedly enhanced the NIH3T3 cell proliferation and procollagen type capital I, Ukrainian gene expression. Without FGF-2, the AsMg-apatite composite layer whose ascorbate content was 3.64+/-1.27microgcm(-2) obviously enhanced osteoblastic proliferation and differentiation. However, the AsMg-FGF-2-apatite composite layers whose FGF-2 contents were from 0.15+/-0.03 to 0.31+/-0.04microgcm(-2) inhibited osteoblastic differentiation in vitro. Thus, the AsMg-FGF-2-apatite composite layer should be precipitated on the surface of external fixators attached to skin and soft tissue. On the other hand, the AsMg-apatite composite layer should be precipitated at the part attached to bone tissue.

  18. Ascorbic acid metabolism during bilberry (Vaccinium myrtillus L.) fruit development.

    PubMed

    Cocetta, Giacomo; Karppinen, Katja; Suokas, Marko; Hohtola, Anja; Häggman, Hely; Spinardi, Anna; Mignani, Ilaria; Jaakola, Laura

    2012-07-15

    Bilberry (Vaccinium myrtillus L.) possesses a high antioxidant capacity in berries due to the presence of anthocyanins and ascorbic acid (AsA). Accumulation of AsA and the expression of the genes encoding the enzymes of the main AsA biosynthetic route and of the ascorbate-glutathione cycle, as well as the activities of the enzymes involved in AsA oxidation and recycling were investigated for the first time during the development and ripening of bilberry fruit. The results showed that the AsA level remained relatively stable during fruit maturation. The expression of the genes encoding the key enzymes in the AsA main biosynthetic route showed consistent trends with each other as well as with AsA levels, especially during the first stages of fruit ripening. The expression of genes and activities of the enzyme involved in the AsA oxidation and recycling route showed more prominent developmental stage-dependent changes during the ripening process. Different patterns of activity were found among the studied enzymes and the results were, for some enzymes, in accordance with AsA levels. In fully ripe berries, both AsA content and gene expression were significantly higher in skin than in pulp. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence.

    PubMed

    Loscos, Jorge; Matamoros, Manuel A; Becana, Manuel

    2008-03-01

    Ascorbate and glutathione are major antioxidants and redox buffers in plant cells but also play key functions in growth, development, and stress responses. We have studied the regulation of ascorbate and homoglutathione biosynthesis in common bean (Phaseolus vulgaris) nodules under stress conditions and during aging. The expression of five genes of the major ascorbate biosynthetic pathway was analyzed in nodules, and evidence was found that L-galactono-1,4-lactone dehydrogenase, the last committed step of the pathway, is posttranscriptionally regulated. Also, in nodules under stress conditions, gamma-glutamylcysteine synthetase was translationally regulated, but homoglutathione synthetase (mRNA and activity) and homoglutathione (content and redox state) were not affected. Most interestingly, in nodules exposed to jasmonic acid, dehydroascorbate reductase activity was posttranslationally suppressed, ascorbate oxidase showed strong transcriptional up-regulation, and dehydroascorbate content increased moderately. These changes were not due to a direct effect of jasmonic acid on the enzyme activities but might be part of the signaling pathway in the response of nodules to stress. We determined ascorbate, homoglutathione, and ascorbate-glutathione pathway enzyme activities in two senescing stages of nodules undergoing oxidative stress. When all parameters were expressed on a nodule fresh weight basis, we found that in the first stage ascorbate decreased by 60% and homoglutathione and antioxidant activities remained fairly constant, whereas in the second stage ascorbate and homoglutathione, their redox states, and their associated enzyme activities significantly decreased. The coexistence in the same plants of nodules at different senescence stages, with different ascorbate concentrations and redox states, indicates that the life span of nodules is in part controlled by endogenous factors and points to ascorbate as one of the key players.

  20. Influence of polarity of solvents on IR absorption and Raman spectra of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Kutsenko, S. A.; Danyaeva, Y. S.; Maximova, S. V.

    2018-04-01

    The results of numerical calculations of IR absorption and Raman spectra of ascorbic acid in polar and nonpolar solutions are presented. The dependence of the change in the total energy and the dipole moment of the molecule on the characteristics of the solvents was investigated using the two solvation models. Spectral bands and the corresponding structural groups of the molecule are found, the characteristics of which are most vulnerable to solvents.

  1. Drinking water supplementation with ascorbate is not protective against UVR-B-induced cataract in the guinea pig.

    PubMed

    Mody, Vino C; Kakar, Manoj; Elfving, Ase; Löfgren, Stefan

    2008-03-01

    To study if ascorbate supplementation decreases ultraviolet radiation (UVR)-induced cataract development in the guinea pig. Sixty 6-9-week-old pigmented guinea pigs received drinking water supplemented with or without 5.5 mm l-ascorbate for 4 weeks. After supplementation, 40 animals were exposed unilaterally in vivo under anaesthesia to 80 kJ/m(2) UVR-B. One day later, the animals were killed and lenses were extracted. Degree of cataract was quantified by measurement of intensity of forward lens light scattering. Lens ascorbate concentration was determined with high-performance liquid chromatography (HPLC) with UVR detection at 254 nm. Twenty animals were used as non-exposed control. Supplementation increased lens ascorbate concentration significantly. In UVR-exposed animals, mean 95% confidence intervals (CIs) for animal-averaged lens ascorbate concentration (micromol/g wet weight lens) were 0.54 +/- 0.07 (no ascorbate) and 0.83 +/- 0.05 (5.5 mm ascorbate). In non-exposed control animals, mean 95% CIs for animal-averaged lens ascorbate concentration (micromol/g wet weight lens) were 0.72 +/- 0.12 (0 mm ascorbate) and 0.90 +/- 0.15 (5.5 mm ascorbate). All non-exposed lenses were devoid of cataract. Superficial anterior cataract developed in all UVR-exposed lenses. The lens light scattering was 39.2 +/- 14.1 milli transformed equivalent diazepam concentration (m(tEDC)) without and 35.9 +/- 14.0 m(tEDC) with ascorbate supplementation. Superficial anterior cataract develops in lenses exposed to UVR-B. Ascorbate supplementation is non-toxic to both UVR-B-exposed lenses and non-exposed control lenses. Ascorbate supplementation does not reduce in vivo lens forward light scattering secondary to UVR-B exposure in the guinea pig.

  2. Modelling the interactions between free phenols, L-ascorbic acid, apple polyphenoloxidase and oxygen during a thermal treatment.

    PubMed

    Aka, Jean-Pierre; Courtois, Francis; Louarme, Loïc; Nicolas, Jacques; Billaud, Catherine

    2013-06-01

    The kinetics of degradation of chlorogenic acid (CG), (-) epicatechin (EPI), L-ascorbic acid (AA) and polyphenoloxidase (PPO) activity from Marie-Ménard apple in pH 3.8 solutions at 20 and 50°C were investigated to provide information on the impact of the presence of CG, EPI and/or AA on PPO thermostability. The effect of the heat treatment on their degradation by enzymatic and/or nonenzymatic ways was also studied. Stoechiokinetic reactions on the basis of experimental data and literature and determination of the kinetic constants (k) at 20 and 50°C were elaborated before modelling the interaction among reactants, by fitting the reaction curves to predictive model. Apple PPO was thermolabile, denaturing after 10min at 70°C. Losses of PPO activity were favoured by the presence of EPI in model solutions, compared with CG, due to the formation of o-quinones of EPI (QEPI) lowering PPO stability. Temperature quickened both enzymatic phenol oxidations before PPO deteriorated and the whole set of the chemical reactions, including the production of secondary oxidation products and CG or EPI regeneration. Results also confirmed that AA in excess induced a fast regeneration of CG and EPI from the corresponding o-quinones formed enzymatically via redox chemical reactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. New approach to biosensing of co-enzyme nicotinamide adenine dinucleotide (NADH) by incorporation of neutral red in aluminum doped nanostructured ZnO thin films.

    PubMed

    V T, Fidal; T S, Chandra

    2017-06-01

    Biosensing of NADH on bare electrodes has drawbacks such as high over-potential and poisoning during the oxidation reaction. To overcome this challenge a different approach has been undertaken by incorporating neutral red (NR) in Al doped ZnO (AZO) thin films using one-pot chemical bath deposition (CBD). The surface morphology of the films was hexagonal nanorods along the c-axis, perpendicular to the substrate. The thickness of the thin films were ranging from 400 to 3000nm varying dependent on time of deposition (30 to 150min). The average diameter of the nanorods was larger in the presence of neutral red (NR-AZO) with ~300nm in contrast to its absence (AZO) with ~200nm. The density of the packing of nanorods was dependent on the citrate concentration used during deposition. Control over the dopant concentration in the films was achieved by varying the area of Al foil used in the deposition solution. The selected area diffraction (SAED) and X-ray diffraction (XRD) indicated 002 plane of orientation in the nanorods. FTIR and FT-Raman analysis revealed conserved structure of NR and AZO. Chronoamperometric (CA) analysis showed a sensitivity of 0.45μAcm -2 mM -1 and LoD of 22μM within the range 0.075-4mM of NADH. The biological sensing of NADH was validated by physical adsorption of NAD + dependent-lactate dehydrogenase (LDH) on NR-AZO. CA showed sensitivity of 0.56μAcm -2 mM -1 and LoD for lactate was 27μM in the range of 0.1-1mM of lactate. Further validation with real-time serum sample shows that LDH/NR-AZO correlates with the clinical values. The distinction in this study is that the organic mediator like neutral red has been incorporated into the grain structure of the ZnO thin film whereas other study with the mediators have only attempted surface functionalization. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights

  4. NADH-ubiquinone oxidoreductase activity in the kinetoplasts of the plant trypanosomatid Phytomonas serpens.

    PubMed

    González-Halphen, Diego; Maslov, Dmitri A

    2004-03-01

    NADH-ubiquinone oxidoreductase activity is present in mitochondrial lysates of Phytomonas serpens. Rotenone at 2-10 microM inhibited the activity 50-75%, indicating that it belongs to respiratory complex I. The activity was also inhibited 50-60% in the presence of 10-30 nM atovaquone suggesting that inhibition of complex I represents a likely mechanism of the known antileishmanial activity of this drug. The complex was partially purified by chromatography on DEAE-Sepharose CL-6B and gel-filtration on Sepharose CL-2B. The NADH:ubiquinone oxidoreductase activity in this preparation was completely inactivated by 20 nM atovaquone. The partially purified complex was present in a low amount and its subunits could not be discerned by staining with Coomassie. However, one of its components, a homologue of the 39 kDa subunit of the bovine complex I, was identified immunochemically in the original lysate and in the partially purified material.

  5. Disruption of key NADH-binding pocket residues of the Mycobacterium tuberculosis InhA affects DD-CoA binding ability.

    PubMed

    Shaw, Daniel J; Robb, Kirsty; Vetter, Beatrice V; Tong, Madeline; Molle, Virginie; Hunt, Neil T; Hoskisson, Paul A

    2017-07-05

    Tuberculosis (TB) is a global health problem that affects over 10 million people. There is an urgent need to develop novel antimicrobial therapies to combat TB. To achieve this, a thorough understanding of key validated drug targets is required. The enoyl reductase InhA, responsible for synthesis of essential mycolic acids in the mycobacterial cell wall, is the target for the frontline anti-TB drug isoniazid. To better understand the activity of this protein a series of mutants, targeted to the NADH co-factor binding pocket were created. Residues P193 and W222 comprise a series of hydrophobic residues surrounding the cofactor binding site and mutation of both residues negatively affect InhA function. Construction of an M155A mutant of InhA results in increased affinity for NADH and DD-CoA turnover but with a reduction in V max for DD-CoA, impairing overall activity. This suggests that NADH-binding geometry of InhA likely permits long-range interactions between residues in the NADH-binding pocket to facilitate substrate turnover in the DD-CoA binding region of the protein. Understanding the precise details of substrate binding and turnover in InhA and how this may affect protein-protein interactions may facilitate the development of improved inhibitors enabling the development of novel anti-TB drugs.

  6. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration

    PubMed Central

    Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.

    2012-01-01

    In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration. This impairment is substantially greater when MRTF-A is also deleted and is due to aberrant differentiation and excessive proliferation of satellite cells. These abnormalities mimic those associated with genetic deletion of MyoD, a master regulator of myogenesis, which is down-regulated in the absence of MASTR and MRTF-A. Consistent with an essential role of MASTR in transcriptional regulation of MyoD expression, MASTR activates a muscle-specific postnatal MyoD enhancer through associations with MEF2 and members of the Myocardin family. Our results provide new insights into the genetic circuitry of muscle regeneration and identify MASTR as a central regulator of this process. PMID:22279050

  7. Release of the antioxidants ascorbate and urate from a nitrergically-innervated smooth muscle.

    PubMed

    Lilley, E; Gibson, A

    1997-12-01

    1. The main object of the present study was to determine whether ascorbate, an antioxidant which has been shown to protect nitric oxide (NO) from attack by scavenger molecules, might be released from nitrergically-innervated smooth muscle; ascorbate release from the rat anococcygeus was measured by use of h.p.l.c. with electrochemical detection. 2. Incubation of rat anococcygeus muscles in normal physiological salt solution (PSS; 30 min) resulted in release of ascorbate into the bathing medium (7.7 +/- 0.9 nmol g-1 tissue). This release was increased by 96% when muscles were incubated in high K+ (70 mM) PSS. The resting release of ascorbate was unaffected by tetrodotoxin (TTX; 1 microM), omega-conotoxin GVIA (10 nM) or omission of calcium ions from the PSS (with addition of 0.2 mM EGTA), but all three procedures attenuated the increased release observed under depolarizing conditions. Resting release of ascorbate was unaffected by glutamate (100 microM), aspartate (100 microM), gamma-aminobutyric acid (100 microM) or carbachol (50 microM). 3. A second h.p.l.c. peak, which always preceded the ascorbate peak, was identified as urate. Urate release from the anococcygeus, following 30 min incubation in normal PSS, was 64.6 +/- 12.7 nmol g-1 tissue but, unlike ascorbate, urate release was unchanged in high K+ PSS. In functional experiments, urate (100-400 microM) partially protected NO (15 microM)-induced relaxations of the rat anococcygeus from inhibition by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO; 50 microM), but not from inhibition by hydroquinone or duroquinone (both 100 microM). 4. Muscles chemically sympathectomized with 6-hydroxydopamine (6-OHDA, 500 microM; 2 h) still exhibited release of ascorbate (2.5 +/- 0.4 nmol g-1 tissue) and urate (22.2 +/- 2.9 nmol g-1 tissue); in both cases the release was similar to that observed in time-matched control tissues not exposed to 6-OHDA. High K+ PSS produced a TTX-sensitive increase

  8. Ascorbic Acid as a Standard for Iodometric Titrations. An Analytical Experiment for General Chemistry

    NASA Astrophysics Data System (ADS)

    Silva, Cesar R.; Simoni, Jose A.; Collins, Carol H.; Volpe, Pedro L. O.

    1999-10-01

    Ascorbic acid is suggested as the weighable compound for the standardization of iodine solutions in an analytical experiment in general chemistry. The experiment involves an iodometric titration in which iodine reacts with ascorbic acid, oxidizing it to dehydroascorbic acid. The redox titration endpoint is determined by the first iodine excess that is complexed with starch, giving a deep blue-violet color. The results of the titration of iodine solution using ascorbic acid as a calibration standard were compared with the results acquired by the classic method using a standardized solution of sodium thiosulfate. The standardization of the iodine solution using ascorbic acid was accurate and precise, with the advantages of saving time and avoiding mistakes due to solution preparation. The colorless ascorbic acid solution gives a very clear and sharp titration end point with starch. It was shown by thermogravimetric analysis that ascorbic acid can be dried at 393 K for 2 h without decomposition. This experiment allows general chemistry students to perform an iodometric titration during a single laboratory period, determining with precision the content of vitamin C in pharmaceutical formulations.

  9. Pulse-radiolysis studies on the interaction of one-electron reduced species with blue oxidases. Reduction of type-2-copper-depleted ascorbate oxidase.

    PubMed

    O'Neill, P; Fielden, E M; Avigliano, L; Marcozzi, G; Ballini, A; Agrò, F

    1984-08-15

    The interaction of one-electron reduced metronidazole (ArNO2.-) with native and Type-2-copper-depleted ascorbate oxidase were studied in buffered aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. With ArNO2.-, reduction of Type 1 copper of the native enzyme and of the Type-2-copper-depleted ascorbate oxidase occurs via a bimolecular step and at the same rate. Whereas the native protein accepts, in the absence of O2, 6-7 reducing equivalents, Type-2-copper-depleted ascorbate oxidase accepts only 3 reducing equivalents with stoichiometric reduction of Type 1 copper. On reaction of O2.- with ascorbate oxidase under conditions of [O2.-] much greater than [ascorbate oxidase], removal of Type 2 copper results in reduction of all the Type 1 copper atoms, in contrast with reduction of the equivalent of only one Type 1 copper atom in the holoprotein. From observations at 610 nm, the rate of reduction of ascorbate oxidase by O2.- is not dependent on the presence of Type 2 copper. For the holoprotein, no significant optical-absorption changes were observed at 330 nm. It is proposed that electrons enter the protein via Type 1 copper in a rate-determining step followed by a fast intramolecular transfer of electrons within the protein. For the Type-2-copper-depleted protein, intramolecular transfer within the protein, however, is slow or does not occur. In the presence of O2, it is also suggested that re-oxidation of the partially reduced holoprotein occurs at steady state, as inferred from the observations at 330 nm and 610 nm. The role of Type 2 copper in ascorbate oxidase is discussed in terms of its involvement in redistribution of electrons within the protein or structural considerations.

  10. 2,4-Dichlorophenoxyacetic Acid Inhibits the Outer Membrane NADH Dehydrogenase of Plant Mitochondria 1

    PubMed Central

    Mannella, Carmen A.; Bonner, Walter D.

    1978-01-01

    The NADH dehydrogenase of potato (Solanum tuberosum) and mung bean (Phaseolus aureus) outer mitochondrial membranes is specifically inhibited by both 2,4-dichlorophenoxyacetic and 2,4,5-trichlorophenoxyacetic acids but not by the natural auxin indole-3-acetic acid. PMID:16660539

  11. Reduction of Clofazimine by Mycobacterial Type 2 NADH:Quinone Oxidoreductase

    PubMed Central

    Yano, Takahiro; Kassovska-Bratinova, Sacha; Teh, J. Shin; Winkler, Jeffrey; Sullivan, Kevin; Isaacs, Andre; Schechter, Norman M.; Rubin, Harvey

    2011-01-01

    The mechanism of action of clofazimine (CFZ), an antimycobacterial drug with a long history, is not well understood. The present study describes a redox cycling pathway that involves the enzymatic reduction of CFZ by NDH-2, the primary respiratory chain NADH:quinone oxidoreductase of mycobacteria and nonenzymatic oxidation of reduced CFZ by O2 yielding CFZ and reactive oxygen species (ROS). This pathway was demonstrated using isolated membranes and purified recombinant NDH-2. The reduction and oxidation of CFZ was measured spectrally, and the production of ROS was measured using a coupled assay system with Amplex Red. Supporting the ROS-based killing mechanism, bacteria grown in the presence of antioxidants are more resistant to CFZ. CFZ-mediated increase in NADH oxidation and ROS production were not observed in membranes from three different Gram-negative bacteria but was observed in Staphylococcus aureus and Saccharomyces cerevisiae, which is consistent with the known antimicrobial specificity of CFZ. A more soluble analog of CFZ, KS6, was synthesized and was shown to have the same activities as CFZ. These studies describe a pathway for a continuous and high rate of reactive oxygen species production in Mycobacterium smegmatis treated with CFZ and a CFZ analog as well as evidence that cell death produced by these agents are related to the production of these radical species. PMID:21193400

  12. Ascorbic acid and melatonin reduce heat-induced performance inhibition and oxidative stress in Japanese quails.

    PubMed

    Sahin, N; Onderci, M; Sahin, K; Gursu, M F; Smith, M O

    2004-02-01

    1. The effects of ascorbic acid (L-ascorbic acid) and melatonin supplementation on performance, carcase characteristics, malondialdehyde (MDA) as lipid peroxidation indicator, ascorbic acid, retinol, tocopherol and mineral status in the Japanese quail (Coturnix coturnix japonica) exposed to high ambient temperature were evaluated. 2. Two hundred and forty Japanese quails (10 d old) were randomly assigned to 8 treatment groups consisting of 10 replicates of three birds each. The birds were kept in a temperature-controlled room at 22 degrees C (Thermoneutral, TN groups) or 34 degrees C (for 8 h/d; 09:00 to 17:00 h; Heat stress, HS groups). Birds in both TN and HS were fed either a basal (control) diet or the basal diet supplemented with 250 mg of L-ascorbic acid/kg of diet (Ascorbic acid group), 40 mg of melatonin/kg of diet (Melatonin group) or both (Ascorbic acid + Melatonin group). 3. Supplementing heat-stressed quails with ascorbic acid and melatonin improved performance compared with the control group. Effects generally were greatest in quails supplemented with both ascorbic acid and melatonin. 4. Although supplementation did not consistently restore the concentrations of serum ascorbic acid, retinol and tocopherol to those of TN groups, these concentrations increased significantly with supplementation. Furthermore, serum and liver MDA and serum cholesterol and glucose concentrations were lower in the supplemented groups than in the heat-stressed controls. 5. Within each environment, excretion of Ca, P, Mg, Zn, Fe and Cr were lowest in the combination group and, in all cases, highest in the HS group. Interactions between diet and temperature were detected for live weight gain, cold carcase weight, MDA, ascorbic acid, tocopherol concentrations and excretion of zinc. 6. The results of the study indicate that ascorbic acid and melatonin supplementation attenuate the decline in performance and antioxidant and mineral status caused by heat stress and such

  13. The preparation and the sustained release of titanium dioxide hollow particles encapsulating L-ascorbic acid

    NASA Astrophysics Data System (ADS)

    Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki

    2018-05-01

    The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.

  14. Ascorbic acid and sodium benzoate synergistically aggravates testicular dysfunction in adult Wistar rats.

    PubMed

    Kehinde, Olaniyi S; Christianah, Oyewopo I; Oyetunji, Oyewopo A

    2018-01-01

    The effect of the concomitant use of sodium benzoate (NaB) and ascorbic acid on human health remains controversial. Therefore, the current study is designed to investigate the effect of NaB and ascorbic acid on the testicular function of adult Wistar rats. Adult Wistar rats were randomly allotted into Control (vehicle; received 1 ml of distilled water), NaB-treated (SB-treated; received 100 mg/kg body weight; b.w ), ascorbic acid-treated (AA-treated; received 150 mg/kg b.w ) and NaB+ ascorbic acid-treated (SB+AA-treated) groups. The treatment lasted for 28 days and the administration was given orally. The body weight change was monitored. Semen analysis, biochemical assay and histological examination were performed. Treatment with NaB significantly altered the cytoarchitecture of testicular tissue, sperm quality, testicular endocrine function and oxidative stress status without any alteration in body weight gain compared to control. In addition, treatment with NaB+ ascorbic acid exacerbated testicular tissue disruption, impaired sperm quality and testicular endocrine impairment with significant reduction in oxidative stress and unaltered body weight gain when compared with NaB-treated group. This study suggests that ascorbic acid and NaB synergistically aggravates testicular dysfunction. This is independent of oxidative stress status.

  15. Marginal Ascorbate Status (Hypovitaminosis C) Results in an Attenuated Response to Vitamin C Supplementation.

    PubMed

    Carr, Anitra C; Pullar, Juliet M; Bozonet, Stephanie M; Vissers, Margreet C M

    2016-06-03

    Inadequate dietary intake of vitamin C results in hypovitaminosis C, defined as a plasma ascorbate concentration ≤23 μmol/L. Our objective was to carry out a retrospective analysis of two vitamin C supplementation studies to determine whether supplementation with 50 mg/day vitamin C is sufficient to restore adequate ascorbate status (≥50 μmol/L) in individuals with hypovitaminosis C. Plasma ascorbate data from 70 young adult males, supplemented with 50 or 200 mg/day vitamin C for up to six weeks, was analyzed. Hypovitaminosis C status was identified based on plasma ascorbate being ≤23 μmol/L and the response of these individuals to vitamin C supplementation was examined. Of the participants consuming 50 mg/day vitamin C for up to six weeks, those with hypovitaminosis C at baseline achieved plasma concentrations of only ~30 μmol/L, whereas the remainder reached ~50 μmol/L. Participants who consumed 200 mg/day vitamin C typically reached saturating concentrations (>65 μmol/L) within one week, while those with hypovitaminosis C required two weeks to reach saturation. Regression modelling indicated that the participants' initial ascorbate status and body weight explained ~30% of the variability in the final ascorbate concentration. Overall, our analysis revealed that supplementation with 50 mg/day vitamin C, which resulted in a total dietary vitamin C intake of 75 mg/day, was insufficient to achieve adequate plasma ascorbate concentrations in individuals with hypovitaminosis C. Furthermore, increased body weight had a negative impact on ascorbate status.

  16. Chromium-induced membrane damage: protective role of ascorbic acid.

    PubMed

    Dey, S K; Nayak, P; Roy, S

    2001-07-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80-100 g body weight). It has been observed that the intoxication with chromium (i.p.) at the dose of 0.8 mg/100 g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospholipid of both liver and kidney. The alkaline phosphatase, total ATPase and Na(+)-K(+)-ATPase activities were significantly decreased in both liver and kidney after chromium treatment, except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid (i.p. at the dose of 0.5 mg/100 g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  17. Newt tail regeneration: a model for gravity-dependent morphogenesis and clues to the molecular mechanisms involved.

    NASA Astrophysics Data System (ADS)

    Radugina, Elena A.; Almeida, Eduardo; Grigoryan, Eleonora

    Gravity alterations are widely recognized to influence living systems. They may cause temporary or permanent effects on physiology and development at different levels, from gene expression to morphogenesis. However, the molecular mechanisms underlying these effects are often unclear, and adequate model systems to study them are required. To address this problem we developed a new experimental model of how gravity affects morphogenesis during tail regeneration in the newt Pleurodeles waltl. The effects of increased gravity on newt tail morphogenesis were first documented in two joint Russian-US NASA spaceflight experiments in the Russian Foton-M2 (2005) and Foton-M3 (2007) missions. In these experiments the shape of newt tail regenerate was found to depend on the gravity level, being dorso-ventrally symmetrical in microgravity and in neutrally-buoyant aquarium controls, versus hook-like and bent downward in 1g controls. These 1g controls were conducted in spaceflight habitats using a water-saturated PVA sponge mat. These results were reproducible in multiple spaceflight, and ground laboratory studies, both in the US at NASA ARC and in Russia at IDB RAS, and were characterized in detail using morphometry and histology approaches. The role of hypergravity in shaping morphogenesis was confirmed at NASA ARC with an experiment in the ISS Testbed 8-foot diameter centrifuge operating at 2g. Animals that experienced two-week centrifugation (the period of time used in the Foton flights) developed the same hook-like regenerates as 1g controls, and morphometric analysis revealed no significant difference between 1g and 2g groups, however both were significantly different from aquarium controls. We hypothesize that exposure to 1g or 2g during tail morphogenesis constitutes excessive loading for newts that are adapted to microgravity-like conditions in their aquatic habitat. Because Heat Shock Proteins (HSPs) are stress-induced molecules that respond to a broad variety of

  18. Caudal autotomy and regeneration in lizards.

    PubMed

    Clause, Amanda R; Capaldi, Elizabeth A

    2006-12-01

    Caudal autotomy, or the voluntary self-amputation of the tail, is an anti-predation strategy in lizards that depends on a complex array of environmental, individual, and species-specific characteristics. These factors affect both when and how often caudal autotomy is employed, as well as its overall rate of success. The potential costs of autotomy must be weighed against the benefits of this strategy. Many species have evolved specialized behavioral and physiological adaptations to minimize or compensate for any negative consequences. One of the most important steps following a successful autotomous escape involves regeneration of the lost limb. In some species, regeneration occurs rapidly; such swift regeneration illustrates the importance of an intact, functional tail in everyday experience. In lizards and other vertebrates, regeneration is a highly ordered process utilizing initial developmental programs as well as regeneration-specific mechanisms to produce the correct types and pattern of cells required to sufficiently restore the structure and function of the sacrificed tail. In this review, we discuss the behavioral and physiological features of self-amputation, with particular reference to the costs and benefits of autotomy and the basic mechanisms of regeneration. In the process, we identify how these behaviors could be used to explore the neural regulation of complex behavioral responses within a functional context. Copyright 2006 Wiley-Liss, Inc.

  19. Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction

    PubMed Central

    Sanz, Alberto; Soikkeli, Mikko; Portero-Otín, Manuel; Wilson, Angela; Kemppainen, Esko; McIlroy, George; Ellilä, Simo; Kemppainen, Kia K.; Tuomela, Tea; Lakanmaa, Matti; Kiviranta, Essi; Stefanatos, Rhoda; Dufour, Eric; Hutz, Bettina; Naudí, Alba; Jové, Mariona; Zeb, Akbar; Vartiainen, Suvi; Matsuno-Yagi, Akemi; Yagi, Takao; Rustin, Pierre; Pamplona, Reinald; Jacobs, Howard T.

    2010-01-01

    Mutations in mitochondrial oxidative phosphorylation complex I are associated with multiple pathologies, and complex I has been proposed as a crucial regulator of animal longevity. In yeast, the single-subunit NADH dehydrogenase Ndi1 serves as a non-proton-translocating alternative enzyme that replaces complex I, bringing about the reoxidation of intramitochondrial NADH. We have created transgenic strains of Drosophila that express yeast NDI1 ubiquitously. Mitochondrial extracts from NDI1-expressing flies displayed a rotenone-insensitive NADH dehydrogenase activity, and functionality of the enzyme in vivo was confirmed by the rescue of lethality resulting from RNAi knockdown of complex I. NDI1 expression increased median, mean, and maximum lifespan independently of dietary restriction, and with no change in sirtuin activity. NDI1 expression mitigated the aging associated decline in respiratory capacity and the accompanying increase in mitochondrial reactive oxygen species production, and resulted in decreased accumulation of markers of oxidative damage in aged flies. Our results support a central role of mitochondrial oxidative phosphorylation complex I in influencing longevity via oxidative stress, independently of pathways connected to nutrition and growth signaling. PMID:20435911

  20. Converting NADH to NAD+ by nicotinamide nucleotide transhydrogenase as a novel strategy against mitochondrial pathologies during aging.

    PubMed

    Olgun, Abdullah

    2009-08-01

    Mitochondrial DNA defects are involved supposedly via free radicals in many pathologies including aging and cancer. But, interestingly, free radical production was not found increased in prematurely aging mice having higher mutation rate in mtDNA. Therefore, some other mechanisms like the increase of mitochondrial NADH/NAD(+) and ubiquinol/ubiquinone ratios, can be in action in respiratory chain defects. NADH/NAD(+) ratio can be normalized by the activation or overexpression of nicotinamide nucleotide transhydrogenase (NNT), a mitochondrial enzyme catalyzing the following very important reaction: NADH + NADP(+ )<--> NADPH + NAD(+). The products NAD(+) and NADPH are required in many critical biological processes, e.g., NAD(+) is used by histone deacetylase Sir2 which regulates longevity in different species. NADPH is used in a number of biosynthesis reactions (e.g., reduced glutathione synthesis), and processes like apoptosis. Increased ubiquinol/ubiquinone ratio interferes the function of dihydroorotate dehydrogenase, the only mitochondrial enzyme involved in ubiquinone mediated de novo pyrimidine synthesis. Uridine and its prodrug triacetyluridine are used to compensate pyrimidine deficiency but their bioavailability is limited. Therefore, the normalization of the ubiquinol/ubiquinone ratio can be accomplished by allotopic expression of alternative oxidase, a mitochondrial ubiquinol oxidase which converts ubiquinol to ubiquinone.

  1. Suppression of human immunodeficiency virus replication by ascorbate in chronically and acutely infected cells.

    PubMed Central

    Harakeh, S; Jariwalla, R J; Pauling, L

    1990-01-01

    We have studied the action of ascorbate (vitamin C) on human immunodeficiency virus type 1 (HIV-1), the etiological agent clinically associated with AIDS. We report the suppression of virus production and cell fusion in HIV-infected T-lymphocytic cell lines grown in the presence of nontoxic concentrations of ascorbate. In chronically infected cells expressing HIV at peak levels, ascorbate reduced the levels of extracellular reverse transcriptase (RT) activity (by greater than 99%) and of p24 antigen (by 90%) in the culture supernatant. Under similar conditions, no detectable inhibitory effects on cell viability, host metabolic activity, and protein synthesis were observed. In freshly infected CD4+ cells, ascorbate inhibited the formation of giant-cell syncytia (by approximately 93%). Exposure of cell-free virus to ascorbate at 37 degrees C for 1 day had no effect on its RT activity or syncytium-forming ability. Prolonged exposure of virus (37 degrees C for 4 days) in the presence of ascorbate (100-150 micrograms/ml) resulted in the drop by a factor of 3-14 in RT activity as compared to a reduction by a factor of 25-172 in extracellular RT released from chronically infected cells. These results indicate that ascorbate mediates an anti-HIV effect by diminishing viral protein production in infected cells and RT stability in extracellular virions. Images PMID:1698293

  2. Stress Increases Peripheral Axon Growth and Regeneration through Glucocorticoid Receptor-Dependent Transcriptional Programs

    PubMed Central

    Alexander, Jessica K.; Madalena, Kathryn M.; Motti, Dario; Quach, Tam; Zha, Alicia; Webster Marketon, Jeanette

    2017-01-01

    Abstract Stress and glucocorticoid (GC) release are common behavioral and hormonal responses to injury or disease. In the brain, stress/GCs can alter neuron structure and function leading to cognitive impairment. Stress and GCs also exacerbate pain, but whether a corresponding change occurs in structural plasticity of sensory neurons is unknown. Here, we show that in female mice (Mus musculus) basal GC receptor (Nr3c1, also known as GR) expression in dorsal root ganglion (DRG) sensory neurons is 15-fold higher than in neurons in canonical stress-responsive brain regions (M. musculus). In response to stress or GCs, adult DRG neurite growth increases through mechanisms involving GR-dependent gene transcription. In vivo, prior exposure to an acute systemic stress increases peripheral nerve regeneration. These data have broad clinical implications and highlight the importance of stress and GCs as novel behavioral and circulating modifiers of neuronal plasticity. PMID:28828403

  3. A highly sensitive NADH sensor based on a mycelium-like nanocomposite using graphene oxide and multi-walled carbon nanotubes to co-immobilize poly(luminol) and poly(neutral red) hybrid films.

    PubMed

    Chiang Lin, Kuo; Yu Lai, Szu; Ming Chen, Shen

    2014-08-21

    Hybridization of poly(luminol) (PLM) and poly(neutral red) (PNR) has been successfully performed and further enhanced by a conductive and steric hybrid nanotemplate using graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs). The morphology of the PLM-PNR-MWCNT-GO mycelium-like nanocomposite is studied by SEM and AFM and it is found to be electroactive, pH-dependent, and stable in the electrochemical system. It shows electrocatalytic activity towards NADH with a high current response and low overpotential. Using amperometry, it has been shown to have a high sensitivity of 288.9 μA mM(-1) cm(-2) to NADH (Eapp. = +0.1 V). Linearity is estimated in a concentration range of 1.33 × 10(-8) to 1.95 × 10(-4) M with a detection limit of 1.33 × 10(-8) M (S/N = 3). Particularly, it also shows another linear range of 2.08 × 10(-4) to 5.81 × 10(-4) M with a sensitivity of 151.3 μA mM(-1) cm(-2). The hybridization and activity of PLM and PNR can be effectively enhanced by MWCNTs and GO, resulting in an active hybrid nanocomposite for determination of NADH.

  4. Urinary and plasma oxalate during ingestion of pure ascorbic acid: a re-evaluation.

    PubMed

    Fituri, N; Allawi, N; Bentley, M; Costello, J

    1983-01-01

    Daily ingestion of 8 g of pure ascorbic acid by 8 normal subjects for 7 days did not, in contrast to previous reports in the literature, significantly alter urinary or plasma oxalate during or after ingestion. When urine with raised ascorbate values was heated at 100 degrees C for 30 min, a significant increase in urinary oxalate concentration was observed. Plasma ascorbate reached a mean value during ingestion of 3.3 mg/100 ml. Urinary citrate excretion significantly decreased during the first 4 days of ascorbic acid ingestion; however, the urinary inhibitory activity of calcium oxalate crystal growth was not significantly altered. Urinary and serum urate as well as urinary calcium and magnesium were unaltered by ingestion of the vitamin supplement.

  5. [Involvement of hydrogen peroxide in the regulation of coexpression of alternative oxidase and rotenone-insensitive NADH dehydrogenase in tomato leaves and calluses].

    PubMed

    Eprintsev, A T; Mal'tseva, E V; Shatskikh, A S; Popov, V N

    2011-01-01

    The involvement of active oxygen forms in the regulation of the expression of mitochondrial respiratory chain components, which are not related to energy storing, has been in vitro and in vivo studied in Lycopersicum esculentum L. The highest level of transcription of genes encoding alternative oxidase and NADH dehydrogenase has been observed in green tomato leaves. It has been shown that even low H2O2 concentrations activate both aoxlalpha and ndb1 genes, encoding alternative oxidase and external mitochondrial rotenone-insensitive NADH dehydrogenase, respectively. According to our results, in the case of an oxidative stress, alternative oxidase and NADH dehydrogenase are coexpressed in tomato plant tissues, and active oxygen forms serve as the secondary messengers of their coexpression.

  6. Reduction of protein radicals by GSH and ascorbate: potential biological significance.

    PubMed

    Gebicki, Janusz M; Nauser, Thomas; Domazou, Anastasia; Steinmann, Daniel; Bounds, Patricia L; Koppenol, Willem H

    2010-11-01

    The oxidation of proteins and other macromolecules by radical species under conditions of oxidative stress can be modulated by antioxidant compounds. Decreased levels of the antioxidants glutathione and ascorbate have been documented in oxidative stress-related diseases. A radical generated on the surface of a protein can: (1) be immediately and fully repaired by direct reaction with an antioxidant; (2) react with dioxygen to form the corresponding peroxyl radical; or (3) undergo intramolecular long range electron transfer to relocate the free electron to another amino acid residue. In pulse radiolysis studies, in vitro production of the initial radical on a protein is conveniently made at a tryptophan residue, and electron transfer often leads ultimately to residence of the unpaired electron on a tyrosine residue. We review here the kinetics data for reactions of the antioxidants glutathione, selenocysteine, and ascorbate with tryptophanyl and tyrosyl radicals as free amino acids in model compounds and proteins. Glutathione repairs a tryptophanyl radical in lysozyme with a rate constant of (1.05±0.05)×10(5) M(-1) s(-1), while ascorbate repairs tryptophanyl and tyrosyl radicals ca. 3 orders of magnitude faster. The in vitro reaction of glutathione with these radicals is too slow to prevent formation of peroxyl radicals, which become reduced by glutathione to hydroperoxides; the resulting glutathione thiyl radical is capable of further radical generation by hydrogen abstraction. Although physiologically not significant, selenoglutathione reduces tyrosyl radicals as fast as ascorbate. The reaction of protein radicals formed on insulin, β-lactoglobulin, pepsin, chymotrypsin and bovine serum albumin with ascorbate is relatively rapid, competes with the reaction with dioxygen, and the relatively innocuous ascorbyl radical is formed. On the basis of these kinetics data, we suggest that reductive repair of protein radicals may contribute to the well

  7. High-throughput and multiplexed regeneration buffer scouting for affinity-based interactions.

    PubMed

    Geuijen, Karin P M; Schasfoort, Richard B; Wijffels, Rene H; Eppink, Michel H M

    2014-06-01

    Affinity-based analyses on biosensors depend partly on regeneration between measurements. Regeneration is performed with a buffer that efficiently breaks all interactions between ligand and analyte while maintaining the active binding site of the ligand. We demonstrated a regeneration buffer scouting using the combination of a continuous flow microspotter with a surface plasmon resonance imaging platform to simultaneously test 48 different regeneration buffers on a single biosensor. Optimal regeneration conditions are found within hours and consume little amounts of buffers, analyte, and ligand. This workflow can be applied to any ligand that is coupled through amine, thiol, or streptavidin immobilization. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Enzymatic synthesis of 3-O-α-maltosyl-l-ascorbate using an engineered cyclodextrin glucanotransferase.

    PubMed

    Ahn, Hee-Jeong; Li, Chao; Cho, Hye-Bin; Park, Sunghoon; Chang, Pahn-Shick; Kim, Young-Wan

    2015-02-15

    A mutant derived from a cyclodextrin glucantransferase with an alanine residue as its acid/base catalyst residue (CGT-E284A) catalyzed regioselective glycosylation at 3-OH of l-ascorbic acid using α-maltosyl fluoride (αG2F) and l-ascorbic acid as the donor and acceptor, respectively, yielding 3-O-α-maltosyl-l-ascorbate (AA3αG2). The optimum conditions were determined by high-performance liquid chromatography analysis with 20mM αG2F and 40mM l-ascorbic acid as the substrates at pH 7.5 and 25°C with 1mg/ml of the enzyme for 24h. Calcium ions bound in CGT-E284A played an important role in the transglycosylation. CGT-E284A exhibited typical saturation kinetic behaviour for αG2F at a fixed acceptor concentration (40mM), and substrate inhibition by l-ascorbic acid was observed at high l-ascorbic acid concentrations (>60mM). AA3αG2 was isolated from a preparative scale reaction with a yield of 29%, and it showed extremely high stability under oxidative conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Supplement of a chitosan and ascorbic acid mixture for Crohn's disease: a pilot study.

    PubMed

    Tsujikawa, Tomoyuki; Kanauchi, Osamu; Andoh, Akira; Saotome, Takao; Sasaki, Masaya; Fujiyama, Yoshihide; Bamba, Tadao

    2003-02-01

    Although the pathogenesis of Crohn's disease remains unclear, dietary fat is thought to exacerbate intestinal inflammation. Chitosan is a water-insoluble dietary fiber, and a chitosan and ascorbic acid mixture has been shown in rats to increase fecal fat excretion without affecting protein digestibility. However, it remains unclear whether a chitosan and ascorbic acid mixture is safe and effective for patients with Crohn's disease. We designed a pilot trial to investigate the tolerability and amount of fat excretion after the oral administration of a chitosan and ascorbic mixture for inactive Crohn's disease. Eleven outpatients were given seven tablets daily of a chitosan and ascorbic mixture (chitosan was given at 1.05 g/d) for 8 wk. Patients did not interrupt their respective therapies for Crohn's disease. The bowel movements of most patients increased slightly during the study. Nutritional and inflammatory markers in patients did not differ before and after treatment. The chitosan and ascorbic acid mixture significantly increased the fat concentration in the feces during treatment. These results indicated that oral administration of a chitosan and ascorbic acid mixture in patients with Crohn's disease is tolerable and increases fecal fat excretion without affecting disease activity.

  10. Does ascorbic acid supplementation affect iron bioavailability in rats fed micronized dispersible ferric pyrophosphate fortified fruit juice?

    PubMed

    Haro-Vicente, Juan Francisco; Pérez-Conesa, Darío; Rincón, Francisco; Ros, Gaspar; Martínez-Graciá, Carmen; Vidal, Maria Luisa

    2008-12-01

    Food iron (Fe) fortification is an adequate approach for preventing Fe-deficiency anemia. Poorly water-soluble Fe compounds have good sensory attributes but low bioavailability. The reduction of the particle size of Fe fortificants and the addition of ascorbic acid might increase the bioavailability of low-soluble compounds. The present work aims to compare the Fe absorption and bioavailability of micronized dispersible ferric pyrophosphate (MDFP) (poorly soluble) to ferrous sufate (FS) (highly soluble) added to a fruit juice in presence or absence of ascorbic acid (AA) by using the hemoglobin repletion assay in rats. After a hemoglobin depletion period, four fruit juices comprised of (1) FS, (2) MDFP, (3) FS + AA, (4) MDFP + AA were produced and administered to a different group of rats (n = 18) over 21 days. During the repletion period, Fe balance, hemoglobin regeneration efficiency (HRE), relative bioavailability (RBV) and Fe tissue content were determined in the short, medium and long term. Fe absorption and bioavailability showed no significant differences between fortifying the fruit juice with FS or MDFP. The addition of AA to the juice enhanced Fe absorption during the long-term balance study within the same Fe source. HRE and Fe utilization increased after AA addition in both FS and MDFP groups in every period. Fe absorption and bioavailability from MDFP were comparable to FS added to a fruit juice in rats. Further, the addition of AA enhanced Fe absorption in the long term, as well as Fe bioavailability throughout the repletion period regardless of the Fe source employed.

  11. Peroxydisulfate Oxidation of L-Ascorbic Acid for Its Direct Spectrophotometric Determination in Dietary Supplements

    NASA Astrophysics Data System (ADS)

    Salkić, M.; Selimović, A.; Pašalić, H.; Keran, H.

    2014-03-01

    A selective and accurate direct spectrophotometric method was developed for the determination of L-as cor bic acid in dietary supplements. Background correction was based on the oxidation of L-ascorbic acid by potassi um peroxydisulfate in an acidic medium. The molar absorptivity of the proposed method was 1.41 · 104 l/(mol · cm) at 265 nm. The method response was linear up to an L-ascorbic acid concentration of 12.00 μg/ml. The detection limit was 0.11 μg/ml, and the relative standard deviation was 0.9 % (n = 7) for 8.00 μg/ml L-ascorbic acid. Other compounds commonly found in the dietary supplements did not interfere with the detection of L-ascorbic acid. The proposed procedure was successfully applied to the determination of L-ascorbic acid in these supplements, and the results obtained agreed with those obtained by iodine titration.

  12. Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro.

    PubMed

    Atlante, Anna; Seccia, Teresa M; De Bari, Lidia; Marra, Ersilia; Passarella, Salvatore

    2006-07-01

    A substantial increase in NADH production, arising from accelerated glycolysis, occurs in cardiac hypertrophy and this raises the question of how the NADH is oxidised. We have addressed this problem by reconstructing appropriate mitochondrial shuttles in vitro, using mitochondria from the left ventricles of both normotensive and spontaneously hypertensive rats at 5 and 24 weeks of age as model systems for left ventricle hypertrophy and hypertrophy/hypertension respectively. We found that most NADH oxidation occurs via a novel malate/oxaloacetate shuttle, the activity of which increases with time and with the progression of hypertrophy and development of hypertension as judged by statistical ANOVA analysis. In contrast, alpha-glycerol-phosphate and the malate/aspartate shuttles were shown to make only a minor contribution to NADH oxidation in a manner essentially independent of age and progression of hypertrophy/hypertension. The rate of malate transport in exchange with oxaloacetate proved to limit the rate of NADH oxidation via this malate/oxaloacetate shuttle.

  13. Mechanism of ascorbic acid interference in biochemical tests that use peroxide and peroxidase to generate chromophore.

    PubMed

    Martinello, Flávia; Luiz da Silva, Edson

    2006-11-01

    Ascorbic acid interferes negatively in peroxidase-based tests (Trinder method). However, the precise mechanism remains unclear for tests that use peroxide, a phenolic compound and 4-aminophenazone (4-AP). We determined the chemical mechanism of this interference, by examining the effects of ascorbic acid in the reaction kinetics of the production and reduction of the oxidized chromophore in urate, cholesterol, triglyceride and glucose tests. Reaction of ascorbic acid with the Trinder method constituents was also verified. Ascorbic acid interfered stoichiometrically with all tests studied. However, it had two distinct effects on the reaction rate. In the urate test, ascorbic acid decreased the chromophore formation with no change in its production kinetics. In contrast, in cholesterol, triglyceride and glucose tests, an increase in the lag phase of color development occurred. Of all the Trinder constituents, only peroxide reverted the interference. In addition, ascorbic acid did not interfere with oxidase activity nor reduce significantly the chromophore formed. Peroxide depletion was the predominant chemical mechanism of ascorbic acid interference in the Trinder method with phenolics and 4-AP. Distinctive effects of ascorbic acid on the reaction kinetics of urate, cholesterol, glucose and triglyceride might be due to the rate of peroxide production by oxidases.

  14. Cofactor-Dependent Aldose Dehydrogenase of Rhodopseudomonas spheroides

    PubMed Central

    Niederpruem, Donald J.; Doudoroff, Michael

    1965-01-01

    Niederpruem, Donald J. (University of California, Berkeley), and Michael Doudoroff. Cofactor-dependent aldose dehydrogenase of Rhodopseudomonas spheroides. J. Bacteriol. 89:697–705. 1965.—Particulate enzyme preparations of cell extracts of Rhodopseudomonas spheroides possess constitutive dehydrogenase and oxidase activities for aldose sugars, reduced nicotinamide adenine dinucleotide (NADH2), and succinate. The dehydrogenation of aldoses requires an unidentified cofactor which is not required for the oxidation of succinate nor of NADH2. The cofactor is present in the particulate fraction of aerobic cells, but is unavailable to the enzyme system. It can be liberated by boiling or by treatment with salts at high concentration. The cofactor also appears in the soluble fraction of aerobic cells, but only after exponential growth has ceased. Extracts of cells grown anaerobically in the light possess the apoenzyme, but not the cofactor, for aldose oxidation. Cofactor activity was found in extracts of Bacterium anitratum (= Moraxella sp.) but not in Escherichia coli, Pseudomonas fluorescens, yeast, or mouse liver. In 0.075 m tris(hydroxymethyl)aminomethane-phosphoric acid buffer (pH 7.3), the oxidation of NADH2 was stimulated and succinoxidase was inhibited by high salt concentrations. PMID:14273648

  15. A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications.

    PubMed

    Ricci, Francesco; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe

    2007-01-15

    Modified screen-printed electrodes for amperometric detection of H(2)O(2) and nicotinamide adenine dinucleotide (NADH) at low applied potential are presented in this paper. The sensors are obtained by modifying the working electrode surface with Prussian Blue, a well known electrochemical mediator for H(2)O(2) reduction. The coupling of this sensor with phenazine methosulfate (PMS) in the working solution gives the possibility of measuring both NAD(P)H and H(2)O(2). PMS reacts with NADH producing PMSH, which in the presence of oxygen, gives an equimolar amount of H(2)O(2). This allows the measurement of both analytes with similar sensitivity (357 mA mol(-1)L cm(-2) for H(2)O(2) and 336 mA mol(-1)L cm(-2) for NADH) and LOD (5x10(-7)mol L(-1) for H(2)O(2) and NADH) and opens the possibility of a whole series of biosensor applications. In this paper, results obtained with a variety of dehydrogenase enzymes (alcohol, malic, lactate, glucose, glycerol and glutamate) for the detection of enzymatic substrates or enzymatic activity are presented demonstrating the suitability of the proposed method for future biosensor applications.

  16. Infestation of potato (Solanum tuberosum L.) by the peach-potato aphid (Myzus persicae Sulzer) alters cellular redox status and is influenced by ascorbate.

    PubMed

    Kerchev, Pavel I; Fenton, Brian; Foyer, Christine H; Hancock, Robert D

    2012-02-01

    The peach-potato aphid (Myzus persicae Sulzer) is a major pest of potato (Solanum tuberosum L.) but the molecular characterization of this interaction particularly with regard to oxidants and antioxidants remains to be undertaken. Aphid colonies reared on potato leaves containing high ascorbate were twice the size of those grown on leaves with low ascorbate. Infestation-dependent decreases in the abundance of key transcripts such as chloroplastic FeSOD, peroxisomal catalase 2, PR1 and JAZ1 preceded detectable leaf H(2)O(2) or polyphenol accumulation. The leaf glutathione pool was increased 48 h after infestation, but the amount of ascorbate was unchanged. The ascorbate/dehydroacorbate (DHA) ratio was lower at 48 h but the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unchanged. While DHA reductase and GSSG reductase activities were unaffected by aphid feeding, non-specific peroxidase activities were enhanced 48 h following aphid infestation. Brown ethanol-insoluble deposits were observed close to leaf veins following aphid infestation. Taken together, the results demonstrate that high ascorbate favours aphid colony expansion and that perturbations in the leaf antioxidant system are intrinsic to the potato leaf response to aphids. Moreover, these changes together with the induction of hormone-related transcripts precede the deposition of defence-associated oxidized polyphenols along the stylet track. © 2011 Blackwell Publishing Ltd.

  17. Ascorbic acid deficiency stimulates hepatic expression of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1, in scurvy-prone ODS rats.

    PubMed

    Horio, Fumihiko; Kiyama, Keiichiro; Kobayashi, Misato; Kawai, Kaori; Tsuda, Takanori

    2006-02-01

    ODS rat has a hereditary defect in ascorbic acid biosynthesis and is a useful animal model for elucidating the physiological role of ascorbic acid. We previously demonstrated by using ODS rats that ascorbic acid deficiency changes the hepatic gene expression of acute phase proteins, as seen in acute inflammation. In this study, we investigated the effects of ascorbic acid deficiency on the production of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1 (CINC-1), in ODS rats. Male ODS rats (6 wk of age) were fed a basal diet containing ascorbic acid (300 mg/kg diet) or a diet without ascorbic acid for 14 d. Obvious symptoms of scurvy were not observed in the ascorbic acid-deficient rats. Ascorbic acid deficiency significantly elevated the serum concentration of CINC-1 on d 14. The liver and spleen CINC-1 concentrations in the ascorbic acid-deficient rats were significantly elevated to 600% and 180% of the respective values in the control rats. However, the lung concentration of CINC-1 was not affected by ascorbic acid deficiency. Ascorbic acid deficiency significantly elevated the hepatic mRNA level of CINC-1 (to 480% of the value in the control rats), but not the lung mRNA level. These results demonstrate that ascorbic acid deficiency elevates the serum, liver and spleen concentrations of CINC-1 as seen in acute inflammation, and suggest that ascorbic acid deficiency stimulate the hepatic CINC-1 gene expression.

  18. A Rapid and Specific Microplate Assay for the Determination of Intra- and Extracellular Ascorbate in Cultured Cells

    PubMed Central

    Lane, Darius J. R.; Lawen, Alfons

    2014-01-01

    Vitamin C (ascorbate) plays numerous important roles in cellular metabolism, many of which have only come to light in recent years. For instance, within the brain, ascorbate acts in a neuroprotective and neuromodulatory manner that involves ascorbate cycling between neurons and vicinal astrocytes - a relationship that appears to be crucial for brain ascorbate homeostasis. Additionally, emerging evidence strongly suggests that ascorbate has a greatly expanded role in regulating cellular and systemic iron metabolism than is classically recognized. The increasing recognition of the integral role of ascorbate in normal and deregulated cellular and organismal physiology demands a range of medium-throughput and high-sensitivity analytic techniques that can be executed without the need for highly expensive specialist equipment. Here we provide explicit instructions for a medium-throughput, specific and relatively inexpensive microplate assay for the determination of both intra- and extracellular ascorbate in cell culture. PMID:24747535

  19. A microplate reader-based method to quantify NADH-cytochrome b5 reductase activity for diagnosis of recessive congenital methaemoglobinemia.

    PubMed

    Kedar, Prabhakar; Desai, Anand; Warang, Prashant; Colah, Roshan

    2017-05-01

    Congenital methemoglobinemia due to NADH-cytochrome b5 reductase 3 (CYB5R3) deficiencies is an autosomal recessive disorder that occurs sporadically worldwide, A sensitive, accurate, and rapid analysis of NADH-CYB5R enzyme concentrations is necessary for the diagnosis of RCM. Here we present an alternative microplate method that is based on a standard 96-well microplate format and microplate reader that simplify the quantification of NADH-CYB5R activity. TECAN (Infinite 200 PRO series) microplate reader with Tecan's proven Magellan™ software measured the NADH-CYB5R enzyme activity in 250 normal controls and previously diagnosed 25 cases of RCM due to NADH-CYB5R deficiency in the Indian population using 96-well microplates using 200 μl of total reaction mixture and also compared with standard spectrophotometric assay. We have also studied stability of the hemolysate stored at 4 and -20°C temperature. Enzyme activity in all 25 samples ranged from 6.09 to 10.07 IU/g Hb (mean ± SD: 8.08 ± 1.99 IU/g Hb) where as normal control ranged (n = 250) between 13.42 and 21.58 IU/g Hb) (mean ± SD: 17.5 ± 4.08 IU/g of Hb). Data obtained from the microplate reader were compared with standard spectrophotometer method and found 100% concordance using both methods. Microplate method allows differentiating between normal, deficient and intermediate enzyme activity. It was observed that samples had significant loss of activity when stored at 4°C and retained stable activity at -20°C for 1 week time. Our new method, incorporating a whole process of enzyme assay into a microplate format is readily applicable and allows rapid monitoring of enzyme assay. It is readily applicable to quantitative assay on pediatric sample as well as large number of samples for population screening.

  20. Photochemical Properties and Reactivity of a Ru Compound Containing an NAD/NADH-Functionalized 1,10-Phenanthroline Ligand.

    PubMed

    Kobayashi, Katsuaki; Ohtsu, Hideki; Nozaki, Koichi; Kitagawa, Susumu; Tanaka, Koji

    2016-03-07

    An NAD/NADH-functionalized ligand, benzo[b]pyrido[3,2-f][1,7]-phenanthroline (bpp), was newly synthesized. A Ru compound containing the bpp ligand, [Ru(bpp)(bpy)2](2+), underwent 2e(-) and 2H(+) reduction, generating the NADH form of the compound, [Ru(bppHH)(bpy)2](2+), in response to visible light irradiation in CH3CN/TEA/H2O (8/1/1). The UV-vis and fluorescent spectra of both [Ru(bpp)(bpy)2](2+) and [Ru(bppHH)(bpy)2](2+) resembled the spectra of [Ru(bpy)3](2+). Both complexes exhibited strong emission, with quantum yields of 0.086 and 0.031, respectively; values that are much higher than those obtained from the NAD/NADH-functionalized complexes [Ru(pbn)(bpy)2](2+) and [Ru(pbnHH)(bpy)2](2+) (pbn = (2-(2-pyridyl)benzo[b]-1.5-naphthyridine, pbnHH = hydrogenated form of pbn). The reduction potential of the bpp ligand in [Ru(bpp)(bpy)2](2+) (-1.28 V vs SCE) is much more negative than that of the pbn ligand in [Ru(pbn)(bpy)2](2+) (-0.74 V), although the oxidation potentials of bppHH and pbnHH are essentially equal (0.95 V). These results indicate that the electrochemical oxidation of the dihydropyridine moiety in the NADH-type ligand was independent of the π system, including the Ru polypyridyl framework. [Ru(bppHH)(bpy)2](2+) allowed the photoreduction of oxygen, generating H2O2 in 92% yield based on [Ru(bppHH)(bpy)2](2+). H2O2 production took place via singlet oxygen generated by the energy transfer from excited [Ru(bppHH)(bpy)2](2+) to triplet oxygen.

  1. Exploring the impact of wounding and jasmonates on ascorbate metabolism

    PubMed Central

    Suza, Walter P.; Avila, Carlos A.; Carruthers, Kelly; Kulkarni, Shashank; Goggin, Fiona L.; Lorence, Argelia

    2010-01-01

    Vitamin C (ascorbate, AsA) is the most abundant water-soluble antioxidant in plants. Ascorbate provides the first line of defense against damaging reactive oxygen species (ROS), and helps protect plant cells from many factors that induce oxidative stress, including wounding, ozone, high salinity, and pathogen attack. Plant defenses against these stresses are also dependent upon jasmonates (JAs), a class of plant hormones that promote ROS accumulation. Here, we review evidence showing that wounding and JAs influence AsA accumulation in various plant species, and we report new data from Arabidopsis and tomato testing the influence of JAs on AsA levels in wounded and unwounded plants. In both species, certain mutations that impair JA metabolism and signaling influence foliar AsA levels, suggesting that endogenous JAs may regulate steady-state AsA. However, the impact of wounding on AsA accumulation was similar in JA mutants and wild type controls, indicating that this wound response does not require JAs. Our findings also indicate that the effects of wounding and JAs on AsA accumulation differ between species; these factors both enhanced AsA accumulation in Arabidopsis, but depressed AsA levels in tomato. These results underscore the importance of obtaining data from more than one model species, and demonstrate the complexity of AsA regulation. PMID:20346686

  2. Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum.

    PubMed Central

    Mullen, R T; Lisenbee, C S; Miernyk, J A; Trelease, R N

    1999-01-01

    The peroxisomal isoform of ascorbate peroxidase (APX) is a novel membrane isoform that functions in the regeneration of NAD(+) and protection against toxic reactive oxygen species. The intracellular localization and sorting of peroxisomal APX were examined both in vivo and in vitro. Epitope-tagged peroxisomal APX, which was expressed transiently in tobacco BY-2 cells, localized to a reticular/circular network that resembled endoplasmic reticulum (ER; 3,3'-dihexyloxacarbocyanine iodide-stained membranes) and to peroxisomes. The reticular network did not colocalize with other organelle marker proteins, including three ER reticuloplasmins. However, in vitro, peroxisomal APX inserted post-translationally into the ER but not into other purified organelle membranes (including peroxisomal membranes). Insertion into the ER depended on the presence of molecular chaperones and ATP. These results suggest that regions of the ER serve as a possible intermediate in the sorting pathway of peroxisomal APX. Insight into this hypothesis was obtained from in vivo experiments with brefeldin A (BFA), a toxin that blocks vesicle-mediated protein export from ER. A transiently expressed chloramphenicol acetyltransferase-peroxisomal APX (CAT-pAPX) fusion protein accumulated only in the reticular/circular network in BFA-treated cells; after subsequent removal of BFA from these cells, the CAT-pAPX was distributed to preexisting peroxisomes. Thus, plant peroxisomal APX, a representative enzymatic peroxisomal membrane protein, is sorted to peroxisomes through an indirect pathway involving a preperoxisomal compartment with characteristics of a distinct subdomain of the ER, possibly a peroxisomal ER subdomain. PMID:10559442

  3. Vesicle encapsulation of a nonbiological photochemical system capable of reducing NAD(+) to NADH.

    PubMed

    Summers, David P; Rodoni, David

    2015-10-06

    One of the fundamental structures of a cell is the membrane. Self-assembling lipid bilayer vesicles can form the membrane of an artificial cell and could also have plausibly assembled prebiotically for the origin of life. Such cell-like structures, that encapsulate some basic subset of the functions of living cells, are important for research to infer the minimum chemistry necessary for a cell, to help understand the origin of life, and to allow the production of useful species in microscopic containers. We show that the encapsulation of TiO2 particles has the potential to provide the basis for an energy transduction system inside vesicles which can be used to drive subsequent chemistry. TiO2 encapsulated in vesicles can be used to produce biochemical species such as NADH. The NADH is formed from NAD(+) reduction and is produced in a form that is able to drive further enzymatic chemistry. This allows us to link a mineral-based, nonbiological photosystem to biochemical reactions. This is a fundamental step toward being able to use this mineral photosystem in a protocell/artificial cell.

  4. Combined effect of selenium and ascorbic acid on alcohol induced hyperlipidemia in male guinea pigs.

    PubMed

    Asha, G S; Indira, M

    2004-02-01

    Alcoholics usually suffer from malnutrition and are especially deficient in micronutrients like vitamin C, selenium and Zn. In the present study, combined effects of selenium and ascorbic acid on alcohol-induced hyperlipidemia were studied in guinea pigs. Four groups of male guinea pigs were maintained for 45 days as follows: control (1 mg ascorbate (AA)/100 g body mass/day), ethanol (900 mg ethanol/100 g body mass + 1 mg AA/100 g body mass/day), selenium+ascorbic acid [(25 mg AA + 0.05 mg Se)/100 g body mass/day], ethanol+selenium+ascorbic acid [(25 mg AA + 0.05 mg Se + 900 mg ethanol)/100 g body mass/day]. Co-administration of selenium and ascorbic acid along with alcohol reduced the concentration of all lipids, as also evidenced from the decreased activities of hydroxymethylglutaryl-CoA reductase and enhanced activities of plasma lecithin cholesterol acyl transferase and lipoprotein lipase. Concentrations of bile acids were increased. We conclude that the supplementation of Se and ascorbic acid reduced alcohol induced hyperlipidemia, by decreased synthesis and increased catabolism.

  5. Dicer-dependent production of microRNA221 in hepatocytes inhibits p27 and is required for liver regeneration in mice.

    PubMed

    Oya, Yuki; Masuzaki, Ryota; Tsugawa, Daisuke; Ray, Kevin C; Dou, Yongchao; Karp, Seth J

    2017-05-01

    Dicer processes microRNAs (miRs) into active forms in a wide variety of tissues, including the liver. To determine the role of Dicer in liver regeneration, we performed a series of in vivo and in vitro studies in a murine 2/3 hepatectomy model. Dicer was downregulated after 2/3 hepatectomy, and loss of Dicer inhibited liver regeneration associated with decreased cyclin A2 and miR-221, as well as increased levels of the cell cycle inhibitor p27. In vitro, miR-221 inhibited p27 production in primary hepatocytes and increased hepatocyte proliferation. Specific reconstitution of miR-221 in hepatocyte-specific Dicer-null mice inhibited p27 and restored liver regeneration. In wild type mice, targeted inhibition of miR-221 using a cholesterol-conjugated miR-221 inhibited hepatocyte proliferation after 2/3 hepatectomy. These results identify Dicer production of miR-221 as an essential component of a miRNA-dependent mechanism for suppression of p27 that controls the rate of hepatocyte proliferation after partial hepatectomy. NEW & NOTEWORTHY Our findings demonstrate a direct role for microRNAs in controlling the rate of liver regeneration after injury. By deleting Dicer, an enzyme responsible for processing microRNAs into mature forms, we determined miR-221 is a critical microRNA in the physiological process of restoration of liver mass after injury. miR-221 suppresses p27, releasing its inhibitory effects on hepatocyte proliferation. Pharmaceuticals based on miR-221 may be useful to modulate hepatocyte proliferation in the setting of liver injury. Copyright © 2017 the American Physiological Society.

  6. Structures of NADH and CH[subscript 3]-H[subscript 4] Folate Complexes of Escherichia coli Methylenetetrahydrofolate Reductase Reveal a Spartan Strategy for a Ping-Pong Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejchal, Robert; Sargeant, Ryan; Ludwig, Martha L.

    Methylenetetrahydrofolate reductases (MTHFRs; EC 1.7.99.5) catalyze the NAD(P)H-dependent reduction of 5,10-methylenetetrahydrofolate (CH{sub 2}-H{sub 4}folate) to 5-methyltetrahydrofolate (CH{sub 3}-H{sub 4}folate) using flavin adenine dinucleotide (FAD) as a cofactor. The initial X-ray structure of Escherichia coli MTHFR revealed that this 33-kDa polypeptide is a ({beta}{alpha}){sub 8} barrel that aggregates to form an unusual tetramer with only 2-fold symmetry. Structures of reduced enzyme complexed with NADH and of oxidized Glu28Gln enzyme complexed with CH{sub 3}-H{sub 4}folate have now been determined at resolutions of 1.95 and 1.85 {angstrom}, respectively. The NADH complex reveals a rare mode of dinucleotide binding; NADH adopts a hairpin conformationmore » and is sandwiched between a conserved phenylalanine, Phe223, and the isoalloxazine ring of FAD. The nicotinamide of the bound pyridine nucleotide is stacked against the si face of the flavin ring with C4 adjoining the N5 of FAD, implying that this structure models a complex that is competent for hydride transfer. In the complex with CH{sub 3}-H{sub 4}folate, the pterin ring is also stacked against FAD in an orientation that is favorable for hydride transfer. Thus, the binding sites for the two substrates overlap, as expected for many enzymes that catalyze ping-pong reactions, and several invariant residues interact with both folate and pyridine nucleotide substrates. Comparisons of liganded and substrate-free structures reveal multiple conformations for the loops {beta}2-{alpha}2 (L2), {beta}3-{alpha}3 (L3), and {beta}4-{alpha}4 (L4) and suggest that motions of these loops facilitate the ping-pong reaction. In particular, the L4 loop adopts a 'closed' conformation that allows Asp120 to hydrogen bond to the pterin ring in the folate complex but must move to an 'open' conformation to allow NADH to bind.« less

  7. [Age factor in eye regeneration of the gastropod mollusk Achatina fulica].

    PubMed

    Tartakovskaia, O S; Borisenko, S L; Zhukov, V V

    2003-01-01

    The dependence of the ability to regenerate the eye on the age of experimental animals was studied in the snail Achatina fulica. The degree of regeneration was estimated by light-microscopic and electrophysiological methods and by analyzing the motor response to visual stimuli. In older age groups, the number of regenerated eye-bearing tentacles decreased, whereas the period of regeneration increased. The regenerated eyes of the snails operated at the age of more than two months remained smaller than normal eyes even after six months. Regeneration of the distal part of the optic nerve was observed, and the regenerated eyes recovered the ability to respond to stimulation by light. In the electroretinogram, the responses of the regenerated eye, compared to the control, were characterised by a lower amplitude and longer repolarization and refractory periods. Manifestations of the motor response to visual stimuli in the young snails with regenerating eyes could be regarded as evidence for the recovery of connection between the organ of sight and the central ganglia.

  8. Does Oral Coenzyme Q10 Plus NADH Supplementation Improve Fatigue and Biochemical Parameters in Chronic Fatigue Syndrome?

    PubMed Central

    Cordero, Mario D.; Segundo, María José; Sáez-Francàs, Naia; Calvo, Natalia; Román-Malo, Lourdes; Aliste, Luisa; Fernández de Sevilla, Tomás; Alegre, José

    2015-01-01

    Abstract Chronic fatigue syndrome (CFS) is a chronic and extremely debilitating illness characterized by prolonged fatigue and multiple symptoms with unknown cause, diagnostic test, or universally effective treatment. Inflammation, oxidative stress, mitochondrial dysfunction, and CoQ10 deficiency have been well documented in CFS. We conducted an 8-week, randomized, double-blind placebo-controlled trial to evaluate the benefits of oral CoQ10 (200 mg/day) plus NADH (20 mg/day) supplementation on fatigue and biochemical parameters in 73 Spanish CFS patients. This study was registered in ClinicalTrials.gov (NCT02063126). A significant improvement of fatigue showing a reduction in fatigue impact scale total score (p<0.05) was reported in treated group versus placebo. In addition, a recovery of the biochemical parameters was also reported. NAD+/NADH (p<0.001), CoQ10 (p<0.05), ATP (p<0.05), and citrate synthase (p<0.05) were significantly higher, and lipoperoxides (p<0.05) were significantly lower in blood mononuclear cells of the treated group. These observations lead to the hypothesis that the oral CoQ10 plus NADH supplementation could confer potential therapeutic benefits on fatigue and biochemical parameters in CFS. Larger sample trials are warranted to confirm these findings. Antioxid. Redox Signal. 22, 679–685. PMID:25386668

  9. Distal Regeneration Involves the Age Dependent Activity of Branchial Sac Stem Cells in the Ascidian Ciona intestinalis.

    PubMed

    Jeffery, William R

    2015-02-01

    Tunicates have high capacities for regeneration but the underlying mechanisms and their relationship to life cycle progression are not well understood. Here we investigate the regeneration of distal structures in the ascidian tunicate Ciona intestinalis . Analysis of regenerative potential along the proximal-distal body axis indicated that distal organs, such as the siphons, their pigmented sensory organs, and the neural complex, could only be replaced from body fragments containing the branchial sac. Distal regeneration involves the formation of a blastema composed of cells that undergo cell proliferation prior to differentiation and cells that differentiate without cell proliferation. Both cell types originate in the branchial sac and appear in the blastema at different times after distal injury. Whereas the branchial sac stem cells are present in young animals, they are depleted in old animals that have lost their regeneration capacity. Thus Ciona adults contain a population of age-related stem cells located in the branchial sac that are a source of precursors for distal body regeneration.

  10. The Use of Ascorbic Acid as a Food Additive: Technical-Legal Issues

    PubMed Central

    Varvara, Michele; Bozzo, Giancarlo; Celano, Giuseppe; Disanto, Chiara; Pagliarone, Cosimo Nicola

    2016-01-01

    Ascorbic acid (C6H8O6) is an organic compound belonging to the family of monosaccharide. It is highly soluble in water, and is often called one of the secrets of the Mediterranean diet. Its use is widespread in the food industry is also important, having always been exploited for its antioxidant and stabilising ability. Many indeed are the additive formulations that take advantage of these properties. The purpose of this paper is to explain the characteristics that make ascorbic acid an important food additive and to emphasise the technical and legal issues related to its use in food productions. In particular, in the course of this employment, laws and scientific studies have been applied to the resolution of a lawsuit, having as its object the use of ascorbic acid in preparations of ground beef sold at a butcher shop. The views expressed in court by the technical consultant have led to the acquittal of the accused, in the light of the demonstrated and proven non-toxicity of the molecule and the use of a mixture of additives for the production of sausage. The European and national legislations, supported by numerous scientific studies, define the possible use of ascorbic acid according to the principle of quantum satis, and it can be used in foods for children. Our work aims to represent further evidence of the safety of use of ascorbic acid as a food additive, and – as confirmed by the legal decision reported – it wants to bring out the prospects for use of ascorbic acid for technological purposes even by registered establishments. PMID:27800425

  11. Plasma concentrations of ascorbic acid and C-reactive protein, and risk of future coronary artery disease, in apparently healthy men and women: the EPIC-Norfolk prospective population study.

    PubMed

    Boekholdt, S Matthijs; Meuwese, Marijn C; Day, Nicholas E; Luben, Robert; Welch, Ailsa; Wareham, Nicholas J; Khaw, Kay-Tee

    2006-09-01

    High plasma concentrations of ascorbic acid, a marker of fruit and vegetable intake, are associated with low risk of coronary artery disease. Whether this relationship is explained by a reduction in systemic inflammation is unclear. We investigated the relationship between ascorbic acid plasma concentration and coronary artery disease risk, and in addition whether this relationship depended on classical risk factors and C-reactive protein (CRP) concentration. We used a prospective nested case-control design. The study consisted of 979 cases and 1794 controls (1767 men and 1006 women). Increasing ascorbic acid quartiles were associated with lower age, BMI, systolic and diastolic blood pressure, and CRP concentration, but with higher HDL-cholesterol concentration. No associations existed between ascorbic acid concentration and total cholesterol concentration or LDL-cholesterol concentration. When data from men and women were pooled, the risk estimates decreased with increasing ascorbic acid quartiles such that people in the highest ascorbic acid quartile had an odds ratio for future coronary artery disease of 0.67 (95 % CI 0.52, 0.87) compared with those in the lowest quartile (P for linearity=0.001). This relationship was independent of sex, age, diabetes, smoking, BMI, LDL-cholesterol, HDL-cholesterol, systolic blood pressure and CRP level. These data suggest that the risk reduction associated with higher ascorbic acid plasma concentrations, a marker of fruit and vegetable intake, is independent of classical risk factors and also independent of CRP concentration.

  12. 21 CFR 582.5013 - Ascorbic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ascorbic acid. 582.5013 Section 582.5013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  13. 21 CFR 582.5013 - Ascorbic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ascorbic acid. 582.5013 Section 582.5013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  14. 21 CFR 582.5013 - Ascorbic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ascorbic acid. 582.5013 Section 582.5013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  15. 21 CFR 582.5013 - Ascorbic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ascorbic acid. 582.5013 Section 582.5013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  16. 21 CFR 582.3013 - Ascorbic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ascorbic acid. 582.3013 Section 582.3013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 582.3013...

  17. 21 CFR 582.5013 - Ascorbic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ascorbic acid. 582.5013 Section 582.5013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  18. Cyclic electron transfer around Photosystem I mediated by 2,3-dichloro-1,4-naphtoquinone and ascorbate.

    PubMed

    Petrova, Anastasia A; Trubitsin, Boris V; Boskhomdzhieva, Baina K; Semenov, Alexey Yu; Tikhonov, Alexander N

    2018-06-09

    In this work, we investigated electron transport around the photosynthetic pigment-protein complex of Photosystem I (PS I) mediated by external high-potential electron carrier 2,3-dichloro-1,4-naphtoquinone (Cl 2 NQ) and ascorbate. It has been demonstrated that the oxidized species of Cl 2 NQ and ascorbate serve as intermediates capable of accepting electrons from the iron-sulfur cluster F X of PS I. Reduced species of Cl 2 NQ and ascorbate are oxidized by photooxidized PS I primary donor P700+ and/or by molecular oxygen. We have found the synergistic effect of Cl 2 NQ and ascorbate on the rate of P700+ reduction. Accelerated electron flow to P700+, observed in the presence of both Cl 2 NQ and ascorbate, is explained by an increase in the reduced species of Cl 2 NQ due to electron transfer from ascorbate. © 2018 Federation of European Biochemical Societies.

  19. Isolation, Oxygen Sensitivity, and Virulence of NADH Oxidase Mutants of the Anaerobic Spirochete Brachyspira (Serpulina) hyodysenteriae, Etiologic Agent of Swine Dysentery

    PubMed Central

    Stanton, Thad B.; Rosey, Everett L.; Kennedy, Michael J.; Jensen, Neil S.; Bosworth, Brad T.

    1999-01-01

    Brachyspira (Serpulina) hyodysenteriae, the etiologic agent of swine dysentery, uses the enzyme NADH oxidase to consume oxygen. To investigate possible roles for NADH oxidase in the growth and virulence of this anaerobic spirochete, mutant strains deficient in oxidase activity were isolated and characterized. The cloned NADH oxidase gene (nox; GenBank accession no. U19610) on plasmid pER218 was inactivated by replacing 321 bp of coding sequence with either a gene for chloramphenicol resistance (cat) or a gene for kanamycin resistance (kan). The resulting plasmids, respectively, pCmΔNOX and pKmΔNOX, were used to transform wild-type B. hyodysenteriae B204 cells and generate the antibiotic-resistant strains Nox-Cm and Nox-Km. PCR and Southern hybridization analyses indicated that the chromosomal wild-type nox genes in these strains had been replaced, through allelic exchange, by the inactivated nox gene containing cat or kan. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblot analysis revealed that both nox mutant cell lysates were missing the 48-kDa Nox protein. Soluble NADH oxidase activity levels in cell lysates of Nox-Cm and Nox-Km were reduced 92 to 96% compared to the activity level in parent strain B204. In an aerotolerance test, cells of both nox mutants were at least 100-fold more sensitive to oxygen exposure than were cells of the wild-type parent strain B204. In swine experimental infections, both nox mutants were less virulent than strain B204 in that fewer animals were colonized by the mutant cells and infected animals displayed mild, transient signs of disease, with no deaths. These results provide evidence that NADH oxidase serves to protect B. hyodysenteriae cells against oxygen toxicity and that the enzyme, in that role, contributes to the pathogenic ability of the spirochete. PMID:10543819

  20. Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development.

    PubMed

    Mounet-Gilbert, Louise; Dumont, Marie; Ferrand, Carine; Bournonville, Céline; Monier, Antoine; Jorly, Joana; Lemaire-Chamley, Martine; Mori, Kentaro; Atienza, Isabelle; Hernould, Michel; Stevens, Rebecca; Lehner, Arnaud; Mollet, Jean Claude; Rothan, Christophe; Lerouge, Patrice; Baldet, Pierre

    2016-08-01

    GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C

    PubMed Central

    May, James M

    2011-01-01

    The ascorbate transporters SVCT1 and SVCT2 are crucial for maintaining intracellular ascorbate concentrations in most cell types. Although the two transporter isoforms are highly homologous, they have different physiologic functions. The SVCT1 is located primarily in epithelial cells and has its greatest effect in reabsorbing ascorbate in the renal tubules. The SVCT2 is located in most non-epithelial tissues, with the highest expression in brain and neuroendocrine tissues. These transporters are hydrophobic membrane proteins that have a high affinity and are highly selective for ascorbate. Their ability to concentrate ascorbate inside cells is driven by the sodium gradient across the plasma membrane as generated by Na+/K+ ATPase. They can concentrate ascorbate 20 to 60-fold over plasma ascorbate concentrations. Ascorbate transport on these proteins is regulated at the transcriptional, translational and post-translational levels. Available studies show that transporter function is acutely regulated by protein kinases A and C, whereas transporter expression is increased by low intracellular ascorbate and associated oxidative stress. The knockout of the SVCT2 in mice is lethal on day 1 of life, and almost half of SVCT1 knockout mice do not survive to weaning. These findings confirm the importance both of cellular ascorbate and of the two transport proteins as key to maintaining intracellular ascorbate. PMID:21418192

  2. The plastid ndh genes code for an NADH-specific dehydrogenase: Isolation of a complex I analogue from pea thylakoid membranes

    PubMed Central

    Sazanov, Leonid A.; Burrows, Paul A.; Nixon, Peter J.

    1998-01-01

    The plastid genomes of several plants contain ndh genes—homologues of genes encoding subunits of the proton-pumping NADH:ubiquinone oxidoreductase, or complex I, involved in respiration in mitochondria and eubacteria. From sequence similarities with these genes, the ndh gene products have been suggested to form a large protein complex (Ndh complex); however, the structure and function of this complex remains to be established. Herein we report the isolation of the Ndh complex from the chloroplasts of the higher plant Pisum sativum. The purification procedure involved selective solubilization of the thylakoid membrane with dodecyl maltoside, followed by two anion-exchange chromatography steps and one size-exclusion chromatography step. The isolated Ndh complex has an apparent total molecular mass of approximately 550 kDa and according to SDS/PAGE consists of at least 16 subunits including NdhA, NdhI, NdhJ, NdhK, and NdhH, which were identified by N-terminal sequencing and immunoblotting. The Ndh complex showed an NADH- and deamino-NADH-specific dehydrogenase activity, characteristic of complex I, when either ferricyanide or the quinones menadione and duroquinone were used as electron acceptors. This study describes the isolation of the chloroplast analogue of the respiratory complex I and provides direct evidence for the function of the plastid Ndh complex as an NADH:plastoquinone oxidoreductase. Our results are compatible with a dual role for the Ndh complex in the chlororespiratory and cyclic photophosphorylation pathways. PMID:9448329

  3. Ascorbic Acid Alleviates Water Stress in Young Peach Trees and Improves Their Performance after Rewatering.

    PubMed

    Penella, Consuelo; Calatayud, Ángeles; Melgar, Juan C

    2017-01-01

    Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars ('Scarletprince' and 'CaroTiger'). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO 2 assimilation and stomatal conductance of water-stressed 'Scarletprince' trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed 'Scarletprince' trees was improved to values similar to control trees. On the other hand, water-stressed 'CaroTiger' trees needed two applications of ascorbic acid to reach values of CO 2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with 'Scarletprince' trees preferentially using proline as compatible solute and 'CaroTiger' trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes.

  4. Multi-approach metabolomics analysis and artificial simplified phytocomplexes reveal cultivar-dependent synergy between polyphenols and ascorbic acid in fruits of the sweet cherry (Prunus avium L.)

    PubMed Central

    Di Carlo, Flavia; Poletti, Stefania; Bulgarini, Alessandra; Munari, Francesca; Negri, Stefano; Stocchero, Matteo; Ceoldo, Stefania; Avesani, Linda; Assfalg, Michael; Zoccatelli, Gianni; Guzzo, Flavia

    2017-01-01

    Fruits of the sweet cherry (Prunus avium L.) accumulate a range of antioxidants that can help to prevent cardiovascular disease, inflammation and cancer. We tested the in vitro antioxidant activity of 18 sweet cherry cultivars collected from 12 farms in the protected geographical indication region of Marostica (Vicenza, Italy) during two growing seasons. Multiple targeted and untargeted metabolomics approaches (NMR, LC-MS, HPLC-DAD, HPLC-UV) as well as artificial simplified phytocomplexes representing the cultivars Sandra Tardiva, Sandra and Grace Star were then used to determine whether the total antioxidant activity reflected the additive effects of each compound or resulted from synergistic interactions. We found that the composition of each cultivar depended more on genetic variability than environmental factors. Furthermore, phenolic compounds were the principal source of antioxidant activity and experiments with artificial simplified phytocomplexes indicated strong synergy between the anthocyanins and quercetins/ascorbic acid specifically in the cultivar Sandra Tardiva. Our data therefore indicate that the total antioxidant activity of sweet cherry fruits may originate from cultivar-dependent interactions among different classes of metabolite. PMID:28732012

  5. Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves.

    PubMed

    Dewhirst, Rebecca A; Clarkson, Graham J J; Rothwell, Steve D; Fry, Stephen C

    2017-10-15

    Post-harvest treatments of pre-packaged salad leaves potentially cause l-ascorbate loss, but the mechanisms of ascorbate degradation remain incompletely understood, especially in planta. We explored the extent and pathways of ascorbate loss in variously washed and stored salad leaves. Ascorbate was assayed by 2,6-dichlorophenolindophenol titration, and pathways were monitored by 14 C-radiolabelling followed by high-voltage electrophoresis. All leaves tested showed ascorbate loss during storage: lettuce showed the greatest percentage loss, wild rocket the least. Spinach leaves were particularly prone to losing ascorbate during washing, especially with simultaneous mechanical agitation; however, washing in the presence of hypochlorite did not significantly increase ascorbate loss. In spinach, [ 14 C]oxalate was the major product of [ 14 C]ascorbate degradation, suggesting that commercial washing causes oxidative stress. This study highlights that ascorbate/dehydroascorbic acid are lost via the oxidative pathway during washing and post-harvest storage of salad leaves. Thus changes to washing procedures could potentially increase the post-harvest retention of ascorbate. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  7. Flightless I Expression Enhances Murine Claw Regeneration Following Digit Amputation.

    PubMed

    Strudwick, Xanthe L; Waters, James M; Cowin, Allison J

    2017-01-01

    The mammalian digit tip is capable of both reparative and regenerative wound healing dependent on the level of amputation injury. Removal of the distal third of the terminal phalange results in successful regeneration, whereas a more severe, proximal, amputation heals by tissue repair. Flightless I (Flii) is involved in both tissue repair and regeneration. It negatively regulates wound repair but elicits a positive effect in hair follicle regeneration, with Flii overexpression resulting in significantly longer hair fibers. Using a model of digit amputation in Flii overexpressing (FIT) mice, we investigated Flii in digit regeneration. Both wild-type and FIT digits regenerated after distal amputation with newly regenerated FIT claws being significantly longer than intact controls. No regeneration was observed in wild-type mice after severe proximal amputation; however, FIT mice showed significant regeneration of the missing digit. Using a three-dimensional model of nail formation, connective tissue fibroblasts isolated from the mesenchymal tissue surrounding the wild-type and FIT digit tips and cocultured with skin keratinocytes demonstrated aggregate structures resembling rudimentary nail buds only when Flii was overexpressed. Moreover, β-catenin and cyclin D1 expression was maintained in the FIT regenerating germinal matrix suggesting a potential interaction of Flii with Wnt signaling during regeneration. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Distal regeneration involves the age dependent activity of branchial sac stem cells in the ascidian Ciona intestinalis

    PubMed Central

    2014-01-01

    Abstract Tunicates have high capacities for regeneration but the underlying mechanisms and their relationship to life cycle progression are not well understood. Here we investigate the regeneration of distal structures in the ascidian tunicate Ciona intestinalis. Analysis of regenerative potential along the proximal−distal body axis indicated that distal organs, such as the siphons, their pigmented sensory organs, and the neural complex, could only be replaced from body fragments containing the branchial sac. Distal regeneration involves the formation of a blastema composed of cells that undergo cell proliferation prior to differentiation and cells that differentiate without cell proliferation. Both cell types originate in the branchial sac and appear in the blastema at different times after distal injury. Whereas the branchial sac stem cells are present in young animals, they are depleted in old animals that have lost their regeneration capacity. Thus Ciona adults contain a population of age‐related stem cells located in the branchial sac that are a source of precursors for distal body regeneration. PMID:25893097

  9. Effect of antacid and ascorbic acid on serum salicylate concentration.

    PubMed

    Hansten, P D; Hayton, W L

    1980-01-01

    To determine the effect of antacid or ascorbic acid administration on plateau serum salicylate concentrations, nine healthy subjects were given each of the following treatments by balanced block design: choline salicylate (equivalent to 3.76 or 5.62 Gm/day of aspirin); choline salicylate plus magnesium-aluminum hydroxide (120 ml/day); or choline salicylate plus ascorbic acid (3 Gm/day). In subjects developing a control serum salicylate level above 10 mg/dl, antacid administration produced a decrease in serum salicylate level (mean 19.8 mg/dl vs. 15.8 mg/dl) (P less than 0.01). Ascorbic acid administration was not associated with a significant change in serum salicylate. The reduction in serum salicylate following antacid appears to be due to antacid-induced alkalinization of the urine with resultant increase in renal salicylate clearance. Antacid administration should be considered a potential cause of altered serum salicylate concentration in patients receiving large doses of salicylate.

  10. Periodontal regeneration in gingival recession defects.

    PubMed

    Trombelli, L

    1999-02-01

    Surgical treatment of gingival recession defects aims at obtaining soft tissue coverage of exposed root surfaces and/or augmentation of gingival tissue dimensions. A variety of protocols have been developed to manage these clinical problems. Since one goal of periodontal therapy is the regeneration of the lost attachment apparatus of the tooth, full restoration of defect should be accomplished following mucogingival procedures. This implies regeneration of all periodontal structures, including formation of new cementum with inserting connective tissue fibers, alveolar bone regeneration and recreation of a functional and aesthetic morphology of the mucogingival complex. Animal and human histological studies have shown that healing at gingiva-root interface following pedicle flaps or free soft tissue grafts generally includes a long junctional epithelium with varying amounts of a new connective tissue attachment in the most apical aspect of the covered root surface. Limited bone regeneration has been observed. Adjunctive use of root conditioning agents and cell excluding, wound-stabilizing devices may amplify regenerative outcomes. Changes in the amount of keratinized tissue, which can significantly affect the aesthetic outcome of treatment, have been shown to depend on the interactions among various tissues involved in the healing process and the selected surgical procedure.

  11. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    NASA Astrophysics Data System (ADS)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  12. Dietary taurine alters ascorbic acid metabolism in rats fed diets containing polychlorinated biphenyls.

    PubMed

    Mochizuki, H; Oda, H; Yokogoshi, H

    2000-04-01

    The effect of dietary taurine on ascorbic acid metabolism and hepatic drug-metabolizing enzymes was investigated in rats fed diets containing polychlorinated biphenyls (PCB) to determine whether taurine has an adaptive and protective function in xenobiotic-treated animals. Young male Wistar rats (60 g) were fed diets containing 0 or 0.2 g/kg diet PCB with or without 30 g/kg diet of taurine for 14 d. The rats fed the PCB-containing diets had greater liver weight, higher ascorbic acid concentrations in the liver and spleen and greater hepatic cytochrome P-450 contents than control rats that were not treated with PCB (P < 0.01). In PCB-fed rats, urinary ascorbic acid excretion was enhanced, and serum cholesterol concentration (especially HDL-cholesterol) was significantly elevated compared with those in control rats. Dietary taurine significantly potentiated the increases in the urinary excretion of ascorbic acid and the rise in the levels of cytochrome P-450 which were caused by PCB treatment. On the other hand, the supplementation of taurine to control diet did not alter these variables. Taurine may enhance the hepatic drug-metabolizing systems, leading to the stimulation of the ascorbic acid metabolism in rats fed diets containing PCB.

  13. Ascorbic Acid Alleviates Water Stress in Young Peach Trees and Improves Their Performance after Rewatering

    PubMed Central

    Penella, Consuelo; Calatayud, Ángeles; Melgar, Juan C.

    2017-01-01

    Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars (‘Scarletprince’ and ‘CaroTiger’). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO2 assimilation and stomatal conductance of water-stressed ‘Scarletprince’ trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed ‘Scarletprince’ trees was improved to values similar to control trees. On the other hand, water-stressed ‘CaroTiger’ trees needed two applications of ascorbic acid to reach values of CO2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with ‘Scarletprince’ trees preferentially using proline as compatible solute and ‘CaroTiger’ trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes. PMID:28979284

  14. TEMPOL increases NAD(+) and improves redox imbalance in obese mice.

    PubMed

    Yamato, Mayumi; Kawano, Kimika; Yamanaka, Yuki; Saiga, Misako; Yamada, Ken-Ichi

    2016-08-01

    Continuous energy conversion is controlled by reduction-oxidation (redox) processes. NAD(+) and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS) and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD(+) production in the ascorbic acid-glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD(+)/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD(+)/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity. Copyright © 2016. Published by Elsevier B.V.

  15. Plant resistance mechanisms to air pollutants: rhythms in ascorbic acid production during growth under ozone stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E.H.

    1991-01-01

    Relationships between ozone (O3) tolerance and leaf ascorbic acid concentrations in O3-susceptible (O3-S) 'Hark' and O3-resistant (O3-R) 'Hood' soybean, Glycine max (L.) Merr., cultivars were examined with high-performance liquid chromatography (HPLC). Leaf samples were analyzed at 4 intervals during a 24 h period. Soybean cultivars grown in the greenhouse with charcoal filtered (CF) and nonfiltered (NF) air showed daily oscillations in ascorbic acid production. Highest ascorbic acid levels in leaves during light coincided with highest concentrations of photochemical oxidants in the atmosphere at 2:00 p.m. The resistant genotype produced more ascorbic acid in its trifoliate leaves than did the correspondingmore » susceptible genotype. Under CF air (an O3-reduced environment) O3-S and O3-R cultivars showed rhythms in ascorbic acid production. In NF air (an O3 stress environment) the O3-R cultivar alone showed rhythms in ascorbic acid production. Results indicated that superior O3 tolerance in the Hood soybean cultivar (compared with Hark) was associated with a greater increase in endogenous levels of ascorbic acid. Ascorbic acid may scavenge free radicals and thereby protect cells from injury by O3 or other oxyradical products. Plants defend themselves against photochemical oxidant stress, such as O3, by several mechanisms. Experimental evidence indicates that antioxidant defense systems existing in plant tissues may function to protect cellular components from deleterious effects of photochemical oxidants through endogenous and exogenous controls.« less

  16. Synthesis and antioxidant properties of a new lipophilic ascorbic acid analogue.

    PubMed

    Cotelle, Philippe; Cotelle, Nicole; Teissier, Elisabeth; Vezin, Hervé

    2003-03-20

    4-(4-Hydroxyphenyl)-5-(4-hydroxyphenylmethyl)-2-hydroxyfurane-2-one 1 was prepared by an acidic dimerisation of 4-hydroxyphenylpyruvic acid and some of its antioxidant and spectroscopic properties have been measured and compared to that of ascorbic acid. 1 is as good an antioxidant as ascorbic acid in the DPPH (2,2-diphenyl-1-picryl hydrazyl radical) test and the inhibition of hydroxyl radical and a powerful inhibitor of the Cu(2+) or AAPH (2,2'-azobis-(2-amidinopropane) dihydrochloride) induced oxidation of human LDL. 1 gives a stable radical characterised by its ESR spectrum similarly to ascorbic acid but in lower concentration and with a different reactivity towards nitroxides. Theoretical calculations allow us to propose the structure for the radical formed from 1, to explain its lower stability than ascorbyl radical and to evaluate the lipophilicity of 1.

  17. Ultrahigh-Temperature Regeneration of Long Period Gratings (LPGs) in Boron-Codoped Germanosilicate Optical Fibre

    PubMed Central

    Liu, Wen; Cook, Kevin; Canning, John

    2015-01-01

    The regeneration of UV-written long period gratings (LPG) in boron-codoped germanosilicate “W” fibre is demonstrated and studied. They survive temperatures over 1000 °C. Compared with regenerated FBGs fabricated in the same type of fibre, the evolution curves of LPGs during regeneration and post-annealing reveal even more detail of glass relaxation. Piece-wise temperature dependence is observed, indicating the onset of a phase transition of glass in the core and inner cladding at ~500 °C and ~250 °C, and the melting of inner cladding between 860 °C and 900 °C. An asymmetric spectral response with increasing and decreasing annealing temperature points to the complex process dependent material system response. Resonant wavelength tuning by adjusting the dwell temperature at which regeneration is undertaken is demonstrated, showing a shorter resonant wavelength and shorter time for stabilisation with higher dwell temperatures. All the regenerated LPGs are nearly strain-insensitive and cannot be tuned by applying loads during annealing as done for regenerated FBGs. PMID:26307991

  18. Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1

    PubMed Central

    Yang, Joan C.; Loewus, Frank A.

    1975-01-01

    l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288

  19. Nafuredin, a novel inhibitor of NADH-fumarate reductase, produced by Aspergillus niger FT-0554.

    PubMed

    Ui, H; Shiomi, K; Yamaguchi, Y; Masuma, R; Nagamitsu, T; Takano, D; Sunazuka, T; Namikoshi, M; Omura, S

    2001-03-01

    A novel compound, nafuredin, was isolated as an inhibitor of anaerobic electron transport (NADH-fumarate reductase). It was obtained from culture broth of Aspergillus niger FT-0554 isolated from a marine sponge. The structure was elucidated as an epoxy-delta-lactone with an attached methylated olefinic side chain on the basis of spectral analysis.

  20. Sclerotial biomass and carotenoid yield of Penicillium sp. PT95 under oxidative growth conditions and in the presence of antioxidant ascorbic acid.

    PubMed

    Li, X L; Cui, X H; Han, J R

    2006-09-01

    To determine the effect of oxidative stress and exogenous ascorbic acid on sclerotial biomass and carotenoid yield of Penicillium sp. PT95. In this experiment, high oxidative stress was applied by the inclusion of FeSO(4) in the growth medium and exposure to light. Low oxidative stress was applied by omitting iron from the growth medium and by incubation in the dark. Supplementation of exogenous ascorbic acid (as antioxidant) to the basal medium caused a concentration-dependent delay of sclerotial differentiation (up to 48 h), decrease of sclerotial biomass (up to 40%) and reduction of carotenoid yield (up to 91%). On the contrary, the exogenous ascorbic acid also caused a concentration-dependent decrease of lipid peroxidation in colonies of this fungus. Under high oxidative stress growth condition, the sclerotial biomass and carotenoid yield of PT95 strain in each plate culture reached 305 mg and 32.94 microg, which were 1.23 and 3.71 times higher, respectively, than those at low oxidative stress growth condition. These data prompted us to consider that in order to attain higher sclerotial biomass and pigment yield, the strain PT95 should be grown under high oxidative stress and in the absence of antioxidants. These results suggest that strain PT95 may be used for solid-state fermentation of carotenoid production under high oxidative stress growth conditions.

  1. Identification of a subunit of NADH-dehydrogenase as a p49/STRAP-binding protein.

    PubMed

    Zhang, Xiaomin; Azhar, Gohar; Helms, Scott; Zhong, Ying; Wei, Jeanne Y

    2008-01-29

    The p49/STRAP (or SRFBP1) protein was recently identified in our laboratory as a cofactor of serum response factor that contributes to the regulation of SRF target genes in the heart. In the present study, we report that NDUFAB1, a nuclear encoded subunit of NADH dehydrogenase, represented the majority of the cDNA clones that interacted with p49/STRAP in multiple screenings using the yeast two-hybrid system. The p49/STRAP and NDUFAB1 proteins interacted and co-localized with each other in the cell. The p49/STRAP protein contains four classic nuclear localization sequence motifs, and it was observed to be present predominantly in the nucleus. Overexpression of p49/STRAP altered the intracellular level of NAD, and reduced the NAD/NADH ratio. Overexpression of p49/STRAP also induced the deacetylation of serum response factor. These data suggest that p49/STRAP plays a role in the regulation of intracellular processes such as cardiac cellular metabolism, gene expression, and possibly aging.

  2. Identification of a subunit of NADH-dehydrogenase as a p49/STRAP-binding protein

    PubMed Central

    Zhang, Xiaomin; Azhar, Gohar; Helms, Scott; Zhong, Ying; Wei, Jeanne Y

    2008-01-01

    Background The p49/STRAP (or SRFBP1) protein was recently identified in our laboratory as a cofactor of serum response factor that contributes to the regulation of SRF target genes in the heart. Results In the present study, we report that NDUFAB1, a nuclear encoded subunit of NADH dehydrogenase, represented the majority of the cDNA clones that interacted with p49/STRAP in multiple screenings using the yeast two-hybrid system. The p49/STRAP and NDUFAB1 proteins interacted and co-localized with each other in the cell. The p49/STRAP protein contains four classic nuclear localization sequence motifs, and it was observed to be present predominantly in the nucleus. Overexpression of p49/STRAP altered the intracellular level of NAD, and reduced the NAD/NADH ratio. Overexpression of p49/STRAP also induced the deacetylation of serum response factor. Conclusion These data suggest that p49/STRAP plays a role in the regulation of intracellular processes such as cardiac cellular metabolism, gene expression, and possibly aging. PMID:18230186

  3. SVCT-2 determines the sensitivity to ascorbate-induced cell death in cholangiocarcinoma cell lines and patient derived xenografts.

    PubMed

    Wang, Changzheng; Lv, Hongwei; Yang, Wen; Li, Ting; Fang, Tian; Lv, Guishuai; Han, Qin; Dong, Liwei; Jiang, Tianyi; Jiang, Beige; Yang, Guangshun; Wang, Hongyang

    2017-07-10

    Cholangiocarcinoma (CC) is a devastating malignancy with late diagnosis and poor response to conventional chemotherapy. Recent studies have revealed anti-cancer effect of vitamin C (l-ascorbic acid, ascorbate) in several types of cancer. However, the effect of l-ascorbic acid (AA) in CC remains elusive. Herein, we demonstrated that AA induced cytotoxicity in CC cells by generating intracellular reactive oxygen species (ROS), and subsequently DNA damage, ATP depletion, mTOR pathway inhibition. Moreover, AA worked synergistically with chemotherapeutic agent cisplatin to impair CC cells growth both in vitro and in vivo. Intriguingly, sodium-dependent vitamin C transporter 2 (SVCT-2) expression was inversely correlated with IC50 values of AA. Knockdown of SVCT-2 dramatically alleviated DNA damage, ATP depletion, and inhibition of mTOR pathway induced by AA. Furthermore, SVCT-2 knockdown endowed CC cells with the resistance to AA treatment. Finally, the inhibitory effects of AA were further confirmed in patient-derived CC xenograft models. Thus, our results unravel therapeutic potential of AA alone or in combination with cisplatin for CC. SVCT2 expression level may serve as a positive outcome predictor for AA treatment in CC. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Featured Molecules: Ascorbic Acid and Methylene Blue

    NASA Astrophysics Data System (ADS)

    Coleman, William F.; Wildman, Randall J.

    2003-05-01

    The WebWare molecules of the month for May are featured in several articles in this issue. "Arsenic: Not So Evil After All?" discusses the pharmaceutical uses of methylene blue and its development as the first synthetic drug used against a specific disease. The JCE Classroom Activity "Out of the Blue" and the article "Greening the Blue Bottle" feature methylene blue and ascorbic acid as two key ingredients in the formulation of the blue bottle. You can also see a colorful example of these two molecules in action on the cover. "Sailing on the 'C': A Vitamin Titration with a Twist" describes an experiment to determine the vitamin C (ascorbic acid) content of citrus fruits and challenges students, as eighteenth-century sea captains, to decide the best fruit to take on a long voyage. Fully manipulable (Chime) versions of these and other molecules are available at Only@JCE Online.

  5. The unique kinetic behavior of the very large NAD-dependent glutamate dehydrogenase from Janthinobacterium lividum.

    PubMed

    Kawakami, Ryushi; Oyama, Masaki; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2010-01-01

    The kinetics of a very large NAD-dependent glutamate dehydrogenase from Janthinobacterium lividum showed positive cooperativity toward alpha-ketoglutarate and NADH, and the Michaelis-Menten type toward ammonium chloride in the absence of the catalytic activator, L-aspartate. An increase in the maximum activity accompanied the decrease in the S(0.5) values for alpha-ketoglutarate and NADH with the addition of L-aspartate, and the kinetic response for alpha-ketoglutarate changed completely to a typical Michaelis-Menten type in the presence of 10 mM L-aspartate.

  6. Maximum likelihood estimation for predicting the probability of obtaining variable shortleaf pine regeneration densities

    Treesearch

    Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin

    2003-01-01

    A logistic equation is the basis for a model that predicts the probability of obtaining regeneration at specified densities. The density of regeneration (trees/ha) for which an estimate of probability is desired can be specified by means of independent variables in the model. When estimating parameters, the dependent variable is set to 1 if the regeneration density (...

  7. Comparison of the anti-scorbutic activity of L-ascorbic acid and Ester C in the non-ascorbate synthesizing Osteogenic Disorder Shionogi (ODS) rat.

    PubMed

    Verlangieri, A J; Fay, M J; Bannon, A W

    1991-01-01

    The Osteogenic Disorder Shionogi (ODS) rat, Clea Inc., Tokyo, Japan lacks the ability to synthesize L-ascorbic acid (AA). As with man, monkey and the guinea pig, this rat lacks L-gulonolactone oxidase necessary for the synthesis of AA from glucose. This study shows this animal to be an alternative to the guinea pig in AA studies. The anti-scorbutic potency of Ester C (EC), a calcium ascorbate and calcium threonate mixture, was compared with an AA dose of equal ascorbate activity equivalents (AAE) for anti-scorbutic activity in the ODS rat. The minimal anti-scorbutic dose of EC was determined to be 0.44 mg/kg/day (AAE), while an AA dose of 0.51 mg/kg/day (AAE) was not anti-scorbutic in a 24 day study. At 24 days EC rats gained 125% of initial body weight (BW) and the AA rats only 45% BW. Scorbutic signs at 24 days were scored on a 0 (min) to 3 (max) scale. The EC/AA ratio scores were: hemorrhage 0/1.4, behavior change 0/2.0, piloerection 0/2.2, mobility 0.4/2.2, dysbasia 0.6/2.8 and ataxia 0.4/1.0. Pearson's correlation coefficient for BW versus AAE was r = .34 for the AA group and r = .90 for the EC group. The morbidity index for EC was 0/5 and for the AA group 2/5. The AAE dose of AA which was 16% higher/day than the EC AAE dose was not anti-scorbutic, while the EC dose was anti-scorbutic. EC rats had 3.5X greater weight gain, a sensitive indicator of scurvy, than the AA rats. EC rats had 3-4 times less, if any, scorbutic signs than AA rats. The results clearly show that, based on ascorbate activity equivalents, EC has more available ascorbate activity/potency than AA. The mechanism of this increased potency is believed to be due to the facilitated transport of AAE into the cell by the threonate (a normal in vivo metabolite of AA) present in the EC product. In addition, previous studies have shown EC (AAE) to be higher in plasma and excreted less rapidly than the AAE derived from AA administered orally.

  8. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2 mediated regeneration of sinusoidal endothelial cells

    PubMed Central

    Hooper, Andrea T.; Butler, Jason M.; Nolan, Daniel J; Kranz, Andrea; Iida, Kaoruko; Kobayashi, Mariko; Kopp, Hans-Georg; Shido, Koji; Petit, Isabelle; Yanger, Kilangsungla; James, Daylon; Witte, Larry; Zhu, Zhenping; Wu, Yan; Pytowski, Bronislaw; Rosenwaks, Zev; Mittal, Vivek; Sato, Thomas N.; Rafii, Shahin

    2011-01-01

    SUMMARY The phenotypic attributes and molecular determinants for the regeneration of bone marrow (BM) sinusoidal endothelial cells (SECs) and their contribution to hematopoiesis are unknown. We show that after myelosuppression VEGFR2 activation promotes reassembly of regressed SECs, reconstituting hematopoietic stem and progenitor cells (HSPCs). VEGFR2 and VEGFR3 expression are restricted to BM vasculature, demarcating a continuous network of VEGFR2+VEGFR3+Sca1− SECs and VEGFR2+VEGFR3−Sca1+ arterioles. While chemotherapy (5FU) and sublethal irradiation (650 rad) induce minor SEC regression, lethal irradiation (950 rad) induces severe regression of SECs requiring BM transplantation (BMT) for regeneration. Conditional deletion of VEGFR2 in adult mice blocks regeneration of SECs in sublethally irradiated animals, preventing hematopoietic reconstitution. Inhibition of VEGFR2 signaling in lethally irradiated wild type mice rescued with BMT severely impairs SEC reconstruction, preventing engraftment and reconstitution of HSPCs. Therefore, activation of VEGFR2 is critical for regeneration of VEGFR3+Sca1− SECs that are essential for engraftment and restoration of HSPCs and hematopoiesis. PMID:19265665

  9. NADH-fluorescence scattering correction for absolute concentration determination in a liquid tissue phantom using a novel multispectral magnetic-resonance-imaging-compatible needle probe

    NASA Astrophysics Data System (ADS)

    Braun, Frank; Schalk, Robert; Heintz, Annabell; Feike, Patrick; Firmowski, Sebastian; Beuermann, Thomas; Methner, Frank-Jürgen; Kränzlin, Bettina; Gretz, Norbert; Rädle, Matthias

    2017-07-01

    In this report, a quantitative nicotinamide adenine dinucleotide hydrate (NADH) fluorescence measurement algorithm in a liquid tissue phantom using a fiber-optic needle probe is presented. To determine the absolute concentrations of NADH in this phantom, the fluorescence emission spectra at 465 nm were corrected using diffuse reflectance spectroscopy between 600 nm and 940 nm. The patented autoclavable Nitinol needle probe enables the acquisition of multispectral backscattering measurements of ultraviolet, visible, near-infrared and fluorescence spectra. As a phantom, a suspension of calcium carbonate (Calcilit) and water with physiological NADH concentrations between 0 mmol l-1 and 2.0 mmol l-1 were used to mimic human tissue. The light scattering characteristics were adjusted to match the backscattering attributes of human skin by modifying the concentration of Calcilit. To correct the scattering effects caused by the matrices of the samples, an algorithm based on the backscattered remission spectrum was employed to compensate the influence of multiscattering on the optical pathway through the dispersed phase. The monitored backscattered visible light was used to correct the fluorescence spectra and thereby to determine the true NADH concentrations at unknown Calcilit concentrations. Despite the simplicity of the presented algorithm, the root-mean-square error of prediction (RMSEP) was 0.093 mmol l-1.

  10. A novel approach to regulate cell membrane permeability for ATP and NADH formation in Saccharomyces cerevisiae induced by air cold plasma

    NASA Astrophysics Data System (ADS)

    Dong, Xiaoyu; Liu, Tingting; Xiong, Yuqin

    2017-02-01

    Air cold plasma has been used as a novel method for enhancing microbial fermentation. The aim of this work was to explore the effect of plasma on membrane permeability and the formation of ATP and NADH in Saccharomyces cerevisiae, so as to provide valuable information for large-scale application of plasma in the fermentation industry. Suspensions of S. cerevisiae cells were exposed to air cold plasma for 0, 1, 2, 3, 4 and 5 min, and then subjected to various analyses prior to fermentation (0 h) and at the 9 and 21 h stages of fermentation. Compared with non-exposed cells, cells exposed to plasma for 1 min exhibited a marked increase in cytoplasmic free Ca2+ concentration as a result of the significant increase in membrane potential prior to fermentation. At the same time, the ATP level in the cell suspension decreased by about 40%, resulting in a reduction of about 60% in NADH prior to culturing. However, the levels of ATP and NADH in the culture at the 9 and 21 h fermentation stages were different from the level at 0 h. Taken together, the results indicated that exposure of S. cerevisiae to air cold plasma could increase its cytoplasmic free Ca2+ concentration by improving the cell membrane potential, consequently leading to changes in ATP and NADH levels. Supported by National Natural Science Foundation of China (Nos. 21246012, 21306015 and 21476032).

  11. Identification and functional analysis of the L-ascorbate-specific enzyme II complex of the phosphotransferase system in Streptococcus mutans.

    PubMed

    Wu, Xinyu; Hou, Jin; Chen, Xiaodan; Chen, Xuan; Zhao, Wanghong

    2016-03-22

    Streptococcus mutans is the primary etiological agent of human dental caries. It can metabolize a wide variety of carbohydrates and produce large amounts of organic acids that cause enamel demineralization. Phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) plays an important role in carbohydrates uptake of S. mutans. The ptxA and ptxB genes in S. mutans encode putative enzyme IIA and enzyme IIB of the L-ascorbate-specific PTS. The aim of this study was to analyze the function of these proteins and understand the transcriptional regulatory mechanism. ptxA (-), ptxB (-), as well as ptxA (-) , ptxB (-) double-deletion mutants all had more extended lag phase and lower growth yield than wild-type strain UA159 when grown in the medium using L-ascorbate as the sole carbon source. Acid production and acid killing assays showed that the absence of the ptxA and ptxB genes resulted in a reduction in the capacity for acidogenesis, and all three mutant strains did not survive an acid shock. According to biofilm and extracellular polysaccharides (EPS) formation analysis, all the mutant strains formed much less prolific biofilms with small amounts of EPS than wild-type UA159 when using L-ascorbate as the sole carbon source. Moreover, PCR analysis and quantitative real-time PCR revealed that sgaT, ptxA, ptxB, SMU.273, SMU.274 and SMU.275 appear to be parts of the same operon. The transcription levels of these genes were all elevated in the presence of L-ascorbate, and the expression of ptxA gene decreased significantly once ptxB gene was knockout. The ptxA and ptxB genes are involved in the growth, aciduricity, acidogenesis, and formation of biofilms and EPS of S. mutans when L-ascorbate is the sole carbon source. In addition, the expression of ptxA is regulated by ptxB. ptxA, ptxB, and the upstream gene sgaT, the downstream genes SMU.273, SMU.274 and SMU.275 appear to be parts of the same operon, and L-ascorbate is a potential inducer of the operon.

  12. Ascorbate modulates antibacterial mechanisms in experimental pneumococcal pneumonia.

    PubMed

    Esposito, A L

    1986-04-01

    To evaluate the influence of vitamin C on pulmonary antibacterial mechanisms, normal CD-1 mice were administered sodium ascorbate (200 mg/kg/24 h) and challenged intratracheally with type 3 Streptococcus pneumoniae. Survival rates were similar in ascorbate-treated and control animals. When infected with a high inoculum (1 X 10(6) cfu), animals given vitamin C demonstrated a significant enhancement in their capacity to clear viable pneumococci from the lungs at 24 h after challenge; the augmented pulmonary clearance was associated with an increased influx of granulocytes at 6 and 24 h. After infection with a lower inoculum (1 X 10(5) cfu), animals treated with the vitamin exhibited a significant advantage in pulmonary clearance and granulocyte recruitment but at 6 h only. After a very low inoculum challenge (1 X 10(4) cfu), the clearance of viable pneumococci was retarded in ascorbate-treated mice. In vitro, the pneumococcidal capacity of resident alveolar macrophages from animals given vitamin C was significantly reduced, but the ability of these cells to generate leukocyte chemoattractant activity after stimulation with the calcium ionophore A23187 remained unaltered. We conclude that in the mouse, large doses of vitamin C alter pulmonary defense mechanisms against S. pneumoniae; however, these changes do not appear to convey a substantial advantage to the host.

  13. Enhancing the in vitro Fe(2+) bio-accessibility using ascorbate and cold-set whey protein gel particles.

    PubMed

    Martin, A H; de Jong, G A H

    2012-03-01

    This paper investigates the possibility for iron fortification of food using a new preparation method for protein gel particles in which iron is entrapped in the presence of ascorbate using cold-set gelation. The effect of ascorbate on the iron-induced cold-set gelation process of whey protein was studied in order to optimize the ratio of iron/ascorbate. Subsequently, the effect of ascorbate on iron bio-accessibility was assessed in vitro. Rheology was used to study the protein gel formation, and the stability of the gel particles was determined by measuring the iron and protein content at different pH. In vitro studies were performed with the TNO Intestinal Model (TIM). Ascorbate appeared to affect the gel formation process and increased the gel strength of the iron-induced cold-set gels at specific iron/ascorbate ratio. With the Fe-protein gel particles being stable at a broad pH range, the release of iron from the particles was studied as a function of time. The low release of iron indicated a good encapsulation efficiency and the capability of whey protein to keep iron bound at different conditions (pH and presence of calcium). Results obtained with the TIM showed that ascorbate, when added to the protein gel particles, was very successful in enhancing the recovery and absorption of iron. The in vitro Fe(2+) bio-accessibility in the presence of ascorbate in iron-protein particles increased from 10% to almost 80%. This suggests that the concept of using protein particles with iron and ascorbate can effectively be used to fortify food products with iron for human consumption.

  14. Effect of residual ascorbate on determination of nitrite in commercial cured meat products.

    PubMed

    Fox, J B; Doerr, R C; Gates, R

    1984-01-01

    Residual ascorbate in cured meat slurries results in different amounts of pigment being produced from different Griess reagent combinations. The phenomenon was used to study residual ascorbate in commercial cured meat products which had a variety of textures, acidities, moisture and meat content, fat, homogeneity, initial nitrite, and processing conditions. Diluting and heating the samples according to the AOAC procedure did not completely eliminate the ascorbate interference, but making the sample alkaline did. Determining nitrite separately in supernate and precipitate from the first dilution showed the effect of heating to be the elimination of interferences and solubilization or extraction of nitrite from the precipitate.

  15. Decalcification by ascorbic acid for immuno- and affinohistochemical techniques on the inner ear.

    PubMed

    Merchán-Pérez, A; Gil-Loyzaga, P; Bartolomé, M V; Remezal, M; Fernández, P; Rodríguez, T

    1999-08-01

    An ascorbic acid decalcifying solution was applied to immuno- and affinohistochemical studies on the inner ear. Rat inner ears fixed in 4% paraformaldehyde in PBS or in 2% acetic acid in ethanol solutions were adequately decalcified in an ascorbic acid solution, at a temperature of 4 degrees C. The decalcifying solution was prepared with 1% ascorbic acid and 0.84% sodium chloride in distilled water (pH 2.5-2.6). The decalcification time was in a direct relationship to the specimen calcification. In this study, two neuroactive substances (gamma-aminobutyric acid and calcitonin gene-related peptide), neurofilaments, and the galectine endogenous lectin were successfully detected immunohistochemically.

  16. Differential Regulation of the Ascorbic Acid Transporter SVCT2 during Development and in Response to Ascorbic Acid Depletion

    PubMed Central

    Meredith, M. Elizabeth; Harrison, Fiona E.; May, James M.

    2011-01-01

    The sodium-dependent vitamin C transporter-2 (SVCT2) is the only ascorbic acid (ASC) transporter significantly expressed in brain. It is required for life and critical during brain development to supply adequate levels of ASC. To assess SVCT2 function in the developing brain, we studied time-dependent SVCT2 mRNA and protein expression in mouse brain, using liver as a comparison tissue because it is the site of ASC synthesis. We found that SVCT2 expression followed an inverse relationship with ASC levels in the developing brain. In cortex and cerebellum, ASC levels were high throughout late embryonic stages and early post-natal stages and decreased with age, whereas SVCT2 mRNA and protein levels were low in embryos and increased with age. A different response was observed for liver, in which ASC levels and SVCT2 expression were both low throughout embryogenesis and increased post-natally. To determine whether low intracellular ASC might be capable of driving SVCT2 expression, we depleted ASC by diet in adult mice unable to synthesize ASC. We observed that SVCT2 mRNA and protein were not affected by ASC depletion in brain cortex, but SVCT2 protein expression was increased by ASC depletion in the cerebellum and liver. The results suggest that expression of the SVCT2 is differentially regulated during embryonic development and in adulthood. PMID:22001929

  17. Zinc ascorbate: a combined experimental and computational study for structure elucidation

    NASA Astrophysics Data System (ADS)

    Ünaleroǧlu, C.; Zümreoǧlu-Karan, B.; Mert, Y.

    2002-03-01

    The structure of Zn(HA)2·4H2O (HA=ascorbate) has been examined by a number of techniques (13C NMR, 1H NMR, IR, EI/MS and TGA) and also modeled by the semi-empirical PM3 method. The experimental and computational results agreed on a five-fold coordination around Zn(II) where one ascorbate binds monodentately, the other bidentately and two water molecules occupy the remaining sites of a distorted square pyramid.

  18. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.

    PubMed

    Komati Reddy, Gajendar; Lindner, Steffen N; Wendisch, Volker F

    2015-03-01

    Corynebacterium glutamicum uses the Embden-Meyerhof-Parnas pathway of glycolysis and gains 2 mol of ATP per mol of glucose by substrate-level phosphorylation (SLP). To engineer glycolysis without net ATP formation by SLP, endogenous phosphorylating NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was replaced by nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GapN) from Clostridium acetobutylicum, which irreversibly converts glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) without generating ATP. As shown recently (S. Takeno, R. Murata, R. Kobayashi, S. Mitsuhashi, and M. Ikeda, Appl Environ Microbiol 76:7154-7160, 2010, http://dx.doi.org/10.1128/AEM.01464-10), this ATP-neutral, NADPH-generating glycolytic pathway did not allow for the growth of Corynebacterium glutamicum with glucose as the sole carbon source unless hitherto unknown suppressor mutations occurred; however, these mutations were not disclosed. In the present study, a suppressor mutation was identified, and it was shown that heterologous expression of udhA encoding soluble transhydrogenase from Escherichia coli partly restored growth, suggesting that growth was inhibited by NADPH accumulation. Moreover, genome sequence analysis of second-site suppressor mutants that were able to grow faster with glucose revealed a single point mutation in the gene of non-proton-pumping NADH:ubiquinone oxidoreductase (NDH-II) leading to the amino acid change D213G, which was shared by these suppressor mutants. Since related NDH-II enzymes accepting NADPH as the substrate possess asparagine or glutamine residues at this position, D213G, D213N, and D213Q variants of C. glutamicum NDH-II were constructed and were shown to oxidize NADPH in addition to NADH. Taking these findings together, ATP-neutral glycolysis by the replacement of endogenous NAD-dependent GAPDH with NADP-dependent GapN became possible via oxidation of NADPH formed in this pathway by mutant NADPH

  19. Ascorbic acid supplementation diminishes microparticle elevations and neutrophil activation following SCUBA diving.

    PubMed

    Yang, Ming; Barak, Otto F; Dujic, Zeljko; Madden, Dennis; Bhopale, Veena M; Bhullar, Jasjeet; Thom, Stephen R

    2015-08-15

    Predicated on evidence that diving-related microparticle generation is an oxidative stress response, this study investigated the role that oxygen plays in augmenting production of annexin V-positive microparticles associated with open-water SCUBA diving and whether elevations can be abrogated by ascorbic acid. Following a cross-over study design, 14 male subjects ingested placebo and 2-3 wk later ascorbic acid (2 g) daily for 6 days prior to performing either a 47-min dive to 18 m of sea water while breathing air (∼222 kPa N2/59 kPa O2) or breathing a mixture of 60% O2/balance N2 from a tight-fitting face mask at atmospheric pressure for 47 min (∼40 kPa N2/59 kPa O2). Within 30 min after the 18-m dive in the placebo group, neutrophil activation, and platelet-neutrophil interactions occurred, and the total number of microparticles, as well as subgroups bearing CD66b, CD41, CD31, CD142 proteins or nitrotyrosine, increased approximately twofold. No significant elevations occurred among divers after ingesting ascorbic acid, nor were elevations identified in either group after breathing 60% O2. Ascorbic acid had no significant effect on post-dive intravascular bubble production quantified by transthoracic echocardiography. We conclude that high-pressure nitrogen plays a key role in neutrophil and microparticle-associated changes with diving and that responses can be abrogated by dietary ascorbic acid supplementation. Copyright © 2015 the American Physiological Society.

  20. Modelling and analysis of a direct ascorbic acid fuel cell

    NASA Astrophysics Data System (ADS)

    Zeng, Yingzhi; Fujiwara, Naoko; Yamazaki, Shin-ichi; Tanimoto, Kazumi; Wu, Ping

    L-Ascorbic acid (AA), also known as vitamin C, is an environmentally-benign and biologically-friendly compound that can be used as an alternative fuel for direct oxidation fuel cells. While direct ascorbic acid fuel cells (DAAFCs) have been studied experimentally, modelling and simulation of these devices have been overlooked. In this work, we develop a mathematical model to describe a DAAFC and validate it with experimental data. The model is formulated by integrating the mass and charge balances, and model parameters are estimated by best-fitting to experimental data of current-voltage curves. By comparing the transient voltage curves predicted by dynamic simulation and experiments, the model is further validated. Various parameters that affect the power generation are studied by simulation. The cathodic reaction is found to be the most significant determinant of power generation, followed by fuel feed concentration and the mass-transfer coefficient of ascorbic acid. These studies also reveal that the power density steadily increases with respect to the fuel feed concentration. The results may guide future development and operation of a more efficient DAAFC.