Sample records for nadp isocitrate dehydrogenase

  1. Regulation of NAD+- and NADP+-linked isocitrate dehydrogenase in the obligate methylotrophic bacterium Pseudomonas W6.

    PubMed

    Hofmann, K H; Babel, W

    1980-01-01

    Cell-free extracts of the obligate methanol-utilizing bacterium Pseudomonas W6 catalyze the oxydation of isocitrate to alpha-ketoglutarate in the presence of NAD+ and NADP+. After electro-focusing of the crude extract of Pseudomonas W6 actually two distinct bands each of NAD+-linked isocitrate dehydrogenase (NAD+-IDH) and of NADP+-linked isocitrate dehydrogenase (NADP+-IDH) could be observed. The NAD+-IDH was completely separated from the NADP+-IDH by employing DEAE ion exchange chromatography and further purified by affinity chromatography using Cibacron blue F 3G-A. The NAD+-IDH was inhibited by a high energy charge, whereas the NADP+-IDH was found to be independent of energy charge. Consequently the NAD+-IDH showed the control behaviour of an enzyme of an energy-generating sequence which, however, equally fulfils a catabolic and an anabolic function. With respect to the inhibition by reduced pyridine nucleotides and alpha-ketoglutarate differences between NAD+-IDH and NADP+-IDH were also found. Only the NADP+-linked enzyme exhibited a feedback inhibition by its reaction products alpha-ketoglutarate and NADPH. This control behaviour gives evidence for the biosynthetic function of the NADP+-IDH. These results confer an amphibolic character to the sequence from citrate to alpha-ketoglutarate in the incomplete citric-acid cycle of Pseudomonas W6.

  2. Kinetic mechanism of Escherichia coli isocitrate dehydrogenase and its inhibition by glyoxylate and oxaloacetate.

    PubMed Central

    Nimmo, H G

    1986-01-01

    The inhibition of Escherichia coli isocitrate dehydrogenase by glyoxylate and oxaloacetate was examined. The shapes of the progress curves in the presence of the inhibitors depended on the order of addition of the assay components. When isocitrate dehydrogenase or NADP+ was added last, the rate slowly decreased until a new, inhibited, steady state was obtained. When isocitrate was added last, the initial rate was almost zero, but the rate increased slowly until the same steady-state value was obtained. Glyoxylate and oxaloacetate gave competitive inhibition against isocitrate and uncompetitive inhibition against NADP+. Product-inhibition studies showed that isocitrate dehydrogenase obeys a compulsory-order mechanism, with coenzyme binding first. Glyoxylate and oxaloacetate bind to and dissociate from isocitrate dehydrogenase slowly. These observations can account for the shapes of the progress curves observed in the presence of the inhibitors. Condensation of glyoxylate and oxaloacetate produced an extremely potent inhibitor of isocitrate dehydrogenase. Analysis of the reaction by h.p.l.c. showed that this correlated with the formation of oxalomalate. This compound decomposed spontaneously in assay mixtures, giving 4-hydroxy-2-oxoglutarate, which was a much less potent inhibitor of the enzyme. Oxalomalate inhibited isocitrate dehydrogenase competitively with respect to isocitrate and was a very poor substrate for the enzyme. The data suggest that the inhibition of isocitrate dehydrogenase by glyoxylate and oxaloacetate is not physiologically significant. PMID:3521584

  3. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  4. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity.

    PubMed

    Xu, Xiang; Zhao, Jingyue; Xu, Zhen; Peng, Baozhen; Huang, Qiuhua; Arnold, Eddy; Ding, Jianping

    2004-08-06

    Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate, and regulation of the enzymatic activity of IDHs is crucial for their biological functions. Bacterial IDHs are reversibly regulated by phosphorylation of a strictly conserved serine residue at the active site. Eukaryotic NADP-dependent IDHs (NADP-IDHs) have been shown to have diverse important biological functions; however, their regulatory mechanism remains unclear. Structural studies of human cytosolic NADP-IDH (HcIDH) in complex with NADP and in complex with NADP, isocitrate, and Ca2+ reveal three biologically relevant conformational states of the enzyme that differ substantially in the structure of the active site and in the overall structure. A structural segment at the active site that forms a conserved alpha-helix in all known NADP-IDH structures assumes a loop conformation in the open, inactive form of HcIDH; a partially unraveled alpha-helix in the semi-open, intermediate form; and an alpha-helix in the closed, active form. The side chain of Asp279 of this segment occupies the isocitrate-binding site and forms hydrogen bonds with Ser94 (the equivalent of the phosphorylation site in bacterial IDHs) in the inactive form and chelates the metal ion in the active form. The structural data led us to propose a novel self-regulatory mechanism for HcIDH that mimics the phosphorylation mechanism used by the bacterial homologs, consistent with biochemical and biological data. This mechanism might be applicable to other eukaryotic NADP-IDHs. The results also provide insights into the recognition and specificity of substrate and cofactor by eukaryotic NADP-IDHs.

  5. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    PubMed Central

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  6. Biochemical and molecular characterization of the isocitrate dehydrogenase with dual coenzyme specificity from the obligate methylotroph Methylobacillus Flagellatus.

    PubMed

    Romkina, Anastasia Y; Kiriukhin, Michael Y

    2017-01-01

    The isocitrate dehydrogenase (MfIDH) with unique double coenzyme specificity from Methylobacillus flagellatus was purified and characterized, and its gene was cloned and overexpressed in E. coli as a fused protein. This enzyme is homodimeric,-with a subunit molecular mass of 45 kDa and a specific activity of 182 U mg -1 with NAD+ and 63 U mg -1 with NADP+. The MfIDH activity was dependent on divalent cations and Mn2+ enhanced the activity the most effectively. MfIDH exhibited a cofactor-dependent pH-activity profile. The optimum pH values were 8.5 (NAD+) and 6.0 (NADP+).The Km values for NAD+ and NADP+ were 113 μM and 184 μM respectively, while the Km values for DL-isocitrate were 9.0 μM (NAD+), 8.0 μM (NADP+). The MfIDH specificity (kcat/Km) was only 5-times higher for NAD+ than for NADP+. The purified MfIDH displayed maximal activity at 60°C. Heat-inactivation studies showed that the MfIDH was remarkably thermostable, retaining full activity at 50°C and losting ca. 50% of its activity after one hour of incubation at 75°C. The enzyme was insensitive to the presence of intermediate metabolites, with the exception of 2 mM ATP, which caused 50% inhibition of NADP+-linked activity. The indispensability of the N6 amino group of NAD(P)+ in its binding to MfIDH was demonstrated. MfIDH showed high sequence similarity with bacterial NAD(P)+-dependent type I isocitrate dehydrogenases (IDHs) rather than with eukaryotic NAD+-dependent IDHs. The unique double coenzyme specificity of MfIDH potentially resulted from the Lys340, Ile341 and Ala347 residues in the coenzyme-binding site of the enzyme. The discovery of a type I IDH with double coenzyme specificity elucidates the evolution of this subfamily IDHs and may provide fundamental information for engineering enzymes with desired properties.

  7. Crystal structure studies of NADP{sup +} dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.M.; Pampa, K.J.; Manjula, M.

    2014-06-20

    Highlights: • We determined the structure of isocitrate dehydrogenase with citrate and cofactor. • The structure reveals a unique novel terminal domain involved in dimerization. • Clasp domain shows significant difference, and catalytic residues are conserved. • Oligomerization of the enzyme is quantized with subunit-subunit interactions. • Novel domain of this enzyme is classified as subfamily of the type IV. - Abstract: NADP{sup +} dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP{supmore » +} was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.« less

  8. Isocitrate protects DJ-1 null dopaminergic cells from oxidative stress through NADP+-dependent isocitrate dehydrogenase (IDH)

    PubMed Central

    Kim, Eun Young; Kim, Hyunjin; Lee, Yoonjeong; Min, Boram; Son, Jin H.; Park, Hwan Tae; Chung, Jongkyeong

    2017-01-01

    DJ-1 is one of the causative genes for early onset familiar Parkinson’s disease (PD) and is also considered to influence the pathogenesis of sporadic PD. DJ-1 has various physiological functions which converge on controlling intracellular reactive oxygen species (ROS) levels. In RNA-sequencing analyses searching for novel anti-oxidant genes downstream of DJ-1, a gene encoding NADP+-dependent isocitrate dehydrogenase (IDH), which converts isocitrate into α-ketoglutarate, was detected. Loss of IDH induced hyper-sensitivity to oxidative stress accompanying age-dependent mitochondrial defects and dopaminergic (DA) neuron degeneration in Drosophila, indicating its critical roles in maintaining mitochondrial integrity and DA neuron survival. Further genetic analysis suggested that DJ-1 controls IDH gene expression through nuclear factor-E2-related factor2 (Nrf2). Using Drosophila and mammalian DA models, we found that IDH suppresses intracellular and mitochondrial ROS level and subsequent DA neuron loss downstream of DJ-1. Consistently, trimethyl isocitrate (TIC), a cell permeable isocitrate, protected mammalian DJ-1 null DA cells from oxidative stress in an IDH-dependent manner. These results suggest that isocitrate and its derivatives are novel treatments for PD associated with DJ-1 dysfunction. PMID:28827794

  9. Ionization of isocitrate bound to pig hear NADP/sup +/-dependent isocitrate dehydrogenase: /sup 13/C NMR study of substrate binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehrlich, R.S.; Colman, R.F.

    1987-06-16

    Isocitrate and ..cap alpha..-ketoglutarate have been synthesized with carbon-13 enrichment at specific positions. The /sup 13/C NMR spectra of these derivatives were measured as a function of pH. The magnitudes of the changes in chemical shifts with pH for free isocitrate and the magnesium-isocitrate complex suggest that the primary site of ionization at the ..beta..-carboxyl. In the presence of the enzyme NADP/sup +/-dependent isocitrate dehydrogenase and the activating metal magnesium, the carbon-13 resonances of all three carboxyls remain constant from pH 5.5 to pH 7.5. Thus, the carboxyls remain in the ionized form in the enzyme-isocitrate complex. The ..cap alpha..-hydroxylmore » carbon resonance could not be located in the enzyme-isocitrate complex, suggesting immobilization of this group. Magnesium produces a 2 ppm downfield shift of the ..beta..-carboxyl but does not change the resonances of the ..cap alpha..- and ..gamma..-carboxyls. This result is consistent with metal activation of both the dehydrogenation and decarboxylation reactions. The /sup 13/C NMR spectrum of ..cap alpha..-ketoglutarate remains unchanged in the presence of isocitrate dehydrogenase, implying the absence of alterations in geometry in the enzyme-bound form. Formation of the quaternary complex with Mg/sup 2 +/ and NADPH leads to loss of the ..cap alpha..-ketoglutarate resonances and the appearance of new resonances characteristic of ..cap alpha..-hydroxyglutarate. In addition, a broad peak ascribed to the enol form of ..cap alpha..-ketoglutarate is observed. The substantial change in the shift of the ..beta..-carboxyl of isocitrate and the lack of significant shifts in the other carboxyls of isocitrate or ..cap alpha..-ketoglutarate suggest that interaction of the ..beta..-carboxyl with the enzyme contributes to the tighter binding of isocitrate and may be significant for the oxidative decarboxylation function of isocitrate dehydrogenase.« less

  10. Structural studies of Saccharomyces cerevesiae mitochondrial NADP-dependent isocitrate dehydrogenase in different enzymatic states reveal substantial conformational changes during the catalytic reaction.

    PubMed

    Peng, Yingjie; Zhong, Chen; Huang, Wei; Ding, Jianping

    2008-09-01

    Isocitrate dehydrogenases (IDHs) catalyze oxidative decarboxylation of isocitrate (ICT) into alpha-ketoglutarate (AKG). We report here the crystal structures of Saccharomyces cerevesiae mitochondrial NADP-IDH Idp1p in binary complexes with coenzyme NADP, or substrate ICT, or product AKG, and in a quaternary complex with NADPH, AKG, and Ca(2+), which represent different enzymatic states during the catalytic reaction. Analyses of these structures identify key residues involved in the binding of these ligands. Comparisons among these structures and with the previously reported structures of other NADP-IDHs reveal that eukaryotic NADP-IDHs undergo substantial conformational changes during the catalytic reaction. Binding or release of the ligands can cause significant conformational changes of the structural elements composing the active site, leading to rotation of the large domain relative to the small and clasp domains along two hinge regions (residues 118-124 and residues 284-287) while maintaining the integrity of its secondary structural elements, and thus, formation of at least three distinct overall conformations. Specifically, the enzyme adopts an open conformation when bound to NADP, a quasi-closed conformation when bound to ICT or AKG, and a fully closed conformation when bound to NADP, ICT, and Ca(2+) in the pseudo-Michaelis complex or with NADPH, AKG, and Ca(2+) in the product state. The conformational changes of eukaryotic NADP-IDHs are quite different from those of Escherichia coli NADP-IDH, for which significant conformational changes are observed only between two forms of the apo enzyme, suggesting that the catalytic mechanism of eukaryotic NADP-IDHs is more complex than that of EcIDH, and involves more fine-tuned conformational changes.

  11. Structural studies of Saccharomyces cerevesiae mitochondrial NADP-dependent isocitrate dehydrogenase in different enzymatic states reveal substantial conformational changes during the catalytic reaction

    PubMed Central

    Peng, Yingjie; Zhong, Chen; Huang, Wei; Ding, Jianping

    2008-01-01

    Isocitrate dehydrogenases (IDHs) catalyze oxidative decarboxylation of isocitrate (ICT) into α-ketoglutarate (AKG). We report here the crystal structures of Saccharomyces cerevesiae mitochondrial NADP-IDH Idp1p in binary complexes with coenzyme NADP, or substrate ICT, or product AKG, and in a quaternary complex with NADPH, AKG, and Ca2+, which represent different enzymatic states during the catalytic reaction. Analyses of these structures identify key residues involved in the binding of these ligands. Comparisons among these structures and with the previously reported structures of other NADP-IDHs reveal that eukaryotic NADP-IDHs undergo substantial conformational changes during the catalytic reaction. Binding or release of the ligands can cause significant conformational changes of the structural elements composing the active site, leading to rotation of the large domain relative to the small and clasp domains along two hinge regions (residues 118–124 and residues 284–287) while maintaining the integrity of its secondary structural elements, and thus, formation of at least three distinct overall conformations. Specifically, the enzyme adopts an open conformation when bound to NADP, a quasi-closed conformation when bound to ICT or AKG, and a fully closed conformation when bound to NADP, ICT, and Ca2+ in the pseudo-Michaelis complex or with NADPH, AKG, and Ca2+ in the product state. The conformational changes of eukaryotic NADP-IDHs are quite different from those of Escherichia coli NADP-IDH, for which significant conformational changes are observed only between two forms of the apo enzyme, suggesting that the catalytic mechanism of eukaryotic NADP-IDHs is more complex than that of EcIDH, and involves more fine-tuned conformational changes. PMID:18552125

  12. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase.

    PubMed

    Jo, Seung-Hee; Lee, So-Hyun; Chun, Hang Suk; Lee, Su Min; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-03-29

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP(+)-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury. (c)2002 Elsevier Science (USA).

  13. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    PubMed

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  14. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells.

    PubMed

    Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo

    2010-07-01

    It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.

  15. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells.

    PubMed

    Lee, Su Jeong; Park, Jeen-Woo

    2014-04-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells.

  16. Knockdown of cytosolic NADP(+) -dependent isocitrate dehydrogenase enhances MPP(+) -induced oxidative injury in PC12 cells.

    PubMed

    Yang, Eun Sun; Park, Jeen-Woo

    2011-05-01

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridium ion (MPP(+)) have been shown to induce Parkinson's disease-like symptoms as well as neurotoxicity in humans and animal species. Recently, we reported that maintenance of redox balance and cellular defense against oxidative damage are primary functions of the novel antioxidant enzyme cytosolic NADP(+) -dependent isocitrate dehydrogenase (IDPc). In this study, we examined the role of IDPc in cellular defense against MPP(+) -induced oxidative injury using PC12 cells transfected with IDPc small interfering RNA (siRNA). Our results demonstrate that MPP(+) -mediated disruption of cellular redox status, oxidative damage to cells, and apoptotic cell death were significantly enhanced by knockdown of IDPc.

  17. Cancer-associated Isocitrate Dehydrogenase Mutations Inactivate NADPH-dependent Reductive Carboxylation*

    PubMed Central

    Leonardi, Roberta; Subramanian, Chitra; Jackowski, Suzanne; Rock, Charles O.

    2012-01-01

    Isocitrate dehydrogenase (IDH) is a reversible enzyme that catalyzes the NADP+-dependent oxidative decarboxylation of isocitrate (ICT) to α-ketoglutarate (αKG) and the NADPH/CO2-dependent reductive carboxylation of αKG to ICT. Reductive carboxylation by IDH1 was potently inhibited by NADP+ and, to a lesser extent, by ICT. IDH1 and IDH2 with cancer-associated mutations at the active site arginines were unable to carry out the reductive carboxylation of αKG. These mutants were also defective in ICT decarboxylation and converted αKG to 2-hydroxyglutarate using NADPH. These mutant proteins were thus defective in both of the normal reactions of IDH. Biochemical analysis of heterodimers between wild-type and mutant IDH1 subunits showed that the mutant subunit did not inactivate reductive carboxylation by the wild-type subunit. Cells expressing the mutant IDH are thus deficient in their capacity for reductive carboxylation and may be compromised in their ability to produce acetyl-CoA under hypoxia or when mitochondrial function is otherwise impaired. PMID:22442146

  18. NADP-dependent enzymes are involved in response to salt and hypoosmotic stress in cucumber plants.

    PubMed

    Hýsková, Veronika; Plisková, Veronika; Červený, Václav; Ryšlavá, Helena

    2017-07-01

    Salt stress is one of the most damaging plant stressors, whereas hypoosmotic stress is not considered to be a dangerous type of stress in plants and has been less extensively studied. This study was performed to compare the metabolism of cucumber plants grown in soil with plants transferred to distilled water and to a 100 mM NaCl solution. Even though hypoosmotic stress caused by distilled water did not cause such significant changes in the relative water content, Na+/K+ ratio and Rubisco content as those caused by salt stress, it was accompanied by more pronounced changes in the specific activities of NADP-dependent enzymes. After 3 days, the specific activities of NADP-isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase, NADP-malic enzyme and non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in leaves were highest under hypoosmotic stress, and lowest in plants grown in soil. In roots, salt stress caused a decrease in the specific activities of major NADP-enzymes. However, at the beginning of salt stress, NADP-galactose-1-dehydrogenase and ribose-1-dehydrogenase were involved in a plant defense response in both roots and leaves. Therefore, the enhanced demands of NADPH in stress can be replenished by a wide range of NADP-dependent enzymes.

  19. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells

    PubMed Central

    Lee, Su Jeong; Park, Jeen-Woo

    2014-01-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells. [BMB Reports 2014; 47(4): 209-214] PMID:24286310

  20. Modulation of NADP(+)-dependent isocitrate dehydrogenase in aging.

    PubMed

    Kil, In Sup; Lee, Young Sup; Bae, Young Seuk; Huh, Tae Lin; Park, Jeen-Woo

    2004-01-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46-48 population doubling level (PDL) and then gradually decreased at later PDL. 2',7'-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.

  1. Cytosolic NADP(+)-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species.

    PubMed

    Maeng, Oky; Kim, Yong Chan; Shin, Han-Jae; Lee, Jie-Oh; Huh, Tae-Lin; Kang, Kwang-il; Kim, Young Sang; Paik, Sang-Gi; Lee, Hayyoung

    2004-04-30

    Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.

  2. Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity.

    PubMed

    Shin, Seoung Woo; Oh, Chang Joo; Kil, In Sup; Park, Jeen-Woo

    2009-04-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.

  3. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.

    PubMed

    Kim, Sun Yee; Lee, Su Min; Tak, Jean Kyoung; Choi, Kyeong Sook; Kwon, Taeg Kyu; Park, Jeen-Woo

    2007-08-01

    Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. Recently, we demonstrated that the control of redox balance and the cellular defense against oxidative damage are the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) through supplying NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPc activity in HL-60 cells regulates singlet oxygen-induced apoptosis. When we examined the protective role of IDPc against singlet oxygen-induced apoptosis with HL-60 cells transfected with the cDNA for mouse IDPc in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPc plays an important protective role in apoptosis of HL-60 cells induced by singlet oxygen.

  4. Oxalomalate, a competitive inhibitor of NADP+ -dependent isocitrate dehydrogenase, regulates lipid peroxidation-mediated apoptosis in U937 cells.

    PubMed

    Yang, Eun Sun; Yang, Joon-Hyuck; Park, Ji Eun; Park, Jeen-Woo

    2005-01-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+ -dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.

  5. Nutritional Status, DNA Damage, and Tumor Pathology

    DTIC Science & Technology

    2006-08-01

    tetrazolium bromide (MTT), 4.8 mM EDTA, 1 mg/ml bovine serum albumin (BSA), 50 µg/ml (U) alcohol dehydrogenase (yeast; 507 U/mg prot), and 1.9 mM phenazine ...NADP-specific isocitrate dehydrogenase (porcine heart; 26-29 U/mg prot), and 1.9 mM phenazine ethosulfate. After incubation of assays for NAD or

  6. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism.

    PubMed

    Koh, Ho-Jin; Lee, Su-Min; Son, Byung-Gap; Lee, Soh-Hyun; Ryoo, Zae Young; Chang, Kyu-Tae; Park, Jeen-Woo; Park, Dong-Chan; Song, Byoung J; Veech, Richard L; Song, Hebok; Huh, Tae-Lin

    2004-09-17

    NADPH is an essential cofactor for many enzymatic reactions including glutathione metabolism and fat and cholesterol biosynthesis. We have reported recently an important role for mitochondrial NADP(+)-dependent isocitrate dehydrogenase in cellular defense against oxidative damage by providing NADPH needed for the regeneration of reduced glutathione. However, the role of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is still unclear. We report here for the first time that IDPc plays a critical role in fat and cholesterol biosynthesis. During differentiation of 3T3-L1 adipocytes, both IDPc enzyme activity and its protein content were increased in parallel in a time-dependent manner. Increased expression of IDPc by stable transfection of IDPc cDNA positively correlated with adipogenesis of 3T3-L1 cells, whereas decreased IDPc expression by an antisense IDPc vector retarded adipogenesis. Furthermore, transgenic mice with overexpressed IDPc exhibited fatty liver, hyperlipidemia, and obesity. In the epididymal fat pads of the transgenic mice, the expressions of adipocyte-specific genes including peroxisome proliferator-activated receptor gamma were markedly elevated. The hepatic and epididymal fat pad contents of acetyl-CoA and malonyl-CoA in the transgenic mice were significantly lower, whereas the total triglyceride and cholesterol contents were markedly higher in the liver and serum of transgenic mice compared with those measured in wild type mice, suggesting that the consumption rate of those lipogenic precursors needed for fat biosynthesis must be increased by elevated IDPc activity. Taken together, our findings strongly indicate that IDPc would be a major NADPH producer required for fat and cholesterol synthesis.

  7. Inhibition of Krebs cycle and activation of glyoxylate cycle in the course of chronological aging of Saccharomyces cerevisiae. Compensatory role of succinate oxidation.

    PubMed

    Samokhvalov, V; Ignatov, V; Kondrashova, M

    2004-01-01

    We investigated oxidative processes in mitochondria of Saccharomyces cerevisiae grown on ethanol in the course of chronological aging. We elaborated a model of chronological aging that avoids the influence of exhaustion of medium, as well as the accumulation of toxic metabolites during aging. A decrease in total respiration of cells and, even more, of the contribution of respiration coupled with ATP-synthesis was observed during aging. Aging is also related with the decrease of the contribution of malonate-insensitive respiration. Activities of citrate-synthase (CS), alpha-ketoglutarate dehydrogenase (KGDH) and malate dehydrogenase (MDH) were threefold decreased. The activity of NADP-dependent isocitrate dehydrogenase (NADP-ICDH) decreased more significantly, while the activity of NAD-dependent isocitrate dehydrogenase (NAD-ICDH) fell even greater, being completely inactivated on the third week of aging. In contrast, succinate dehydrogenase (SDH), enzymes of glyoxylate cycle (GCL) (isocitrate lyase (ICL) and malate synthase (MLS)), and enzymes of ethanol oxidation (alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ACDH)), were activated by 50% or more. The behavior of oxidative enzymes and metabolic pathways are apparently inherent to a more viable, long-lived cells in population, selected in the course of chronological aging. This selection allows cells to reveal the mechanism of their higher viability as caused by shunting of complete Krebs cycle by glyoxylate cycle, with a concomitant increased rate of the most efficient energy source, namely succinate formation and oxidation. Thiobarbituric-reactive species (TAR species) increased during aging. We supposed that to be the immediate cause of damage of a part of yeast population. These data show that a greater succinate contribution to respiration in more active cells is a general property of yeast and animal tissues.

  8. The Tricarboxylic Acid Cycle, an Ancient Metabolic Network with a Novel Twist

    PubMed Central

    Mailloux, Ryan J.; Bériault, Robin; Lemire, Joseph; Singh, Ranji; Chénier, Daniel R.; Hamel, Robert D.; Appanna, Vasu D.

    2007-01-01

    The tricarboxylic acid (TCA) cycle is an essential metabolic network in all oxidative organisms and provides precursors for anabolic processes and reducing factors (NADH and FADH2) that drive the generation of energy. Here, we show that this metabolic network is also an integral part of the oxidative defence machinery in living organisms and α-ketoglutarate (KG) is a key participant in the detoxification of reactive oxygen species (ROS). Its utilization as an anti-oxidant can effectively diminish ROS and curtail the formation of NADH, a situation that further impedes the release of ROS via oxidative phosphorylation. Thus, the increased production of KG mediated by NADP-dependent isocitrate dehydrogenase (NADP-ICDH) and its decreased utilization via the TCA cycle confer a unique strategy to modulate the cellular redox environment. Activities of α-ketoglutarate dehydrogenase (KGDH), NAD-dependent isocitrate dehydrogenase (NAD-ICDH), and succinate dehydrogenase (SDH) were sharply diminished in the cellular systems exposed to conditions conducive to oxidative stress. These findings uncover an intricate link between TCA cycle and ROS homeostasis and may help explain the ineffective TCA cycle that characterizes various pathological conditions and ageing. PMID:17668068

  9. Silencing of cytosolic NADP(+)-dependent isocitrate dehydrogenase by small interfering RNA enhances the sensitivity of HeLa cells toward staurosporine.

    PubMed

    Lee, Su-Min; Park, Sin Young; Shin, Seoung Woo; Kil, In Sup; Yang, Eun Sun; Park, Jeen-Woo

    2009-02-01

    Staurosporine induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Recently, it was demonstrated that the control of cellular redox balance and the defense against oxidative damage is one of the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) by supplying NADPH for antioxidant systems. The present report shows that silencing of IDPc expression in HeLa cells greatly enhances apoptosis induced by staurosporine. Transfection of HeLa cells with an IDPc small interfering RNA (siRNA) markedly decreased activity of IDPc, enhancing the susceptibility of staurosporine-induced apoptosis reflected by DNA fragmentation, cellular redox status and the modulation of apoptotic marker proteins. These results indicate that IDPc may play an important role in regulating the apoptosis induced by staurosporine and the sensitizing effect of IDPc siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer chemotherapy.

  10. Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.

    PubMed

    Shin, Seoung Woo; Kil, In Sup; Park, Jeen-Woo

    2010-04-01

    Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Decrease in the cytosolic NADP+-dependent isocitrate dehydrogenase activity through porcine sperm capacitation.

    PubMed

    Katoh, Yuki; Tamba, Michiko; Matsuda, Manabu; Kikuchi, Kazuhiro; Okamura, Naomichi

    2018-02-26

    In order to understand the molecular mechanisms involved in the sperm capacitation, we have identified the proteins tyrosine-phosphorylated during the capacitation especially in conjunction with the regulation of the levels of reactive oxygen species (ROS) in sperm. In the present study, the effects of the tyrosine phosphorylation of cytosolic NADP + -dependent isocitrate dehydrogenase (IDPc) on its catalytic activity and on the levels of ROS in sperm have been studied. The tyrosine phosphorylated IDPc showed a significantly lowered enzymatic activity. The immunocytochemical analyses using the highly specific antisera against IDPc revealed that IDPc was mainly localized to the principal piece of the porcine sperm flagellum. As IDPc is one of the major NADPH regenerating enzymes in porcine sperm, it is strongly suggested that the decrease in IDPc activity is involved in the increased levels of ROS, which results in the induction of hyperactivated flagellar movement and capacitation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes.

    PubMed Central

    Buchanan, R L; Lewis, D F

    1984-01-01

    Catabolism of carbohydrates has been implicated in the regulation of aflatoxin synthesis. To characterize this effect further, the activities of various enzymes associated with glucose catabolism were determined in Aspergillus parasiticus organisms that were initially cultured in peptone-mineral salts medium and then transferred to glucose-mineral salts and peptone-mineral salts media. After an initial increase in activity, the levels of glucose 6-phosphate dehydrogenase, mannitol dehydrogenase, and malate dehydrogenase were lowered in the presence of glucose. Phosphofructokinase activity was greater in the peptone-grown mycelium, but fructose diphosphatase was largely unaffected by carbon source. Likewise, carbon source had relatively little effect on the activities of pyruvate kinase, malic enzyme, isocitrate-NADP dehydrogenase, and isocitrate-NAD dehydrogenase. The results suggest that glucose may, in part, regulate aflatoxin synthesis via a carbon catabolite repression of NADPH-generating and tricarboxylic acid cycle enzymes. PMID:6091545

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grissom, C.B.; Cleland, W.W.

    The catalytic mechanism of porcine heart NADP isocitrate dehydrogenase has been investigated by use of the variation of deuterium and /sup 13/C kinetic isotope effects with pH. The observed /sup 13/C isotope effect on VK for isocitrate increases from 1.0038 at neutral pH to a limiting value of 1.040 at low pH. The limiting /sup 13/C isotope effect with deuteriated isocitrate at low pH is 1.016. This decrease in /sup 13/(VK/sub Ic/) upon deuteriation indicates a stepwise mechanism for the oxidation and decarboxylation of isocitrate. This predicts a deuterium isotope effect on VK of 2.9, but /sup D/(VK) at lowmore » pH only increases to a maximum of 1.08. The pK seen in the /sup 13/(VK/sub Ic/) pH profile for isocitrate if 4.5. This pK is displaced 1.2 pH units from the true pK of the acidbase functionality of 5.7 seen in the pK/sub i/ profile for oxalylglycine. From this displacement, catalysis is estimated to be 16 times faster than substrate dissociation. By use of the pH-dependent partitioning ratio of the reaction intermediate oxalosuccinate between decarboxylation to 2-ketoglutarate and reduction to isocitrate, the forward commitment to catalysis for decarboxylation was determined to be 7.3 at pH 5.4 and 3.2 at pH 5.0. This gives in intrinsic /sup 13/C isotope effect for decarboxylation of 1.050. The product of oxidative decarboxylation of 3-hydroxyisocitrate by NADP isocitrate dehydrogenase is 2-hydroxy-3-ketoglutarate. This results from enzymatic protonation of the cis-enediol intermediate at C/sub 2/ rather than C/sub 3/ (as seen with isocitrate and 3-fluoroisocitrate). 2-Hydroxy-3-ketoglutarate further decarboxylates in solution to 2-hydroxy-3-ketobutyrate, which further decarboxylates to acetol. This makes 3-hydroxyisocitrate unsuitable for /sup 13/C isotope effect studies.« less

  14. Differential response of NADP-dehydrogenases and carbon metabolism in leaves and roots of two durum wheat (Triticum durum Desf.) cultivars (Karim and Azizi) with different sensitivities to salt stress.

    PubMed

    Bouthour, Donia; Kalai, Tawba; Chaffei, Haouari C; Gouia, Houda; Corpas, Francisco J

    2015-05-01

    Wheat (Triticum durum Desf.) is a common Mediterranean species of considerable agronomic importance. Salinity is one of the major threats to sustainable agricultural production mainly because it limits plant productivity. After exposing the Karim and Azizi durum wheat cultivars, which are of agronomic significance in Tunisia, to 100mM NaCl salinity, growth parameters (dry weight and length), proline content and chlorophylls were evaluated in their leaves and roots. In addition, we analyzed glutathione content and key enzymatic activities, including phosphoenolpyruvate carboxylase (PEPC), NADP-isocitrate dehydrogenase (NADP-ICDH), NADP-malic enzyme (NADP-ME), glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), involved in the carbon metabolism and NADPH-generating system. The sensitivity index indicates that cv Karim was more tolerant to salinity than cv Azizi. This higher tolerance was corroborated at the biochemical level, as cv Karim showed a greater capacity to accumulate proline, especially in leaves, while the enzyme activities studied were differentially regulated in both organs, with NADP-ICDH being the only activity to be unaffected in all organs. In summary, the data indicate that higher levels of proline accumulation and the differential responses of some key enzymes involved in the carbon metabolism and NADPH regeneration contribute to the salinity tolerance mechanism and lead to increased biomass accumulation in cv Karim. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. G6pd Deficiency Does Not Affect the Cytosolic Glutathione or Thioredoxin Antioxidant Defense in Mouse Cochlea.

    PubMed

    White, Karessa; Kim, Mi-Jung; Ding, Dalian; Han, Chul; Park, Hyo-Jin; Meneses, Zaimary; Tanokura, Masaru; Linser, Paul; Salvi, Richard; Someya, Shinichi

    2017-06-07

    Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP + to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. We investigated the roles of G6PD in the cytosolic antioxidant defense in the cochlea of G6pd hypomorphic mice that were backcrossed onto normal-hearing CBA/CaJ mice. Young G6pd -deficient mice displayed a significant decrease in cytosolic G6PD protein levels and activities in the inner ears. However, G6pd deficiency did not affect the cytosolic NADPH redox state, or glutathione or thioredoxin antioxidant defense in the inner ears. No histological abnormalities or oxidative damage was observed in the cochlea of G6pd hemizygous males or homozygous females. Furthermore, G6pd deficiency did not affect auditory brainstem response hearing thresholds, wave I amplitudes or wave I latencies in young males or females. In contrast, G6pd deficiency resulted in increased activities and protein levels of cytosolic isocitrate dehydrogenase 1, an enzyme that catalyzes the conversion of isocitrate to α-ketoglutarate and NADP + to NADPH, in the inner ear. In a mouse inner ear cell line, knockdown of Idh1 , but not G6pd , decreased cell growth rates, cytosolic NADPH levels, and thioredoxin reductase activities. Therefore, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in mouse cochlea. Under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea. SIGNIFICANCE STATEMENT Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP + to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. In the current study, we show that, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in the mouse cochlea. However, under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea. Copyright © 2017 the authors 0270-6474/17/375770-12$15.00/0.

  16. Upregulation of cytosolic NADP+-dependent isocitrate dehydrogenase by hyperglycemia protects renal cells against oxidative stress.

    PubMed

    Lee, Soh-Hyun; Ha, Sun-Ok; Koh, Ho-Jin; Kim, KilSoo; Jeon, Seon-Min; Choi, Myung-Sook; Kwon, Oh-Shin; Huh, Tae-Lin

    2010-02-28

    Hyperglycemia-induced oxidative stress is widely recognized as a key mediator in the pathogenesis of diabetic nephropathy, a complication of diabetes. We found that both expression and enzymatic activity of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) were upregulated in the renal cortexes of diabetic rats and mice. Similarly, IDPc was induced in murine renal proximal tubular OK cells by high hyperglycemia, while it was abrogated by co-treatment with the antioxidant N-Acetyl-Cysteine (NAC). In OK cells, increased expression of IDPc by stable transfection prevented hyperglycemia-mediated reactive oxygen species (ROS) production, subsequent cellular oxidative stress and extracellular matrix accumulation, whereas these processes were all stimulated by decreased IDPc expression. In addition, production of NADPH and GSH in the cytosol was positively correlated with the expression level of IDPc in OK cells. These results together indicate that upregulation of IDPc in response to hyperglycemia might play an essential role in preventing the progression of diabetic nephropathy, which is accompanied by ROS-induced cellular damage and fibrosis, by providing NADPH, the reducing equivalent needed for recycling reduced glutathione and low molecular weight antioxidant thiol proteins.

  17. Oxalomalate, a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase, enhances lipid peroxidation-mediated oxidative damage in U937 cells.

    PubMed

    Yang, Joon-Hyuck; Park, Jeen-Woo

    2003-08-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.

  18. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney.

    PubMed

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V; Park, Kwon Moo

    2009-03-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK(1) cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R.

  19. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney

    PubMed Central

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V.; Park, Kwon Moo

    2009-01-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK1 cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R. PMID:19106211

  20. Induced Fit and the Catalytic Mechanism of Isocitrate Dehydrogenase†

    PubMed Central

    Gonçalves, Susana; Miller, Stephen P.; Carrondo, Maria A.; Dean, Anthony M.; Matias, Pedro M.

    2012-01-01

    NADP+ dependent isocitrate dehydrogenase (IDH; EC 1.1.1.42) belongs to a large family of α-hydroxyacid oxidative β-decarboxylases that catalyze similar three-step reactions, with dehydrogenation to an oxaloacid intermediate preceding β-decarboxylation to an enol intermediate followed by tautomerization to the final α-ketone product. A comprehensive view of the induced fit needed for catalysis is revealed on comparing the first “fully closed” crystal structures of a pseudo-Michaelis complex of wild-type Escherichia coli IDH (EcoIDH) and the “fully closed” reaction product complex of the K100M mutant with previously obtained “quasi-closed” and “open” conformations. Conserved catalytic residues, binding the nicotinamide ring of NADP+ and the metal-bound substrate, move as rigid bodies during domain closure by a hinge motion that spans the central β-sheet in each monomer. Interactions established between Thr105 and Ser113, which flank the “phosphorylation loop”, and the nicotinamide mononucleotide moiety of NADP+ establish productive coenzyme binding. Electrostatic interactions of a Lys100-Leu103-Asn115-Glu336 tetrad play a pivotal role in assembling a catalytically competent active site. As predicted, Lys230* is positioned to deprotonate/reprotonate the α-hydroxyl in both reaction steps and Tyr160 moves into position to protonate C3 following β-decarboxylation. A proton relay from the catalytic triad Tyr160-Asp307-Lys230* connects the α-hydroxyl of isocitrate to the bulk solvent to complete the picture of the catalytic mechanism. PMID:22891681

  1. RNA interference targeting cytosolic NADP(+)-dependent isocitrate dehydrogenase exerts anti-obesity effect in vitro and in vivo.

    PubMed

    Nam, Woo Suk; Park, Kwon Moo; Park, Jeen-Woo

    2012-08-01

    A metabolic abnormality in lipid biosynthesis is frequently associated with obesity and hyperlipidemia. Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) is an essential reducing equivalent for numerous enzymes required in fat and cholesterol biosynthesis. Cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) has been proposed as a key enzyme for supplying cytosolic NADPH. We report here that knockdown of IDPc expression by Ribonucleic acid (RNA) interference (RNAi) inhibited adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes and mice. Attenuated IDPc expression by IDPc small interfering RNA (siRNA) resulted in a reduction of differentiation and triglyceride level and adipogenic protein expression as well as suppression of glucose uptake in cultured adipocytes. In addition, the attenuation of Nox activity and Reactive oxygen species (ROS) generation accompanied with knockdown of IDPc was associated with inhibition of adipogenesis and lipogenesis. The loss of body weight and the reduction of triglyceride level were also observed in diet-induced obese mice transduced with IDPc short-hairpin (shRNA). Taken together, the inhibiting effect of RNAi targeting IDPc on adipogenesis and lipid biosynthesis is considered to be of therapeutic value in the treatment and prevention of obesity and obesity-associated metabolic syndrome. © 2012 Elsevier B.V. All rights reserved.

  2. Arsenic-induced stress activates sulfur metabolism in different organs of garlic (Allium sativum L.) plants accompanied by a general decline of the NADPH-generating systems in roots.

    PubMed

    Ruíz-Torres, Carmelo; Feriche-Linares, Rafael; Rodríguez-Ruíz, Marta; Palma, José M; Corpas, Francisco J

    2017-04-01

    Arsenic (As) contamination is a major environmental problem which affects most living organisms from plants to animals. This metalloid poses a health risk for humans through its accumulation in crops and water. Using garlic (Allium sativum L.) plants as model crop exposed to 200μM arsenate, a comparative study among their main organs (roots and shoots) was made. The analysis of arsenic, glutathione (GSH), phytochelatins (PCs) and lipid peroxidation contents with the activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate-glutathione cycle), and the main components of the NADPH-generating system, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH) was carried out. Data showed a correlation among arsenic accumulation in the different organs, PCs content and the antioxidative response, with a general decline of the NADPH-generating systems in roots. Overall, our results demonstrate that there are clear connections between arsenic uptake, increase of their As-chelating capacity in roots and a decline of antioxidative enzyme activities (catalase and the ascorbate peroxidase) whose alteration provoked As-induced oxidative stress. Thus, the data suggest that roots act as barrier of arsenic mediated by a prominent sulfur metabolism which is characterized by the biosynthesis of high amount of PCs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Regulation of replicative senescence by NADP+ -dependent isocitrate dehydrogenase.

    PubMed

    Kil, In Sup; Huh, Tae Lin; Lee, Young Sup; Lee, You Mie; Park, Jeen-Woo

    2006-01-01

    The free radical hypothesis of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species that are produced as by-products of normal metabolic processes. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic (IDPc) and mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. In this paper, we demonstrate that modulation of IDPc or IDPm activity in IMR-90 cells regulates cellular redox status and replicative senescence. When we examined the regulatory role of IDPc and IDPm against the aging process with IMR-90 cells transfected with cDNA for IDPc or IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc or IDPm expressed in target cells and their susceptibility to senescence, which was reflected by changes in replicative potential, cell cycle, senescence-associated beta-galactosidase activity, expression of p21 and p53, and morphology of cells. Furthermore, lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher and cellular redox status shifted to a prooxidant condition in the cell lines expressing the lower level of IDPc or IDPm. The results suggest that IDPc and IDPm play an important regulatory role in cellular defense against oxidative stress and in the senescence of IMR-90 cells.

  4. Overexpression of a cytosolic NADP+-isocitrate dehydrogenase causes alterations in the vascular development of hybrid poplars.

    PubMed

    Pascual, María Belén; Molina-Rueda, Juan Jesús; Cánovas, Francisco M; Gallardo, Fernando

    2018-06-15

    Cytosolic NADP+-isocitrate dehydrogenase (ICDH) is one of the major enzymes involved in the production of 2-oxoglutarate for amino acid biosynthesis in plants. In most plants studied, ICDH is encoded by either one gene or a small gene family, and the protein sequence has been highly conserved during evolution, suggesting it plays different and essential roles in metabolism and differentiation. To elucidate the role of ICDH in hybrid poplar (Populus tremula x P. alba), transgenic plants overexpressing the Pinus pinaster gene were generated. Overexpression of ICDH resulted in hybrid poplar (Populus tremula × P. alba) trees with higher expression levels of the endogenous ICDH gene and higher enzyme content than control untransformed plants. Transgenic poplars also showed an increased expression of glutamine synthetase (GS1.3), glutamate decarboxylase (GAD) and other genes associated with vascular differentiation. Furthermore, these plants exhibited increased growth in height, longer internodes and enhanced vascular development in young leaves and the apical region of stem. Modifications in amino acid and organic acid content were observed in young leaves of the transgenic lines, suggesting an increased biosynthesis of amino acids for building new structures and also for transport to other sink organs, as expanding leaves or young stems. Taken together, these results support an important role of ICDH in plant growth and vascular development.

  5. Silencing of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Youl; Yoo, Young Hyun; Park, Jeen-Woo, E-mail: parkjw@knu.ac.kr

    Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report anmore » autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer.« less

  6. Cloning of a cDNA encoding bovine mitochondrial NADP(+)-specific isocitrate dehydrogenase and structural comparison with its isoenzymes from different species.

    PubMed Central

    Huh, T L; Ryu, J H; Huh, J W; Sung, H C; Oh, I U; Song, B J; Veech, R L

    1993-01-01

    Mitochondrial NADP(+)-specific isocitrate dehydrogenase (IDP) was co-purified with the pyruvate dehydrogenase complex from bovine kidney mitochondria. The determination of its N-terminal 16-amino-acid sequence revealed that it is highly similar to the IDP from yeast. A cDNA clone (1.8 kb long) encoding this protein was isolated from a bovine kidney lambda gt11 cDNA library using a synthetic oligodeoxynucleotide. The deduced protein sequence of this cDNA clone rendered a precursor protein of 452 amino-acid residues (50,830 Da) and a mature protein of 413 amino-acid residues (46,519 Da). It is 100% identical to the internal tryptic peptide sequences of the autologous form from pig heart and 62% similar to that from yeast. However, it shares little similarity with the mitochondrial NAD(+)-specific isoenzyme from yeast. Structural analyses of the deduced proteins of IDP isoenzymes from different species indicated that similarity exists in certain regions, which may represent the common domains for the active sites or coenzyme-binding sites. In Northern-blot analysis, one species of mRNA (about 2.2 kb for both bovine and human) was hybridized with a 32P-labelled cDNA probe. Southern-blot analysis of genomic DNAs verified simple patterns of hybridization with this cDNA. These results strongly indicate that the mitochondrial IDP may be derived from a single gene family which does not appear to be closely related to that of the NAD(+)-specific isoenzyme. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8318002

  7. A tale of two subunits: how the neomorphic R132H IDH1 mutation enhances production of αHG.

    PubMed

    Pietrak, Beth; Zhao, Huizhen; Qi, Hongwei; Quinn, Chad; Gao, Enoch; Boyer, Joseph G; Concha, Nestor; Brown, Kristin; Duraiswami, Chaya; Wooster, Richard; Sweitzer, Sharon; Schwartz, Benjamin

    2011-05-31

    Heterozygously expressed single-point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2, respectively) render these dimeric enzymes capable of producing the novel metabolite α-hydroxyglutarate (αHG). Accumulation of αHG is used as a biomarker for a number of cancer types, helping to identify tumors with similar IDH mutations. With IDH1, it has been shown that one role of the mutation is to increase the rate of conversion from αKG to αHG. To improve our understanding of the function of this mutation, we have detailed the kinetics of the normal (isocitrate to αKG) and neomorphic (αKG to αHG) reactions, as well as the coupled conversion of isocitrate to αHG. We find that the mutant IDH1 is very efficient in this coupled reaction, with the ability to form αHG from isocitrate and NADP(+). The wild type/wild type IDH1 is also able to catalyze this conversion, though it is much more sensitive to concentrations of isocitrate. This difference in behavior can be attributed to the competitive binding between isocitrate and αKG, which is made more favorable for αKG by the neomorphic mutation at arginine 132. Thus, each partial reaction in the heterodimer is functionally isolated from the other. To test whether there is a cooperative effect resulting from the two subunits being in a dimer, we selectively inactivated each subunit with a secondary mutation in the NADP/H binding site. We observed that the remaining, active subunit was unaffected in its associated activity, reinforcing the notion of each subunit being functionally independent. This was further demonstrated using a monomeric form of IDH from Azotobacter vinelandii, which can be shown to gain the same neomorphic reaction when a homologous mutation is introduced into that protein.

  8. Purification and characterization of the amine dehydrogenase from a facultative methylotroph.

    PubMed

    Coleman, J P; Perry, J J

    1984-01-01

    Strain RA-6 is a pink-pigmented organism which can grow on a variety of substrates including methylamine. It can utilize methylamine as sole source of carbon via an isocitrate lyase negative serine pathway. Methylamine grown cells contain an inducible primary amine dehydrogenase [primary amine: (acceptor) oxidoreductase (deaminating)] which is not present in succinate grown cells. The amine dehydrogenase was purified to over 90% homogeneity. It is an acidic protein (isoelectric point of 5.37) with a molecular weight of 118,000 containing subunits with approximate molecular weights of 16,500 and 46,000. It is active on an array of primary terminal amines and is strongly inhibited by carbonyl reagents. Cytochrome c or artificial electron acceptors are required for activity; neither NAD nor NADP can serve as primary electron acceptor.

  9. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    PubMed

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  10. Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by gamma-rays.

    PubMed

    Lee, S H; Jo, S H; Lee, S M; Koh, H J; Song, H; Park, J W; Lee, W H; Huh, T L

    2004-09-01

    To investigate the regulation of NADPH-producing isocitrate dehydrogenase (ICDH) in cytosol (IDPc) and mitochondria (IDPm) upon gamma-ray irradiation, and the roles of IDPc and IDPm in the protection against cellular damage induced by gamma-ray irradiation. Changes of IDPc and IDPm proteins upon gamma-ray irradiation to NIH3T3 cells were analysed by immunoblotting. To increase or decrease the expression of IDPc or IDPm, NIH3T3 cells were stably transfected with mouse IDPc or IDPm cDNA in either the sense or the antisense direction. The transfected cells with either increased or decreased IDPc or IDPm were exposed to gamma-rays, and the levels of reactive oxygen species generation, protein oxidation and lipid peroxidation were measured. Both IDPc and IDPm activities were induced by gamma-ray in NIH3T3 cells. Cells with decreased expression of IDPc or IDPm had elevated reactive oxygen species generation, lipid peroxidation and protein oxidation. Conversely, overproduction of IDPc or IDPm protein partially protected the cells from oxidative damage induced by gamma-ray irradiation. The protective role of IDPc and IDPm against gamma-ray-induced cellular damage can be attributed to elevated NADPH, reducing equivalents needed for recycling reduced glutathione in the cytosol and mitochondria. Thus, a primary biological function of the ICDHs may be production of NADPH, which is a prerequisite for some cellular defence systems against oxidative damage.

  11. Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation.

    PubMed

    de Freitas-Silva, Larisse; Rodríguez-Ruiz, Marta; Houmani, Hayet; da Silva, Luzimar Campos; Palma, José M; Corpas, Francisco J

    2017-11-01

    Glyphosate is a broad-spectrum systemic herbicide used worldwide. In susceptible plants, glyphosate affects the shikimate pathway and reduces aromatic amino acid synthesis. Using Arabidopsis seedlings grown in the presence of 20μM glyphosate, we analyzed H 2 O 2 , ascorbate, glutathione (GSH) and protein oxidation content as well as antioxidant catalase, superoxide dismutase (SOD) and ascorbate-glutathione cycle enzyme activity. We also examined the principal NADPH-generating system components, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH). Glyphosate caused a drastic reduction in growth parameters and an increase in protein oxidation. The herbicide also resulted in an overall increase in GSH content, antioxidant enzyme activity (catalase and all enzymatic components of the ascorbate-glutathione cycle) in addition to the two oxidative phase enzymes, G6PDH and 6PGDH, in the pentose phosphate pathway involved in NADPH generation. In this study, we provide new evidence on the participation of G6PDH and 6PGDH in the response to oxidative stress induced by glyphosate in Arabidopsis, in which peroxisomal enzymes, such as catalase and glycolate oxidase, are positively affected. We suggest that the NADPH provided by the oxidative phase of the pentose phosphate pathway (OxPPP) should serve to maintain glutathione reductase (GR) activity, thus preserving and regenerating the intracellular GSH pool under glyphosate-induced stress. It is particularly remarkable that the 6PGDH activity was unaffected by pro-oxidant and nitrating molecules such as H 2 0 2 , nitric oxide or peroxynitrite. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    PubMed

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Generation and Phenotypic Characterization of Aspergillus nidulans Methylisocitrate Lyase Deletion Mutants: Methylisocitrate Inhibits Growth and Conidiation

    PubMed Central

    Brock, Matthias

    2005-01-01

    Propionate is a very abundant carbon source in soil, and many microorganisms are able to use this as the sole carbon source. Nevertheless, propionate not only serves as a carbon source for filamentous fungi but also acts as a preservative when added to glucose containing media. To solve this contradiction between carbon source and preservative effect, propionate metabolism of Aspergillus nidulans was studied and revealed the methylcitrate cycle as the responsible pathway. Methylisocitrate lyase is one of the key enzymes of that cycle. It catalyzes the cleavage of methylisocitrate into succinate and pyruvate and completes the α-oxidation of propionate. Previously, methylisocitrate lyase was shown to be highly specific for the substrate (2R,3S)-2-methylisocitrate. Here, the identification of the genomic sequence of the corresponding gene and the generation of deletion mutants is reported. Deletion mutants did not grow on propionate as sole carbon and energy source and were severely inhibited during growth on alternative carbon sources, when propionate was present. The strongest inhibitory effect was observed, when glycerol was the main carbon source, followed by glucose and acetate. In addition, asexual conidiation was strongly impaired in the presence of propionate. These effects might be caused by competitive inhibition of the NADP-dependent isocitrate dehydrogenase, because the Ki of (2R,3S)-2-methylisocitrate, the product of the methylcitrate cycle, on NADP-dependent isocitrate dehydrogenase was determined as 1.55 μM. Other isomers had no effect on enzymatic activity. Therefore, methylisocitrate was identified as a potential toxic compound for cellular metabolism. PMID:16151139

  14. Isocitrate dehydrogenase mutation as a therapeutic target in gliomas.

    PubMed

    Han, Catherine H; Batchelor, Tracy T

    2017-06-01

    Isocitrate dehydrogenases (IDH) are important enzymes that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG), producing NADPH in the process. More than 80% of low-grade gliomas and secondary glioblastoma (GBM) harbor an IDH mutation. IDH mutations involve the catalytic pocket of the enzyme and lead to a neomorphic ability to produce 2-hydroxyglutarate (2HG) while oxidizing NADPH to NADP+. 2HG is considered as an 'oncometabolite' which is thought to be responsible for many, if not all, biologic effects of IDH mutations. 2HG accumulation competitively inhibits α-KG-dependent dioxygenases, including histone lysine demethylases and DNA demethylases, resulting in a hypermethylation phenotype with alterations in cellular epigenetic status as well as a block in cellular differentiation. IDH mutations have been suggested as an important early event in tumorigenesis, however it remains unclear whether IDH mutation by itself causes cancer or if it requires other oncogenic events to initiate tumorigenesis. Significant efforts have been made to better understand the mechanisms of IDH mutations in tumor initiation and progression, and to develop targeted therapies for IDH-mutated tumors. This review provides an overview of the function of mutant IDH, and the current understanding of the role IDH mutations play in gliomagenesis. In addition, several potential therapeutic strategies for IDH-mutant gliomas, including mutant IDH inhibitors which have entered clinical evaluation in glioma patients, will be discussed.

  15. Protein tyrosine nitration in pea roots during development and senescence

    PubMed Central

    Corpas, Francisco J.

    2013-01-01

    Protein tyrosine nitration is a post-translational modification mediated by reactive nitrogen species (RNS) that is associated with nitro-oxidative damage. No information about this process is available in relation to higher plants during development and senescence. Using pea plants at different developmental stages (ranging from 8 to 71 days), tyrosine nitration in the main organs (roots, stems, leaves, flowers, and fruits) was analysed using immunological and proteomic approaches. In the roots of 71-day-old senescent plants, nitroproteome analysis enabled the identification a total of 16 nitrotyrosine-immunopositive proteins. Among the proteins identified, NADP-isocitrate dehydrogenase (ICDH), an enzyme involved in the carbon and nitrogen metabolism, redox regulation, and responses to oxidative stress, was selected to evaluate the effect of nitration. NADP-ICDH activity fell by 75% during senescence. Analysis showed that peroxynitrite inhibits recombinant cytosolic NADP-ICDH activity through a process of nitration. Of the 12 tyrosines present in this enzyme, mass spectrometric analysis of nitrated recombinant cytosolic NADP-ICDH enabled this study to identify the Tyr392 as exclusively nitrated by peroxynitrite. The data as a whole reveal that protein tyrosine nitration is a nitric oxide-derived PTM prevalent throughout root development and intensifies during senescence. PMID:23362300

  16. Decreased expression of IDH1-R132H correlates with poor survival in gastrointestinal cancer.

    PubMed

    Li, Jieying; Huang, Jianfei; Huang, Fang; Jin, Qing; Zhu, Huijun; Wang, Xudong; Chen, Meng

    2016-11-08

    Isocitrate dehydrogenase (IDH1) is an NADP-dependent enzyme that catalyzes the decarboxylation of isocitrate to alpha-ketoglutarate. The IDH1-R132H mutation predicts a better clinical outcome for glioma patients, and the expression of IDH1-R132H correlates with a favorable outcome in patients with brain tumors. Here, we investigated IDH1-R132H expression in both gastric (n=526) and colorectal (n=399) tissues by performing immunohistochemistry analyses on tissue microarrays. We also tested whether IDH1-R132H expression correlated with various clinical parameters. In both gastric and colorectal cancer, expression of IDH1-R132H was associated with tumor stage. Patients with low IDH1-R132H expression had a poor overall survival. Our data indicate that IDH1-R132H expression could be used as a predictive marker of prognosis for patients with gastrointestinal cancer.

  17. Decreased expression of IDH1-R132H correlates with poor survival in gastrointestinal cancer

    PubMed Central

    Li, Jieying; Huang, Jianfei; Huang, Fang; Jin, Qing; Zhu, Huijun; Wang, Xudong; Chen, Meng

    2016-01-01

    Isocitrate dehydrogenase (IDH1) is an NADP-dependent enzyme that catalyzes the decarboxylation of isocitrate to alpha-ketoglutarate. The IDH1-R132H mutation predicts a better clinical outcome for glioma patients, and the expression of IDH1-R132H correlates with a favorable outcome in patients with brain tumors. Here, we investigated IDH1-R132H expression in both gastric (n=526) and colorectal (n=399) tissues by performing immunohistochemistry analyses on tissue microarrays. We also tested whether IDH1-R132H expression correlated with various clinical parameters. In both gastric and colorectal cancer, expression of IDH1-R132H was associated with tumor stage. Patients with low IDH1-R132H expression had a poor overall survival. Our data indicate that IDH1-R132H expression could be used as a predictive marker of prognosis for patients with gastrointestinal cancer. PMID:27655638

  18. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1420 Isocitric dehydrogenase test system. (a) Identification. An isocitric dehydrogenase test system is a device intended to measure the activity of the enzyme isocitric dehydrogenase in serum... disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary disease...

  19. Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11.

    PubMed

    Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2015-01-01

    The oleaginous fungus, Mucor circinelloides, is one of few fungi that produce high amounts of γ-linolenic acid (GLA); however, it usually only produces <25% lipid. Nevertheless, a new strain (WJ11) isolated in this laboratory can produce lipid up to 36% (w/w) cell dry weight (CDW). We have investigated the potential mechanism of high lipid accumulation in M. circinelloides WJ11 by comparative biochemical analysis with a low lipid-producing strain, M. circinelloides CBS 277.49, which accumulates less than 15% (w/w) lipid. M. circinelloides WJ11 produced more cell mass than that of strain CBS 277.49, although with slower glucose consumption. In the lipid accumulation phase, activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in strain WJ11 were greater than in CBS 277.49 by 46% and 17%, respectively, and therefore may provide more NADPH for fatty acid biosynthesis. The activities of NAD+:isocitrate dehydrogenase and NADP+:isocitrate dehydrogenase, however, were 43% and 54%, respectively, lower in WJ11 than in CBS 277.49 and may retard the tricarboxylic acid cycle and thereby provide more substrate for ATP:citrate lyase (ACL) to produce acetyl-CoA. Also, the activities of ACL and fatty acid synthase in the high lipid-producing strain, WJ11, were 25% and 56%, respectively, greater than in strain CBS 277.49. These enzymes may therefore cooperatively regulate the fatty acid biosynthesis in these two strains.

  20. Synthesis of citrate from phosphoenolpyruvate and acetylcarnitine by mitochondria from rabbit, pigeon and rat liver: implications for lipogenesis.

    PubMed

    Wiese, T J; Wuensch, S A; Ray, P D

    1996-08-01

    Rabbit, pigeon and rat liver mitochondria convert exogenous phosphoenolpyruvate and acetylcarnitine to citrate at rates of 14, 74 and 8 nmol/15 min/mg protein. Citrate formation is dependent on exogenous HCO3-, is increased consistently by exogenous nucleotides (GDP, IDP, GTP, ADP, ATP) and inhibited strongly by 3-mercaptopicolinate and 1,2,3-benzenetricarboxylate. Citrate is not made from pyruvate alone or combined with acetylcarnitine. Pigeon and rat liver mitochondria make large amounts of citrate from exogenous succinate, suggesting the presence of an endogenous source of acetyl units or means of converting oxalacetate to acetyl units. Citrate synthesis from succinate by pigeon and rabbit mitochondria is increased significantly by exogenous acetylcarnitine. Pigeon and rat liver contain 80 and 15 times, respectively, more ATP:citrate lyase activity than does rabbit liver. Data suggest that mitochondrial phosphoenolpyruvate carboxykinase in vivo could convert glycolysis-derived phosphoenolpyruvate to oxalacetate that, with acetyl CoA, could form citrate for export to support cytosolic lipogenesis as an activator of acetyl CoA carboxylase, a carbon source via ATP:citrate lyase and NADPH via NADP:malate dehydrogenase or NADP:isocitrate dehydrogenase.

  1. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings

    PubMed Central

    Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C.; Barroso, Juan B.; del Río, Luis A.; Palma, José M.; Corpas, Francisco J.

    2015-01-01

    Background and Aims The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. Methods The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate–glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide (·NO), superoxide radical (O2·–) and peroxynitrite (ONOO–) was investigated using confocal laser scanning microscopy. Key Results The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. Conclusions There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes to the success of seedling establishment. PMID:25808658

  2. [Effects of melaxen and valdoxan on the activity of glutathione antioxidant system and NADPH-producing enzymes in rat heart under experimental hyperthyroidism conditions].

    PubMed

    Gorbenko, M V; Popova, T N; Shul'gin, K K; Popov, S S

    2013-01-01

    The effects of melaxen and valdoxan on the activity of glutathione antioxidant system and some NADPH-producing enzymes have been studied under conditions of experimental hyperthyroidism in rat heart. Under the action of these drugs, reduced glutathione (GSH) content increased as compared to values observed under the conditions of pathology. It has been established that the activities of glutathione reductase (GR), glutathione peroxidase (GP), glucose-6-phosphate dehydrogenase, and NADP isocitrate dehydrogenase (increased under pathological conditions) change toward the intact control values upon the introduction of both drugs. The influence of melaxen and valdoxan, capable of producing antioxidant effect, leads apparently to the inhibition of free-radical oxidation processes and, as a consequence, the reduction of mobilization degree of the glutathione antioxidant system.

  3. Physiological Regulation of Isocitrate Dehydrogenase and the Role of 2-Oxoglutarate in Prochlorococcus sp. Strain PCC 9511

    PubMed Central

    Diez, Jesús; Gómez-Baena, Guadalupe; Rangel-Zúñiga, Oriol Alberto; García-Fernández, José Manuel

    2014-01-01

    The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus. PMID:25061751

  4. [Effect of salt stress on respiration metabolism in higher plants].

    PubMed

    Mittova, V O; Igamberdiev, A U

    2000-01-01

    We studied the activity of NADP-dependent isocitrate dehydrogenase, malate dehydrogenase, succinate dehydrogenase, catalase, and peroxidase as well as the rate of 14CO2 release after introduction of labeled substrates for glycolysis and citrate acid cycle within 24 h after salt stress (1% NaCl) in 10-14 days old germinants of wheat (Triticum aestivum L.) and maize (Zea mays L.) as well as thallus of small duckweed (Wolffia arrhiza (L.) Hork ex Wimmer). Oscillations in the enzymes activity with 4-6 h period have been revealed under stress conditions. Activity of glycolysis decreased in wheat and maize and increased in duckweed under the influence of stress stimulus. Six hours after NaCl action decarboxylation of exogenous citrate and succinate was enhanced in all three plants while the rate of exogenous malate decarboxylation was decreased. We conclude that adaptation of higher plans to salinization is accompanied by rearrangements in oxidative metabolism reflected by oscillations in activity of the enzymes involved in oxidative metabolism.

  5. Dietary Effect on the Proteome of the Common Octopus (Octopus vulgaris) Paralarvae

    PubMed Central

    Varó, Inmaculada; Cardenete, Gabriel; Hontoria, Francisco; Monroig, Óscar; Iglesias, José; Otero, Juan J.; Almansa, Eduardo; Navarro, Juan C.

    2017-01-01

    Nowadays, the common octopus (Octopus vulgaris) culture is hampered by massive mortalities occurring during early life-cycle stages (paralarvae). Despite the causes of the high paralarvae mortality are not yet well-defined and understood, the nutritional stress caused by inadequate diets is pointed out as one of the main factors. In this study, the effects of diet on paralarvae is analyzed through a proteomic approach, to search for novel biomarkers of nutritional stress. A total of 43 proteins showing differential expression in the different conditions studied have been identified. The analysis highlights proteins related with the carbohydrate metabolism: glyceraldehyde-3-phosphate-dedydrogenase (GAPDH), triosephosphate isomerase; other ways of energetic metabolism: NADP+-specific isocitrate dehydrogenase, arginine kinase; detoxification: glutathione-S-transferase (GST); stress: heat shock proteins (HSP70); structural constituent of eye lens: S-crystallin 3; and cytoskeleton: actin, actin-beta/gamma1, beta actin. These results allow defining characteristic proteomes of paralarvae depending on the diet; as well as the use of several of these proteins as novel biomarkers to evaluate their welfare linked to nutritional stress. Notably, the changes of proteins like S-crystallin 3, arginine kinase and NAD+ specific isocitrate dehydrogenase, may be related to fed vs. starving paralarvae, particularly in the first 4 days of development. PMID:28567020

  6. Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection.

    PubMed

    Kolb, Alexander L; Corridon, Peter R; Zhang, Shijun; Xu, Weimin; Witzmann, Frank A; Collett, Jason A; Rhodes, George J; Winfree, Seth; Bready, Devin; Pfeffenberger, Zechariah J; Pomerantz, Jeremy M; Hato, Takashi; Nagami, Glenn T; Molitoris, Bruce A; Basile, David P; Atkinson, Simon J; Bacallao, Robert L

    2018-04-01

    Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine ( P <0.05) observed in controls and increased the mitochondria membrane potential ( P <0.05), maximal respiratory capacity ( P <0.05), and intracellular ATP levels ( P <0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning. Copyright © 2018 by the American Society of Nephrology.

  7. Stress inducible proteomic changes in Capsicum annuum leaves.

    PubMed

    Mahajan, Neha S; Mishra, Manasi; Tamhane, Vaijayanti A; Gupta, Vidya S; Giri, Ashok P

    2014-01-01

    Herbivore attack induces defense responses in plants, activating several signaling cascades. As a result, molecules deterrent to the herbivores are produced and accumulated in plants. Expression of defense mechanism/traits requires reorganization of the plant metabolism, redirecting the resources otherwise meant for growth. In the present work, protein profile of Capsicum annuum leaves was examined after herbivore attack/induction. Majority of proteins identified as differentially accumulated, were having roles in redox metabolism and photosynthesis. For example, superoxide dismutase and NADP oxidoreductase were upregulated by 10- and 6-fold while carbonic anhydrase and fructose-1,6-bisphosphatase were downregulated by 9- and 4-fold, respectively. Also, superoxide dismutase, NADPH quinone oxidoreductase and NADP dependent isocitrate dehydrogenase transcripts showed a higher accumulation in induced leaf tissues at early time points. In general, proteins having role in defense and damage repair were upregulated while those involved in photosynthesis appeared downregulated. Thus metabolic reconfiguration to balance defense and tolerance was evident in the stress-induced leaves. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation.

    PubMed

    Molenaar, Remco J; Radivoyevitch, Tomas; Maciejewski, Jaroslaw P; van Noorden, Cornelis J F; Bleeker, Fonnet E

    2014-12-01

    Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key events in the development of glioma, acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma (ICC), and angioimmunoblastic T-cell lymphoma. They also cause D-2-hydroxyglutaric aciduria and Ollier and Maffucci syndromes. IDH1/2 mutations are associated with prolonged survival in glioma and in ICC, but not in AML. The reason for this is unknown. In their wild-type forms, IDH1 and IDH2 convert isocitrate and NADP(+) to α-ketoglutarate (αKG) and NADPH. Missense mutations in the active sites of these enzymes induce a neo-enzymatic reaction wherein NADPH reduces αKG to D-2-hydroxyglutarate (D-2HG). The resulting D-2HG accumulation leads to hypoxia-inducible factor 1α degradation, and changes in epigenetics and extracellular matrix homeostasis. Such mutations also imply less NADPH production capacity. Each of these effects could play a role in cancer formation. Here, we provide an overview of the literature and discuss which downstream molecular effects are likely to be the drivers of the oncogenic and survival-prolonging properties of IDH1/2 mutations. We discuss interactions between mutant IDH1/2 inhibitors and conventional therapies. Understanding of the biochemical consequences of IDH1/2 mutations in oncogenesis and survival prolongation will yield valuable information for rational therapy design: it will tell us which oncogenic processes should be blocked and which "survivalogenic" effects should be retained. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comparison of the effects of Ca2+, adenine nucleotides and pH on the kinetic properties of mitochondrial NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase from the yeast Saccharomyces cerevisiae and rat heart.

    PubMed Central

    Nichols, B J; Rigoulet, M; Denton, R M

    1994-01-01

    The regulatory properties of NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase in extracts of yeast and rat heart mitochondria were studied under identical conditions. Yeast NAD(+)-isocitrate dehydrogenase exhibits a low K0.5 for isocitrate and is activated by AMP and ADP, but is insensitive to ATP and Ca2+. In contrast, the rat heart NAD(+)-isocitrate dehydrogenase was insensitive to AMP, but was activated by ADP and by Ca2+ in the presence of ADP or ATP. Both yeast and rat heart oxoglutarate dehydrogenase were stimulated by ADP, but only the heart enzyme was activated by Ca2+. All the enzymes studied were activated by decreases in pH, but to differing extents. The effects of Ca2+, adenine nucleotides and pH were through K0.5 for isocitrate or 2-oxoglutarate. These observations are discussed with reference to the deduced amino acid sequences of the constituent subunits of the enzymes, where they are available. PMID:7980405

  10. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios.

    PubMed Central

    Rutter, G A; Denton, R M

    1988-01-01

    1. Toluene-permeabilized rat heart mitochondria have been used to study the regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+, adenine and nicotinamide nucleotides, and to compare the properties of the enzymes in situ, with those in mitochondrial extracts. 2. Although K0.5 values (concn. giving half-maximal effect) for Ca2+ of 2-oxoglutarate dehydrogenase were around 1 microM under all conditions, corresponding values for NAD+-linked isocitrate dehydrogenase were in the range 5-43 microM. 3. For both enzymes, K0.5 values for Ca2+ observed in the presence of ATP were 3-10-fold higher than those in the presence of ADP, with values increasing over the ADP/ATP range 0.0-1.0. 4. 2-Oxoglutarate dehydrogenase was less sensitive to inhibition by NADH when assayed in permeabilized mitochondria than in mitochondrial extracts. Similarly, the Km of NAD+-linked isocitrate dehydrogenase for threo-Ds-isocitrate was lower in permeabilized mitochondria than in extracts under all the conditions investigated. 5. It is concluded that in the intact heart Ca2+ activation of NAD+-linked isocitrate dehydrogenase may not necessarily occur in parallel with that of the other mitochondrial Ca2+-sensitive enzymes, 2-oxoglutarate dehydrogenase and the pyruvate dehydrogenase system. PMID:3421900

  11. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings.

    PubMed

    Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C; Barroso, Juan B; del Río, Luis A; Palma, José M; Corpas, Francisco J

    2015-09-01

    The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate-glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide ((·)NO), superoxide radical (O2 (·-)) and peroxynitrite (ONOO(-)) was investigated using confocal laser scanning microscopy. The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes to the success of seedling establishment. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Effects of 20 standard amino acids on the growth, total fatty acids production, and γ-linolenic acid yield in Mucor circinelloides.

    PubMed

    Tang, Xin; Zhang, Huaiyuan; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2014-12-01

    Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.

  13. Molecular mechanisms of isocitrate dehydrogenase 1 (IDH1) mutations identified in tumors: The role of size and hydrophobicity at residue 132 on catalytic efficiency

    PubMed Central

    Avellaneda Matteo, Diego; Grunseth, Adam J.; Gonzalez, Eric R.; Anselmo, Stacy L.; Kennedy, Madison A.; Moman, Precious; Scott, David A.; Hoang, An; Sohl, Christal D.

    2017-01-01

    Isocitrate dehydrogenase 1 (IDH1) catalyzes the reversible NADP+-dependent conversion of isocitrate (ICT) to α-ketoglutarate (αKG) in the cytosol and peroxisomes. Mutations in IDH1 have been implicated in >80% of lower grade gliomas and secondary glioblastomas and primarily affect residue 132, which helps coordinate substrate binding. However, other mutations found in the active site have also been identified in tumors. IDH1 mutations typically result in a loss of catalytic activity, but many also can catalyze a new reaction, the NADPH-dependent reduction of αKG to d-2-hydroxyglutarate (D2HG). D2HG is a proposed oncometabolite that can competitively inhibit αKG-dependent enzymes. Some kinetic parameters have been reported for several IDH1 mutations, and there is evidence that mutant IDH1 enzymes vary widely in their ability to produce D2HG. We report that most IDH1 mutations identified in tumors are severely deficient in catalyzing the normal oxidation reaction, but that D2HG production efficiency varies among mutant enzymes up to ∼640-fold. Common IDH1 mutations have moderate catalytic efficiencies for D2HG production, whereas rarer mutations exhibit either very low or very high efficiencies. We then designed a series of experimental IDH1 mutants to understand the features that support D2HG production. We show that this new catalytic activity observed in tumors is supported by mutations at residue 132 that have a smaller van der Waals volume and are more hydrophobic. We report that one mutation can support both the normal and neomorphic reactions. These studies illuminate catalytic features of mutations found in the majority of patients with lower grade gliomas. PMID:28330869

  14. [GLUTATHIONE SYSTEM ACTIVITY IN RAT TISSUES UNDER PHENYLETHYL BIGUANIDE ACTION ON THE BACKGROUND OF EXPERIMENTAL BRAIN ISCHEMIA/REPERFUSION DEVELOPMENT].

    PubMed

    Safonova, O A; Popova, T N; Kryl'skii, D V

    2016-01-01

    It was studied the total antioxidant activity, content of primary lipid peroxidation (LPO) products and reduced glutathione, and the activity of glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, and NADP-isocitrate dehydrogenase in rat tissues under phenylethyl biguanide (phenfor- min) action on the background of experimental brain ischemia/reperfusion development. It is stablished the analyzed parameters, increasing under ischemia/reperfusion conditions in the brain and blood serum of animals, exhibit a decrease upon the introduction of this biguanide derivative. The obtained data can be explained by a decrease in degree of mobilization of the antioxidant system--in particular, of its glutathione chain--in the pathologic state. Hence, there is a need in NADPH supply for the system functioning compared with the pathology. Thus, phenylethyl biguanide demonstrates its antioxidant and protective properties under oxidative stress development that is accompanied by accumulation of the products of free radical oxidation of biomolecules during the ischemic brain injury.

  15. Discovery of an acidic, thermostable and highly NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929

    USDA-ARS?s Scientific Manuscript database

    Objectives: To identify a robust NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929 (LbFDH) with unique biochemical properties. Results: A new NADP+ dependent formate dehydrogenase gene (fdh) was cloned from genomic DNA of L. buchneri NRRL B-30929. The recombinant constru...

  16. Knockdown of Both Mitochondrial Isocitrate Dehydrogenase Enzymes In Pancreatic Beta Cells Inhibits Insulin Secretion

    PubMed Central

    MacDonald, Michael J.; Brown, Laura J.; Longacre, Melissa J.; Stoker, Scott W.; Kendrick, Mindy A.; Hasan, Noaman M.

    2013-01-01

    Background There are three isocitrate dehydrogenases (IDHs) in the pancreatic insulin cell; IDH1 (cytosolic) and IDH2 (mitochondrial) use NADP(H). IDH3 is mitochondrial, uses NAD(H) and was believed to be the IDH that supports the citric acid cycle. Methods With shRNAs targeting mRNAs for these enzymes we generated cell lines from INS-1 832/13 cells with severe (80%–90%) knockdown of the mitochondrial IDHs separately and together in the same cell line. Results With knockdown of both mitochondrial IDH’s mRNA, enzyme activity and protein level, but not with knockdown of one mitochondrial IDH, glucose- and BCH (an allosteric activator of glutamate dehydrogenase)-plus-glutamine-stimulated insulin release were inhibited. Cellular levels of citrate, α-ketoglutarate, malate and ATP were altered in patterns consistent with blockage at the mitochondrial IDH reactions. We were able to generate only 50% knockdown of Idh1 mRNA in multiple cell lines (without inhibition of insulin release) possibly because greater knockdown of IDH1 was not compatible with cell line survival. Conclusions The mitochondrial IDHs are redundant for insulin secretion. When both enzymes are severely knocked down, their low activities (possibly assisted by transport of IDH products and other metabolic intermediates from the cytosol into mitochondria) are sufficient for cell growth, but inadequate for insulin secretion when the requirement for intermediates is certainly more rapid. The results also indicate that IDH2 can support the citric acid cycle. General Significance As almost all mammalian cells possess substantial amounts of all three IDH enzymes, the biological principles suggested by these results are probably extrapolatable to many tissues. PMID:23876293

  17. Cancer-associated Isocitrate Dehydrogenase 1 (IDH1) R132H Mutation and d-2-Hydroxyglutarate Stimulate Glutamine Metabolism under Hypoxia*

    PubMed Central

    Reitman, Zachary J.; Duncan, Christopher G.; Poteet, Ethan; Winters, Ali; Yan, Liang-Jun; Gooden, David M.; Spasojevic, Ivan; Boros, Laszlo G.; Yang, Shao-Hua; Yan, Hai

    2014-01-01

    Mutations in the cytosolic NADP+-dependent isocitrate dehydrogenase (IDH1) occur in several types of cancer, and altered cellular metabolism associated with IDH1 mutations presents unique therapeutic opportunities. By altering IDH1, these mutations target a critical step in reductive glutamine metabolism, the metabolic pathway that converts glutamine ultimately to acetyl-CoA for biosynthetic processes. While IDH1-mutated cells are sensitive to therapies that target glutamine metabolism, the effect of IDH1 mutations on reductive glutamine metabolism remains poorly understood. To explore this issue, we investigated the effect of a knock-in, single-codon IDH1-R132H mutation on the metabolism of the HCT116 colorectal adenocarcinoma cell line. Here we report the R132H-isobolome by using targeted 13C isotopomer tracer fate analysis to trace the metabolic fate of glucose and glutamine in this system. We show that introduction of the R132H mutation into IDH1 up-regulates the contribution of glutamine to lipogenesis in hypoxia, but not in normoxia. Treatment of cells with a d-2-hydroxyglutarate (d-2HG) ester recapitulated these changes, indicating that the alterations observed in the knocked-in cells were mediated by d-2HG produced by the IDH1 mutant. These studies provide a dynamic mechanistic basis for metabolic alterations observed in IDH1-mutated tumors and uncover potential therapeutic targets in IDH1-mutated cancers. PMID:24986863

  18. Detection of isocitrate dehydrogenase 1 mutation R132H in myelodysplastic syndrome by mutation-specific antibody and direct sequencing.

    PubMed

    Andrulis, Mindaugas; Capper, David; Luft, Thomas; Hartmann, Christian; Zentgraf, Hanswalter; von Deimling, Andreas

    2010-08-01

    Sequencing of the acute myeloid leukemia genome revealed somatic mutations in isocitrate dehydrogenase-1. Acute myeloid leukemia frequently develops from myelodysplastic syndrome. In order to test whether myelodysplastic syndrome also carries isocitrate dehydrogenase-1 mutations, we stained a series of bone marrow samples from patients with myelodysplastic syndrome using an antibody specific for the R132H mutation. Three out of 71 patients exhibited antibody binding to myeloid precursor cells. The presence of the R132H mutation was confirmed by DNA sequencing. We demonstrated that isocitrate dehydrogenase-1 mutations occur in myelodysplasia preceding acute myeloid leukemia and that the R132H alteration can be detected by immunohistochemistry. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. The Contribution of Nicotinamide Nucleotide Transhydrogenase to Peroxide Detoxification Is Dependent on the Respiratory State and Counterbalanced by Other Sources of NADPH in Liver Mitochondria*

    PubMed Central

    Ronchi, Juliana Aparecida; Francisco, Annelise; Passos, Luiz Augusto Correa; Figueira, Tiago Rezende; Castilho, Roger Frigério

    2016-01-01

    The forward reaction of nicotinamide nucleotide transhydrogenase (NNT) reduces NADP+ at the expense of NADH oxidation and H+ movement down the electrochemical potential across the inner mitochondrial membrane, establishing an NADPH/NADP+ ratio severalfold higher than the NADH/NAD+ ratio in the matrix. In turn, NADPH drives processes, such as peroxide detoxification and reductive biosynthesis. In this study, we generated a congenic mouse model carrying a mutated NntC57BL/6J allele from the C57BL/6J substrain. Suspensions of isolated mitochondria from Nnt+/+, Nnt+/−, and Nnt−/− mouse liver were biochemically evaluated and challenged with exogenous peroxide under different respiratory states. The respiratory substrates were also varied, and the participation of concurrent NADPH sources (i.e. isocitrate dehydrogenase-2, malic enzymes, and glutamate dehydrogenase) was assessed. The principal findings include the following: Nnt+/− and Nnt−/− exhibit ∼50% and absent NNT activity, respectively, but the activities of concurrent NADPH sources are unchanged. The lack of NNT activity in Nnt−/− mice impairs peroxide metabolism in intact mitochondria. The contribution of NNT to peroxide metabolism is decreased during ADP phosphorylation compared with the non-phosphorylating state; however, it is accompanied by increased contributions of concurrent NADPH sources, especially glutamate dehydrogenase. NNT makes a major contribution to peroxide metabolism during the blockage of mitochondrial electron transport. Interestingly, peroxide metabolism in the Nnt+/− mitochondria matched that in the Nnt+/+ mitochondria. Overall, this study demonstrates that the respiratory state and/or substrates that sustain energy metabolism markedly influence the relative contribution of NNT (i.e. varies between nearly 0 and 100%) to NADPH-dependent mitochondrial peroxide metabolism. PMID:27474736

  20. The Contribution of Nicotinamide Nucleotide Transhydrogenase to Peroxide Detoxification Is Dependent on the Respiratory State and Counterbalanced by Other Sources of NADPH in Liver Mitochondria.

    PubMed

    Ronchi, Juliana Aparecida; Francisco, Annelise; Passos, Luiz Augusto Correa; Figueira, Tiago Rezende; Castilho, Roger Frigério

    2016-09-16

    The forward reaction of nicotinamide nucleotide transhydrogenase (NNT) reduces NADP(+) at the expense of NADH oxidation and H(+) movement down the electrochemical potential across the inner mitochondrial membrane, establishing an NADPH/NADP(+) ratio severalfold higher than the NADH/NAD(+) ratio in the matrix. In turn, NADPH drives processes, such as peroxide detoxification and reductive biosynthesis. In this study, we generated a congenic mouse model carrying a mutated Nnt(C57BL/6J) allele from the C57BL/6J substrain. Suspensions of isolated mitochondria from Nnt(+/+), Nnt(+/-), and Nnt(-/-) mouse liver were biochemically evaluated and challenged with exogenous peroxide under different respiratory states. The respiratory substrates were also varied, and the participation of concurrent NADPH sources (i.e. isocitrate dehydrogenase-2, malic enzymes, and glutamate dehydrogenase) was assessed. The principal findings include the following: Nnt(+/-) and Nnt(-/-) exhibit ∼50% and absent NNT activity, respectively, but the activities of concurrent NADPH sources are unchanged. The lack of NNT activity in Nnt(-/-) mice impairs peroxide metabolism in intact mitochondria. The contribution of NNT to peroxide metabolism is decreased during ADP phosphorylation compared with the non-phosphorylating state; however, it is accompanied by increased contributions of concurrent NADPH sources, especially glutamate dehydrogenase. NNT makes a major contribution to peroxide metabolism during the blockage of mitochondrial electron transport. Interestingly, peroxide metabolism in the Nnt(+/-) mitochondria matched that in the Nnt(+/+) mitochondria. Overall, this study demonstrates that the respiratory state and/or substrates that sustain energy metabolism markedly influence the relative contribution of NNT (i.e. varies between nearly 0 and 100%) to NADPH-dependent mitochondrial peroxide metabolism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Positive correlation between decreased cellular uptake, NADPH-glutathione reductase activity and adriamycin resistance in Ehrlich ascites tumor lines.

    PubMed

    Scheulen, M E; Hoensch, H; Kappus, H; Seeber, S; Schmidt, C G

    1987-01-01

    From a wild type strain of Ehrlich ascites tumor (EATWT) sublines resistant to daunorubicin (EATDNM), etoposide (EATETO), and cisplatinum (EATCIS) have been developed in vivo. Increase in survival and cure rate caused by adriamycin (doxorubicin) have been determined in female NMRI mice which were inoculated i.p. with EAT cells. Adriamycin concentrations causing 50% inhibition of 3H-thymidine (ICT) and 3H-uridine incorporation (ICU) and intracellular adriamycin steady-state concentrations (SSC) were measured in vitro. Adriamycin resistance increased and SSC decreased in the following sequence: EATWT - EATCIS - EATDNM - EATETO. When ICT and ICU were corrected for intracellular adriamycin concentrations in consideration of the different SSC (ICTc, ICUc), ICTc and ICUc still varied up to the 3.2 fold in EATCIS, EATDNM and EATETO in comparison to EATWT. Thus, in addition to different SSC other factors must be responsible for adriamycin resistance. Therefore, enzymes which may play a role in the cytotoxicity related to adriamycin metabolism (NADPH-cytochrome P-450 reductase, NADPH-glutathione reductase, NADP-glucose-6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase) were measured. In contrast to the other parameters determined, NADPH-glutathione reductase was significantly (p less than 0.01) increased up to the 3.2 fold parallel to adriamycin resistance as determined by increase in life span, cure rate, ICTc, and ICUc, respectively. It is concluded that high activities of NADPH-glutathione reductase may contribute to an increase in adriamycin resistance of malignant tumors.

  2. Role of quinate dehydrogenase in quinic acid metabolism in conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, V.I.; Shein, I.V.

    1986-08-10

    Quinate dehydrogenase was isolated from young needles of the Siberian larch and partially purified by ammonium sulfate fractionation. It was found that in conifers, in contrast to other plants, quinate dehydrogenase is active both with NAD and with NADP. The values of K/sub m/ for quinate and NADP were 1.8 and 0.18 mM. The enzyme exhibits maximum activity at pH 9.0. It was assumed that NADP-dependent quinate dehydrogenase is responsible for quinic acid synthesis. The special features of the organization and regulation of the initial stages of the shikimate pathway in conifers are discussed.

  3. Bifunctional isocitrate-homoisocitrate dehydrogenase: a missing link in the evolution of beta-decarboxylating dehydrogenase.

    PubMed

    Miyazaki, Kentaro

    2005-05-27

    Beta-decarboxylating dehydrogenases comprise 3-isopropylmalate dehydrogenase, isocitrate dehydrogenase, and homoisocitrate dehydrogenase. They share a high degree of amino acid sequence identity and occupy equivalent positions in the amino acid biosynthetic pathways for leucine, glutamate, and lysine, respectively. Therefore, not only the enzymes but also the whole pathways should have evolved from a common ancestral pathway. In Pyrococcus horikoshii, only one pathway of the three has been identified in the genomic sequence, and PH1722 is the sole beta-decarboxylating dehydrogenase gene. The organism does not require leucine, glutamate, or lysine for growth; the single pathway might play multiple (i.e., ancestral) roles in amino acid biosynthesis. The PH1722 gene was cloned and expressed in Escherichia coli and the substrate specificity of the recombinant enzyme was investigated. It exhibited activities on isocitrate and homoisocitrate at near equal efficiency, but not on 3-isopropylmalate. PH1722 is thus a novel, bifunctional beta-decarboxylating dehydrogenase, which likely plays a dual role in glutamate and lysine biosynthesis in vivo.

  4. Cancer-associated isocitrate dehydrogenase 1 (IDH1) R132H mutation and d-2-hydroxyglutarate stimulate glutamine metabolism under hypoxia.

    PubMed

    Reitman, Zachary J; Duncan, Christopher G; Poteet, Ethan; Winters, Ali; Yan, Liang-Jun; Gooden, David M; Spasojevic, Ivan; Boros, Laszlo G; Yang, Shao-Hua; Yan, Hai

    2014-08-22

    Mutations in the cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDH1) occur in several types of cancer, and altered cellular metabolism associated with IDH1 mutations presents unique therapeutic opportunities. By altering IDH1, these mutations target a critical step in reductive glutamine metabolism, the metabolic pathway that converts glutamine ultimately to acetyl-CoA for biosynthetic processes. While IDH1-mutated cells are sensitive to therapies that target glutamine metabolism, the effect of IDH1 mutations on reductive glutamine metabolism remains poorly understood. To explore this issue, we investigated the effect of a knock-in, single-codon IDH1-R132H mutation on the metabolism of the HCT116 colorectal adenocarcinoma cell line. Here we report the R132H-isobolome by using targeted (13)C isotopomer tracer fate analysis to trace the metabolic fate of glucose and glutamine in this system. We show that introduction of the R132H mutation into IDH1 up-regulates the contribution of glutamine to lipogenesis in hypoxia, but not in normoxia. Treatment of cells with a d-2-hydroxyglutarate (d-2HG) ester recapitulated these changes, indicating that the alterations observed in the knocked-in cells were mediated by d-2HG produced by the IDH1 mutant. These studies provide a dynamic mechanistic basis for metabolic alterations observed in IDH1-mutated tumors and uncover potential therapeutic targets in IDH1-mutated cancers. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Isocitric dehydrogenase test system. 862.1420 Section 862.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  6. [Enzyme activity in the subcellular fractions of the liver of rats following a flight on board the Kosmos-1129 biosatellite].

    PubMed

    Tigranian, R A; Vetrova, E G; Abraham, S; Lin, C; Klein, H

    1983-01-01

    The activities of malate, isocitrate, and lactate dehydrogenases were measured in the liver mitochondrial and cytoplasmatic fractions of rats flown for 18.5 days onboard Cosmos-1129. The activities of the oxidative enzymes, malate and isocitrate dehydrogenases, in the mitochondrial fraction and those of the glycolytic enzyme, lactate dehydrogenase, in the cytoplasmatic fraction were found to decrease.

  7. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency].

    PubMed

    Voloshchuk, O N; Kopylchuk, G P

    2016-01-01

    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.

  8. NADP-Malate Dehydrogenase of Sweet Sorghum Improves Salt Tolerance of Arabidopsis thaliana.

    PubMed

    Guo, Yuanyuan; Song, Yushuang; Zheng, Hongxiang; Zhang, Yi; Guo, Jianrong; Sui, Na

    2018-06-08

    Sweet sorghum is a C 4 crop that shows high salt tolerance and high yield. NADP-malate dehydrogenase ( NADP-ME) is a crucial enzyme of the C 4 pathway. The regulatory mechanism of NADP-ME remains unclear. In this study, we isolated SbNADP-ME from sweet sorghum. The open reading frame of SbNADP-ME is 1911 bp and 637 amino acid residues. Quantitative real-time PCR analysis showed that SbNADP-ME transcription in sweet sorghum was enhanced by salt stress. The SbNADP-ME transcript level was highest under exposure to 150 mM NaCl. Arabidopsis overexpressing SbNADP-ME showed increased germination rate and root length under NaCl treatments. At the seedling stage, physiological photosynthesis parameters, chlorophyll content, PSII photochemical efficiency, and PSI oxidoreductive activity in the wild type decreased more severely than in the overexpression lines but less than in T-DNA insertion mutants under salt stress. Overexpression of SbNADP-ME in Arabidopsis may also increase osmotic adjustment and scavenging activity on DPPH and decrease membrane peroxidation. These results suggest that SbNADP-ME overexpression in Arabidopsis increases salt tolerance and alleviates PSII and PSI photoinhibition under salt stress by improving photosynthetic capacity.

  9. Steady-state kinetic mechanism of the NADP+- and NAD+-dependent reactions catalysed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.

    PubMed Central

    Velasco-García, R; González-Segura, L; Muñoz-Clares, R A

    2000-01-01

    Betaine aldehyde dehydrogenase (BADH) catalyses the irreversible oxidation of betaine aldehyde to glycine betaine with the concomitant reduction of NAD(P)(+) to NADP(H). In Pseudomonas aeruginosa this reaction is a compulsory step in the assimilation of carbon and nitrogen when bacteria are growing in choline or choline precursors. The kinetic mechanisms of the NAD(+)- and NADP(+)-dependent reactions were examined by steady-state kinetic methods and by dinucleotide binding experiments. The double-reciprocal patterns obtained for initial velocity with NAD(P)(+) and for product and dead-end inhibition establish that both mechanisms are steady-state random. However, quantitative analysis of the inhibitions, and comparison with binding data, suggest a preferred route of addition of substrates and release of products in which NAD(P)(+) binds first and NAD(P)H leaves last, particularly in the NADP(+)-dependent reaction. Abortive binding of the dinucleotides, or their analogue ADP, in the betaine aldehyde site was inferred from total substrate inhibition by the dinucleotides, and parabolic inhibition by NADH and ADP. A weak partial uncompetitive substrate inhibition by the aldehyde was observed only in the NADP(+)-dependent reaction. The kinetics of P. aeruginosa BADH is very similar to that of glucose-6-phosphate dehydrogenase, suggesting that both enzymes fulfil a similar amphibolic metabolic role when the bacteria grow in choline and when they grow in glucose. PMID:11104673

  10. BIOCHEMICAL AND ULTRASTRUCTURAL PROPERTIES OF A MITOCHONDRIAL INNER MEMBRANE FRACTION DEFICIENT IN OUTER MEMBRANE AND MATRIX ACTIVITIES

    PubMed Central

    Chan, T. L.; Greenawalt, John W.; Pedersen, Peter L.

    1970-01-01

    Treatment of the inner membrane matrix fraction of rat liver mitochondria with the nonionic detergent Lubrol WX solubilized about 70% of the total protein and 90% or more of the following matrix activities: malate dehydrogenase, glutamate dehydrogenase, and isocitrate dehydrogenase (NADP). The Lubrol-insoluble fraction was enriched in cytochromes, phospholipids, and a Mg++-stimulated ATPase activity. Less than 2% of the total mitochondrial activity of monoamine oxidase, an outer membrane marker, or adenylate kinase, an intracristal space marker could be detected in this inner membrane fraction. Electron micrographs of negatively stained preparations showed vesicles (≤0.4 µ diameter) literally saturated on the periphery with the 90 A ATPase particles. These inner membrane vesicles, which appeared for the most part to be inverted with respect to the normal inner membrane configuration in intact mitochondria, retained the succinicoxidase portion of the electron-transport chain, an intact phosphorylation site II with a high affinity for ADP, and the capacity to accumulate Ca++. A number of biochemical properties characteristic of intact mitochondria and the inner membrane matrix fraction, however, were either absent or markedly deficient in the inner membrane vesicles. These included stimulation of respiration by either ADP or 2,4-dinitrophenol, oligomycin-sensitive ADP-ATP exchange activity, atractyloside sensitivity of adenine nucleotide requiring reactions, and a stimulation of the Mg++-ATPase by 2,4-dinitrophenol. PMID:4254678

  11. Teaching about citric acid cycle using plant mitochondrial preparations: Some assays for use in laboratory courses*.

    PubMed

    Vicente, Joaquim A F; Gomes-Santos, Carina S S; Sousa, Ana Paula M; Madeira, Vítor M C

    2005-03-01

    Potato tubers and turnip roots were used to prepare purified mitochondria for laboratory practical work in the teaching of the citric acid cycle (TCA cycle). Plant mitochondria are particularly advantageous over the animal fractions to demonstrate the TCA cycle enzymatic steps, by using simple techniques to measure O(2) consumption and transmembrane potential (ΔΨ). The several TCA cycle intermediates induce specific enzyme activities, which can be identified by respiratory parameters. Such a strategy is also used to evidence properties of the TCA cycle enzymes: ADP stimulation of isocitrate dehydrogenase and α-ketoglutarate dehydrogenase; activation by citrate of downstream oxidation steps, e.g. succinate dehydrogenase; and regulation of the activity of isocitrate dehydrogenase by citrate action on the citrate/isocitrate carrier. Furthermore, it has been demonstrated that, in the absence of exogenous Mg(2+) , isocitrate-dependent respiration favors the alternative oxidase pathway, as judged by changes of the ADP/O elicited by the inhibitor n-propyl galate. These are some examples of assays related with TCA cycle intermediates we can use in laboratory courses. Copyright © 2005 International Union of Biochemistry and Molecular Biology, Inc.

  12. Identification of differentially expressed proteins during human urinary bladder cancer progression.

    PubMed

    Memon, Ashfaque A; Chang, Jong W; Oh, Bong R; Yoo, Yung J

    2005-01-01

    Comparative proteome analysis was performed between RT4 (grade-1) and T24 (grade-3) bladder cancer cell lines, in an attempt to identify differentially expressed proteins during bladder cancer progression. Among those relatively abundant proteins, seven spots changed more than two-fold reproducibly and identified by peptide mass fingerprinting using mass spectrometry and database search. We found most extensive and reproducible down-regulation of NADP dependent isocitrate dehydrogenase cytoplasmic (IDPc) and peroxiredoxin-II (Prx-II), in poorly differentiated T24 compared to well-differentiated RT4 bladder cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may involve in tumor progression and metastasis. However, additional investigations are needed on large number of human samples to further verify these findings.

  13. IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma.

    PubMed

    Zhang, Chunzhi; Moore, Lynette M; Li, Xia; Yung, W K Alfred; Zhang, Wei

    2013-09-01

    Isocitrate dehydrogenase (IDH) enzymes have recently become a focal point for research aimed at understanding the biology of glioma. IDH1 and IDH2 are mutated in 50%-80% of astrocytomas, oligodendrogliomas, oligoastrocytomas, and secondary glioblastomas but are seldom mutated in primary glioblastomas. Gliomas with IDH1/2 mutations always harbor other molecular aberrations, such as TP53 mutation or 1p/19q loss. IDH1 and IDH2 mutations may serve as prognostic factors because patients with an IDH-mutated glioma survive significantly longer than those with an IDH-wild-type tumor. However, the molecular pathogenic role of IDH1/2 mutations in the development of gliomas is unclear. The production of 2-hydroxyglutarate and enhanced NADP+ levels in tumor cells with mutant IDH1/2 suggest mechanisms through which these mutations contribute to tumorigenesis. Elucidating the pathogenesis of IDH mutations will improve understanding of the molecular mechanisms of gliomagenesis and may lead to development of a new molecular classification system and novel therapies.

  14. NADP(+)-dependent D-xylose dehydrogenase from pig liver. Purification and properties.

    PubMed

    Zepeda, S; Monasterio, O; Ureta, T

    1990-03-15

    An NADP(+)-dependent D-xylose dehydrogenase from pig liver cytosol was purified about 2000-fold to apparent homogeneity with a yield of 15% and specific activity of 6 units/mg of protein. An Mr value of 62,000 was obtained by gel filtration. PAGE in the presence of SDS gave an Mr value of 32,000, suggesting that the native enzyme is a dimer of similar or identical subunits. D-Xylose, D-ribose, L-arabinose, 2-deoxy-D-glucose, D-glucose and D-mannose were substrates in the presence of NADP+ but the specificity constant (ratio kcat./Km(app.)) is, by far, much higher for D-xylose than for the other sugars. The enzyme is specific for NADP+; NAD+ is not reduced in the presence of D-xylose or other sugars. Initial-velocity studies for the forward direction with xylose or NADP+ concentrations varied at fixed concentrations of the nucleotide or the sugar respectively revealed a pattern of parallel lines in double-reciprocal plots. Km values for D-xylose and NADP+ were 8.8 mM and 0.99 mM respectively. Dead-end inhibition studies to confirm a ping-pong mechanism showed that NAD+ acted as an uncompetitive inhibitor versus NADP+ (Ki 5.8 mM) and as a competitive inhibitor versus xylose. D-Lyxose was a competitive inhibitor versus xylose and uncompetitive versus NADP+. These results fit better to a sequential compulsory ordered mechanism with NADP+ as the first substrate, but a ping-pong mechanism with xylose as the first substrate has not been ruled out. The presence of D-xylose dehydrogenase suggests that in mammalian liver D-xylose is utilized by a pathway other than the pentose phosphate pathway.

  15. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver.

    PubMed

    Deyashiki, Y; Tamada, Y; Miyabe, Y; Nakanishi, M; Matsuura, K; Hara, A

    1995-08-01

    Human liver cytosol contains multiple forms of 3 alpha-hydroxysteroid dehydrogenase and dihydrodiol dehydrogenase with hydroxysteroid dehydrogenase activity, and multiple cDNAs for the enzymes have been cloned from human liver cDNA libraries. To understand the relationship of the multiple enzyme froms to the genes, a cDNA, which has been reported to code for an isoenzyme of human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase, was expressed in Escherichia coli. The recombinant enzyme showed structural and functional properties almost identical to those of the isoenzyme purified from human liver. In addition, the recombinant isoenzyme efficiently reduced 5 alpha-dihydrotestosterone and 5 beta-dihydrocortisone, the known substrates of human liver 3 alpha-hydroxysteroid dehydrogenase and chlordecone reductase previously purified, which suggests that these human liver enzymes are identical. Furthermore, the steady-state kinetic data for NADP(+)-linked (S)-1-indanol oxidation by the recombinant isoenzyme were consistent with a sequential ordered mechanism in which NADP+ binds first. Phenolphthalein inhibited this isoenzyme much more potently than it did the other human liver dihydrodiol dehydrogenases, and was a competitive inhibitor (Ki = 20 nM) that bound to the enzyme-NADP+ complex.

  16. Activity Based Protein Profiling Leads to Identification of Novel Protein Targets for Nerve Agent VX.

    PubMed

    Carmany, Dan; Walz, Andrew J; Hsu, Fu-Lian; Benton, Bernard; Burnett, David; Gibbons, Jennifer; Noort, Daan; Glaros, Trevor; Sekowski, Jennifer W

    2017-04-17

    Organophosphorus (OP) nerve agents continue to be a threat at home and abroad during the war against terrorism. Human exposure to nerve agents such as VX results in a cascade of toxic effects relative to the exposure level including ocular miosis, excessive secretions, convulsions, seizures, and death. The primary mechanism behind these overt symptoms is the disruption of cholinergic pathways. While much is known about the primary toxicity mechanisms of nerve agents, there remains a paucity of information regarding impacts on other pathways and systemic effects. These are important for establishing a comprehensive understanding of the toxic mechanisms of OP nerve agents. To identify novel proteins that interact with VX, and that may give insight into these other mechanisms, we used activity-based protein profiling (ABPP) employing a novel VX-probe on lysates from rat heart, liver, kidney, diaphragm, and brain tissue. By making use of a biotin linked VX-probe, proteins covalently bound by the probe were isolated and enriched using streptavidin beads. The proteins were then digested, labeled with isobarically distinct tandem mass tag (TMT) labels, and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Quantitative analysis identified 132 bound proteins, with many proteins found in multiple tissues. As with previously published ABPP OP work, monoacylglycerol lipase associated proteins and fatty acid amide hydrolase (FAAH) were shown to be targets of VX. In addition to these two and other predicted neurotransmitter-related proteins, a number of proteins involved with energy metabolism were identified. Four of these enzymes, mitochondrial isocitrate dehydrogenase 2 (IDH2), isocitrate dehydrogenase 3 (IDH3), malate dehydrogenase (MDH), and succinyl CoA (SCS) ligase, were assayed for VX inhibition. Only IDH2 NADP+ activity was shown to be inhibited directly. This result is consistent with other work reporting animals exposed to OP compounds exhibit reduced IDH activity. Though clearly a secondary mechanism for toxicity, this is the first time VX has been shown to directly interfere with energy metabolism. Taken together, the ABPP work described here suggests the discovery of novel protein-agent interactions, which could be useful for the development of novel diagnostics or potential adjuvant therapeutics.

  17. Peroxisomal plant metabolism - an update on nitric oxide, Ca2+ and the NADPH recycling network.

    PubMed

    Corpas, Francisco J; Barroso, Juan B

    2018-01-29

    Plant peroxisomes are recognized organelles that - with their capacity to generate greater amounts of H 2 O 2 than other subcellular compartments - have a remarkable oxidative metabolism. However, over the last 15 years, new information has shown that plant peroxisomes contain other important molecules and enzymes, including nitric oxide (NO), peroxynitrite, a NADPH-recycling system, Ca 2+ and lipid-derived signals, such as jasmonic acid (JA) and nitro-fatty acid (NO 2 -FA). This highlights the potential for complex interactions within the peroxisomal nitro-oxidative metabolism, which also affects the status of the cell and consequently its physiological processes. In this review, we provide an update on the peroxisomal interactions between all these molecules. Particular emphasis will be placed on the generation of the free-radical NO, which requires the presence of Ca 2+ , calmodulin and NADPH redox power. Peroxisomes possess several NADPH regeneration mechanisms, such as those mediated by glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) proteins, which are involved in the oxidative phase of the pentose phosphate pathway, as well as that mediated by NADP-isocitrate dehydrogenase (ICDH). The generated NADPH is also an essential cofactor across other peroxisomal pathways, including the antioxidant ascorbate-glutathione cycle and unsaturated fatty acid β-oxidation, the latter being a source of powerful signaling molecules such as JA and NO 2 -FA. © 2018. Published by The Company of Biologists Ltd.

  18. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.

    PubMed

    Lee, Won-Heong; Chin, Young-Wook; Han, Nam Soo; Kim, Myoung-Dong; Seo, Jin-Ho

    2011-08-01

    Biosynthesis of guanosine 5'-diphosphate-L-fucose (GDP-L-fucose) requires NADPH as a reducing cofactor. In this study, endogenous NADPH regenerating enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (Icd), and NADP(+)-dependent malate dehydrogenase (MaeB) were overexpressed to increase GDP-L-fucose production in recombinant Escherichia coli. The effects of overexpression of each NADPH regenerating enzyme on GDP-L-fucose production were investigated in a series of batch and fed-batch fermentations. Batch fermentations showed that overexpression of G6PDH was the most effective for GDP-L-fucose production. However, GDP-L-fucose production was not enhanced by overexpression of G6PDH in the glucose-limited fed-batch fermentation. Hence, a glucose feeding strategy was optimized to enhance GDP-L-fucose production. Fed-batch fermentation with a pH-stat feeding mode for sufficient supply of glucose significantly enhanced GDP-L-fucose production compared with glucose-limited fed-batch fermentation. A maximum GDP-L-fucose concentration of 235.2 ± 3.3 mg l(-1), corresponding to a 21% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes only, was achieved in the pH-stat fed-batch fermentation of the recombinant E. coli overexpressing G6PDH. It was concluded that sufficient glucose supply and efficient NADPH regeneration are crucial for NADPH-dependent GDP-L-fucose production in recombinant E. coli.

  19. The Mitochondrial 2-Oxoglutarate Carrier Is Part of a Metabolic Pathway That Mediates Glucose- and Glutamine-stimulated Insulin Secretion*

    PubMed Central

    Odegaard, Matthew L.; Joseph, Jamie W.; Jensen, Mette V.; Lu, Danhong; Ilkayeva, Olga; Ronnebaum, Sarah M.; Becker, Thomas C.; Newgard, Christopher B.

    2010-01-01

    Glucose-stimulated insulin secretion from pancreatic islet β-cells is dependent in part on pyruvate cycling through the pyruvate/isocitrate pathway, which generates cytosolic α-ketoglutarate, also known as 2-oxoglutarate (2OG). Here, we have investigated if mitochondrial transport of 2OG through the 2-oxoglutarate carrier (OGC) participates in control of nutrient-stimulated insulin secretion. Suppression of OGC in clonal pancreatic β-cells (832/13 cells) and isolated rat islets by adenovirus-mediated delivery of small interfering RNA significantly decreased glucose-stimulated insulin secretion. OGC suppression also reduced insulin secretion in response to glutamine plus the glutamate dehydrogenase activator 2-amino-2-norbornane carboxylic acid. Nutrient-stimulated increases in glucose usage, glucose oxidation, glutamine oxidation, or ATP:ADP ratio were not affected by OGC knockdown, whereas suppression of OGC resulted in a significant decrease in the NADPH:NADP+ ratio during stimulation with glucose but not glutamine + 2-amino-2-norbornane carboxylic acid. Finally, OGC suppression reduced insulin secretion in response to a membrane-permeant 2OG analog, dimethyl-2OG. These data reveal that the OGC is part of a mechanism of fuel-stimulated insulin secretion that is common to glucose, amino acid, and organic acid secretagogues, involving flux through the pyruvate/isocitrate cycling pathway. Although the components of this pathway must remain intact for appropriate stimulus-secretion coupling, production of NADPH does not appear to be the universal second messenger signal generated by these reactions. PMID:20356834

  20. IDH1 R132H Mutation Enhances Cell Migration by Activating AKT-mTOR Signaling Pathway, but Sensitizes Cells to 5-FU Treatment as NADPH and GSH Are Reduced.

    PubMed

    Zhu, Huixia; Zhang, Ye; Chen, Jianfeng; Qiu, Jiangdong; Huang, Keting; Wu, Mindan; Xia, Chunlin

    2017-01-01

    Mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) gene were recently discovered in vast majority of World Health Organization (WHO) grade II/III gliomas. This study is to understand the effects of IDH1 R132H mutation in gliomagenesis and to develop new strategies to treat glioma with IDH1 R132H mutation. Over expression of IDH1 R132H in U87MG cells was done by transfecting cells with IDH1 R132H plasmid. MTT assay, scratch repair assay and western blot were performed to study effects of IDH1 R132H mutation on cell proliferation, migration, regulating AKT-mTOR signaling pathway and cell death respectively. NADP+/NADPH and GSH quantification assays were performed to evaluate effects of IDH1 R132H mutation on the production of antioxidant NADPH and GSH. We found that over expression of IDH1 R132H mutation decreased cell proliferation consistent with previous reports; however, it increased cell migration and enhanced AKT-mTOR signaling pathway activation. Mutations in isocitrate dehydrogenase (IDH) 1 also change the function of the enzymes and cause them to produce 2-hydroxyglutarate and not produce NADPH. We tested the level of NADPH and GSH and demonstrated that IDH1 R132H mutant stable cells had significantly low NADPH and GSH level compared to control or IDH1 wild type stable cells. The reduced antioxidants (NADPH and GSH) sensitized U87MG cells with IDH R132H mutant to 5-FU treatment. Our study highlights the important role of IHD1 R132H mutant in up- regulating AKT-mTOR signaling pathway and enhancing cell migration. Furthermore, we demonstrate that IDH1 R132H mutation affects cellular redox status and sensitizes gliomas cells with IDH1 R132H mutation to 5FU treatment.

  1. Effect of hypoxia on the expression of nuclear genes encoding mitochondrial proteins in U87 glioma cells.

    PubMed

    Minchenko, O H; Riabovol, O O; Tsymbal, D O; Minchenko, D O; Ratushna, O O

    2016-01-01

    We have studied the effect of hypoxia on the expression of nuclear genes encoding mitochondrial proteins in U87 glioma cells under the inhibition of IRE1 (inositol requiring enzyme-1), which controls cell proliferation and tumor growth as a central mediator of endoplasmic reticulum stress. It was shown that hypoxia down-regulated gene expression of malate dehydrogenase 2 (MDH2), malic enzyme 2 (ME2), mitochondrial aspartate aminotransferase (GOT2), and subunit B of succinate dehydrogenase (SDHB) in control (transfected by empty vector) glioma cells in a gene specific manner. At the same time, the expression level of mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2) and subunit D of succinate dehydrogenase (SDHD) genes in these cells does not significantly change in hypoxic conditions. It was also shown that the inhibition of ІRE1 signaling enzyme function in U87 glioma cells decreases the effect of hypoxia on the expression of ME2, GOT2, and SDHB genes and introduces the sensitivity of IDH2 gene to hypoxia. Furthermore, the expression of all studied genes depends on IRE1-mediated endoplasmic reticulum stress signaling in gene specific manner, because ІRE1 knockdown significantly decreases their expression in normoxic conditions, except for IDH2 gene, which expression level is strongly up-regulated. Therefore, changes in the expression level of nuclear genes encoding ME2, MDH2, IDH2, SDHB, SDHD, and GOT2 proteins possibly reflect metabolic reprogramming of mitochondria by hypoxia and IRE1-mediated endoplasmic reticulum stress signaling and correlate with suppression of glioma cell proliferation under inhibition of the IRE1 enzyme function.

  2. Guinea-pig liver testosterone 17 beta-dehydrogenase (NADP+) and aldehyde reductase exhibit benzene dihydrodiol dehydrogenase activity.

    PubMed Central

    Hara, A; Hayashibara, M; Nakayama, T; Hasebe, K; Usui, S; Sawada, H

    1985-01-01

    We have kinetically and immunologically demonstrated that testosterone 17 beta-dehydrogenase (NADP+) isoenzymes (EC 1.1.1.64) and aldehyde reductase (EC 1.1.1.2) from guinea-pig liver catalyse the oxidation of benzene dihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene) to catechol. One isoenzyme of testosterone 17 beta-dehydrogenase, which has specificity for 5 beta-androstanes, oxidized benzene dihydrodiol at a 3-fold higher rate than 5 beta-dihydrotestosterone, and showed a more than 4-fold higher affinity for benzene dihydrodiol and Vmax. value than did another isoenzyme, which exhibits specificity for 5 alpha-androstanes, and aldehyde reductase. Immunoprecipitation of guinea-pig liver cytosol with antisera against the testosterone 17 beta-dehydrogenase isoenzymes and aldehyde reductase indicated that most of the benzene dihydrodiol dehydrogenase activity in the tissue is due to testosterone 17 beta-dehydrogenase. PMID:2983661

  3. 3D-QSAR and docking studies on 1-hydroxypyridin-2-one compounds as mutant isocitrate dehydrogenase 1 inhibitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhenya; Chang, Yiqun; Han, Yushui; Liu, Kangjia; Hou, Jinsong; Dai, Chengli; Zhai, Yuanhao; Guo, Jialiang; Sun, Pinghua; Lin, Jing; Chen, Weimin

    2016-11-01

    Mutation of isocitrate dehydrogenase 1 (IDH1) which is frequently found in certain cancers such as glioma, sarcoma and acute myeloid leukemia, has been proven to be a potent drug target for cancer therapy. In silico methodologies such as 3D-QSAR and molecular docking were performed to explore compounds with better mutant isocitrate dehydrogenase 1 (MIDH1) inhibitory activity using a series of 40 newly reported 1-hydroxypyridin-2-one compounds as MIDH1 inhibitors. The satisfactory CoMFA and CoMSIA models obtained after internal and external cross-validation gave q2 values of 0.691 and 0.535, r2 values of 0.984 and 0.936, respectively. 3D contour maps generated from CoMFA and CoMSIA along with the docking results provided information about the structural requirements for better MIDH1 inhibitory activity. Based on the structure-activity relationship, 17 new potent molecules with better predicted activity than the most active compound in the literature have been designed.

  4. Structure of isocitrate dehydrogenase with alpha-ketoglutarate at 2.7-A resolution: conformational changes induced by decarboxylation of isocitrate.

    PubMed

    Stoddard, B L; Koshland, D E

    1993-09-14

    The structure of the isocitrate dehydrogenase (IDH) complex with bound alpha-ketoglutarate, Ca2+, and NADPH was solved at 2.7-A resolution. The alpha-ketoglutarate binds in the active site at the same position and orientation as isocitrate, with a difference between the two bound molecules of about 0.8 A. The Ca2+ metal is coordinated by alpha-ketoglutarate, three conserved aspartate residues, and a pair of water molecules. The largest motion in the active site relative to the isocitrate enzyme complex is observed for tyrosine 160, which originally forms a hydrogen bond to the labile carboxyl group of isocitrate and moves to form a new hydrogen bond to Asp 307 in the complex with alpha-ketoglutarate. This triggers a number of significant movements among several short loops and adjoining secondary structural elements in the enzyme, most of which participate in dimer stabilization and formation of the active-site cleft. These rearrangements are similar to the ligand-binding-induced movements observed in globins and insulin and serve as a model for an enzymatic mechanism which involves local shifts of secondary structural elements during turnover, rather than large-scale domain closures or loop transitions induced by substrate binding such as those observed in hexokinase or triosephosphate isomerase.

  5. [Genetic control of the isocitrate dehydrogenase and shikimate dehydrogenase isoenzyme systems in Sesame (Sesamun indicum L.)].

    PubMed

    Díaz, Antonio J; Layrisse, Alfredo J

    2002-01-01

    Taking into consideration that the ideal manipulation of isozymic markers needs knowledge of their genetic control, the aim of this study was to establish the inheritance and linkage degree of loci that control the expression of two sesame isozyme systems: isocitrate dehydrogenase (IDH) and shikimate dehydrogenase (SKD). The F2 electrophoretic behaviour of IDH and SKD from cultivars Turen x Arawaca cross was evaluated. The results suggest that IDH is controlled by two loci, Idh1 and Idh2 meanwhile SKD by only one, Skd1. The loci Idh1 and Skd1 showed three distinguishable patterns, corresponding to the homocygote genotypes and the heterocygote one, adjusted to a one-character common mendelian segregation 1:2:1. Cosegregation between Idh1 and Skd1 was independent.

  6. What is the role of the second "structural" NADP+-binding site in human glucose 6-phosphate dehydrogenase?

    PubMed

    Wang, Xiao-Tao; Chan, Ting Fai; Lam, Veronica M S; Engel, Paul C

    2008-08-01

    Human glucose 6-phosphate dehydrogenase, purified after overexpression in E. coli, was shown to contain one molecule/subunit of acid-extractable "structural" NADP+ and no NADPH. This tightly bound NADP+ was reduced by G6P, presumably following migration to the catalytic site. Gel-filtration yielded apoenzyme, devoid of bound NADP+ but, surprisingly, still fully active. Mr of the main component of "stripped" enzyme by gel filtration was approximately 100,000, suggesting a dimeric apoenzyme (subunit Mr = 59,000). Holoenzyme also contained tetramer molecules and, at high protein concentration, a dynamic equilibrium gave an apparent intermediate Mr of 150 kDa. Fluorescence titration of the stripped enzyme gave the K d for structural NADP+ as 37 nM, 200-fold lower than for "catalytic" NADP+. Structural NADP+ quenches 91% of protein fluorescence. At 37 degrees C, stripped enzyme, much less stable than holoenzyme, inactivated irreversibly within 2 d. Inactivation at 4 degrees C was partially reversed at room temperature, especially with added NADP+. Apoenzyme was immediately active, without any visible lag, in rapid-reaction studies. Human G6PD thus forms active dimer without structural NADP+. Apparently, the true role of the second, tightly bound NADP+ is to secure long-term stability. This fits the clinical pattern, G6PD deficiency affecting the long-lived non-nucleate erythrocyte. The Kd values for two class I mutants, G488S and G488V, were 273 nM and 480 nM, respectively (seven- and 13-fold elevated), matching the structural prediction of weakened structural NADP+ binding, which would explain decreased stability and consequent disease. Preparation of native apoenzyme and measurement of Kd constant for structural NADP+ will now allow quantitative assessment of this defect in clinical G6PD mutations.

  7. Fecal hydroxysteroid dehydrogenase activities in vegetarian Seventh-Day Adventists, control subjects, and bowel cancer patients.

    PubMed

    Macdonald, I A; Webb, G R; Mahony, D E

    1978-10-01

    Cell-free extracts were prepared from mixed fecal anaerobic bacteria grown from stools of 14 vegetarian Seventh-Day Adventists, 16 omnivorous control subjects, and eight patients recently diagnosed with cancer of the large bowel. Preparations were assayed for NAD- and NADP-dependent 3alpha-, 7alpha- and 12alpha-hydroxysteroid dehydrogenases with bile salts and androsterone as substrates (eight substrate-cofactor combinations were tested). A significant intergroup difference was observed in the amounts of NAD- and NADP-dependent 7alpha-hydroxysteroid dehydrogenase produced: bowel cancer patients exceeded controls, and controls exceeded Seventh-Day Adventists. Other enzyme activity comparisons were not significant. The pH values of the stools were significantly higher in cancer patients compared to Seventh-Day Adventists; values were 7.03 +/- 0.60 and 6.46 +/- 0.58 respectively. The pH value for controls was 6.66 +/- 0.62. A plot of pH value versus NADP-dependent 7alpha-hydroxysteroid dehydrogenase tended to separate the cancer patients from the other groups. Comparative data suggest that much of the 3alpha-hydroxysteroid dehydrogenase active against bile salt is also active against androsterone.

  8. Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase

    PubMed Central

    Hebbelmann, Inga; Selinski, Jennifer; Wehmeyer, Corinna; Goss, Tatjana; Voss, Ingo; Mulo, Paula; Kangasjärvi, Saijaliisa; Aro, Eva-Mari; Oelze, Marie-Luise; Dietz, Karl-Josef; Nunes-Nesi, Adriano; Do, Phuc T.; Fernie, Alisdair R.; Talla, Sai K.; Raghavendra, Agepati S.; Linke, Vera; Scheibe, Renate

    2012-01-01

    The nuclear-encoded chloroplast NADP-dependent malate dehydrogenase (NADP-MDH) is a key enzyme controlling the malate valve, to allow the indirect export of reducing equivalents. Arabidopsis thaliana (L.) Heynh. T-DNA insertion mutants of NADP-MDH were used to assess the role of the light-activated NADP-MDH in a typical C3 plant. Surprisingly, even when exposed to high-light conditions in short days, nadp-mdh knockout mutants were phenotypically indistinguishable from the wild type. The photosynthetic performance and typical antioxidative systems, such as the Beck–Halliwell–Asada pathway, were barely affected in the mutants in response to high-light treatment. The reactive oxygen species levels remained low, indicating the apparent absence of oxidative stress, in the mutants. Further analysis revealed a novel combination of compensatory mechanisms in order to maintain redox homeostasis in the nadp-mdh plants under high-light conditions, particularly an increase in the NTRC/2-Cys peroxiredoxin (Prx) system in chloroplasts. There were indications of adjustments in extra-chloroplastic components of photorespiration and proline levels, which all could dissipate excess reducing equivalents, sustain photosynthesis, and prevent photoinhibition in nadp-mdh knockout plants. Such metabolic flexibility suggests that the malate valve acts in concert with other NADPH-consuming reactions to maintain a balanced redox state during photosynthesis under high-light stress in wild-type plants. PMID:22140244

  9. Development of Novel Therapeutics Targeting Isocitrate Dehydrogenase Mutations in Cancer.

    PubMed

    Sharma, Horrick

    2018-05-17

    Isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that catalyze the conversion of isocitrate to α-ketoglutarate (αKG). IDH 1 and IDH2 regulate several cellular processes, including oxidative respiration, glutamine metabolism, lipogenesis, and cellular defense against oxidative damage. Mutations in IDH1 and IDH2 have recently been observed in multiple tumor types, including gliomas, acute myeloid leukemia, myelodysplastic syndromes, and chondrosarcoma. IDH1 and IDH2 mutations involve a gain in neomorphic activity that catalyze αKG conversion to (R)-2-hydroxyglutarate ((R)-2HG). IDH mutation-mediated accumulation of (R)-2HG result in epigenetic dysregulation, altered gene expression, and a block in cellular differentiation. Targeting mutant IDH by development of small molecule inhibitors is a rapidly emerging therapeutic approach as evidenced by the recent approval of the first selective mutant IDH2 inhibitor AG-221 (Enasidenib) for the treatment of IDH2-mutated AML. This review will focus on mutant isocitrate dehydrogenase as a therapeutic drug target and provides an update on selective and pan-mutant IDH 1/2 inhibitors in clinical trials and other mutant IDH inhibitors that are under development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Studies on the protective effect of dietary fish oil on uranyl-nitrate-induced nephrotoxicity and oxidative damage in rat kidney.

    PubMed

    Priyamvada, Shubha; Khan, Sara A; Khan, Md Wasim; Khan, Sheeba; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2010-01-01

    Human and animal exposure demonstrates that uranium is nephrotoxic. However, attempts to reduce it were not found suitable for clinical use. Dietary fish oil (FO) enriched in omega-3 fatty acids reduces the severity of cardiovascular and renal diseases. Present study investigates the protective effect of FO on uranyl nitrate (UN)-induced renal damage. Rats prefed with experimental diets for 15 days, given single nephrotoxic dose of UN (0.5mg/kg body weight) intraperitoneally. After 5d of UN treatment, serum/urine parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM), oxidative stress and phosphate transport were analyzed in rat kidney. UN nephrotoxicity was characterized by increased serum creatinine and blood urea nitrogen. UN increased the activity of lactate dehydrogenase and NADP-malic enzyme whereas decreased malate, isocitrate and glucose-6-phophate dehydrogenases; glucose-6-phophatase, fructose-1, 6-bisphosphatase and BBM enzyme activities. UN caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation, activities of superoxide dismutase, glutathione peroxidase and decreased catalase activity. Feeding FO alone increased activities of enzymes of glucose metabolism, BBM, oxidative stress and Pi transport. UN-elicited alterations were prevented by FO feeding. However, corn oil had no such effects and was not similarly effective. In conclusion, FO appears to protect against UN-induced nephrotoxicity by improving energy metabolism and antioxidant defense mechanism. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation.

    PubMed

    Aguilar, Lucero Romero; Pardo, Juan Pablo; Lomelí, Mónica Montero; Bocardo, Oscar Ivan Luqueño; Juárez Oropeza, Marco A; Guerra Sánchez, Guadalupe

    2017-10-01

    In many organisms, the growth under nitrogen-deprivation or a poor nitrogen source impacts on the carbon flow distribution and causes accumulation of neutral lipids, which are stored as lipid droplets (LDs). Efforts are in progress to find the mechanism of LDs synthesis and degradation, and new organisms capable of accumulating large amounts of lipids for biotechnological applications. In this context, when Ustilago maydis was cultured in the absence of a nitrogen source, there was a large accumulation of lipid bodies containing mainly triacylglycerols. The most abundant fatty acids in lipid bodies at the stationary phase were palmitic, linoleic, and oleic acids, and they were synthesized de novo by the fatty-acid synthase. In regard to the production of NADPH for the synthesis of fatty acids, the cytosolic NADP + -dependent isocitrate dehydrogenase and the glucose-6-phosphate and 6-phosphogluconate dehydrogenases couple showed the highest specific activities, with a lower activity of the malic enzyme. The ATP-citrate lyase activity was not detected in any of the culture conditions, which points to a different mechanism for the transfer of acetyl-CoA into the cytosol. Protein and RNA contents decreased when U. maydis was grown without a nitrogen source. Due to the significant accumulation of triacylglycerols and the particular composition of fatty acids, U. maydis can be considered an alternative model for biotechnological applications.

  12. Copper stress-induced changes in leaf soluble proteome of Cu-sensitive and tolerant Agrostis capillaris L. populations.

    PubMed

    Hego, Elena; Vilain, Sébastien; Barré, Aurélien; Claverol, Stéphane; Dupuy, Jean-William; Lalanne, Céline; Bonneu, Marc; Plomion, Christophe; Mench, Michel

    2016-05-01

    Changes in leaf soluble proteome were explored in 3-month-old plants of metallicolous (M) and nonmetallicolous (NM) Agrostis capillaris L. populations exposed to increasing Cu concentrations (1-50 μM) to investigate molecular mechanisms underlying plant responses to Cu excess and tolerance of M plants. Plants were cultivated on perlite (CuSO4 spiked-nutrient solution). Soluble proteins, extracted by the trichloroacetic acid/acetone procedure, were separated with 2-DE (linear 4-7 pH gradient). Analysis of CCB-stained gels (PDQuest) reproducibly detected 214 spots, and 64 proteins differentially expressed were identified using LC-MS/MS. In both populations, Cu excess impacted both light-dependent (OEE, cytochrome b6-f complex, and chlorophyll a-b binding protein), and -independent (RuBisCO) photosynthesis reactions, more intensively in NM leaves (ferredoxin-NADP reductase and metalloprotease FTSH2). In both populations, upregulation of isocitrate dehydrogenase and cysteine/methionine synthases respectively suggested increased isocitrate oxidation and enhanced need for S-containing amino-acids, likely for chelation and detoxification. In NM leaves, an increasing need for energetic compounds was indicated by the stimulation of ATPases, glycolysis, pentose phosphate pathway, and Calvin cycle enzymes; impacts on protein metabolism and oxidative stress increase were respectively suggested by the rise of chaperones and redox enzymes. Overexpression of a HSP70 may be pivotal for M Cu tolerance by protecting protein metabolism. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD001930 (http//proteomecentral.proteomexchange.org/dataset/PXD001930). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Oxidoreductases Involved in Cell Carbon Synthesis of Methanobacterium thermoautotrophicum

    PubMed Central

    Zeikus, J. G.; Fuchs, G.; Kenealy, W.; Thauer, R. K.

    1977-01-01

    Cell-free extracts of Methanobacterium thermoautotrophicum were found to contain high activities of the following oxidoreductases (at 60°C): pyruvate dehydrogenase (coenzyme A acetylating), 275 nmol/min per mg of protein; α-ketoglutarate dehydrogenase (coenzyme A acylating), 100 nmol/min per mg; fumarate reductase, 360 nmol/min per mg; malate dehydrogenase, 240 nmol/min per mg; and glyceraldehyde-3-phosphate dehydrogenase, 100 nmol/min per mg. The kinetic properties (apparent Vmax and KM values), pH optimum, temperature dependence of the rate, and specificity for electron acceptors/donors of the different oxidoreductases were examined. Pyruvate dehydrogenase and α-ketoglutarate dehydrogenase were shown to be two separate enzymes specific for factor 420 rather than for nicotinamide adenine dinucleotide (NAD), NADP, or ferredoxin as the electron acceptor. Both activities catalyzed the reduction of methyl viologen with the respective α-ketoacid and a coenzyme A-dependent exchange between the carboxyl group of the α-ketoacid and CO2. The data indicate that the two enzymes are similar to pyruvate synthase and α-ketoglutarate synthase, respectively. Fumarate reductase was found in the soluble cell fraction. This enzyme activity coupled with reduced benzyl viologen as the electron donor, but reduced factor 420, NADH, or NADPH was not effective. The cells did not contain menaquinone, thus excluding this compound as the physiological electron donor for fumarate reduction. NAD was the preferred coenzyme for malate dehydrogenase, whereas NADP was preferred for glyceraldehyde-3-phosphate dehydrogenase. The organism also possessed a factor 420-dependent hydrogenase and a factor 420-linked NADP reductase. The involvement of the described oxidoreductases in cell carbon synthesis is discussed. PMID:914779

  14. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase.

    PubMed

    Weckbecker, Andrea; Hummel, Werner

    2004-11-01

    Recombinant pyridine nucleotide transhydrogenase (PNT) from Escherichia coli has been used to regenerate NAD+ and NADPH. The pnta and pntb genes encoding for the alpha- and beta-subunits were cloned and co-expressed with NADP+-dependent alcohol dehydrogenase (ADH) from Lactobacillus kefir and NAD+-dependent formate dehydrogenase (FDH) from Candida boidinii. Using this whole-cell biocatalyst, efficient conversion of prochiral ketones to chiral alcohols was achieved: 66% acetophenone was reduced to (R)-phenylethanol over 12 h, whereas only 19% (R)-phenylethanol was formed under the same conditions with cells containing ADH and FDH genes but without PNT genes. Cells that were permeabilized with toluene showed ketone reduction only if both cofactors were present.

  15. Proteomic analysis of cardiac metabolic enzymes in asphyxiated newborn piglets.

    PubMed

    Fert-Bober, Justyna; Sawicki, Grzegorz; Lopaschuk, Gary D; Cheung, Po-Yin

    2008-11-01

    Hypoxia/reoxygenation (H/R) creates an energetic deficiency in the heart, which may contribute to myocardial dysfunction. We hypothesized that H/R-induced impairment of cardioenergetic enzymes occurs in asphyxiated newborn animals. After hypoxia for 2 h (10-15% oxygen), newborn piglets were resuscitated with 100% oxygen for 1 h, followed by 21% oxygen for 3 h. Sham-operated control piglets had no H/R. Hemodynamic parameters in the piglets were continuously measured. At the end of experiment, hearts were isolated for proteomic analysis. In asphyxiated hearts, the level of isocitrate dehydrogenase and malate dehydrogenase was reduced compared to controls. Inverse correlations between the level of myocardial malate dehydrogenase and cardiac function were observed in the control, but not the H/R hearts. We conclude that reoxygenation of asphyxiated newborn piglets reduces the level of myocardial isocitrate dehydrogenase and malate dehydrogenase. While the cause is not clear, it may be related to the impaired tricarboxylic acid cycle pathway and energy production in the heart.

  16. Functional contribution of coenzyme specificity-determining sites of 7α-hydroxysteroid dehydrogenase from Clostridium absonum.

    PubMed

    Lou, Deshuai; Wang, Yue; Tan, Jun; Zhu, Liancai; Ji, Shunlin; Wang, Bochu

    2017-10-01

    Studies of the molecular determinants of coenzyme specificity help to reveal the structure-function relationship of enzymes, especially with regards to coenzyme specificity-determining sites (CSDSs) that usually mediate complex interactions. NADP(H)-dependent 7α-hydroxysteroid dehydrogenase from Clostridium absonum (CA 7α-HSDH), a member of the short-chain dehydrogenase/reductase superfamily (SDRs), possesses positively charged CSDSs that mainly contain T15, R16, R38, and R194, forming complicated polar interactions with the adenosine ribose C2 phosphate group of NADP(H). The R38 residue is crucial for coenzyme anchoring, but the influence of the other residues on coenzyme utilization is still not clear. Hence, we performed alanine scanning mutagenesis and molecular dynamic (MD) simulations. The results suggest that the natural CSDSs have the greatest NADP(H)-binding affinity, but not the best activity (k cat ) toward NADP + . Compared with the wild type and other mutants, the mutant R194A showed the highest catalytic efficiency (k cat /K m ), which was more than three-times that of the wild type. MD simulation and kinetics analysis suggested that the importance of the CSDSs of CA 7α-HSDH should be in accordance with the following order R38>T15>R16>R194, and S39 may have a supporting role in NADP(H) anchoring for mutants R16A/T194A and T15A/R16A/T194A. Copyright © 2017. Published by Elsevier Ltd.

  17. What is the role of the second “structural” NADP+-binding site in human glucose 6-phosphate dehydrogenase?

    PubMed Central

    Wang, Xiao-Tao; Chan, Ting Fai; Lam, Veronica M.S.; Engel, Paul C.

    2008-01-01

    Human glucose 6-phosphate dehydrogenase, purified after overexpression in E. coli, was shown to contain one molecule/subunit of acid-extractable “structural” NADP+ and no NADPH. This tightly bound NADP+ was reduced by G6P, presumably following migration to the catalytic site. Gel-filtration yielded apoenzyme, devoid of bound NADP+ but, surprisingly, still fully active. Mr of the main component of “stripped” enzyme by gel filtration was ∼100,000, suggesting a dimeric apoenzyme (subunit Mr = 59,000). Holoenzyme also contained tetramer molecules and, at high protein concentration, a dynamic equilibrium gave an apparent intermediate Mr of 150 kDa. Fluorescence titration of the stripped enzyme gave the K d for structural NADP+ as 37 nM, 200-fold lower than for “catalytic” NADP+. Structural NADP+ quenches 91% of protein fluorescence. At 37°C, stripped enzyme, much less stable than holoenzyme, inactivated irreversibly within 2 d. Inactivation at 4°C was partially reversed at room temperature, especially with added NADP+. Apoenzyme was immediately active, without any visible lag, in rapid-reaction studies. Human G6PD thus forms active dimer without structural NADP+. Apparently, the true role of the second, tightly bound NADP+ is to secure long-term stability. This fits the clinical pattern, G6PD deficiency affecting the long-lived non-nucleate erythrocyte. The K d values for two class I mutants, G488S and G488V, were 273 nM and 480 nM, respectively (seven- and 13-fold elevated), matching the structural prediction of weakened structural NADP+ binding, which would explain decreased stability and consequent disease. Preparation of native apoenzyme and measurement of K d constant for structural NADP+ will now allow quantitative assessment of this defect in clinical G6PD mutations. PMID:18493020

  18. A Bacillus subtilis malate dehydrogenase gene.

    PubMed Central

    Jin, S; De Jesús-Berríos, M; Sonenshein, A L

    1996-01-01

    A Bacillus subtilis gene for malate dehydrogenase (citH) was found downstream of genes for citrate synthase and isocitrate dehydrogenase. Disruption of citH caused partial auxotrophy for aspartate and a requirement for aspartate during sporulation. In the absence of aspartate, citH mutant cells were blocked at a late stage of spore formation. PMID:8550482

  19. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. [Phaseolus vulgaris L. ; Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loewus, M.W.; Bedgar, D.L.; Saito, Kazumi

    An NADP-dependent dehydrogenase catalyzing the conversion of L-sorbosone to L-ascorbic acid has been isolated from Phaseolus vulgaris L. and Spinacia oleracea L. and partially purified. It is stable at {minus}20{degree}C for up to 8 months. Molecular masses, as determined by gel filtration, were 21 and 29 kilodaltons for bean and spinach enzymes, respectively. K{sub m} for sorbosone were 12 {plus minus} 2 and 18 {plus minus} 2 millimolar and for NADP{sup +}, 0.14 {plus minus} 0.05 and 1.2 {plus minus} 0.5 millimolar, for bean and spinach, respectively. Lycorine, a purported inhibitor of L-ascorbic acid biosynthesis, had no effect on themore » reaction.« less

  20. Structure of a short-chain dehydrogenase/reductase from Bacillus anthracis

    PubMed Central

    Hou, Jing; Wojciechowska, Kamila; Zheng, Heping; Chruszcz, Maksymilian; Cooper, David R.; Cymborowski, Marcin; Skarina, Tatiana; Gordon, Elena; Luo, Haibin; Savchenko, Alexei; Minor, Wladek

    2012-01-01

    The crystal structure of a short-chain dehydrogenase/reductase from Bacillus anthracis strain ‘Ames Ancestor’ complexed with NADP has been determined and refined to 1.87 Å resolution. The structure of the enzyme consists of a Rossmann fold composed of seven parallel β-strands sandwiched by three α-­helices on each side. An NADP molecule from an endogenous source is bound in the conserved binding pocket in the syn conformation. The loop region responsible for binding another substrate forms two perpendicular short helices connected by a sharp turn. PMID:22684058

  1. Primary structure of the light-dependent regulatory site of corn NADP-malate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decottignies, P.; Schmitter, J.M.; Miginiac-Maslow, M.

    1988-08-25

    The light-activated NADP-malate dehydrogenase (NADP-MDH) catalyzes the reduction of oxaloacetate to malate in higher plant chloroplasts. This enzyme is regulated in vivo by the ferredoxin-thioredoxin system through redox reactions. NADP-MDH has been photoactivated in vitro in a chloroplast system reconstituted from the pure protein components and thylakoid membranes. Photoactivation was accompanied by the appearance of new thiol groups (followed by (14C)iodoacetate incorporation). 14C-Carboxymethylated NADP-MDH has been purified from the incubation mixture and its amino-terminal sequence analyzed. Two (14C)carboxymethylcysteines were identified at positions 10 and 15 after light activation, while they were not detected in the dark-treated protein. In addition, themore » analysis of the tryptic digest of light-activated (14C)carboxymethylated NADP-MDH revealed that the radioactive label was mostly incorporated in Cys10 and Cys15, indicating that these 2 residues play a major role in the light activation mechanism. Moreover, an activation model, in which photoreduced thio-redoxin was replaced by the dithiol reductant dithio-threitol, has been developed. When NADP-MDH was activated in this way, the same sulfhydryls were found to be labeled, and alternatively, they did not incorporate any radioactivity when dithiothreitol reduction was performed after carboxymethylation in denaturating conditions. These results indicate that activation (by light or by dithiothreitol) proceeds on each subunit by reduction of a disulfide bridge located at the amino terminus of the enzyme between Cys10 and Cys15.« less

  2. Study of the Glutaminase Inhibitor CB-839 in Solid Tumors

    ClinicalTrials.gov

    2016-08-18

    Solid Tumors; Triple-Negative Breast Cancer; Non Small Cell Lung Cancer; Renal Cell Carcinoma; Mesothelioma; Fumarate Hydratase (FH)-Deficient Tumors; Succinate Dehydrogenase (SDH)-Deficient Gastrointestinal Stromal Tumors (GIST); Succinate Dehydrogenase (SDH)-Deficient Non-gastrointestinal Stromal Tumors; Tumors Harboring Isocitrate Dehydrogenase-1 (IDH1) and IDH2 Mutations; Tumors Harboring Amplifications in the cMyc Gene

  3. IDH1 R132H Mutation Enhances Cell Migration by Activating AKT-mTOR Signaling Pathway, but Sensitizes Cells to 5-FU Treatment as NADPH and GSH Are Reduced

    PubMed Central

    Qiu, Jiangdong; Huang, Keting; Wu, Mindan; Xia, Chunlin

    2017-01-01

    Aim of study Mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) gene were recently discovered in vast majority of World Health Organization (WHO) grade II/III gliomas. This study is to understand the effects of IDH1 R132H mutation in gliomagenesis and to develop new strategies to treat glioma with IDH1 R132H mutation. Materials and methods Over expression of IDH1 R132H in U87MG cells was done by transfecting cells with IDH1 R132H plasmid. MTT assay, scratch repair assay and western blot were performed to study effects of IDH1 R132H mutation on cell proliferation, migration, regulating AKT-mTOR signaling pathway and cell death respectively. NADP+/NADPH and GSH quantification assays were performed to evaluate effects of IDH1 R132H mutation on the production of antioxidant NADPH and GSH. Results We found that over expression of IDH1 R132H mutation decreased cell proliferation consistent with previous reports; however, it increased cell migration and enhanced AKT-mTOR signaling pathway activation. Mutations in isocitrate dehydrogenase (IDH) 1 also change the function of the enzymes and cause them to produce 2-hydroxyglutarate and not produce NADPH. We tested the level of NADPH and GSH and demonstrated that IDH1 R132H mutant stable cells had significantly low NADPH and GSH level compared to control or IDH1 wild type stable cells. The reduced antioxidants (NADPH and GSH) sensitized U87MG cells with IDH R132H mutant to 5-FU treatment. Conclusion Our study highlights the important role of IHD1 R132H mutant in up- regulating AKT-mTOR signaling pathway and enhancing cell migration. Furthermore, we demonstrate that IDH1 R132H mutation affects cellular redox status and sensitizes gliomas cells with IDH1 R132H mutation to 5FU treatment. PMID:28052098

  4. Crystal structure of a chimaeric bacterial glutamate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Tânia; Sharkey, Michael A.; Engel, Paul C.

    2016-05-23

    Glutamate dehydrogenases (EC 1.4.1.2–4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P) +as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD +versusNADP +, but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies,more » as shown by the apo structure of glutamate dehydrogenase fromClostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia colienzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP +cofactor from the parentE. colidomain II, although there are subtle differences in catalytic activity.« less

  5. Novel Insights for Inhibiting Mutant Heterodimer IDH1wt-R132H in Cancer: An In-Silico Approach.

    PubMed

    Juritz, Ezequiel Iván; Bascur, Juan Pablo; Almonacid, Daniel Eduardo; González-Nilo, Fernando Danilo

    2018-06-01

    Isocitrate dehydrogenase 1 (IDH1) is a dimeric enzyme responsible for supplying the cell's nicotinamide adenine dinucleotide phosphate (NADPH) reserves via dehydrogenation of isocitrate (ICT) and reduction of NADP+. Mutations in position R132 trigger cancer by enabling IDH1 to produce D-2-hydroxyglutarate (2-HG) and reduce inhibition by ICT. Mutant IDH1 can be found as a homodimer or a heterodimer. We propose a novel strategy to inhibit IDH1 R132 variants as a means not to decrease the concentration of 2-HG but to provoke a cytotoxic effect, as the cell malignancy at this point no longer depends on 2-HG. We aim to inhibit the activity of the mutant heterodimer to block the wild-type subunit. Limiting the NADPH reserves in a cancerous cell will enhance its susceptibility to the oxidative stress provoked by chemotherapy. We performed a virtual screening using all US FDA-approved drugs to replicate the loss of inhibition of mutant IDH1 by ICT. We characterized our results based on molecular interactions and correlated them with the described phenotypes. We replicated the loss of inhibition by ICT in mutant IDH1. We identified 20 drugs with the potential to inhibit the heterodimeric isoform. Six of them are used in cancer treatment. We present 20 FDA-approved drugs with the potential to inhibit IDH1 wild-type activity in mutated cells. We believe this work may provide important insights into current and new approaches to dealing with IDH1 mutations. In addition, it may be used as a basis for additional studies centered on drugs presenting differential sensitivities to different IDH1 isoforms.

  6. Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation.

    PubMed

    Ohka, Fumiharu; Ito, Maki; Ranjit, Melissa; Senga, Takeshi; Motomura, Ayako; Motomura, Kazuya; Saito, Kaori; Kato, Keiko; Kato, Yukinari; Wakabayashi, Toshihiko; Soga, Tomoyoshi; Natsume, Atsushi

    2014-06-01

    Isocitrate dehydrogenase 1 (IDH1), which localizes to the cytosol and peroxisomes, catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) and in parallel converts NADP(+) to NADPH. IDH1 mutations are frequently detected in grades 2-4 gliomas and in acute myeloid leukemias (AML). Mutations of IDH1 have been identified at codon 132, with arginine being replaced with histidine in most cases. Mutant IDH1 gains novel enzyme activity converting α-KG to D-2-hydroxyglutarate (2-HG) which acts as a competitive inhibitor of α-KG. As a result, the activity of α-KG-dependent enzyme is reduced. Based on these findings, 2-HG has been proposed to be an oncometabolite. In this study, we established HEK293 and U87 cells that stably expressed IDH1-WT and IDH1-R132H and investigated the effect of glutaminase inhibition on cell proliferation with 6-diazo-5-oxo-L-norleucine (DON). We found that cell proliferation was suppressed in IDH1-R132H cells. The addition of α-KG restored cell proliferation. The metabolic features of 33 gliomas with wild type IDH1 (IDH1-WT) and with IDH1-R132H mutation were examined by global metabolome analysis using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We showed that the 2-HG levels were highly elevated in gliomas with IDH1-R132H mutation. Intriguingly, in gliomas with IDH1-R132H, glutamine and glutamate levels were significantly reduced which implies replenishment of α-KG by glutaminolysis. Based on these results, we concluded that glutaminolysis is activated in gliomas with IDH1-R132H mutation and that development of novel therapeutic approaches targeting activated glutaminolysis is warranted.

  7. IDH2 knockdown sensitizes tumor cells to emodin cytotoxicity in vitro and in vivo.

    PubMed

    Ku, Hyeong Jun; Kwon, Oh-Shin; Kang, Boem Sik; Lee, Dong-Seok; Lee, Hyun-Shik; Park, Jeen-Woo

    2016-10-01

    Although reactive oxygen species (ROS) work as second messengers at sublethal concentrations, higher levels of ROS can kill cancer cells. Since cellular ROS levels are determined by a balance between ROS generation and removal, the combination of ROS generators, and the depletion of reducing substances greatly enhance ROS levels. Emodin (1,3,8-trihydroxy-6-methyl anthraquinone), a natural anthraquinone derivative from the root and rhizome of numerous plants, is a ROS generator that induces apoptosis in cancer cells. The major enzyme to generate mitochondrial NADPH is the mitochondrial isoenzyme of NADP + -dependent isocitrate dehydrogenase (IDH2). In this report, we demonstrate that IDH2 knockdown effectively enhances emodin-induced apoptosis of mouse melanoma B16F10 cells through the regulation of ROS generation. Our findings suggest that suppression of IDH2 activity results in perturbation of the cellular redox balance and, ultimately, exacerbate emodin-induced apoptotic cell death in B16F10 cells. Our results strongly support a therapeutic strategy in the management of cancer that alters the intracellular redox status by the combination of a ROS generator and the suppression of antioxidant enzyme activity.

  8. Globins Scavenge Sulfur Trioxide Anion Radical*

    PubMed Central

    Gardner, Paul R.; Gardner, Daniel P.; Gardner, Alexander P.

    2015-01-01

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 106 m−1 s−1, respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 106 m−1 s−1, respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP+-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested. PMID:26381408

  9. High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP(+) to NAD(.).

    PubMed

    Huang, Rui; Chen, Hui; Zhong, Chao; Kim, Jae Eung; Zhang, Yi-Heng Percival

    2016-09-02

    Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP(+) to NAD(+). Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfate (PMS), NAD(+), and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP(+) to NAD(+). This screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT.

  10. Nitrate uptake and utilization is modulated by exogenous gamma-aminobutyric acid in Arabidopsis thaliana seedlings.

    PubMed

    Barbosa, Jose M; Singh, Narendra K; Cherry, Joe H; Locy, Robert D

    2010-06-01

    Exogenously applied GABA modulates root growth by inhibition of root elongation when seedlings were grown in vitro on full-strength Murashige and Skoog (MS) salts, but root elongation was stimulated when seedlings were grown on 1/8 strength MS salts. When the concentration of single ions in MS salts was individually varied, the control of growth between inhibition and stimulation was found to be related to the level of nitrate (NO(3)(-)) in the growth medium. At NO(3)(-) concentrations below 40 mM (full-strength MS salts level), root growth was stimulated by the addition of GABA to the growth medium; whereas at concentrations above 40 mM NO(3)(-), the addition of GABA to the growth medium inhibited root elongation. GABA promoted NO(3)(-) uptake at low NO(3)(-), while GABA inhibited NO(3)(-) uptake at high NO(3)(-). Activities of several enzymes involved in nitrogen and carbon metabolism including nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (NADH-GOGAT), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and phosphoenol pyruvate carboxylase (PEPCase) were regulated by GABA in the growth medium. Supplementing 1/8 strength MS medium with 50 mM GABA enhanced the activities of all of the above enzymes except ICDH activities in root tissues. However, at full-strength MS, GABA showed no inhibitory effect on the activities of these enzymes, except on GS in both root and shoot tissues, and PEPCase activity in shoot tissues. Exogenous GABA increased the amount of NR protein rather than its activation status in the tissues. This study shows that GABA affects the growth of Arabidopsis, possibly by acting as a signaling molecule, modulating the activity of enzymes involved in primary nitrogen metabolism and nitrate uptake.

  11. Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: in situ detection of 2-HG and α-KG

    PubMed Central

    2013-01-01

    Background Point mutations in genes encoding NADP+-dependent isocitrate dehydrogenases (especially IDH1) are common in lower grade diffuse gliomas and secondary glioblastomas and occur early during tumor development. The contribution of these mutations to gliomagenesis is not completely understood and research is hampered by the lack of relevant tumor models. We previously described the development of the patient-derived high-grade oligodendroglioma xenograft model E478 that carries the commonly occurring IDH1-R132H mutation. We here report on the analyses of E478 xenografts at the genetic, histologic and metabolic level. Results LC-MS and in situ mass spectrometric imaging by LESA-nano ESI-FTICR revealed high levels of the proposed oncometabolite D-2-hydroxyglutarate (D-2HG), the product of enzymatic conversion of α-ketoglutarate (α-KG) by IDH1-R132H, in the tumor but not in surrounding brain parenchyma. α-KG levels and total NADP+-dependent IDH activity were similar in IDH1-mutant and -wildtype xenografts, demonstrating that IDH1-mutated cancer cells maintain α-KG levels. Interestingly, IDH1-mutant tumor cells in vivo present with high densities of mitochondria and increased levels of mitochondrial activity as compared to IDH1-wildtype xenografts. It is not yet clear whether this altered mitochondrial activity is a driver or a consequence of tumorigenesis. Conclusions The oligodendroglioma model presented here is a valuable model for further functional elucidation of the effects of IDH1 mutations on tumor metabolism and may aid in the rational development of novel therapeutic strategies for the large subgroup of gliomas carrying IDH1 mutations. PMID:24252742

  12. Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: in situ detection of 2-HG and α-KG.

    PubMed

    Navis, Anna C; Niclou, Simone P; Fack, Fred; Stieber, Daniel; van Lith, Sanne; Verrijp, Kiek; Wright, Alan; Stauber, Jonathan; Tops, Bastiaan; Otte-Holler, Irene; Wevers, Ron A; van Rooij, Arno; Pusch, Stefan; von Deimling, Andreas; Tigchelaar, Wikky; van Noorden, Cornelis J F; Wesseling, Pieter; Leenders, William P J

    2013-05-29

    Point mutations in genes encoding NADP+-dependent isocitrate dehydrogenases (especially IDH1) are common in lower grade diffuse gliomas and secondary glioblastomas and occur early during tumor development. The contribution of these mutations to gliomagenesis is not completely understood and research is hampered by the lack of relevant tumor models. We previously described the development of the patient-derived high-grade oligodendroglioma xenograft model E478 that carries the commonly occurring IDH1-R132H mutation. We here report on the analyses of E478 xenografts at the genetic, histologic and metabolic level. LC-MS and in situ mass spectrometric imaging by LESA-nano ESI-FTICR revealed high levels of the proposed oncometabolite D-2-hydroxyglutarate (D-2HG), the product of enzymatic conversion of α-ketoglutarate (α-KG) by IDH1-R132H, in the tumor but not in surrounding brain parenchyma. α-KG levels and total NADP+-dependent IDH activity were similar in IDH1-mutant and -wildtype xenografts, demonstrating that IDH1-mutated cancer cells maintain α-KG levels. Interestingly, IDH1-mutant tumor cells in vivo present with high densities of mitochondria and increased levels of mitochondrial activity as compared to IDH1-wildtype xenografts. It is not yet clear whether this altered mitochondrial activity is a driver or a consequence of tumorigenesis. The oligodendroglioma model presented here is a valuable model for further functional elucidation of the effects of IDH1 mutations on tumor metabolism and may aid in the rational development of novel therapeutic strategies for the large subgroup of gliomas carrying IDH1 mutations.

  13. Apollo-NADP(+): a spectrally tunable family of genetically encoded sensors for NADP(+).

    PubMed

    Cameron, William D; Bui, Cindy V; Hutchinson, Ashley; Loppnau, Peter; Gräslund, Susanne; Rocheleau, Jonathan V

    2016-04-01

    NADPH-dependent antioxidant pathways have a critical role in scavenging hydrogen peroxide (H2O2) produced by oxidative phosphorylation. Inadequate scavenging results in H2O2 accumulation and can cause disease. To measure NADPH/NADP(+) redox states, we explored genetically encoded sensors based on steady-state fluorescence anisotropy due to FRET (fluorescence resonance energy transfer) between homologous fluorescent proteins (homoFRET); we refer to these sensors as Apollo sensors. We created an Apollo sensor for NADP(+) (Apollo-NADP(+)) that exploits NADP(+)-dependent homodimerization of enzymatically inactive glucose-6-phosphate dehydrogenase (G6PD). This sensor is reversible, responsive to glucose-stimulated metabolism and spectrally tunable for compatibility with many other sensors. We used Apollo-NADP(+) to study beta cells responding to oxidative stress and demonstrated that NADPH is significantly depleted before H2O2 accumulation by imaging a Cerulean-tagged version of Apollo-NADP(+) with the H2O2 sensor HyPer.

  14. Demonstration of 3 alpha(17 beta)-hydroxysteroid dehydrogenase distinct from 3 alpha-hydroxysteroid dehydrogenase in hamster liver.

    PubMed Central

    Ohmura, M; Hara, A; Nakagawa, M; Sawada, H

    1990-01-01

    NAD(+)-linked and NADP(+)-linked 3 alpha-hydroxysteroid dehydrogenases were purified to homogeneity from hamster liver cytosol. The two monomeric enzymes, although having similar molecular masses of 38,000, differed from each other in pI values, activation energy and heat stability. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with protease. The NADP(+)-linked enzyme catalysed the oxidoreduction of various 3 alpha-hydroxysteroids, whereas the NAD(+)-linked enzyme oxidized the 3 alpha-hydroxy group of pregnanes and some bile acids, and the 17 beta-hydroxy group of testosterone and androstanes. The thermal stabilities of the 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the NAD(+)-linked enzyme were identical, and the two enzyme activities were inhibited by mixing 17 beta- and 3 alpha-hydroxysteroid substrates, respectively. Medroxyprogesterone acetate, hexoestrol and 3 beta-hydroxysteroids competitively inhibited 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the enzyme. These results show that hamster liver contains a 3 alpha(17 beta)-hydroxysteroid dehydrogenase structurally and functionally distinct from 3 alpha-hydroxysteroid dehydrogenase. Images Fig. 1. Fig. 2. PMID:2317205

  15. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells

    NASA Astrophysics Data System (ADS)

    Yamada, Shigeru; Kotake, Yaichiro; Demizu, Yosuke; Kurihara, Masaaki; Sekino, Yuko; Kanda, Yasunari

    2014-08-01

    Tributyltin (TBT) is known to cause developmental defects as endocrine disruptive chemicals (EDCs). At nanomoler concentrations, TBT actions were mediated by genomic pathways via PPAR/RXR. However, non-genomic target of TBT has not been elucidated. To investigate non-genomic TBT targets, we performed comprehensive metabolomic analyses using human embryonic carcinoma NT2/D1 cells. We found that 100 nM TBT reduced the amounts of α-ketoglutarate, succinate and malate. We further found that TBT decreased the activity of NAD-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the conversion of isocitrate to α-ketoglutarate in the TCA cycle. In addition, TBT inhibited cell growth and enhanced neuronal differentiation through NAD-IDH inhibition. Furthermore, studies using bacterially expressed human NAD-IDH and in silico simulations suggest that TBT inhibits NAD-IDH due to a possible interaction. These results suggest that NAD-IDH is a novel non-genomic target of TBT at nanomolar levels. Thus, a metabolomic approach may provide new insights into the mechanism of EDC action.

  16. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells.

    PubMed

    Yamada, Shigeru; Kotake, Yaichiro; Demizu, Yosuke; Kurihara, Masaaki; Sekino, Yuko; Kanda, Yasunari

    2014-08-05

    Tributyltin (TBT) is known to cause developmental defects as endocrine disruptive chemicals (EDCs). At nanomoler concentrations, TBT actions were mediated by genomic pathways via PPAR/RXR. However, non-genomic target of TBT has not been elucidated. To investigate non-genomic TBT targets, we performed comprehensive metabolomic analyses using human embryonic carcinoma NT2/D1 cells. We found that 100 nM TBT reduced the amounts of α-ketoglutarate, succinate and malate. We further found that TBT decreased the activity of NAD-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the conversion of isocitrate to α-ketoglutarate in the TCA cycle. In addition, TBT inhibited cell growth and enhanced neuronal differentiation through NAD-IDH inhibition. Furthermore, studies using bacterially expressed human NAD-IDH and in silico simulations suggest that TBT inhibits NAD-IDH due to a possible interaction. These results suggest that NAD-IDH is a novel non-genomic target of TBT at nanomolar levels. Thus, a metabolomic approach may provide new insights into the mechanism of EDC action.

  17. Isocitrate dehydrogenase mutations in gliomas

    PubMed Central

    Waitkus, Matthew S.; Diplas, Bill H.; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg132 of IDH1 and Arg172 of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy. PMID:26188014

  18. Discovery and Optimization of Allosteric Inhibitors of Mutant Isocitrate Dehydrogenase 1 (R132H IDH1) Displaying Activity in Human Acute Myeloid Leukemia Cells.

    PubMed

    Jones, Stuart; Ahmet, Jonathan; Ayton, Kelly; Ball, Matthew; Cockerill, Mark; Fairweather, Emma; Hamilton, Nicola; Harper, Paul; Hitchin, James; Jordan, Allan; Levy, Colin; Lopez, Ruth; McKenzie, Eddie; Packer, Martin; Plant, Darren; Simpson, Iain; Simpson, Peter; Sinclair, Ian; Somervaille, Tim C P; Small, Helen; Spencer, Gary J; Thomson, Graeme; Tonge, Michael; Waddell, Ian; Walsh, Jarrod; Waszkowycz, Bohdan; Wigglesworth, Mark; Wiseman, Daniel H; Ogilvie, Donald

    2016-12-22

    A collaborative high throughput screen of 1.35 million compounds against mutant (R132H) isocitrate dehydrogenase IDH1 led to the identification of a novel series of inhibitors. Elucidation of the bound ligand crystal structure showed that the inhibitors exhibited a novel binding mode in a previously identified allosteric site of IDH1 (R132H). This information guided the optimization of the series yielding submicromolar enzyme inhibitors with promising cellular activity. Encouragingly, one compound from this series was found to induce myeloid differentiation in primary human IDH1 R132H AML cells in vitro.

  19. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Jennifer L.; Zhang, Xiaolin

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  20. Characterization of a novel NADP+-dependent D-arabitol dehydrogenase from the plant pathogen Uromyces fabae

    PubMed Central

    2005-01-01

    We have identified and characterized a novel NADP+-dependent D-arabitol dehydrogenase and the corresponding gene from the rust fungus Uromyces fabae, a biotrophic plant pathogen on broad bean (Vicia faba). The new enzyme was termed ARD1p (D-arabitol dehydrogenase 1). It recognizes D-arabitol and mannitol as substrates in the forward reaction, and D-xylulose, D-ribulose and D-fructose as substrates in the reverse reaction. Co-factor specificity was restricted to NADP(H). Kinetic data for the major substrates and co-factors are presented. A detailed analysis of the organization and expression pattern of the ARD1 gene are also given. Immunocytological data indicate a localization of the gene product predominantly in haustoria, the feeding structures of these fungi. Analyses of metabolite levels during pathogenesis indicate that the D-arabitol concentration rises dramatically as infection progresses, and D-arabitol was shown in an in vitro system to be capable of quenching reactive oxygen species involved in host plant defence reactions. ARD1p may therefore play an important role in carbohydrate metabolism and in establishing and/or maintaining the biotrophic interaction in U. fabae. PMID:15796718

  1. Intracellular NADPH Levels Affect the Oligomeric State of the Glucose 6-Phosphate Dehydrogenase

    PubMed Central

    Tramonti, Angela; Lanini, Claudio; Cialfi, Samantha; De Biase, Daniela; Falcone, Claudio

    2012-01-01

    In the yeast Kluyveromyces lactis, glucose 6-phosphate dehydrogenase (G6PDH) is detected as two differently migrating forms on native polyacrylamide gels. The pivotal metabolic role of G6PDH in K. lactis led us to investigate the mechanism controlling the two activities in respiratory and fermentative mutant strains. An extensive analysis of these mutants showed that the NAD+(H)/NADP+(H)-dependent cytosolic alcohol (ADH) and aldehyde (ALD) dehydrogenase balance affects the expression of the G6PDH activity pattern. Under fermentative/ethanol growth conditions, the concomitant activation of ADH and ALD activities led to cytosolic accumulation of NADPH, triggering an alteration in the oligomeric state of the G6PDH caused by displacement/release of the structural NADP+ bound to each subunit of the enzyme. The new oligomeric G6PDH form with faster-migrating properties increases as a consequence of intracellular redox unbalance/NADPH accumulation, which inhibits G6PDH activity in vivo. The appearance of a new G6PDH-specific activity band, following incubation of Saccharomyces cerevisiae and human cellular extracts with NADP+, also suggests that a regulatory mechanism of this activity through NADPH accumulation is highly conserved among eukaryotes. PMID:23064253

  2. High-throughput screening of coenzyme preference change of thermophilic 6-phosphogluconate dehydrogenase from NADP + to NAD +

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Rui; Chen, Hui; Zhong, Chao

    Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP + to NAD +. Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfatemore » (PMS), NAD +, and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP + to NAD +. Furthermore, this screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT.« less

  3. High-throughput screening of coenzyme preference change of thermophilic 6-phosphogluconate dehydrogenase from NADP + to NAD +

    DOE PAGES

    Huang, Rui; Chen, Hui; Zhong, Chao; ...

    2016-09-02

    Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP + to NAD +. Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfatemore » (PMS), NAD +, and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP + to NAD +. Furthermore, this screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT.« less

  4. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  5. A novel NADP(+)-dependent dehydrogenase activity for 7alpha/beta- and 11beta-hydroxysteroids in human liver nuclei: A third 11beta-hydroxysteroid dehydrogenase.

    PubMed

    Robinzon, B; Prough, R A

    2009-06-15

    Human tissue from uninvolved liver of cancer patients was fractionated using differential centrifugation and characterized for 11betaHSD enzyme activity against corticosterone, dehydrocorticosterone, 7alpha- and 7beta-hydroxy-dehydroepiandrosterone, and 7-oxo-dehydroepiandrosterone. An enzyme activity was observed in nuclear protein fractions that utilized either NADP(+) or NAD(+), but not NADPH and NADH, as pyridine nucleotide cofactor with K(m) values of 12+/-2 and 390+/-2microM, compared to the K(m) for microsomal 11betaHSD1 of 43+/-8 and 264+/-24microM, respectively. The K(m) for corticosterone in the NADP(+)-dependent nuclear oxidation reaction was 102+/-16nM, compared to 4.3+/-0.8microM for 11betaHSD1. The K(cat) values for nuclear activity with NADP(+) was 1687nmol/min/mg/micromol, compared to 755nmol/min/mg/micromol for microsomal 11betaHSD1 activity. Inhibitors of 11betaHSD1 decreased both nuclear and microsomal enzyme activities, suggesting that the nuclear activity may be due to an enzyme similar to 11betaHSD Type 1 and 2.

  6. A Novel NADP+- Dependent Dehydrogenase Activity for 7 α/β and 11 β-hydroxysteroids in human liver nuclei: A Third 11 β-Hydroxysteroid Dehydrogenase

    PubMed Central

    Robinzon, B.; Prough, R.A.

    2009-01-01

    Human tissue from uninvolved liver of cancer patients was fractionated using differential centrifugation and characterized for 11βHSD enzyme activity against corticosterone, dehydrocorticosterone, 7α and 7β-hydroxy-dehydroepiandrosterone, and 7-oxodehydroepiandrosterone. An enzyme activity was observed in nuclear protein fractions that utilized either NADP+ or NAD+, but not NADPH and NADH, as pyridine nucleotide cofactor with Km values of 12 ± 2 and 390 ± 2 μM, compared to the Km for microsomal 11βHSD1 of 43 ± 8 and 264 ± 24 μM, respectively. The Km for corticosterone in the NADP+-dependent nuclear oxidation reaction was 102 ± 16 nM, compared to 4.3 ± 0.8 μM for 11βHSD1. The Kcat values for nuclear activity with NADP+ was 1,687 nmol/min/mg/μmol, compared to 755 nmol/min/mg/μmol for microsomal 11βHSD1 activity. Inhibitors of 11βHSD1 decreased both nuclear and microsomal enzyme activities, suggesting that the nuclear activity may be due to an enzyme similar to 11βHSD Type 1 and 2. PMID:19416720

  7. Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP+ to NAD+ with Its Application to Biobatteries

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Zhu, Zhiguang; Huang, Rui; Zhang, Yi-Heng Percival

    2016-11-01

    Engineering the coenzyme specificity of redox enzymes plays an important role in metabolic engineering, synthetic biology, and biocatalysis, but it has rarely been applied to bioelectrochemistry. Here we develop a rational design strategy to change the coenzyme specificity of 6-phosphogluconate dehydrogenase (6PGDH) from a hyperthermophilic bacterium Thermotoga maritima from its natural coenzyme NADP+ to NAD+. Through amino acid-sequence alignment of NADP+- and NAD+-preferred 6PGDH enzymes and computer-aided substrate-coenzyme docking, the key amino acid residues responsible for binding the phosphate group of NADP+ were identified. Four mutants were obtained via site-directed mutagenesis. The best mutant N32E/R33I/T34I exhibited a ~6.4 × 104-fold reversal of the coenzyme selectivity from NADP+ to NAD+. The maximum power density and current density of the biobattery catalyzed by the mutant were 0.135 mW cm-2 and 0.255 mA cm-2, ~25% higher than those obtained from the wide-type 6PGDH-based biobattery at the room temperature. By using this 6PGDH mutant, the optimal temperature of running the biobattery was as high as 65 °C, leading to a high power density of 1.75 mW cm-2. This study demonstrates coenzyme engineering of a hyperthermophilic 6PGDH and its application to high-temperature biobatteries.

  8. Regulation of accumulation of ammonium-inducible glutamate dehydrogenase catalytic activity and antigen during the cell cycle of fully induced, synchronous Chlorella sorokiniana cells.

    PubMed

    Yeung, A T; Bascomb, N F; Turner, K J; Schmidt, R R

    1981-05-01

    By use of a rocket immunoelectrophoresis-activity stain procedure, it was shown that catalytic activity of an ammonium-inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) was accompanied by a coincident increase in enzyme antigen during the cell cycle of preinduced synchronous Chlorella sorokiniana cells growing in the continuous presence of ammonia. Between the fourth and fifth hours of the G-1 phase of the cell cycle, a three- to fourfold increase in linear accumulation of enzyme antigen was observed. Pulse-chase studies with [35S]sulfate, coupled with a specific indirect immunoadsorption procedure for enzyme antigen, showed that NADP-GDH antigen undergoes continuous degradation (i.e., a half-life of 88 to 110 min) during its linear pattern of accumulation during the cell cycle. The apparent half-life of the enzyme increased by approximately 23% of the 4.5-h positive rate change in antigen accumulation during the cell cycle. This increase in half-life is insufficient in itself to account for the large change in rate of NADP-GDH antigen accumulation. The data from immunoelectrophoresis, pulse-chase, and initial 35S incorporation rate experiments taken together support the inference that changes in the rate of NADP-GDH synthesis are primarily responsible for the accumulation patterns of NADP-GDH activity during the C. sorokiniana cell cycle.

  9. In-Vivo Proton Magnetic Resonance Spectroscopy of 2-Hydroxyglutarate in Isocitrate Dehydrogenase-Mutated Gliomas: A Technical Review for Neuroradiologists.

    PubMed

    Kim, Hyeonjin; Kim, Sungjin; Lee, Hyeong Hun; Heo, Hwon

    2016-01-01

    The diagnostic and prognostic potential of an onco-metabolite, 2-hydroxyglutarate (2HG) as a proton magnetic resonance spectroscopy (1H-MRS) detectable biomarker of the isocitrate dehydrogenase (IDH)-mutated (IDH-MT) gliomas has drawn attention of neuroradiologists recently. However, due to severe spectral overlap with background signals, quantification of 2HG can be very challenging. In this technical review for neuroradiologists, first, the biochemistry of 2HG and its significance in the diagnosis of IDH-MT gliomas are summarized. Secondly, various 1H-MRS methods used in the previous studies are outlined. Finally, wereview previous in vivo studies, and discuss the current status of 1H-MRS in the diagnosis of IDH-MT gliomas.

  10. Biochemistry of Suberization

    PubMed Central

    Agrawal, Vishwanath P.; Kolattukudy, P. E.

    1977-01-01

    A cell-free extract obtained from suberizing potato (Solanum tuberosum L.) tuber disks catalyzed the conversion of 16-hydroxy[G-3H]hexadecanoic acid to the corresponding dicarboxylic acid with NADP or NAD as the cofactor, with a slight preference for the former. This ω-hydroxyacid dehydrogenase activity, located largely in the 100,000g supernatant fraction, has a pH optimum of 9.5. It showed an apparent Km of 50 μM for 16-hydroxyhexadecanoic acid. The dehydrogenase activity was inhibited by thiol reagents, such as p-chloromercuribenzoate, N-ethylmaleimide, and iodoacetamide, and this dehydrogenase is shown to be different from alcohol dehydrogenase. That 16-oxohexadecanoic acid was an intermediate in the conversion of 16-hydroxyhexadecanoic acid to the corresponding dicarboxylic acid was suggested by the observation that the cell-free extract also catalyzed the conversion of 16-oxohexadecanoic acid to the dicarboxylic acid, with NADP as the preferred cofactor. The time course of development of the ω-hydroxyacid dehydrogenase activity in the suberizing potato disks correlated with the rate of deposition of suberin. Experiments with actinomycin D and cycloheximide suggested that the transcriptional processes, which are directly related to suberin biosynthesis and ω-hydroxyacid dehydrogenase biosynthesis, occurred between 72 and 96 hours after wounding. These results strongly suggest that a wound-induced ω-hydroxyacid dehydrogenase is involved in suberin biosynthesis in potato disks. PMID:16659915

  11. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells

    PubMed Central

    Yamada, Shigeru; Kotake, Yaichiro; Demizu, Yosuke; Kurihara, Masaaki; Sekino, Yuko; Kanda, Yasunari

    2014-01-01

    Tributyltin (TBT) is known to cause developmental defects as endocrine disruptive chemicals (EDCs). At nanomoler concentrations, TBT actions were mediated by genomic pathways via PPAR/RXR. However, non-genomic target of TBT has not been elucidated. To investigate non-genomic TBT targets, we performed comprehensive metabolomic analyses using human embryonic carcinoma NT2/D1 cells. We found that 100 nM TBT reduced the amounts of α-ketoglutarate, succinate and malate. We further found that TBT decreased the activity of NAD-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the conversion of isocitrate to α-ketoglutarate in the TCA cycle. In addition, TBT inhibited cell growth and enhanced neuronal differentiation through NAD-IDH inhibition. Furthermore, studies using bacterially expressed human NAD-IDH and in silico simulations suggest that TBT inhibits NAD-IDH due to a possible interaction. These results suggest that NAD-IDH is a novel non-genomic target of TBT at nanomolar levels. Thus, a metabolomic approach may provide new insights into the mechanism of EDC action. PMID:25092173

  12. Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in Switzerland. Demonstration of a new variant (G-6-PD Aarau) with chronic nonsphaerocytic haemolytic anaemia.

    PubMed

    Gahr, M; Schröter, W; Sturzenegger, M; Bornhalm, D; Marti, H R

    1976-08-01

    A new variant of erythrocytic glucose-6-phosphate dehydrogenase has been found in a family of Swiss origin. It is associated with chronic nonsphaerocytic haemolytic anaemia. The enzyme from the erythrocytes of a young boy of this family was partially purified 110-fold and characterized. It revealed reduced catalytic activity, increased thermolability and two maxima of the pH activity curve at pH 7.0 and 8.5. The Km value for glucose-6-phosphate was reduced, that for NADP was normal. The enzyme showed an increased inhibitor constant for NADPH with respect to NADP. Electrophoretic mobility was normal (B+). 2-Desoxyglucose-6-phosphate and galactose-6-phosphate were utilized at normal rates, whereas the analogue deamino-NADP gave an increased utilization rate. The mother of the propositus could be identified as heterozygous for this enzyme deficiency. Chronic haemolysis is possibly due to the increased thermolability of the variant enzyme.

  13. Human placental indanol dehydrogenase: some properties of the microsomal enzyme.

    PubMed

    Kulkarni, A P; Strohm, B H; Houser, W H

    1985-06-01

    Indanol dehydrogenase activity of human placenta was examined in vitro. The enzyme, primarily localized in the particulate fractions of placenta, catalysed conversion of 1-indanol to 1-indanone in the presence of oxidized pyridine nucleotides. Both NAD+ and NADP+ supported the reaction with nearly equal efficiency.

  14. Peroxisomal enzymes in the liver of rats with experimental diabetes mellitus type 2.

    PubMed

    Turecký, L; Kupčová, V; Uhlíková, E; Mojto, V

    2014-01-01

    Diabetes mellitus is relatively frequently associated with fatty liver disease. Increased oxidative stress probably plays an important role in the development of this hepatopathy. One of possible sources of reactive oxygen species in liver is peroxisomal system. There are several reports about changes of peroxisomal enzymes in experimental diabetes, mainly enzymes of fatty acid oxidation. The aim of our study was to investigate the possible changes of activities of liver peroxisomal enzymes, other than enzymes of beta-oxidation, in experimental diabetes mellitus type 2. Biochemical changes in liver of experimental animals suggest the presence of liver steatosis. The changes of serum parameters in experimental group are similar to changes in serum of patients with non-alcoholic fatty liver disease. We have shown that diabetes mellitus influenced peroxisomal enzymes by the different way. Despite of well-known induction of peroxisomal beta-oxidation, the activities of catalase, aminoacid oxidase and NADH-cytochrome b(5) reductase were not significantly changed and the activities of glycolate oxidase and NADP-isocitrate dehydrogenase were significantly decreased. The effect of diabetes on liver peroxisomes is probably due to the increased supply of fatty acids to liver in diabetic state and also due to increased oxidative stress. The changes of metabolic activity of peroxisomal compartment may participate on the development of diabetic hepatopathy.

  15. Idh2 deficiency accelerates renal dysfunction in aged mice.

    PubMed

    Lee, Su Jeong; Cha, Hanvit; Lee, Seoyoon; Kim, Hyunjin; Ku, Hyeong Jun; Kim, Sung Hwan; Park, Jung Hyun; Lee, Jin Hyup; Park, Kwon Moo; Park, Jeen-Woo

    2017-11-04

    The free radical or oxidative stress theory of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species (ROS) that are produced as by-products of normal metabolic processes in mitochondria. The oxidative stress may arise as a result of either increased ROS production or decreased ability to detoxify ROS. The availability of the mitochondrial NADPH pool is critical for the maintenance of the mitochondrial antioxidant system. The major enzyme responsible for generating mitochondrial NADPH is mitochondrial NADP + -dependent isocitrate dehydrogenase (IDH2). Depletion of IDH2 in mice (idh2 -/- ) shortens life span and accelerates the degeneration of multiple age-sensitive traits, such as hair grayness, skin pathology, and eye pathology. Among the various internal organs tested in this study, IDH2 depletion-induced acceleration of senescence was uniquely observed in the kidney. Renal function and structure were greatly deteriorated in 24-month-old idh2 -/- mice compared with wild-type. In addition, disruption of redox status, which promotes oxidative damage and apoptosis, was more pronounced in idh2 -/- mice. These data support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice, and thus support the oxidative stress theory of aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A complex effect of arsenite on the formation of alpha-ketoglutarate in rat liver mitochondria.

    PubMed

    Lenartowicz, E

    1990-12-01

    This investigation presents disturbances of the mitochondrial metabolism by arsenite, a hydrophilic dithiol reagent known as an inhibitor of mitochondrial alpha-keto acid dehydrogenases. Arsenite at concentrations of 0.1-1.0 mM was shown to induce a considerable oxidation of intramitochondrial NADPH, NADH, and glutathione without decreasing the mitochondrial membrane potential. The oxidation of NAD(P)H required the presence of phosphate and was sensitive to ruthenium red, but occurred without the addition of calcium salts. Mitochondrial reactions producing alpha-ketoglutarate from glutamate and isocitrate were modulated by arsenite through various mechanisms: (i) both glutamate transaminations, with oxaloacetate and with pyruvate, were inhibited by accumulating alpha-ketoglutarate; however, at low concentrations of alpha-ketoglutarate the aspartate aminotransferase reaction was stimulated due to the increase of NAD+ content; (ii) the oxidation of isocitrate was stimulated at its low concentration only, due to the oxidation of NADPH and NADH; this oxidation was prevented by concentrations of citrate or isocitrate greater than 1 mM; (iii) the conversion of isocitrate to citrate was suppressed, presumably as a result of the decrease of Mg2+ concentration in mitochondria. Thus the depletion of mitochondrial vicinal thiol groups in hydrophilic domains disturbs the mitochondrial metabolism not only by the inhibition of alpha-keto acid dehydrogenases but also by the oxidation of NAD(P)H and, possibly, by the change in the ion concentrations.

  17. Role of mannitol dehydrogenases in osmoprotection of Gluconobacter oxydans.

    PubMed

    Zahid, Nageena; Deppenmeier, Uwe

    2016-12-01

    Gluconobacter (G.) oxydans is able to incompletely oxidize various sugars and polyols for the production of biotechnologically important compound. Recently, we have shown that the organism produces and accumulates mannitol as compatible solute under osmotic stress conditions. The present study describes the role of two cytoplasmic mannitol dehydrogenases for osmotolerance of G. oxydans. It was shown that Gox1432 is a NADP + -dependent mannitol dehydrogenase (EC 1.1.1.138), while Gox0849 uses NAD + as cofactor (EC 1.1.1.67). The corresponding genes were deleted and the mutants were analyzed for growth under osmotic stress and non-stress conditions. A severe growth defect was detected for Δgox1432 when grown in high osmotic media, while the deletion of gox0849 had no effect when cells were exposed to 450 mM sucrose in the medium. Furthermore, the intracellular mannitol content was reduced in the mutant lacking the NADP + -dependent enzyme Gox1432 in comparison to the parental strain and the Δgox0849 mutant under stress conditions. In addition, transcriptional analysis revealed that Gox1432 is more important for mannitol production in G. oxydans than Gox0849 as the transcript abundance of gene gox1432 was 30-fold higher than of gox0849. In accordance, the activity of the NADH-dependent enzyme Gox0849 in the cell cytoplasm was 10-fold lower in comparison to the NADPH-dependent mannitol dehydrogenase Gox1432. Overexpression of gox1432 in the corresponding deletion mutant restored growth of the cells under osmotic stress, further strengthening the importance of the NADP + -dependent mannitol dehydrogenase for osmotolerance in G. oxydans. These findings provide detailed insights into the molecular mechanism of mannitol-mediated osmoprotection in G. oxydans and are helpful engineering strains with improved osmotolerance for biotechnological applications.

  18. Coenzyme engineering of a hyperthermophilic 6-phosphogluconate dehydrogenase from NADP + to NAD + with its application to biobatteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hui; Zhu, Zhiguang; Huang, Rui

    Engineering the coenzyme specificity of redox enzymes plays an important role in metabolic engineering, synthetic biology, and biocatalysis, but it has rarely been applied to bioelectrochemistry. Here we develop a rational design strategy to change the coenzyme specificity of 6-phosphogluconate dehydrogenase (6PGDH) from a hyperthermophilic bacterium Thermotoga maritima from its natural coenzyme NADP + to NAD +. Through amino acid-sequence alignment of NADP +- and NAD +-preferred 6PGDH enzymes and computer-aided substrate-coenzyme docking, the key amino acid residues responsible for binding the phosphate group of NADP + were identified. Four mutants were obtained via site-directed mutagenesis. The best mutant N32E/R33I/T34Imore » exhibited a ~6.4 × 10 4-fold reversal of the coenzyme selectivity from NADP + to NAD +. The maximum power density and current density of the biobattery catalyzed by the mutant were 0.135 mW cm -2 and 0.255 mA cm -2, ~25% higher than those obtained from the wide-type 6PGDH-based biobattery at the room temperature. By using this 6PGDH mutant, the optimal temperature of running the biobattery was as high as 65 °C, leading to a high power density of 1.75 mW cm -2. As a result, this study demonstrates coenzyme engineering of a hyperthermophilic 6PGDH and its application to high-temperature biobatteries.« less

  19. Coenzyme engineering of a hyperthermophilic 6-phosphogluconate dehydrogenase from NADP + to NAD + with its application to biobatteries

    DOE PAGES

    Chen, Hui; Zhu, Zhiguang; Huang, Rui; ...

    2016-11-02

    Engineering the coenzyme specificity of redox enzymes plays an important role in metabolic engineering, synthetic biology, and biocatalysis, but it has rarely been applied to bioelectrochemistry. Here we develop a rational design strategy to change the coenzyme specificity of 6-phosphogluconate dehydrogenase (6PGDH) from a hyperthermophilic bacterium Thermotoga maritima from its natural coenzyme NADP + to NAD +. Through amino acid-sequence alignment of NADP +- and NAD +-preferred 6PGDH enzymes and computer-aided substrate-coenzyme docking, the key amino acid residues responsible for binding the phosphate group of NADP + were identified. Four mutants were obtained via site-directed mutagenesis. The best mutant N32E/R33I/T34Imore » exhibited a ~6.4 × 10 4-fold reversal of the coenzyme selectivity from NADP + to NAD +. The maximum power density and current density of the biobattery catalyzed by the mutant were 0.135 mW cm -2 and 0.255 mA cm -2, ~25% higher than those obtained from the wide-type 6PGDH-based biobattery at the room temperature. By using this 6PGDH mutant, the optimal temperature of running the biobattery was as high as 65 °C, leading to a high power density of 1.75 mW cm -2. As a result, this study demonstrates coenzyme engineering of a hyperthermophilic 6PGDH and its application to high-temperature biobatteries.« less

  20. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary disease...), and diseases associated with pregnancy. (b) Classification. Class I (general controls). The device is...

  1. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary disease...), and diseases associated with pregnancy. (b) Classification. Class I (general controls). The device is...

  2. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary disease...), and diseases associated with pregnancy. (b) Classification. Class I (general controls). The device is...

  3. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency.

    PubMed

    Au, S W; Gover, S; Lam, V M; Adams, M J

    2000-03-15

    Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first committed step in the pentose phosphate pathway; the generation of NADPH by this enzyme is essential for protection against oxidative stress. The human enzyme is in a dimer<-->tetramer equilibrium and its stability is dependent on NADP(+) concentration. G6PD deficiency results from many different point mutations in the X-linked gene encoding G6PD and is the most common human enzymopathy. Severe deficiency causes chronic non-spherocytic haemolytic anaemia; the usual symptoms are neonatal jaundice, favism and haemolytic anaemia. We have determined the first crystal structure of a human G6PD (the mutant Canton, Arg459-->Leu) at 3 A resolution. The tetramer is a dimer of dimers. Despite very similar dimer topology, there are two major differences from G6PD of Leuconostoc mesenteroides: a structural NADP(+) molecule, close to the dimer interface but integral to the subunit, is visible in all subunits of the human enzyme; and an intrasubunit disulphide bond tethers the otherwise disordered N-terminal segment. The few dimer-dimer contacts making the tetramer are charge-charge interactions. The importance of NADP(+) for stability is explained by the structural NADP(+) site, which is not conserved in prokaryotes. The structure shows that point mutations causing severe deficiency predominate close to the structural NADP(+) and the dimer interface, primarily affecting the stability of the molecule. They also indicate that a stable dimer is essential to retain activity in vivo. As there is an absolute requirement for some G6PD activity, residues essential for coenzyme or substrate binding are rarely modified.

  4. Co-localization of glyceraldehyde-3-phosphate dehydrogenase with ferredoxin-NADP reductase in pea leaf chloroplasts

    PubMed Central

    Negi, Surendra S.; Carol, Andrew A.; Pandya, Shivangi; Braun, Werner; Anderson, Louise E.

    2008-01-01

    In immunogold double-labeling of pea leaf thin sections with antibodies raised against ferredoxin-NADP reductase (EC 1.18.1.2, FNR) and antibodies directed against the A or B subunits of the NADP-linked glyceraldehyde-3-P dehydrogenase (GAPD) (EC 1.2.1.13), many small and large gold particles were found together over the chloroplasts. Nearest neighbor analysis of the distribution of the gold particles indicates that FNR and the NADP-linked GAPD are co-localized, in situ. This suggests that FNR might carry FADH2 or NADPH from the thylakoid membrane to GAPD, or that ferredoxin might carry electrons to FNR co-localized with GAPD in the stroma. Crystal structures of the spinach enzymes are available. When they are docked computationally, the proteins appear, as modeled, to be able to form at least two different complexes. One involves a single GAPD monomer and an FNR monomer (or dimer). The amino acid residues located at the putative interface are highly conserved on the chloroplastic forms of both enzymes. The other potential complex involves the GAPD A2B2 tetramer and an FNR monomer (or dimer). The interface residues are conserved in this model as well. Ferredoxin is able to interact with FNR in either complex. PMID:17945509

  5. Partial purification and properties of tropine dehydrogenase from root cultures of Datura stramonium.

    PubMed

    Koelen, K J; Gross, G G

    1982-04-01

    From sterile root cultures of Datura stramonium, an NADP(H)-specific tropine dehydrogenase has been isolated and characterized. The enzyme catalyzes the reversible and stereospecific oxidation of tropine and related tropane-3 alpha-ols to the corresponding ketone. Isomeric pseudotropine (tropane-3 beta-ol) is neither accepted as substrate nor produced in the reverse reaction. It is assumed that this dehydrogenase is involved in the biosynthesis of tropane alkaloids.

  6. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP+ -dependent succinic semialdehyde dehydrogenase.

    PubMed

    Kopečná, Martina; Vigouroux, Armelle; Vilím, Jan; Končitíková, Radka; Briozzo, Pierre; Hájková, Eva; Jašková, Lenka; von Schwartzenberg, Klaus; Šebela, Marek; Moréra, Solange; Kopečný, David

    2017-10-01

    Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP + -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD + is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP + binding induces a conformational change of the loop carrying Arg-228, which seals the NADP + in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Proteomic Characterization of Annexin l (ANX1) and Heat Shock Protein 27 (HSP27) as Biomarkers for Invasive Hepatocellular Carcinoma Cells.

    PubMed

    Wang, Ruo-Chiau; Huang, Chien-Yu; Pan, Tai-Long; Chen, Wei-Yu; Ho, Chun-Te; Liu, Tsan-Zon; Chang, Yu-Jia

    2015-01-01

    To search for reliable biomarkers and drug targets for management of hepatocellular carcinoma (HCC), we performed a global proteomic analysis of a pair of HCC cell lines with distinct differentiation statuses using 2-DE coupled with MALDI-TOF MS. In total, 106 and 55 proteins were successfully identified from the total cell lysate and the cytosolic, nuclear and membrane fractions in well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) HCC clonal variants, respectively. Among these proteins, nine spots corresponding to proteins differentially expressed between HCC cell types were selected and confirmed by immunofluorescence staining and western blotting. Notably, Annexin 1 (ANX1), ANX-2, vimentin and stress-associated proteins, such as GRP78, HSP75, HSC-70, protein disulfide isomerase (PDI), and heat shock protein-27 (HSP27), were exclusively up-regulated in SK-Hep-1 cells. Elevated levels of ANX-4 and antioxidant/metabolic enzymes, such as MnSOD, peroxiredoxin, NADP-dependent isocitrate dehydrogenase, α-enolase and UDP-glucose dehydrogenase, were observed in HepG2 cells. We functionally demonstrated that ANX1 and HSP27 were abundantly overexpressed only in highly invasive types of HCC cells, such as Mahlavu and SK-Hep-1. Knockdown of ANX1 or HSP27 in HCC cells resulted in a severe reduction in cell migration. The in-vitro observations of ANX1 and HSP27 expressions in HCC sample was demonstrated by immunohistochemical stains performed on HCC tissue microarrays. Poorly differentiated HCC tended to have stronger ANX1 and HSP27 expressions than well-differentiated or moderately differentiated HCC. Collectively, our findings suggest that ANX1 and HSP27 are two novel biomarkers for predicting invasive HCC phenotypes and could serve as potential treatment targets.

  8. NADP-dependent malate dehydrogenase (decarboxylating) from sugar cane leaves. Kinetic properties of different oligomeric structures.

    PubMed

    Iglesias, A A; Andreo, C S

    1990-09-24

    NADP-dependent malate dehydrogenase (decarboxylating) from sugar cane leaves was inhibited by increasing the ionic strength in the assay medium. The inhibitory effect was higher at pH 7.0 than 8.0, with median inhibitory concentrations (IC50) of 89 mM and 160 mM respectively, for inhibition by NaCl. Gel-filtration experiments indicated that the enzyme dissociated into dimers and monomers when exposed to high ionic strength (0.3 M NaCl). By using the enzyme-dilution approach in the absence and presence of 0.3 M NaCl, the kinetic properties of each oligomeric species of the protein was determined at pH 7.0 and 8.0. Tetrameric, dimeric and monomeric structures were shown to be active but with different V and Km values. The catalytic efficiency of the oligomers was tetramer greater than dimer greater than monomer, and each quaternary structure exhibited higher activity at pH 8.0 than 7.0. Dissociation constants for the equilibria between the different oligomeric forms of the enzyme were determined. It was established that Kd values were affected by pH and Mg2+ levels in the medium. Results suggest that the distinct catalytic properties of the different oligomeric forms of NADP-dependent malate dehydrogenase and changes in their equilibrium could be the molecular basis for an efficient physiological regulation of the decarboxylation step of C4 metabolism.

  9. The β and γ subunits play distinct functional roles in the α2βγ heterotetramer of human NAD-dependent isocitrate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Ma, Tengfei; Peng, Yingjie; Huang, Wei; Liu, Yabing; Ding, Jianping

    2017-01-01

    Human NAD-dependent isocitrate dehydrogenase existing as the α2βγ heterotetramer, catalyzes the decarboxylation of isocitrate into α-ketoglutarate in the Krebs cycle, and is allosterically regulated by citrate, ADP and ATP. To explore the functional roles of the regulatory β and γ subunits, we systematically characterized the enzymatic properties of the holoenzyme and the composing αβ and αγ heterodimers in the absence and presence of regulators. The biochemical and mutagenesis data show that αβ and αγ alone have considerable basal activity but the full activity of α2βγ requires the assembly and cooperative function of both heterodimers. α2βγ and αγ can be activated by citrate or/and ADP, whereas αβ cannot. The binding of citrate or/and ADP decreases the S0.5,isocitrate and thus enhances the catalytic efficiencies of the enzymes, and the two activators can act independently or synergistically. Moreover, ATP can activate α2βγ and αγ at low concentration and inhibit the enzymes at high concentration, but has only inhibitory effect on αβ. Furthermore, the allosteric activation of α2βγ is through the γ subunit not the β subunit. These results demonstrate that the γ subunit plays regulatory role to activate the holoenzyme, and the β subunit the structural role to facilitate the assembly of the holoenzyme.

  10. Expression of cytosolic NADP(+)-dependent isocitrate dehydrogenase in melanocytes and its role as an antioxidant.

    PubMed

    Kim, Ji Young; Shin, Jae Yong; Kim, Miri; Hann, Seung-Kyung; Oh, Sang Ho

    2012-02-01

    Cytosolic NADP(+)-dependent ICDH (IDPc) has an antioxidant effect as a supplier of NADPH to the cytosol, which is needed for the production of glutathione. To evaluate the expression of IDPc in melanocytes and to elucidate its role as an antioxidant. The knock-down of IDPc expression in immortalized mouse melanocyte cell lines (melan-a) was performed using the short interfering RNA (siRNA)-targeted gene silencing method. After confirming the silencing of IDPc expression with mRNA and protein levels, viability, apoptosis and necrosis, as well as ROS production in IDPc-silenced melanocytes were monitored under conditions of oxidative stress and non-stress. Also, the ratio of oxidized glutathione to total glutathione was examined, and whether the addition of glutathione recovered cell viability, decreased by oxidant stress, was checked. The expression of IDPc in both primary human melanocytes and melan-a cells was confirmed by Western blot and RT-PCR. The silencing of IDPc expression by transfecting IDPc siRNA in melan-a cells was observed by Western blotting and real-time RT-PCR. IDPc knock-down cells showed significantly decreased cell viability and an increased number of cells under apoptosis and necrosis. IDPc siRNA-treated melanocytes demonstrated a higher intensity of DCFDA after the addition of H(2)O(2) compared with scrambled siRNA-treated melanocytes, and a lower ratio of reduced glutathione to oxidized glutathione were observed in IDPc siRNA transfected melanocytes. In addition, the addition of glutathione recovered cell viability, which was previously decreased after incubation with H(2)O(2). This study suggests that decreased IDPc expression renders melanocytes more vulnerable to oxidative stress, and IDPc plays an important antioxidant function in melanocytes. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. ENZYME ACTIVITIES DURING THE ASEXUAL CYCLE OF NEUROSPORA CRASSA

    PubMed Central

    Stine, G. J.

    1968-01-01

    Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged. PMID:4384627

  12. American Society of Neuroradiology

    MedlinePlus

    ... Tumors of the Central Nervous System: A Practical Approach for Gliomas, Part 1. Basic Tumor Genetics The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Practical Approach for Gliomas, Part 2. Isocitrate Dehydrogenase Status—Imaging ...

  13. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli.

    PubMed

    Pham, Van Dung; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2015-08-10

    Escherichia coli were engineered for the direct production of gamma-aminobutyric acid from glucose by introduction of synthetic protein scaffold. In this study, three enzymes consisting GABA pathway (isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase) were connected via synthetic protein scaffold. By introduction of scaffold, 0.92g/L of GABA was produced from 10g/L of glucose while no GABA was produced in wild type E. coli. The optimum pH and temperature for GABA production were 4.5 and 30°C, respectively. When competing metabolic network was inactivated by knockout mutation, maximum GABA concentration of 1.3g/L was obtained from 10g/L glucose. The recombinant E. coli strain which produces GABA directly from glucose was successfully constructed by introduction of protein scaffold. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Highly Stable l-Lysine 6-Dehydrogenase from the Thermophile Geobacillus stearothermophilus Isolated from a Japanese Hot Spring: Characterization, Gene Cloning and Sequencing, and Expression

    PubMed Central

    Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko

    2004-01-01

    l-Lysine dehydrogenase, which catalyzes the oxidative deamination of l-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Δ1-piperideine-6-carboxylate, indicating that the enzyme is l-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70°C, respectively. No activity was lost at temperatures up to 65°C in the presence of 5 mM l-lysine. The enzyme was relatively selective for l-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for l-lysine, NAD, and NADP at 50°C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da. PMID:14766574

  15. Highly stable L-lysine 6-dehydrogenase from the thermophile Geobacillus stearothermophilus isolated from a Japanese hot spring: characterization, gene cloning and sequencing, and expression.

    PubMed

    Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko

    2004-02-01

    L-Lysine dehydrogenase, which catalyzes the oxidative deamination of L-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Delta1-piperideine-6-carboxylate, indicating that the enzyme is L-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70 degrees C, respectively. No activity was lost at temperatures up to 65 degrees C in the presence of 5 mM L-lysine. The enzyme was relatively selective for L-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for L-lysine, NAD, and NADP at 50 degrees C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da.

  16. [Coenzyme-induced slow transitions of NADP-sorbitol dehydrogenase from Gluconobacter oxydans].

    PubMed

    Liber, E E; Dorozhko, A I; Pomortseva, N V

    1978-06-01

    The kinetic properties of NADP-dependent sorbitol dehydrogenase from G. oxydans cell extract were studied at pH 8.8 and 9.3 in the direction of D-sorbitol oxydation. It was shown that the shape of the kinetic curves of NADPH accumulation in time is characterised by initial burst whose magnitude depends on the concentration of the enzyme extract used. Preincubation of the enzyme with NADP or D-sorbitol eliminated the initial burst on these curves and transformed them into straight lines coming from the start of co-ordinates. The dependence of the stationary reaction rate on the enzyme extract concentration is not a linear one. The kinetic dependences of stationary rate of the reaction catalysed by the enzyme on the concentration of D-sorbitol and NADP at pH 8.8 and 9.3 were examined under all conditions studied; the shape of these kinetic curves altered to considerable extent with the alteration of the enzyme extract concentration in the reaction mixture and pH. At pH 9.3 several intermiediate plateaux were found on the curves of the D-sorbitol concentration dependent stationary rate of the reaction. The preincubation of the enzyme extract with NADP during 1.5 h removed the intermediate plateau on these curves and made them hyperbolic. Disk-electrophoresis of the enzyme extract in PAAG concentration gradient showed that at pH 8.8 the enzyme exists in one active form, while at pH 9.3 it exists in three major and three minor active forms of the enzyme differing in their molecular weights are found. It is assumed that the enzyme from G. oxydans cell extract can exist in a great number of molecular equilibrium forms, the rate of quilibrium being comparable or significantly less than that of the enzymatic reaction. NADP significantly influences on the equilibrium of the molecular forms of the enzyme.

  17. Anti-diabetic effects of DA-11004, a synthetic IDPc inhibitor in high fat high sucrose diet-fed C57BL/6J mice.

    PubMed

    Shin, Chang Yell; Jung, Mi Young; Lee, In Ki; Son, Miwon; Kim, Dong Sung; Lim, Joong In; Kim, Soon Hoe; Yoo, Moohi; Huh, Tae Lin; Sohn, Young Taek; Kim, Won Bae

    2004-01-01

    DA-11004 is a synthetic, potent NADP-dependent isocitrate dehydrogenase (IDPc) inhibitor where IC50 for IDPc is 1.49 microM. The purpose of this study was to evaluate the effects of DA-11004 on the high fat high sucrose (HF)-induced obesity in male C57BL/6J mice. After completing a 8-week period of experimentation, the mice were sacrificed 1 hr after the last DA-11004 treatment and their blood, liver, and adipose tissues (epididymal and retroperitoneal fat) were collected. There was a significant difference in the pattern of increasing body weight between the HF control and the DA-11004 group. In the DA-11004 (100 mg/kg) treated group the increase in body weight significantly declined and a content of epididymal fat and retroperitoneal fat was also significantly decreased as opposed to the HF control. DA-11004 (100 mg/ kg) inhibited the IDPc activity, and thus, NADPH levels in plasma and the levels of free fatty acid (FFA) or glucose in plasma were less than the levels of the HF control group. In conclusion, DA-11004 inhibited the fatty acid synthesis in adipose tissues via IDPc inhibition, and it decreased the plasma glucose levels and FFA in HF diet-induced obesity of C57BL/6J mice.

  18. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus camaldulensis Dehnh.

    PubMed

    Ikka, Takashi; Ogawa, Tsuyoshi; Li, Donghua; Hiradate, Syuntaro; Morita, Akio

    2013-10-01

    Eucalyptus (Eucalyptus camaldulensis) has relatively high resistance to aluminum (Al) toxicity than the various herbaceous plants and model plant species. To investigate Al-tolerance mechanism, the metabolism of organic acids and the chemical forms of Al in the target site (root tips) in Eucalyptus was investigated. To do this, 2-year old rooted cuttings of E. camaldulensis were cultivated in half-strength Hoagland solution (pH 4.0) containing Al (0, 0.25, 0.5, 1.0, 2.5 and 5.0mM) salts for 5weeks; growth was not affected at concentrations up to 2.5mM even with Al concentration reaching 6000μgg(-1) DW. In roots, the citrate content also increased with increasing Al application. Concurrently, the activities of aconitase and NADP(+)-isocitrate dehydrogenase, which catalyze the decomposition of citrate, decreased. On the other hand, the activity of citrate synthase was not affected at concentrations up to 2.5mM Al. (27)Al-NMR spectroscopic analyses were carried out where it was found that Al-citrate complexes were a major chemical form present in cell sap of root tips. These findings suggested that E. camaldulensis detoxifies Al by forming Al-citrate complexes, and that this is achieved through Al-induced citrate accumulation in root tips via suppression of the citrate decomposition pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. An R132H Mutation in Isocitrate Dehydrogenase 1 Enhances p21 Expression and Inhibits Phosphorylation of Retinoblastoma Protein in Glioma Cells

    PubMed Central

    Miyata, Satsuki; Urabe, Masashi; Gomi, Akira; Nagai, Mutsumi; Yamaguchi, Takashi; Tsukahara, Tomonori; Mizukami, Hiroaki; Kume, Akihiro; Ozawa, Keiya; Watanabe, Eiju

    2013-01-01

    Cytosolic isocitrate dehydrogenase 1 (IDH1) with an R132H mutation in brain tumors loses its enzymatic activity for catalyzing isocitrate to α-ketoglutarate (α-KG) and acquires new activity whereby it converts α-KG to 2-hydroxyglutarate. The IDH1 mutation induces down-regulation of tricarboxylic acid cycle intermediates and up-regulation of lipid metabolism. Sterol regulatory element-binding proteins (SREBPs) regulate not only the synthesis of cholesterol and fatty acids but also acyclin-dependent kinase inhibitor p21 that halts the cell cycle at G1. Here we show that SREBPs were up-regulated in U87 human glioblastoma cells transfected with an IDH1R132H-expression plasmid. Small interfering ribonucleic acid (siRNA) for SREBP1 specifically decreased p21 messenger RNA (mRNA) levels independent of the p53 pathway. In IDH1R132H-expressing U87 cells, phosphorylation of Retinoblastoma (Rb) protein also decreased. We propose that metabolic changes induced by the IDH1 mutation enhance p21 expression via SREBP1 and inhibit phosphorylation of Rb, which slows progressionof the cell cycle and may be associated with non-aggressive features of gliomas with an IDH1 mutation. PMID:24077277

  20. An R132H mutation in isocitrate dehydrogenase 1 enhances p21 expression and inhibits phosphorylation of retinoblastoma protein in glioma cells.

    PubMed

    Miyata, Satsuki; Urabe, Masashi; Gomi, Akira; Nagai, Mutsumi; Yamaguchi, Takashi; Tsukahara, Tomonori; Mizukami, Hiroaki; Kume, Akihiro; Ozawa, Keiya; Watanabe, Eiju

    2013-01-01

    Cytosolic isocitrate dehydrogenase 1 (IDH1) with an R132H mutation in brain tumors loses its enzymatic activity for catalyzing isocitrate to α-ketoglutarate (α-KG) and acquires new activity whereby it converts α-KG to 2-hydroxyglutarate. The IDH1 mutation induces down-regulation of tricarboxylic acid cycle intermediates and up-regulation of lipid metabolism. Sterol regulatory element-binding proteins (SREBPs) regulate not only the synthesis of cholesterol and fatty acids but also acyclin-dependent kinase inhibitor p21 that halts the cell cycle at G1. Here we show that SREBPs were up-regulated in U87 human glioblastoma cells transfected with an IDH1(R132H)-expression plasmid. Small interfering ribonucleic acid (siRNA) for SREBP1 specifically decreased p21 messenger RNA (mRNA) levels independent of the p53 pathway. In IDH1(R132H)-expressing U87 cells, phosphorylation of Retinoblastoma (Rb) protein also decreased. We propose that metabolic changes induced by the IDH1 mutation enhance p21 expression via SREBP1 and inhibit phosphorylation of Rb, which slows progression of the cell cycle and may be associated with non-aggressive features of gliomas with an IDH1 mutation.

  1. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C.

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases thatmore » includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in their active sites that help explain the variations in their respective substrate specificities.« less

  2. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae.

    PubMed Central

    Avendaño, A; Deluna, A; Olivera, H; Valenzuela, L; Gonzalez, A

    1997-01-01

    It has been considered that the yeast Saccharomyces cerevisiae, like many other microorganisms, synthesizes glutamate through the action of NADP+-glutamate dehydrogenase (NADP+-GDH), encoded by GDH1, or through the combined action of glutamine synthetase and glutamate synthase (GOGAT), encoded by GLN1 and GLT1, respectively. A double mutant of S. cerevisiae lacking NADP+-GDH and GOGAT activities was constructed. This strain was able to grow on ammonium as the sole nitrogen source and thus to synthesize glutamate through an alternative pathway. A computer search for similarities between the GDH1 nucleotide sequence and the complete yeast genome was carried out. In addition to identifying its cognate sequence at chromosome XIV, the search found that GDH1 showed high identity with a previously recognized open reading frame (GDH3) of chromosome I. Triple mutants impaired in GDH1, GLT1, and GDH3 were obtained. These were strict glutamate auxotrophs. Our results indicate that GDH3 plays a significant physiological role, providing glutamate when GDH1 and GLT1 are impaired. This is the first example of a microorganism possessing three pathways for glutamate biosynthesis. PMID:9287019

  3. Cloning, expression, and biochemical characterization of a novel NADP+-dependent 7α-hydroxysteroid dehydrogenase from Clostridium difficile and its application for the oxidation of bile acids.

    PubMed

    Bakonyi, Daniel; Hummel, Werner

    2017-04-01

    A gene encoding a novel 7α-specific NADP + -dependent hydroxysteroid dehydrogenase from Clostridium difficile was cloned and heterologously expressed in Escherichia coli. The enzyme was purified using an N-terminal hexa-his-tag and biochemically characterized. The optimum temperature is at 60°C, but the enzyme is inactivated at this temperature with a half-life time of 5min. Contrary to other known 7α-HSDHs, for example from Clostridium sardiniense or E. coli, the enzyme from C. difficile does not display a substrate inhibition. In order to demonstrate the applicability of this enzyme, a small-scale biotransformation of the bile acid chenodeoxycholic acid (CDCA) into 7-ketolithocholic acid (7-KLCA) was carried out with simultaneous regeneration of NADP + using an NADPH oxidase that resulted in a complete conversion (<99%). Furthermore, by a structure-based site-directed mutagenesis, cofactor specificity of the 7α-HSDH from Clostridium difficile was altered to accept NAD(H). This mutant was biochemically characterized and compared to the wild-type. Copyright © 2016. Published by Elsevier Inc.

  4. Purification and characterization of NADP-dependent 7 beta-hydroxysteroid dehydrogenase from Peptostreptococcus productus strain b-52.

    PubMed

    Masuda, N; Oda, H; Tanaka, H

    1983-01-04

    An NADP-dependent 7 beta-hydroxysteroid dehydrogenase was purified 11.5-fold over the activity in crude cell extracts prepared from Peptostreptococcus productus strain b-52, by using Sephadex G-200 and DEAE-cellulose column chromatography. 7 beta-Dehydrogenation was the sole transformation of bile acids catalyzed by the partially purified enzyme. The enzyme preparation (spec. act. 2.781 IU per mg protein) had an optimum pH of 9.8. Lineweaver-Burk plots showed a Michaelis constant (Km) value of 0.05 mM for 3 alpha, 7 beta-dihydroxy-5 beta-cholanoic acid whereas higher values were obtained with 3 alpha,7 beta-dihydroxy-5 beta-cholanoyl glycine (0.20 mM), and 3 alpha,7 beta-dihydroxy-5 beta-cholanoyl taurine (0.26 mM). NADP but not NAD could function as an electron acceptor, and had a Km value of 0.30 mM. A molecular weight of 64000 was determined by SDS-polyacrylamide gel electrophoresis. The addition of 0.4 mM of either bile acid to the growth medium suppressed not only cell growth, but also the enzyme yield.

  5. Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, H.R.; Sheoran, I.S.; Singh, R.

    1987-04-01

    Activities of key enzymes of the Calvin cycle and C/sub 4/ metabolism, rates of CO/sub 2/ fixation, and the initial products of photosynthetic /sup 14/CO/sub 2/ fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv Toria. Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C/sub 4/ metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwallmore » and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of /sup 14/CO/sub 2/ assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO/sub 2/ during light. However, respiratory losses were very high during the dark period.« less

  6. Structure of a short-chain dehydrogenase/reductase (SDR) within a genomic island from a clinical strain of Acinetobacter baumannii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Bhumika S., E-mail: bhumika.shah@mq.edu.au; Tetu, Sasha G.; Harrop, Stephen J.

    2014-09-25

    The structure of a short-chain dehydrogenase encoded within genomic islands of A. baumannii strains has been solved to 2.4 Å resolution. This classical SDR incorporates a flexible helical subdomain. The NADP-binding site and catalytic side chains are identified. Over 15% of the genome of an Australian clinical isolate of Acinetobacter baumannii occurs within genomic islands. An uncharacterized protein encoded within one island feature common to this and other International Clone II strains has been studied by X-ray crystallography. The 2.4 Å resolution structure of SDR-WM99c reveals it to be a new member of the classical short-chain dehydrogenase/reductase (SDR) superfamily. Themore » enzyme contains a nucleotide-binding domain and, like many other SDRs, is tetrameric in form. The active site contains a catalytic tetrad (Asn117, Ser146, Tyr159 and Lys163) and water molecules occupying the presumed NADP cofactor-binding pocket. An adjacent cleft is capped by a relatively mobile helical subdomain, which is well positioned to control substrate access.« less

  7. Three-dimensional modeling of glucose-6-phosphate dehydrogenase-deficient variants from German ancestry.

    PubMed

    Kiani, Farooq; Schwarzl, Sonja; Fischer, Stefan; Efferth, Thomas

    2007-07-18

    Loss of function of dimeric glucose-6-phosphate dehydrogenase (G6PD) represents the most common inborn error of metabolism throughout the world affecting an estimated 400 million people. In Germany, this enzymopathy is very rare. On the basis of G6PD crystal structures, we have analyzed six G6PD variants of German ancestry by three-dimensional modeling. All mutations present in the German population are either close to one of the three G6P or NADP(+) units or to the interface of the two monomers. Two of the three mutated amino acids of G6PD Vancouver are closer to the binding site of NADP(+). The G6PD Aachen mutation is also closer to the second NADP(+) unit. The G6PD Wayne mutation is closer to the G6P binding region. These mutations may affect the binding of G6P and NADP(+) units. Three mutations, i.e. G6PD Munich, G6PD Riverside and G6PD Gastonia, lie closer to the interface of the two monomers. These may also affect the interface of two monomers. None of these G6PD variants share mutations with the common G6PD variants known from the Mediterranean, Near East, or Africa indicating that they have developed independently. The G6PD variants have been compared with mutants from other populations and the implications for survival of G6PD variants from natural selection have been discussed.

  8. A redox-mediated modulation of stem bolting in transgenic Nicotiana sylvestris differentially expressing the external mitochondrial NADPH dehydrogenase.

    PubMed

    Liu, Yun-Jun; Nunes-Nesi, Adriano; Wallström, Sabá V; Lager, Ida; Michalecka, Agnieszka M; Norberg, Fredrik E B; Widell, Susanne; Fredlund, Kenneth M; Fernie, Alisdair R; Rasmusson, Allan G

    2009-07-01

    Cytosolic NADPH can be directly oxidized by a calcium-dependent NADPH dehydrogenase, NDB1, present in the plant mitochondrial electron transport chain. However, little is known regarding the impact of modified cytosolic NADPH reduction levels on growth and metabolism. Nicotiana sylvestris plants overexpressing potato (Solanum tuberosum) NDB1 displayed early bolting, whereas sense suppression of the same gene led to delayed bolting, with consequential changes in flowering time. The phenotype was dependent on light irradiance but not linked to any change in biomass accumulation. Whereas the leaf NADPH/NADP(+) ratio was unaffected, the stem NADPH/NADP(+) ratio was altered following the genetic modification and strongly correlated with the bolting phenotype. Metabolic profiling of the stem showed that the NADP(H) change affected relatively few, albeit central, metabolites, including 2-oxoglutarate, glutamate, ascorbate, sugars, and hexose-phosphates. Consistent with the phenotype, the modified NDB1 level also affected the expression of putative floral meristem identity genes of the SQUAMOSA and LEAFY types. Further evidence for involvement of the NADPH redox in stem development was seen in the distinct decrease in the stem apex NADPH/NADP(+) ratio during bolting. Additionally, the potato NDB1 protein was specifically detected in mitochondria, and a survey of its abundance in major organs revealed that the highest levels are found in green stems. These results thus strongly suggest that NDB1 in the mitochondrial electron transport chain can, by modifying cell redox levels, specifically affect developmental processes.

  9. In Vivo and in Vitro Studies of Glucose-6-Phosphate Dehydrogenase from Barley Root Plastids in Relation to Reductant Supply for NO2- Assimilation.

    PubMed Central

    Wright, D. P.; Huppe, H. C.; Turpin, D. H.

    1997-01-01

    Pyridine nucleotide pools were measured in intact plastids from roots of barley (Hordeum vulgare L.) during the onset of NO2- assimilation and compared with the in vitro effect of the NADPH/NADP ratio on the activity of plastidic glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) from N-sufficient or N-starved roots. The NADPH/NADP ratio increased from 0.9 to 2.0 when 10 mM glucose-6-phosphate was supplied to intact plastids. The subsequent addition of 1 mM NaNO2 caused a rapid decline in this ratio to 1.5. In vitro, a ratio of 1.5 inactivated barley root plastid G6PDH by approximately 50%, suggesting that G6PDH could remain active during NO2- assimilation even at the high NADPH/NADP ratios that would favor a reduction of ferredoxin, the electron donor of NO2- reductase. Root plastid G6PDH was sensitive to reductive inhibition by dithiothreitol (DTT), but even at 50 mM DTT the enzyme remained more than 35% active. In root plastids from barley starved of N for 3 d, G6PDH had a substantially reduced specific activity, had a lower Km for NADP, and was less inhibited by DTT than the enzyme from N-sufficient root plastids, indicating that there was some effect of N starvation on the G6PDH activity in barley root plastids. PMID:12223780

  10. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans.

    PubMed

    Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki

    2017-03-01

    Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD + , NADH, NADP + , and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P) + in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.

  11. NADP-Specific Electron-Bifurcating [FeFe]-Hydrogenase in a Functional Complex with Formate Dehydrogenase in Clostridium autoethanogenum Grown on CO

    PubMed Central

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P.; Köpke, Michael

    2013-01-01

    Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP+ with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0′ = −520 mV). PMID:23893107

  12. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO.

    PubMed

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P; Köpke, Michael; Thauer, Rudolf K

    2013-10-01

    Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP(+) with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0' = -520 mV).

  13. Possible Mitochondria-Associated Enzymatic Role in Non-Hodgkin Lymphoma Residual Disease

    PubMed Central

    Kusao, Ian; Troelstrup, David; Shiramizu, Bruce

    2009-01-01

    Background The mechanisms responsible for resistant or recurrent disease in childhood non-Hodgkin lymphoma (NHL) are not yet fully understood. A unique mechanism suggesting the role of the mitochondria as the key energy source responsible for residual cells has been assessed in the clinical setting on specimens from patients on therapy were found to have increased copies of mitochondrial DNA (mtDNA) associated with positive minimal residual disease and/or persistent disease (MRD/PD) status. The potential role of mtDNA in MRD/PD emphasizes queries into the contributions of relevant enzymatic pathways responsible for MRD/PD. This study hypothesized that in an in-vitro model, recovering or residual cells from chemotoxicity will exhibit an increase in both citrate synthase and isocitrate dehydrogenase expression and decrease in succinate dehydrogenase expression. Procedure Ramos cells (Burkitt lymphoma cell line) were exposed to varying concentrations of doxorubicin and vincristine for 1 hr; and allowing for recovery in culture over a 7-day period. cDNA was extracted on days 1 and 7 of the cell culture period to assess the relative expression of the aforementioned genes. Results Increase citrate synthase, increase isocitrate dehydrogenase and decrease succinate dehydrogenase expressions were found in recovering Ramos cells. Conclusion Recovering lymphoma cells appear to compensate by regulating enzymatic levels of appropriate genes in the Krebs Cycle suggesting an important role of the mitochondria in the presence of residual cells. PMID:19936279

  14. Kinetic studies of the inhibition of a human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme by bile acids and anti-inflammatory drugs.

    PubMed

    Miyabe, Y; Amano, T; Deyashiki, Y; Hara, A; Tsukada, F

    1995-01-01

    We have investigated the steady-state kinetics for a cytosolic 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme of human liver and its inhibition by several bile acids and anti-inflammatory drugs such as indomethacin, flufemanic acid and naproxen. Initial velocity and product inhibition studies performed in the NADP(+)-linked (S)-1-indanol oxidation at pH 7.4 were consistent with a sequential ordered mechanism in which NADP+ binds first and leaves last. The bile acids and drugs, competitive inhibitors with respect to the alcohol substrate, exhibited uncompetitive inhibition with respect to the coenzyme, with Ki values less than 1 microM, whereas indomethacin exhibited noncompetitive inhibition (Ki < 24 microM). The kinetics of the inhibition by a mixture of the two inhibitors suggests that bile acids and drugs, except indomethacin, bind to overlapping sites at the active center of the enzyme-coenzyme binary complex.

  15. Imaging growth and isocitrate dehydrogenase 1 mutation are independent predictors for diffuse low-grade gliomas

    PubMed Central

    Gozé, Catherine; Blonski, Marie; Le Maistre, Guillaume; Bauchet, Luc; Dezamis, Edouard; Page, Philippe; Varlet, Pascale; Capelle, Laurent; Devaux, Bertrand; Taillandier, Luc; Duffau, Hugues; Pallud, Johan

    2014-01-01

    Background We explored whether spontaneous imaging tumor growth (estimated by the velocity of diametric expansion) and isocitrate dehydrogenase 1 (IDH1) mutation (estimated by IDH1 immunoexpression) were independent predictors of long-term outcomes of diffuse low-grade gliomas in adults. Methods One hundred thirty-one adult patients with newly diagnosed supratentorial diffuse low-grade gliomas were retrospectively studied. Results Isocitrate dehydrogenase 1 mutations were present in 107 patients. The mean spontaneous velocity of diametric expansion was 5.40 ± 5.46 mm/y. During follow-up (mean, 70 ± 54.7 mo), 56 patients presented a malignant transformation and 23 died. The median malignant progression-free survival and the overall survival were significantly longer in cases of slow velocity of diametric expansion (149 and 198 mo, respectively) than in cases of fast velocity of diametric expansion (46 and 82 mo; P < .001 and P < .001, respectively) and in cases with IDH1 mutation (100 and 198 mo, respectively) than in cases without IDH1 mutation (72 mo and not reached; P = .028 and P = .001, respectively). In multivariate analyses, spontaneous velocity of diametric expansion and IDH1 mutation were independent prognostic factors for malignant progression-free survival (P < .001; hazard ratio, 4.23; 95% CI, 1.81–9.40 and P = .019; hazard ratio, 2.39; 95% CI, 1.19–4.66, respectively) and for overall survival (P < .001; hazard ratio, 26.3; 95% CI, 5.42–185.2 and P = .007; hazard ratio, 17.89; 95% CI, 2.15–200.1, respectively). Conclusions The spontaneous velocity of diametric expansion and IDH1 mutation status are 2 independent prognostic values that should be obtained at the beginning of the management of diffuse low-grade gliomas in adults. PMID:24847087

  16. Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145.

    PubMed

    Takahashi-Íñiguez, Tóshiko; Barrios-Hernández, Joana; Rodríguez-Maldonado, Marion; Flores, María Elena

    2018-06-23

    The oxidation of malate to oxaloacetate is catalysed only by a nicotinamide adenine dinucleotide-dependent malate dehydrogenase encoded by SCO4827 in Streptomyces coelicolor. A mutant lacking the malate dehydrogenase gene was isolated and no enzymatic activity was detected. As expected, the ∆mdh mutant was unable to grow on malate as the sole carbon source. However, the mutant grew less in minimal medium with glucose and there was a delay of 36 h. The same behaviour was observed when the mutant was grown on minimal medium with casamino acids or glycerol. For unknown reasons, the mutant was not able to grow in YEME medium with glucose. The deficiency of malate dehydrogenase affected the expression of the isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase genes, decreasing the expression of both genes by approximately two- to threefold.

  17. Is the alkaline tide a signal to activate metabolic or ionoregulatory enzymes in the dogfish shark (Squalus acanthias)?

    PubMed

    Wood, Chris M; Kajimura, Makiko; Mommsen, Thomas P; Walsh, Patrick J

    2008-01-01

    Experimental metabolic alkalosis is known to stimulate whole-animal urea production and active ion secretion by the rectal gland in the dogfish shark. Furthermore, recent evidence indicates that a marked alkaline tide (systemic metabolic alkalosis) follows feeding in this species and that the activities of the enzymes of the ornithine-urea cycle (OUC) for urea synthesis in skeletal muscle and liver and of energy metabolism and ion transport in the rectal gland are increased at this time. We therefore evaluated whether alkalosis and/or NaCl/volume loading (which also occurs with feeding) could serve as a signal for activation of these enzymes independent of nutrient loading. Fasted dogfish were infused for 20 h with either 500 mmol L(-1) NaHCO3 (alkalosis + volume expansion) or 500 mmol L(-1) NaCl (volume expansion alone), both isosmotic to dogfish plasma, at a rate of 3 mL kg(-1) h(-1). NaHCO3 infusion progressively raised arterial pH to 8.28 (control = 7.85) and plasma [HCO3-] to 20.8 mmol L(-1) (control = 4.5 mmol L(-1)) at 20 h, with unchanged arterial P(CO2), whereas NaCl/volume loading had no effect on blood acid-base status. Rectal gland Na+,K+-ATPase activity was increased 50% by NaCl loading and more than 100% by NaHCO3 loading, indicating stimulatory effects of both volume expansion and alkalosis. Rectal gland lactate dehydrogenase activity was elevated 25% by both treatments, indicating volume expansion effects only, whereas neither treatment increased the activities of the aerobic enzymes citrate synthase, NADP-isocitrate dehydrogenase, or the ketone body-utilizing enzyme beta-hydroxybutyrate dehydrogenase in the rectal gland or liver. The activity of ornithine-citrulline transcarbamoylase in skeletal muscle was doubled by NaHCO3 infusion, but neither treatment altered the activities of other OUC-related enzymes (glutamine synthetase, carbamoylphosphate synthetase III). We conclude that both the alkaline tide and salt loading/volume expansion act as signals to activate some but not all of the elevated metabolic pathways and ionoregulatory mechanisms needed during processing of a meal.

  18. Modified expression of cytoplasmic isocitrate dehydrogenase electrophoretic isoforms in seminal plasma of men with sertoli-cell-only syndrome and seminoma.

    PubMed

    Starita-Geribaldi, Mireille; Samson, Michel; Guigonis, Jean-Marie; Pointis, Georges; Fenichel, Patrick

    2008-06-01

    Two isoforms of human cytoplasmic isocitrate dehydrogenase (IDPc) of close molecular weights and different isoelectric points were identified in human seminal plasma (SP) by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). These two isoforms were detected in the normospermic men SP and their expressions were markedly altered in patients with testicular seminoma, the most frequent testicular germ cell cancer (TGCC): increase of the more acidic spot and decrease of the more basic one. Since oligospermia has been considered as a high risk pathological condition for developing a testicular cancer, the two IDPc isoforms were analyzed in SP of a group of secretory azoospermic patients. In this group the two spots displayed similar variations of expression to those observed in testicular seminoma. These results propose IDPc as a promising SP biomarker of testicular seminoma. Whether IDPc alteration in secretory azoospermia is predictive of testicular seminoma remains to be elucidated. (c) 2007 Wiley-Liss, Inc.

  19. Isocitrate dehydrogenase mutations confer dasatinib hypersensitivity and SRC-dependence in intrahepatic cholangiocarcinoma

    PubMed Central

    Saha, Supriya K.; Gordan, John D.; Kleinstiver, Benjamin P.; Vu, Phuong; Najem, Mortada S.; Yeo, Jia-Chi; Shi, Lei; Kato, Yasutaka; Levin, Rebecca S.; Webber, James T.; Damon, Leah J.; Egan, Regina K.; Greninger, Patricia; McDermott, Ultan; Garnett, Mathew J.; Jenkins, Roger L.; Rieger-Christ, Kimberly M.; Sullivan, Travis B.; Hezel, Aram F.; Liss, Andrew S.; Mizukami, Yusuke; Goyal, Lipika; Ferrone, Cristina R.; Zhu, Andrew X.; Joung, J. Keith; Shokat, Kevan M.; Benes, Cyril H.; Bardeesy, Nabeel

    2017-01-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive liver bile duct malignancy exhibiting frequent isocitrate dehydrogenase (IDH1/IDH2) mutations. Through a high-throughput drug screen of a large panel of cancer cell lines including 17 biliary tract cancers, we found that IDH mutant (IDHm) ICC cells demonstrate a striking response to the multi-kinase inhibitor dasatinib, with the highest sensitivity among 682 solid tumor cell lines. Using unbiased proteomics to capture the activated kinome and CRISPR/Cas9-based genome editing to introduce dasatinib-resistant ‘gatekeeper’ mutant kinases, we identified SRC as a critical dasatinib target in IDHm ICC. Importantly, dasatinib-treated IDHm xenografts exhibited pronounced apoptosis and tumor regression. Our results show that IDHm ICC cells have a unique dependency on SRC and suggest that dasatinib may have therapeutic benefit against IDHm ICC. Moreover, these proteomic and genome-editing strategies provide a systematic and broadly applicable approach to define targets of kinase inhibitors underlying drug responsiveness. PMID:27231123

  20. Isocitrate dehydrogenase-mutant glioma: Evolving clinical and therapeutic implications.

    PubMed

    Miller, Julie J; Shih, Helen A; Andronesi, Ovidiu C; Cahill, Daniel P

    2017-12-01

    The metabolic genes isocitrate dehydrogenase 1 (IDH1) and IDH2 are commonly mutated in low-grade glioma and in a subset of glioblastoma. These mutations co-occur with other recurrent molecular alterations, including 1p/19q codeletions and tumor suppressor protein 53 (TP53) and alpha thalassemia/mental retardation (ATRX) mutations, which together help to define a molecular signature that aids in the classification of gliomas and helps to better predict clinical behavior. A confluence of research suggests that glioma development in IDH-mutant and IDH wild-type tumors is driven by different oncogenic processes and responds differently to current treatment paradigms. Herein, the authors discuss the discovery of IDH mutations and associated molecular alterations in glioma, review clinical features common to patients with IDH-mutant glioma, and highlight current understanding of IDH mutation-driven gliomagenesis with implications for emerging treatment strategies. Cancer 2017;123:4535-4546. © 2017 American Cancer Society. © 2017 American Cancer Society.

  1. Discovery of 8-Membered Ring Sulfonamides as Inhibitors of Oncogenic Mutant Isocitrate Dehydrogenase 1.

    PubMed

    Law, Jason M; Stark, Sebastian C; Liu, Ke; Liang, Norah E; Hussain, Mahmud M; Leiendecker, Matthias; Ito, Daisuke; Verho, Oscar; Stern, Andrew M; Johnston, Stephen E; Zhang, Yan-Ling; Dunn, Gavin P; Shamji, Alykhan F; Schreiber, Stuart L

    2016-10-13

    Evidence suggests that specific mutations of isocitrate dehydrogenases 1 and 2 (IDH1/2) are critical for the initiation and maintenance of certain tumor types and that inhibiting these mutant enzymes with small molecules may be therapeutically beneficial. In order to discover mutant allele-selective IDH1 inhibitors with chemical features distinct from existing probes, we screened a collection of small molecules derived from diversity-oriented synthesis. The assay identified compounds that inhibit the IDH1-R132H mutant allele commonly found in glioma. Here, we report the discovery of a potent (IC 50 = 50 nM) series of IDH1-R132H inhibitors having 8-membered ring sulfonamides as exemplified by the compound BRD2879. The inhibitors suppress ( R )-2-hydroxyglutarate production in cells without apparent toxicity. Although the solubility and pharmacokinetic properties of the specific inhibitor BRD2879 prevent its use in vivo , the scaffold presents a validated starting point for the synthesis of future IDH1-R132H inhibitors having improved pharmacological properties.

  2. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.

    PubMed Central

    Burdette, D; Zeikus, J G

    1994-01-01

    The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling. Images Figure 1 PMID:8068002

  3. Molecular mechanism of the allosteric regulation of the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase

    PubMed Central

    Ma, Tengfei; Peng, Yingjie; Huang, Wei; Ding, Jianping

    2017-01-01

    Human NAD-dependent isocitrate dehydrogenase catalyzes the decarboxylation of isocitrate (ICT) into α-ketoglutarate in the Krebs cycle. It exists as the α2βγ heterotetramer composed of the αβ and αγ heterodimers. Previously, we have demonstrated biochemically that the α2βγ heterotetramer and αγ heterodimer can be allosterically activated by citrate (CIT) and ADP. In this work, we report the crystal structures of the αγ heterodimer with the γ subunit bound without or with different activators. Structural analyses show that CIT, ADP and Mg2+ bind adjacent to each other at the allosteric site. The CIT binding induces conformational changes at the allosteric site, which are transmitted to the active site through the heterodimer interface, leading to stabilization of the ICT binding at the active site and thus activation of the enzyme. The ADP binding induces no further conformational changes but enhances the CIT binding through Mg2+-mediated interactions, yielding a synergistic activation effect. ICT can also bind to the CIT-binding subsite, which induces similar conformational changes but exhibits a weaker activation effect. The functional roles of the key residues are verified by mutagenesis, kinetic and structural studies. Our structural and functional data together reveal the molecular mechanism of the allosteric regulation of the αγ heterodimer. PMID:28098230

  4. Identification of a new selective chemical inhibitor of mutant isocitrate dehydrogenase-1.

    PubMed

    Kim, Hyo-Joon; Choi, Bu Young; Keum, Young-Sam

    2015-03-01

    Recent genome-wide sequencing studies have identified unexpected genetic alterations in cancer. In particular, missense mutations in isocitrate dehydrogenase-1 (IDH1) at arginine 132, mostly substituted into histidine (IDH1-R132H) were observed to frequently occur in glioma patients. We have purified recombinant IDH1 and IDH1-R132H proteins and monitored their catalytic activities. In parallel experiments, we have attempted to find new selective IDH1-R132H chemical inhibitor(s) from a fragment-based chemical library. We have found that IDH1, but not IDH1-R132H, can catalyze the conversion of isocitrate into α-ketoglutarate (α-KG). In addition, we have observed that IDH1-R132H was more efficient than IDH1 in converting α-KG into (R)-2-hydroxyglutarate (R-2HG). Moreover, we have identified a new hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one as a new selective IDH1-R132H inhibitor. We have observed an underlying biochemical mechanism explaining how a heterozygous IDH1 mutation contributes to the generation of R-2HG and increases cellular histone H3 trimethylation levels. We have also identified a novel selective IDH1-R132H chemical hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one, which could be used for a future lead development against IDH1-R132H.

  5. Novel Xylose Dehydrogenase in the Halophilic Archaeon Haloarcula marismortui†

    PubMed Central

    Johnsen, Ulrike; Schönheit, Peter

    2004-01-01

    During growth of the halophilic archaeon Haloarcula marismortui on d-xylose, a specific d-xylose dehydrogenase was induced. The enzyme was purified to homogeneity. It constitutes a homotetramer of about 175 kDa and catalyzed the oxidation of xylose with both NADP+ and NAD+ as cosubstrates with 10-fold higher affinity for NADP+. In addition to d-xylose, d-ribose was oxidized at similar kinetic constants, whereas d-glucose was used with about 70-fold lower catalytic efficiency (kcat/Km). With the N-terminal amino acid sequence of the subunit, an open reading frame (ORF)—coding for a 39.9-kDA protein—was identified in the partially sequenced genome of H. marismortui. The function of the ORF as the gene designated xdh and coding for xylose dehydrogenase was proven by its functional overexpression in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies following solubilization in urea and refolding in the presence of salts, reduced and oxidized glutathione, and substrates. Xylose dehydrogenase showed the highest sequence similarity to glucose-fructose oxidoreductase from Zymomonas mobilis and other putative bacterial and archaeal oxidoreductases. Activities of xylose isomerase and xylulose kinase, the initial reactions of xylose catabolism of most bacteria, could not be detected in xylose-grown cells of H. marismortui, and the genes that encode them, xylA and xylB, were not found in the genome of H. marismortui. Thus, we propose that this first characterized archaeal xylose dehydrogenase catalyzes the initial step in xylose degradation by H. marismortui. PMID:15342590

  6. The X-Ray Crystal Structure of Escherichia coli Succinic Semialdehyde Dehydrogenase; Structural Insights into NADP+/Enzyme Interactions

    PubMed Central

    Langendorf, Christopher G.; Key, Trevor L. G.; Fenalti, Gustavo; Kan, Wan-Ting; Buckle, Ashley M.; Caradoc-Davies, Tom; Tuck, Kellie L.; Law, Ruby H. P.; Whisstock, James C.

    2010-01-01

    Background In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and γ-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells. Methodology/Principal Findings Here we structurally characterise SSADH encoded by the E coli gabD gene by X-ray crystallographic studies and compare these data with the structure of human SSADH. In the E. coli SSADH structure, electron density for the complete NADP+ cofactor in the binding sites is clearly evident; these data in particular revealing how the nicotinamide ring of the cofactor is positioned in each active site. Conclusions/Significance Our structural data suggest that a deletion of three amino acids in E. coli SSADH permits this enzyme to use NADP+, whereas in contrast the human enzyme utilises NAD+. Furthermore, the structure of E. coli SSADH gives additional insight into human mutations that result in disease. PMID:20174634

  7. 17Beta-hydroxysteroid dehydrogenase (17beta-HSD) in scleractinian corals and zooxanthellae.

    PubMed

    Blomquist, Charles H; Lima, P H; Tarrant, A M; Atkinson, M J; Atkinson, S

    2006-04-01

    Steroid metabolism studies have yielded evidence of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) activity in corals. This project was undertaken to clarify whether there are multiple isoforms of 17beta-HSD, whether activity levels vary seasonally, and if zooxanthellae contribute to activity. 17Beta-HSD activity was characterized in zooxanthellate and azooxanthellate coral fragments collected in summer and winter and in zooxanthellae cultured from Montipora capitata. More specifically, 17beta-HSD activity was characterized with regard to steroid substrate and inhibitor specificity, coenzyme specificity, and Michaelis constants for estradiol (E2) and NADP+. Six samples each of M. capitata and Tubastrea coccinea (three summers, three winters) were assayed with E2 and NADP+. Specific activity levels (pmol/mg protein) varied 10-fold among M. capitata samples and 6-fold among T. coccinea samples. There was overlap of activity levels between summer and winter samples. NADP+/NAD+ activity ratios varied from 1.6 to 22.2 for M. capatita, 2.3 to 3.8 for T. coccinea and 0.7 to 1.1 for zooxanthellae. Coumestrol was the most inhibitory of the steroids and phytoestrogens tested. Our data confirm that corals and zooxanthellae contain 17beta-HSD and are consistent with the presence of more than one isoform of the enzyme.

  8. Two new glucose 6-phosphate dehydrogenase variants associated with congenital nonspherocytic hemolytic anemia found in Japan: GD(-) Tokushima and GD(-) Tokyo.

    PubMed

    Miwa, S; Ono, J; Nakashima, K; Abe, S; Kageoka, T

    1976-01-01

    Two new variants of glucose 6-phosphate dehydrogenase (G6PD) deficiency associated with chronic nonspherocytic hemolytic anemia were discovered in Japan. Gd(-) Tokushima was found in a 17-years-old male whose erythrocytes contained 4.4% of normal enzyme activity. Partially purified enzyme revealed a main band of normal electrophoretic mobility with additional two minor bands of different mobility; normal Km G6P, and Km NADP five-to sixfold higher than normal; normal utilization of 2-deoxy-G6P, galactose-6P, and deamino-NADP; marked thermal instability; a normal pH curve; and normal Ki NADPH. The hemolytic anemia was moderate to severe. Gd(-) Tokyo was characterized from a 15-year-old male who had chronic nonspherocytic hemolytic anemia of mild degree. The erythrocytes contained 3% of normal enzyme activity, and partially purified enzyme revealed slow electrophoretic mobility (90% of normal for both a tris-hydrochloride buffer system and a tris-EDTA-borate buffer system, and 70% of normal for a phosphate buffer system); normal Km G6P and Km NADP; normal utilization of 2-deoxy-G6P, galactose-6P, and deamino-NADP; greatly increased thermal instability; a normal pH curve; and normal Ki NADPH. These two variants are clearly different from hitherto described G6PD variants, including the Japanese variants Gd(-) Heian and Gd(-) Kyoto. The mothers of both Gd(-) Tokushima and Gd(-) Tokoyo were found to be heterozygote by an ascorbate-cyanide test.

  9. Lipogenesis in a wing-polymorphic cricket: Canalization versus morph-specific plasticity as a function of nutritional heterogeneity.

    PubMed

    Zera, Anthony J; Clark, Rebecca; Behmer, Spence

    2016-12-01

    The influence of variable nutritional input on life history adaptation is a central, but incompletely understood aspect of life history physiology. The wing-polymorphic cricket, Gryllus firmus, has been extensively studied with respect to the biochemical basis of life history adaptation, in particular, modification of lipid metabolism that underlies the enhanced accumulation of lipid flight fuel in the dispersing morph [LW(f)=long wings with functional flight muscles] relative to the flightless (SW=short-winged) morph. To date, biochemical studies have been undertaken almost exclusively using a single laboratory diet. Thus, the extent to which nutritional heterogeneity, likely experienced in the field, influences this key morph adaptation is unknown. We used the experimental approach of the Geometric Framework for Nutrition and employed 13 diets that differed in the amounts and ratios of protein and carbohydrate to assess how nutrient amount and balance affects morph-specific lipid biosynthesis. Greater lipid biosynthesis and allocation to the soma in the LW(f) compared with the SW morph (1) occurred across the entire protein-carbohydrate landscape and (2) is likely an important contributor to elevated somatic lipid in the LW(f) morph across the entire protein-carbohydrate landscape. Nevertheless, dietary carbohydrate strongly affected lipid biosynthesis in a morph-specific manner (to a greater degree in the LW(f) morph). Lipogenesis in the SW morph may be constrained due to its more limited lipid storage capacity compared to the LW(f) morph. Elevated activity of NADP + -isocitrate dehydrogenase (NADP + -IDH), an enzyme that produces reducing equivalents for lipid biosynthesis, was correlated with and may be an important cause of the increased lipogenesis in the LW(f) morph across most, but not all regions of the protein-carbohydrate landscape. By contrast, ATP-citrate lyase (ACL), an enzyme that catalyzes the first step in the pathway of fatty acid biosynthesis, showed complex morph-specific patterns of activity that were strongly contingent upon diet. Morph-specific patterns of NADP + -IDH and ACL activities across the nutrient landscape were much more complex than expected from previous studies on a single diet. Collectively, our results indicate that the biochemical basis of an important life history adaptation, morph-specific lipogenesis, can be canalized in the face of substantial nutritional heterogeneity. However, in some regions of the protein-carbohydrate landscape, it is strongly modulated in a morph-specific manner. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Biosynthesis of Germacrene A Carboxylic Acid in Chicory Roots. Demonstration of a Cytochrome P450 (+)-Germacrene A Hydroxylase and NADP+-Dependent Sesquiterpenoid Dehydrogenase(s) Involved in Sesquiterpene Lactone Biosynthesis

    PubMed Central

    de Kraker, Jan-Willem; Franssen, Maurice C. R.; Dalm, Marcella C. F.; de Groot, Aede; Bouwmeester, Harro J.

    2001-01-01

    Sprouts of chicory (Cichorium intybus), a vegetable grown in the dark, have a slightly bitter taste associated with the presence of guaianolides, eudesmanolides, and germacranolides. The committed step in the biosynthesis of these compounds is catalyzed by a (+)-germacrene A synthase. Formation of the lactone ring is the postulated next step in biosynthesis of the germacrene-derived sesquiterpene lactones. The present study confirms this hypothesis by isolation of enzyme activities from chicory roots that introduce a carboxylic acid function in the germacrene A isopropenyl side chain, which is necessary for lactone ring formation. (+)-Germacrene A is hydroxylated to germacra-1(10),4,11(13)-trien-12-ol by a cytochrome P450 enzyme, and is subsequently oxidized to germacra-1(10),4,11(13)-trien-12-oic acid by NADP+-dependent dehydrogenase(s). Both oxidized germacrenes were detected as their Cope-rearrangement products elema-1,3,11(13)-trien-12-ol and elema-1,3,11(13)-trien-12-oic acid, respectively. The cyclization products of germacra-1(10),4,11(13)-trien-12-ol, i.e. costol, were also observed. The (+)-germacrene A hydroxylase is inhibited by carbon monoxide (blue-light reversible), has an optimum pH at 8.0, and hydroxylates β-elemene with a modest degree of enantioselectivity. PMID:11299372

  11. RNA sequencing to study gene expression and single nucleotide polymorphism variation associated with citrate content in cow milk.

    PubMed

    Cánovas, A; Rincón, G; Islas-Trejo, A; Jimenez-Flores, R; Laubscher, A; Medrano, J F

    2013-04-01

    The technological properties of milk have significant importance for the dairy industry. Citrate, a normal constituent of milk, forms one of the main buffer systems that regulate the equilibrium between Ca(2+) and H(+) ions. Higher-than-normal citrate content is associated with poor coagulation properties of milk. To identify the genes responsible for the variation of citrate content in milk in dairy cattle, the metabolic steps involved in citrate and fatty acid synthesis pathways in ruminant mammary tissue using RNA sequencing were studied. Genetic markers that could influence milk citrate content in Holstein cows were used in a marker-trait association study to establish the relationship between 74 single nucleotide polymorphisms (SNP) in 20 candidate genes and citrate content in 250 Holstein cows. This analysis revealed 6 SNP in key metabolic pathway genes [isocitrate dehydrogenase 1 (NADP+), soluble (IDH1); pyruvate dehydrogenase (lipoamide) β (PDHB); pyruvate kinase (PKM2); and solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1 (SLC25A1)] significantly associated with increased milk citrate content. The amount of the phenotypic variation explained by the 6 SNP ranged from 10.1 to 13.7%. Also, genotype-combination analysis revealed the highest phenotypic variation was explained combining IDH1_23211, PDHB_5562, and SLC25A1_4446 genotypes. This specific genotype combination explained 21.3% of the phenotypic variation. The largest citrate associated effect was in the 3' untranslated region of the SLC25A1 gene, which is responsible for the transport of citrate across the mitochondrial inner membrane. This study provides an approach using RNA sequencing, metabolic pathway analysis, and association studies to identify genetic variation in functional target genes determining complex trait phenotypes. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Tandem dye-ligand chromatography and biospecific elution applied to the purification of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides.

    PubMed Central

    Hey, Y; Dean, P D

    1983-01-01

    1. A total of 65 immobilized triazine dyes were screened for their ability to purify the dual-nucleotide-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. From this screen a 'negative' (Matrex Gel Purple A) and a 'positive' (Matrex Gel Orange B) adsorbent were found to be the best in terms of overall purification and yield and were therefore combined to give the best purification. 2. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides was purified approx. 56-fold in a two-step tandem chromatographic system using Matrex Gel Purple A followed by Matrex Gel Orange B chromatography to a specific activity of 228 units/mg of protein in a final yield of 73%. 3. A study of the elution characteristics of glucose-6-phosphate dehydrogenase bound to Matrex Gel Orange B by KCl (pulse and gradient) and biospecific eluents (pulse) was carried out. NADP+, NADPH and adenosine 2',5'-bisphosphate were found to be the only effective biospecific eluents. A pulse of 50 microM-NADP+ (1/2 column vol.) was found to give a better purification than a 0-1 M-KCl gradient and therefore was the preferred method of elution. 4. Presaturation of the enzyme with various nucleotides was carried out to determine the effect on the subsequent binding of glucose-6-phosphate dehydrogenase to Matrex Gel Orange B. The results of these and biospecific-elution studies lead us to propose two possible schemes to explain the mechanism of the dye-protein interaction. 5. Reusability, capacity of the adsorbent and effect of varying the ligand concentration were also studied in the purification of glucose-6-phosphate dehydrogenase on Matrex Gel Orange B. Images Fig. 1. PMID:6847623

  13. Tandem dye-ligand chromatography and biospecific elution applied to the purification of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides.

    PubMed

    Hey, Y; Dean, P D

    1983-02-01

    1. A total of 65 immobilized triazine dyes were screened for their ability to purify the dual-nucleotide-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. From this screen a 'negative' (Matrex Gel Purple A) and a 'positive' (Matrex Gel Orange B) adsorbent were found to be the best in terms of overall purification and yield and were therefore combined to give the best purification. 2. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides was purified approx. 56-fold in a two-step tandem chromatographic system using Matrex Gel Purple A followed by Matrex Gel Orange B chromatography to a specific activity of 228 units/mg of protein in a final yield of 73%. 3. A study of the elution characteristics of glucose-6-phosphate dehydrogenase bound to Matrex Gel Orange B by KCl (pulse and gradient) and biospecific eluents (pulse) was carried out. NADP+, NADPH and adenosine 2',5'-bisphosphate were found to be the only effective biospecific eluents. A pulse of 50 microM-NADP+ (1/2 column vol.) was found to give a better purification than a 0-1 M-KCl gradient and therefore was the preferred method of elution. 4. Presaturation of the enzyme with various nucleotides was carried out to determine the effect on the subsequent binding of glucose-6-phosphate dehydrogenase to Matrex Gel Orange B. The results of these and biospecific-elution studies lead us to propose two possible schemes to explain the mechanism of the dye-protein interaction. 5. Reusability, capacity of the adsorbent and effect of varying the ligand concentration were also studied in the purification of glucose-6-phosphate dehydrogenase on Matrex Gel Orange B.

  14. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation.

    PubMed

    Droux, M; Miginiac-Maslow, M; Jacquot, J P; Gadal, P; Crawford, N A; Kosower, N S; Buchanan, B B

    1987-07-01

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with [14C]iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn, reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.

  15. Crystallization of human estrogenic 17β-hydroxysteroid dehydrogenase under microgravity

    NASA Astrophysics Data System (ADS)

    Zhu, Dao-Wei; Zhou, Ming; Mao, Ying; Labrie, Fernand; Lin, Sheng-Xiang

    1995-11-01

    Human 17β-hydroxysteroid dehydrogenase has been crystallized on the ground in the complex form with NADP + and a complete data set of the crystal was primarily collected at 2.9 Å [D.-W. Zhu, X. Lee, R. Breton, D. Ghosh, W. Pangborn, W.L. Duax and S.-X. Lin, J. Mol. Biol. 234 (1993) 242]. To eliminate multiseeding, formation of multicrystals and to obtain higher quality crystals, we carried out the crystallization aboard the Russian MIR space station and crystals were recovered in January, 1994. Crystals of the enzyme were formed in 9 of the total 12 sitting drops in the space mission, in the presence of NADP + or estradiol. This is a first attempt of crystallization of a membrane-associated protein under microgravity in the presence of a detergent. The space experiments showed better results in nucleation number, crystal size and morphology than the ground ones, obtaining crystals diffracting to resolutions between 2.5-2.7 Å. The too early ground mixing has limited a more important improvement of the crystallization.

  16. A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases.

    PubMed

    Cahn, Jackson K B; Werlang, Caroline A; Baumschlager, Armin; Brinkmann-Chen, Sabine; Mayo, Stephen L; Arnold, Frances H

    2017-02-17

    The ability to control enzymatic nicotinamide cofactor utilization is critical for engineering efficient metabolic pathways. However, the complex interactions that determine cofactor-binding preference render this engineering particularly challenging. Physics-based models have been insufficiently accurate and blind directed evolution methods too inefficient to be widely adopted. Building on a comprehensive survey of previous studies and our own prior engineering successes, we present a structure-guided, semirational strategy for reversing enzymatic nicotinamide cofactor specificity. This heuristic-based approach leverages the diversity and sensitivity of catalytically productive cofactor binding geometries to limit the problem to an experimentally tractable scale. We demonstrate the efficacy of this strategy by inverting the cofactor specificity of four structurally diverse NADP-dependent enzymes: glyoxylate reductase, cinnamyl alcohol dehydrogenase, xylose reductase, and iron-containing alcohol dehydrogenase. The analytical components of this approach have been fully automated and are available in the form of an easy-to-use web tool: Cofactor Specificity Reversal-Structural Analysis and Library Design (CSR-SALAD).

  17. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droux, M.; Miginiac-Maslow, M.; Jacquot, J.P.

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with (/sup 14/C)iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn,more » reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.« less

  18. Monoterpene alcohol metabolism: identification, purification, and characterization of two geraniol dehydrogenase isoenzymes from Polygonum minus leaves.

    PubMed

    Hassan, Maizom; Maarof, Nur Diyana; Ali, Zainon Mohd; Noor, Normah Mohd; Othman, Roohaida; Mori, Nobuhiro

    2012-01-01

    NADP(+)-dependent geraniol dehydrogenase (EC 1.1.1.183) is an enzyme that catalyzes the oxidation of geraniol to geranial. Stable, highly active cell-free extract was obtained from Polygonum minus leaves using polyvinylpolypyrrolidone, Amberlite XAD-4, glycerol, 2-mercaptoethanol, thiourea, and phenylmethylsulfonylfluoride in tricine-NaOH buffer (pH 7.5). The enzyme preparation was separated into two activity peaks, geraniol-DH I and II, by DEAE-Toyopearl 650M column chromatography at pH 7.5. Both isoenzymes were purified to homogeneity in three chromatographic steps. The geraniol-DH isoenzymes were similar in molecular mass, optimal temperature, and pH, but the isoelectric point, substrate specificity, and kinetic parameters were different. The K(m) values for geraniol of geraniol-DH I and II appeared to be 0.4 mM and 0.185 mM respectively. P. minus geraniol-DHs are unusual among geraniol-DHs in view of their thermal stability and optimal temperatures, and also their high specificity for allylic alcohols and NADP(+).

  19. Central carbon metabolism in marine bacteria examined with a simplified assay for dehydrogenases.

    PubMed

    Wen, Weiwei; Wang, Shizhen; Zhou, Xiaofen; Fang, Baishan

    2013-06-01

    A simplified assay platform was developed to measure the activities of the key oxidoreductases in central carbon metabolism of various marine bacteria. Based on microplate assay, the platform was low-cost and simplified by unifying the reaction conditions of enzymes including temperature, buffers, and ionic strength. The central carbon metabolism of 16 marine bacteria, involving Pseudomonas, Exiguobacterium, Marinobacter, Citreicella, and Novosphingobium were studied. Six key oxidoreductases of central carbon metabolism, glucose-6-phosphate dehydrogenase, pyruvate dehydrogenase, 2-ketoglutarate dehydrogenase, malate dehydrogenase, malic enzyme, and isocitrate dehydrogenase were investigated by testing their activities in the pathway. High activity of malate dehydrogenase was found in Citreicella marina, and the specific activity achieved 22 U/mg in cell crude extract. The results also suggested that there was a considerable variability on key enzymes' activities of central carbon metabolism in some strains which have close evolutionary relationship while they adapted to the requirements of the niche they (try to) occupy.

  20. Tributyltin induces G2/M cell cycle arrest via NAD(+)-dependent isocitrate dehydrogenase in human embryonic carcinoma cells.

    PubMed

    Asanagi, Miki; Yamada, Shigeru; Hirata, Naoya; Itagaki, Hiroshi; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2016-04-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine-disrupting chemicals (EDCs). We have recently reported that TBT induces growth arrest in the human embryonic carcinoma cell line NT2/D1 at nanomolar levels by inhibiting NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the irreversible conversion of isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we examined whether TBT at nanomolar levels affects cell cycle progression in NT2/D1 cells. Propidium iodide staining revealed that TBT reduced the ratio of cells in the G1 phase and increased the ratio of cells in the G2/M phase. TBT also reduced cell division cycle 25C (cdc25C) and cyclin B1, which are key regulators of G2/M progression. Furthermore, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. The G2/M arrest induced by TBT was abolished by NAD-IDHα knockdown. Treatment with a cell-permeable α-ketoglutarate analogue recovered the effect of TBT, suggesting the involvement of NAD-IDH. Taken together, our data suggest that TBT at nanomolar levels induced G2/M cell cycle arrest via NAD-IDH in NT2/D1 cells. Thus, cell cycle analysis in embryonic cells could be used to assess cytotoxicity associated with nanomolar level exposure of EDCs.

  1. Isocitrate dehydrogenase 1 is downregulated during early skin tumorigenesis which can be inhibited by overexpression of manganese superoxide dismutase.

    PubMed

    Robbins, Delira; Wittwer, Jennifer A; Codarin, Sarah; Circu, Magdalena L; Aw, Tak Yee; Huang, Ting-Ting; Van Remmen, Holly; Richardson, Arlan; Wang, David B; Witt, Stephan N; Klein, Ronald L; Zhao, Yunfeng

    2012-08-01

    Isocitrate dehydrogenase 1 (IDH1), a cytosolic enzyme that converts isocitrate to alpha-ketoglutarate, has been shown to be dysregulated during tumorigenesis. However, at what stage of cancer development IDH1 is dysregulated and how IDH1 may affect cell transformation and tumor promotion during early stages of cancer development are unclear. We used a skin cell transformation model and mouse skin epidermal tissues to study the role of IDH1 in early skin tumorigenesis. Our studies demonstrate that both the tumor promoter TPA and UVC irradiation decreased expression and activity levels of IDH1, not IDH2, in the tumor promotable JB6 P+ cell model. Skin epidermal tissues treated with dimethylbenz[α]anthracene/TPA also showed decreases in IDH1 expression and activity. In non-promotable JB6 P-cells, IDH1 was upregulated upon TPA treatment, whereas IDH2 was maintained at similar levels with TPA treatment. Interestingly, IDH1 knockdown enhanced, whereas IDH1 overexpression suppressed, TPA-induced cell transformation. Finally, manganese superoxide dismutase overexpression suppressed tumor promoter induced decreases in IDH1 expression and mitochondrial respiration, while intracellular alpha-ketoglutarate levels were unchanged. These results suggest that decreased IDH1 expression in early stage skin tumorigenesis is highly correlated with tumor promotion. In addition, oxidative stress might contribute to IDH1 inactivation, because manganese superoxide dismutase, a mitochondrial antioxidant enzyme, blocked decreases in IDH1 expression and activity. © 2012 Japanese Cancer Association.

  2. Identification of a New Selective Chemical Inhibitor of Mutant Isocitrate Dehydrogenase-1

    PubMed Central

    Kim, Hyo-Joon; Choi, Bu Young; Keum, Young-Sam

    2015-01-01

    Background: Recent genome-wide sequencing studies have identified unexpected genetic alterations in cancer. In particular, missense mutations in isocitrate dehydrogenase-1 (IDH1) at arginine 132, mostly substituted into histidine (IDH1-R132H) were observed to frequently occur in glioma patients. Methods: We have purified recombinant IDH1 and IDH1-R132H proteins and monitored their catalytic activities. In parallel experiments, we have attempted to find new selective IDH1-R132H chemical inhibitor(s) from a fragment-based chemical library. Results: We have found that IDH1, but not IDH1-R132H, can catalyze the conversion of isocitrate into α-ketoglutarate (α-KG). In addition, we have observed that IDH1-R132H was more efficient than IDH1 in converting α-KG into (R)-2-hydroxyglutarate (R-2HG). Moreover, we have identified a new hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one as a new selective IDH1-R132H inhibitor. Conclusions: We have observed an underlying biochemical mechanism explaining how a heterozygous IDH1 mutation contributes to the generation of R-2HG and increases cellular histone H3 trimethylation levels. We have also identified a novel selective IDH1-R132H chemical hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one, which could be used for a future lead development against IDH1-R132H. PMID:25853107

  3. Structural and biochemical insights into 7β-hydroxysteroid dehydrogenase stereoselectivity.

    PubMed

    Savino, Simone; Ferrandi, Erica Elisa; Forneris, Federico; Rovida, Stefano; Riva, Sergio; Monti, Daniela; Mattevi, Andrea

    2016-06-01

    Hydroxysteroid dehydrogenases are of great interest as biocatalysts for transformations involving steroid substrates. They feature a high degree of stereo- and regio-selectivity, acting on a defined atom with a specific configuration of the steroid nucleus. The crystal structure of 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens reveals a loop gating active-site accessibility, the bases of the specificity for NADP(+) , and the general architecture of the steroid binding site. Comparison with 7α-hydroxysteroid dehydrogenase provides a rationale for the opposite stereoselectivity. The presence of a C-terminal extension reshapes the substrate site of the β-selective enzyme, possibly leading to an inverted orientation of the bound substrate. Proteins 2016; 84:859-865. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Pre-Steady State Studies of Phosphite Dehydrogenase Demonstrate that Hydride Transfer is Fully Rate-Limiting†

    PubMed Central

    Fogle, Emily J.

    2008-01-01

    Phosphite dehydrogenase (PTDH)1 is a unique NAD-dependent enzyme that catalyzes the oxidation of inorganic phosphite to phosphate. The enzyme has great potential for cofactor regeneration and mechanistic studies have provided some insight into the residues that are important for catalysis. In this investigation, pre-steady state studies were performed on the His6-tagged wild type (WT) enzyme, several active site mutants, a thermostable mutant (12X-PTDH), and a thermostable mutant with dual cofactor specificity (NADP-12X-PTDH). Stopped-flow kinetic experiments indicate that slow steps after hydride transfer do not significantly limit the rate of reaction for WT, the active site mutants, or the thermostable mutant. Pre-steady state kinetic isotope effects (KIEs) and single turn-over experiments further confirm that slow steps after the chemical step do not significantly limit the rate of reaction for any of these proteins. Collectively, these results suggest that the hydride transfer step is fully rate determining in PTDH and that the observed KIE on kcat is the intrinsic effect in WT PTDH and the mutants examined. In contrast, a slow step after catalysis may partially limit the rate of phosphite oxidation by NADP-12X-PTDH with NADP as cofactor. Finally, site directed mutagenesis of Asp79 indicates that this residue is important in orienting Arg237 for proper interaction with phosphite. PMID:17949110

  5. Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases by 2-thiohydantoin compounds

    PubMed Central

    Kogiso, Mari; Yao, Yuan; Zhou, Chao; Li, Xiao-Nan; Song, Yongcheng

    2015-01-01

    Somatic mutations of isocitrate dehydrogenase 1 (IDH1) at R132 are frequently found in certain cancers such as glioma. With losing the activity of wild-type IDH1, the R132H and R132C mutant proteins can reduce α-ketoglutaric acid (α-KG) to D-2-hydroxyglutaric acid (D2HG). The resulting high concentration of D2HG inhibits many α-KG-dependent dioxygenases, including histone demethylases, to cause broad histone hypermethylation. These aberrant epigenetic changes are responsible for initiation of these cancers. We report the synthesis, structure activity relationships, enzyme kinetics and binding thermodynamics of a novel series of 2-thiohydantoin and related compounds, among which several compounds are potent inhibitors of mutant IDH1 with Ki as low as 420 nM. X-ray crystal structures of IDH1(R132H) in complex with two inhibitors are reported, showing their inhibitor-protein interactions. These compounds can decrease the cellular concentration of D2HG, reduce the levels of histone methylation, and suppress proliferation of stem-like cancer cells in BT142 glioma with IDH1 R132H mutation. PMID:26280302

  6. Bundle-sheath thylakoids from NADP-malic enzyme-type C4 plants require an exogenous electron donor for enzyme light activation.

    PubMed

    Lavergne, D; Droux, M; Jacquot, J P; Miginiac-Maslow, M; Champigny, M L; Gadal, P

    1985-10-01

    Light activation of either NADP-malate dehydrogenase (EC 1.1.1.82) or fructose-1,6-bisphosphate phosphatase (EC 3.1.3.11) was assayed in a reconstituted chloroplastic, system comprising the isolated proteins of the ferredoxin-thioredoxin light-activation system and thylakoids from either mesophyll or bundle-sheath tissues of different C4 plants. While C4-plant thylakoids functionned almost equally well with C3-or C4-plant proteins, the photosyntem-II-deficient bundle-sheath thylakoids from the NADP-malic enzyme type, were unable to perform enzyme photoactivation unless supplemented with an electron donor to photosystem I. Bundle-sheath thylakoids isolated from plants showing no photosystem-II deficiency did not require such an addition. The results are discussed with respect to a possible requirement for a physiological reductant of ferredoxin for enzyme light activation in bundle-sheath, tissues.

  7. Resolution and partial characterization of two aldehyde reductases of mammalian liver.

    PubMed

    Tulsiani, D R; Touster

    1977-04-25

    Investigation of NADP-dependent aldehyde reductase activity in mouse liver led to the finding that two distinct reductases are separable by DE52 ion exchange chromatography. Aldehyde reductase I (AR I) appears in the effluent, while aldehyde reductase II (AR II) is eluted with a salt gradient. By several procedures AR II was purified over 1100-fold from liver supernatant fraction, but AR I could be pruified only 107-fold because of its instability. The two enzymes are different in regard to pH optimum, substrate specificity, response to inhibitors, and reactivity with antibody to AR II. While both enzymes utilize aromatic aldehydes well, only AR II ACTS ON D-glucuronate, indicating that it is the aldyhyde reductase recently reported to be identical to NADP-L-gulonate dehydrogenase. The presence of two NADP-linked aldehyde reductases in liver has apparently not heretofore been reported.

  8. Adrenal 11-beta hydroxysteroid dehydrogenase activity in response to stress.

    PubMed

    Zallocchi, Marisa; Matković, Laura; Damasco, María C

    2004-06-01

    This work studied the effect of stresses produced by simulated gavage or gavage with 200 mmol/L HCl two hours before adrenal extraction, on the activities of the 11beta-hydroxysteroid dehydrogenase 1 and 11beta-hydroxysteroid dehydrogenase 2 isoforms present in the rat adrenal gland. These activities were determined on immediately prepared adrenal microsomes following incubations with 3H-corticosterone and NAD+ or NADP+. 11-dehydrocorticosterone was measured as an end-product by TLC, and controls were adrenal microsomes from rats kept under basal (unstressed) conditions. 11beta-hydroxysteroid dehydrogenase 1 activity, but not 11beta-hydroxysteroid dehydrogenase 2 activity, was increased under both stress-conditions. Homeostatically, the stimulation of 11beta-hydroxysteroid dehydrogenase 1 activity would increase the supply of glucocorticoids. These, in turn, would activate the enzyme phenylethanolamine N-methyl transferase, thereby improving the synthesis of epinephrine as part of the stress-response.

  9. Activation of human liver 3 alpha-hydroxysteroid dehydrogenase by sulphobromophthalein.

    PubMed Central

    Matsuura, K; Tamada, Y; Deyashiki, Y; Miyabe, Y; Nakanishi, M; Ohya, I; Hara, A

    1996-01-01

    Human liver contains at least two isoenzymes (DD2 and DD4) of 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. The NADP(H)-linked oxidoreductase activities of DD4 were activated more than 4-fold by sulphobromophthalein at concentrations above 20 microM and under physiological pH conditions. Sulphobromophthalein did not stimulate the activities of DD2 and human liver aldehyde reductase, which are functionally and/or structurally related to DD4. No stimulatory effect on the activity of DD4 was observed with other organic anions such as Indocyanine Green, haematin and Rose Bengal. The binding of sulphobromophthalein to DD4 was instantaneous and reversible, and was detected by fluorescence and ultrafiltration assays. The activation by sulphobromophthalein decreased the activation energy in the dehydrogenation reaction for the enzyme, and increased both kcat, and Km values for the coenzymes and substrates. Kinetic analyses with respect to concentrations of NADP+ and (S)-(+)-indan-1-ol indicated that sulphobromophthalein was a non-essential activator of mixed type showing a dissociation constant of 2.6 microM. Thus, the human 3 alpha-hydroxysteroid dehydrogenase isoenzyme has a binding site specific to sulphobromophthalein, and the hepatic metabolism mediated by this isoenzyme may be influenced when this drug is administered. PMID:8546681

  10. Subcellular distribution of delta 5-3 beta-hydroxy steroid dehydrogenase in the granulosa cells of the domestic fowl (Gallus domesticus).

    PubMed Central

    Armstrong, D G

    1979-01-01

    1. The distribution of 3 beta-hydroxy steroid dehydrogenase was examined in the subcellular fractions of granulosa cells collected from the ovary of the domestic fowl. 2. 3 beta-hydroxy steroid dehydrogenase activity was observed in the mitochondrial (4000g for 20min) and microsomal (105 000g for 120min) fractions. 3. Approximately three times more 3 beta-hydroxy steroid dehydrogenase activity was associated with the cytochrome oxidase activity (a mitochondrial marker enzyme) in anteovulatory-follicle granulosa cells than with that of the postovulatory follicle. 4. Comparison of the latent properties of mitochondrial 3 beta-hydroxy steroid dehydrogenase with those of cytochrome oxidase and isocitrate dehydrogenase indicated that 3 beta-hydroxy steroid dehydrogenase is located extramitochondrially. 5. This apparent distribution of 3 beta-hydroxy steroid dehydrogenase is explained on the basis that the mitochondrial activity is either an artefact caused by a redistribution in the subcellular location of the enzyme, occurring during homogenization, or by the existence of a functionally heterogeneous endoplasmic reticulum that yields particles of widely differing sedimentation properties. PMID:518548

  11. Diaphorase Coupling Protocols for Red-Shifting Dehydrogenase Assays

    PubMed Central

    Davis, Mindy I.; Shen, Min; Simeonov, Anton

    2016-01-01

    Abstract Dehydrogenases are an important target for the development of cancer therapeutics. Dehydrogenases either produce or consume NAD(P)H, which is fluorescent but at a wavelength where many compounds found in chemical libraries are also fluorescent. By coupling dehydrogenases to diaphorase, which utilizes NAD(P)H to produce the fluorescent molecule resorufin from resazurin, the assay can be red-shifted into a spectral region that reduces interference from compound libraries. Dehydrogenases that produce NAD(P)H, such as isocitrate dehydrogenase 1 (IDH1), can be read in kinetic mode. Dehydrogenases that consume NAD(P)H, such as mutant IDH1 R132H, can be read in endpoint mode. Here, we report protocols for robust and miniaturized 1,536-well assays for WT IDH1 and IDH1 R132H coupled to diaphorase, and the counterassays used to further detect compound interference with the coupling reagents. This coupling technique is applicable to dehydrogenases that either produce or consume NAD(P)H, and the examples provided here can act as guidelines for the development of high-throughput screens against this enzyme class. PMID:27078681

  12. Characterization of arsenite tolerant Halomonas sp. Alang-4, originated from heavy metal polluted shore of Gulf of Cambay.

    PubMed

    Jain, Raina; Jha, Sanjay; Mahatma, Mahesh K; Jha, Anamika; Kumar, G Naresh

    2016-01-01

    Arsenite [As(III)]-oxidizing bacteria were isolated from heavy metal contaminated shore of Gulf of Cambay at Alang, India. The most efficient bacterial strain Alang-4 could tolerate up to 15 mM arsenite [As(III)] and 200 mM of arsenate [As(V)]. Its 16S rRNA gene sequence was 99% identical to the 16S rRNA genes of genus Halomonas (Accession no. HQ659187). Arsenite oxidase enzyme localized on membrane helped in conversion of As(III) to As(V). Arsenite transporter genes (arsB, acr3(1) and acr3(2)) assisted in extrusion of arsenite from Halomonas sp. Alang-4. Generation of ROS in response to arsenite stress was alleviated by higher activities of catalase, ascorbate peroxidase, superoxide dismutase and glutathione S-transferase enzymes. Down-regulation in the specific activities of nearly all dehydrogenases of carbon assimilatory pathway viz., glucose-6-phosphate, pyruvate, α-ketoglutarate, isocitrate and malate dehydrogenases, was observed in presence of As(III), whereas, the specific activities of phosphoenol pyruvate carboxylase, pyruvate carboxylase and isocitrate lyase enzymes were found to increase two times in As(III) treated cells. The results suggest that in addition to efficient ars operon, alternative pathways of carbon utilization exist in the marine bacterium Halomonas sp. Alang-4 to overcome the toxic effects of arsenite on its dehydrogenase enzymes.

  13. Shortleaf pine: a species at risk?

    Treesearch

    Charles G. Tauer; Shiqin Xu; C. Dana Nelson; James M. Guldin

    2007-01-01

    Since the 1950s the existence of natural hybrids between shortleaf pine and loblolly pine has been recognized and reported in the literature. In a range-wide study of isoenzyme diversity in shortleaf pine, we found 16 percent of the trees from western populations were hybrids, based on the isocitrate dehydrogenase (IDH) locus. In stands thought to be pure shortleaf...

  14. Shortleaf pine: a species at risk?

    Treesearch

    Charles G. Tauer; Shiqin Xu; C. Dana Nelson; James M. Guldin

    2007-01-01

    Since the 1950s the existence of natural hybrids between shortleaf pine and loblolly pine has been recognized and reported in the literature. In a range-wide study of isoenzyme diversity in shortleaf pine. we found 16 percent of the trees from western populations were hybrids. based on the isocitrate dehydrogenase (IDH) locus. In stands thought to be pure shortleaf...

  15. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.

    PubMed Central

    Singer, M E; Finnerty, W R

    1985-01-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl aldehyde of 5.0, 13.0, 18.0, and 18.3 microM and 537.0, 500.0, 25.0, and 38.0 nmol/min in hexadecane-, hexadecanol-, ethanol-, palmitate-grown cells, respectively. FALDH isozymes ald-a, ald-b, and ald-c were demonstrated by gel electrophoresis in extracts of hexadecane- and hexadecanol-grown cells. ald-a, ald-b, and ald-d were present in dodecyl aldehyde-grown cells, while palmitate-grown control cells contained ald-b and ald-d. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. The oxidation of [3H]hexadecane byAld21 yielded the accumulation of 61% more fatty aldehyde than the wild type, while Ald24 accumulated 27% more fatty aldehyde, 95% more fatty alcohol, and 65% more wax ester than the wild type. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobactor sp. strain HO1-N. Images PMID:4066609

  16. [Quantitative histoenzymatic analysis of the adenohypophysis and adrenal cortex during the early stages of involution].

    PubMed

    Prochukhanov, R A; Rostovtseva, T I

    1977-11-01

    A method of quantitative histenzymatic analysis was applied for determination of the involution changes of the neuroendocrine system. The activity of NAD- and NADP-reductases, acid and alkaline phosphatases, glucose-6-phosphoric dehydrogenase, 3-OH-steroid-dehydrogenase, 11-hydroxysteroid dehydrogenases was investigated in the adenohypophysis and in the adrenal cortex of rats aged 4 and 12 months. There were revealed peculiarities attending the structural-metabolic provision of physiological reconstructions of the neuro-endocrine system under conditions of the estral cycle at the early involution stages. An initial reduction of the cell ular-vascular transport with the retention of the functional activity of the intracellular organoids was demonstrated in ageing animals.

  17. The influence of thyroxine on intensity of energy metabolism in bone marrow myeloid cells and neutrophilic polymorphonuclear leukocytes of neonatal pig.

    PubMed

    Babych, H; Antonyak, H; Sklyarov, A Y

    2000-06-01

    To investigate the participation of thyroxine in the regulation of energy metabolism in neutrophilic polymorphonuclear leukocytes and their bone marrow precursors. The influence of L-thyroxine (T4; 4 mg/kg every 12 hr from day 2 to 10 of age) was estimated on the activity of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), glucose-6-phosphate dehydrogenase (G-6-PDH), NADP-dependent isocitrate dehydrogenase (ICDH) and cytochrome C-oxidase in bone marrow myeloid cells and circulating neutrophils of 3, 5 and 10 day (d) old piglets. Serum T4 and 3,5, 3'-triiodothyronine (T3) concentrations were estimated at every stage of experiment by radioimmunoassay. Bone marrow cells of myeloid lineage and blood neutrophilic polymorphonuclear leukocytes were separated by differential centrifugation of haematopoietic cell suspension using Ficoll-Hypaque gradients. The hyperthyroid status resulted in significant increase in PFK and LDH activity in myelokaryocytes of 3 and 3-5 d piglets, while the activity of HK and PK in the cells of 3-10 d animals remained unchanged. Moreover, ICDH activity in myelokaryocytes increased on day 10 and that of cytochrome C oxidase in bone marrow cells at all intervals. Marked increase in HK and LDH activity on day 3-5 was found also in blood polymorphonuclear granulocytes, while PFK and PK activity was increased during the whole period. At the same time even the increase in ICDH and cytochrome C-oxidase activity was observed, respectively, in 3 and 5-10 d old piglet neutrophils. Besides that, T4 inhibited G-6-PDH activity in myeloid cells on day 3 to 10 and did not influence the enzyme activity in circulating leukocytes. The administration of T4 resulted in preferential stimulation of oxidative stages of carbohydrate catabolism in myelocaryocytes, while the activity of glycolytic enzymes in these cells was less affected. On the contrary, the enzymes of glycolysis in blood neutrophils showed higher sensitivity to T4 action as compared to catalysts of oxidative reactions. The intensity of pentose phosphate pathway seems to be inhibited in bone marrow myelocaryocytes of T4 treated animals, while that in blood leukocytes remained unaffected.

  18. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase.

    PubMed

    Bommareddy, Rajesh Reddy; Chen, Zhen; Rappert, Sugima; Zeng, An-Ping

    2014-09-01

    Engineering the cofactor availability is a common strategy of metabolic engineering to improve the production of many industrially important compounds. In this work, a de novo NADPH generation pathway is proposed by altering the coenzyme specificity of a native NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to NADP, which consequently has the potential to produce additional NADPH in the glycolytic pathway. Specifically, the coenzyme specificity of GAPDH of Corynebacterium glutamicum is systematically manipulated by rational protein design and the effect of the manipulation for cellular metabolism and lysine production is evaluated. By a combinatorial modification of four key residues within the coenzyme binding sites, different GAPDH mutants with varied coenzyme specificity were constructed. While increasing the catalytic efficiency of GAPDH towards NADP enhanced lysine production in all of the tested mutants, the most significant improvement of lysine production (~60%) was achieved with the mutant showing similar preference towards both NAD and NADP. Metabolic flux analysis with (13)C isotope studies confirmed that there was no significant change of flux towards the pentose phosphate pathway and the increased lysine yield was mainly attributed to the NADPH generated by the mutated GAPDH. The present study highlights the importance of protein engineering as a key strategy in de novo pathway design and overproduction of desired products. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Characterizing Lysine Acetylation of Isocitrate Dehydrogenase in Escherichia coli.

    PubMed

    Venkat, Sumana; Chen, Hao; Stahman, Alleigh; Hudson, Denver; McGuire, Paige; Gan, Qinglei; Fan, Chenguang

    2018-06-22

    The Escherichia coli isocitrate dehydrogenase (ICDH) is one of the tricarboxylic acid cycle enzymes, playing key roles in energy production and carbon flux regulation. E. coli ICDH was the first bacterial enzyme shown to be regulated by reversible phosphorylation. However, the effect of lysine acetylation on E. coli ICDH, which has no sequence similarity with its counterparts in eukaryotes, is still unclear. Based on previous studies of E. coli acetylome and ICDH crystal structures, eight lysine residues were selected for mutational and kinetic analyses. They were replaced with acetyllysine by the genetic code expansion strategy or substituted with glutamine as a classic approach. Although acetylation decreased the overall ICDH activity, its effects were different site by site. Deacetylation tests demonstrated that the CobB deacetylase could deacetylate ICDH both in vivo and in vitro, but CobB was only specific for lysine residues at the protein surface. On the other hand, ICDH could be acetylated by acetyl-phosphate chemically in vitro. And in vivo acetylation tests indicated that the acetylation level of ICDH was correlated with the amounts of intracellular acetyl-phosphate. This study nicely complements previous proteomic studies to provide direct biochemical evidence for ICDH acetylation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases: Synthesis, Structure–Activity Relationship, and Selective Antitumor Activity

    PubMed Central

    2015-01-01

    Mutations of isocitrate dehydrogenase 1 (IDH1) are frequently found in certain cancers such as glioma. Different from the wild-type (WT) IDH1, the mutant enzymes catalyze the reduction of α-ketoglutaric acid to d-2-hydroxyglutaric acid (D2HG), leading to cancer initiation. Several 1-hydroxypyridin-2-one compounds were identified to be inhibitors of IDH1(R132H). A total of 61 derivatives were synthesized, and their structure–activity relationships were investigated. Potent IDH1(R132H) inhibitors were identified with Ki values as low as 140 nM, while they possess weak or no activity against WT IDH1. Activities of selected compounds against IDH1(R132C) were found to be correlated with their inhibitory activities against IDH1(R132H), as well as cellular production of D2HG, with R2 of 0.83 and 0.73, respectively. Several inhibitors were found to be permeable through the blood–brain barrier in a cell-based model assay and exhibit potent and selective activity (EC50 = 0.26–1.8 μM) against glioma cells with the IDH1 R132H mutation. PMID:25271760

  1. Tropine dehydrogenase: purification, some properties and an evaluation of its role in the bacterial metabolism of tropine.

    PubMed

    Bartholomew, B A; Smith, M J; Long, M T; Darcy, P J; Trudgill, P W; Hopper, D J

    1995-04-15

    Tropine dehydrogenase was induced by growth of Pseudomonas AT3 on atropine, tropine or tropinone. It was NADP(+)-dependent and gave no activity with NAD+. The enzyme was very unstable but a rapid purification procedure using affinity chromatography that gave highly purified enzyme was developed. The enzyme gave a single band on isoelectric focusing with an isoelectric point at approximately pH 4. The native enzyme had an M(r) of 58,000 by gel filtration and 28,000 by SDS/PAGE and therefore consists of two subunits of equal size. The enzyme displayed a narrow range of specificity and was active with tropine and nortropine but not with pseudotropine, pseudonortropine, or a number of related compounds. The apparent Kms were 6.06 microM for tropine and 73.4 microM for nortropine with the specificity constant (Vmax/Km) for tropine 7.8 times that for pseudotropine. The apparent Km for NADP+ was 48 microM. The deuterium of [3-2H]tropine and [3-2H]pseudotropine was retained when these compounds were converted into 6-hydroxycyclohepta-1,4-dione, an intermediate in tropine catabolism, showing that the tropine dehydrogenase, although induced by growth on tropine, is not involved in the catabolic pathway for this compound. 6-Hydroxycyclohepta-1,4-dione was also implicated as an intermediate in the pathways for pseudotropine and tropinone catabolism.

  2. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization

    PubMed Central

    Kim, Tae-Su; Patel, Sanjay K. S.; Selvaraj, Chandrabose; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul

    2016-01-01

    A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s−1 toward L-sorbitol, respectively. The enzyme exhibited high preference for NADP+ (vs. only 2.5% relative activity with NAD+). GoSLDH sequencing, structure analyses, and biochemical studies, suggested that it belongs to the NADP+-dependent polyol-specific long-chain sorbitol dehydrogenase family. GoSLDH is the first fully characterized SLDH to date, and it is distinguished from other L-sorbose-producing enzymes by its high activity and substrate specificity. Isothermal titration calorimetry showed that the protein binds more strongly to D-sorbitol than other L-sorbose-producing enzymes, and substrate docking analysis confirmed a higher turnover rate. The high oxidation potential of GoSLDH for D-sorbitol was confirmed by cyclovoltametric analysis. Further, stability of GoSLDH significantly improved (up to 13.6-fold) after cross-linking of immobilized enzyme on silica nanoparticles and retained 62.8% residual activity after 10 cycles of reuse. Therefore, immobilized GoSLDH may be useful for L-sorbose production from D-sorbitol. PMID:27633501

  3. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization.

    PubMed

    Kim, Tae-Su; Patel, Sanjay K S; Selvaraj, Chandrabose; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul

    2016-09-16

    A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s(-1) toward L-sorbitol, respectively. The enzyme exhibited high preference for NADP(+) (vs. only 2.5% relative activity with NAD(+)). GoSLDH sequencing, structure analyses, and biochemical studies, suggested that it belongs to the NADP(+)-dependent polyol-specific long-chain sorbitol dehydrogenase family. GoSLDH is the first fully characterized SLDH to date, and it is distinguished from other L-sorbose-producing enzymes by its high activity and substrate specificity. Isothermal titration calorimetry showed that the protein binds more strongly to D-sorbitol than other L-sorbose-producing enzymes, and substrate docking analysis confirmed a higher turnover rate. The high oxidation potential of GoSLDH for D-sorbitol was confirmed by cyclovoltametric analysis. Further, stability of GoSLDH significantly improved (up to 13.6-fold) after cross-linking of immobilized enzyme on silica nanoparticles and retained 62.8% residual activity after 10 cycles of reuse. Therefore, immobilized GoSLDH may be useful for L-sorbose production from D-sorbitol.

  4. Structure-Based Engineering of an Artificially Generated NADP+-Dependent d-Amino Acid Dehydrogenase.

    PubMed

    Hayashi, Junji; Seto, Tomonari; Akita, Hironaga; Watanabe, Masahiro; Hoshino, Tamotsu; Yoneda, Kazunari; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2017-06-01

    A stable NADP + -dependent d-amino acid dehydrogenase (DAADH) was recently created from Ureibacillus thermosphaericus meso -diaminopimelate dehydrogenase through site-directed mutagenesis. To produce a novel DAADH mutant with different substrate specificity, the crystal structure of apo-DAADH was determined at a resolution of 1.78 Å, and the amino acid residues responsible for the substrate specificity were evaluated using additional site-directed mutagenesis. By introducing a single D94A mutation, the enzyme's substrate specificity was dramatically altered; the mutant utilized d-phenylalanine as the most preferable substrate for oxidative deamination and had a specific activity of 5.33 μmol/min/mg at 50°C, which was 54-fold higher than that of the parent DAADH. In addition, the specific activities of the mutant toward d-leucine, d-norleucine, d-methionine, d-isoleucine, and d-tryptophan were much higher (6 to 25 times) than those of the parent enzyme. For reductive amination, the D94A mutant exhibited extremely high specific activity with phenylpyruvate (16.1 μmol/min/mg at 50°C). The structures of the D94A-Y224F double mutant in complex with NADP + and in complex with both NADPH and 2-keto-6-aminocapronic acid (lysine oxo-analogue) were then determined at resolutions of 1.59 Å and 1.74 Å, respectively. The phenylpyruvate-binding model suggests that the D94A mutation prevents the substrate phenyl group from sterically clashing with the side chain of Asp94. A structural comparison suggests that both the enlarged substrate-binding pocket and enhanced hydrophobicity of the pocket are mainly responsible for the high reactivity of the D94A mutant toward the hydrophobic d-amino acids with bulky side chains. IMPORTANCE In recent years, the potential uses for d-amino acids as source materials for the industrial production of medicines, seasonings, and agrochemicals have been growing. To date, several methods have been used for the production of d-amino acids, but all include tedious steps. The use of NAD(P) + -dependent d-amino acid dehydrogenase (DAADH) makes single-step production of d-amino acids from oxo-acid analogs and ammonia possible. We recently succeeded in creating a stable DAADH and demonstrated that it is applicable for one-step synthesis of d-amino acids, such as d-leucine and d-isoleucine. As the next step, the creation of an enzyme exhibiting different substrate specificity and higher catalytic efficiency is a key to the further development of d-amino acid production. In this study, we succeeded in creating a novel mutant exhibiting extremely high catalytic activity for phenylpyruvate amination. Structural insight into the mutant will be useful for further improvement of DAADHs. Copyright © 2017 American Society for Microbiology.

  5. Crystal structure of the NADP+ and tartrate-bound complex of L-serine 3-dehydrogenase from the hyperthermophilic archaeon Pyrobaculum calidifontis.

    PubMed

    Yoneda, Kazunari; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa

    2018-05-01

    A gene encoding L-serine dehydrogenase (L-SerDH) that exhibits extremely low sequence identity to the Agrobacterium tumefaciens L-SerDH was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The predicted amino acid sequence showed 36% identity with that of Pseudomonas aeruginosa L-SerDH, suggesting that P. calidifontis L-SerDH is a novel type of L-SerDH, like Ps. aeruginosa L-SerDH. The overexpressed enzyme appears to be the most thermostable L-SerDH described to date, and no loss of activity was observed by incubation for 30 min at temperatures up to 100 °C. The enzyme showed substantial reactivity towards D-serine, in addition to L-serine. Two different crystal structures of P. calidifontis L-SerDH were determined using the Se-MAD and MR method: the structure in complex with NADP + /sulfate ion at 1.18 Å and the structure in complex with NADP + /L-tartrate (substrate analog) at 1.57 Å. The fold of the catalytic domain showed similarity with that of Ps. aeruginosa L-SerDH. However, the active site structure significantly differed between the two enzymes. Based on the structure of the tartrate, L- and D-serine and 3-hydroxypropionate molecules were modeled into the active site and the substrate binding modes were estimated. A structural comparison suggests that the wide cavity at the substrate binding site is likely responsible for the high reactivity of the enzyme toward both L- and D-serine enantiomers. This is the first description of the structure of the novel type of L-SerDH with bound NADP + and substrate analog, and it provides new insight into the substrate binding mechanism of L-SerDH. The results obtained here may be very informative for the creation of L- or D-serine-specific SerDH by protein engineering.

  6. Immobilization Increases the Stability and Reusability of Pigeon Pea NADP+ Linked Glucose-6-Phosphate Dehydrogenase.

    PubMed

    Singh, Siddhartha; Singh, Amit Kumar; Singh, M Chandrakumar; Pandey, Pramod Kumar

    2017-02-01

    Immobilization of enzymes is valuably important as it improves the stability and hence increases the reusability of enzymes. The present investigation is an attempt for immobilization of purified glucose-6-phosphate dehydrogenase from pigeon pea on different matrix. Maximum immobilization was achieved when alginate was used as immobilization matrix. As compared to soluble enzyme the alginate immobilized enzyme exhibited enhanced optimum pH and temperature. The alginate immobilized enzyme displayed more than 80% activity up to 7 continuous reactions and more than 50% activity up to 11 continuous reactions.

  7. Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death.

    PubMed

    Mohrenz, Isabelle Vanessa; Antonietti, Patrick; Pusch, Stefan; Capper, David; Balss, Jörg; Voigt, Sophia; Weissert, Susanne; Mukrowsky, Alicia; Frank, Jan; Senft, Christian; Seifert, Volker; von Deimling, Andreas; Kögel, Donat

    2013-11-01

    Isocitrate dehydrogenase 1 (IDH1) decarboxylates isocitrate to α-ketoglutarate (α-KG) leading to generation of NADPH, which is required to regenerate reduced glutathione (GSH), the major cellular ROS scavenger. Mutation of R132 of IDH1 abrogates generation of α-KG and leads to conversion of α-KG to 2-hydroxyglutarate. We hypothesized that glioma cells expressing mutant IDH1 have a diminished antioxidative capacity and therefore may encounter an ensuing loss of cytoprotection under conditions of oxidative stress. Our study was performed with LN229 cells stably overexpressing IDH1 R132H and wild type IDH1 or with a lentiviral IDH1 knockdown. Quantification of GSH under basal conditions and following treatment with the glutathione reductase inhibitor BCNU revealed significantly lower GSH levels in IDH1 R132H expressing cells and IDH1 KD cells compared to their respective controls. FACS analysis of cell death and ROS production also demonstrated an increased sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to BCNU, but not to temozolomide. The sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to ROS induction and cell death was further enhanced with the transaminase inhibitor aminooxyacetic acid and under glutamine free conditions, indicating that these cells were more addicted to glutaminolysis. Increased sensitivity to BCNU-induced ROS production and cell death was confirmed in HEK293 cells inducibly expressing the IDH1 mutants R132H, R132C and R132L. Based on these findings we propose that in addition to its established pro-tumorigenic effects, mutant IDH1 may also limit the resistance of gliomas to specific death stimuli, therefore opening new perspectives for therapy.

  8. Identification and Characterization of Small-Molecule Inhibitors of the R132H/R132H Mutant Isocitrate Dehydrogenase 1 Homodimer and R132H/Wild-Type Heterodimer.

    PubMed

    Brooks, Eric; Wu, Xiang; Hanel, Art; Nguyen, Shaun; Wang, Jing; Zhang, Jeffrey H; Harrison, Amanda; Zhang, Wentao

    2014-09-01

    Recurrent genetic mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) have been identified in multiple tumor types. The most frequent mutation, IDH1 R132H, is a gain-of-function mutation resulting in an enzyme-catalyzing conversion of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG). A high-throughput assay quantifying consumption of NADPH by IDH1 R132H has been optimized and implemented to screen 3 million compounds in 1536-well formats. The primary high-throughput screening hits were further characterized by RapidFire-mass spectrometry measuring 2-HG directly. Multiple distinct chemotypes were identified with nanomolar potencies (6-300 nM). All inhibitors were found to be inactive against the wild-type IDH1 homodimers. An IDH1 heterodimer between wild-type and R132H mutant is capable of catalyzing conversion of α-KG to 2-HG and isocitrate to α-KG. Interestingly, one of the inhibitors, EXEL-9324, was found to inhibit both conversions by the IDH1 heterodimer. This indicates the R132H/WT heterodimer may adopt conformations distinct from that of the R132H/R132H homodimer. Further enzymatic studies support this conclusion as the heterodimer exhibited a significantly lower apparent Michaelis-Menten constant for α-KG (K(m)=110 µM) compared with the R132H homodimer (K(m)= 1200 µM). The enhanced apparent affinity for α-KG suggests R132H/WT heterodimeric IDH1 can produce 2-HG more efficiently at normal intracellular levels of α-KG (approximately 100 µM). © 2014 Society for Laboratory Automation and Screening.

  9. Cloning and Characterization of the Pseudomonas aeruginosa zwf Gene Encoding Glucose-6-Phosphate Dehydrogenase, an Enzyme Important in Resistance to Methyl Viologen (Paraquat)

    PubMed Central

    Ma, Ju-Fang; Hager, Paul W.; Howell, Michael L.; Phibbs, Paul V.; Hassett, Daniel J.

    1998-01-01

    In this study, we cloned the Pseudomonas aeruginosa zwf gene, encoding glucose-6-phosphate dehydrogenase (G6PDH), an enzyme that catalyzes the NAD+- or NADP+-dependent conversion of glucose-6-phosphate to 6-phosphogluconate. The predicted zwf gene product is 490 residues, which could form a tetramer with a molecular mass of ∼220 kDa. G6PDH activity and zwf transcription were maximal in early logarithmic phase when inducing substrates such as glycerol, glucose, or gluconate were abundant. In contrast, both G6PDH activity and zwf transcription plummeted dramatically when bacteria approached stationary phase, when inducing substrate was limiting, or when the organisms were grown in a citrate-, succinate-, or acetate-containing basal salts medium. G6PDH was purified to homogeneity, and its molecular mass was estimated to be ∼220 kDa by size exclusion chromatography. Estimated Km values of purified G6PDH acting on glucose-6-phosphate, NADP+, and NAD+ were 530, 57, and 333 μM, respectively. The specific activities with NAD+ and NADP+ were calculated to be 176 and 69 μmol/min/mg. An isogenic zwf mutant was unable to grow on minimal medium supplemented with mannitol. The mutant also demonstrated increased sensitivity to the redox-active superoxide-generating agent methyl viologen (paraquat). Since one by-product of G6PDH activity is NADPH, the latter data suggest that this cofactor is essential for the activity of enzymes critical in defense against paraquat toxicity. PMID:9537370

  10. Energetic aspects of the light activation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase.

    PubMed

    Miginiac-Maslow, M; Jacquot, J P; Droux, M

    1985-09-01

    The light energy requirements for photoactivation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase were studied in a reconstituted chloroplast system. This system comprised isolated pea thylakoids, ferredoxin (Fd), ferredoxin-thioredoxin reductase (FTR) thioredoxinm and f (Tdm, Tdf) and the photoactivatable enzyme. Light-saturation curves of the photoactivation process were established with once washed thylakoids which did not require the addition of Td for light activation. They exhibited a plateau at 10 W·m(-2) under nitrogen and 50 W·m(-2) under air, while NADP photoreduction was saturated at 240 W·m(-2). Cyclic and pseudocyclic phosphorylations saturated at identical levels as enzyme photoactivations. All these observations suggested that the shift of the light saturation plateau towards higher values under air was due to competing oxygen-dependent reactions. With twice washed thylakoids, which required Td for enzyme light-activation, photophosphorylation was stimulated under N2 by the addition of the components of the photoactivation system. Its rate increased with increasing Td concentrations, just as did the enzyme photoactivation rate, while varying the target enzyme concentration had only a weak effect. Considering that Td concentrations were in a large excess over target enzyme concentrations, it may be assumed that the observed ATP synthesis was essentially dependent on the rate of Td reduction.Under air, Fd-dependent pseudo-cyclic photophosphorylation was not stimulated by the addition of the other enzyme photoactivation components, suggesting that an important site of action of O2 was located at the level of Fd.

  11. Detailed functional analysis of two clinical glucose-6-phosphate dehydrogenase (G6PD) variants, G6PDViangchan and G6PDViangchan+Mahidol: Decreased stability and catalytic efficiency contribute to the clinical phenotype.

    PubMed

    Boonyuen, Usa; Chamchoy, Kamonwan; Swangsri, Thitiluck; Saralamba, Naowarat; Day, Nicholas P J; Imwong, Mallika

    2016-06-01

    Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is an X-linked hereditary genetic defect that is the most common polymorphism and enzymopathy in humans. To investigate functional properties of two clinical variants, G6PDViangchan and G6PDViangchan+Mahidol, these two mutants were created by overlap-extension PCR, expressed in Escherichia coli and purified to homogeneity. We describe an overexpression and purification method to obtain substantial amounts of functionally active protein. The KM for G6P of the two variants was comparable to the KM of the native enzyme, whereas the KM for NADP(+) was increased 5-fold for G6PDViangchan and 8-fold for G6PDViangchan+Mahidol when compared with the native enzyme. Additionally, kcat of the mutant enzymes was markedly reduced, resulting in a 10- and 18-fold reduction in catalytic efficiency for NADP(+) catalysis for G6PDViangchan and G6PDViangchan+Mahidol, respectively. Furthermore, the two variants demonstrated significant reduction in thermostability, but similar susceptibility to trypsin digestion, when compared with the wild-type enzyme. The presence of NADP(+) is shown to improve the stability of G6PD enzymes. This is the first report indicating that protein instability and reduced catalytic efficiency are responsible for the reduced catalytic activity of G6PDViangchan and G6PDViangchan+Mahidol and, as a consequence, contribute to the clinical phenotypes of these two clinical variants. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.

    PubMed

    Deutch, Charles E

    2013-11-01

    The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.

  13. Carbon Dioxide Metabolism in Leaf Epidermal Tissue 1

    PubMed Central

    Willmer, C. M.; Pallas, J. E.; Black, C. C.

    1973-01-01

    A number of plant species were surveyed to obtain pure leaf epidermal tissue in quantity. Commelina communis L. and Tulipa gesnariana L. (tulip) were chosen for further work. Chlorophyll a/b ratios of epidermal tissues were 2.41 and 2.45 for C. communis and tulip, respectively. Phosphoenolpyruvate carboxylase, ribulose-1,5-diphosphate carboxylase, malic enzyme, and NAD+ and NADP+ malate dehydrogenases were assayed with epidermal tissue and leaf tissue minus epidermal tissue. In both species, there was less ribulose 1,5-diphosphate than phosphoenolpyruvate carboxylase activity in epidermal tissue whether expressed on a protein or chlorophyll basis whereas the reverse was true for leaf tissue minus epidermal tissue. In both species, malic enzyme activities were higher in epidermal tissue than in the remaining leaf tissue when expressed on a protein or chlorophyll basis. In both species, NAD+ and NADP+ malate dehydrogenase activities were higher in the epidermal tissue when expressed on a chlorophyll basis; however, on a protein basis, the converse was true. Microautoradiography of C. communis epidermis and histochemical tests for keto acids suggested that CO2 fixation occurred predominantly in the guard cells. The significance and possible location of the enzymes are discussed in relation to guard cell metabolism. Images PMID:16658581

  14. Tropine dehydrogenase: purification, some properties and an evaluation of its role in the bacterial metabolism of tropine.

    PubMed Central

    Bartholomew, B A; Smith, M J; Long, M T; Darcy, P J; Trudgill, P W; Hopper, D J

    1995-01-01

    Tropine dehydrogenase was induced by growth of Pseudomonas AT3 on atropine, tropine or tropinone. It was NADP(+)-dependent and gave no activity with NAD+. The enzyme was very unstable but a rapid purification procedure using affinity chromatography that gave highly purified enzyme was developed. The enzyme gave a single band on isoelectric focusing with an isoelectric point at approximately pH 4. The native enzyme had an M(r) of 58,000 by gel filtration and 28,000 by SDS/PAGE and therefore consists of two subunits of equal size. The enzyme displayed a narrow range of specificity and was active with tropine and nortropine but not with pseudotropine, pseudonortropine, or a number of related compounds. The apparent Kms were 6.06 microM for tropine and 73.4 microM for nortropine with the specificity constant (Vmax/Km) for tropine 7.8 times that for pseudotropine. The apparent Km for NADP+ was 48 microM. The deuterium of [3-2H]tropine and [3-2H]pseudotropine was retained when these compounds were converted into 6-hydroxycyclohepta-1,4-dione, an intermediate in tropine catabolism, showing that the tropine dehydrogenase, although induced by growth on tropine, is not involved in the catabolic pathway for this compound. 6-Hydroxycyclohepta-1,4-dione was also implicated as an intermediate in the pathways for pseudotropine and tropinone catabolism. Images Figure 1 PMID:7733902

  15. Mobile phones electromagnetic radiation and NAD+-dependent isocitrate dehydrogenase as a mitochondrial marker in asthenozoospermia.

    PubMed

    Hagras, Abeer M; Toraih, Eman A; Fawzy, Manal S

    2016-12-01

    NAD + -dependent Isocitrate Dehydrogenase (NAD + -IDH) could be one of the cell phone radiation targets. Enzyme activity alteration may lead to decline in sperm motility during radio-frequency electromagnetic waves (RF-EMW) exposure. The current case control study aimed to investigate the possible relationship between mitochondrial NAD + -IDH activity in human seminal plasma and sperm motility among asthenozoospermic cellular phone users. A total number of ninety idiopathic infertile males referred from the Department of Dermatology and Andrology, were enrolled in this study. NAD + -IDH activity was measured in human seminal plasma by spectrophotometer. Computer-aided sperm analysis (CASA) following WHO criteria has been used for semen analyses. The results showed that IDH activity was increased in patients with prolonged cell phone daily use ≥4 h/day. Its level, correlated negatively with either the motility ratio percentages (r = -0.46, p  < 0.001) or the progressive motility percentages (r = -0.50, p  < 0.001) in the study groups. The current study suggests that NAD + -IDH in human seminal plasma could be one of seminal plasma biomarkers reflecting the mitochondrial function of spermatozoa. Alteration of its level could reflect the defective motility of sperms among some cases of cellular phone users.

  16. Chemical Model Systems for Cellular Nitros(yl)ation Reactions

    PubMed Central

    Daiber, Andreas; Schildknecht, Stefan; Müller, Johanna; Bachschmid, Markus M.; Ullrich, Volker

    2014-01-01

    S-nitros(yl)ation belongs to the redox-based posttranslational modifications of proteins but the underlying chemistry is controversial. In contrast to current concepts involving the autoxidation of nitric oxide (•NO, nitrogen monoxide), we and others have proposed the formation of peroxynitrite (oxoperoxonitrate(1-)) as an essential intermediate. This requires low cellular fluxes of •NO and superoxide (•O2−), for which model systems have been introduced. We here propose two new systems for nitros(yl)ation that avoid the shortcomings of previous models. Based on the thermal decomposition of 3-morpholinosydnonimine, equal fluxes of •NO and •O2− were generated and modulated by the addition of •NO donors or Cu,Zn-superoxide dismutase. As reactants for S-nitros(yl)ation, NADP+-dependent isocitrate dehydrogenase and glutathione were employed, for which optimal S-nitros(yl)ation was observed at nanomolar fluxes of •NO and •O2− at a ratio of about 3:1. The previously used reactants phenol and diaminonaphthalene, (C- and N-nitrosation) demonstrated potential participation of multiple pathways for nitros(yl)ation. According to our data, neither peroxynitrite nor autoxidation of •NO was as efficient as the 3•NO/1•O2− system in mediating S-nitros(yl)ation. In theory this could lead to an elusive nitrosonium (nitrosyl cation)-like species in the first step and to N2O3 in the subsequent reaction. Which of these two species or whether both together will participate in biological S-nitros(yl)ation remains to be elucidated. Finally, we developed several hypothetical scenarios to which the described U flux model could apply, providing conditions that allow either direct electrophilic substitution at a thiolate or S-nitros(yl)ation via transnitrosation from S-nitrosoglutathione. PMID:19477267

  17. [Energy reactions in the skeletal muscles of rats after short-term space flight on Kosmos-1514].

    PubMed

    Mailian, E S; Chabdarova, R N; Korzun, E I

    1988-01-01

    Ten hours after the 5-day space flight on Cosmos-1514 rats were examined for oxidative phosphorylation in mitochondria isolated from the posterior femoral muscles as well as for Krebs cycle enzymes and glycolysis in the mitochondrial and cytoplasmic fractions of the muscles. The mitochondrial respiration rate in various metabolic states was similar in flight rats and vivarium controls. After flight calculated parameters of energy efficacy of respiration as well as activity of malate dehydrogenase, isocitrate dehydrogenase and total lactate dehydrogenase remained unchanged. Unlike the flight rats, the synchronous controls showed signs of the stress-reaction: uncoupling of oxidative phosphorylation and oxalacetate inhibition of succinate dehydrogenase. Comparison of these findings with those from prolonged space flights indicates that inhibition of oxidative metabolism and glycolysis in mixed muscles which was demonstrated in the 20-day space flight does not develop immediately after launch but occurs within the time interval between mission days 6 and 18.

  18. [Age-related characteristics of structural support for ovarian function].

    PubMed

    Koval'skiĭ, G B

    1984-12-01

    Histoenzymological assay was used to investigate various structures of the ovaries of rats of two groups aged 3-4 and 12-14 months during estral cycle. The activity of 3 beta-, 17 beta- and 20 alpha-steroid dehydrogenases, glucose-6-phosphate dehydrogenase, NAD and NADP-diaphorases, esterase, acid and alkaline phosphatases was studied. It has been shown that transport alterations in the microcirculation including the hematofollicular barrier play, the leading part in age-dependent depression of reproductive and endocrine functions. Ageing rats demonstrated no linkage between endothelial, thecal and granular cells, which points to the injury of the histophysiological mechanisms of the follicular system integration.

  19. Regulation of 11 beta-hydroxysteroid dehydrogenase enzymes in the rat kidney by estradiol.

    PubMed

    Gomez-Sanchez, Elise P; Ganjam, Venkataseshu; Chen, Yuan Jian; Liu, Ying; Zhou, Ming Yi; Toroslu, Cigdem; Romero, Damian G; Hughson, Michael D; de Rodriguez, Angela; Gomez-Sanchez, Celso E

    2003-08-01

    The 11beta-hydroxysteroid dehydrogenase (11betaHSD) type 1 (11betaHSD1) enzyme is an NADP+-dependent oxidoreductase, usually reductase, of major glucocorticoids. The NAD+-dependent type 2 (11betaHSD2) enzyme is an oxidase that inactivates cortisol and corticosterone, conferring extrinsic specificity of the mineralocorticoid receptor for aldosterone. We reported that addition of a reducing agent to renal homogenates results in the monomerization of 11betaHSD2 dimers and a significant increase in NAD+-dependent corticosterone conversion. Estrogenic effects on expression, dimerization, and activity of the kidney 11betaHSD1 and -2 enzymes are described herein. Renal 11betaHSD1 mRNA and protein expressions were decreased to very low levels by estradiol (E2) treatment of both intact and castrated male rats; testosterone had no effect. NADP+-dependent enzymatic activity of renal homogenates from E2-treated rats measured under nonreducing conditions was less than that of homogenates from intact animals. Addition of 10 mM DTT to aliquots from these same homogenates abrogated the difference in NADP+-dependent activity between E2-treated and control rats. In contrast, 11betaHSD2 mRNA and protein expressions were significantly increased by E2 treatment. There was a marked increase in the number of juxtamedullary proximal tubules stained by the antibody against 11betaHSD2 after the administration of E2. Notwithstanding, neither the total corticosterone and 11-dehydrocorticosterone excreted in the urine nor their ratio differed between E2- and vehicle-treated rats. NAD+-dependent enzymatic activity in the absence or presence of a reducing agent demonstrated that the increase in 11betaHSD2 protein was not associated with an increase in in vitro activity unless the dimers were reduced to monomers.

  20. Molecular simulation to investigate the cofactor specificity for pichia stipitis Xylose reductase.

    PubMed

    Xia, Xiao-Le; Cong, Shan; Weng, Xiao-Rong; Chen, Jin-Hua; Wang, Jing-Fang; Chou, Kuo-Chen

    2013-11-01

    Xylose is one of the most abundant carbohydrates in nature, and widely used to produce bioethanol via fermentation in industry. Xylulose can produce two key enzymes: xylose reductase and xylitol dehydrogenase. Owing to the disparate cofactor specificities of xylose reductase and xylitol dehydrogenase, intracellular redox imbalance is detected during the xylose fermentation, resulting in low ethanol yields. To overcome this barrier, a common strategy is applied to artificially modify the cofactor specificity of xylose reductase. In this study, we utilized molecular simulation approaches to construct a 3D (three-dimensional) structural model for the NADP-dependent Pichia stipitis xylose reductase (PsXR). Based on the 3D model, the favourable binding modes for both cofactors NAD and NADP were obtained using the flexible docking procedure and molecular dynamics simulation. Structural analysis of the favourable binding modes showed that the cofactor binding site of PsXR was composed of 3 major components: a hydrophilic pocket, a hydrophobic pocket as well as a linker channel between the aforementioned two pockets. The hydrophilic pocket could recognize the nicotinamide moiety of the cofactors by hydrogen bonding networks, while the hydrophobic pocket functioned to position the adenine moiety of the cofactors by hydrophobic and Π-Π stacking interactions. The linker channel contained some key residues for ligand-binding; their mutation could have impact to the specificity of PsXR. Finally, it was found that any of the two single mutations, K21A and K270N, might reverse the cofactor specificity of PsXR from major NADP- to NADdependent, which was further confirmed by the additional experiments. Our findings may provide useful insights into the cofactor specificity of PsXR, stimulating new strategies for better designing xylose reductase and improving ethanol production in industry.

  1. Allozyme comparison of three Trypanosoma species (Kinetoplastida: Trypanosomatidae) of toads and frogs by starch-gel electrophoresis.

    PubMed

    Martin, D S; Desser, S S; Hong, H

    1992-04-01

    Six metabolic enzymes, glucose-6-phosphate dehydrogenase, glucosephosphate isomerase, isocitrate dehydrogenase, malate dehydrogenase, phosphoglucomutase, and purine nucleoside phosphorylase, from clonal isolates of 3 presumptive species of Trypanosoma (T. fallisi, T. ranarum, and T. rotatorium) from 3 anuran hosts (Bufo americanus, Rana clamitans, and Rana catesbeiana) were compared using starch-gel electrophoresis. Although bands were shared among the different zymodemes of isolates of the same host genus, low genetic polymorphism of the enzyme loci was observed with few apparent shared bands between samples isolated from frogs and toads. A distance value calculated between toad and frog trypanosome isolates suggests the likelihood of long-time separation of species. Cluster analysis based on overall similarity distinguished the trypanosomes of toads and frogs as separate taxa, suggesting that host specificity and observed morphological differences are consistent with heritable allozyme differences.

  2. Degradation pathway of 2-chloroethanol in Pseudomonas stutzeri strain JJ under denitrifying conditions.

    PubMed

    Dijk, John A; Gerritse, Jan; Schraa, Gosse; Stams, Alfons J M

    2004-12-01

    The pathway of 2-chloroethanol degradation in the denitrifying Pseudomonas stutzeri strain JJ was investigated. In cell-free extracts, activities of a phenazine methosulfate (PMS)-dependent chloroethanol dehydrogenase, an NAD-dependent chloroacetaldehyde dehydrogenase, and a chloroacetate dehalogenase were detected. This suggested that the 2-chloroethanol degradation pathway in this denitrifying strain is the same as found in aerobic bacteria that degrade chloroethanol. Activity towards primary alcohols, secondary alcohols, diols, and other chlorinated alcohols could be measured in cell-free extracts with chloroethanol dehydrogenase (CE-DH) activity. PMS and phenazine ethosulfate (PES) were used as primary electron acceptors, but not NAD, NADP or ferricyanide. Cells of strain JJ cultured in a continuous culture under nitrate limitation exhibited chloroethanol dehydrogenase activity that was a 12 times higher than in cells grown in batch culture. However, under chloroethanol-limiting conditions, CE-DH activity was in the same range as in batch culture. Cells grown on ethanol did not exhibit CE-DH activity. Instead, NAD-dependent ethanol dehydrogenase (E-DH) activity and PMS-dependent E-DH activity were detected.

  3. Characterization of NADP-dependent 7 beta-hydroxysteroid dehydrogenases from Peptostreptococcus productus and Eubacterium aerofaciens.

    PubMed Central

    Hirano, S; Masuda, N

    1982-01-01

    Peptostreptococcus productus strain b-52 (a human fecal isolate) and Eubacterium aerofaciens ATCC 25986 were found to contain NADP-dependent 7 beta-hydroxysteriod dehydrogenase activity. The enzyme was synthesized constitutively by both organisms, and the enzyme yields were suppressed by the addition of 0.5 mM 7 beta-hydroxy bile acid to the growth medium. Purification of the enzyme by chromatography resulted in preparations with 3.5 (P. productus b-52, on Sephadex G-200) and 1.8 (E. aerofaciens, on Bio-Gel A-1.5 M) times the activity of the crude cell extracts. A pH optimum of 9.8 and a molecular weight of approximately 53,000 were shown for the enzyme of strain b-52, and an optimum pH at 10.5 and a molecular weight of 45,000 was shown for that from strain ATCC 25986. Kinetic studies revealed that both enzyme preparations oxidized the 7 beta-hydroxy group in unconjugated and conjugated bile acids, a lower Km value being demonstrated with free bile acid than with glycine and taurine conjugates. No measureable activity against 3 alpha-, 7 alpha-, or 12 alpha-hydroxy groups was detected in either enzyme preparation. When tested with strain ATCC 25986, little 7 beta-hydroxy-steroid dehydrogenase activity was detected in cells grown in the presence of glucose in excess. The enzyme from strain b-52 was found to be heat labile (90% inactivation at 50 degrees C for 3 min) and highly sensitive to sulfhydryl inhibitors. PMID:6954878

  4. Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures

    PubMed Central

    Leferink, Nicole G. H.; Hendriks, Annemarie; Brouns, Stan J. J.; Hennemann, Hans-Georg; Dauβmann, Thomas; van der Oost, John

    2008-01-01

    There is considerable interest in the use of enantioselective alcohol dehydrogenases for the production of enantio- and diastereomerically pure diols, which are important building blocks for pharmaceuticals, agrochemicals and fine chemicals. Due to the need for a stable alcohol dehydrogenase with activity at low-temperature process conditions (30°C) for the production of (2S,5S)-hexanediol, we have improved an alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus (AdhA). A stable S-selective alcohol dehydrogenase with increased activity at 30°C on the substrate 2,5-hexanedione was generated by laboratory evolution on the thermostable alcohol dehydrogenase AdhA. One round of error-prone PCR and screening of ∼1,500 mutants was performed. The maximum specific activity of the best performing mutant with 2,5-hexanedione at 30°C was tenfold higher compared to the activity of the wild-type enzyme. A 3D-model of AdhA revealed that this mutant has one mutation in the well-conserved NADP(H)-binding site (R11L), and a second mutation (A180V) near the catalytic and highly conserved threonine at position 183. PMID:18452026

  5. Inhibition of the pentose phosphate shunt by 2,3-diphosphoglycerate in erythrocyte pyruvate kinase deficiency.

    PubMed

    Tomoda, A; Lachant, N A; Noble, N A; Tanaka, K R

    1983-07-01

    Pentose phosphate shunt activity was studied by the release of 14CO2 from 14C-1-glucose and 14C-2-glucose in the red cells of five patients with pyruvate kinase deficiency and found to be significantly decreased after new methylene blue stimulation when compared to high reticulocyte controls. Incubated Heinz body formation was increased and the ascorbate cyanide test was positive in blood from these patients. The activity of glucose-6-phosphate dehydrogenase (G6PD) as well as that of 6-phosphogluconate dehydrogenase (6PGD) was inhibited to 20% of baseline in normal red cell haemolysate by 4 mM 2,3-diphosphoglycerate at pH 7.1. 2,3-Diphosphoglycerate was a competitive inhibitor with 6-phosphogluconate (Ki=1.05 mM) and a noncompetitive inhibitor with NADP (Ki=3.3 mM) for 6PGD. Since the intracellular concentrations of glucose-6-phosphate, 6-phosphogluconate and NADP are below their Kms for G6PD and 6PGD, the kinetic data suggest that increased concentrations of 2,3-diphosphoglycerate in pyruvate kinase deficient red cells are sufficiently high to suppress pentose phosphate shunt activity. This suppression may be an additional factor contributing to the haemolytic anaemia of pyruvate kinase deficiency, particularly during periods of infection or metabolic stress.

  6. IDH1 R132H mutation in a pilocytic astrocytoma: a case report.

    PubMed

    Behling, Felix; Steinhilber, Julia; Tatagiba, Marcos; Bisdas, Sotirios; Schittenhelm, Jens

    2015-01-01

    We present the case of a 72-year old female with a right cerebellar pilocytic astrocytoma WHO grade I with an Isocitrate dehydrogenase 1 (IDH1) R132H mutation. The patient is recurrence-free 6 years after the initial diagnosis. Only one single case with strikingly similar clinicopathological features has been reported before. Otherwise, IDH1/2 mutations are not seen in pilocytic astrocytomas. The clinical implications of these findings are discussed.

  7. Exploring the regulatory role of isocitrate dehydrogenase mutant protein on glioma stem cell proliferation.

    PubMed

    Lu, H-C; Ma, J; Zhuang, Z; Qiu, F; Cheng, H-L; Shi, J-X

    2016-08-01

    Glioma is the most lethal form of cancer that originates mostly from the brain and less frequently from the spine. Glioma is characterized by abnormal regulation of glial cell differentiation. The severity of the glioma was found to be relaxed in isocitrate dehydrogenase 1 (IDH1) mutant. The present study focused on histological discrimination and regulation of cancer stem cell between IDH1 mutant and in non-IDH1 mutant glioma tissue. Histology, immunohistochemistry and Western blotting techniques are used to analyze the glioma nature and variation in glioma stem cells that differ between IDH1 mutant and in non-IDH1 mutant glioma tissue. The aggressive form of non-IDH1 mutant glioma shows abnormal cellular histological variation with prominent larger nucleus along with abnormal clustering of cells. The longer survival form of IDH1 mutant glioma has a control over glioma stem cell proliferation. Immunohistochemistry with stem cell markers, CD133 and EGFRvIII are used to demonstrate that the IDH1 mutant glioma shows limited dependence on cancer stem cells and it shows marked apoptotic signals in TUNEL assay to regulate abnormal cells. The non-IDH1 mutant glioma failed to regulate misbehaving cells and it promotes cancer stem cell proliferation. Our finding supports that the IDH1 mutant glioma has a regulatory role in glioma stem cells and their survival.

  8. Anatomical location differences between mutated and wild-type isocitrate dehydrogenase 1 in low-grade gliomas.

    PubMed

    Yu, Jinhua; Shi, Zhifeng; Ji, Chunhong; Lian, Yuxi; Wang, Yuanyuan; Chen, Liang; Mao, Ying

    2017-10-01

    Anatomical location of gliomas has been considered as a factor implicating the contributions of a specific precursor cells during the tumor growth. Isocitrate dehydrogenase 1 (IDH1) is a pathognomonic biomarker with a significant impact on the development of gliomas and remarkable prognostic effect. The correlation between anatomical location of tumor and IDH1 states for low-grade gliomas was analyzed quantitatively in this study. Ninety-two patients diagnosed of low-grade glioma pathologically were recruited in this study, including 65 patients with IDH1-mutated glioma and 27 patients with wide-type IDH1. A convolutional neural network was designed to segment the tumor from three-dimensional magnetic resonance imaging images. Voxel-based lesion symptom mapping was then employed to study the tumor location distribution differences between gliomas with mutated and wild-type IDH1. In order to characterize the location differences quantitatively, the Automated Anatomical Labeling Atlas was used to partition the standard brain atlas into 116 anatomical volumes of interests (AVOIs). The percentages of tumors with different IDH1 states in 116 AVOIs were calculated and compared. Support vector machine and AdaBoost algorithms were used to estimate the IDH1 status based on the 116 location features of each patient. Experimental results proved that the quantitative tumor location measurement could be a very important group of imaging features in biomarker estimation based on radiomics analysis of glioma.

  9. The role of succinate dehydrogenase and oxaloacetate in metabolic suppression during hibernation and arousal.

    PubMed

    Armstrong, Christopher; Staples, James F

    2010-06-01

    Hibernation elicits a major reduction in whole-animal O(2) consumption that corresponds with active suppression of liver mitochondrial electron transport capacity at, or downstream of, succinate dehydrogenase (SDH). During arousal from the torpor phase of hibernation this suppression is reversed and metabolic rates rise dramatically. In this study, we used the 13-lined ground squirrel (Ictidomys tridecemlineatus) to assess isolated liver mitochondrial respiration during the torpor phase of hibernation and various stages of arousal to elucidate a potential role of SDH in metabolic suppression. State 3 and state 4 respiration rates were seven- and threefold lower in torpor compared with the summer-active and interbout euthermic states. Respiration rates increased during arousal so that when body temperature reached 30 degrees C in late arousal, state 3 and state 4 respiration were 3.3- and 1.8-fold greater than during torpor, respectively. SDH activity was 72% higher in interbout euthermia than in torpor. Pre-incubating with isocitrate [to alleviate oxaloacetate (OAA) inhibition] increased state 3 respiration rate during torpor by 91%, but this rate was still fourfold lower than that measured in interbout euthermia. Isocitrate pre-incubation also eliminated differences in SDH activity among hibernation bout stages. OAA concentration correlated negatively with both respiration rates and SDH activity. These data suggest that OAA reversibly inhibits SDH in torpor, but cannot fully account for the drastic metabolic suppression observed during this hibernation phase.

  10. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia

    PubMed Central

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A.; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K.; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD–Scid–IL2rγnull mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. PMID:26951332

  11. A Sensitive and Specific Diagnostic Panel to Distinguish Diffuse Astrocytoma from Astrocytosis: Chromosome 7 Gain with Mutant Isocitrate Dehydrogenase 1 and p53

    PubMed Central

    Camelo-Piragua, Sandra; Jansen, Michael; Ganguly, Aniruddha; Kim, J. ChulMin; Cosper, Arjola K.; Dias-Santagata, Dora; Nutt, Catherine L.; Iafrate, A. John; Louis, David N.

    2011-01-01

    One of the major challenges of surgical neuropathology is the distinction of diffuse astrocytoma (World Health Organization [WHO] grade II) from astrocytosis. The most commonly used ancillary tool to solve this problem is p53 immunohistochemistry (IHC), but this is neither sensitive nor specific. Isocitrate dehydrogenase 1 (IDH1) mutations are common in lower grade gliomas, with most causing a specific amino acid change (R132H) that can be detected with a monoclonal antibody. IDH2 mutations are rare, but also occur in gliomas. In addition, gains of chromosome 7 are common in gliomas. In this study we assessed the status of p53, IDH1/2 and chromosome 7 to determine the most useful panel to distinguish astrocytoma from astrocytosis. We studied biopsy specimens from 21 WHO grade II diffuse astrocytomas and 20 reactive conditions. The single most sensitive test to identify astrocytoma is fluorescence in situ hybridization (FISH) for chromosome 7 gain (76.2%). The combination of p53 and mutant IDH1 IHC provides a higher sensitivity (71.4%) than either test alone (47.8%); this combination offers a practical initial approach for the surgical pathologist. The best overall sensitivity (95%) is achieved when FISH for chromosome 7 gain is added to the p53-mutant IDH1 IHC panel. PMID:21343879

  12. Isocitrate dehydrogenase-1 mutations as prognostic biomarker in glioblastoma multiforme patients in West Bohemia.

    PubMed

    Polivka, J; Polivka, J; Rohan, V; Pesta, M; Repik, T; Pitule, P; Topolcan, O

    2014-01-01

    Glioblastoma multiforme (GBM) is the most malignant primary brain tumor in adults. Recent whole-genome studies revealed novel GBM prognostic biomarkers such as mutations in metabolic enzyme IDH-isocitrate dehydrogenases (IDH1 and IDH2). The distinctive mutation IDH1 R132H was uncovered to be a strong prognostic biomarker for glioma patients. We investigated the prognostic role of IDH1 R132H mutation in GBM patients in West Bohemia. The IDH1 R132H mutation was assessed by the RT-PCR in the tumor samples from 45 GBM patients treated in the Faculty Hospital in Pilsen and was correlated with the progression free and overall survival. The IDH1 R132H mutation was identified in 20 from 44 GBM tumor samples (45.4%). The majority of mutated tumors were secondary GBMs (16 in 18, 89.9%). Low frequency of IDH1 mutations was observed in primary GBMs (4 in 26, 15.3%). Patients with IDH R132H mutation had longer PFS, 136 versus 51 days (P < 0.021, Wilcoxon), and OS, 270 versus 130 days (P < 0.024, Wilcoxon test). The prognostic value of IDH1 R132H mutation in GBM patients was verified. Patients with mutation had significantly longer PFS and OS than patients with wild-type IDH1 and suffered more likely from secondary GBMs.

  13. [Expression of isocitrate dehydrogenase 1 gene R132H and its diagnostic application in glioma].

    PubMed

    PIAO, Yue-shan; LU, De-hong; ZHANG, Xiao-juan; TANG, Guo-cai; YANG, Hong

    2011-03-01

    To investigate the immunohistochemical expression of isocitrate dehydrogenase 1 gene (IDH1) R132H in glioma and its diagnostic utility. Immunohistochemical study of IDH1R132H expression was performed on formalin-fixed paraffin-embedded tissue samples of 75 gliomas, including 33 cases of grade II, 20 cases of grade III and 22 cases of grade IV tumors. Six cases of pilocytic astrocytoma and 12 cases of gliosis were used as controls. Nineteen in 33 cases of grade II (57.6%), 8 in 20 cases of grade III (40.0%), 6 in 22 cases of grade IV (27.3%) showed positive cytoplasmic staining of IDH1R132H. Scattered invasive glioma cells at the tumor periphery also expressed IDH1R132H. Gliomas involving the frontal lobe showed more strong IDH1R132H staining. In contrast, none of the pilocytic astrocytomas and gliosis showed IDH1R132H staining. Moreover, the rate of p53 immunopositivities were 42.4% (14/33) in grade II, 65.0% (13/20) in grade III and 77.3% (17/22) in grade IV gliomas. There were no statistic correlations between expression of IDH1R132H and p53. IDH1R132H tends to express preferentially in low-grade gliomas, and it thus may serve as a valuable marker in distinguishing low grade gliomas from gliosis.

  14. Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation.

    PubMed

    Kim, Il-Sup; Kim, Young-Saeng; Kim, Hyun; Jin, Ingnyol; Yoon, Ho-Sung

    2013-03-01

    Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to cost-effective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis.

  15. Changes in oxygen consumption and respiratory enzymes as stress indicators in an estuarine edible crab Scylla serrata exposed to naphthalene.

    PubMed

    Vijayavel, K; Balasubramanian, M P

    2006-06-01

    The sublethal effect of naphthalene was studied on the physiology of a mud crab Scylla serrata. The 96 h acute toxicity of naphthalene was determined and found to be 28 mg 1(-1) (LC100), 18 mg 1(-1) (LC50), 10 mg 1(-1) (LC0) respectively. The 30 days sublethal effect (LC0) 9 mg 1(-1), 8 mg 1(-1), 10 mg 1(-1), of naphthalene was investigated in the crab S. serrata with reference to oxygen consumption and changes in the activity of respiratory enzymes. The results indicated that naphthalene caused disturbance in the normal physiology of the crab. The bioaccumulation of naphthalene was also investigated in gills, hepatopancreas, haemolymph and ovary. The consumption of oxygen increased in the naphthalene medium when compared with that of the crabs exposed to naphthalene free medium. A decreased trend in the activity of respiratory enzymes such as lactate dehydrogenase (LDH), isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), alpha-ketoglutarate dehydrogenase (alpha-KDH) and glutathione (GSH) were recorded in the hepatopancreas, ovary and gills of S. serrata for all the tested concentrations of naphthalene and the results were analyzed for their significance.

  16. Phellinus rimosus improves mitochondrial energy status and attenuates nephrotoxicity in diabetic rats.

    PubMed

    Rony, K A; Ajith, T A; Kuttikadan, Tony A; Blaze, R; Janardhanan, K K

    2017-09-26

    Mitochondrial dysfunction and increase in reactive oxygen species during diabetes can lead to pathological consequences in kidneys. The present study was aimed to investigate the effect of Phellinus rimosus in the streptozotocin (STZ)-induced diabetic rat renal mitochondria and the possible mechanism of protection. Phellinus rimosus (50 and 250 mg/kg, p.o) was treated after inducing diabetes by STZ (45 mg/kg, i.p) in rats. The serum samples were subjected to creatinine and urea estimation. Mitochondrial antioxidant status such as mitochondrial superoxide dismutase, glutathione peroxidase, and reduced glutathione; adenosine triphosphate level; and lipid peroxidation were measured. The activities of Krebs cycle enzymes such as isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, III, and IV in kidney mitochondria were also determined. Administration of P. rimosus (250 mg/kg b.wt) once daily for 30 days, significantly (p<0.05) enhanced the activities of Krebs cycle dehydrogenases, mitochondrial electron transport chain complexes, and ATP level. Further, P. rimosus had significantly protected the renal mitochondrial antioxidant status and lipid peroxidation. The results of the study concluded that by limiting the extent of renal mitochondrial damage in the hyperglycemic state, P. rimosus alleviated nephrotoxicity.

  17. The significance of nitrogen limited condition in the initiation of lipid biosynthesis in Aurantiochytrium sp. SW1

    NASA Astrophysics Data System (ADS)

    Haladu, Zangoma Maryam; Ibrahim, Izyanti; Hamid, Aidil Abdul

    2018-04-01

    The manner of the onset of lipid synthesis in Aurantiochytrium sp. SW1 as well as the possible role of NAD+ dependent isocitrate dehydrogenase (NAD+: ICDH) in the initiation of lipid biosynthesis were studied. The initiation of lipid synthesis in the microalgae was not associated with the cessation of growth, but commence at the early phase of growth. Substantial amount of lipid (30 %, g/g biomass) was accumulated during the active growth phase at 48 h with growth rate decreasing from 0.11 g/L/h during active growth to 0.02 g/L/h in the limited growth phase. At that period the activity of NAD+: ICDH was still detectable although it slightly decreased to 20 nmol/min/mg in 48 h from 25 nmol/min/mg at 24 h. Analysis of ammonium sulfate fractionated of NAD+: ICDH activity showed that NAD+: ICDH was not completely dependent on adenosine monophosphate (AMP) for its activity, although the presence of AMP increased the enzyme's affinity towards its substrate (isocitrate) indicated by the low Km value of the enzyme for isocitrate. While citrate acts as inhibitor of the enzyme only at high concentration. The probable implications of these properties to the regulation of lipid are discussed.

  18. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    PubMed

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Light-regulation of enzyme activity in anacystis nidulans (Richt.).

    PubMed

    Duggan, J X; Anderson, L E

    1975-01-01

    The effect of light on the levels of activity of six enzymes which are light-modulated in higher plants was examined in the photosynthetic procaryot Anacystis nidulans. Ribulose-5-phosphate kinase (EC 2.7.1.19) was found to be light-activated in vivo and dithiothreitol-activated in vitro while glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was light-inactivated and dithiothreitol-inactivated. The enzymes fructose-1,6-diphosphate phosphatase (EC 3.1.3.11), sedoheptulose-1,7-diphosphate phosphatase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12; EC 1.2.1.13) were not affected by light treatment of the intact algae, but sedoheptulose-diphosphate phosphatase and the glyceraldehyde-3-phosphate dehydrogenases were dithiothreitol-activated in crude extracts. Light apparently controls the activity of the reductive and oxidative pentose phosphate pathway in this photosynthetic procaryot as in higher plants, through a process which probably involves reductive modulation of enzyme activity.

  20. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.

    PubMed

    Papapetridis, Ioannis; van Dijk, Marlous; Dobbe, Arthur P A; Metz, Benjamin; Pronk, Jack T; van Maris, Antonius J A

    2016-04-26

    Acetic acid, an inhibitor of sugar fermentation by yeast, is invariably present in lignocellulosic hydrolysates which are used or considered as feedstocks for yeast-based bioethanol production. Saccharomyces cerevisiae strains have been constructed, in which anaerobic reduction of acetic acid to ethanol replaces glycerol formation as a mechanism for reoxidizing NADH formed in biosynthesis. An increase in the amount of acetate that can be reduced to ethanol should further decrease acetic acid concentrations and enable higher ethanol yields in industrial processes based on lignocellulosic feedstocks. The stoichiometric requirement of acetate reduction for NADH implies that increased generation of NADH in cytosolic biosynthetic reactions should enhance acetate consumption. Replacement of the native NADP(+)-dependent 6-phosphogluconate dehydrogenase in S. cerevisiae by a prokaryotic NAD(+)-dependent enzyme resulted in increased cytosolic NADH formation, as demonstrated by a ca. 15% increase in the glycerol yield on glucose in anaerobic cultures. Additional deletion of ALD6, which encodes an NADP(+)-dependent acetaldehyde dehydrogenase, led to a 39% increase in the glycerol yield compared to a non-engineered strain. Subsequent replacement of glycerol formation by an acetate reduction pathway resulted in a 44% increase of acetate consumption per amount of biomass formed, as compared to an engineered, acetate-reducing strain that expressed the native 6-phosphogluconate dehydrogenase and ALD6. Compared to a non-acetate reducing reference strain under the same conditions, this resulted in a ca. 13% increase in the ethanol yield on glucose. The combination of NAD(+)-dependent 6-phosphogluconate dehydrogenase expression and deletion of ALD6 resulted in a marked increase in the amount of acetate that was consumed in these proof-of-principle experiments, and this concept is ready for further testing in industrial strains as well as in hydrolysates. Altering the cofactor specificity of the oxidative branch of the pentose-phosphate pathway in S. cerevisiae can also be used to increase glycerol production in wine fermentation and to improve NADH generation and/or generation of precursors derived from the pentose-phosphate pathway in other industrial applications of this yeast.

  1. IDH1 R132H mutation in a pilocytic astrocytoma: a case report

    PubMed Central

    Behling, Felix; Steinhilber, Julia; Tatagiba, Marcos; Bisdas, Sotirios; Schittenhelm, Jens

    2015-01-01

    We present the case of a 72-year old female with a right cerebellar pilocytic astrocytoma WHO grade I with an Isocitrate dehydrogenase 1 (IDH1) R132H mutation. The patient is recurrence-free 6 years after the initial diagnosis. Only one single case with strikingly similar clinicopathological features has been reported before. Otherwise, IDH1/2 mutations are not seen in pilocytic astrocytomas. The clinical implications of these findings are discussed. PMID:26617931

  2. Betaine aldehyde dehydrogenase isozymes of spinach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase inmore » salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.« less

  3. Glucose-6-phosphate dehydrogenase deficiency: correlation between the genotype, biochemistry and phenotype.

    PubMed

    Chan, Daisy K L

    2008-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common genetic enzyme defect present in many people from African, Middle Eastern, Mediterranean and Asian countries. Individuals with the enzyme deficiency may remain asymptomatic, develop an acute haemolytic crises to infections or Fava beans, neonatal jaundice or chronic non-spherocytic haemolytic anaemia. Electrophoretic mobility may be fast, slow or normal. Over 160 mutations have been described, mostly due to single amino acid substitution. Although correlation of the genotype and biochemistry with the clinical phenotype of G6PD deficient individuals remains somewhat variable, there is better correlation among individuals presenting with chronic non-spherocytic haemolytic anaemia, which is related to the NADP structure of the enzyme.

  4. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function.

    PubMed

    Zheng, Shiju; Jing, Guoxing; Wang, Xiao; Ouyang, Qiuli; Jia, Lei; Tao, Nengguo

    2015-07-01

    This work investigated the effect of citral on the mitochondrial morphology and function of Penicillium digitatum. Citral at concentrations of 2.0 or 4.0 μL/mL strongly damaged mitochondria of test pathogen by causing the loss of matrix and increase of irregular mitochondria. The deformation extent of the mitochondria of P. digitatum enhanced with increasing concentrations of citral, as evidenced by a decrease in intracellular ATP content and an increase in extracellular ATP content of P. digitatum cells. Oxygen consumption showed that citral resulted in an inhibition in the tricarboxylic acid cycle (TCA) pathway of P. digitatum cells, induced a decrease in activities of citrate synthetase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinodehydrogenase and the content of citric acid, while enhancing the activity of malic dehydrogenase in P. digitatum cells. Our present results indicated that citral could damage the mitochondrial membrane permeability and disrupt the TCA pathway of P. digitatum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Filamentous invasive growth of mutants of the genes encoding ammonia-metabolizing enzymes in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Sasaki, Yoshie; Kojima, Ayumi; Shibata, Yuriko; Mitsuzawa, Hiroshi

    2017-01-01

    The fission yeast Schizosaccharomyces pombe undergoes a switch from yeast to filamentous invasive growth in response to certain environmental stimuli. Among them is ammonium limitation. Amt1, one of the three ammonium transporters in this yeast, is required for the ammonium limitation-induced morphological transition; however, the underlying molecular mechanism remains to be understood. Cells lacking Amt1 became capable of invasive growth upon increasing concentrations of ammonium in the medium, suggesting that the ammonium taken up into the cell or a metabolic intermediate in ammonium assimilation might serve as a signal for the ammonium limitation-induced morphological transition. To investigate the possible role of ammonium-metabolizing enzymes in the signaling process, deletion mutants were constructed for the gdh1, gdh2, gln1, and glt1 genes, which were demonstrated by enzyme assays to encode NADP-specific glutamate dehydrogenase, NAD-specific glutamate dehydrogenase, glutamine synthetase, and glutamate synthase, respectively. Growth tests on various nitrogen sources revealed that a gln1Δ mutant was a glutamine auxotroph and that a gdh1Δ mutant had a defect in growth on ammonium, particularly at high concentrations. The latter observation indicates that the NADP-specific glutamate dehydrogenase of S. pombe plays a major role in ammonium assimilation under high ammonium concentrations. Invasive growth assays showed that gdh1Δ and glt1Δ mutants underwent invasive growth to a lesser extent than did wild-type strains. Increasing the ammonium concentration in the medium suppressed the invasive growth defect of the glt1Δ mutant, but not the gdh1Δ mutant. These results suggest that the nitrogen status of the cell is important in the induction of filamentous invasive growth in S. pombe.

  6. Purification and investigation of some kinetic properties of glucose-6-phosphate dehydrogenase from parsley (Petroselinum hortense) leaves.

    PubMed

    Coban, T Abdül Kadir; Ciftçi, Mehmet; Küfrevioğlu, O Irfan

    2002-05-01

    In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.

  7. Cloning and characterization of the glutamate dehydrogenase gene in Streptococcus bovis.

    PubMed

    Ando, Tasuke; Sugawara, Yoko; Nishio, Ryohei; Murakami, Miho; Isogai, Emiko; Yoneyama, Hiroshi

    2017-07-01

    Streptococcus bovis, an etiologic agent of rumen acidosis in cattle, is a rumen bacterium that can grow in a chemically defined medium containing ammonia as a sole source of nitrogen. To understand its ability to assimilate inorganic ammonia, we focused on the function of glutamate dehydrogenase. In order to identify the gene encoding this enzyme, we first amplified an internal region of the gene by using degenerate primers corresponding to hexameric family I and NAD(P) + binding motifs. Subsequently, inverse PCR was used to identify the whole gene, comprising an open reading frame of 1350 bp that encodes 449 amino acid residues that appear to have the substrate binding site of glutamate dehydrogenase observed in other organisms. Upon introduction of a recombinant plasmid harboring the gene into an Escherichia coli glutamate auxotroph lacking glutamate dehydrogenase and glutamate synthase, the transformants gained the ability to grow on minimal medium without glutamate supplementation. When cell extracts of the transformant were resolved by blue native polyacrylamide gel electrophoresis followed by activity staining, a single protein band appeared that corresponded to the size of S. bovis glutamate dehydrogenase. Based on these results, we concluded that the gene obtained encodes glutamate dehydrogenase in S. bovis. © 2016 Japanese Society of Animal Science.

  8. Structural and Kinetic Basis for Substrate Selectivity in Populus tremuloides Sinapyl Alcohol Dehydrogenase

    PubMed Central

    Bomati, Erin K.; Noel, Joseph P.

    2005-01-01

    We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities. PMID:15829607

  9. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.

    PubMed

    Bomati, Erin K; Noel, Joseph P

    2005-05-01

    We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.

  10. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    PubMed

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria.

    PubMed Central

    McCormack, J G

    1985-01-01

    The regulatory properties of the Ca2+-sensitive intramitochondrial enzymes (pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in extracts of rat liver mitochondria appeared to be essentially similar to those described previously for other mammalian tissues. In particular, the enzymes were activated severalfold by Ca2+, with half-maximal effects at about 1 microM-Ca2+ (K0.5 value). In intact rat liver mitochondria incubated in a KCl-based medium containing 2-oxoglutarate and malate, the amount of active, non-phosphorylated, pyruvate dehydrogenase could be increased severalfold by increasing extramitochondrial [Ca2+], provided that some degree of inhibition of pyruvate dehydrogenase kinase (e.g. by pyruvate) was achieved. The rates of 14CO2 production from 2-oxo-[1-14C]glutarate at non-saturating, but not at saturating, concentrations of 2-oxoglutarate by the liver mitochondria (incubated without ADP) were similarly enhanced by increasing extramitochondrial [Ca2+]. The rates and extents of NAD(P)H formation in the liver mitochondria induced by non-saturating concentrations of 2-oxoglutarate, glutamate, threo-DS-isocitrate or citrate were also increased in a similar manner by Ca2+ under several different incubation conditions, including an apparent 'State 3.5' respiration condition. Ca2+ had no effect on NAD(P)H formation induced by beta-hydroxybutyrate or malate. In intact, fully coupled, rat liver mitochondria incubated with 10 mM-NaCl and 1 mM-MgCl2, the apparent K0.5 values for extramitochondrial Ca2+ were about 0.5 microM, and the effective concentrations were within the expected physiological range, 0.05-5 microM. In the absence of Na+, Mg2+ or both, the K0.5 values were about 400, 200 and 100 nM respectively. These effects of increasing extramitochondrial [Ca2+] were all inhibited by Ruthenium Red. When extramitochondrial [Ca2+] was increased above the effective ranges for the enzymes, a time-dependent deterioration of mitochondrial function and ATP content was observed. The implications of these results on the role of the Ca2+-transport system of the liver mitochondrial inner membrane are discussed. PMID:3000355

  12. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase.

    PubMed

    Liang, Bo; Zhang, Shu; Lang, Qiaolin; Song, Jianxia; Han, Lihui; Liu, Aihua

    2015-07-16

    A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP(+)-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP(+) involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current-time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM-1 mM and 2-10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N=3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The three-dimensional structure of AKR11B4, a glycerol dehydrogenase from Gluconobacter oxydans, reveals a tryptophan residue as an accelerator of reaction turnover.

    PubMed

    Richter, Nina; Breicha, Klaus; Hummel, Werner; Niefind, Karsten

    2010-12-03

    The NADP-dependent glycerol dehydrogenase (EC 1.1.1.72) from Gluconobacter oxydans is a member of family 11 of the aldo-keto reductase (AKR) enzyme superfamily; according to the systematic nomenclature within the AKR superfamily, the term AKR11B4 has been assigned to the enzyme. AKR11B4 is a biotechnologically attractive enzyme because of its broad substrate spectrum, combined with its distinctive regioselectivity and stereoselectivity. These features can be partially rationalized based on a 2-Å crystal structure of apo-AKR11B4, which we describe and interpret here against the functional complex structures of other members of family 11 of the AKR superfamily. The structure of AKR11B4 shows the AKR-typical (β/α)(8) TIM-barrel fold, with three loops and the C-terminal tail determining the particular enzymatic properties. In comparison to AKR11B1 (its closest AKR relative), AKR11B4 has a relatively broad binding cleft for the cosubstrate NADP/NADPH. In the crystalline environment, it is completely blocked by the C-terminal segment of a neighboring protomer. The structure reveals a conspicuous tryptophan residue (Trp23) that has to adopt an unconventional and strained side-chain conformation to permit cosubstrate binding. We predict and confirm by site-directed mutagenesis that Trp23 is an accelerator of (co)substrate turnover. Furthermore, we show that, simultaneously, this tryptophan residue is a critical determinant for substrate binding by the enzyme, while enantioselectivity is probably governed by a methionine residue within the C-terminal tail. We present structural reasons for these notions based on ternary complex models of AKR11B4, NADP, and either octanal, d-glyceraldehyde, or l-glyceraldehyde. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Human 3α-hydroxysteroid dehydrogenase type 3: structural clues of 5α-DHT reverse binding and enzyme down-regulation decreasing MCF7 cell growth.

    PubMed

    Zhang, Bo; Hu, Xiao-Jian; Wang, Xiao-Qiang; Thériault, Jean-François; Zhu, Dao-Wei; Shang, Peng; Labrie, Fernand; Lin, Sheng-Xiang

    2016-04-15

    Human 3α-HSD3 (3α-hydroxysteroid dehydrogenase type 3) plays an essential role in the inactivation of the most potent androgen 5α-DHT (5α-dihydrotestosterone). The present study attempts to obtain the important structure of 3α-HSD3 in complex with 5α-DHT and to investigate the role of 3α-HSD3 in breast cancer cells. We report the crystal structure of human 3α-HSD3·NADP(+)·A-dione (5α-androstane-3,17-dione)/epi-ADT (epiandrosterone) complex, which was obtained by co-crystallization with 5α-DHT in the presence of NADP(+) Although 5α-DHT was introduced during the crystallization, oxidoreduction of 5α-DHT occurred. The locations of A-dione and epi-ADT were identified in the steroid-binding sites of two 3α-HSD3 molecules per crystal asymmetric unit. An overlay showed that A-dione and epi-ADT were oriented upside-down and flipped relative to each other, providing structural clues for 5α-DHT reverse binding in the enzyme with the generation of different products. Moreover, we report the crystal structure of the 3α-HSD3·NADP(+)·4-dione (4-androstene-3,17-dione) complex. When a specific siRNA (100 nM) was used to suppress 3α-HSD3 expression without interfering with 3α-HSD4, which shares a highly homologous active site, the 5α-DHT concentration increased, whereas MCF7 cell growth was suppressed. The present study provides structural clues for 5α-DHT reverse binding within 3α-HSD3, and demonstrates for the first time that down-regulation of 3α-HSD3 decreases MCF7 breast cancer cell growth. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. Intraventricular Glioblastomas.

    PubMed

    Ben Nsir, Atef; Gdoura, Yassine; Thai, Quoc-Anh; Zhani Kassar, Alia; Hattab, Nejib; Jemel, Hafedh

    2016-04-01

    Although glioblastoma is the most common primary brain tumor, primary intraventricular locations are extremely rare; only 21 cases have been reported to date. A retrospectively acquired database of all intracranial glioblastomas treated in 2 different neurosurgical departments during the last 10 years was queried. Patients with histologically proven intraventricular glioblastomas were included in the study. Eight patients were identified as having a histologically confirmed intraventricular glioblastoma. Patient age at diagnosis ranged from 6 to 74 years (mean 29.6 years) and the male/female ratio was 5:3. Increased intracranial pressure due to hydrocephalus was the main cause of the clinical manifestations. The tumor was located within the lateral ventricle in 6 cases and the anterior third ventricle in 2 others. Gross total tumor excision was achieved in 3 patients, whereas the surgical resection was subtotal in 4 cases and a surgical biopsy was performed in 1 patient. Postoperative adjuvant therapies were administered in 5 patients. Median survival time was 32.1 months, and 3 patients were alive at the end of study. All of them had isocitrate dehydrogenase-mutated tumors. Intraventricular glioblastoma is extremely rare and can affect younger individuals including children. This malignant tumor should be included in the differential diagnosis of intraventricular lesions, especially in the lateral ventricles. Radical surgical resection can be associated with remarkable disease-free survival, especially in isocitrate dehydrogenase-mutated tumors. Because recurrence virtually is unavoidable, long-term follow-up is mandatory. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype.

    PubMed

    Whitehall, V L J; Dumenil, T D; McKeone, D M; Bond, C E; Bettington, M L; Buttenshaw, R L; Bowdler, L; Montgomery, G W; Wockner, L F; Leggett, B A

    2014-11-01

    The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.

  17. Inhibition of Mutated Isocitrate Dehydrogenase 1 in Cancer.

    PubMed

    Wu, Fangrui; Cheng, Gang; Yao, Yuan; Kogiso, Mari; Jiang, Hong; Li, Xiao-Nan; Song, Yongcheng

    2018-05-23

    R132H mutation of isocitrate dehydrogenase 1 (IDH1) are found in ~75% of low-grade gliomas and secondary glioblastomas as well as in several other types of cancer. More chemotypes of inhibitors of IDH1(R132H) are therefore needed. To develop a new class of IDH1(R132H) inhibitors as potent antitumor agents. A biochemical assay was developed to find inhibitors of IDH1(R132H) mutant enzyme. Chemical synthesis and structure activity relationship studies were used to find compounds with improved potency. Antitumor activities of selected compounds were evaluated. A series of aromatic sulfonamide compounds were found to be novel, potent inhibitors of IDH1(R132H) with Ki values as low as 0.6 µM. Structure activity relationships of these compounds are discussed. Enzyme kinetics studies showed that one compound is a competitive inhibitor against the substrate α-KG and a non-competitive inhibitor against the cofactor NADPH. Several inhibitors were found to have no activity against wild-type IDH1, showing a high selectivity. Two potent inhibitors exhibited strong activity against proliferation of BT142 glioma cells with IDH1 R132H mutation, while these compounds did not significantly affect growth of glioma cells without IDH1 mutation. This novel series of IDH1(R132H) inhibitors have potential to be further developed for the treatment of glioma with IDH1 mutation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. High-throughput immunohistochemical profiling of primary brain tumors and non-neoplastic systemic organs with a specific antibody against the mutant isocitrate dehydrogenase 1 R132H protein.

    PubMed

    Ikota, Hayato; Nobusawa, Sumihito; Tanaka, Yuko; Yokoo, Hideaki; Nakazato, Yoichi

    2011-04-01

    Isocitrate dehydrogenase 1 (IDH1) mutations are common in grade II-III diffuse gliomas and secondary glioblastomas. The aim of this study is to investigate the staining pattern of mIDH1R132H, an antibody specific to mutant IDH1 protein, in primary brain tumors and non-neoplastic systemic organs. Eight of 13 diffuse astrocytomas, 1 of 6 anaplastic astrocytomas, 9 of 11 oligodendrogliomas, 15 of 22 anaplastic oligodendrogliomas, 6 of 7 oligoastrocytomas, and 5 of 8 anaplastic oligoastrocytomas showed both cytoplasmic and nuclear positivity. Two of 25 atypical meningiomas and 2 of 42 pituitary adenomas were positive for mIDH1R132H. The following non-neoplastic systemic organs showed positivity in the cytoplasm alone: the myocardium, peribronchial glands, interlobular ducts of the salivary gland, gastric fundic gland, columnar epithelia of the large bowel, hepatocytes, centroacinar cells, the intercalated ducts of the pancreas, renal proximal and distal tubules, adrenocortex, ovarian granulosa cells, and the choroid plexus epithelia. It was concluded that the immunopositivity detected in non-neoplastic systemic organs was due to cross-reactivity, because immunohistochemistry with an anti-mitochondrial antibody revealed that the mIDH1R132H staining pattern was identical to that of the mitochondria. Therefore, mIDH1R132H positivity should only be considered to be validated when a cell shows both cytoplasmic and nuclear staining.

  19. Palladium alpha-lipoic acid complex formulation enhances activities of Krebs cycle dehydrogenases and respiratory complexes I-IV in the heart of aged rats.

    PubMed

    Sudheesh, N P; Ajith, T A; Janardhanan, K K; Krishnan, C V

    2009-08-01

    Age-related decline in the capacity to withstand stress, such as ischemia and reperfusion, results in congestive heart failure. Though the mechanisms underlying cardiac decay are not clear, age dependent somatic damages to mitochondrial DNA (mtDNA), loss of mitochondrial function, and a resultant increase in oxidative stress in heart muscle cells may be responsible for the increased risk for cardiovascular diseases. The effect of a safe nutritional supplement, POLY-MVA, containing the active ingredient palladium alpha-lipoic acid complex, was evaluated on the activities of the Krebs cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, II, III, and IV in heart mitochondria of aged male albino rats of Wistar strain. Administration of 0.05 ml/kg of POLY-MVA (which is equivalent to 0.38 mg complexed alpha-lipoic acid/kg, p.o), once daily for 30 days, was significantly (p<0.05) effective to enhance the Krebs cycle dehydrogenases, and mitochondrial electron transport chain complexes. The unique electronic and redox properties of palladium alpha-lipoic acid complex appear to be a key to this physiological effectiveness. The results strongly suggest that this formulation might be effective to protect the aging associated risk of cardiovascular and neurodegenerative diseases.

  20. Kalpaamruthaa ameliorates mitochondrial and metabolic alterations in diabetes mellitus induced cardiovascular damage.

    PubMed

    Latha, Raja; Shanthi, Palanivelu; Sachdanandam, Panchanadham

    2014-12-01

    Efficacy of Kalpaamruthaa on the activities of lipid and carbohydrate metabolic enzymes, electron transport chain complexes and mitochondrial ATPases were studied in heart and liver of experimental rats. Cardiovascular damage (CVD) was developed in 8 weeks after type 2 diabetes mellitus induction with high fat diet (2 weeks) and low dose of streptozotocin (2 × 35 mg/kg b.w. i.p. in 24 hr interval). In CVD-induced rats, the activities of total lipase, cholesterol ester hydrolase and cholesterol ester synthetase were increased, while lipoprotein lipase and lecithin-cholesterol acyltransferase activities were decreased. The activities of lipid-metabolizing enzymes were altered by Kalpaamruthaa in CVD-induced rats towards normal. Kalpaamruthaa modulated the activities of glycolytic enzymes (hexokinase, phosphogluco-isomerase, aldolase and glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1, 6-bisphosphatase) and glycogenolytic enzyme (glycogen phosphorylase) along with increased glycogen content in the liver of CVD-induced rats. The activities of isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, α-ketoglutarate dehydrogenase, Complexes and ATPases (Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) were decreased in CVD-induced rats, which were ameliorated by the treatment with Kalpaamruthaa. This study ascertained the efficacy of Kalpaamruthaa for the treatment of CVD in diabetes through the modulation of metabolizing enzymes and mitochondrial dysfunction.

  1. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate

    PubMed Central

    Dang, Lenny; White, David W.; Gross, Stefan; Bennett, Bryson D.; Bittinger, Mark A.; Driggers, Edward M.; Fantin, Valeria R.; Jang, Hyun Gyung; Jin, Shengfang; Keenan, Marie C.; Marks, Kevin M.; Prins, Robert M.; Ward, Patrick S.; Yen, Katharine E.; Liau, Linda M.; Rabinowitz, Joshua D.; Cantley, Lewis C.; Thompson, Craig B.; Vander Heiden, Matthew G.; Su, Shinsan M.

    2009-01-01

    Summary Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site resulting in loss of the enzyme’s ability to catalyze conversion of isocitrate to α-ketoglutarate. However, only a single copy of the gene is mutated in tumors, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α-ketoglutarate to R(−)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when R132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert α-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumors in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harboring IDH1 mutations, we find dramatically elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and suggest that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas. PMID:19935646

  2. Structure-Based Engineering of an Artificially Generated NADP+-Dependent d-Amino Acid Dehydrogenase

    PubMed Central

    Hayashi, Junji; Seto, Tomonari; Akita, Hironaga; Watanabe, Masahiro; Hoshino, Tamotsu; Yoneda, Kazunari; Ohshima, Toshihisa

    2017-01-01

    ABSTRACT A stable NADP+-dependent d-amino acid dehydrogenase (DAADH) was recently created from Ureibacillus thermosphaericus meso-diaminopimelate dehydrogenase through site-directed mutagenesis. To produce a novel DAADH mutant with different substrate specificity, the crystal structure of apo-DAADH was determined at a resolution of 1.78 Å, and the amino acid residues responsible for the substrate specificity were evaluated using additional site-directed mutagenesis. By introducing a single D94A mutation, the enzyme's substrate specificity was dramatically altered; the mutant utilized d-phenylalanine as the most preferable substrate for oxidative deamination and had a specific activity of 5.33 μmol/min/mg at 50°C, which was 54-fold higher than that of the parent DAADH. In addition, the specific activities of the mutant toward d-leucine, d-norleucine, d-methionine, d-isoleucine, and d-tryptophan were much higher (6 to 25 times) than those of the parent enzyme. For reductive amination, the D94A mutant exhibited extremely high specific activity with phenylpyruvate (16.1 μmol/min/mg at 50°C). The structures of the D94A-Y224F double mutant in complex with NADP+ and in complex with both NADPH and 2-keto-6-aminocapronic acid (lysine oxo-analogue) were then determined at resolutions of 1.59 Å and 1.74 Å, respectively. The phenylpyruvate-binding model suggests that the D94A mutation prevents the substrate phenyl group from sterically clashing with the side chain of Asp94. A structural comparison suggests that both the enlarged substrate-binding pocket and enhanced hydrophobicity of the pocket are mainly responsible for the high reactivity of the D94A mutant toward the hydrophobic d-amino acids with bulky side chains. IMPORTANCE In recent years, the potential uses for d-amino acids as source materials for the industrial production of medicines, seasonings, and agrochemicals have been growing. To date, several methods have been used for the production of d-amino acids, but all include tedious steps. The use of NAD(P)+-dependent d-amino acid dehydrogenase (DAADH) makes single-step production of d-amino acids from oxo-acid analogs and ammonia possible. We recently succeeded in creating a stable DAADH and demonstrated that it is applicable for one-step synthesis of d-amino acids, such as d-leucine and d-isoleucine. As the next step, the creation of an enzyme exhibiting different substrate specificity and higher catalytic efficiency is a key to the further development of d-amino acid production. In this study, we succeeded in creating a novel mutant exhibiting extremely high catalytic activity for phenylpyruvate amination. Structural insight into the mutant will be useful for further improvement of DAADHs. PMID:28363957

  3. Metabolism of hexadecyltrimethylammonium chloride in Pseudomonas strain B1.

    PubMed Central

    van Ginkel, C G; van Dijk, J B; Kroon, A G

    1992-01-01

    A bacterium (strain B1) utilizing hexadecyltrimethylammonium chloride as a carbon and energy source was isolated from activated sludge and tentatively identified as a Pseudomonas sp. This bacterium only grew on alkyltrimethylammonium salts (C12 to C22) and possible intermediates of hexadecyltrimethylammonium chloride breakdown such as hexadecanoate and acetate. Pseudomonas strain B1 did not grow on amines. Simultaneous adaptation studies suggested that the bacterium oxidized only the alkyl chain of hexadecyltrimethylammonium chloride. This was confirmed by the stoichiometric formation of trimethylamine from hexadecyltrimethylammonium chloride. The initial hexadecyltrimethylammonium chloride oxygenase activity, measured by its ability to form trimethylamine, was NAD(P)H and O2 dependent. Finally, assays of aldehyde dehydrogenase, hexadecanoyl-coenzyme A dehydrogenase, and isocitrate lyase in cell extracts revealed the potential of Pseudomonas strain B1 to metabolize the alkyl chain via beta-oxidation. PMID:1444422

  4. Biochemical studies on hepatic involvement in infectious mononucleosis

    PubMed Central

    Baron, D. N.; Bell, Joyce L.; Dunnet, W. N.

    1965-01-01

    Eighty cases of infectious mononucleosis have been investigated by serum enzyme studies and other liver function tests. Maximum abnormalities occurred between the second and fourth weeks of illness and all tests were usually normal by the sixth week. Serum isocitric dehydrogenase activity was increased in 93% of cases and serum glutamic-oxaloacetic transaminase in 74%. Conventional liver function tests were less sensitive. Serum bilirubin was above normal in 40% of cases; in 17% of cases the increase was sufficient to show as clinical jaundice. No patient has developed chronic hepatitis. PMID:14276157

  5. Biochemical and locomotor responses of Carcinus maenas exposed to the serotonin reuptake inhibitor fluoxetine.

    PubMed

    Mesquita, Sofia Raquel; Guilhermino, Lúcia; Guimarães, Laura

    2011-10-01

    The aim of this study was to assess the effects of the widely used anti-depressant fluoxetine on behaviour (locomotion), moulting, neuromuscular transmission, energy production and anti-oxidant defences' efficiency of the epibenthic crab Carcinus maenas. Crabs were individually exposed to fluoxetine concentrations for 7d. Effects on locomotion were assessed at the end of the exposure using an open field test adapted to C. maenas in the present study. Tissue samples were later collected to evaluate fluoxetine effects on physiological functions using the activity of key enzymes and other parameters as biomarkers, namely: N-acetyl-β-glucosaminidase (NAGase) in the epidermis (moulting) and the hepatopancreas; cholinesterases (ChE) in muscle (neuromuscular cholinergic transmission); NADP(+)-dependent isocitrate dehydrogenase (IDH) and lactate dehydrogenease (LDH) in muscle (energy production); glutathione S-transferases (GST) in hepatopancreas (biotransformation and oxidative stress system); glutathione reductase (GR), and glutathione peroxidade (GPx), total glutathione levels (TG) and lipid peroxidation levels in the hepatopancreas (anti-oxidant defences and oxidative damage). Because no information on C. maenas NAGase activity was previously available, its variation during the moult cycle was also investigated. The results showed that locomotion was significantly increased at fluoxetine concentrations equal or above 120 μg L⁻¹, with animals spending more time moving, walking longer distances than controls. Levels of NAGase activity were found to vary in relation to C. maenas moult cycle, but no alterations were observed after exposure to fluoxetine. Significant increases in the activity of ChE, GST and GR enzymes, and the levels of TG were found, with a lowest observed effect concentration (LOEC) of 120 μg L⁻¹. Effects on locomotion were significantly and positively correlated to those induced on ChE activity. The results raise concern when hypothesising conditions of chronic exposure in the wild. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation.

    PubMed

    Duncan, Christopher G; Barwick, Benjamin G; Jin, Genglin; Rago, Carlo; Kapoor-Vazirani, Priya; Powell, Doris R; Chi, Jen-Tsan; Bigner, Darell D; Vertino, Paula M; Yan, Hai

    2012-12-01

    Monoallelic point mutations of the NADP(+)-dependent isocitrate dehydrogenases IDH1 and IDH2 occur frequently in gliomas, acute myeloid leukemias, and chondromas, and display robust association with specific DNA hypermethylation signatures. Here we show that heterozygous expression of the IDH1(R132H) allele is sufficient to induce the genome-wide alterations in DNA methylation characteristic of these tumors. Using a gene-targeting approach, we knocked-in a single copy of the most frequently observed IDH1 mutation, R132H, into a human cancer cell line and profiled changes in DNA methylation at over 27,000 CpG dinucleotides relative to wild-type parental cells. We find that IDH1(R132H/WT) mutation induces widespread alterations in DNA methylation, including hypermethylation of 2010 and hypomethylation of 842 CpG loci. We demonstrate that many of these alterations are consistent with those observed in IDH1-mutant and G-CIMP+ primary gliomas and can segregate IDH wild-type and mutated tumors as well as those exhibiting the G-CIMP phenotype in unsupervised analysis of two primary glioma cohorts. Further, we show that the direction of IDH1(R132H/WT)-mediated DNA methylation change is largely dependent upon preexisting DNA methylation levels, resulting in depletion of moderately methylated loci. Additionally, whereas the levels of multiple histone H3 and H4 methylation modifications were globally increased, consistent with broad inhibition of histone demethylation, hypermethylation at H3K9 in particular accompanied locus-specific DNA hypermethylation at several genes down-regulated in IDH1(R132H/WT) knock-in cells. These data provide insight on epigenetic alterations induced by IDH1 mutations and support a causal role for IDH1(R132H/WT) mutants in driving epigenetic instability in human cancer cells.

  7. Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Juan, E-mail: juanricardorodrigues@gmail.com; Laboratory of Biochemistry, Faculty of Pharmacy, Central University of Venezuela; Branco, Vasco

    Mercury (Hg) is a strong toxicant affecting mainly the central nervous, renal, cardiovascular and immune systems. Thiomersal (TM) is still in use in medical practice as a topical antiseptic and as a preservative in multiple dose vaccines, routinely given to young children in some developing countries, while other forms of mercury such as methylmercury represent an environmental and food hazard. The aim of the present study was to determine the effects of thiomersal (TM) and its breakdown product ethylmercury (EtHg) on the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway. Results show that TM and EtHg inhibitedmore » the thioredoxin system enzymes in purified suspensions, being EtHg comparable to methylmercury (MeHg). Also, treatment of neuroblastoma and liver cells with TM or EtHg decreased cell viability (GI{sub 50}: 1.5 to 20 μM) and caused a significant (p < 0.05) decrease in the overall activities of thioredoxin (Trx) and thioredoxin reductase (TrxR) in a concentration- and time-dependent manner in cell lysates. Compared to control, the activities of Trx and TrxR in neuroblastoma cells after EtHg incubation were reduced up to 60% and 80% respectively, whereas in hepatoma cells the reduction was almost 100%. In addition, the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also significantly inhibited by all mercurials, with inhibition intensity of Hg{sup 2+} > MeHg ≈ EtHg > TM (p < 0.05). Cell incubation with sodium selenite alleviated the inhibitory effects on TrxR and glucose-6-phosphate dehydrogenase. Thus, the molecular mechanism of toxicity of TM and especially of its metabolite EtHg encompasses the blockage of the electrons from NADPH via the thioredoxin system. - Highlights: • TM and EtHg inhibit Trx and TrxR both in purified suspensions and cell lysates. • TM and EtHg also inhibit the activities of G6PDH and 6PGDH in cell lysates, • Co-exposure to selenite alleviates the inhibitory effects of TM/EtHg on TrxR and G6PDH. • EtHg is more toxic than the parent compound TM.« less

  8. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 Gene Encodes an Aldehyde Dehydrogenase Involved in Ferulic Acid and Sinapic Acid Biosynthesis

    PubMed Central

    Nair, Ramesh B.; Bastress, Kristen L.; Ruegger, Max O.; Denault, Jeff W.; Chapple, Clint

    2004-01-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP+-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall–esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes. PMID:14729911

  9. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis.

    PubMed

    Nair, Ramesh B; Bastress, Kristen L; Ruegger, Max O; Denault, Jeff W; Chapple, Clint

    2004-02-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP(+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall-esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes.

  10. Copper stress and filamentous fungus Humicola lutea 103 - ultrastructural changes and activities of key metabolic enzymes.

    PubMed

    Krumova, Ekaterina Ts; Stoitsova, Stoyanka R; Paunova-Krasteva, Tsvetelina S; Pashova, Svetlana B; Angelova, Maria B

    2012-12-01

    Humicola lutea 103 is a copper-tolerant fungal strain able to grow in the presence of 300 μg·mL(-1) Cu(2+) under submerged cultivation. To prevent the consequences of copper overload, microorganisms have evolved molecular mechanisms that regulate its uptake, intracellular traffic, storage, and efflux. In spite of this avoidance strategy, high heavy-metal concentrations caused distinct and widespread ultrastructural alterations in H. lutea. The mitochondria were the first and main target of the toxic action. The effect of copper on activities of the key enzymes (hexokinase, glucose-6-phosphate dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase) included in the 3 main metabolic pathways, glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle, was investigated. High metal concentrations exhibited a dramatic negative effect on hexokinase, while the other 3 enzymes showed a significant and dose-dependent stimulation. On the basis of the present and previous results we concluded that the copper-induced oxidative stress plays an important role in the fungal tolerance to high Cu (2+) concentrations.

  11. Human NRDRB1, an alternatively spliced isoform of NADP(H)-dependent retinol dehydrogenase/reductase enhanced enzymatic activity of benzil.

    PubMed

    Yan, Yinxia; Song, Xuhong; Liu, Gefei; Su, Zhongjing; Du, Yongming; Sui, Xuxia; Chang, Xiaolan; Huang, Dongyang

    2012-01-01

    Human NRDRB1, a 226 amino acid alternatively spliced isoform of the NADP(H)- dependent retinol dehydrogenase/reductase (NRDR), lacks the complete coding region of exon 3, but preserves all the important functional motifs for NRDR catalytic activity. Nevertheless, its tissue distribution and physiological function remain to be elucidated. Expression of NRDRB1 and NRDR in cells and tissues was analyzed by semi-quantitative polymerase chain reaction (PCR) and western blot. NRDRB1 was expressed as a His(6) fusion protein and subjected to kinetics assays. Recombinant NRDRB1 had 1.2 to 8.6 fold higher k(cat)/K(m) values than recombinant NRDR, depending on the substrate. NRDRB1 catalyzed the NADPH-dependent reduction of α-dicarbonyl compounds, such as isatin, 9,10-phenanthrenequinone, and especially benzil. The significantly high catalytic activity and the relatively high expression in human liver of NRDRB1 conferred cellular resistance to benzil-induced cell toxicity and over-expression of NRDRB1 in low expressing Ec109 cells significantly enhanced cell tolerance toward benzil. Based on its substrate specificity, catalytic activity and relatively high expression in human liver tissue, our results suggest that NRDRB1, an alternatively spliced isoform of NRDR in vivo functions better than NRDR as a dicarbonyl reductase for xenobiotics containing reactive carbonyls. Our study is the first reporting this phenomenon of the enzymes involved in biochemical reactions. Copyright © 2012 S. Karger AG, Basel.

  12. Malate valves: Old shuttles with new perspectives.

    PubMed

    Selinski, Jennifer; Scheibe, Renate

    2018-06-22

    Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyze the reversible interconversion of malate and oxaloacetate and their transport. Depending on the coenzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes: Activities of NAD-dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids, respectively. In addition, chloroplasts possess a NADP-dependent MDH isoform. The NADP-MDH as part of the "light malate valve" plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post-translational redox-modification mediated via the ferredoxin-thioredoxin system and fine control via the NADP + /NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD-MDH ("dark malate valve") is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, the knowledge about regulation of the other two cytosolic MDHs as well as NAD-MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria, and peroxisomes have been characterized, but not much is known about cytosolic NAD-MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange focusing on the various metabolic functions of these valves. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Beneficial influence of ellagic acid on biochemical indexes associated with experimentally induced colon carcinogenesis.

    PubMed

    Syed, Umesalma; Ganapasam, Sudhandiran

    2017-01-01

    To elucidate the key biochemical indexes associated with 1, 2-dimethylhydrazine (DMH)-induced colon carcinogenesis and the modulatory efficacy of a dietary polyphenol, ellagic acid (EA). Wistar rats were chosen to study objective, and were divided into 4 groups; Group 1-control rats; Group 2-rats received EA (60 mg/kg body weight/day, orally); rats in Group 3-induced with DMH (20 mg/kg body weight) subcutaneously for 15 weeks; DMH-induced Group 4 rats were initiated with EA treatment. We examined key citric acid cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and the activities of respiratory chain enzymes NADH dehydrogenase and Cytochrome-C-oxidase and membrane-bound enzyme profiles (Na +/K + ATPase, Ca 2+ ATPase and Mg 2+ ATPase), activities of lysosomal proteases such as β-D-glucuronidase, β-galactosidase and N-acety-β-D-glucosaminidase and cellular thiols (oxidized glutathione, protein thiols, and total thiols). It was found that administration of DMH to rats decreased both mitochondrial and membrane-bound enzymes activities, increased activities of lysosomal enzymes and further modulates cellular thiols levels. Treatment with EA significantly restored the mitochondrial and ATPases levels and further reduced lysosomal enzymes to near normalcy thereby restoring harmful effects induced by DMH. EA treatment was able to effectively restore the detrimental effects induced by DMH, which proves the chemoprotective function of EA against DMH-induced experimental colon carcinogenesis.

  14. Grape seed proanthocyanidins ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes: an in vivo study.

    PubMed

    Karthikeyan, K; Sarala Bai, B R; Niranjali Devaraj, S

    2007-11-30

    This study was designed to examine the effects of grape seed proanthocyanidins (GSP) against myocardial injury (MI) induced by isoproterenol (ISO), in a rat model. Induction of rats with ISO (85 mg/kg body weight, subcutaneously) for 2 days resulted in a significant decrease in the activities of heart mitochondrial enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome c oxidase). The activities of lysosomal enzymes (alpha-d-glucuronidase, alpha-d-N-acetylglucosaminidase, cathepsin-D, acid phosphatases and alpha-d-galactosidase) were increased significantly in the heart and serum of ISO-induced rats. The prior administration of GSP for 6 days a week for 5 weeks significantly increased the activities of mitochondrial and respiratory chain enzymes and significantly decreased the activities of lysosomal enzymes in the heart tissues of ISO-induced rats, which proves the stress stabilizing action of GSP. Oral administration of grape seed proanthocyanidins alone (50, 100 and 150 mg/kg) to normal rats did not show any significant effect in all the parameters studied. These biochemical functional alterations were supported by the macroscopic enzyme mapping assay of ischemic myocardium. Thus, this study shows that 100 and 150 mg/kg of GSP gives protection against ISO-induced MI and demonstrates that GSP has a significant effect in the protection of heart.

  15. Microfluidics for rapid detection of isocitrate dehydrogenase 1 mutation for intraoperative application.

    PubMed

    Aibaidula, Abudumijiti; Zhao, Wang; Wu, Jin-Song; Chen, Hong; Shi, Zhi-Feng; Zheng, Lu-Lu; Mao, Ying; Zhou, Liang-Fu; Sui, Guo-Dong

    2016-06-01

    OBJECT Conventional methods for isocitrate dehydrogenase 1 (IDH1) detection, such as DNA sequencing and immunohistochemistry, are time- and labor-consuming and cannot be applied for intraoperative analysis. To develop a new approach for rapid analysis of IDH1 mutation from tiny tumor samples, this study used microfluidics as a method for IDH1 mutation detection. METHODS Forty-seven glioma tumor samples were used; IDH1 mutation status was investigated by immunohistochemistry and DNA sequencing. The microfluidic device was fabricated from polydimethylsiloxane following standard soft lithography. The immunoanalysis was conducted in the microfluidic chip. Fluorescence images of the on-chip microcolumn taken by the charge-coupled device camera were collected as the analytical results readout. Fluorescence signals were analyzed by NIS-Elements software to gather detailed information about the IDH1 concentration in the tissue samples. RESULTS DNA sequencing identified IDH1 R132H mutation in 33 of 47 tumor samples. The fluorescence signal for IDH1-mutant samples was 5.49 ± 1.87 compared with 3.90 ± 1.33 for wild type (p = 0.005). Thus, microfluidics was capable of distinguishing IDH1-mutant tumor samples from wild-type samples. When the cutoff value was 4.11, the sensitivity of microfluidics was 87.9% and the specificity was 64.3%. CONCLUSIONS This new approach was capable of analyzing IDH1 mutation status of tiny tissue samples within 30 minutes using intraoperative microsampling. This approach might also be applied for rapid pathological diagnosis of diffuse gliomas, thus guiding personalized resection.

  16. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies

    PubMed Central

    Im, AP; Sehgal, AR; Carroll, MP; Smith, BD; Tefferi, A; Johnson, DE; Boyiadzis, M

    2014-01-01

    The development of effective treatment strategies for most forms of acute myeloid leukemia (AML) has languished for the past several decades. There are a number of reasons for this, but key among them is the considerable heterogeneity of this disease and the paucity of molecular markers that can be used to predict clinical outcomes and responsiveness to different therapies. The recent large-scale sequencing of AML genomes is now providing opportunities for patient stratification and personalized approaches to treatment that are based on individual mutational profiles. It is particularly notable that studies by The Cancer Genome Atlas and others have determined that 44% of patients with AML exhibit mutations in genes that regulate methylation of genomic DNA. In particular, frequent mutation has been observed in the genes encoding DNA methyltransferase 3A (DNMT3A), isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2), as well as Tet oncogene family member 2. This review will summarize the incidence of these mutations, their impact on biochemical functions including epigenetic modification of genomic DNA and their potential usefulness as prognostic indicators. Importantly, the presence of DNMT3A, IDH1 or IDH2 mutations may confer sensitivity to novel therapeutic approaches, including the use of demethylating agents. Therefore, the clinical experience with decitabine and azacitidine in the treatment of patients harboring these mutations will be reviewed. Overall, we propose that understanding the role of these mutations in AML biology will lead to more rational therapeutic approaches targeting molecularly defined subtypes of the disease. PMID:24699305

  17. Selective Inhibition of Mutant Isocitrate Dehydrogenase 1 (IDH1) via Disruption of a Metal Binding Network by an Allosteric Small Molecule

    PubMed Central

    Deng, Gejing; Shen, Junqing; Yin, Ming; McManus, Jessica; Mathieu, Magali; Gee, Patricia; He, Timothy; Shi, Chaomei; Bedel, Olivier; McLean, Larry R.; Le-Strat, Frank; Zhang, Ying; Marquette, Jean-Pierre; Gao, Qiang; Zhang, Bailin; Rak, Alexey; Hoffmann, Dietmar; Rooney, Eamonn; Vassort, Aurelie; Englaro, Walter; Li, Yi; Patel, Vinod; Adrian, Francisco; Gross, Stefan; Wiederschain, Dmitri; Cheng, Hong; Licht, Stuart

    2015-01-01

    Cancer-associated point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) confer a neomorphic enzymatic activity: the reduction of α-ketoglutarate to d-2-hydroxyglutaric acid, which is proposed to act as an oncogenic metabolite by inducing hypermethylation of histones and DNA. Although selective inhibitors of mutant IDH1 and IDH2 have been identified and are currently under investigation as potential cancer therapeutics, the mechanistic basis for their selectivity is not yet well understood. A high throughput screen for selective inhibitors of IDH1 bearing the oncogenic mutation R132H identified compound 1, a bis-imidazole phenol that inhibits d-2-hydroxyglutaric acid production in cells. We investigated the mode of inhibition of compound 1 and a previously published IDH1 mutant inhibitor with a different chemical scaffold. Steady-state kinetics and biophysical studies show that both of these compounds selectively inhibit mutant IDH1 by binding to an allosteric site and that inhibition is competitive with respect to Mg2+. A crystal structure of compound 1 complexed with R132H IDH1 indicates that the inhibitor binds at the dimer interface and makes direct contact with a residue involved in binding of the catalytically essential divalent cation. These results show that targeting a divalent cation binding residue can enable selective inhibition of mutant IDH1 and suggest that differences in magnesium binding between wild-type and mutant enzymes may contribute to the inhibitors' selectivity for the mutant enzyme. PMID:25391653

  18. Absence of IDH1-R132H mutation predicts rapid progression of nonenhancing diffuse glioma in older adults.

    PubMed

    Olar, Adriana; Raghunathan, Aditya; Albarracin, Constance T; Aldape, Kenneth D; Cahill, Daniel P; Powell, Suzanne Z; Goodman, J Clay; Fuller, Gregory N

    2012-06-01

    Advanced age and contrast enhancement portend a poor prognosis in diffuse glioma (DG). Diffuse glioma may present as nonenhancing tumors that rapidly progress in weeks to months to a pattern of ring enhancement, characteristic of glioblastoma (GBM). Mutations involving isocitrate dehydrogenase 1 (IDH1) have recently emerged as important diagnostic and prognostic markers in DG. R132H is the most common mutation, expressed in more than 80% of DG and secondary GBM but in less than 10% of primary GBM. Adults older than 50 years with nonenhancing, rapidly progressing DG were identified. A comparison group comprised randomly selected, age-matched patients with nonenhancing, nonprogressing DG. Isocitrate dehydrogenase 1 status was evaluated using anti-IDH1-R132H antibodies (Dianova, Hamburg, Germany). The results were correlated with the clinical outcomes. We identified 4 patients who presented with nonenhancing DG that rapidly progressed to ring-enhancing lesions that were subsequently diagnosed on surgical resection as GBM. This group showed absent IDH1-R132H expression, which is characteristic of primary GBM. The comparison group of 5 patients presented with nonenhancing, nonprogressing DG, and all 5 tumors showed IDH1-R132H expression. In conclusion, negative IDH1-R132H mutation status in nonenhancing DG of older adults is a poor prognostic factor associated with rapid progression to ring-enhancing GBM. The shorter interval of progression and negative IDH1-R132H mutation status suggest a similar molecular pathway as seen in primary GBM. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Enzymatic characterization of a novel bovine liver dihydrodiol dehydrogenase--reaction mechanism and bile acid dehydrogenase activity.

    PubMed

    Nanjo, H; Adachi, H; Morihana, S; Mizoguchi, T; Nishihara, T; Terada, T

    1995-05-11

    Bovine liver cytosolic dihydrodiol dehydrogenase (DD3) has been characterized by its unique dihydrodiol dehydrogenase activity for trans-benzenedihydrodiol (trans-1,2-dihydrobenzene-1,2-diol) with the highest affinity and the greatest velocity among three multiple forms of dihydrodiol dehydrogenases (DD1-DD3). It is the first time that DD3 has shown a significant dehydrogenase activity for (S)-(+)-1-indanol with low Km value (0.33 +/- 0.022 mM) and high K(cat) value (25 +/- 0.79 min-1). The investigation of the product inhibition of (S)-(+)-1-indanol with NADP+ versus 1-indanone and NADPH clearly showed that the enzymatic reaction of DD3 may follow a typical ordered Bi Bi mechanism similar to many aldo/keto reductases. Additionally, DD3 was shown to catalyze the dehydrogenation of bile acids (lithocholic acid, taurolithocholic acid and taurochenodeoxycholic acid) having no 12-hydroxy groups with low Km values (17 +/- 0.65, 33 +/- 1.9 and 890 +/- 73 microM, respectively). In contrast, DD1, 3 alpha-hydroxysteroid dehydrogenase, shows a broad substrate specificity for many bile acids with higher affinity than those of DD3. Competitive inhibition of DD3 with androsterone against dehydrogenase activity for (S)-(+)-1-indanol, trans-benzenedihydrodiol or lithocholic acid suggests that these three substrates bind to the same substrate binding site of DD3, different from the case of human liver bile acid binder/dihydrodiol dehydrogenase (Takikawa, H., Stolz, A., Sugiyama, Y., Yoshida, H., Yamamoto, M. and Kaplowitz, N. (1990) J. Biol. Chem. 265, 2132-2136). Considering the reaction mechanism, DD3 may also play an important role in bile acids metabolism as well as the detoxication of aromatic hydrocarbons.

  20. Characterization of an allylic/benzyl alcohol dehydrogenase from Yokenella sp. strain WZY002, an organism potentially useful for the synthesis of α,β-unsaturated alcohols from allylic aldehydes and ketones.

    PubMed

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan; Wang, Zhao

    2014-04-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg(-1) for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg(-1) using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP(+), suggesting the nature of being an aldehyde reductase.

  1. Characterization of an Allylic/Benzyl Alcohol Dehydrogenase from Yokenella sp. Strain WZY002, an Organism Potentially Useful for the Synthesis of α,β-Unsaturated Alcohols from Allylic Aldehydes and Ketones

    PubMed Central

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan

    2014-01-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg−1 for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg−1 using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP+, suggesting the nature of being an aldehyde reductase. PMID:24509923

  2. [Metabolism of thyroid gland cells as affected by prolactin and emotional-physical stress].

    PubMed

    Strizhkov, V V

    1991-01-01

    A study was made of the role of prolactin (PRL) in the regulation of thyroid function in intact animals and in those exposed to stress (swimming was used as physical exercise). A single daily dose of 125 micrograms of PRL per 100 g of body mass was injected subcutaneously in 0.5 ml of saline solution during a week to male rats (control: intact rats; injection of 0.5 ml of saline solution subcutaneously). Redox enzymes; succinate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, NAD.H2 and NADP.H2, ATPase and monoamine oxidase, total protein, RNA and glycogen in glandular cells were investigated histochemically 24 h after the last injection of PRL or saline, 30 min., 1, 2, 3, 5 and 7 hours after swimming or right after complete fatigue (in the presence of experimental hyperprolactinemia). A conclusion has been made that one of the most important mechanisms of the adaptive effect of PRL is its ability to suppress thyroid function, thus decreasing the metabolism level, which results in reduction of oxygen consumption and improves body tolerance to stress.

  3. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice.

    PubMed

    Zhang, Zhe; Cheng, Zhi-Jun; Gan, Lu; Zhang, Huan; Wu, Fu-Qing; Lin, Qi-Bing; Wang, Jiu-Lin; Wang, Jie; Guo, Xiu-Ping; Zhang, Xin; Zhao, Zhi-Chao; Lei, Cai-Lin; Zhu, Shan-Shan; Wang, Chun-Ming; Wan, Jian-Min

    2016-08-01

    Cuticular wax, a hydrophobic layer on the surface of all aerial plant organs, has essential roles in plant growth and survival under various environments. Here we report a wax-deficient rice mutant oshsd1 with reduced epicuticular wax crystals and thicker cuticle membrane. Quantification of the wax components and fatty acids showed elevated levels of very-long-chain fatty acids (VLCFAs) and accumulation of soluble fatty acids in the leaves of the oshsd1 mutant. We determined the causative gene OsHSD1, a member of the short-chain dehydrogenase reductase family, through map-based cloning. It was ubiquitously expressed and responded to cold stress and exogenous treatments with NaCl or brassinosteroid analogs. Transient expression of OsHSD1-tagged green fluorescent protein revealed that OsHSD1 localized to both oil bodies and endoplasmic reticulum (ER). Dehydrogenase activity assays demonstrated that OsHSD1 was an NAD(+)/NADP(+)-dependent sterol dehydrogenase. Furthermore, OsHSD1 mutation resulted in faster protein degradation, but had no effect on the dehydrogenase activity. Together, our data indicated that OsHSD1 plays a specialized role in cuticle formation and lipid homeostasis, probably by mediating sterol signaling. This work provides new insights into oil-body associated proteins involved in wax and lipid metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Crystallization, X-ray diffraction analysis and phasing of 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassetta, Alberto, E-mail: alberto.cassetta@ic.cnr.it; Büdefeld, Tomaž; Lanišnik Rižner, Tea

    2005-12-01

    The expression, purification and crystallization of 17β-hydroxysteroid dehydrogenase from the filamentous fungus C. lunatus and its Y167F mutant, both in the apo form, are described. X-ray diffraction analysis and phasing by Patterson-search techniques are reported. 17β-Hydroxysteroid dehydrogenase from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) is an NADP(H)-dependent enzyme that preferentially catalyses the oxidoreduction of oestrogens and androgens. The enzyme belongs to the short-chain dehydrogenase/reductase superfamily and is the only fungal hydroxysteroid dehydrogenase known to date. 17β-HSDcl has recently been characterized and cloned and has been the subject of several functional studies. Although several hypotheses on the physiological role of 17β-HSDclmore » in fungal metabolism have been formulated, its function is still unclear. An X-ray crystallographic study has been undertaken and the optimal conditions for crystallization of 17β-HSDcl (apo form) were established, resulting in well shaped crystals that diffracted to 1.7 Å resolution. The space group was identified as I4{sub 1}22, with unit-cell parameters a = b = 67.14, c = 266.77 Å. Phasing was successfully performed by Patterson search techniques. A catalytic inactive mutant Tyr167Phe was also engineered, expressed, purified and crystallized for functional and structural studies.« less

  5. Cloning, sequencing, and expression of the gene coding for bile acid 7 alpha-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708.

    PubMed Central

    Baron, S F; Franklund, C V; Hylemon, P B

    1991-01-01

    Southern blot analysis indicated that the gene encoding the constitutive, NADP-linked bile acid 7 alpha-hydroxysteroid dehydrogenase of Eubacterium sp. strain VPI 12708 was located on a 6.5-kb EcoRI fragment of the chromosomal DNA. This fragment was cloned into bacteriophage lambda gt11, and a 2.9-kb piece of this insert was subcloned into pUC19, yielding the recombinant plasmid pBH51. DNA sequence analysis of the 7 alpha-hydroxysteroid dehydrogenase gene in pBH51 revealed a 798-bp open reading frame, coding for a protein with a calculated molecular weight of 28,500. A putative promoter sequence and ribosome binding site were identified. The 7 alpha-hydroxysteroid dehydrogenase mRNA transcript in Eubacterium sp. strain VPI 12708 was about 0.94 kb in length, suggesting that it is monocistronic. An Escherichia coli DH5 alpha transformant harboring pBH51 had approximately 30-fold greater levels of 7 alpha-hydroxysteroid dehydrogenase mRNA, immunoreactive protein, and specific activity than Eubacterium sp. strain VPI 12708. The 7 alpha-hydroxysteroid dehydrogenase purified from the pBH51 transformant was similar in subunit molecular weight, specific activity, and kinetic properties to that from Eubacterium sp. strain VPI 12708, and it reached with antiserum raised against the authentic enzyme on Western immunoblots. Alignment of the amino acid sequence of the 7 alpha-hydroxysteroid dehydrogenase with those of 10 other pyridine nucleotide-linked alcohol/polyol dehydrogenases revealed six conserved amino acid residues in the N-terminal regions thought to function in coenzyme binding. Images PMID:1856160

  6. Effects of dehydroepiandrosterone in rats injected with streptozotocin during the neonatal period.

    PubMed

    Giroix, M H; Malaisse-Lagae, F; Portha, B; Sener, A; Malaisse, W J

    1997-06-01

    Control rats and diabetic animals injected with streptozotocin during the neonatal period were either maintained on a standard diet or given access to food supplemented with dehydroepiandrosterone (DHEA, 0.2%) for 11 days before sacrifice. In both control and diabetic rats, DHEA feeding augmented the activity of the mitochondrial FAD-linked glycerophosphate dehydrogenase and cytosolic NADP-linked malate dehydrogenase in liver, but not so in either the parotid gland or pancreatic islets. DHEA lowered, in both control and diabetic rats, the ratio between D-glucose oxidation and utilization and the rate of insulin release in pancreatic islets exposed to a high concentration of D-glucose, as well as the insulin concentration and insulin/glucose ratio in plasma. These findings support the view that, in diabetes, DHEA, by increasing sensitivity to insulin, may allow islet B-cells to avoid the otherwise unfavorable consequences of chronic hyperactivity.

  7. S-allylcysteine ameliorates isoproterenol-induced cardiac toxicity in rats by stabilizing cardiac mitochondrial and lysosomal enzymes.

    PubMed

    Padmanabhan, M; Mainzen Prince, P Stanely

    2007-02-13

    This study was aimed to evaluate the preventive role of S-allylcysteine (SAC) on mitochondrial and lysosomal enzymes in isoproterenol (ISO)-induced rats. Male albino Wistar rats were pretreated with SAC (50, 100 and 150 mg/kg) daily for a period of 45 days. After the treatment period, ISO (150 mg/kg) was subcutaneously injected to rats at an interval of 24 h for two days. The activities of heart mitochondrial enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome C oxidase) were decreased significantly (p<0.05) in ISO-induced rats. The activities of lysosomal enzymes (beta-glucuronidase, beta-N-acetyl glucosaminidase, beta-galactosidase, cathepsin-D and acid phosphatase) were increased significantly (p<0.05) in serum and heart of ISO-induced rats. Pretreatment with SAC (100 mg/kg and 150 mg/kg) for a period of 45 days increased significantly (p<0.05) the activities of mitochondrial and respiratory chain enzymes and decreased the activities of lysosomal enzymes significantly (p<0.05) in ISO-induced rats. Oral administration of SAC (50, 100 and 150 mg/kg) for a period of 45 days to normal rats did not show any significant (p<0.05) effect in all the parameters studied. The altered electrocardiogram (ECG) of ISO-treated rats was also restored to near normal by treatment with SAC (100 and 150 mg/kg). These results confirm the efficacy of SAC in alleviating ISO-induced cardiac damage.

  8. Effect of neutral red incorporation on Al-doped ZnO thin films and its bio-electrochemical interaction with NAD+/NADP+ dependent enzymes.

    PubMed

    V T, Fidal; T S, Chandra

    2018-09-01

    A new approach to deposition of electroactive ZnO thin films have been carried out, by one-pot chemical bath deposition with Al dopant and incorporation of neutral red as organic mediator. The morphological, structural and functional characterization of the neutral red incorporated, Al-doped ZnO (NR-AZO) film was carried out using electron microscopy, FTIR, XRD and EIS respectively. The incorporated neutral red was found to induce strain in the crystal of AZO proportional to the concentration used in depositing solution which further affected the charge transfer resistance of the films in solution. One mM neutral red was found to be the optimum concentration for both conductivity and response to NADH/NADPH. The response of the films was further validated by immobilizing NAD + dependent alcohol dehydrogenase (ADH) and NADP + dependent glucose dehydrogenase (GDH) independently. The ADH/NR-AZO showed a sensitivity of 3.2 μA cm -2  mM -1 with a LoD of 1.7 μM of ethanol in the range 5.6 μM-7 mM, whereas GDH/NR-AZO showed a sensitivity of 4.33 μA cm -2  mM -1 with a LoD of 27 μM of glucose in the range 90 μM-4 mM. This method serves as a simple alternative to immobilize the organic redox dyes into the inorganic thin films in a single step making it electroactive towards specific biomolecules. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Glioma-derived mutations in isocitrate dehydrogenase 2 beneficial to traditional chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yuejun, E-mail: yjfu@sxu.edu.cn; Huang, Rui; Zheng, Yali

    2011-07-01

    Highlights: {yields} IDH1 and IDH2 mutations are not detected in the rat C6 glioma cell line model. {yields} IDH2 mutations are not required for the tumorigenesis of glioma. {yields} IDH2{sup R172G} can sensitize glioma sensitivity to chemotherapy through NADPH levels. {yields} IDH2{sup R172G} can give a benefit to traditional chemotherapy of glioma. {yields} This finding serves as an important complement to existing research on this topic. -- Abstract: Heterozygous mutations in either the R132 residue of isocitrate dehydrogenase I (IDH1) or the R172 residue of IDH2 in human gliomas were recently highlighted. In the present study, we report that mutationsmore » of IDH1 and IDH2 are not detected in the rat C6 glioma cell line model, which suggests that these mutations are not required for the development of glioblastoma induced by N,N'-nitroso-methylurea. The effects of IDH2 and IDH2{sup R172G} on C6 cells proliferation and sensitivity to chemotherapy and the possible mechanism are analyzed at the cellular level. IDH1 and IDH2 mutations lead to simultaneous loss and gain of activities in the production of {alpha}-ketoglutarate ({alpha}-KG) and 2-hydroxyglutarate (2HG), respectively, and result in lowering NADPH levels even further. The low NADPH levels can sensitize tumors to chemotherapy, and account for the prolonged survival of patients harboring the mutations. Our data extrapolate potential importance of the in vitro rat C6 glioma cell model, show that the IDH2{sup R172G} mutation in gliomas may give a benefit to traditional chemotherapy of this cancer and serve as an important complement to existing research on this topic.« less

  10. PD-1 (PDCD1) Promoter Methylation Is a Prognostic Factor in Patients With Diffuse Lower-Grade Gliomas Harboring Isocitrate Dehydrogenase (IDH) Mutations.

    PubMed

    Röver, Lea Kristin; Gevensleben, Heidrun; Dietrich, Jörn; Bootz, Friedrich; Landsberg, Jennifer; Goltz, Diane; Dietrich, Dimo

    2018-02-01

    Immune checkpoints are important targets for immunotherapies. However, knowledge on the epigenetic modification of immune checkpoint genes is sparse. In the present study, we investigated promoter methylation of CTLA4, PD-L1, PD-L2, and PD-1 in diffuse lower-grade gliomas (LGG) harboring isocitrate dehydrogenase (IDH) mutations with regard to mRNA expression levels, clinicopathological parameters, previously established methylation subtypes, immune cell infiltrates, and survival in a cohort of 419 patients with IDH-mutated LGG provided by The Cancer Genome Atlas. PD-L1, PD-L2, and CTLA-4 mRNA expression levels showed a significant inverse correlation with promoter methylation (PD-L1: p=0.005; PD-L2: p<0.001; CTLA-4: p<0.001). Furthermore, immune checkpoint methylation was significantly associated with age (PD-L2: p=0.003; PD-1: p=0.015), molecular alterations, i.e. MGMT methylation (PD-L1: p<0.001; PD-L2: p<0.001), ATRX mutations (PD-L2: p<0.001, PD-1: p=0.001), and TERT mutations (PD-L1: p=0.035, PD-L2: p<0.001, PD-1: p<0.001, CTLA4: p<0.001) as well as methylation subgroups and immune cell infiltrates. In multivariate Cox proportional hazard analysis, PD-1 methylation qualified as strong prognostic factor (HR=0.51 [0.34-0.76], p=0.001). Our findings suggest an epigenetic regulation of immune checkpoint genes via DNA methylation in LGG. PD-1 methylation may assist the identification of patients that might benefit from an alternative treatment, particularly in the context of emerging immunotherapies. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Quantitation of isocitrate dehydrogenase (IDH)-induced D and L enantiomers of 2-hydroxyglutaric acid in biological fluids by a fully validated liquid tandem mass spectrometry method, suitable for clinical applications.

    PubMed

    Poinsignon, Vianney; Mercier, Lionel; Nakabayashi, Koïchi; David, Muriel D; Lalli, Alexandre; Penard-Lacronique, Virginie; Quivoron, Cyril; Saada, Véronique; De Botton, Stéphane; Broutin, Sophie; Paci, Angelo

    2016-06-01

    A recent update of the hallmarks of cancer includes metabolism with deregulating cellular energetics. Activating mutations in isocitrate dehydrogenase (IDH) metabolic enzymes leading to the abnormal accumulation of 2-hydroxyglutaric acid (2-HGA) have been described in hematologic malignancies and solid tumours. The diagnostic value of 2-HGA levels in blood to identify IDH mutations and its prognostic significance have been reported. We developed a liquid chromatography tandem mass spectrometry method allowing a rapid, accurate and precise simultaneous quantification of both L and D enantiomers of 2-HGA in blood samples from acute myeloid leukaemia (AML) patients, suitable for clinical applications. The method was also develop for preclinical applications from cellular and tissues samples. Deuterated (R,S)-2-hydroxyglutaric acid, disodium salt was used as internal standard and added to samples before a solid phase extraction on Phenomenex STRATA™-XL-A (200mg-3mL) 33μm cartridges. A derivatization step with (+)- o,o'-diacetyl-l-tartaric anhydride permitted to separate the two resulting diastereoisomers without chiral stationary phase, on a C18 column combined to a Xevo TQ-MS Waters mass spectrometer with an electrospray ionization (ESI) source. This method allows standard curves to be linear over the range 0.34-135.04μM with r(2) values>0.999 and low matrix effects (<11.7%). This method, which was validated according to current EMA guidelines, is accurate between-run (<3.1%) and within-run (<7.9%) and precise between-run (<5.3CV%) and within-run (<6.2CV%), and is suitable for clinical and preclinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ammonia assimilation and synthesis of alanine, aspartate, and glutamate in Methanosarcina barkeri and Methanobacterium thermoautotrophicum.

    PubMed Central

    Kenealy, W R; Thompson, T E; Schubert, K R; Zeikus, J G

    1982-01-01

    The mechanism of ammonia assimilation in Methanosarcina barkeri and Methanobacterium thermoautotrophicum was documented by analysis of enzyme activities, 13NH3 incorporation studies, and comparison of growth and enzyme activity levels in continuous culture. Glutamate accounted for 65 and 52% of the total amino acids in the soluble pools of M. barkeri and M. thermoautotrophicum. Both organisms contained significant activities of glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase, and glutamate pyruvate transaminase. Hydrogen-reduced deazaflavin-factor 420 or flavin mononucleotide but not NAD, NADP, or ferredoxin was used as the electron donor for glutamate synthase in M. barkeri. Glutamate dehydrogenase activity was not detected in either organism, but alanine dehydrogenase activity was present in M. thermoautotrophicum. The in vivo activity of the glutamine synthetase was verified in M. thermoautotrophicum by analysis of 13NH3 incorporation into glutamine, glutamate, and alanine. Alanine dehydrogenase and glutamine synthetase activity varied in response to [NH4+] when M. thermoautotrophicum was cultured in a chemostat with cysteine as the sulfur source. Alanine dehydrogenase activity and growth yield (grams of cells/mole of methane) were highest when the organism was cultured with excess ammonia, whereas growth yield was lower and glutamine synthetase was maximal when ammonia was limiting. PMID:6122678

  13. A mitochondrial-like aconitase in the bacterium Bacteroides fragilis: implications for the evolution of the mitochondrial Krebs cycle.

    PubMed

    Baughn, Anthony D; Malamy, Michael H

    2002-04-02

    Aconitase and isocitrate dehydrogenase (IDH) enzyme activities were detected in anaerobically prepared cell extracts of the obligate anaerobe Bacteroides fragilis. The aconitase gene was located upstream of the genes encoding the other two components of the oxidative branch of the Krebs cycle, IDH and citrate synthase. Mutational analysis indicates that these genes are cotranscribed. A nonpolar in-frame deletion of the acnA gene that encodes the aconitase prevented growth in glucose minimal medium unless heme or succinate was added to the medium. These results imply that B. fragilis has two pathways for alpha-ketoglutarate biosynthesis-one from isocitrate and the other from succinate. Homology searches indicated that the B. fragilis aconitase is most closely related to aconitases of two other Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria, Cytophaga hutchinsonii and Fibrobacter succinogenes. Phylogenetic analysis indicates that the CFB group aconitases are most closely related to mitochondrial aconitases. In addition, the IDH of C. hutchinsonii was found to be most closely related to the mitochondrial/cytosolic IDH-2 group of eukaryotic organisms. These data suggest a common origin for these Krebs cycle enzymes in mitochondria and CFB group bacteria.

  14. Tributyltin induces mitochondrial fission through NAD-IDH dependent mitofusin degradation in human embryonic carcinoma cells.

    PubMed

    Yamada, Shigeru; Kotake, Yaichiro; Nakano, Mizuho; Sekino, Yuko; Kanda, Yasunari

    2015-08-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT acts at the nanomolar level through genomic pathways via the peroxisome proliferator activated receptor (PPAR)/retinoid X receptor (RXR). We recently reported that TBT inhibits cell growth and the ATP content in the human embryonic carcinoma cell line NT2/D1 via a non-genomic pathway involving NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which metabolizes isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we evaluated the effects of TBT on mitochondrial NAD-IDH and energy production. Staining with MitoTracker revealed that nanomolar TBT levels induced mitochondrial fragmentation. TBT also degraded the mitochondrial fusion proteins, mitofusins 1 and 2. Interestingly, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. Incubation with an α-ketoglutarate analogue partially recovered TBT-induced mitochondrial dysfunction, supporting the involvement of NAD-IDH. Our data suggest that nanomolar TBT levels impair mitochondrial quality control via NAD-IDH in NT2/D1 cells. Thus, mitochondrial function in embryonic cells could be used to assess cytotoxicity associated with metal exposure.

  15. Cloning, expression, and characterization of bacterial L-arabinose 1-dehydrogenase involved in an alternative pathway of L-arabinose metabolism.

    PubMed

    Watanabe, Seiya; Kodaki, Tsutomu; Kodak, Tsutomu; Makino, Keisuke

    2006-02-03

    Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps. We purified and characterized L-arabinose 1-dehydrogenase (EC 1.1.1.46), catalyzing the conversion of L-arabinose to L-arabino-gamma-lactone as an enzyme responsible for the first step of this alternative pathway of L-arabinose metabolism. The purified enzyme preferred NADP+ to NAD+ as a coenzyme. Kinetic analysis revealed that the enzyme had high catalytic efficiency for both L-arabinose and D-galactose. The gene encoding L-arabinose 1-dehydrogenase was cloned using a partial peptide sequence of the purified enzyme and was overexpressed in Escherichia coli as a fully active enzyme. The enzyme consists of 308 amino acids and has a calculated molecular mass of 33,663.92 Da. The deduced amino acid sequence had some similarity to glucose-fructose oxidoreductase, D-xylose 1-dehydrogenase, and D-galactose 1-dehydrogenase. Site-directed mutagenesis revealed that the enzyme possesses unique catalytic amino acid residues. Northern blot analysis showed that this gene was induced by L-arabinose but not by D-galactose. Furthermore, a disruptant of the L-arabinose 1-dehydrogenase gene did not grow on L-arabinose but grew on D-galactose at the same growth rate as the wild-type strain. There was a partial gene for L-arabinose transport in the flanking region of the L-arabinose 1-dehydrogenase gene. These results indicated that the enzyme is involved in the metabolism of L-arabinose but not D-galactose. This is the first identification of a gene involved in an alternative pathway of L-arabinose metabolism in bacterium.

  16. Geraniol dehydrogenase, the key enzyme in biosynthesis of the alarm pheromone, from the astigmatid mite Carpoglyphus lactis (Acari: Carpoglyphidae).

    PubMed

    Noge, Koji; Kato, Makiko; Mori, Naoki; Kataoka, Michihiko; Tanaka, Chihiro; Yamasue, Yuji; Nishida, Ritsuo; Kuwahara, Yasumasa

    2008-06-01

    Geraniol dehydrogenase (GeDH), which plays an important role in the biosynthesis of neral, an alarm pheromone, was purified from the astigmatid mite Carpoglyphus lactis. The enzyme was obtained in an apparently homogeneous and active form after 1879-fold purification through seven steps of chromatography. Car. lactis GeDH was determined to be a monomer in its active form with a relative molecular mass of 42 800, which is a unique subunit structure in comparison with already established alcohol dehydrogenases. Car. lactis GeDH oxidized geraniol into geranial in the presence of NAD+. NADP+ was ineffective as a cofactor, suggesting that Car. lactis GeDH is an NAD+-dependent alcohol dehydrogenase. The optimal pH and temperature for geraniol oxidation were determined to be pH 9.0 and 25 degrees C, respectively. The Km values for geraniol and NAD+ were 51.0 microm and 59.5 microm, respectively. Car. lactis GeDH was shown to selectively oxidize geraniol, whereas its geometrical isomer, nerol, was inert as a substrate. The high specificity for geraniol suggests that Car. lactis GeDH specializes in the alarm pheromone biosynthesis of Car. lactis. Car. lactis GeDH is composed of 378 amino acids. Structurally, Car. lactis GeDH showed homology with zinc-dependent alcohol dehydrogenases found in mammals and a mosquito (36.6-37.6% identical), and the enzyme was considered to be a member of the medium-chain dehydrogenase/reductase family, in view of the highly conserved sequences of zinc-binding and NAD+-binding sites. Phylogenetic analyses indicate that Car. lactis GeDH could be categorized as a new class, different from other established alcohol dehydrogenases.

  17. Bioinformatic scaling of allosteric interactions in biomedical isozymes

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2016-09-01

    Allosteric (long-range) interactions can be surprisingly strong in proteins of biomedical interest. Here we use bioinformatic scaling to connect prior results on nonsteroidal anti-inflammatory drugs to promising new drugs that inhibit cancer cell metabolism. Many parallel features are apparent, which explain how even one amino acid mutation, remote from active sites, can alter medical results. The enzyme twins involved are cyclooxygenase (aspirin) and isocitrate dehydrogenase (IDH). The IDH results are accurate to 1% and are overdetermined by adjusting a single bioinformatic scaling parameter. It appears that the final stage in optimizing protein functionality may involve leveling of the hydrophobic limits of the arms of conformational hydrophilic hinges.

  18. Finding of IDH1 R132H mutation in histologically non-neoplastic glial tissue changes surgical strategies, a case report.

    PubMed

    Søndergaard, Christian Baastrup; Scheie, David; Sehested, Astrid Marie; Skjøth-Rasmussen, Jane

    2017-07-01

    In 2016, the WHO classification of diffuse astrocytoma began to include isocitrate dehydrogenase (IDH) mutation in addition to histology. We here demonstrate a case where a 14-year-old boy presented with a parietal tumor with no histological evidence of neoplasia but with an IDH1 mutation. Due to the IDH1 R132H mutation, the patient was diagnosed with diffuse astrocytoma WHO grade II and underwent successful gross total resection of this near-eloquently located tumor. This case exemplifies how inclusion of immunohistochemistry in tumor classification alters surgical strategy and might improve accuracy and time to diagnosis.

  19. The Crystal Structure of a Ternary Complex of Betaine Aldehyde Dehydrogenase from Pseudomonas aeruginosa Provides New Insight Into the Reaction Mechansim and Shows A Novel Binding Mode of the 2'-Phosphate of NADP+ and A Novel Cation Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Segura, L.; Rudino-Pinera, E; Munoz-Clares, R

    2009-01-01

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)+-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors-abundant at infection sites-and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP+ and one of the even fewer that require K+ ions for stability. Crystals of PaBADH were obtained under aerobicmore » conditions in the presence of 2-mercaptoethanol, glycerol, NADP+ and K+ ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the 'oxyanion hole.' The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2?-phosphate of the NADP+, thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K+ binding sites per subunit. One is in an intrasubunit cavity that we found to be present in all known ALDH structures. The othersingle bondnot described before for any ALDH but most likely present in most of themsingle bondis located in between the dimeric unit, helping structure a region involved in coenzyme binding and catalysis. This may explain the effects of K+ ions on the activity and stability of PaBADH.« less

  20. NADPH-generating systems in bacteria and archaea

    PubMed Central

    Spaans, Sebastiaan K.; Weusthuis, Ruud A.; van der Oost, John; Kengen, Servé W. M.

    2015-01-01

    Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided. PMID:26284036

  1. Integrated, Step-Wise, Mass-Isotopomeric Flux Analysis of the TCA Cycle.

    PubMed

    Alves, Tiago C; Pongratz, Rebecca L; Zhao, Xiaojian; Yarborough, Orlando; Sereda, Sam; Shirihai, Orian; Cline, Gary W; Mason, Graeme; Kibbey, Richard G

    2015-11-03

    Mass isotopomer multi-ordinate spectral analysis (MIMOSA) is a step-wise flux analysis platform to measure discrete glycolytic and mitochondrial metabolic rates. Importantly, direct citrate synthesis rates were obtained by deconvolving the mass spectra generated from [U-(13)C6]-D-glucose labeling for position-specific enrichments of mitochondrial acetyl-CoA, oxaloacetate, and citrate. Comprehensive steady-state and dynamic analyses of key metabolic rates (pyruvate dehydrogenase, β-oxidation, pyruvate carboxylase, isocitrate dehydrogenase, and PEP/pyruvate cycling) were calculated from the position-specific transfer of (13)C from sequential precursors to their products. Important limitations of previous techniques were identified. In INS-1 cells, citrate synthase rates correlated with both insulin secretion and oxygen consumption. Pyruvate carboxylase rates were substantially lower than previously reported but showed the highest fold change in response to glucose stimulation. In conclusion, MIMOSA measures key metabolic rates from the precursor/product position-specific transfer of (13)C-label between metabolites and has broad applicability to any glucose-oxidizing cell. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Protective effect of bacoside A on cigarette smoking-induced brain mitochondrial dysfunction in rats.

    PubMed

    Anbarasi, Kothandapani; Vani, Ganapathy; Devi, Chennam Srinivasulu Shyamala

    2005-01-01

    Chronic exposure to cigarette smoke affects the structure and function of mitochondria, which may account for the pathogenesis of smoking-related diseases. Bacopa monniera Linn., used in traditional Indian medicine for various neurological disorders, was shown to possess mitrochondrial membrane-stabilizing properties in the rat brain during exposure to morphine. We investigated the protective effect of bacoside A, the active principle of Bacopa monniera, against mitochondrial dysfunction in rat brain induced by cigarette smoke. Male Wistar albino rats were exposed to cigarette smoke and administered bacoside A for a period of 12 weeks. The mitochondrial damage in the brain was assessed by examining the levels of lipid peroxides, cholesterol, phospholipid, cholesterol/phospholipid (C/P) ratio, and the activities of isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH dehydrogenase, and cytochrome C oxidase. The oxidative phosphorylation (rate of succinate oxidation, respiratory control ratio and ADP/O ratio, and the levels of ATP) was evaluated for the assessment of mitochondrial functional capacity. We found significantly elevated levels of lipid peroxides, cholesterol, and C/P ratio, and decreased levels of phospholipids and mitochondrial enzymes in the rats exposed to cigarette smoke. Measurement of oxidative phosphorylation revealed a marked depletion in all the variables studied. Administration of bacoside A prevented the structural and functional impairment of mitochondria upon exposure to cigarette smoke. From the results, we suggest that chronic cigarette smoke exposure induces damage to the mitochondria and that bacoside A protects the brain from this damage by maintaining the structural and functional integrity of the mitochondrial membrane.

  3. Ferulic acid with ascorbic acid synergistically extenuates the mitochondrial dysfunction during beta-adrenergic catecholamine induced cardiotoxicity in rats.

    PubMed

    Yogeeta, Surinder Kumar; Raghavendran, Hanumantha Rao Balaji; Gnanapragasam, Arunachalam; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-10-27

    Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.

  4. Purification and characteristics of an inducible by polycyclic aromatic hydrocarbons NADP(+)-dependent naphthalenediol dehydrogenase (NDD) in Mucor circinelloides YR-1.

    PubMed

    Camacho-Morales, Reyna Lucero; Zazueta-Novoa, Vanesa; Casillas, Juana Lizbeth González; Ballesteros, Elizabeth Aranda; Bote, Juan Antonio Ocampo; Zazueta-Sandoval, Roberto

    2014-05-01

    We detected NADP(+)-dependent dihydrodiol dehydrogenase (DD) activity in a cell-free extract from Mucor circinelloides YR-1, after high-speed centrifugation. We analyzed the enzymatic activity in the cytosolic fraction by zymograms, as described previously, and eight different DD activity bands were revealed. Five constitutive DD activities (DD1-5) were present when glucose was used as carbon source and three inducible activities (NDD, PDD1 and PDD2) when aromatic hydrocarbon compounds were used. NDD activity was induced all of the aromatic hydrocarbon compounds. The highest DD activity inducer was naphthalene and the lowest was pyrene. One of the enzymes showed higher activity with cis-naphthalene-diol rather than with trans-nahthalenediol as a substrate. We purified this particular enzyme to homogeneity and found that it had an isoelectric point of 4.6. The molecular weight for the native protein was 197.4kDa and 49.03±0.5kDa for the monomer that conforms it, suggesting a homotetrameric structure for the complete enzyme. Polyclonal antibodies were raised against it and obtained. NDD activity was almost totally inhibited when antibodies were used at low concentrations, and in native immunoblots only one band, which corresponds to the activity band detected in the zymograms, could be detected. In denaturing PAGE immunoblots only one band was detected. This band corresponds to the purified protein band of 49kDa detected in SDS-PAGE gels. The other two inducible enzymes PDD1 and PDD2 were present only when phenanthrene was used as sole carbon source in the culture media. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Relationships between the Efficiencies of Photosystems I and II and Stromal Redox State in CO2-Free Air 1

    PubMed Central

    Harbinson, Jeremy; Foyer, Christine H.

    1991-01-01

    The responses of the efficiencies of photosystems I and II, stromal redox state (as indicated by NADP-malate dehydrogenase activation state), and activation of the Benson-Calvin cycle enzymes ribulose 1,5-bisphosphate carboxylase and fructose 1,6-bisphosphatase to varying irradiance were measured in pea (Pisum sativum L.) leaves operating close to the CO2 compensation point. A comparison of the relationships among these parameters obtained from leaves in air was made with those obtained when the leaves were maintained in air from which the CO2 had been removed. P700 was more oxidized at any measured irradiance in CO2-free air than in air. The relationship between the quantum efficiencies of the photosystems in CO2-free air was distinctly curvilinear in contrast to the predominantly linear relationship obtained with leaves in air. This nonlinearity may be consistent with the operation of cyclic electron flow around photosystem I because the quantum efficiency of photosystem II was much more restricted than the quantum efficiency of photosystem I. In CO2-free air, measured NADP-malate dehydrogenase activities varied considerably at low irradiances. However, at high irradiance the activity of the enzyme was low, implying that the stroma was oxidized. In contrast, fructose-1,6-bisphosphatase activities tended to increase with increasing electron flux through the photosystems. Ribulose-1,5-bisphosphate carboxylase activity remained relatively constant with respect to irradiance in CO2-free air, with an activation state 50% of maximum. We conclude that, at the CO2 compensation point and high irradiance, low redox states are favored and that cyclic electron flow may be substantial. These two features may be the requirements necessary to trigger and maintain the dissipative processes in the thylakoid membrane. PMID:16668401

  6. Marked decrease in specific activity contributes to disease phenotype in two human glucose 6-phosphate dehydrogenase mutants, G6PD(Union) and G6PD(Andalus).

    PubMed

    Wang, Xiao-Tao; Lam, Veronica M S; Engel, Paul C

    2005-09-01

    Clones overexpressing clinical glucose 6-phosphate dehydrogenase (G6PD) mutants Union (c.1360C>T/p.Arg454Cys) and Andalus (c.1361G>A/p.Arg454His), have been constructed. These abolish a salt bridge between Arg454 and Asp 286. One mutant is reportedly a Class II clinical variant and the other a Class I. Kinetic studies of the purified proteins reveal that, for both mutants, kcat is about 10-fold decreased, thus giving a 90% decrease in the WHO assay, and also presumably under physiological conditions. In contrast with unfavourable changes in Vmax for both mutants, Km values for both G6P and NADP+ are decreased approximately 5-fold. Measurements with alternative substrates confirm that G6PD Union, like the wild-type enzyme, follows a rapid-equilibrium random-order mechanism, allowing calculation of enzyme-substrate dissociation constants from initial-rate parameters. The mutations result in several-fold tighter binding of glucose 6-phosphate to the free enzyme. Binding, however, is clearly less productive than with normal enzyme. G6PD mutations are thought to cause haemolytic anaemia by compromising enzyme stability. Both these mutants indeed show somewhat decreased thermostability. However, at 37 degrees C and with NADP+, the stability differences are only moderate. Decreased catalytic efficiency clearly contributes to the disease phenotype of these two mutants, entirely accounting for reported decrease in leukocyte G6PD levels, though not for still lower levels in erythrocytes. Neither the kinetic nor the stability effects appear to justify the different clinical classification of these mutations.

  7. Overexpression, purification and enzymatic characterization of a recombinant Arabian camel Camelus dromedarius glucose-6-phosphate dehydrogenase.

    PubMed

    Saeed, Hesham; Ismaeil, Mohammad; Embaby, Amira; Ataya, Farid; Malik, Ajamaluddin; Shalaby, Manal; El-Banna, Sabah; Ali, Ahmed Abdelrahim Mohamed; Bassiouny, Khalid

    2018-02-01

    In a previous study the full-length open reading frame of the Arabian camel, Camelus dromedarius liver cytosolic glucose-6-phosphate dehydrogenase (G6PD) cDNA was determined using reverse transcription polymerase chain reaction. The C. dromedarius cDNA was found to be 1545 nucleotides (accession number JN098421) that encodes a protein of 515 amino acids residues. In the present study, C. dromedarius recombinant G6PD was heterologously overexpressed in Escherichia coli BL21 (DE3) pLysS and purified by immobilized metal affinity fast protein liquid chromatography (FPLC) in a single step. The purity and molecular weight of the enzyme were analyzed on SDS-PAGE and the purified enzyme showed a single band on the gel with a molecular weight of 63.0 KDa. The specific activity was determined to be 2000 EU/mg protein. The optimum temperature and pH were found to be 60 °C and 7.4, respectively. The isoelectric point (pI) for the purified G6PD was determined to be 6.4. The apparent K m values for the two substrates NADP + and G6P were found to be 23.2 μM and 66.7 μM, respectively. The far-UV circular dichroism (CD) spectra of G6PD showed that it has two minima at 208 and 222 nm as well as maxima at 193 nm which is characteristic of high content of α-helix. Moreover, the far-UV CD spectra of the G6PD in the presence or absence of NADP + were nearly identical. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Evidence for function of the ferredoxin/thioredoxin system in the reductive activation of target enzymes of isolated intact chloroplasts.

    PubMed

    Crawford, N A; Droux, M; Kosower, N S; Buchanan, B B

    1989-05-15

    Results obtained with isolated intact chloroplasts maintained aerobically under light and dark conditions confirm earlier findings with reconstituted enzyme assays and indicate that the ferredoxin/thioredoxin system functions as a light-mediated regulatory thiol chain. The results were obtained by application of a newly devised procedure in which a membrane-permeable thiol labeling reagent, monobromobimane (mBBr), reacts with sulfhydryl groups and renders the derivatized protein fluorescent. The mBBr-labeled protein in question is isolated individually from chloroplasts by immunoprecipitation and its thiol redox status is determined quantitatively by combining sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorescence measurements. The findings indicate that each member of the ferredoxin/thioredoxin system containing a catalytically active thiol group is reduced in isolated intact chloroplasts after a 2-min illumination. The extents of reduction were FTR, 38%; thioredoxin m, 75% (11-kDa form) and 87% (13-kDa form); thioredoxin f, 95%. Reduction of each of these components was negligible both in the dark and when chloroplasts were transferred from light to dark conditions. The target enzyme, NADP-malate dehydrogenase, also underwent net reduction in illuminated intact chloroplasts. Fructose-1,6-bisphosphatase showed increased mBBr labeling under these conditions, but due to interfering gamma globulin proteins it was not possible to determine whether this was a result of net reduction as is known to take place in reconstituted assays. Related experiments demonstrated that mBBr, as well as N-ethylmaleimide, stabilized photoactivated NADP-malate dehydrogenase and fructose-1,6-bisphosphatase so that they remained active in the dark. By contrast, phosphoribulokinase, another thioredoxin-linked enzyme, was immediately deactivated following mBBr addition. These latter results provide new information on the relation between the regulatory and active sites of these enzymes.

  9. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.

    PubMed

    Martínez, Irene; Zhu, Jiangfeng; Lin, Henry; Bennett, George N; San, Ka-Yiu

    2008-11-01

    Reactions requiring reducing equivalents, NAD(P)H, are of enormous importance for the synthesis of industrially valuable compounds such as carotenoids, polymers, antibiotics and chiral alcohols among others. The use of whole-cell biocatalysis can reduce process cost by acting as catalyst and cofactor regenerator at the same time; however, product yields might be limited by cofactor availability within the cell. Thus, our study focussed on the genetic manipulation of a whole-cell system by modifying metabolic pathways and enzymes to improve the overall production process. In the present work, we genetically engineered an Escherichia coli strain to increase NADPH availability to improve the productivity of products that require NADPH in its biosynthesis. The approach involved an alteration of the glycolysis step where glyceraldehyde-3-phosphate (GAP) is oxidized to 1,3 bisphophoglycerate (1,3-BPG). This reaction is catalyzed by NAD-dependent endogenous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encoded by the gapA gene. We constructed a recombinant E. coli strain by replacing the native NAD-dependent gapA gene with a NADP-dependent GAPDH from Clostridium acetobutylicum, encoded by the gene gapC. The beauty of this approach is that the recombinant E. coli strain produces 2 mol of NADPH, instead of NADH, per mole of glucose consumed. Metabolic flux analysis showed that the flux through the pentose phosphate (PP) pathway, one of the main pathways that produce NADPH, was reduced significantly in the recombinant strain when compared to that of the parent strain. The effectiveness of the NADPH enhancing system was tested using the production of lycopene and epsilon-caprolactone as model systems using two different background strains. The recombinant strains, with increased NADPH availability, consistently showed significant higher productivity than the parent strains.

  10. Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants

    PubMed Central

    Rey, Pascal; Sanz-Barrio, Ruth; Innocenti, Gilles; Ksas, Brigitte; Courteille, Agathe; Rumeau, Dominique; Issakidis-Bourguet, Emmanuelle; Farran, Inmaculada

    2013-01-01

    Plants display a remarkable diversity of thioredoxins (Trxs), reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast. PMID:24137166

  11. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior.

    PubMed

    Campbell, Elliot; Wheeldon, Ian R; Banta, Scott

    2010-12-01

    Cofactor specificity in the aldo-keto reductase (AKR) superfamily has been well studied, and several groups have reported the rational alteration of cofactor specificity in these enzymes. Although most efforts have focused on mesostable AKRs, several putative AKRs have recently been identified from hyperthermophiles. The few that have been characterized exhibit a strong preference for NAD(H) as a cofactor, in contrast to the NADP(H) preference of the mesophilic AKRs. Using the design rules elucidated from mesostable AKRs, we introduced two site-directed mutations in the cofactor binding pocket to investigate cofactor specificity in a thermostable AKR, AdhD, which is an alcohol dehydrogenase from Pyrococcus furiosus. The resulting double mutant exhibited significantly improved activity and broadened cofactor specificity as compared to the wild-type. Results of previous pre-steady-state kinetic experiments suggest that the high affinity of the mesostable AKRs for NADP(H) stems from a conformational change upon cofactor binding which is mediated by interactions between a canonical arginine and the 2'-phosphate of the cofactor. Pre-steady-state kinetics with AdhD and the new mutants show a rich conformational behavior that is independent of the canonical arginine or the 2'-phosphate. Additionally, experiments with the highly active double mutant using NADPH as a cofactor demonstrate an unprecedented transient behavior where the binding mechanism appears to be dependent on cofactor concentration. These results suggest that the structural features involved in cofactor specificity in the AKRs are conserved within the superfamily, but the dynamic interactions of the enzyme with cofactors are unexpectedly complex. © 2010 Wiley Periodicals, Inc.

  12. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.

    PubMed

    Komati Reddy, Gajendar; Lindner, Steffen N; Wendisch, Volker F

    2015-03-01

    Corynebacterium glutamicum uses the Embden-Meyerhof-Parnas pathway of glycolysis and gains 2 mol of ATP per mol of glucose by substrate-level phosphorylation (SLP). To engineer glycolysis without net ATP formation by SLP, endogenous phosphorylating NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was replaced by nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GapN) from Clostridium acetobutylicum, which irreversibly converts glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) without generating ATP. As shown recently (S. Takeno, R. Murata, R. Kobayashi, S. Mitsuhashi, and M. Ikeda, Appl Environ Microbiol 76:7154-7160, 2010, http://dx.doi.org/10.1128/AEM.01464-10), this ATP-neutral, NADPH-generating glycolytic pathway did not allow for the growth of Corynebacterium glutamicum with glucose as the sole carbon source unless hitherto unknown suppressor mutations occurred; however, these mutations were not disclosed. In the present study, a suppressor mutation was identified, and it was shown that heterologous expression of udhA encoding soluble transhydrogenase from Escherichia coli partly restored growth, suggesting that growth was inhibited by NADPH accumulation. Moreover, genome sequence analysis of second-site suppressor mutants that were able to grow faster with glucose revealed a single point mutation in the gene of non-proton-pumping NADH:ubiquinone oxidoreductase (NDH-II) leading to the amino acid change D213G, which was shared by these suppressor mutants. Since related NDH-II enzymes accepting NADPH as the substrate possess asparagine or glutamine residues at this position, D213G, D213N, and D213Q variants of C. glutamicum NDH-II were constructed and were shown to oxidize NADPH in addition to NADH. Taking these findings together, ATP-neutral glycolysis by the replacement of endogenous NAD-dependent GAPDH with NADP-dependent GapN became possible via oxidation of NADPH formed in this pathway by mutant NADPH-accepting NDH-II(D213G) and thus by coupling to electron transport phosphorylation (ETP). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations.

    PubMed

    Liu, Xiaoying; Mody, Kabir; de Abreu, Francine B; Pipas, J Marc; Peterson, Jason D; Gallagher, Torrey L; Suriawinata, Arief A; Ripple, Gregory H; Hourdequin, Kathryn C; Smith, Kerrington D; Barth, Richard J; Colacchio, Thomas A; Tsapakos, Michael J; Zaki, Bassem I; Gardner, Timothy B; Gordon, Stuart R; Amos, Christopher I; Wells, Wendy A; Tsongalis, Gregory J

    2014-07-01

    Some epithelial neoplasms of the appendix, including low-grade appendiceal mucinous neoplasm and adenocarcinoma, can result in pseudomyxoma peritonei (PMP). Little is known about the mutational spectra of these tumor types and whether mutations may be of clinical significance with respect to therapeutic selection. In this study, we identified somatic mutations using the Ion Torrent AmpliSeq Cancer Hotspot Panel v2. Specimens consisted of 3 nonneoplastic retention cysts/mucocele, 15 low-grade mucinous neoplasms (LAMNs), 8 low-grade/well-differentiated mucinous adenocarcinomas with pseudomyxoma peritonei, and 12 adenocarcinomas with/without goblet cell/signet ring cell features. Barcoded libraries were prepared from up to 10 ng of extracted DNA and multiplexed on single 318 chips for sequencing. Data analysis was performed using Golden Helix SVS. Variants that remained after the analysis pipeline were individually interrogated using the Integrative Genomics Viewer. A single Janus kinase 3 (JAK3) mutation was detected in the mucocele group. Eight mutations were identified in the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and GNAS complex locus (GNAS) genes among LAMN samples. Additional gene mutations were identified in the AKT1 (v-akt murine thymoma viral oncogene homolog 1), APC (adenomatous polyposis coli), JAK3, MET (met proto-oncogene), phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), RB1 (retinoblastoma 1), STK11 (serine/threonine kinase 11), and tumor protein p53 (TP53) genes. Among the PMPs, 6 mutations were detected in the KRAS gene and also in the GNAS, TP53, and RB1 genes. Appendiceal cancers showed mutations in the APC, ATM (ataxia telangiectasia mutated), KRAS, IDH1 [isocitrate dehydrogenase 1 (NADP+)], NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog], PIK3CA, SMAD4 (SMAD family member 4), and TP53 genes. Our results suggest molecular heterogeneity among epithelial tumors of the appendix. Next generation sequencing efforts have identified mutational spectra in several subtypes of these tumors that may suggest a phenotypic heterogeneity showing mutations that are relevant for targeted therapies. © 2014 The American Association for Clinical Chemistry.

  14. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity.

    PubMed

    Grabowska, Dorota; Chelstowska, Anna

    2003-04-18

    Reducing equivalents in the form of NADPH are essential for many enzymatic steps involved in the biosynthesis of cellular macromolecules. An adequate level of NADPH is also required to protect cells against oxidative stress. The major enzymatic source of NADPH in the cell is the reaction catalyzed by glucose-6-phosphate dehydrogenase, the first enzyme in the pentose phosphate pathway. Disruption of the ZWF1 gene, encoding glucose-6-phosphate dehydrogenase in the yeast Saccharomyces cerevisiae, results in methionine auxotrophy and increased sensitivity to oxidizing agents. It is assumed that both phenotypes are due to an NADPH deficiency in the zwf1Delta strain. We used a Met(-) phenotype displayed by the zwf1Delta strain to look for multicopy suppressors of this deletion. We found that overexpression of the ALD6 gene coding for cytosolic acetaldehyde dehydrogenase, which utilizes NADP(+) as its cofactor, restores the Met(+) phenotype of the zwf1Delta strain. Another multicopy suppressor identified in our screen, the ZMS1 gene encoding a putative transcription factor, regulates the level of ALD6 expression. A strain bearing a double ZWF1 ALD6 gene disruption is not viable. Thus, our results indicate the reaction catalyzed by Ald6p as an important source of reducing equivalents in the yeast cells.

  15. Characterization of human DHRS4: an inducible short-chain dehydrogenase/reductase enzyme with 3beta-hydroxysteroid dehydrogenase activity.

    PubMed

    Matsunaga, Toshiyuki; Endo, Satoshi; Maeda, Satoshi; Ishikura, Shuhei; Tajima, Kazuo; Tanaka, Nobutada; Nakamura, Kazuo T; Imamura, Yorishige; Hara, Akira

    2008-09-15

    Human DHRS4 is a peroxisomal member of the short-chain dehydrogenase/reductase superfamily, but its enzymatic properties, except for displaying NADP(H)-dependent retinol dehydrogenase/reductase activity, are unknown. We show that the human enzyme, a tetramer composed of 27kDa subunits, is inactivated at low temperature without dissociation into subunits. The cold inactivation was prevented by a mutation of Thr177 with the corresponding residue, Asn, in cold-stable pig DHRS4, where this residue is hydrogen-bonded to Asn165 in a substrate-binding loop of other subunit. Human DHRS4 reduced various aromatic ketones and alpha-dicarbonyl compounds including cytotoxic 9,10-phenanthrenequinone. The overexpression of the peroxisomal enzyme in cultured cells did not increase the cytotoxicity of 9,10-phenanthrenequinone. While its activity towards all-trans-retinal was low, human DHRS4 efficiently reduced 3-keto-C(19)/C(21)-steroids into 3beta-hydroxysteroids. The stereospecific conversion to 3beta-hydroxysteroids was observed in endothelial cells transfected with vectors expressing the enzyme. The mRNA for the enzyme was ubiquitously expressed in human tissues and several cancer cells, and the enzyme in HepG2 cells was induced by peroxisome-proliferator-activated receptor alpha ligands. The results suggest a novel mechanism of cold inactivation and role of the inducible human DHRS4 in 3beta-hydroxysteroid synthesis and xenobiotic carbonyl metabolism.

  16. Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar; Asati, Vivek

    2015-08-28

    In recent years, widespread outbreak of numerous infectious diseases across the globe has created havoc among the population. Particularly, the inhabitants of tropical and sub-tropical regions are mainly affected by these pathogens. Several natural and (semi) synthetic chalcones deserve the credit of being potential anti-infective candidates that inhibit various parasitic, malarial, bacterial, viral, and fungal targets like cruzain-1/2, trypanopain-Tb, trans-sialidase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, falcipain-1/2, β-hematin, topoisomerase-II, plasmepsin-II, lactate dehydrogenase, protein kinases (Pfmrk and PfPK5), and sorbitol-induced hemolysis, DEN-1 NS3, H1N1, HIV (Integrase/Protease), protein tyrosine phosphatase A/B (Ptp-A/B), FtsZ, FAS-II, lactate/isocitrate dehydrogenase, NorA efflux pump, DNA gyrase, fatty acid synthase, chitin synthase, and β-(1,3)-glucan synthase. In this review, a comprehensive study (from Jan. 1982 to May 2015) of the structural features of anti-infective chalcones, their mechanism of actions (MOAs) and structure activity relationships (SARs) have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-infective agents. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Acetylcholine promotes the emergence and elongation of lateral roots of Raphanus sativus

    PubMed Central

    Sugiyama, Kou-ichi

    2011-01-01

    Radish (Raphanus sativus L.) was grown on four layers of paper towel moistened with distilled water with and without acetylcholine (ACh) for five days in the dark after sowing. ACh at 1 nM promoted the growth (emergence and elongation) of lateral roots of radish plants, but had no effect on the stems and main roots. Moreover, ACh enhanced the dry weight of roots [main (primary) + lateral roots]. Neostigmine, an inhibitor of acetylcholinesterase (AChE) also promoted the emergence and elongation of lateral roots, and atropine, a competitive inhibitor of ACh receptor, suppressed the emergence and elongation. ACh promoted the activities of glyceraldehyde-3-phosephate dehydrogenase (G-3-PD), nicotinamide adenine dinucleotide-specific isocitrate dehydrogenase (NAD-ICDH), succinate dehydrogenase (SDH) and cytochrome-c oxidase (Cyt-c OD) in seedlings. Moreover, ACh suppressed the activity of AChE and increased the amount of proteins and pyridine nucleotides (NAD and NADH) in the roots of the seedlings. It also increased the activities of NAD-forming enzymes [NAD synthetase and ATP-nicotinamide mononucleotide (ATP-NMN) adenyltransferase], and enhanced the amount of DNA in the roots of the seedlings. The relationship between ACh and the emergence and growth of lateral roots was discussed from a biochemical viewpoint. PMID:21900743

  18. Genetic diversity of the "Mediterranean" glucose-6-phosphate dehydrogenase deficiency phenotype.

    PubMed

    Stamatoyannopoulos, G; Voigtlander, V; Kotsakis, P; Akrivakis, A

    1971-06-01

    Genetic diversity of the "Mediterranean" phenotype of G-6-PD (glucose-6-phosphate dehydrogenase) deficiency was revealed when detailed studies were performed on blood specimens from 79 Greek males with G-6-PD levels 0-10% of normal. Four different mutants were found to be responsible for the severely deficient phenotypes: two mutants. G-6-PD U-M (Union-Markham) and G-6-PD Orchomenos, were distinguishable by electrophoresis, while the other two. G-6-PD Athens-like and G-6-PD Mediterranean, were distinguishable on the basis of their kinetic characteristics. Of the kinetic tests applied, the most useful for differentiating the variants were those measuring utilization rates of the analogue substrates deamino-NADP, 2-deoxyglucose-6-phosphate, and galactose-6-phosphate. Among unrelated males with severe G-6-PD deficiency, the relative frequencies of the four variants were: G-6-PD U-M. 5%; G-6-PD Orchomenos, 7%; G-6-PD Athens-like, 16%; G-6-PD Mediterranean, 72%. Genetic, biochemical, and clinical implications of the findings are discussed.

  19. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, G.A.; Hearst, J.E.; Alberti, M.

    1990-12-01

    Carotenoids comprise one of the most widespread classes of pigments found in nature. The first reactions of C{sub 40} carotenoid biosynthesis proceed through common intermediates in all organisms, suggesting the evolutionary conservation of early enzymes from this pathway. The authors report here the nucleotide sequence of three genes from the carotenoid biosynthesis gene cluster of Erwinia herbicola, a nonphotosynthetic epiphytic bacterium, which encode homologs of the CrtB, CrtE, and CrtI proteins of Rhodobacter capsulatus, a purple nonsulfur photosynthetic bacterium. CrtB (prephytoene pyrophosphate synthase), CrtE (phytoene synthase), and CrtI (phytoene dehydrogenase) are required for the first three reactions specific to themore » carotenoid branch of general isoprenoid metabolism. All three dehydrogenases possess a hydrophobic N-terminal domain containing a putative ADP-binding {beta}{alpha}{beta} fold characteristic of enzymes known to bind FAD or NAD(P) cofactors. These data indicate the structural conservation of early carotenoid biosynthesis enzymes in evolutionary diverse organisms.« less

  20. Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis.

    PubMed

    Yoshikawa, Katsunori; Toya, Yoshihiro; Shimizu, Hiroshi

    2017-05-01

    Synechocystis sp. PCC 6803 is an attractive host for bio-ethanol production due to its ability to directly convert atmospheric carbon dioxide into ethanol using photosystems. To enhance ethanol production in Synechocystis sp. PCC 6803, metabolic engineering was performed based on in silico simulations, using the genome-scale metabolic model. Comprehensive reaction knockout simulations by flux balance analysis predicted that the knockout of NAD(P)H dehydrogenase enhanced ethanol production under photoautotrophic conditions, where ammonium is the nitrogen source. This deletion inhibits the re-oxidation of NAD(P)H, which is generated by ferredoxin-NADP + reductase and imposes re-oxidation in the ethanol synthesis pathway. The effect of deleting the ndhF1 gene, which encodes NADH dehydrogenase subunit 5, on ethanol production was experimentally evaluated using ethanol-producing strains of Synechocystis sp. PCC 6803. The ethanol titer of the ethanol-producing ∆ndhF1 strain increased by 145%, compared with that of the control strain.

  1. Light Driven CO2 Fixation by Using Cyanobacterial Photosystem I and NADPH-Dependent Formate Dehydrogenase

    PubMed Central

    Ihara, Masaki; Kawano, Yusuke; Urano, Miho; Okabe, Ayako

    2013-01-01

    The ultimate goal of this research is to construct a new direct CO2 fixation system using photosystems in living algae. Here, we report light-driven formate production from CO2 by using cyanobacterial photosystem I (PS I). Formate, a chemical hydrogen carrier and important industrial material, can be produced from CO2 by using the reducing power and the catalytic function of formate dehydrogenase (FDH). We created a bacterial FDH mutant that experimentally switched the cofactor specificity from NADH to NADPH, and combined it with an in vitro-reconstituted cyanobacterial light-driven NADPH production system consisting of PS I, ferredoxin (Fd), and ferredoxin-NADP+-reductase (FNR). Consequently, light-dependent formate production under a CO2 atmosphere was successfully achieved. In addition, we introduced the NADPH-dependent FDH mutant into heterocysts of the cyanobacterium Anabaena sp. PCC 7120 and demonstrated an increased formate concentration in the cells. These results provide a new possibility for photo-biological CO2 fixation. PMID:23936519

  2. Light driven CO2 fixation by using cyanobacterial photosystem I and NADPH-dependent formate dehydrogenase.

    PubMed

    Ihara, Masaki; Kawano, Yusuke; Urano, Miho; Okabe, Ayako

    2013-01-01

    The ultimate goal of this research is to construct a new direct CO2 fixation system using photosystems in living algae. Here, we report light-driven formate production from CO2 by using cyanobacterial photosystem I (PS I). Formate, a chemical hydrogen carrier and important industrial material, can be produced from CO2 by using the reducing power and the catalytic function of formate dehydrogenase (FDH). We created a bacterial FDH mutant that experimentally switched the cofactor specificity from NADH to NADPH, and combined it with an in vitro-reconstituted cyanobacterial light-driven NADPH production system consisting of PS I, ferredoxin (Fd), and ferredoxin-NADP(+)-reductase (FNR). Consequently, light-dependent formate production under a CO2 atmosphere was successfully achieved. In addition, we introduced the NADPH-dependent FDH mutant into heterocysts of the cyanobacterium Anabaena sp. PCC 7120 and demonstrated an increased formate concentration in the cells. These results provide a new possibility for photo-biological CO2 fixation.

  3. Examination of key intermediates in the catalytic cycle of aspartate-beta-semialdehyde dehydrogenase from a gram-positive infectious bacteria.

    PubMed

    Faehnle, Christopher R; Le Coq, Johanne; Liu, Xuying; Viola, Ronald E

    2006-10-13

    Aspartate-beta-semialdehyde dehydrogenase (ASADH) catalyzes a critical branch point transformation in amino acid bio-synthesis. The products of the aspartate pathway are essential in microorganisms, and this entire pathway is absent in mammals, making this enzyme an attractive target for antibiotic development. The first structure of an ASADH from a Gram-positive bacterium, Streptococcus pneumoniae, has now been determined. The overall structure of the apoenzyme has a similar fold to those of the Gram-negative and archaeal ASADHs but contains some interesting structural variations that can be exploited for inhibitor design. Binding of the coenzyme NADP, as well as a truncated nucleotide analogue, into an alternative conformation from that observed in Gram-negative ASADHs causes an enzyme domain closure that precedes catalysis. The covalent acyl-enzyme intermediate was trapped by soaking the substrate into crystals of the coenzyme complex, and the structure of this elusive intermediate provides detailed insights into the catalytic mechanism.

  4. Dehydrogenation of indanol by rabbit liver 3-hydroxyhexobarbital dehydrogenase.

    PubMed

    Takenoshita, R; Toki, S

    1977-06-01

    1. Among the several enzyme activities in rabbit liver cytosol able to dehydrogenate 1-indanol, only the main activity was not separable from 3-hydroxyhexobarbital dehydrogenase during purification including polyacrylamide gel disc electrophoresis. 2. Results of mixed substrate method indicated that the same enzyme catalyses the dehydrogenation of 1-indanol and 3-hydroxyhexobarbital. The ratio between the two dehydrogenation activities was almost constant as the enzyme underwent thermal inactivation. The Ki values of p-chloromercuribenzoate, the Km values for NAD+, and the Km values for NADP+ were very similar for the two dehydrogenations. These results lead to the conclusion that the same enzyme catalyses the dehydrogenation of 3-hydroxyhexobarbital and 1-indanol. 3. 1-Tetralol, 1-acenaphthenol, 9-fluorenol, thiochroman-4-ol and 4-chromanol also served as substrate of the enzyme, but 2-indanol, 2-tetralol, and trans- and cis-indan-1,2-diol were not oxidized. 4. Reversibility of the reaction was also confirmed using 1-indanone as substrate.

  5. Elucidation of new condition-dependent roles for fructose-1,6-bisphosphatase linked to cofactor balances

    PubMed Central

    Kilian, Stephanus G.; du Preez, James C.

    2017-01-01

    The cofactor balances in metabolism is of paramount importance in the design of a metabolic engineering strategy and understanding the regulation of metabolism in general. ATP, NAD+ and NADP+ balances are central players linking the various fluxes in central metabolism as well as biomass formation. NADP+ is especially important in the metabolic engineering of yeasts for xylose fermentation, since NADPH is required by most yeasts in the initial step of xylose utilisation, including the fast-growing Kluyveromyces marxianus. In this simulation study of yeast metabolism, the complex interplay between these cofactors was investigated; in particular, how they may affect the possible roles of fructose-1,6-bisphosphatase, the pentose phosphate pathway, glycerol production and the pyruvate dehydrogenase bypass. Using flux balance analysis, it was found that the potential role of fructose-1,6-bisphosphatase was highly dependent on the cofactor specificity of the oxidative pentose phosphate pathway and on the carbon source. Additionally, the excessive production of ATP under certain conditions might be involved in some of the phenomena observed, which may have been overlooked to date. Based on these findings, a strategy is proposed for the metabolic engineering of a future xylose-fermenting yeast for biofuel production. PMID:28542187

  6. Highly efficient retinal metabolism in cones

    PubMed Central

    Miyazono, Sadaharu; Shimauchi-Matsukawa, Yoshie; Tachibanaki, Shuji; Kawamura, Satoru

    2008-01-01

    After bleaching of visual pigment in vertebrate photoreceptors, all-trans retinal is reduced to all-trans retinol by retinol dehydrogenases (RDHs). We investigated this reaction in purified carp rods and cones, and we found that the reducing activity toward all-trans retinal in the outer segment (OS) of cones is >30 times higher than that of rods. The high activity of RDHs was attributed to high content of RDH8 in cones. In the inner segment (IS) in both rods and cones, RDH8L2 and RDH13 were found to be the major enzymes among RDH family proteins. We further found a previously undescribed and effective pathway to convert 11-cis retinol to 11-cis retinal in cones: this oxidative conversion did not require NADP+ and instead was coupled with reduction of all-trans retinal to all-trans retinol. The activity was >50 times effective than the oxidizing activity of RDHs that require NADP+. These highly effective reactions of removal of all-trans retinal by RDH8 and production of 11-cis retinal by the coupling reaction are probably the underlying mechanisms that ensure effective visual pigment regeneration in cones that function under much brighter light conditions than rods. PMID:18836074

  7. Electron microscopic analysis and structural characterization of novel NADP(H)-containing methanol: N,N'-dimethyl-4-nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19.

    PubMed Central

    Bystrykh, L V; Vonck, J; van Bruggen, E F; van Beeumen, J; Samyn, B; Govorukhina, N I; Arfman, N; Duine, J A; Dijkhuizen, L

    1993-01-01

    The quaternary protein structure of two methanol:N,N'-dimethyl-4-nitrosoaniline (NDMA) oxidoreductases purified from Amycolatopsis methanolica and Mycobacterium gastri MB19 was analyzed by electron microscopy and image processing. The enzymes are decameric proteins (displaying fivefold symmetry) with estimated molecular masses of 490 to 500 kDa based on their subunit molecular masses of 49 to 50 kDa. Both methanol:NDMA oxidoreductases possess a tightly but noncovalently bound NADP(H) cofactor at an NADPH-to-subunit molar ratio of 0.7. These cofactors are redox active toward alcohol and aldehyde substrates. Both enzymes contain significant amounts of Zn2+ and Mg2+ ions. The primary amino acid sequences of the A. methanolica and M. gastri MB19 methanol:NDMA oxidoreductases share a high degree of identity, as indicated by N-terminal sequence analysis (63% identity among the first 27 N-terminal amino acids), internal peptide sequence analysis, and overall amino acid composition. The amino acid sequence analysis also revealed significant similarity to a decameric methanol dehydrogenase of Bacillus methanolicus C1. Images PMID:8449887

  8. The investigation of plasma glucose-6-phosphate dehydrogenase, 6-phoshogluconate dehydrogenase, glutathione reductase in premenauposal patients with iron deficiency anemia.

    PubMed

    Ozcicek, Fatih; Aktas, Mehmet; Türkmen, Kultigin; Coban, T Abdulkadir; Cankaya, Murat

    2014-07-01

    Iron is an essential element that is necessary for all cells in the body. Iron deficiency anemia (IDA) is one of the most common nutritional disorders in both developed and developing countries. The glutathione pathway is paramount to antioxidant defense and glucose-6-phosphate dehydrogenase (G6PD)-deficient cells do not cope well with oxidative damage. The goal of this study was to check the activities of G6PD, 6-phosphogluconate dehydrogenase, glutathione reductase in patients with IDA. We analyzed the plasma samples of 102 premenopausal women with IDA and 88 healthy control subjects. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activity as compared to the reduction of NADP +, glutathione reductase activity was performed based on the oxidation of NADPH. 2 ml of plasma were used in all analyzes. SPSS program was used for all of the statistical analysis. Diagnosis of iron deficiency in patients belonging to the analysis of blood were ferritin 3.60 ± 2.7 ng / mL, hemoglobin 9.4 ± 1.5 mg / dl and hematocrit 30.7 ± 4.1% ratio; in healthy subjects ferritin 53.5 ± 41.7 ng/ml, hemoglobin level 13.9 ± 1.3 mg / dl and hematocrit ratio 42 ± 3.53%. When compared to healthy subjects the glutathione reductase level (P<0.001) was found to be significantly higher in patients with IDA. IDA patients with moderate and severe anemia had lower GR activity when compared to IDA patients with mild anemia. But the plasma levels of glucose-6-phosphate dehydrogenase (P<0,600) and 6-phosphogluconate dehydrogenase (P<0,671) did not show any differences between healthy subjects and in patients with IDA. It was shown that Glucose-6-Phosphate Dehydrogenase and 6-Phosphogluconate Dehydrogenase have no effect on iron-deficiency anemia in patients. The plasma GR levels of premenopausal women with IDA were found to be higher compared to healthy subjects, which could be secondary to erythrocyte protection against oxidative stress being commonly seen in IDA.

  9. A high-sensitive HMab-2 specifically detects IDH1-R132H, the most common IDH mutation in gliomas.

    PubMed

    Fujii, Yuki; Ogasawara, Satoshi; Oki, Hiroharu; Liu, Xing; Kaneko, Mika K; Takano, Shingo; Kato, Yukinari

    2015-10-30

    Isocitrate dehydrogenase 1 (IDH1) mutations have been detected in gliomas and other tumors. Although IDH1 catalyzes the oxidative carboxylation of isocitrate to α-ketoglutarate (α-KG) in cytosol, mutated IDH1 proteins possess the ability to change α-KG into the oncometabolite D-2-hydroxyglutarate (D-2HG). Several monoclonal antibodies (mAbs) specific for IDH1 mutations have been established, such as H09, IMab-1, and HMab-1 against IDH1-R132H, which is the most frequent IDH1 mutation in gliomas. In this study, we established a novel high-sensitive mAb HMab-2, which reacts with IDH1-R132H but not with wild type IDH1 in ELISA. HMab-2 reacted only with IDH1-R132H, not with wild type IDH1/2 and other IDH1/2 mutants in Western-blot analysis. Furthermore, HMab-2 recognized IDH1-R132H more sensitively compared with our previously established HMab-1. HMab-2 detected endogenous IDH1-R132H protein expressed in glioblastoma in immunohistochemical analysis. HMab-2 is expected to be useful for the diagnosis of IDH1-R132H-bearing tumors. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. 7-Ketocholesterol inhibits isocitrate dehydrogenase 2 expression and impairs endothelial function via microRNA-144.

    PubMed

    Fu, Xiaodong; Huang, Xiuwei; Li, Ping; Chen, Weiyu; Xia, Min

    2014-06-01

    Oxysterol is associated with the induction of endothelial oxidative stress and impaired endothelial function. Mitochondria play a central role in oxidative energy metabolism and the maintenance of proper redox status. The purpose of this study was to determine the effects and mechanisms of 7-ketocholesterol (7-KC) on isocitrate dehydrogenase 2 (IDH2) and its impact on endothelial function in both human aortic endothelial cells (HAECs) and C57BL/6J mice. HAECs treated with 7-KC showed significant reductions of IDH2 mRNA and protein levels and enzyme activity, leading to decreased NADPH concentration and an increased ratio of reduced-to-oxidized glutathione in the mitochondria. 7-KC induced the expression of a specific microRNA, miR-144, which in turn targets and downregulates IDH2. In silico analysis predicted that miR-144 could bind to the 3'-untranslated region of IDH2 mRNA. Overexpression of miR-144 decreased the expression of IDH2 and the levels of NADPH. A complementary finding is that a miR-144 inhibitor increased the mRNA and protein expression levels of IDH2. Furthermore, miR-144 level was elevated in HAECs in response to 7-KC. Anti-Ago1/2 immunoprecipitation coupled with a real-time polymerase chain reaction assay revealed that 7-KC increased the functional targeting of miR-144/IDH2 mRNA in HAECs. Infusion of 7-KC in vivo decreased vascular IDH2 expression and impaired vascular reactivity via miR-144. 7-KC controls miR-144 expression, which in turn decreases IDH2 expression and attenuates NO bioavailability to impair endothelial homeostasis. The newly identified 7-KC-miR-144-IDH2 pathway may contribute to atherosclerosis progression and provides new insight into 7-KC function and microRNA biology in cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the Acute Leukemia French Association group.

    PubMed

    Boissel, Nicolas; Nibourel, Olivier; Renneville, Aline; Gardin, Claude; Reman, Oumedaly; Contentin, Nathalie; Bordessoule, Dominique; Pautas, Cécile; de Revel, Thierry; Quesnel, Bruno; Huchette, Pascal; Philippe, Nathalie; Geffroy, Sandrine; Terre, Christine; Thomas, Xavier; Castaigne, Sylvie; Dombret, Hervé; Preudhomme, Claude

    2010-08-10

    Recently, whole-genome sequencing in acute myeloid leukemia (AML) identified recurrent isocitrate dehydrogenase enzyme isoform (IDH1) mutations (IDH1m), previously reported to be involved in gliomas as well as IDH2 mutations (IDH2m). The prognosis of both IDH1m and IDH2m in AML remains unclear. The prevalence and the prognostic impact of R132 IDH1 and R172 IDH2 mutations were evaluated in a cohort of 520 adults with AML homogeneously treated in the French Acute Leukemia French Association (ALFA) -9801 and -9802 trials. The prevalence of IDH1m and IDH2m was 9.6% and 3.0%, respectively, mostly associated with normal cytogenetics (CN). In patients with CN-AML, IDH1m were associated with NPM1m (P = .008), but exclusive of CEBPAm (P = .03). In contrary, no other mutations were detected in IDH2m patients. In CN-AML patients, IDH1m were found in 19% of favorable genotype ([NPM1m or CEBPAm] without fms-related tyrosine kinase 3 [FLT3] internal tandem duplication [ITD]) and were associated with a higher risk of relapse (RR) and a shorter overall survival (OS). Favorable genotype in CN-AML could thus be defined by the association of NPM1m or CEBPAm with neither FLT3-ITD nor IDH1m. In IDH2m CN-AML patients, we observed a higher risk of induction failure, a higher RR and a shorter OS. In multivariate analysis, age, WBC count, the four-gene favorable genotype and IDH2m were independently associated with a higher RR and a shorter OS. Contrarily to what is reported in gliomas, IDH1m and IDH2m in AML are associated with a poor prognosis. Screening of IDH1m could help to identify high-risk patients within the subset of CN-AML with a favorable genotype.

  12. Combination of isocitrate dehydrogenase 1 (IDH1) mutation and podoplanin expression in brain tumors identifies patients at high or low risk of venous thromboembolism.

    PubMed

    Mir Seyed Nazari, P; Riedl, J; Preusser, M; Posch, F; Thaler, J; Marosi, C; Birner, P; Ricken, G; Hainfellner, J A; Pabinger, I; Ay, C

    2018-06-01

    Essentials Risk stratification for venous thromboembolism (VTE) in patients with brain tumors is challenging. Patients with IDH1 wildtype and high podoplanin expression have a 6-month VTE risk of 18.2%. Patients with IDH1 mutation and no podoplanin expression have a 6-month VTE risk of 0%. IDH1 mutation and podoplanin overexpression in primary brain tumors appear to be exclusive. Background Venous thromboembolism (VTE) is a frequent complication in primary brain tumor patients. Independent studies revealed that podoplanin expression in brain tumors is associated with increased VTE risk, whereas the isocitrate dehydrogenase 1 (IDH1) mutation is associated with very low VTE risk. Objectives To investigate the interrelation between intratumoral podoplanin expression and IDH1 mutation, and their mutual impact on VTE development. Patients/Methods In a prospective cohort study, intratumoral IDH1 R132H mutation and podoplanin were determined in brain tumor specimens (mainly glioma) by immunohistochemistry. The primary endpoint of the study was symptomatic VTE during a 2-year follow-up. Results All brain tumors that expressed podoplanin to a medium-high extent showed also an IDH1 wild-type status. A score based on IDH1 status and podoplanin expression levels allowed prediction of the risk of VTE. Patients with wild-type IDH1 brain tumors and high podoplanin expression had a significantly increased VTE risk compared with those with mutant IDH1 tumors and no podoplanin expression (6-month risk 18.2% vs. 0%). Conclusions IDH1 mutation and podoplanin overexpression seem to be exclusive. Although brain tumor patients with IDH1 mutation are at very low risk of VTE, the risk of VTE in patients with IDH1 wild-type tumors is strongly linked to podoplanin expression levels. © 2018 International Society on Thrombosis and Haemostasis.

  13. Overexpression of isocitrate dehydrogenase mutant proteins renders glioma cells more sensitive to radiation.

    PubMed

    Li, Sichen; Chou, Arthur P; Chen, Weidong; Chen, Ruihuan; Deng, Yuzhong; Phillips, Heidi S; Selfridge, Julia; Zurayk, Mira; Lou, Jerry J; Everson, Richard G; Wu, Kuan-Chung; Faull, Kym F; Cloughesy, Timothy; Liau, Linda M; Lai, Albert

    2013-01-01

    Mutations in isocitrate dehydrogenase 1 (IDH1) or 2 (IDH2) are found in a subset of gliomas. Among the many phenotypic differences between mutant and wild-type IDH1/2 gliomas, the most salient is that IDH1/2 mutant glioma patients demonstrate markedly improved survival compared with IDH1/2 wild-type glioma patients. To address the mechanism underlying the superior clinical outcome of IDH1/2 mutant glioma patients, we investigated whether overexpression of the IDH1(R132H) protein could affect response to therapy in the context of an isogenic glioma cell background. Stable clonal U87MG and U373MG cell lines overexpressing IDH1(WT) and IDH1(R132H) were generated, as well as U87MG cell lines overexpressing IDH2(WT) and IDH2(R172K). In vitro experiments were conducted to characterize baseline growth and migration and response to radiation and temozolomide. In addition, reactive oxygen species (ROS) levels were measured under various conditions. U87MG-IDH1(R132H) cells, U373MG-IDH1(R132H) cells, and U87MG-IDH2(R172K) cells demonstrated increased sensitivity to radiation but not to temozolomide. Radiosensitization of U87MG-IDH1(R132H) cells was accompanied by increased apoptosis and accentuated ROS generation, and this effect was abrogated by the presence of the ROS scavenger N-acetyl-cysteine. Interestingly, U87MG-IDH1(R132H) cells also displayed decreased growth at higher cell density and in soft agar, as well as decreased migration. Overexpression of IDH1(R132H) and IDH2(R172K) mutant protein in glioblastoma cells resulted in increased radiation sensitivity and altered ROS metabolism and suppression of growth and migration in vitro. These findings provide insight into possible mechanisms contributing to the improved outcomes observed in patients with IDH1/2 mutant gliomas.

  14. Biochemical, Cellular, and Biophysical Characterization of a Potent Inhibitor of Mutant Isocitrate Dehydrogenase IDH1*

    PubMed Central

    Davis, Mindy I.; Gross, Stefan; Shen, Min; Straley, Kimberly S.; Pragani, Rajan; Lea, Wendy A.; Popovici-Muller, Janeta; DeLaBarre, Byron; Artin, Erin; Thorne, Natasha; Auld, Douglas S.; Li, Zhuyin; Dang, Lenny; Boxer, Matthew B.; Simeonov, Anton

    2014-01-01

    Two mutant forms (R132H and R132C) of isocitrate dehydrogenase 1 (IDH1) have been associated with a number of cancers including glioblastoma and acute myeloid leukemia. These mutations confer a neomorphic activity of 2-hydroxyglutarate (2-HG) production, and 2-HG has previously been implicated as an oncometabolite. Inhibitors of mutant IDH1 can potentially be used to treat these diseases. In this study, we investigated the mechanism of action of a newly discovered inhibitor, ML309, using biochemical, cellular, and biophysical approaches. Substrate binding and product inhibition studies helped to further elucidate the IDH1 R132H catalytic cycle. This rapidly equilibrating inhibitor is active in both biochemical and cellular assays. The (+) isomer is active (IC50 = 68 nm), whereas the (−) isomer is over 400-fold less active (IC50 = 29 μm) for IDH1 R132H inhibition. IDH1 R132C was similarly inhibited by (+)-ML309. WT IDH1 was largely unaffected by (+)-ML309 (IC50 >36 μm). Kinetic analyses combined with microscale thermophoresis and surface plasmon resonance indicate that this reversible inhibitor binds to IDH1 R132H competitively with respect to α-ketoglutarate and uncompetitively with respect to NADPH. A reaction scheme for IDH1 R132H inhibition by ML309 is proposed in which ML309 binds to IDH1 R132H after formation of the IDH1 R132H NADPH complex. ML309 was also able to inhibit 2-HG production in a glioblastoma cell line (IC50 = 250 nm) and had minimal cytotoxicity. In the presence of racemic ML309, 2-HG levels drop rapidly. This drop was sustained until 48 h, at which point the compound was washed out and 2-HG levels recovered. PMID:24668804

  15. Biochemical, cellular, and biophysical characterization of a potent inhibitor of mutant isocitrate dehydrogenase IDH1.

    PubMed

    Davis, Mindy I; Gross, Stefan; Shen, Min; Straley, Kimberly S; Pragani, Rajan; Lea, Wendy A; Popovici-Muller, Janeta; DeLaBarre, Byron; Artin, Erin; Thorne, Natasha; Auld, Douglas S; Li, Zhuyin; Dang, Lenny; Boxer, Matthew B; Simeonov, Anton

    2014-05-16

    Two mutant forms (R132H and R132C) of isocitrate dehydrogenase 1 (IDH1) have been associated with a number of cancers including glioblastoma and acute myeloid leukemia. These mutations confer a neomorphic activity of 2-hydroxyglutarate (2-HG) production, and 2-HG has previously been implicated as an oncometabolite. Inhibitors of mutant IDH1 can potentially be used to treat these diseases. In this study, we investigated the mechanism of action of a newly discovered inhibitor, ML309, using biochemical, cellular, and biophysical approaches. Substrate binding and product inhibition studies helped to further elucidate the IDH1 R132H catalytic cycle. This rapidly equilibrating inhibitor is active in both biochemical and cellular assays. The (+) isomer is active (IC50 = 68 nm), whereas the (-) isomer is over 400-fold less active (IC50 = 29 μm) for IDH1 R132H inhibition. IDH1 R132C was similarly inhibited by (+)-ML309. WT IDH1 was largely unaffected by (+)-ML309 (IC50 >36 μm). Kinetic analyses combined with microscale thermophoresis and surface plasmon resonance indicate that this reversible inhibitor binds to IDH1 R132H competitively with respect to α-ketoglutarate and uncompetitively with respect to NADPH. A reaction scheme for IDH1 R132H inhibition by ML309 is proposed in which ML309 binds to IDH1 R132H after formation of the IDH1 R132H NADPH complex. ML309 was also able to inhibit 2-HG production in a glioblastoma cell line (IC50 = 250 nm) and had minimal cytotoxicity. In the presence of racemic ML309, 2-HG levels drop rapidly. This drop was sustained until 48 h, at which point the compound was washed out and 2-HG levels recovered. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Purification and Characterization of a Novel NAD(P)+-Farnesol Dehydrogenase from Polygonum minus Leaves.

    PubMed

    Ahmad-Sohdi, Nor-Ain-Shahajar; Seman-Kamarulzaman, Ahmad-Faris; Mohamed-Hussein, Zeti-Azura; Hassan, Maizom

    2015-01-01

    Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with Km values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The Km values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control.

  17. Purification and Characterization of a Novel NAD(P)+-Farnesol Dehydrogenase from Polygonum minus Leaves

    PubMed Central

    Seman-Kamarulzaman, Ahmad-Faris; Mohamed-Hussein, Zeti-Azura

    2015-01-01

    Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with K m values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The K m values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control. PMID:26600471

  18. Virgin coconut oil improves hepatic lipid metabolism in rats--compared with copra oil, olive oil and sunflower oil.

    PubMed

    Arunima, S; Rajamohan, T

    2012-11-01

    Effect of virgin coconut oil (VCO) on lipid levels and regulation of lipid metabolism compared with copra oil (CO), olive oil (OO), and sunflower oil (SFO) has been reported. Male Sprague-Dawley rats were fed different oils at 8% level for 45 days along with synthetic diet. Results showed that VCO feeding significantly lowered (P < 0.05) levels of total cholesterol, LDL+ VLDL cholesterol, Apo B and triglycerides in serum and tissues compared to rats fed CO, OO and SFO, while HDL-cholesterol and Apo A1 were significantly (P < 0.05) higher in serum of rats fed VCO than other groups. Hepatic lipogenesis was also down regulated in VCO fed rats, which was evident from the decreased activities of enzymes viz., HMG CoA reductase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase and malic enzyme. In addition, VCO significantly (P < 0.05) increased the activities of lipoprotein lipase, lecithin cholesterol acyl transferase and enhanced formation of bile acids. Results demonstrated hypolipidemic effect of VCO by regulating the synthesis and degradation of lipids.

  19. Differences in mitochondrial gene expression profiles, enzyme activities and myosin heavy chain types in yak versus bovine skeletal muscles.

    PubMed

    Lin, Y Q; Xu, Y O; Yue, Y; Jin, S Y; Qu, Y; Dong, F; Li, Y P; Zheng, Y C

    2012-08-29

    Hypoxia can affect energy metabolism. We examined gene expression and enzyme activity related to mitochondrial energy metabolism, as well as myosin heavy chain (MyHC) types in yaks (Bos grunniens) living at high altitudes. Real-time quantitative PCR assays indicated that the yak has significantly lower levels of carnitine palmitoyltransferase (CPT) mRNA in the biceps femoris and lower levels of uncoupling protein 3 (UCP3) mRNA in both biceps femoris and longissimus dorsi than in Yellow cattle. No significant differences between yak and Yellow cattle were observed in the activities of mitochondrial β-hydroxyacyl-CoA dehydrogenase, isocitrate dehydrogenase and cytochrome oxidase in the same muscles. Semi-quantitative RT-PCR analysis showed that the MyHC 1 mRNA levels in yak biceps femoris was lower than in Yellow cattle. We conclude that the yak has significantly lower mRNA levels of CPT, UCP3, and MyHC 1 in biceps femoris than in Yellow cattle, suggesting that the yak biceps femoris has lower fatty acid oxidation capacity and greater glycolytic metabolic potential.

  20. Targeting metabolic pathways for head and neck cancers therapeutics.

    PubMed

    Yamamoto, Masashi; Inohara, Hidenori; Nakagawa, Takashi

    2017-09-01

    Cancer cells have distinctive energy metabolism pathways that support their rapid cell division. The preference for anaerobic glycolysis under the normal oxygen condition is known as the Warburg effect and has been observed in head and neck cancers. These metabolic changes are controlled by cancer-related transcription factors, such as tumor suppressor gene and hypoxia inducible factor 1α. In addition, various metabolic enzymes also actively regulate cancer-specific metabolism including the switch between aerobic and anaerobic glycolysis. For a long time, these metabolic changes in cancer cells have been considered a consequence of transformation required to maintain the high rate of tumor cell replication. However, recent studies indicate that alteration of metabolism is sufficient to initiate tumor transformation. Indeed, oncogenic mutations in the metabolic enzymes, isocitrate dehydrogenase and succinate dehydrogenase, have been increasingly found in various cancers, including head and neck cancers. In the present review, we introduce recent findings regarding the cancer metabolism, including the molecular mechanisms of how they affect cancer pathogenesis and maintenance. We also discuss the current and future perspectives on therapeutics that target metabolic pathways, with an emphasis on head and neck cancer.

  1. Biosynthesis of Cutin

    PubMed Central

    Kolattukudy, P.E.; Croteau, Rodney; Walton, T.J.

    1975-01-01

    Long chain dicarboxylic acids are constituents of the protective biopolymers cutin and suberin of plants. Cell-free extracts from the excised epidermis of Vicia faba leaves catalyzed conversion of 16-hydroxy[G-3H]hexadecanoic acid to the corresponding dicarboxylic acid with nicotinamide-adenine dinucleotide phosphate as the preferred cofactor. This enzymatic activity, located largely in the 100,000g supernatant fraction, had a pH optimum near 8. This dehydrogenase showed an apparent Km of 1.25 × 10−5m and 3.6 × 10−4m for 16-hydroxyhexadecanoic acid and NADP, respectively. Modification of the substrate, either by esterification of the carboxyl group or by introduction of another hydroxyl group at C-10, resulted in a substantial (two-thirds) decrease in the rate of reaction, and hexadecanol was not a good substrate. The enzyme was inhibited by thiol reagents such as N-ethylmaleimide and p-chloromercuribenzoate. The aldehyde intermediate was trapped by the inclusion of dinitrophenyl hydrazine in the reaction mixture, and the 16-oxo compound was regenerated and identified. Furthermore, synthetic 16-oxo-[G-3H] hexadecanoic acid was readily converted to the dicarboxylic acid by the cell-free preparation. These results demonstrate that epidermis of Vicia faba contains an ω-hydroxyacid dehydrogenase and an ω-oxoacid dehydrogenase. PMID:16659184

  2. Biochemistry and physiology of hexose-6-phosphate knockout mice.

    PubMed

    Zielinska, Agnieszka E; Walker, Elizabeth A; Stewart, Paul M; Lavery, Gareth G

    2011-04-10

    Hexose-6-phosphate dehydrogenase (H6PDH) has emerged as an important factor in setting the redox status of the endoplasmic reticulum (ER) lumen. An important role of H6PDH is to generate a high NADPH/NADP(+) ratio which permits 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to act as an oxo-reductase, catalyzing the activation of glucocorticoids (GCs). In H6PDH knockout mice 11β-HSD1 assumes dehydrogenase activity and inactivates GCs, rendering the target cell relatively GC insensitive. Consequently, H6PDHKO mice have a phenotype consistent with defects in the permissive and adaptive actions of GCs upon physiology. H6PDHKO mice have also offered an insight into muscle physiology as they also present with a severe vacuolating myopathy, abnormalities of glucose homeostasis and activation of the unfolded protein response due to ER stress, and a number of mechanisms driving this phenotype are thought to be involved. This article will review what we understand of the redox control of GC hormone metabolism regulated by H6PDH, and how H6PDHKO mice have allowed an in-depth understanding of its potentially novel, GC-independent roles in muscle physiology. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues.

    PubMed

    Khan, Sheeba; Priyamvada, Shubha; Khan, Sara A; Khan, Wasim; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2009-07-01

    Trichloroethylene (TCE), an industrial solvent, is a major environmental contaminant. Histopathological examinations revealed that TCE caused liver and kidney toxicity and carcinogenicity. However, biochemical mechanism and tissue response to toxic insult are not completely elucidated. We hypothesized that TCE induces oxidative stress to various rat tissues and alters their metabolic functions. Male Wistar rats were given TCE (1000 mg/kg/day) in corn oil orally for 25 d. Blood and tissues were collected and analyzed for various biochemical and enzymatic parameters. TCE administration increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but decreased serum glucose, inorganic phosphate and phospholipids indicating kidney and liver toxicity. Activity of hexokinase, lactate dehydrogenase increased in the intestine and liver whereas decreased in renal tissues. Malate dehydrogenase and glucose-6-phosphatase and fructose-1, 6-bisphosphatase decreased in all tissues whereas increased in medulla. Glucose-6-phosphate dehydrogenase increased but NADP-malic enzyme decreased in all tissues except in medulla. The activity of BBM enzymes decreased but renal Na/Pi transport increased. Superoxide dismutase and catalase activities variably declined whereas lipid peroxidation significantly enhanced in all tissues. The present results indicate that TCE caused severe damage to kidney, intestine, liver and brain; altered carbohydrate metabolism and suppressed antioxidant defense system.

  4. Genome-wide identification, classification, and analysis of NADP-ME family members from 12 crucifer species.

    PubMed

    Tao, Peng; Guo, Weiling; Li, Biyuan; Wang, Wuhong; Yue, Zhichen; Lei, Juanli; Zhao, Yanting; Zhong, Xinmin

    2016-06-01

    NADP-dependent malic enzymes (NADP-MEs) play essential roles in both normal development and stress responses in plants. Here, genome-wide analysis was performed to identify 65 putative NADP-ME genes from 12 crucifer species. These NADP-ME genes were grouped into five categories of syntenic orthologous genes and were divided into three clades of a phylogenic tree. Promoter motif analysis showed that NADP-ME1 genes in Group IV were more conserved with each other than the other NADP-ME genes in Groups I and II. A nucleotide motif involved in ABA responses, desiccation and seed development was found in the promoters of most NADP-ME1 genes. Generally, the NADP-ME genes of Brassica rapa, B. oleracea and B. napus had less introns than their corresponding Arabidopsis orthologs. In these three Brassica species, the NADP-ME genes derived from the least fractionated subgenome have lost less introns than those from the medium fractionated and most fractionated subgenomes. BrNADP-ME1 showed the highest expression in petals and mature embryos. Two paralogous NADP-ME2 genes (BrNADP-ME2a and BrNADP-ME2b) shared similar expression profiles and differential expression levels. BrNADP-ME3 showed down-regulation during embryogenesis and reached its lowest expression in early cotyledonary embryos. BrNADP-ME4 was expressed widely in multiple organs and showed high expression during the whole embryogenesis process. Different NADP-ME genes of B. rapa showed differential gene expression profiles in young leaves after ABA treatment or cold stress. Our genome-wide identification and characterization of NADP-ME genes extend our understanding of the evolution or function of this family in Brassicaceae.

  5. Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica.

    PubMed

    Mallona, Izaskun; Egea-Cortines, Marcos; Weiss, Julia

    2011-08-01

    The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional levels.

  6. Bioreduction with Efficient Recycling of NADPH by Coupled Permeabilized Microorganisms▿

    PubMed Central

    Zhang, Wei; O'Connor, Kevin; Wang, Daniel I. C.; Li, Zhi

    2009-01-01

    The glucose dehydrogenase (GDH) from Bacillus subtilis BGSC 1A1 was cloned and functionally expressed in Escherichia coli BL21(pGDH1) and XL-1 Blue(pGDH1). Controlled permeabilization of recombinant E. coli BL21 and XL-1 Blue with EDTA-toluene under optimized conditions resulted in permeabilized cells with specific activities of 61 and 14 U/g (dry weight) of cells, respectively, for the conversion of NADP+ to NADPH upon oxidation of glucose. The permeabilized recombinant strains were more active than permeabilized B. subtilis BGSC 1A1, did not exhibit NADPH/NADH oxidase activity, and were useful for regeneration of both NADH and NADPH. Coupling of permeabilized cells of Bacillus pumilus Phe-C3 containing an NADPH-dependent ketoreductase and an E. coli recombinant expressing GDH as a novel biocatalytic system allowed enantioselective reduction of ethyl 3-keto-4,4,4-trifluorobutyrate with efficient recycling of NADPH; a total turnover number (TTN) of 4,200 mol/mol was obtained by using E. coli BL21(pGDH1) as the cofactor-regenerating microorganism with initial addition of 0.005 mM NADP+. The high TTN obtained is in the practical range for producing fine chemicals. Long-term stability of the permeabilized cell couple and a higher product concentration were demonstrated by 68 h of bioreduction of ethyl 3-keto-4,4,4-trifluorobutyrate with addition of 0.005 mM NADP+ three times; 50.5 mM (R)-ethyl 3-hydroxy-4,4,4-trifluorobutyrate was obtained with 95% enantiomeric excess, 84% conversion, and an overall TTN of 3,400 mol/mol. Our method results in practical synthesis of (R)-ethyl 3-hydroxy-4,4,4-trifluorobutyrate, and the principle described here is generally applicable to other microbial reductions with cofactor recycling. PMID:19047388

  7. Chlorogenic acid ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes.

    PubMed

    Akila, Palaniyandi; Asaikumar, Lourthurani; Vennila, Lakshmanan

    2017-01-01

    This study was deliberated to aspire the effects of chlorogenic acid (CGA) against myocardial infarction (MI) induced by Isoproterenol (ISO), in a rat model. In the pathology of MI, enzymes released due to the mitochondrial and lysosomal lipid peroxidation play an integral role. Induction of rats with ISO (85mg/kg BW) for 2 consecutive days resulted in a significant decrease in the activities of heart mitochondrial enzymes isocitrate dehydrogenase (ICDH), α-ketoglutarate dehydrogenase (α-KGDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH). The activities of lysosomal enzymes (β- glucosidase, β-glucuronidase, α-galactosidase, β-galactosidase, cathepsin-B and cathepsin-D) were increased significantly in the heart tissue. A prominent expression of LDH 1 and LDH 2 isoenzymes in the serum were observed and changes in the Electrocardiographic (ECG) patterns were also recorded in the ISO-induced rats. The prior administrations of CGA (40mg/kg BW) for 19days markedly ameliorated ISO induced alterations in ECG and significantly restored the activities of all the above enzymes in the heart of ISO-induced rats, which substantiates the stress stabilizing action of CGA. Oral administration of CGA (40mg/kg BW) to normal rats did not show any significant changes. These biochemical functional alterations were supported by the histology of heart (Massion's trichrome and Picrosirius red staining for collagen formation). Thereupon, this study shows that 40mg/kg BW of CGA gives protection against ISO-induced MI and demonstrates that CGA has a significant effect in the protection of heart. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. The biochemical basis for thermoregulation in heat-producing flowers

    PubMed Central

    Umekawa, Yui; Seymour, Roger S.; Ito, Kikukatsu

    2016-01-01

    Thermoregulation (homeothermy) in animals involves a complex mechanism involving thermal receptors throughout the body and integration in the hypothalamus that controls shivering and non-shivering thermogenesis. The flowers of some ancient families of seed plants show a similar degree of physiological thermoregulation, but by a different mechanism. Here, we show that respiratory control in homeothermic spadices of skunk cabbage (Symplocarpus renifolius) is achieved by rate-determining biochemical reactions in which the overall thermodynamic activation energy exhibits a negative value. Moreover, NADPH production, catalyzed by mitochondrial isocitrate dehydrogenase in a chemically endothermic reaction, plays a role in the pre-equilibrium reaction. We propose that a law of chemical equilibrium known as Le Châtelier’s principle governs the homeothermic control in skunk cabbage. PMID:27095582

  9. Elucidation of the TMab-6 Monoclonal Antibody Epitope Against Telomerase Reverse Transcriptase.

    PubMed

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kato, Yukinari

    2018-05-03

    Telomerase reverse transcriptase (TERT) and mutations of the TERT promoter are significant in the pathogenesis of 1p/19q-codeleted oligodendrogliomas and isocitrate dehydrogenase gene wild-type glioblastomas, as well as melanomas and squamous cell carcinomas. We previously developed an antihuman TERT monoclonal antibody (mAb), TMab-6, which is applicable in immunohistochemistry for human tissues. However, the binding epitope of TMab-6 against TERT is yet to be elucidated. In this study, enzyme-linked immunosorbent assay and immunohistochemistry were utilized for investigating the epitope of TMab-6. The findings revealed that the critical epitope of TMab-6 is the TERT sequence PSTSRPPRPWD; Thr310 and Ser311 of TERT are especially significant amino acids for TMab-6 recognition.

  10. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase.

    PubMed

    Taillefer, M; Rydzak, T; Levin, D B; Oresnik, I J; Sparling, R

    2015-04-01

    Clostridium thermocellum produces ethanol as one of its major end products from direct fermentation of cellulosic biomass. Therefore, it is viewed as an attractive model for the production of biofuels via consolidated bioprocessing. However, a better understanding of the metabolic pathways, along with their putative regulation, could lead to improved strategies for increasing the production of ethanol. In the absence of an annotated pyruvate kinase in the genome, alternate means of generating pyruvate have been sought. Previous proteomic and transcriptomic work detected high levels of a malate dehydrogenase and malic enzyme, which may be used as part of a malate shunt for the generation of pyruvate from phosphoenolpyruvate. The purification and characterization of the malate dehydrogenase and malic enzyme are described in order to elucidate their putative roles in malate shunt and their potential role in C. thermocellum metabolism. The malate dehydrogenase catalyzed the reduction of oxaloacetate to malate utilizing NADH or NADPH with a kcat of 45.8 s(-1) or 14.9 s(-1), respectively, resulting in a 12-fold increase in catalytic efficiency when using NADH over NADPH. The malic enzyme displayed reversible malate decarboxylation activity with a kcat of 520.8 s(-1). The malic enzyme used NADP(+) as a cofactor along with NH4 (+) and Mn(2+) as activators. Pyrophosphate was found to be a potent inhibitor of malic enzyme activity, with a Ki of 0.036 mM. We propose a putative regulatory mechanism of the malate shunt by pyrophosphate and NH4 (+) based on the characterization of the malate dehydrogenase and malic enzyme. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat.

    PubMed

    Geng, Xingxia; Ye, Jiali; Yang, Xuetong; Li, Sha; Zhang, Lingli; Song, Xiyue

    2018-01-23

    Cytoplasmic male sterility (CMS) where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ) of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH)-dehydrogenase and adenosine-triphosphate (ATP) synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR) analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.

  12. Succinate Dehydrogenase Mutation Underlies Global Epigenomic Divergence in Gastrointestinal Stromal Tumor

    PubMed Central

    Killian, J. Keith; Kim, Su Young; Miettinen, Markku; Smith, Carly; Merino, Maria; Tsokos, Maria; Quezado, Martha; Smith, William I.; Jahromi, Mona S.; Xekouki, Paraskevi; Szarek, Eva; Walker, Robert L.; Lasota, Jerzy; Raffeld, Mark; Klotzle, Brandy; Wang, Zengfeng; Jones, Laura; Zhu, Yuelin; Wang, Yonghong; Waterfall, Joshua J.; O’Sullivan, Maureen J.; Bibikova, Marina; Pacak, Karel; Stratakis, Constantine; Janeway, Katherine A.; Schiffman, Joshua D.; Fan, Jian-Bing; Helman, Lee; Meltzer, Paul S.

    2014-01-01

    Gastrointestinal stromal tumors (GIST) harbor driver mutations of signal transduction kinases such as KIT, or, alternatively, manifest loss-of-function defects in the mitochondrial succinate dehydrogenase (SDH) complex, a component of the Krebs cycle and electron transport chain. We have uncovered a striking divergence between the DNA methylation profiles of SDH-deficient GIST (n = 24) versus KIT tyrosine kinase pathway–mutated GIST (n = 39). Infinium 450K methylation array analysis of formalin-fixed paraffin-embedded tissues disclosed an order of magnitude greater genomic hypermethylation relative to SDH-deficient GIST versus the KIT-mutant group (84.9 K vs. 8.4 K targets). Epigenomic divergence was further found among SDH-mutant paraganglioma/pheochromocytoma (n = 29), a developmentally distinct SDH-deficient tumor system. Comparison of SDH -mutant GIST with isocitrate dehydrogenase -mutant glioma, another Krebs cycle–defective tumor type, revealed comparable measures of global hypo- and hypermethylation. These data expose a vital connection between succinate metabolism and genomic DNA methylation during tumorigenesis, and generally implicate the mitochondrial Krebs cycle in nuclear epigenomic maintenance. SIGNIFICANCE This study shows that SDH deficiency underlies pervasive DNA hypermethylation in multiple tumor lineages, generally defining the Krebs cycle as mitochondrial custodian of the methylome. We propose that this phenomenon may result from a failure of maintenance CpG demethylation, secondary to inhibition of the TET 5-methylcytosine dioxgenase demethylation pathway, by inhibitory metabolites that accumulate in tumors with Krebs cycle dysfunction. PMID:23550148

  13. Redox regulation of mammalian sperm capacitation

    PubMed Central

    O’Flaherty, Cristian

    2015-01-01

    Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility. PMID:25926608

  14. Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Vidal, Rebeca

    2017-04-01

    The protein AdhA from the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) has been previously reported to show alcohol dehydrogenase activity towards ethanol and both NAD and NADP. This protein is currently being used in genetically modified strains of Synechocystis capable of synthesizing ethanol showing the highest ethanol productivities. In the present work, mutant strains of Synechocystis lacking AdhA have been constructed and tested for tolerance to ethanol. The lack of AdhA in the wild-type strain reduces survival to externally added ethanol at lethal concentration of 4% (v/v). On the other hand, the lack of AdhA in an ethanologenic strain diminishes tolerance of cells to internally produced ethanol. It is also shown that light-activated heterotrophic growth (LAHG) of the wild-type strain is impaired in the mutant strain lacking AdhA (∆adhA strain). Photoautotrophic, mixotrophic, and photoheterotrophic growth are not affected in the mutant strain. Based on phenotypic characterization of ∆adhA mutants, the possible physiological function of AdhA in Synechocystis is discussed.

  15. [Morphological changes in the thyroid gland of rats during various phases of the estral cycle].

    PubMed

    Pliner, L I; Ledovskaia, S M

    1975-08-01

    The functional state of the thyroid gland and the concentration of thyroid hormones in the peripheral blood were studied in 20 mature female albino rats during their estral cycle. Evaluation of the thyroid functional state was made according to data of histological, morphological (the diameter of folliculi, the height of the thyroid epithelium) and histochemical analysis (determination of NAD and NADP-dehydrogenase, succinatedehydrogenase, lactate dehydrogenase, peroxydase, acid and alkaline phosphatase) as well as biochemical determination of iodine bound with protein (IBP) in the blood plasma and investigation of the ratio of the parameters in question under conditions of the sex cycle. The cyclic changes of the morphological state of the thyroid gland attended by the phases of the estral cycle were revealed. The activation of the organ was observed in proestrus and estrus which was evidenced by high levels of activity of the enzymes under study, high concentration of IBP in the blood and increased height of thyreocytes. A decreased function of the thyroid parenchyma was observed at the period of metaestrus-diestrus.

  16. FR171456 is a specific inhibitor of mammalian NSDHL and yeast Erg26p

    PubMed Central

    Helliwell, Stephen B.; Karkare, Shantanu; Bergdoll, Marc; Rahier, Alain; Leighton-Davis, Juliet R.; Fioretto, Celine; Aust, Thomas; Filipuzzi, Ireos; Frederiksen, Mathias; Gounarides, John; Hoepfner, Dominic; Hofmann, Andreas; Imbert, Pierre-Eloi; Jeker, Rolf; Knochenmuss, Richard; Krastel, Philipp; Margerit, Anais; Memmert, Klaus; Miault, Charlotte V.; Rao Movva, N.; Muller, Alban; Naegeli, Hans-Ulrich; Oberer, Lukas; Prindle, Vivian; Riedl, Ralph; Schuierer, Sven; Sexton, Jessica A.; Tao, Jianshi; Wagner, Trixie; Yin, Hong; Zhang, Juan; Roggo, Silvio; Reinker, Stefan; Parker, Christian N.

    2015-01-01

    FR171456 is a natural product with cholesterol-lowering properties in animal models, but its molecular target is unknown, which hinders further drug development. Here we show that FR171456 specifically targets the sterol-4-alpha-carboxylate-3-dehydrogenase (Saccharomyces cerevisiae—Erg26p, Homo sapiens—NSDHL (NAD(P) dependent steroid dehydrogenase-like)), an essential enzyme in the ergosterol/cholesterol biosynthesis pathway. FR171456 significantly alters the levels of cholesterol pathway intermediates in human and yeast cells. Genome-wide yeast haploinsufficiency profiling experiments highlight the erg26/ERG26 strain, and multiple mutations in ERG26 confer resistance to FR171456 in growth and enzyme assays. Some of these ERG26 mutations likely alter Erg26 binding to FR171456, based on a model of Erg26. Finally, we show that FR171456 inhibits an artificial Hepatitis C viral replicon, and has broad antifungal activity, suggesting potential additional utility as an anti-infective. The discovery of the target and binding site of FR171456 within the target will aid further development of this compound. PMID:26456460

  17. Chemically engineered papain as artificial formate dehydrogenase for NAD(P)H regeneration.

    PubMed

    Haquette, Pierre; Talbi, Barisa; Barilleau, Laure; Madern, Nathalie; Fosse, Céline; Salmain, Michèle

    2011-08-21

    Organometallic complexes of the general formula [(η(6)-arene)Ru(N⁁N)Cl](+) and [(η(5)-Cp*)Rh(N⁁N)Cl](+) where N⁁N is a 2,2'-dipyridylamine (DPA) derivative carrying a thiol-targeted maleimide group, 2,2'-bispyridyl (bpy), 1,10-phenanthroline (phen) or ethylenediamine (en) and arene is benzene, 2-chloro-N-[2-(phenyl)ethyl]acetamide or p-cymene were identified as catalysts for the stereoselective reduction of the enzyme cofactors NAD(P)(+) into NAD(P)H with formate as a hydride donor. A thorough comparison of their effectiveness towards NAD(+) (expressed as TOF) revealed that the Rh(III) complexes were much more potent catalysts than the Ru(II) complexes. Within the Ru(II) complex series, both the N⁁N and arene ligands forming the coordination sphere had a noticeable influence on the activity of the complexes. Covalent anchoring of the maleimide-functionalized Ru(II) and Rh(III) complexes to the cysteine endoproteinase papain yielded hybrid metalloproteins, some of them displaying formate dehydrogenase activity with potentially interesting kinetic parameters.

  18. Caloric restriction counteracts age-related changes in the activities of sorbitol metabolizing enzymes from mouse liver

    PubMed Central

    Hagopian, Kevork; Ramsey, Jon J.; Weindruch, Richard

    2009-01-01

    The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactae/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing. PMID:18953666

  19. Flexible metabolism in Metarhizium anisopliae and Beauveria bassiana: role of the glyoxylate cycle during insect pathogenesis.

    PubMed

    Padilla-Guerrero, Israel Enrique; Barelli, Larissa; González-Hernández, Gloria Angélica; Torres-Guzmán, Juan Carlos; Bidochka, Michael J

    2011-01-01

    Insect pathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have an increasing role in the control of agricultural insect pests and vectors of human diseases. Many of the virulence factors are well studied but less is known of the metabolism of these fungi during the course of insect infection or saprobic growth. Here, we assessed enzyme activity and gene expression in the central carbon metabolic pathway, including isocitrate dehydrogenase, aconitase, citrate synthase, malate synthase (MLS) and isocitrate lyase (ICL), with particular attention to the glyoxylate cycle when M. anisopliae and B. bassiana were grown under various conditions. We observed that ICL and MLS, glyoxylate cycle intermediates, were upregulated during growth on 2-carbon compounds (acetate and ethanol) as well as in insect haemolymph. We fused the promoter of the M. anisopliae ICL gene (Ma-icl) to a marker gene (mCherry) and showed that Ma-icl was upregulated when M. anisopliae was grown in the presence of acetate. Furthermore, Ma-icl was upregulated when fungi were engulfed by insect haemocytes as well as during appressorium formation. Addition of the ICL inhibitor 3-nitroproprionate delayed conidial germination and inhibited appressorium formation. These results show that these insect pathogenic fungi have a flexible metabolism that includes the glyoxylate cycle as an integral part of germination, pathogenesis and saprobic growth.

  20. Relationships between the Efficiencies of Photosystems I and II and Stromal Redox State in CO(2)-Free Air : Evidence for Cyclic Electron Flow in Vivo.

    PubMed

    Harbinson, J; Foyer, C H

    1991-09-01

    The responses of the efficiencies of photosystems I and II, stromal redox state (as indicated by NADP-malate dehydrogenase activation state), and activation of the Benson-Calvin cycle enzymes ribulose 1,5-bisphosphate carboxylase and fructose 1,6-bisphosphatase to varying irradiance were measured in pea (Pisum sativum L.) leaves operating close to the CO(2) compensation point. A comparison of the relationships among these parameters obtained from leaves in air was made with those obtained when the leaves were maintained in air from which the CO(2) had been removed. P700 was more oxidized at any measured irradiance in CO(2)-free air than in air. The relationship between the quantum efficiencies of the photosystems in CO(2)-free air was distinctly curvilinear in contrast to the predominantly linear relationship obtained with leaves in air. This nonlinearity may be consistent with the operation of cyclic electron flow around photosystem I because the quantum efficiency of photosystem II was much more restricted than the quantum efficiency of photosystem I. In CO(2)-free air, measured NADP-malate dehydrogenase activities varied considerably at low irradiances. However, at high irradiance the activity of the enzyme was low, implying that the stroma was oxidized. In contrast, fructose-1,6-bisphosphatase activities tended to increase with increasing electron flux through the photosystems. Ribulose-1,5-bisphosphate carboxylase activity remained relatively constant with respect to irradiance in CO(2)-free air, with an activation state 50% of maximum. We conclude that, at the CO(2) compensation point and high irradiance, low redox states are favored and that cyclic electron flow may be substantial. These two features may be the requirements necessary to trigger and maintain the dissipative processes in the thylakoid membrane.

  1. Induction of Reduced Photorespiratory Activity in Submersed and Amphibious Aquatic Macrophytes 1

    PubMed Central

    Salvucci, Michael E.; Bowes, George

    1981-01-01

    Incubation under water in a 30 C/14-hour or 12 C/10-hour photoperiod caused the CO2 compensation points of 10 aquatic macrophytes to decrease below 25 or increase above 50 microliters CO2 per liter, respectively. Submerged and aerial leaves of two amphibious angiosperms (Myriophyllum brasiliense and Proserpinaca palustris) maintained high compensation points when incubated in air but, when the submerged or aerial leaves of Proserpinaca were incubated under water, the compensation points dropped as low as 10. This suggests that, in addition to temperature and photoperiod, some factor associated with submergence regulates the compensation point of aquatic plants. In the high-compensation point plants, photorespiration, as a percentage of net photosynthesis, was equivalent to that in terrestrial C3 plants. For Hydrilla verticillata, the decreasing CO2 compensation points (110, 40, and 10) were associated with reduced photorespiration, as indicated by decreased O2 inhibition, decreased rates of CO2 evolution into CO2-free air, and increased net photosynthetic rates. The decrease in the CO2 compensation points of Hydrilla, Egeria densa, and Cabomba caroliniana was accompanied by an increase in the activity of phosphoenolpyruvate, but not of ribulose bisphosphate, carboxylase. In Hydrilla, several C4 enzymes also increased in activity to the following levels (micromoles per gram fresh weight per hour): pyruvate Pi dikinase (35), pyrophosphatase (716), adenylate kinase (525), NAD and NADP malate dehydrogenase (6565 and 30), NAD and NADP malic enzymes (239 and 44), and aspartate and alanine aminotransferases (357 and 85), whereas glycolate oxidase (6) and phosphoglycolate and phosphoglycerate phosphatases (76 and 32) showed no change. Glycolate dehydrogenase and phosphoenolpyruvate carboxykinase were undetectable. The reduced photorespiration in these plants may be due to increased CO2 fixation via a C4 acid pathway. However, for three Myriophyllum species, some other mechanism appears operative, as phosphoenolpyruvate carboxylase was not increased in the low compensation point state, and ribulose bisphosphate carboxylase remained the predominant carboxylation enzyme. PMID:16661670

  2. Differential effects of exposure to parasites and bacteria on stress response in turbot Scophthalmus maximus simultaneously stressed by low water depth.

    PubMed

    Rodríguez-Quiroga, J J; Otero-Rodiño, C; Suárez, P; Nieto, T P; García Estévez, J M; San Juan, F; Soengas, J L

    2017-07-01

    The stress response of turbot Scophthalmus maximus was evaluated in fish maintained 8 days under different water depths, normal (NWD, 30 cm depth, total water volume 40 l) or low (LWD, 5 cm depth, total water volume 10 l), in the additional presence of infection-infestation of two pathogens of this species. This was caused by intraperitoneal injection of sublethal doses of the bacterium Aeromonas salmonicida subsp. salmonicida or the parasite Philasterides dicentrarchi (Ciliophora:Scuticociliatida). The LWD conditions were stressful for fish, causing increased levels of cortisol in plasma, decreased levels of glycogen in liver and nicotinamide adenine dinucleotide phosphate (NADP) and increased activities of G6Pase and GSase. The presence of bacteria or parasites in fish under NWD resulted in increased cortisol levels in plasma whereas in liver, changes were of minor importance including decreased levels of lactate and GSase activity. The simultaneous presence of bacteria and parasites in fish under NWD resulted a sharp increase in the levels of cortisol in plasma and decreased levels of glucose. Decreased levels of glycogen and lactate and activities of GSase and glutathione reductase (GR), as well as increased activities of glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and levels of nicotinamide adenine dinucleotide phosphate (NADPH) occurred in the same fish in liver. Finally, the presence of pathogens in S. maximus under stressful conditions elicited by LWD resulted in synergistic actions of both type of stressors in cortisol levels. In liver, the presence of bacteria or parasites induced a synergistic action on several variables such as decreased activities of G6Pase and GSase as well as increased levels of NADP and NADPH and increased activities of GPase, G6PDH and 6PGDH. © 2017 The Fisheries Society of the British Isles.

  3. Isolation and Characterization of a Soluble NADPH-Dependent Fe(III) Reductase from Geobacter sulfurreducens

    PubMed Central

    Kaufmann, Franz; Lovley, Derek R.

    2001-01-01

    NADPH is an intermediate in the oxidation of organic compounds coupled to Fe(III) reduction in Geobacter species, but Fe(III) reduction with NADPH as the electron donor has not been studied in these organisms. Crude extracts of Geobacter sulfurreducens catalyzed the NADPH-dependent reduction of Fe(III)-nitrilotriacetic acid (NTA). The responsible enzyme, which was recovered in the soluble protein fraction, was purified to apparent homogeneity in a four-step procedure. Its specific activity for Fe(III) reduction was 65 μmol · min−1 · mg−1. The soluble Fe(III) reductase was specific for NADPH and did not utilize NADH as an electron donor. Although the enzyme reduced several forms of Fe(III), Fe(III)-NTA was the preferred electron acceptor. The protein possessed methyl viologen:NADP+ oxidoreductase activity and catalyzed the reduction of NADP+ with reduced methyl viologen as electron donor at a rate of 385 U/mg. The enzyme consisted of two subunits with molecular masses of 87 and 78 kDa and had a native molecular mass of 320 kDa, as determined by gel filtration. The purified enzyme contained 28.9 mol of Fe, 17.4 mol of acid-labile sulfur, and 0.7 mol of flavin adenine dinucleotide per mol of protein. The genes encoding the two subunits were identified in the complete sequence of the G. sulfurreducens genome from the N-terminal amino acid sequences derived from the subunits of the purified protein. The sequences of the two subunits had about 30% amino acid identity to the respective subunits of the formate dehydrogenase from Moorella thermoacetica, but the soluble Fe(III) reductase did not possess formate dehydrogenase activity. This soluble Fe(III) reductase differs significantly from previously characterized dissimilatory and assimilatory Fe(III) reductases in its molecular composition and cofactor content. PMID:11443080

  4. Comparison of crystal structures of human type 3 3α-hydroxysteroid dehydrogenase reveals an “induced-fit” mechanism and a conserved basic motif involved in the binding of androgen

    PubMed Central

    Couture, Jean-François; Pereira De Jésus-Tran, Karine; Roy, Anne-Marie; Cantin, Line; Côté, Pierre-Luc; Legrand, Pierre; Luu-The, Van; Labrie, Fernand; Breton, Rock

    2005-01-01

    The aldo-keto reductase (AKR) human type 3 3α-hydroxysteroid dehydrogenase (h3α–HSD3, AKR1C2) plays a crucial role in the regulation of the intracellular concentrations of testosterone and 5α-dihydrotestosterone (5α-DHT), two steroids directly linked to the etiology and the progression of many prostate diseases and cancer. This enzyme also binds many structurally different molecules such as 4-hydroxynonenal, polycyclic aromatic hydrocarbons, and indanone. To understand the mechanism underlying the plasticity of its substrate-binding site, we solved the binary complex structure of h3α–HSD3-NADP(H) at 1.9 Å resolution. During the refinement process, we found acetate and citrate molecules deeply engulfed in the steroid-binding cavity. Superimposition of this structure with the h3α–HSD3-NADP(H)-testosterone/acetate ternary complex structure reveals that one of themobile loops forming the binding cavity operates a slight contraction movement against the citrate molecule while the side chains of many residues undergo numerous conformational changes, probably to create an optimal binding site for the citrate. These structural changes, which altogether cause a reduction of the substrate-binding cavity volume (from 776 Å3 in the presence of testosterone/acetate to 704 Å3 in the acetate/citratecomplex), are reminiscent of the “induced-fit” mechanism previously proposed for the aldose reductase, another member of the AKR superfamily. We also found that the replacement of residues Arg301 and Arg304, localized near the steroid-binding cavity, significantly affects the 3α–HSD activity of this enzyme toward 5α-DHT and completely abolishes its 17β–HSD activity on 4-dione. All these results have thus been used to reevaluate the binding mode of this enzyme for androgens. PMID:15929998

  5. Highly efficient enzymatic synthesis of tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate with a mutant alcohol dehydrogenase of Lactobacillus kefir.

    PubMed

    He, Xiu-Juan; Chen, Shao-Yun; Wu, Jian-Ping; Yang, Li-Rong; Xu, Gang

    2015-11-01

    tert-Butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) is a valuable chiral synthon, which is used for the synthesis of the cholesterol-lowering drugs atorvastatin and rosuvastatin. To date, only the alcohol dehydrogenases from Lactobacillus brevis (LbADH) and Lactobacillus kefir (LkADH) have demonstrated catalytic activity toward the asymmetric reduction of tert-butyl 6-chloro-3,5-dioxohexanoate (CDOH) to (S)-CHOH. Herein, a tetrad mutant of LkADH (LkTADH), A94T/F147L/L199H/A202L, was screened to be more efficient in this bioreduction process, exhibiting a 3.7- and 42-fold improvement in specific activity toward CDOH (1.27 U/mg) over LbADH (0.34 U/mg) and wild-type LkADH (0.03 U/mg), respectively. The molecular basis for the improved catalytic activity of LkTADH toward CDOH was investigated using homology modeling and docking analysis. Two major issues had a significant impact on the biocatalytic efficiency of this process, including (i) the poor aqueous stability of the substrate and (ii) partial substrate inhibition. A fed-batch strategy was successfully developed to address these issues and maintain a suitably low substrate concentration throughout the entire process. Several other parameters were also optimized, including the pH, temperature, NADP(+) concentration and cell loading. A final CDOH concentration of 427 mM (100 g/L) gave (S)-CHOH in 94 % yield and 99.5 % e.e. after a reaction time of 38 h with whole cells expressing LkTADH. The space-time yield and turnover number of NADP(+) in this process were 10.6 mmol/L/h and 16,060 mol/mol, respectively, which were the highest values ever reported. This new approach therefore represents a promising alternative for the efficient synthesis of (S)-CHOH.

  6. Metabolic Mapping: Quantitative Enzyme Cytochemistry and Histochemistry to Determine the Activity of Dehydrogenases in Cells and Tissues.

    PubMed

    Molenaar, Remco J; Khurshed, Mohammed; Hira, Vashendriya V V; Van Noorden, Cornelis J F

    2018-05-26

    Altered cellular metabolism is a hallmark of many diseases, including cancer, cardiovascular diseases and infection. The metabolic motor units of cells are enzymes and their activity is heavily regulated at many levels, including the transcriptional, mRNA stability, translational, post-translational and functional level. This complex regulation means that conventional quantitative or imaging assays, such as quantitative mRNA experiments, Western Blots and immunohistochemistry, yield incomplete information regarding the ultimate activity of enzymes, their function and/or their subcellular localization. Quantitative enzyme cytochemistry and histochemistry (i.e., metabolic mapping) show in-depth information on in situ enzymatic activity and its kinetics, function and subcellular localization in an almost true-to-nature situation. We describe a protocol to detect the activity of dehydrogenases, which are enzymes that perform redox reactions to reduce cofactors such as NAD(P) + and FAD. Cells and tissue sections are incubated in a medium that is specific for the enzymatic activity of one dehydrogenase. Subsequently, the dehydrogenase that is the subject of investigation performs its enzymatic activity in its subcellular site. In a chemical reaction with the reaction medium, this ultimately generates blue-colored formazan at the site of the dehydrogenase's activity. The formazan's absorbance is therefore a direct measure of the dehydrogenase's activity and can be quantified using monochromatic light microscopy and image analysis. The quantitative aspect of this protocol enables researchers to draw statistical conclusions from these assays. Besides observational studies, this technique can be used for inhibition studies of specific enzymes. In this context, studies benefit from the true-to-nature advantages of metabolic mapping, giving in situ results that may be physiologically more relevant than in vitro enzyme inhibition studies. In all, metabolic mapping is an indispensable technique to study metabolism at the cellular or tissue level. The technique is easy to adopt, provides in-depth, comprehensive and integrated metabolic information and enables rapid quantitative analysis.

  7. Cloning, functional expression and characterization of a bifunctional 3-hydroxybutanal dehydrogenase /reductase involved in acetone metabolism by Desulfococcus biacutus.

    PubMed

    Frey, Jasmin; Rusche, Hendrik; Schink, Bernhard; Schleheck, David

    2016-11-25

    The strictly anaerobic, sulfate-reducing bacterium Desulfococcus biacutus can utilize acetone as sole carbon and energy source for growth. Whereas in aerobic and nitrate-reducing bacteria acetone is activated by carboxylation with CO 2 to acetoacetate, D. biacutus involves CO as a cosubstrate for acetone activation through a different, so far unknown pathway. Proteomic studies indicated that, among others, a predicted medium-chain dehydrogenase/reductase (MDR) superfamily, zinc-dependent alcohol dehydrogenase (locus tag DebiaDRAFT_04514) is specifically and highly produced during growth with acetone. The MDR gene DebiaDRAFT_04514 was cloned and overexpressed in E. coli. The purified recombinant protein required zinc as cofactor, and accepted NADH/NAD + but not NADPH/NADP + as electron donor/acceptor. The pH optimum was at pH 8, and the temperature optimum at 45 °C. Highest specific activities were observed for reduction of C 3 - C 5 -aldehydes with NADH, such as propanal to propanol (380 ± 15 mU mg -1 protein), butanal to butanol (300 ± 24 mU mg -1 ), and 3-hydroxybutanal to 1,3-butanediol (248 ± 60 mU mg -1 ), however, the enzyme also oxidized 3-hydroxybutanal with NAD + to acetoacetaldehyde (83 ± 18 mU mg -1 ). The enzyme might play a key role in acetone degradation by D. biacutus, for example as a bifunctional 3-hydroxybutanal dehydrogenase/reductase. Its recombinant production may represent an important step in the elucidation of the complete degradation pathway.

  8. Suppression of fat deposition in broiler chickens by (-)-hydroxycitric acid supplementation: A proteomics perspective

    PubMed Central

    Peng, Mengling; Han, Jing; Li, Longlong; Ma, Haitian

    2016-01-01

    (-)-Hydroxycitric acid (HCA) suppresses fatty acid synthesis in animals, but its biochemical mechanism in poultry is unclear. This study identified the key proteins associated with fat metabolism and elucidated the biochemical mechanism of (-)-HCA in broiler chickens. Four groups (n = 30 each) received a diet supplemented with 0, 1000, 2000 or 3000 mg/kg (-)-HCA for 4 weeks. Of the differentially expressed liver proteins, 40 and 26 were identified in the mitochondrial and cytoplasm respectively. Pyruvate dehydrogenase E1 components (PDHA1 and PDHB), dihydrolipoyl dehydrogenase (DLD), aconitase (ACO2), a-ketoglutarate dehydrogenase complex (DLST), enoyl-CoA hydratase (ECHS1) and phosphoglycerate kinase (PGK) were upregulated, while NADP-dependent malic enzyme (ME1) was downregulated. Biological network analysis showed that the identified proteins were involved in glycometabolism and lipid metabolism, whereas PDHA1, PDHB, ECHS1, and ME1 were identified in the canonical pathway by Ingenuity Pathway Analysis. The data indicated that (-)-HCA inhibited fatty acid synthesis by reducing the acetyl-CoA supply, via promotion of the tricarboxylic acid cycle (upregulation of PDHA1, PDHB, ACO2, and DLST expression) and inhibition of ME1 expression. Moreover, (-)-HCA promoted fatty acid beta-oxidation by upregulating ECHS1 expression. These results reflect a biochemically relevant mechanism of fat reduction by (-)-HCA in broiler chickens. PMID:27586962

  9. Solvent isotope-induced equilibrium perturbation for isocitrate lyase.

    PubMed

    Quartararo, Christine E; Hadi, Timin; Cahill, Sean M; Blanchard, John S

    2013-12-23

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacterium's life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage ((D₂O)V = 2.0 ± 0.1, and (D₂O)[V/K(isocitrate)] = 2.2 ± 0.3) arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of the succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate, and succinate prepared in D₂O would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by ¹H NMR spectroscopy shows a clear equilibrium perturbation in D₂O. The final equilibrium isotopic composition of reactants in D₂O revealed dideuterated succinate, protiated glyoxylate, and monodeuterated isocitrate, with the transient appearance and disappearance of monodeuterated succinate. A model for the equilibrium perturbation of substrate species and their time-dependent isotopic composition is presented.

  10. Wild-type and mutated IDH1/2 enzymes and therapy responses.

    PubMed

    Molenaar, Remco J; Maciejewski, Jaroslaw P; Wilmink, Johanna W; van Noorden, Cornelis J F

    2018-04-01

    Isocitrate dehydrogenase 1 and 2 (IDH1/2) are key enzymes in cellular metabolism, epigenetic regulation, redox states, and DNA repair. IDH1/2 mutations are causal in the development and/or progression of various types of cancer due to supraphysiological production of D-2-hydroxyglutarate. In various tumor types, IDH1/2-mutated cancers predict for improved responses to treatment with irradiation or chemotherapy. The present review discusses the molecular basis of the sensitivity of IDH1/2-mutated cancers with respect to the function of mutated IDH1/2 in cellular processes and their interactions with novel IDH1/2-mutant inhibitors. Finally, lessons learned from IDH1/2 mutations for future clinical applications in IDH1/2 wild-type cancers are discussed.

  11. Constitutional abnormalities of IDH1 combined with secondary mutations predispose a patient with Maffucci syndrome to acute lymphoblastic leukemia.

    PubMed

    Hirabayashi, Shinsuke; Seki, Masafumi; Hasegawa, Daisuke; Kato, Motohiro; Hyakuna, Nobuyuki; Shuo, Takuya; Kimura, Shunsuke; Yoshida, Kenichi; Kataoka, Keisuke; Fujii, Yoichi; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Kiyokawa, Nobutaka; Miyano, Satoru; Ogawa, Seishi; Takita, Junko; Manabe, Atsushi

    2017-12-01

    Maffucci syndrome is a nonhereditary disorder caused by somatic mosaic isocitrate dehydrogenase 1 or 2 (IDH1 or IDH2) mutations and is characterized by multiple enchondromas along with hemangiomas. Malignant transformation of enchondromas to chondrosarcomas and secondary neoplasms, such as brain tumors or acute myeloid leukemia, are serious complications. A 15-year-old female with Maffucci syndrome developed B-cell precursor acute lymphoblastic leukemia (BCP-ALL). A somatic mutation in IDH1 was detected in hemangioma and leukemic cells. KRAS mutation and deletion of IKZF1 were detected in leukemic cells. Patients with Maffucci syndrome may, therefore, be at risk of BCP-ALL associated with secondary genetic events that affect lymphocyte differentiation. © 2017 Wiley Periodicals, Inc.

  12. Induction chemotherapy in acute myeloid leukaemia: origins and emerging directions.

    PubMed

    Upadhyay, Vivek A; Fathi, Amir T

    2018-03-01

    This review summarizes the hallmark developments in induction chemotherapy for acute myeloid leukaemia and further describes future directions in its evolution. We describe the origin of induction chemotherapy. We also describe notable modifications and adjustments to 7+3 induction chemotherapy since its development. Finally, we describe new efforts to modify and add new agents to induction therapy, including '7+3 Plus' combinations. Induction chemotherapy remains the standard of care for the majority of patients with acute myeloid leukaemia. However, its success is limited in a subset of patients by toxicity, failure to achieve remission and potential for subsequent relapse. Novel agents such as mutant fms like tyrosine kinase 3 inhibitors, mutant isocitrate dehydrogenase inhibitors, CD33-antibody drug conjugates and liposomal formulations have demonstrated significant potential as modifications to traditional induction chemotherapy.

  13. Mutant IDH1 is required for IDH1 mutated tumor cell growth

    PubMed Central

    Jin, Genglin; Pirozzi, Christopher J.; Chen, Lee H.; Lopez, Giselle Y.; Duncan, Christopher G.; Feng, Jie; Spasojevic, Ivan; Bigner, Darell D.; He, Yiping; Yan, Hai

    2012-01-01

    Frequent somatic hotspot mutations in isocitrate dehydrogenase 1 (IDH1) have been identified in gliomas, acute myeloid leukemias, chondrosarcomas, and other cancers, providing a likely avenue for targeted cancer therapy. However, whether mutant IDH1 protein is required for maintaining IDH1 mutated tumor cell growth remains unknown. Here, using a genetically engineered inducible system, we report that selective suppression of endogenous mutant IDH1 expression in HT1080, a fibrosarcoma cell line with a native IDH1R132C heterozygous mutation, significantly inhibits cell proliferation and decreases clonogenic potential. Our findings offer insights into changes that may contribute to the inhibition of cell proliferation and offer a strong preclinical rationale for utilizing mutant IDH1 as a valid therapeutic target. PMID:22885298

  14. Prognostic significance of IDH 1 mutation in patients with glioblastoma multiforme.

    PubMed

    Khan, Inamullah; Waqas, Muhammad; Shamim, Muhammad Shahzad

    2017-05-01

    Focus of brain tumour research is shifting towards tumour genesis and genetics, and possible development of individualized treatment plans. Genetic analysis shows recurrent mutation in isocitrate dehydrogenase (IDH1) gene in most Glioblastoma multiforme (GBM) cells. In this review we evaluated the prognostic significance of IDH 1 mutation on the basis of published evidence. Multiple retrospective clinical analyses correlate the presence of IDH1 mutation in GBM with good prognostic outcomes compared to wild-type IDH1. A systematic review reported similar results. Based on the review of current literature IDH1 mutation is an independent factor for longer overall survival (OS) and progression free survival (PFS) in GBM patients when compared to wild-type IDH1. The prognostic significance opens up new avenues for treatment.

  15. Schizosaccharomyces pombe possesses an unusual and a conventional hexokinase: biochemical and molecular characterization of both hexokinases.

    PubMed

    Petit, T; Blázquez, M A; Gancedo, C

    1996-01-08

    Two hexokinases were characterized in Schizosaccharomyces pombe: hexokinase 1, with a low phosphorylation coefficient on glucose (Km 8.5 mM) and hexokinase 2, a kinetically conventional hexokinase. Genes hxk1+ and hxk2+ encoding these enzymes were cloned and sequenced. Disruption of hxk1+ had no effect on growth but disruption of hxk2+ doubled the generation time in glucose. Spores carrying the double disruption hxk1+ hxk2+ did not grow on glucose or fructose after one week. Expression of hxk1+ increased strongly during growth in fructose or glycerol. Expression of hxk2+ was highest during growth in glycerol. A NADP-dependent glucose dehydrogenase was detected, but not a glucokinase.

  16. NAD(P)H-hydrate dehydratase- a metabolic repair enzyme and its role in Bacillus subtilis stress adaptation.

    PubMed

    Petrovova, Miroslava; Tkadlec, Jan; Dvoracek, Lukas; Streitova, Eliska; Licha, Irena

    2014-01-01

    One of the strategies for survival stress conditions in bacteria is a regulatory adaptive system called general stress response (GSR), which is dependent on the SigB transcription factor in Bacillus sp. The GSR is one of the largest regulon in Bacillus sp., including about 100 genes; however, most of the genes that show changes in expression during various stresses have not yet been characterized or assigned a biochemical function for the encoded proteins. Previously, we characterized the Bacillus subtilis168 osmosensitive mutant, defective in the yxkO gene (encoding a putative ribokinase), which was recently assigned in vitro as an ADP/ATP-dependent NAD(P)H-hydrate dehydratase and was demonstrated to belong to the SigB operon. We show the impact of YxkO on the activity of SigB-dependent Pctc promoter and adaptation to osmotic and ethanol stress and potassium limitation respectively. Using a 2DE approach, we compare the proteomes of WT and mutant strains grown under conditions of osmotic and ethanol stress. Both stresses led to changes in the protein level of enzymes that are involved in motility (flagellin), citrate cycle (isocitrate dehydrogenase, malate dehydrogenase), glycolysis (phosphoglycerate kinase), and decomposition of Amadori products (fructosamine-6-phosphate deglycase). Glutamine synthetase revealed a different pattern after osmotic stress. The patterns of enzymes for branched amino acid metabolism and cell wall synthesis (L-alanine dehydrogenase, aspartate-semialdehyde dehydrogenase, ketol-acid reductoisomerase) were altered after ethanol stress. We performed the first characterization of a Bacillus subtilis168 knock-out mutant in the yxkO gene that encodes a metabolite repair enzyme. We show that such enzymes could play a significant role in the survival of stressed cells.

  17. Effects of dietary heated fats on rat liver enzyme activity.

    PubMed

    Lamboni, C; Perkins, E G

    1996-09-01

    The objective of this study was to evaluate the effects of dietary heated fats from a commercial deep-fat frying operation on rat liver enzyme activity. The fats, partially hydrogenated soybean oil (PHSBO) used for four days and for 7 days (7-DH) for frying foodstuffs in a commercial restaurant, were fed to rats in either free access to food or by pair-feeding graded doses. All diets were isocaloric and contained 15 g/100 g of diet. Experiments were conducted with control rats fed non-heated (NH) PHSBO diet. Animals fed 7-DH diet in each set of experiments had larger amounts of cytochromes P450 and b5 and greater activity of NADPH-cytochrome P450 reductase when compared to controls. The activities of carnitine palmitoyltransferase-I and isocitrate dehydrogenase were significantly lower in rats fed test diets in comparison to controls. A significantly depressed activity of glucose 6-phosphate dehydrogenase was also noticed for these animals when compared to those fed NH. In addition, liver and microsomal protein concentrations were significantly greater in rats fed the used oils in comparison to controls, and liver glycogen was significantly lower.

  18. Selection for increased muscling in Angus cattle did not increase the glycolytic potential or negatively impact pH decline, retail colour stability or mineral content.

    PubMed

    McGilchrist, P; Greenwood, P L; Pethick, D W; Gardner, G E

    2016-04-01

    This study determined the impact of selection for greater muscling in Angus cattle on myofibre characteristics, muscle enzymatics, retail colour stability, pH decline and mineral content of the semimembranosus (SM), semitendinosus (ST) and longissimus thoracis (LT). Muscle from 10 low muscled (low) and 11 high muscled (high) steers were analysed. The high steers had myofibres 22% and 24% larger in cross-sectional area in the SM and ST (P<0.05), and 8.6% less type IIX myofibres in the LT than the low steers (P<0.05). The highs had 4.9% lower lactate dehydrogenase activity, 10.2% and 12.3% higher citrate synthase and isocitrate dehydrogenase activity than lows (P<0.05). The highs had 27% more iron in the LT (P<0.05). The results indicate that the oxidative capacity of muscle can be maintained in more muscular cattle with no detrimental effects to mineral content, pH decline or retail colour stability. Myofibre hypertrophy is one mechanism leading to greater muscle mass of these high muscled cattle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979.

    PubMed

    Su, Liqiu; Shen, Yanbing; Gao, Tian; Luo, Jianmei; Wang, Min

    2017-08-01

    In steroid biotransformation, soybean oil can improve the productivity of steroids by increasing substrate solubility and strengthen the cell membrane permeability. However, little is known of its role as oxygen carrier and its mechanism of promoting the steroid biotransformation. In this work, soybean oil used as oxygen vector for the enhancement of androst-4-ene-3,17-dione (AD) production by Mycobacterium neoaurum TCCC 11979 (MNR) was investigated. Upon the addition of 16% (v/v) soybean oil, the volumetric oxygen transfer coefficient (K L a) value increased by 44%, and the peak molar yield of AD (55.76%) was achieved. Analysis of intracellular cofactor levels showed high NAD + , ATP level, and a low NADH/NAD + ratio. Meanwhile, the two key enzymes of the tricarboxylic acid (TCA) cycle, namely, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were upregulated after incubation with soybean oil. These enhancements induced by the increasing of oxygen supply showed positive effects on phytosterol (PS) bioconversion. Results could contribute to the understanding of effects of soybean oil as oxygen vector on steroid biotransformation and provided a convenient method for enhancing the efficiency of aerobic steroid biocatalysis.

  20. Baicalein abrogates reactive oxygen species (ROS)-mediated mitochondrial dysfunction during experimental pulmonary carcinogenesis in vivo.

    PubMed

    Naveenkumar, Chandrashekar; Raghunandhakumar, Subramanian; Asokkumar, Selvamani; Devaki, Thiruvengadam

    2013-04-01

    Our current study aimed to evaluate the chemotherapeutic efficacy of baicalein (BE) in Swiss albino mice, which is exposed to benzo(a)pyrene [B(a)P] for its ability to alleviate mitochondrial dysfunction and systolic failure. Here, we report that oral administration of B(a)P (50 mg/kg body weight)-induced pulmonary genotoxicities in mice was assessed in terms of elevation in reactive oxygen species (ROS) generation and DNA damage in lung mitochondria. MDA-DNA adducts were formed in immunohistochemical analysis, which confirmed nuclear DNA damage. mRNA expression levels studied by RT-PCR analysis of voltage-dependent anion channel (VDAC) and adenine nucleotide translocase (ANT) were found to be significantly decreased and showed a marked increase in membrane permeability transition pore (MPTP) opening. Accompanied by up-regulated Bcl-xL and down-regulated Bid, Bim and Cyt-c proteins studied by immunoblot were observed in B(a)P-induced lung cancer-bearing animals. Administration of BE (12 mg/kg body weight) significantly reversed all the above deleterious changes. Moreover, assessment of mitochondrial enzyme system revealed that BE treatment effectively counteracts B(a)P-induced down-regulated levels/activities of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH dehydrogenase, cytochrome-C-oxidase and ATP levels. Restoration of mitochondria from oxidative damage was further confirmed by transmission electron microscopic examination. Further analysis of lipid peroxidation, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, reduced glutathione, vitamin E and vitamin C in lung mitochondria was carried out to substantiate the antioxidant effect of BE. The overall data conclude that chemotherapeutic efficacy of BE might have strong mitochondria protective and restoration capacity in sub-cellular level against lung carcinogenesis in Swiss albino mice. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  1. Estrogen regulates energy metabolic pathway and upstream adenosine 5'-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia.

    PubMed

    Tamrakar, Pratistha; Ibrahim, Baher A; Gujar, Amit D; Briski, Karen P

    2015-02-01

    The ability of estrogen to shield the brain from the bioenergetic insult hypoglycemia is unclear. Estradiol (E) prevents hypoglycemic activation of the energy deficit sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) in hindbrain metabolosensory A2 noradrenergic neurons. This study investigates the hypothesis that estrogen regulates A2 AMPK through control of fuel metabolism and/or upstream protein kinase/phosphatase enzyme expression. A2 cells were harvested by laser microdissection after insulin or vehicle (V) injection of E- or oil (O)-implanted ovariectomized female rats. Cell lysates were evaluated by immunoblot for glycolytic, tricarboxylic acid cycle, respiratory chain, and acetyl-CoA-malonyl-CoA pathway enzymes. A2 phosphofructokinase (PFKL), isocitrate dehydrogenase, pyruvate dehydrogenase, and ATP synthase subunit profiles were elevated in E/V vs. O/V; hypoglycemia augmented PFKL and α-ketoglutarate dehydrogenase expression in E only. Hypoglycemia increased A2 Ca(2+) /calmodulin-dependent protein kinase-β in O and reduced protein phosphatase in both groups. A2 phospho-AMPK levels were equivalent in O/V vs. E/V but elevated during hypoglycemia in O only. These results implicate E in compensatory upregulation of substrate catabolism and corresponding maintenance of energy stability of A2 metabolosensory neurons during hypoglycemia, outcomes that support the potential viability of molecular substrates for hormone action as targets for therapies alleviating hypoglycemic brain injury. © 2014 Wiley Periodicals, Inc.

  2. Regulation of Glyoxysomal Enzymes during Germination of Cucumber

    PubMed Central

    Lamb, Jamie E.; Riezman, Howard; Becker, Wayne M.; Leaver, Christopher J.

    1978-01-01

    The glyoxysomal enzymes isocitrate lyase and catalase have been isolated from etiolated cucumber (Cucumis sativus) cotyledons. The enzymes co-purified through polyethyleneimine precipitation and (NH4)2SO4 precipitation, and were resolved by gel filtration on Sepharose 6B followed by chromatography on diethylaminoethyl-cellulose (isocitrate lyase) or hydroxylapatite (catalase). Purity of the isolated enzymes was assessed by sodium dodecyl sulfate-polyacrylamide electrophoresis, isoelectric focusing, and immunoelectrophoresis. Antibodies raised to both enzymes in rabbits and in tumor-bearing mice were shown to be monospecific by immunoelectrophoresis against total homogenate protein. Isocitrate lyase and catalase represent about 0.56% and 0.1%, respectively, of total extractable cotyledonary protein. Both enzymes appear to be present in a single form. Molecular weights of the native enzymes and its subunits are 225,000 and 54,500 for catalase, and 325,000 and 63,500 for isocitrate lyase. The pH optimum for isocitrate lyase is about 6.75 in morpholinopropane sulfonic acid buffer, but varies significantly with buffer used. The Km for d-isocitrate is 39 micromolar. A double antibody technique (rabbit anti-isocitrate lyase followed by 125I-labeled goat anti-rabbit immunoglobulin G) has been used to visualize isocitrate lyase subunit protein on sodium dodecyl sulfate-polyacrylamide with high specificity and sensitivity. ImagesFig. 5Fig. 6Fig. 7Fig. 8 PMID:16660600

  3. Metabolic engineering to guide evolution - Creating a novel mode for L-valine production with Corynebacterium glutamicum.

    PubMed

    Schwentner, Andreas; Feith, André; Münch, Eugenia; Busche, Tobias; Rückert, Christian; Kalinowski, Jörn; Takors, Ralf; Blombach, Bastian

    2018-03-06

    Evolutionary approaches are often undirected and mutagen-based yielding numerous mutations, which need elaborate screenings to identify relevant targets. We here apply Metabolic engineering to Guide Evolution (MGE), an evolutionary approach evolving and identifying new targets to improve microbial producer strains. MGE is based on the idea to impair the cell's metabolism by metabolic engineering, thereby generating guided evolutionary pressure. It consists of three distinct phases: (i) metabolic engineering to create the evolutionary pressure on the applied strain followed by (ii) a cultivation phase with growth as straightforward screening indicator for the evolutionary event, and (iii) comparative whole genome sequencing (WGS), to identify mutations in the evolved strains, which are eventually re-engineered for verification. Applying MGE, we evolved the PEP and pyruvate carboxylase-deficient strain C. glutamicum Δppc Δpyc to grow on glucose as substrate with rates up to 0.31 ± 0.02 h -1 which corresponds to 80% of the growth rate of the wildtype strain. The intersection of the mutations identified by WGS revealed isocitrate dehydrogenase (ICD) as consistent target in three independently evolved mutants. Upon re-engineering in C. glutamicum Δppc Δpyc, the identified mutations led to diminished ICD activities and activated the glyoxylate shunt replenishing oxaloacetate required for growth. Intracellular relative quantitative metabolome analysis showed that the pools of citrate, isocitrate, cis-aconitate, and L-valine were significantly higher compared to the WT control. As an alternative to existing L-valine producer strains based on inactivated or attenuated pyruvate dehydrogenase complex, we finally engineered the PEP and pyruvate carboxylase-deficient C. glutamicum strains with identified ICD mutations for L-valine production by overexpression of the L-valine biosynthesis genes. Among them, C. glutamicum Δppc Δpyc ICD G407S (pJC4ilvBNCE) produced up to 8.9 ± 0.4 g L-valine L -1 , with a product yield of 0.22 ± 0.01 g L-valine per g glucose. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Genome-wide methylation profiling identifies an essential role of reactive oxygen species in pediatric glioblastoma multiforme and validates a methylome specific for H3 histone family 3A with absence of G-CIMP/isocitrate dehydrogenase 1 mutation

    PubMed Central

    Jha, Prerana; Pia Patric, Irene Rosita; Shukla, Sudhanshu; Pathak, Pankaj; Pal, Jagriti; Sharma, Vikas; Thinagararanjan, Sivaarumugam; Santosh, Vani; Suri, Vaishali; Sharma, Mehar Chand; Arivazhagan, Arimappamagan; Suri, Ashish; Gupta, Deepak; Somasundaram, Kumaravel; Sarkar, Chitra

    2014-01-01

    Background Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH)1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Methods Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine–phosphate–guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Results Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine–phosphate–guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Conclusions Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation–specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and needs further evaluation. PMID:24997139

  5. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication.

    PubMed

    Paschka, Peter; Schlenk, Richard F; Gaidzik, Verena I; Habdank, Marianne; Krönke, Jan; Bullinger, Lars; Späth, Daniela; Kayser, Sabine; Zucknick, Manuela; Götze, Katharina; Horst, Heinz-A; Germing, Ulrich; Döhner, Hartmut; Döhner, Konstanze

    2010-08-01

    To analyze the frequency and prognostic impact of isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) mutations in acute myeloid leukemia (AML). We studied 805 adults (age range, 16 to 60 years) with AML enrolled on German-Austrian AML Study Group (AMLSG) treatment trials AML HD98A and APL HD95 for mutations in exon 4 of IDH1 and IDH2. Patients were also studied for NPM1, FLT3, MLL, and CEBPA mutations. The median follow-up for survival was 6.3 years. IDH mutations were found in 129 patients (16.0%) -IDH1 in 61 patients (7.6%), and IDH2 in 70 patients (8.7%). Two patients had both IDH1 and IDH2 mutations. All but one IDH1 mutation caused substitutions of residue R132; IDH2 mutations caused changes of R140 (n = 48) or R172 (n = 22). IDH mutations were associated with older age (P < .001; effect conferred by IDH2 only); lower WBC (P = .04); higher platelets (P < .001); cytogenetically normal (CN) -AML (P< .001); and NPM1 mutations, in particular with the genotype of mutated NPM1 without FLT3 internal tandem duplication (ITD; P < .001). In patients with CN-AML with the latter genotype, IDH mutations adversely impacted relapse-free survival (RFS; P = .02) and overall survival (P = .03), whereas outcome was not affected in patients with CN-AML who lacked this genotype. In CN-AML, multivariable analyses revealed a significant interaction between IDH mutation and the genotype of mutated NPM1 without FLT3-ITD (ie, the adverse impact of IDH mutation [RFS]; P = .046 was restricted to this patient subset). IDH1 and IDH2 mutations are recurring genetic changes in AML. They constitute a poor prognostic factor in CN-AML with mutated NPM1 without FLT3-ITD, which allows refined risk stratification of this AML subset.

  6. An analysis of the prognostic value of IDH1 (isocitrate dehydrogenase 1) mutation in Polish glioma patients.

    PubMed

    Lewandowska, Marzena Anna; Furtak, Jacek; Szylberg, Tadeusz; Roszkowski, Krzysztof; Windorbska, Wiesława; Rytlewska, Joanna; Jóźwicki, Wojciech

    2014-02-01

    IDH1 (isocitrate dehydrogenase 1) is a potential biomarker and drug target. Genomic and epigenetic data on astrocytoma have demonstrated that the IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Furthermore, recent studies have also indicated that a mutant IDH1 inhibitor induced demethylation of histone H3K9me3 and expression of genes associated with gliogenic differentiation. As the presence of the p.R132H mutation in the IDH1 gene seems to be a more powerful prognostic marker than O(6)-methylguanine-DNA methyltransferase promoter status, we evaluated the presence of IDH1 mutation in Polish patients with astrocytoma, glioblastoma, oligoastrocytoma, ganglioglioma, oligodendroglioma, and ependymoma. The IDH1 mutation status at codon 132 was determined using a mouse monoclonal antibody specific for the R132H mutation, direct sequencing, and Co-amplification at Lower Denaturation Temperature (COLD) polymerase chain reaction (PCR) high-resolution melting-curve analysis (HRM). Wild-type (WT) IDH1 was detected in cases with a World Health Organization (WHO) grade I astrocytoma. The IDH1 c.G395A; p.R132H mutation was observed in 56 and 94 % of grade II and grade III astrocytoma cases, respectively. Significant differences in the median overall survival were observed in astrocytoma patients grouped on the basis of the presence of IDH1 mutation: survival was 24 months longer in grade II astrocytoma and 12 months longer in glioblastoma. Overall survival was compared between grade II astrocytoma patients with low or high expression of the mutant protein. Interestingly, lower R132H expression correlated with better overall survival. Our results indicate the usefulness of assessing the R132H IDH1 mutation in glioma patients: the presence or absence of the R132H mutation can help pathologists to distinguish pilocytic astrocytomas (IDH1 WT) from diffuse ones (R132H IDH1/WT). Moreover, low IDH1 p.R132H expression was related to better prognosis. This clinical implication appears to be important for personalization of prognosis and treatment by oncologists.

  7. Isocitrate dehydrogenase 1 R132H mutation is not detected in angiocentric glioma.

    PubMed

    Raghunathan, Aditya; Olar, Adriana; Vogel, Hannes; Parker, John R; Coventry, Susan C; Debski, Robert; Albarracin, Constance T; Aldape, Kenneth D; Cahill, Daniel P; Powell, Suzanne Z; Fuller, Gregory N

    2012-08-01

    Mutations of isocitrate dehydrogenase-1 gene (IDH1), most commonly resulting in replacement of arginine at position 132 by histidine (R132H), have been described in World Health Organization grade II and III diffuse gliomas and secondary glioblastoma. Immunohistochemistry using a mouse monoclonal antibody has a high specificity and sensitivity for detecting IDH1 R132H mutant protein in sections from formalin-fixed, paraffin-embedded tissue. Angiocentric glioma (AG), a unique neoplasm with mixed phenotypic features of diffuse glioma and ependymoma, has recently been codified as a grade I neoplasm in the 2007 World Health Organization classification of central nervous system tumors. The present study was designed to evaluate IDH1 R132H protein in AG. Three cases of AG were collected, and the diagnoses were confirmed. Expression of mutant IDH1 R132H protein was determined by immunohistochemistry on representative formalin-fixed, paraffin-embedded sections using the antihuman mouse monoclonal antibody IDH1 R132H (Dianova, Hamburg, Germany). Known IDH1 mutation-positive and IDH1 wild-type cases of grade II to IV glioma served as positive and negative controls. All 3 patients were male, aged 3, 5, and 15 years, with intra-axial tumors in the right posterior parietal-occipital lobe, right frontal lobe, and left frontal lobe, respectively. All 3 cases showed characteristic morphologic features of AG, including a monomorphous population of slender bipolar cells that diffusely infiltrated cortical parenchyma and ensheathed cortical blood vessels radially and longitudinally. All 3 cases were negative for the presence of IDH1 R132H mutant protein (0/3). All control cases showed appropriate reactivity. IDH1 R132H mutation has been described as a common molecular signature of grade II and III diffuse gliomas and secondary glioblastoma; however, AG, which exhibits some features of diffuse glioma, has not been evaluated. The absence of mutant IDH1 R132H protein expression in AG may help further distinguish this unique neoplasm from diffuse glioma. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Substrate specific effects of calcium on metabolism of rat heart mitochondria.

    PubMed

    Panov, A V; Scaduto, R C

    1996-04-01

    Oxidative metabolism in the heart is tightly coupled to mechanical work. Because this coupling process is believed to involve Ca2+, the roles of mitochondrial Ca2+ in the regulation of oxidative phosphorylation was studied in isolated rat heart mitochondria. The electrical component of the mitochondrial membrane potential (delta psi) and the redox state of the pyridine nucleotides were determined during the oxidation of various substrates under different metabolic states. In the absence of added adenine nucleotides, the NADP+ redox couple was almost completely reduced, regardless of the specific substrate and the presence of Ca2+, whereas NAD+ couple redox state was highly dependent on the substrate type and the presence of Ca2+. Titration of respiration with ADP, in the presence of excess hexokinase and glucose, showed that both respiration and NAD(P)+ reduction were very sensitive to ADP. The maximal enzyme reaction rate of ADP-stimulated respiration Michaelis constants (Km) for ADP were dependent on the particular substrate employed. delta psi was much less sensitive to ADP. With either alpha-ketoglutarate or glutamate as substrate, Ca2+ significantly increased reduction of NAD(P)+.Ca2+ did not influence NAD(P)+ reduction with either acetylcarnitine or pyruvate as substrate. In the presence of ADP, delta psi was increased by Ca2+ at all metabolic states with glutamate plus malate, 0.5 mM alpha-ketoglutarate plus malate, or pyruvate plus malate as substrates. The data presented support the hypothesis that cardiac respiration is controlled by the availability of both Ca2+ and ADP to mitochondria. The data indicate that an increase in substrate supply to mitochondria can increase mitochondrial respiration at given level of ADP. This effect can be produced by Ca2+ with substrates such as glutamate, which utilize alpha-ketoglutarate dehydrogenase activity for oxidation. Increases in respiration by Ca2+ may mitigate an increase in ADP during periods of increased cardiac work.

  9. Conserved and Divergent Rhythms of Crassulacean Acid Metabolism-Related and Core Clock Gene Expression in the Cactus Opuntia ficus-indica1[C][W

    PubMed Central

    Mallona, Izaskun; Egea-Cortines, Marcos; Weiss, Julia

    2011-01-01

    The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional levels. PMID:21677095

  10. Role of 11β-OH-C(19) and C(21) steroids in the coupling of 11β-HSD1 and 17β-HSD3 in regulation of testosterone biosynthesis in rat Leydig cells.

    PubMed

    Latif, Syed A; Shen, Mae; Ge, Ren-Shan; Sottas, Chantal M; Hardy, Matthew P; Morris, David J

    2011-06-01

    Here we describe further experiments to support our hypothesis that bidirectional 11β-HSD1-dehydrogenase in Leydig cells is a NADP(H) regenerating system. In the absence of androstenedione (AD), substrate for 17β-HSD3, incubation of Leydig cells with corticosterone (B) or several C(19)- and C(21)-11β-OH-steroids, in the presence of [(3)H]-11-dehydro-corticosterone (A), stimulated 11β-HSD1-reductase activity. However, in presence of 30 μM AD, testosterone (Teso) synthesis is stimulated from 4 to 197 picomole/25,000 cells/30 min and concomitantly inhibited 11β-HSD1-reductase activity, due to competition for the common cofactor NADPH needed for both reactions. Testo production was further significantly increased (p<0.05) to 224-267 picomole/25,000 cells/30 min when 10 μM 11β-OH-steroids (in addition to 30 μM AD) were also included. Similar results were obtained in experiments conducted with lower concentrations of AD (5 μM), and B or A (500 nM). Incubations of 0.3-6.0 μM of corticosterone (plus or minus 30 μM AD) were then performed to test the effectiveness of 17β-HSD3 as a possible NADP(+) regenerating system. In the absence of AD, increasing amounts (3-44 pmol/25,000 cells/30 min) of 11-dehydro-corticosterone were produced with increasing concentrations of corticosterone in the medium. When 30 μM AD was included, the rate of 11-dehydro-corticosterone formation dramatically increased 1.3-5-fold producing 4-210 pmol/25,000 cells/30 min of 11-dehydro-corticosterone. We conclude that 11β-HSD1 is enzymatically coupled to 17β-HSD3, utilizing NADPH and NADP in intermeshed regeneration systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. RDH13L, an enzyme responsible for the aldehyde-alcohol redox coupling reaction (AL-OL coupling reaction) to supply 11-cis retinal in the carp cone retinoid cycle.

    PubMed

    Sato, Shinya; Miyazono, Sadaharu; Tachibanaki, Shuji; Kawamura, Satoru

    2015-01-30

    Cone photoreceptors require effective pigment regeneration mechanisms to maintain their sensitivity in the light. Our previous studies in carp cones suggested the presence of an unconventional and very effective mechanism to produce 11-cis retinal, the necessary component in pigment regeneration. In this reaction (aldehyde-alcohol redox coupling reaction, AL-OL coupling reaction), formation of 11-cis retinal, i.e. oxidation of 11-cis retinol is coupled to reduction of an aldehyde at a 1:1 molar ratio without exogenous NADP(H) which is usually required in this kind of reaction. Here, we identified carp retinol dehydrogenase 13-like (RDH13L) as an enzyme catalyzing the AL-OL coupling reaction. RDH13L was partially purified from purified carp cones, identified as a candidate protein, and its AL-OL coupling activity was confirmed using recombinant RDH13L. We further examined the substrate specificity, subcellular localization, and expression level of RDH13L. Based on these results, we concluded that RDH13L contributes to a significant part, but not all, of the AL-OL coupling activity in carp cones. RDH13L contained tightly bound NADP(+) which presumably functions as a cofactor in the reaction. Mouse RDH14, a mouse homolog of carp RDH13L, also showed the AL-OL coupling activity. Interestingly, although carp cone membranes, carp RDH13L and mouse RDH14 all showed the coupling activity at 15-37 °C, they also showed a conventional NADP(+)-dependent 11-cis retinol oxidation activity above 25 °C without addition of aldehydes. This dual mechanism of 11-cis retinal synthesis attained by carp RDH13L and mouse RDH14 probably contribute to effective pigment regeneration in cones that function in the light. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanfeng; Zheng, Yi; Qin, Ling

    Beta-hydroxyacid dehydrogenase (β-HAD) genes have been identified in all sequenced genomes of eukaryotes and prokaryotes. Their gene products catalyze the NAD+- or NADP+-dependent oxidation of various β-hydroxy acid substrates into their corresponding semialdehyde. In many fungal and bacterial genomes, multiple β-HAD genes are observed leading to the hypothesis that these gene products may have unique, uncharacterized metabolic roles specific to their species. The genomes of Geobacter sulfurreducens and Geobacter metallireducens each contain two potential β-HAD genes. The protein sequences of one pair of these genes, Gs-βHAD (Q74DE4) and Gm-βHAD (Q39R98), have 65% sequence identity and 77% sequence similarity with eachmore » other. Both proteins reduce succinic semialdehyde, a metabolite of the GABA shunt. To further explore the structural and functional characteristics of these two β-HADs with a potentially unique substrate specificity, crystal structures for Gs-βHAD and Gm-βHAD in complex with NADP+ were determined to a resolution of 1.89 Å and 2.07 Å, respectively. The structure of both proteins are similar, composed of 14 α-helices and nine β-strands organized into two domains. Domain One (1-165) adopts a typical Rossmann fold composed of two α/β units: a six-strand parallel β-sheet surrounded by six α-helices (α1 – α6) followed by a mixed three-strand β-sheet surrounded by two α-helices (α7 and α8). Domain Two (166-287) is composed of a bundle of seven α-helices (α9 – α14). Four functional regions conserved in all β-HADs are spatially located near each other at the interdomain cleft in both Gs-βHAD and Gm-βHAD with a buried molecule of NADP+. The structural features of Gs-βHAD and Gm-βHAD are described in relation to the four conserved consensus sequences characteristic of β-HADs and the potential biochemical importance of these enzymes as an alternative pathway for the degradation of succinic semialdehyde.« less

  13. Mitochondrial specialization revealed by single muscle fiber proteomics: focus on the Krebs cycle.

    PubMed

    Schiaffino, S; Reggiani, C; Kostrominova, T Y; Mann, M; Murgia, M

    2015-12-01

    We have developed a highly sensitive mass spectrometry-based proteomic workflow to examine the proteome of single muscle fibers. This study revealed significant differences in the mitochondrial proteome of the four major fiber types present in mouse skeletal muscle. Here, we focus on Krebs cycle enzymes and in particular on the differential distribution of the two mitochondrial isocitrate dehydrogenases, IDH2 and IDH3. Type 1/slow fibers contain high levels of IDH2 and relatively low levels of IDH3, whereas fast 2X and 2B fibers show an opposite expression pattern. The findings suggest that in skeletal muscle, IDH2 functions in the forward direction of the Krebs cycle and that substrate flux along the cycle occurs predominantly via IDH2 in type 1 fibers and via IDH3 in 2X and 2B fibers. IDH2-mediated conversion of isocitrate to α-ketoglutarate leads to the generation of NADPH, which is critical to buffering the H2O2 produced by the respiratory chain. Nicotinamide nucleotide transhydrogenase (NNT), the other major mitochondrial enzyme involved in NADPH generation, is also more abundant in type 1 fibers. We suggest that the continuously active type 1 fibers are endowed with a more efficient H2O2 scavenging capacity to cope with the higher levels of reactive oxygen species production. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Development of a Markerless Knockout Method for Actinobacillus succinogenes

    PubMed Central

    Joshi, Rajasi V.; Schindler, Bryan D.; McPherson, Nikolas R.; Tiwari, Kanupriya

    2014-01-01

    Actinobacillus succinogenes is one of the best natural succinate-producing organisms, but it still needs engineering to further increase succinate yield and productivity. In this study, we developed a markerless knockout method for A. succinogenes using natural transformation or electroporation. The Escherichia coli isocitrate dehydrogenase gene with flanking flippase recognition target sites was used as the positive selection marker, making use of A. succinogenes's auxotrophy for glutamate to select for growth on isocitrate. The Saccharomyces cerevisiae flippase recombinase (Flp) was used to remove the selection marker, allowing its reuse. Finally, the plasmid expressing flp was cured using acridine orange. We demonstrate that at least two consecutive deletions can be introduced into the same strain using this approach, that no more than a total of 1 kb of DNA is needed on each side of the selection cassette to protect from exonuclease activity during transformation, and that no more than 200 bp of homologous DNA is needed on each side for efficient recombination. We also demonstrate that electroporation can be used as an alternative transformation method to obtain knockout mutants and that an enriched defined medium can be used for direct selection of knockout mutants on agar plates with high efficiency. Single-knockout mutants of the fumarate reductase and of the pyruvate formate lyase-encoding genes were obtained using this knockout strategy. Double-knockout mutants were also obtained by deleting the citrate lyase-, β-galactosidase-, and aconitase-encoding genes in the pyruvate formate lyase knockout mutant strain. PMID:24610845

  15. Development of a markerless knockout method for Actinobacillus succinogenes.

    PubMed

    Joshi, Rajasi V; Schindler, Bryan D; McPherson, Nikolas R; Tiwari, Kanupriya; Vieille, Claire

    2014-05-01

    Actinobacillus succinogenes is one of the best natural succinate-producing organisms, but it still needs engineering to further increase succinate yield and productivity. In this study, we developed a markerless knockout method for A. succinogenes using natural transformation or electroporation. The Escherichia coli isocitrate dehydrogenase gene with flanking flippase recognition target sites was used as the positive selection marker, making use of A. succinogenes's auxotrophy for glutamate to select for growth on isocitrate. The Saccharomyces cerevisiae flippase recombinase (Flp) was used to remove the selection marker, allowing its reuse. Finally, the plasmid expressing flp was cured using acridine orange. We demonstrate that at least two consecutive deletions can be introduced into the same strain using this approach, that no more than a total of 1 kb of DNA is needed on each side of the selection cassette to protect from exonuclease activity during transformation, and that no more than 200 bp of homologous DNA is needed on each side for efficient recombination. We also demonstrate that electroporation can be used as an alternative transformation method to obtain knockout mutants and that an enriched defined medium can be used for direct selection of knockout mutants on agar plates with high efficiency. Single-knockout mutants of the fumarate reductase and of the pyruvate formate lyase-encoding genes were obtained using this knockout strategy. Double-knockout mutants were also obtained by deleting the citrate lyase-, β-galactosidase-, and aconitase-encoding genes in the pyruvate formate lyase knockout mutant strain.

  16. IDH1 deficiency attenuates gluconeogenesis in mouse liver by impairing amino acid utilization.

    PubMed

    Ye, Jing; Gu, Yu; Zhang, Feng; Zhao, Yuanlin; Yuan, Yuan; Hao, Zhenyue; Sheng, Yi; Li, Wanda Y; Wakeham, Andrew; Cairns, Rob A; Mak, Tak W

    2017-01-10

    Although the enzymatic activity of isocitrate dehydrogenase 1 (IDH1) was defined decades ago, its functions in vivo are not yet fully understood. Cytosolic IDH1 converts isocitrate to α-ketoglutarate (α-KG), a key metabolite regulating nitrogen homeostasis in catabolic pathways. It was thought that IDH1 might enhance lipid biosynthesis in liver or adipose tissue by generating NADPH, but we show here that lipid contents are relatively unchanged in both IDH1-null mouse liver and IDH1-deficient HepG2 cells generated using the CRISPR-Cas9 system. Instead, we found that IDH1 is critical for liver amino acid (AA) utilization. Body weights of IDH1-null mice fed a high-protein diet (HPD) were abnormally low. After prolonged fasting, IDH1-null mice exhibited decreased blood glucose but elevated blood alanine and glycine compared with wild-type (WT) controls. Similarly, in IDH1-deficient HepG2 cells, glucose consumption was increased, but alanine utilization and levels of intracellular α-KG and glutamate were reduced. In IDH1-deficient primary hepatocytes, gluconeogenesis as well as production of ammonia and urea were decreased. In IDH1-deficient whole livers, expression levels of genes involved in AA metabolism were reduced, whereas those involved in gluconeogenesis were up-regulated. Thus, IDH1 is critical for AA utilization in vivo and its deficiency attenuates gluconeogenesis primarily by impairing α-KG-dependent transamination of glucogenic AAs such as alanine.

  17. Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme.

    PubMed

    Ogura, Ryutaro; Wakamatsu, Taisuke; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2014-06-10

    An NAD(+)-dependent l-tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH) was cloned and overexpressed in Escherichia coli. The recombinant NpTrpDH with a C-terminal His6-tag was purified to homogeneity using a Ni-NTA agarose column, and was found to be a homodimer with a molecular mass of 76.1kDa. The enzyme required NAD(+) and NADH as cofactors for oxidative deamination and reductive amination, respectively, but not NADP(+) or NADPH. l-Trp was the preferred substrate for deamination, though l-Phe was deaminated at a much lower rate. The enzyme exclusively aminated 3-indolepyruvate; phenylpyruvate was inert. The pH optima for the deamination of l-Trp and amination of 3-indolpyruvate were 11.0 and 7.5, respectively. For deamination of l-Trp, maximum enzymatic activity was observed at 45°C. NpTrpDH retained more than 80% of its activity after incubation for 30min at pHs ranging from 5.0 to 11.5 or incubation for 10min at temperatures up to 40°C. Unlike l-Trp dehydrogenases from higher plants, NpTrpDH activity was not activated by metal ions. Typical Michaelis-Menten kinetics were observed for NAD(+) and l-Trp for oxidative deamination, but with reductive amination there was marked substrate inhibition by 3-indolepyruvate. NMR analysis of the hydrogen transfer from the C4 position of the nicotinamide moiety of NADH showed that NpTrpDH has a pro-S (B-type) stereospecificity similar to the Glu/Leu/Phe/Val dehydrogenase family. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Highly sensitive spectrofluorimetric determination of trace amounts NADP using Europium ion-doxycycline complex probe

    NASA Astrophysics Data System (ADS)

    Peng, Qian; Hou, Faju; Jiang, Chongqiu

    2006-09-01

    A new spectrofluorimetric method was developed for determination of trace amount of Coenzyme II (NADP). Using europium ion-doxycycline (DC) as a fluorescent probe, in the buffer solution of pH 8.44, NADP can remarkably enhance the fluorescence intensity of the Eu 3+-DC complex at λ = 612 nm and the enhanced fluorescence intensity is in proportion to the concentration of NADP. Optimum conditions for the determination of NADP were also investigated. The dynamic range for the determination of NADP is 3.3 × 10 -7 to 6.1 × 10 -6 mol l -1 with detection limit of 6.8 × 10 -8 mol l -1. This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of NADP in synthetic water samples and in serum samples. Moreover, the enhancement mechanisms of the fluorescence intensity in the Eu 3+-DC system and the Eu 3+-DC-NADP system have been also discussed.

  19. Site-directed mutagenesis of lysine 193 in Escherichia coli isocitrate lyase by use of unique restriction enzyme site elimination.

    PubMed Central

    Diehl, P; McFadden, B A

    1993-01-01

    By a newly developed double-stranded mutagenesis technique, histidine (H), glutamate (E), arginine (R) and leucine (L) have been substituted for the lysyl 193 residue (K-193) in isocitrate lyase from Escherichia coli. The substitutions for this residue, which is present in a highly conserved, cationic region, significantly affect both the Km for Ds-isocitrate and the apparent kcat of isocitrate lyase. Specifically, the conservative substitutions, K-193-->H (K193H) and K193R, reduce catalytic activity by ca. 50- and 14-fold, respectively, and the nonconservative changes, K193E and K193L, result in assembled tetrameric protein that is completely inactive. The K193H and K193R mutations also increase the Km of the enzyme by five- and twofold, respectively. These results indicate that the cationic and/or acid-base character of K193 is essential for isocitrate lyase activity. In addition to the noted effects on enzyme activity, the effects of the mutations on growth of JE10, an E. coli strain which does not express isocitrate lyase, were observed. Active isocitrate lyase is necessary for E. coli to grow on acetate as the sole carbon source. It was found that a mutation affecting the activity of isocitrate lyase similarly affects the growth of E. coli JE10 on acetate when the mutated plasmid is expressed in this organism. Specifically, the lag time before growth increases over sevenfold and almost twofold for E. coli JE10 expressing the K193H and K193R isocitrate lyase variants, respectively. In addition, the rate of growth decreases by almost 40-fold for E. coli JE10 cells expressing form K193H and ca. 2-fold for those expressing the K193R variants. Thus, the onset and rate of E. coli growth on acetate appears to depend on isocitrate lyase activity. Images PMID:8385665

  20. Glucose-6-phosphate dehydrogenase Buenos Aires: a novel de novo missense mutation associated with severe enzyme deficiency.

    PubMed

    Minucci, Angelo; Concolino, Paola; Vendittelli, Francesca; Giardina, Bruno; Zuppi, Cecilia; Capoluongo, Ettore

    2008-06-01

    : Glucose 6-phosphate dehydrogenase (G6PD) catalyzes the first committed steps in the pentose phosphate pathway: the generation of NADPH by this enzyme is essential for protection against oxidative stress. The human enzyme is in a dimer<-->tetramer equilibrium and its stability depends on NADP(+) concentration. Herein, we report a case of a symptomatic baby affected by severe deficiency of G6PD activity due to a novel de novo genetic mutation (g1465C>T) in the thirteenth exon of its gene. : Clinical, biochemical and genetic evaluations of the affected baby and his mother were performed. : We found the g1465C>T novel mutation, in the thirteenth exon of G6PD gene (named "G6PD Buenos Aires variant"). This g1465C>T mutation produce a P489S substitution at protein level. The P489S mutation was absent in his mother, suggesting that G6PD Buenos Aires resulted from a de novo mutation. : The absence of mosaicism in the baby's DNA (from saliva and blood samples) suggests that a de novo mutation event may occur in the very early stages in embryogenesis or in the mother's germ cell lines.

  1. Phylogenetic Studies, Gene Cluster Analysis, and Enzymatic Reaction Support Anthrahydroquinone Reduction as the Physiological Function of Fungal 17β-Hydroxysteroid Dehydrogenase.

    PubMed

    Fürtges, Leon; Conradt, David; Schätzle, Michael A; Singh, Shailesh Kumar; Kraševec, Nada; Rižner, Tea Lanišnik; Müller, Michael; Husain, Syed Masood

    2017-01-03

    17β-Hydroxysteroid dehydrogenase (17β-HSDcl) from the filamentous fungus Curvularia lunata (teleomorph Cochliobolus lunatus) catalyzes NADP(H)-dependent oxidoreductions of androgens and estrogens. Despite detailed biochemical and structural characterization of 17β-HSDcl, its physiological function remains unknown. On the basis of amino acid sequence alignment, phylogenetic studies, and the recent identification of the physiological substrates of the homologous MdpC from Aspergillus nidulans and AflM from Aspergillus parasiticus, we propose an anthrahydroquinone as the physiological substrate of 17β-HSDcl. This is also supported by our analysis of a secondary metabolite biosynthetic gene cluster in C. lunata m118, containing 17β-HSDcl and ten other genes, including a polyketide synthase probably involved in emodin formation. Chemoenzymatic reduction of emodin by 17β-HSDcl in the presence of sodium dithionite verified this hypothesis. On the basis of these results, the involvement of a 17β-HSDcl in the biosynthesis of other anthrahydroquinone-derived natural products is proposed; hence, 17β-HSDcl should be more appropriately referred to as a polyhydroxyanthracene reductase (PHAR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structure of the G225P/G226P mutant of mouse 3(17)alpha-hydroxysteroid dehydrogenase (AKR1C21) ternary complex: implications for the binding of inhibitor and substrate.

    PubMed

    Dhagat, Urmi; Endo, Satoshi; Mamiya, Hiroaki; Hara, Akira; El-Kabbani, Ossama

    2009-03-01

    3(17)alpha-Hydroxysteroid dehydrogenase (AKR1C21) is a unique member of the aldo-keto reductase (AKR) superfamily owing to its ability to reduce 17-ketosteroids to 17alpha-hydroxysteroids, as opposed to other members of the AKR family, which can only produce 17beta-hydroxysteroids. In this paper, the crystal structure of a double mutant (G225P/G226P) of AKR1C21 in complex with the coenzyme NADP(+) and the inhibitor hexoestrol refined at 2.1 A resolution is presented. Kinetic analysis and molecular-modelling studies of 17alpha- and 17beta-hydroxysteroid substrates in the active site of AKR1C21 suggested that Gly225 and Gly226 play an important role in determining the substrate stereospecificity of the enzyme. Additionally, the G225P/G226P mutation of the enzyme reduced the affinity (K(m)) for both 3alpha- and 17alpha-hydroxysteroid substrates by up to 160-fold, indicating that these residues are critical for the binding of substrates.

  3. The transcriptional regulator NtrC controls glucose-6-phosphate dehydrogenase expression and polyhydroxybutyrate synthesis through NADPH availability in Herbaspirillum seropedicae.

    PubMed

    Sacomboio, Euclides Nenga Manuel; Kim, Edson Yu Sin; Correa, Henrique Leonardo Ruchaud; Bonato, Paloma; Pedrosa, Fabio de Oliveira; de Souza, Emanuel Maltempi; Chubatsu, Leda Satie; Müller-Santos, Marcelo

    2017-10-19

    The NTR system is the major regulator of nitrogen metabolism in Bacteria. Despite its broad and well-known role in the assimilation, biosynthesis and recycling of nitrogenous molecules, little is known about its role in carbon metabolism. In this work, we present a new facet of the NTR system in the control of NADPH concentration and the biosynthesis of molecules dependent on reduced coenzyme in Herbaspirillum seropedicae SmR1. We demonstrated that a ntrC mutant strain accumulated high levels of polyhydroxybutyrate (PHB), reaching levels up to 2-fold higher than the parental strain. In the absence of NtrC, the activity of glucose-6-phosphate dehydrogenase (encoded by zwf) increased by 2.8-fold, consequently leading to a 2.1-fold increase in the NADPH/NADP + ratio. A GFP fusion showed that expression of zwf is likewise controlled by NtrC. The increase in NADPH availability stimulated the production of polyhydroxybutyrate regardless the C/N ratio in the medium. The mutant ntrC was more resistant to H 2 O 2 exposure and controlled the propagation of ROS when facing the oxidative condition, a phenotype associated with the increase in PHB content.

  4. Thermostable NADP+-Dependent Medium-Chain Alcohol Dehydrogenase from Acinetobacter sp. Strain M-1: Purification and Characterization and Gene Expression in Escherichia coli

    PubMed Central

    Tani, Akio; Sakai, Yasuyoshi; Ishige, Takeru; Kato, Nobuo

    2000-01-01

    NADPH-dependent alkylaldehyde reducing enzyme, which was greatly induced by n-hexadecane, from Acinetobacter sp. strain M-1 was purified and characterized. The purified enzyme had molecular masses of 40 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 160 kDa as determined by gel filtration chromatography. The enzyme, which was shown to be highly thermostable, was most active toward n-heptanal and could use n-alkylaldehydes ranging from C2 to C14 and several substituted benzaldehydes, including the industrially important compounds cinnamyl aldehyde and anisaldehyde, as substrates. The alrA gene coding for this enzyme was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence encoded by the alrA gene exhibited homology to the amino acid sequences of zinc-containing alcohol dehydrogenases from various sources. The gene could be highly expressed in Escherichia coli, and the product was purified to homogeneity by simpler procedures from the recombinant than from the original host. Our results show that this enzyme can be used for industrial bioconversion of useful alcohols and aldehydes. PMID:11097895

  5. Purification and characterization of vanillin dehydrogenases from alkaliphile Micrococcus sp. TA1 and neutrophile Burkholderia cepacia TM1.

    PubMed

    Mitsui, Ryoji; Hirota, Mizuho; Tsuno, Takuo; Tanaka, Mitsuo

    2010-02-01

    Vanillin dehydrogenases (VDHs) were purified and characterized from two bacterial strains that have different pH dependencies for growth. The alkaliphile Micrococcus sp. TA1, isolated from an alkaline spa, can grow on several aromatic compounds such as ferulic acid, vanillin, vanillic acid, and protocatechuic acid under alkaline conditions. The neutrophile Burkholderia cepacia TM1, which was isolated previously, also grew on the above-mentioned compounds because they functioned as the sole carbon source under neutral conditions. Purified VDHs showed activities toward some aromatic aldehydes. These enzymes have the same subunit molecular mass of about 57 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but differed in some of their observed properties. Native molecular masses also differed between the purified enzymes. These were 250 kDa for the enzyme from alkaliphilic strain TA1 and 110 kDa for that from neutrophilic strain TM1, as determined by gel filtration. The enzyme from strain TA1 required NADP(+) as a coenzyme for its activity, but that from strain TM1 required NAD(+). These results are important because this is the first report of an alkaliphilic bacterium consuming lignin monomers.

  6. Unique Kinase Catalytic Mechanism of AceK with a Single Magnesium Ion

    PubMed Central

    Li, Quanjie; Zheng, Jimin; Tan, Hongwei; Li, Xichen; Chen, Guangju; Jia, Zongchao

    2013-01-01

    Isocitrate dehydrogenase kinase/phosphatase (AceK) is the founding member of the protein phosphorylation system in prokaryotes. Based on the novel and unique structural characteristics of AceK recently uncovered, we sought to understand its kinase reaction mechanism, along with other features involved in the phosphotransfer process. Herein we report density functional theory QM calculations of the mechanism of the phosphotransfer reaction catalysed by AceK. The transition states located by the QM calculations indicate that the phosphorylation reaction, catalysed by AceK, follows a dissociative mechanism with Asp457 serving as the catalytic base to accept the proton delivered by the substrate. Our results also revealed that AceK prefers a single Mg2+-containing active site in the phosphotransfer reaction. The catalytic roles of conserved residues in the active site are discussed. PMID:23977203

  7. A huge intraventricular congenital anaplastic astrocytoma: case report with histopathological and genetic consideration.

    PubMed

    Yamashita, Shinji; Ryu, Shinitsu; Miyata, Shiro; Uchinokura, Syunrou; Yokogami, Kiyotaka; Uehara, Hisao; Moriguchi, Sayaka; Iwakiri, Takashi; Marutsuka, Kousuke; Ikenoue, Makoto; Sawa, Daisuke; Yamada, Naoshi; Kodama, Yuki; Takeshima, Hideo

    2012-04-01

    Congenital malignant gliomas are rare brain tumors about which few reports have been published. We present the clinical course and genetic alterations in an infant with a congenital malignant glioma detected incidentally by ultrasonography at 36 weeks. The tumor occupied the right temporoparietal region, extended to the posterior fossa, and significantly compressed surrounding structures. The female infant was entirely normal without macrocrania, tense fontanel, or sucking difficulties. The tumor was subtotally resected by two-stage surgery; pathological diagnosis was anaplastic astrocytoma. Immunohistochemical staining was positive for p53 and negative for epidermal growth factor receptor. There was no O(6)-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation, no 1p/19q loss of heterozygosity, and no isocitrate dehydrogenase 1 (IDH1) mutation. She underwent postoperative chemotherapy and is alive and well 12 months after surgery.

  8. Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase

    PubMed Central

    Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.

    2014-01-01

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638

  9. Purification and characterization of a novel cytosolic NADP(H)-dependent retinol oxidoreductase from rabbit liver.

    PubMed

    Huang, D Y; Ichikawa, Y

    1997-03-07

    Rabbit liver cytosol exhibits very high retinol dehydrogenase activity. At least two retinol dehydrogenases were demonstrated to exist in rabbit liver cytosol, and the major one, a cytosolic NADP(H)-dependent retinol dehydrogenase (systematic name: retinol oxidoreductase) was purified about 1795-fold to electrophoretic and column chromatographic homogeneity by a procedure involving column chromatography on AF-Red Toyopearl twice and then hydroxyapatite. Its molecular mass was estimated to be 34 kDa by SDS-PAGE, and 144 kDa by HPLC gel filtration, suggesting that it is a homo-tetramer. The enzyme uses free retinol and retinal, and their complexes with CRBP as substrates in vitro. The optimum pH values for retinol oxidation of free retinol and CRBP-retinol were 8.8-9.2 and 8.0-9.0, respectively, and those for retinal reduction of free retinal and retinal-CRBP were the same, 7.0-7.6. Km for free retinol and Vmax for retinal formation were 2.8 microM and 2893 nmol/min per mg protein at 37 degrees C (pH 9.0) and the corresponding values with retinol-CRBP as a substrate were 2.5 microM and 2428 nmol/min per mg protein at 37 degrees C (pH 8.6); Km for free retinal and Vmax for retinol formation were 6.5 microM and 4108 nmol/min per mg protein, and the corresponding values with retinal-CRBP as a substrate were 5.1 microM and 3067 nmol/min per mg protein at 37 degrees C, pH 7.4. NAD(H) was not effective as a cofactor. 4-Methylpyrazole was a weak inhibitor (IC50 = 28 mM) of the enzyme, and ethanol was neither a substrate nor an inhibitor of the enzyme. This enzyme exhibits relatively broad aldehyde reductase activity and some ketone reductase activity, the activity for aromatic substitutive aldehydes being especially high and effective. Whereas, except in the case of retinol, oxidative activity toward the corresponding alcohols was not detected. This novel cytosolic enzyme may play an important role in vivo in maintaining the homeostasis of retinal, the substrate of retinoic acid synthesis, at least in rabbit liver, since a high concentration of retinol in liver and the lower Km of the enzyme for retinol force the oxidative reaction, while higher activity of retinal reductase at physiological pH forces the reductive reaction.

  10. Restructuring of the dinucleotide-binding fold in an NADP(H) sensor protein

    PubMed Central

    Zheng, Xiaofeng; Dai, Xueyu; Zhao, Yanmei; Chen, Qiang; Lu, Fei; Yao, Deqiang; Yu, Quan; Liu, Xinping; Zhang, Chuanmao; Gu, Xiaocheng; Luo, Ming

    2007-01-01

    NAD(P) has long been known as an essential energy-carrying molecule in cells. Recent data, however, indicate that NAD(P) also plays critical signaling roles in regulating cellular functions. The crystal structure of a human protein, HSCARG, with functions previously unknown, has been determined to 2.4-Å resolution. The structure reveals that HSCARG can form an asymmetrical dimer with one subunit occupied by one NADP molecule and the other empty. Restructuring of its NAD(P)-binding Rossmann fold upon NADP binding changes an extended loop to an α-helix to restore the integrity of the Rossmann fold. The previously unobserved restructuring suggests that HSCARG may assume a resting state when the level of NADP(H) is normal within the cell. When the NADP(H) level passes a threshold, an extensive restructuring of HSCARG would result in the activation of its regulatory functions. Immunofluorescent imaging shows that HSCARG redistributes from being associated with intermediate filaments in the resting state to being dispersed in the nucleus and the cytoplasm. The structural change of HSCARG upon NADP(H) binding could be a new regulatory mechanism that responds only to a significant change of NADP(H) levels. One of the functions regulated by HSCARG may be argininosuccinate synthetase that is involved in NO synthesis. PMID:17496144

  11. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme.

    PubMed

    Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa

    2017-01-15

    l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P) + -dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD + Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD + /NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme. In this study, we determined the three-dimensional structure of l-Trp dehydrogenase, analyzed its various site-directed substitution mutants at residues located in the active site, and obtained the following informative results. Several residues in the active site form a hydrophobic cluster, which may be a part of the hydrophobic core essential for protein folding. To our knowledge, there is no previous report demonstrating that a hydrophobic cluster in the active site of any l-amino acid dehydrogenase may have a critical impact on protein folding. Furthermore, our results suggest that this hydrophobic cluster could strictly accommodate l-Trp. These studies show the structural characteristics of l-Trp dehydrogenase and hence would facilitate novel applications of l-Trp dehydrogenase. Copyright © 2016 American Society for Microbiology.

  12. 3-Bromopyruvate as a potential pharmaceutical in the light of experimental data.

    PubMed

    Szczuka, Izabela; Gamian, Andrzej; Terlecki, Grzegorz

    2017-12-08

    3-Bromopyruvate (3-BrPA) is an halogenated analogue of pyruvic acid known for over four decades as an alkylating agent reacting with thiol groups of many proteins. It enters animal cells like a lactate: via monocarboxylic acid transporters. Increasing interest in this compound, in recent times, is mainly due to hopes associated with its anticancer action. It is based on the impairment of energy metabolism of tumor cells by inhibiting enzymes in the glycolysis pathway (hexokinase II, glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase) and the oxidative phosphorylation (succinate dehydrogenase). Two cases of clinical application of this compound in the treatment of advanced cancers were reported. By using 3-BrPA, rheumatoid arthritis in SKG mice has been reduced. This compound has also antiparasitic activity: lowers cell viability of Trypanosoma brucei, decreases intracellular proliferation of Toxoplasma gondii and reduces the metabolic activity of Schistosoma mansoni. It also has antifungal properties; particularly it acts strongly on Cryptococcus neoformans, as well as Saccharomyces cerevisiae. An inhibitory effect on bacterial enzymes was also described on: isocitrate lyase from Escherichia coli, Mycobacterium tuberculosis, Pseudomonas indigofera and 2-methylisocitrate lyase, succinate dehydrogenase and acetohydroxylic acid synthase from Escherichia coli. Wherever undesirable (cancer, parasitic) cells differ from normal by more intense glycolysis and higher energy needs, there is a good chance of successful 3-BrPA use. However, this compound acts on all cells and it, therefore, seems that its future as a pharmaceutical is dependent upon the development of appropriate methods for its effective and safe application.

  13. The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism.

    PubMed

    Ries, Laure Nicolas Annick; de Assis, Leandro José; Rodrigues, Fernando José Santos; Caldana, Camila; Rocha, Marina Campos; Malavazi, Iran; Bayram, Özgür; Goldman, Gustavo H

    2018-05-24

    The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilisation in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilisation in the reference filamentous fungus Aspergillus nidulans , in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localised to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilisation, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilisation of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. Copyright © 2018, G3: Genes, Genomes, Genetics.

  14. Physiological and enzymatic alterations in sesame seeds submitted to different osmotic potentials.

    PubMed

    Pires, R M O; Àvila, M A B; Leite, D G; Santos, H O; Souza, G A; Von Pinho, E V R

    2017-08-17

    With the imminence of global climate changes that affect the temperature and the rainfall uniformity, it is growing the concern about the adaptation of crops to the water deficit. Thus, the objective of this study was to evaluate alterations in physiological and enzymatic mechanisms during the germination process of sesame seeds under different water availability. To simulate the water restriction we used PEG6000, a high molecular weight molecule that does not penetrate the seed structure but allows different osmotic potentials. The treatments were -0.1, -0.2, and -0.3 MPa, and the control. Germination, first-count germination, germination velocity index, and length and dry mass of the hypocotyl and radicle were performed. The seeds were weighed before and after treatments every 3 h. After each weighing, 100 seeds were taken for analysis of the enzymes alcohol dehydrogenase (ADH), malate dehydrogenase, esterase, catalase (CAT), superoxide dismutase (SOD), isocitrate lyase (ICL), and glutamate dehydrogenase (GTDH). The statistical design was completely randomized with five replications. PEG6000 prolonged ADH activity during the beginning of germination, maintaining the anaerobic metabolism for longer. Subsequently, their activity was reduced, as well as ICL, favoring the deterioration of the seeds that take the time to germinate. Behavior was evidenced by the appearance of SOD, CAT, and GTDH isoforms after 24 h of imbibition when water restriction was imposed. Therefore, the PEG600 is efficient in simulating water deficit conditions in future scenarios of climate change, offering impotent information regarding the germination behavior of the plants under these conditions.

  15. Effect of Prolonged Simulated Microgravity on Metabolic Proteins in Rat Hippocampus: Steps toward Safe Space Travel.

    PubMed

    Wang, Yun; Javed, Iqbal; Liu, Yahui; Lu, Song; Peng, Guang; Zhang, Yongqian; Qing, Hong; Deng, Yulin

    2016-01-04

    Mitochondria are not only the main source of energy in cells but also produce reactive oxygen species (ROS), which result in oxidative stress when in space. This oxidative stress is responsible for energy imbalances and cellular damage. In this study, a rat tail suspension model was used in individual experiments for 7 and 21 days to explore the effect of simulated microgravity (SM) on metabolic proteins in the hippocampus, a vital brain region involved in learning, memory, and navigation. A comparative (18)O-labeled quantitative proteomic strategy was used to observe the differential expression of metabolic proteins. Forty-two and sixty-seven mitochondrial metabolic proteins were differentially expressed after 21 and 7 days of SM, respectively. Mitochondrial Complex I, III, and IV, isocitrate dehydrogenase and malate dehydrogenase were down-regulated. Moreover, DJ-1 and peroxiredoxin 6, which defend against oxidative damage, were up-regulated in the hippocampus. Western blot analysis of proteins DJ-1 and COX 5A confirmed the mass spectrometry results. Despite these changes in mitochondrial protein expression, no obvious cell apoptosis was observed after 21 days of SM. The results of this study indicate that the oxidative stress induced by SM has profound effects on metabolic proteins.

  16. Proteins with neomorphic moonlighting functions in disease.

    PubMed

    Jeffery, Constance J

    2011-07-01

    One gene can encode multiple protein functions because of RNA splice variants, gene fusions during evolution, promiscuous enzyme activities, and moonlighting protein functions. In addition to these types of multifunctional proteins, in which both functions are considered "normal" functions of a protein, some proteins have been described in which a mutation or conformational change imparts a second function on a protein that is not a "normal" function of the protein. We propose to call these new functions "neomorphic moonlighting functions". The most common examples of neomorphic moonlighting functions are due to conformational changes that impart novel protein-protein interactions resulting in the formation of protein aggregates in Alzheimers, Parkinsons disease, and the systemic amyloidoses. Other changes that can result in a neomorphic moonlighting function include a mutation in SMAD4 that causes the protein to bind to new promoters and thereby alter gene transcription patterns, mutations in two isocitrate dehydrogenase isoforms that impart a new catalytic activity, and mutations in dihydrolipoamide dehydrogenase that activate a hidden protease activity. These neomorphic moonlighting functions were identified because of their connection to disease. In the cases described herein, the new functions cause cancers or severe neurological impairment, although in most cases the mechanism by which the new function leads to disease is unknown. Copyright © 2011 Wiley Periodicals, Inc.

  17. Allelic variability in species and stocks of Lake Superior ciscoes (Coregoninae)

    USGS Publications Warehouse

    Todd, Thomas N.

    1981-01-01

    Starch gel electrophoresis was used as a means of recognizing species and stocks in Lake Superior Coregonus. Allelic variability at isocitrate dehydrogenase and glycerol-3-phosphate dehydrogenase loci was recorded for samples of lake herring (Coregonus artedii), bloater (C. hoyi), kiyi (C. kiyi), and shortjaw cisco (C. zenithicus) from five Lake Superior localities. The observed frequencies of genotypes within each subsample did not differ significantly from those expected on the basis of random mating, and suggested that each subsample represented either a random sample from a larger randomly mating population or an independent and isolated subpopulation within which mating was random. Significant contingency X2 values for comparisons between both localities and species suggested that more than one randomly mating population occurred among the Lake Superior ciscoes, but did not reveal how many such populations there were. In contrast to the genetic results of this study, morphology seems to be a better descriptor of cisco stocks, and identification of cisco stocks and species will still have to be based on morphological criteria until more data are forthcoming. Where several species are sympatric, management should strive to preserve the least abundant. Failure to do so could result in the extinction or depletion of the rarer forms.

  18. Effect of CO2 on NADH production of denitrifying microbes via inhibiting carbon source transport and its metabolism.

    PubMed

    Wan, Rui; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Huang, Haining

    2018-06-15

    The potential effect of CO 2 on environmental microbes has drawn much attention recently. As an important section of the nitrogen cycle, biological denitrification requires electron donor to reduce nitrogen oxide. Nicotinamide adenine dinucleotide (NADH), which is formed during carbon source metabolism, is a widely reported electron donor for denitrification. Here we studied the effect of CO 2 on NADH production and carbon source utilization in the denitrifying microbe Paracoccus denitrificans. We observed that NADH level was decreased by 45.5% with the increase of CO 2 concentration from 0 to 30,000ppm, which was attributed to the significantly decreased utilization of carbon source (i.e., acetate). Further study showed that CO 2 inhibited carbon source utilization because of multiple negative influences: (1) suppressing the growth and viability of denitrifier cells, (2) weakening the driving force for carbon source transport by decreasing bacterial membrane potential, and (3) downregulating the expression of genes encoding key enzymes involved in intracellular carbon metabolism, such as citrate synthase, aconitate hydratase, isocitrate dehydrogenase, succinate dehydrogenase, and fumarate reductase. This study suggests that the inhibitory effect of CO 2 on NADH production in denitrifiers might deteriorate the denitrification performance in an elevated CO 2 climate scenario. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Mitochondrial Bioenergetics and Dysfunction in Failing Heart.

    PubMed

    Sheeran, Freya L; Pepe, Salvatore

    2017-01-01

    Energy insufficiency has been recognized as a key feature of systolic heart failure. Although mitochondria have long been known to sustain myocardial work energy supply, the capacity to therapeutically target mitochondrial bioenergetics dysfunction is hampered by a complex interplay of multiple perturbations that progressively compound causing myocardial failure and collapse. Compared to non-failing human donor hearts, activity rates of complexes I and IV, nicotinamide nucleotide transhydrogenase (NADPH-transhydrogenase, Nnt) and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase and aconitase are markedly decreased in end-stage heart failure. Diminished REDOX capacity with lower total glutathione and coenzyme Q 10 levels are also a feature of chronic left ventricular failure. Decreased enzyme activities in part relate to abundant and highly specific oxidative, nitrosylative, and hyperacetylation modifications. In this brief review we highlight that energy deficiency in end-stage failing human left ventricle predominantly involves concomitantly impaired activities of key electron transport chain and Krebs cycle enzymes rather than altered expression of respective genes or proteins. Augmented oxidative modification of these enzyme subunit structures, and the formation of highly reactive secondary metabolites, implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, which contribute further to progressive decreases in bioenergetic capacity and contractile function in human heart failure.

  20. Identification of proteins in hyperglycemia and stroke animal models.

    PubMed

    Sung, Jin-Hee; Shah, Fawad-Ali; Gim, Sang-Ah; Koh, Phil-Ok

    2016-01-01

    Stroke is a major cause of disability and death in adults. Diabetes mellitus is a metabolic disorder that strongly increases the risk of severe vascular diseases. This study compared changes in proteins of the cerebral cortex during ischemic brain injury between nondiabetic and diabetic animals. Adult male rats were injected with streptozotocin (40 mg/kg) via the intraperitoneal route to induce diabetes and underwent surgical middle cerebral artery occlusion (MCAO) 4 wk after streptozotocin treatment. Cerebral cortex tissues were collected 24 h after MCAO and cerebral cortex proteins were analyzed by two-dimensional gel electrophoresis and mass spectrometry. Several proteins were identified as differentially expressed between nondiabetic and diabetic animals. Among the identified proteins, we focused on the following metabolism-related enzymes: isocitrate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, adenosylhomocysteinase, pyruvate kinase, and glucose-6-phosphate isomerase (neuroleukin). Expression of these proteins was decreased in animals that underwent MCAO. Moreover, protein expression was reduced to a greater extent in diabetic animals than in nondiabetic animals. Reverse transcription-polymerase chain reaction analysis confirmed that the diabetic condition exacerbates the decrease in expression of metabolism-related proteins after MCAO. These results suggest that the diabetic condition may exacerbate brain damage during focal cerebral ischemia through the downregulation of metabolism-related proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Identification of proteins regulated by ferulic acid in a middle cerebral artery occlusion animal model-a proteomics approach.

    PubMed

    Sung, Jin-Hee; Cho, Eun-Hae; Cho, Jae-Hyeon; Won, Chung-Kil; Kim, Myeong-Ok; Koh, Phil-Ok

    2012-11-01

    Ferulic acid plays a neuroprotective role in cerebral ischemia. The aim of this study was to identify the proteins that are differentially expressed following ferulic acid treatment during ischemic brain injury using a proteomics technique. Middle cerebral artery occlusion (MCAO) was performed to induce a focal cerebral ischemic injury in adult male rats, and ferulic acid (100 mg/kg) or vehicle was administered immediately after MCAO. Brain tissues were collected 24 hr after MCAO. The proteins in the cerebral cortex were separated using two-dimensional gel electrophoresis and were identified by mass spectrometry. We detected differentially expressed proteins between vehicle- and ferulic acid-treated animals. Adenosylhomocysteinase, isocitrate dehydrogenase [NAD(+)], mitogen-activated protein kinase kinase 1 and glyceraldehyde-3-phosphate dehydrogenase were decreased in the vehicle-treated group, and ferulic acid prevented the injury-induced decreases in these proteins. However, pyridoxal phosphate phosphatase and heat shock protein 60 were increased in the vehicle-treated group, while ferulic acid prevented the injury-induced increase in these proteins. It is accepted that these enzymes are involved in cellular metabolism and differentiation. Thus, these findings suggest evidence that ferulic acid plays a neuroprotective role against focal cerebral ischemia through the up- and down-modulation of specific enzymes.

  2. Purification and detailed study of two clinically different human glucose 6-phosphate dehydrogenase variants, G6PD(Plymouth) and G6PD(Mahidol): Evidence for defective protein folding as the basis of disease.

    PubMed

    Huang, Yuxiang; Choi, Mei Yee; Au, Shannon Wing Ngor; Au, Deborah Man Yee; Lam, Veronica Min Sien; Engel, Paul C

    2008-01-01

    In an attempt to investigate the molecular mechanism underlying human glucose-6-phosphate dehydrogenase (G6PD) deficiency caused by two mutations, G6PD(Plymouth) (G163D) and G6PD(Mahidol) (G163S), the two variants were constructed by site-directed mutagenesis and expressed in G6PD-deficient E. coli DF 213 cells. A first indication of impaired folding came from problems in expressing these clinical mutants, which were only overcome by lowering the growth temperature or co-expressing with molecular chaperones (GroEL and GroES). Both strategies significantly increased soluble expression of recombinant G6PD(Plymouth) and G6PD(Mahidol), judged by both G6PD activity in extracts and the amount of immunoreactive protein. Using a modified 3-step protocol, the two mutant enzymes were successfully purified for the first time. Steady-state kinetic parameters (K(m) for NADP(+), K(m) for G6P and k(cat)) of the two mutants are very similar to the wild-type values, indicating that the catalytic efficiency of the two mutants remains unchanged. The two mutants are, however, markedly less stable than wild-type G6PD in both thermostability and urea-induced inactivation tests. In a typical experiment at 37 degrees C and pH 7.2 after 24h G6PD WT, G6PD(Mahidol) and G6PD(Plymouth) retained 58.3%, 27.0% and 3.9%, respectively, of their corresponding initial activity. The stability of all three enzymes is enhanced by addition of NADP(+). According to unfolding and refolding experiments, the two mutants are impaired in their folding properties. Thus structural instability appears to be the molecular basis of the clinical phenotype in G6PD(Plymouth) and G6PD(Mahidol) and in particular of the differing clinical severity of the two mutations. The 3-D structure solved for G6PD(Canton) allows an interpretation of these effects in terms of steric hindrance.

  3. Isocitrate Lyase from Flax 1

    PubMed Central

    Khan, Fazal R.; McFadden, Bruce A.

    1982-01-01

    The cleavage of Ds-isocitrate catalyzed by isocitrate lyase from Linum usitatissimum results in the ordered release of succinate and glyoxylate. The glyoxylate analog 3-bromopyruvate irreversibly inactivates the flax enzyme in a process exhibiting saturation kinetics and protection by glyoxylate or isocitrate or the competitive inhibitor l-tartrate. Succinate provides considerably less protection. Results with 3-bromopyruvate suggest that this reagent modifies plant and prokaryotic isocitrate lyases differently. Treatment of the tetrameric 264,000-dalton flax enzyme with carboxypeptidase A results in a release of one histidine/subunit which is concordant with loss of activity. The only N-terminal residue is methionine. Treatment of flax enzyme with diethylpyrocarbonate at pH 6.5 selectively modifies two histidines per 67,000-dalton subunit. The reaction of one histidine residue is abolished by the binding of l-tartrate and the modification of one is coincident with inactivation. The carboxy-terminal and active-site modifications establish that one histidine residue/monomer is essential in the flax enzyme and considerably extend information heretofore available only for fungal and bacterial isocitrate lyase. PMID:16662648

  4. In vivo operation of the pentose phosphate pathway in frog oocytes is limited by NADP+ availability.

    PubMed

    Preller, A; Guixé, V; Ureta, T

    1999-03-05

    Evolution of CO2 from labelled glucose microinjected into frog oocytes in vivo may be ascribed to the pentose-P pathway, as measured by radioactive CO2 production from [1-(14)C] and [6-(14)C]glucose. Coinjection of NADP+ and [14C]glucose significantly stimulated 14CO2 production. The effect depends on the amount of NADP+ injected, half maximal stimulation being obtained at 0.13 mM. The increase in CO2 production was also observed with microinjected glucose-1-P, glucose-6-P or fructose-6-P used as substrates. Phenazine methosulfate, mimicked the effects of NADP+. A high NADPH/NADP+ ratio of 4.3 was found in the cells, the intracellular concentration of NADP+ being 19 microM.

  5. Expression of Idh1R132H in the Murine Subventricular Zone Stem Cell Niche Recapitulates Features of Early Gliomagenesis.

    PubMed

    Bardella, Chiara; Al-Dalahmah, Osama; Krell, Daniel; Brazauskas, Pijus; Al-Qahtani, Khalid; Tomkova, Marketa; Adam, Julie; Serres, Sébastien; Lockstone, Helen; Freeman-Mills, Luke; Pfeffer, Inga; Sibson, Nicola; Goldin, Robert; Schuster-Böeckler, Benjamin; Pollard, Patrick J; Soga, Tomoyoshi; McCullagh, James S; Schofield, Christopher J; Mulholland, Paul; Ansorge, Olaf; Kriaucionis, Skirmantas; Ratcliffe, Peter J; Szele, Francis G; Tomlinson, Ian

    2016-10-10

    Isocitrate dehydrogenase 1 mutations drive human gliomagenesis, probably through neomorphic enzyme activity that produces D-2-hydroxyglutarate. To model this disease, we conditionally expressed Idh1 R132H in the subventricular zone (SVZ) of the adult mouse brain. The mice developed hydrocephalus and grossly dilated lateral ventricles, with accumulation of 2-hydroxyglutarate and reduced α-ketoglutarate. Stem and transit amplifying/progenitor cell populations were expanded, and proliferation increased. Cells expressing SVZ markers infiltrated surrounding brain regions. SVZ cells also gave rise to proliferative subventricular nodules. DNA methylation was globally increased, while hydroxymethylation was decreased. Mutant SVZ cells overexpressed Wnt, cell-cycle and stem cell genes, and shared an expression signature with human gliomas. Idh1 R132H mutation in the major adult neurogenic stem cell niche causes a phenotype resembling gliomagenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The Process and Regulatory Components of Inflammation in Brain Oncogenesis

    PubMed Central

    Mostofa, A.G.M.; Punganuru, Surendra R.; Madala, Hanumantha Rao; Al-Obaide, Mohammad; Srivenugopal, Kalkunte S.

    2017-01-01

    Central nervous system tumors comprising the primary cancers and brain metastases remain the most lethal neoplasms and challenging to treat. Substantial evidence points to a paramount role for inflammation in the pathology leading to gliomagenesis, malignant progression and tumor aggressiveness in the central nervous system (CNS) microenvironment. This review summarizes the salient contributions of oxidative stress, interleukins, tumor necrosis factor-α(TNF-α), cyclooxygenases, and transcription factors such as signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and the associated cross-talks to the inflammatory signaling in CNS cancers. The roles of reactive astrocytes, tumor associated microglia and macrophages, metabolic alterations, microsatellite instability, O6-methylguanine DNA methyltransferase (MGMT) DNA repair and epigenetic alterations mediated by the isocitrate dehydrogenase 1 (IDH1) mutations have been discussed. The inflammatory pathways with relevance to the brain cancer treatments have been highlighted. PMID:28346397

  7. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR), National Cancer Institute (NCI) of the National Institutes of Health (NIH) is seeking outstanding postdoctoral candidates interested in studying the metabolic changes in brain tumors such as glioblastoma multiforme (GBMs).  NOB’s Metabolomics program is interested in revealing the metabolic alterations of isocitrate dehydrogenase (IDH1)-mutated GBMs and in exploiting these deregulations for therapeutic applications.  A combination of methods such as molecular biology, animal models, as well as in vitro and in vivo metabolomics using Raman Imaging Microscopy, Nuclear Magnetic Resonance spectroscopy (NMR), Mass Spectrometry (MS) and Magnetic Resonance Imaging (MRI) techniques are employed.  The position will specifically focus on molecular biology and Raman Imaging Microscopy, which includes work in Western Blotting, mammalian cell culture and other common biomedical techniques used in cancer bio  logy labs such as handling tissue samples, preparing tissue slides, staining, and extracting proteins from brain tissue.

  8. Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers.

    PubMed

    Popovici-Muller, Janeta; Lemieux, René M; Artin, Erin; Saunders, Jeffrey O; Salituro, Francesco G; Travins, Jeremy; Cianchetta, Giovanni; Cai, Zhenwei; Zhou, Ding; Cui, Dawei; Chen, Ping; Straley, Kimberly; Tobin, Erica; Wang, Fang; David, Muriel D; Penard-Lacronique, Virginie; Quivoron, Cyril; Saada, Véronique; de Botton, Stéphane; Gross, Stefan; Dang, Lenny; Yang, Hua; Utley, Luke; Chen, Yue; Kim, Hyeryun; Jin, Shengfang; Gu, Zhiwei; Yao, Gui; Luo, Zhiyong; Lv, Xiaobing; Fang, Cheng; Yan, Liping; Olaharski, Andrew; Silverman, Lee; Biller, Scott; Su, Shin-San M; Yen, Katharine

    2018-04-12

    Somatic point mutations at a key arginine residue (R132) within the active site of the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) confer a novel gain of function in cancer cells, resulting in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite. Elevated 2-HG levels are implicated in epigenetic alterations and impaired cellular differentiation. IDH1 mutations have been described in an array of hematologic malignancies and solid tumors. Here, we report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1 mutant enzyme that exhibits profound 2-HG lowering in tumor models and the ability to effect differentiation of primary patient AML samples ex vivo. Preliminary data from phase 1 clinical trials enrolling patients with cancers harboring an IDH1 mutation indicate that AG-120 has an acceptable safety profile and clinical activity.

  9. Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers

    PubMed Central

    2018-01-01

    Somatic point mutations at a key arginine residue (R132) within the active site of the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) confer a novel gain of function in cancer cells, resulting in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite. Elevated 2-HG levels are implicated in epigenetic alterations and impaired cellular differentiation. IDH1 mutations have been described in an array of hematologic malignancies and solid tumors. Here, we report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1 mutant enzyme that exhibits profound 2-HG lowering in tumor models and the ability to effect differentiation of primary patient AML samples ex vivo. Preliminary data from phase 1 clinical trials enrolling patients with cancers harboring an IDH1 mutation indicate that AG-120 has an acceptable safety profile and clinical activity. PMID:29670690

  10. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzymatic activity that converts α-ketoglutarate to 2-hydroxyglutarate

    PubMed Central

    Ward, Patrick S.; Patel, Jay; Wise, David R.; Abdel-Wahab, Omar; Bennett, Bryson D.; Coller, Hilary A.; Cross, Justin R.; Fantin, Valeria R.; Hedvat, Cyrus V.; Perl, Alexander E.; Rabinowitz, Joshua D.; Carroll, Martin; Su, Shinsan M.; Sharp, Kim A.; Levine, Ross L.; Thompson, Craig B.

    2010-01-01

    SUMMARY The somatic mutations in cytosolic isocitrate dehydrogenase 1 (IDH1) observed in gliomas can lead to the production of 2-hydroxyglutarate (2HG). Here, we report that tumor 2HG is elevated in a high percentage of patients with cytogenetically normal acute myeloid leukemia (AML). Surprisingly, less than half of cases with elevated 2HG possessed IDH1 mutations. The remaining cases with elevated 2HG had mutations in IDH2, the mitochondrial homolog of IDH1. These data demonstrate that a shared feature of all cancer-associated IDH mutations is production of the onco-metabolite 2HG. Furthermore, AML patients with IDH mutations display a significantly reduced number of other well characterized AML-associated mutations and/or associated chromosomal abnormalities, potentially implicating IDH mutation in a distinct mechanism of AML pathogenesis. PMID:20171147

  11. Characterization of 2,4-Diamino-6-oxo-1,6-dihydropyrimidin-5-yl Ureido Based Inhibitors of Trypanosoma brucei FolD and Testing for Antiparasitic Activity

    PubMed Central

    2015-01-01

    The bifunctional enzyme N5,N10-methylenetetrahydrofolate dehydrogenase/cyclo hydrolase (FolD) is essential for growth in Trypanosomatidae. We sought to develop inhibitors of Trypanosoma brucei FolD (TbFolD) as potential antiparasitic agents. Compound 2 was synthesized, and the molecular structure was unequivocally assigned through X-ray crystallography of the intermediate compound 3. Compound 2 showed an IC50 of 2.2 μM, against TbFolD and displayed antiparasitic activity against T. brucei (IC50 49 μM). Using compound 2, we were able to obtain the first X-ray structure of TbFolD in the presence of NADP+ and the inhibitor, which then guided the rational design of a new series of potent TbFolD inhibitors. PMID:26322631

  12. Metabolism of the hexose monophosphate shunt in glucose-6-phosphate dehydrogenase deficiency and closely interrelated reactions.

    PubMed

    Jacobasch, G; Bleiber, R; Schönian, G

    1982-12-01

    The metabolic changes of red blood cells from 25 patients with chronic hemolytic anemia caused by G6PD deficiency were investigated. The average G6PD activity exhibited 5 per cent of the normal control. The glucose oxidation was in most cases reduced even by 50 per cent. Three groups could be distinguished according to their degree of methylene blue stimulation of the oxidative pentose phosphate pathway. These results are in agreement with changes of the kinetic constants for NADP, NADPH and G6P, respectively. The filtrability of red blood cells decreased in all cases of G6PD deficiency but no correlation was found with the survival time. First results of a preventive medication with D-L-alpha-tocopherol let assume a reduction of chronic hemolysis.

  13. Purification and characterization of a novel recombinant highly enantioselective short-chain NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus.

    PubMed

    Pennacchio, Angela; Pucci, Biagio; Secundo, Francesco; La Cara, Francesco; Rossi, Mosè; Raia, Carlo A

    2008-07-01

    The gene encoding a novel alcohol dehydrogenase (ADH) that belongs to the short-chain dehydrogenase/reductase (SDR) superfamily was identified in the extremely thermophilic, halotolerant gram-negative eubacterium Thermus thermophilus HB27. The T. thermophilus ADH gene (adh(Tt)) was heterologously overexpressed in Escherichia coli, and the protein (ADH(Tt)) was purified to homogeneity and characterized. ADH(Tt) is a tetrameric enzyme consisting of identical 26,961-Da subunits composed of 256 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to approximately 73 degrees C and a 30-min half-inactivation temperature of approximately 90 degrees C, as well as good tolerance to common organic solvents. ADH(Tt) has a strict requirement for NAD(H) as the coenzyme, a preference for reduction of aromatic ketones and alpha-keto esters, and poor activity on aromatic alcohols and aldehydes. This thermophilic enzyme catalyzes the following reactions with Prelog specificity: the reduction of acetophenone, 2,2,2-trifluoroacetophenone, alpha-tetralone, and alpha-methyl and alpha-ethyl benzoylformates to (S)-(-)-1-phenylethanol (>99% enantiomeric excess [ee]), (R)-alpha-(trifluoromethyl)benzyl alcohol (93% ee), (S)-alpha-tetralol (>99% ee), methyl (R)-(-)-mandelate (92% ee), and ethyl (R)-(-)-mandelate (95% ee), respectively, by way of an efficient in situ NADH-recycling system involving 2-propanol and a second thermophilic ADH. This study further supports the critical role of the D37 residue in discriminating NAD(H) from NADP(H) in members of the SDR superfamily.

  14. Betaine Aldehyde Dehydrogenase expression during physiological cardiac hypertrophy induced by pregnancy.

    PubMed

    Rosas-Rodríguez, Jesús Alfredo; Soñanez-Organis, José Guadalupe; Godoy-Lugo, José Arquimides; Espinoza-Salazar, Juan Alberto; López-Jacobo, Cesar Jeravy; Stephens-Camacho, Norma Aurora; González-Ochoa, Guadalupe

    2017-08-26

    Betaine Aldehyde Dehydrogenase (betaine aldehyde: NAD(P) + oxidoreductase, (E.C. 1.2.1.8; BADH) catalyze the irreversible oxidation of betaine aldehyde (BA) to glycine betaine (GB) and is essential for polyamine catabolism, γ-aminobutyric acid synthesis, and carnitine biosynthesis. GB is an important osmolyte that regulates the homocysteine levels, contributing to a vascular risk factor reduction. In this sense, distinct investigations describe the physiological roles of GB, but there is a lack of information about the GB novo synthesis process and regulation during cardiac hypertrophy induced by pregnancy. In this work, the BADH mRNA expression, protein level, and activity were quantified in the left ventricle before, during, and after pregnancy. The mRNA expression, protein content and enzyme activity along with GB content of BADH increased 2.41, 1.95 and 1.65-fold respectively during late pregnancy compared to not pregnancy, and returned to basal levels at postpartum. Besides, the GB levels increased 1.53-fold during pregnancy and remain at postpartum. Our results demonstrate that physiological cardiac hypertrophy induced BADH mRNA expression and activity along with GB production, suggesting that BADH participates in the adaptation process of physiological cardiac hypertrophy during pregnancy, according to the described GB role in cellular osmoregulation, osmoprotection and reduction of vascular risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. S-Mercuration of rat sorbitol dehydrogenase by methylmercury causes its aggregation and the release of the zinc ion from the active site.

    PubMed

    Kanda, Hironori; Toyama, Takashi; Shinohara-Kanda, Azusa; Iwamatsu, Akihiro; Shinkai, Yasuhiro; Kaji, Toshiyuki; Kikushima, Makoto; Kumagai, Yoshito

    2012-11-01

    We previously developed a screening method to identify proteins that undergo aggregation through S-mercuration by methylmercury (MeHg) and found that rat arginase I is a target protein for MeHg (Kanda et al. in Arch Toxicol 82:803-808, 2008). In the present study, we characterized another S-mercurated protein from a rat hepatic preparation that has a subunit mass of 42 kDa, thereby facilitating its aggregation. Two-dimensional SDS-polyacrylamide gel electrophoresis and subsequent peptide mass fingerprinting using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry revealed that the 42 kDa protein was NAD-dependent sorbitol dehydrogenase (SDH). With recombinant rat SDH, we found that MeHg is covalently bound to SDH through Cys44, Cys119, Cys129 and Cys164, resulting in the inhibition of its catalytic activity, release of zinc ions and facilitates protein aggregation. Mutation analysis indicated that Cys44, which ligates the active site zinc atom, and Cys129 play a crucial role in the MeHg-mediated aggregation of SDH. Pretreatment with the cofactor NAD, but not NADP or FAD, markedly prevented aggregation of SDH. Such a protective effect of NAD on the aggregation of SDH caused by MeHg is discussed.

  16. Antioxidant Systems from Pepper (Capsicum annuum L.): Involvement in the Response to Temperature Changes in Ripe Fruits

    PubMed Central

    Mateos, Rosa M.; Jiménez, Ana; Román, Paloma; Romojaro, Félix; Bacarizo, Sierra; Leterrier, Marina; Gómez, Manuel; Sevilla, Francisca; del Río, Luis A.; Corpas, Francisco J.; Palma, José M.

    2013-01-01

    Sweet pepper is susceptible to changes in the environmental conditions, especially temperatures below 15 °C. In this work, two sets of pepper fruits (Capsicum annuum L.) which underwent distinct temperature profiles in planta were investigated. Accordingly, two harvesting times corresponding to each set were established: Harvest 1, whose fruits developed and ripened at 14.9 °C as average temperature; and Harvest 2, with average temperature of 12.4 °C. The oxidative metabolism was analyzed in all fruits. Although total ascorbate content did not vary between Harvests, a shift from the reduced to the oxidized form (dehydroascorbate), accompanied by a higher ascorbate peroxidase activity, was observed in Harvest 2 with respect to Harvest 1. Moreover, a decrease of the ascorbate-generating enzymatic system, the γ-galactono-lactone dehydrogenase, was found at Harvest 2. The activity values of the NADP-dependent dehydrogenases analyzed seem to indicate that a lower NADPH synthesis may occur in fruits which underwent lower temperature conditions. In spite of the important changes observed in the oxidative metabolism in fruits subjected to lower temperature, no oxidative stress appears to occur, as indicated by the lipid peroxidation and protein oxidation profiles. Thus, the antioxidative systems of pepper fruits seem to be involved in the response against temperature changes. PMID:23644886

  17. Ligand Binding Phenomena that Pertain to the Metabolic Function of Renalase

    PubMed Central

    Beaupre, Brett A.; Roman, Joseph V.; Hoag, Matthew R.; Meneely, Kathleen M.; Silvaggi, Nicholas R.; Lamb, Audrey L.; Moran, Graham R.

    2017-01-01

    Renalase catalyzes the oxidation of isomers of β-NAD(P)H that carry the hydride in the 2 or 6 positions of the nicotinamide base to form β-NAD(P)+. This activity is thought to alleviate inhibition of multiple β-NAD(P)-dependent enzymes of primary and secondary metabolism by these isomers. Here we present evidence for a variety of ligand binding phenomena relevant to the function of renalase. We offer evidence of the potential for primary metabolism inhibition with structures of malate dehydrogenase and lactate dehydrogenase bound to the 6-dihydroNAD isomer. The previously observed preference of renalase from Pseudomonas for NAD-derived substrates over those derived from NADP is accounted for by the structure of the enzyme in complex with NADPH. We also show that nicotinamide nucleosides and mononucloetides reduced in the 2- and 6-positions are renalase substrates, but bind weakly. A seven-fold enhancement of acquisition (kred/Kd) for 6-dihydronicotinamide riboside was observed for human renalase in the presence of ADP. However, generally the addition of complement ligands, ADP for mononucloetide or AMP for nucleoside substrates, did not enhance the reductive half-reaction. Non-substrate nicotinamide nucleosides or nucleotides bind weakly suggesting that only β-NADH and β-NADPH compete with dinucleotide substrates for access to the active site. PMID:27769837

  18. 9-Hydroxyprostaglandin dehydrogenase in rat kidney cortex converts prostaglandin I2 into 15-keto-13,14-dihydro 6-ketoprostaglandin E1.

    PubMed

    Pace-Asciak, C R; Domazet, Z

    1984-11-14

    15-Keto-13,14-dihydro 6-ketoprostaglandin E1 was positively identified by gas chromatography-mass spectrometry with negative-ion chemical ionisation detection from samples of rat kidney high-speed supernatant incubated with prostaglandin I2 in the presence of NAD+. A decreased formation of this product was observed when NAD+ was substituted with NADP+ and none was observed in the absence of nucleotide or substrate prostaglandin I2. Experiments with [9 beta-3H]prostaglandin I2 showed a time- and concentration-dependent loss of tritium which appeared as tritiated water, typical of reaction of [9 beta-3H]prostaglandin substrates with the enzyme, 9-hydroxyprostaglandin dehydrogenase. Time-course measurements of the appearance of tritiated water showed similar rates with 6-keto[9 beta-3H]prostaglandin F1 alpha and 15-keto-13,14-dihydro 6-keto[9 beta-3H]prostaglandin F1 alpha as substrates. These experiments suggest that the transformation of prostaglandin I2 and 6-ketoprostaglandin F1 alpha into the 15-keto-13,14-dihydro 6-ketoprostaglandin E1 catabolite occurs in this in vitro preparation via the corresponding 15-keto-13,14-dihydro catabolite of 6-ketoprostaglandin F1 alpha.

  19. Proteomics analysis of Fusarium proliferatum under various initial pH during fumonisin production.

    PubMed

    Li, Taotao; Gong, Liang; Wang, Yong; Chen, Feng; Gupta, Vijai Kumar; Jian, Qijie; Duan, Xuewu; Jiang, Yueming

    2017-07-05

    Fusarium proliferatum as a fungal pathogen can produce fumonisin which causes a great threat to animal and human health. Proteomic approach was a useful tool for investigation into mycotoxin biosynthesis in fungal pathogens. In this study, we analyzed the fumonisin content and mycelium proteins of Fusarium proliferatum cultivated under the initial pH5 and 10. Fumonisin production after 10days was significantly induced in culture condition at pH10 than pH5. Ninety nine significantly differently accumulated protein spots under the two pH conditions were detected using two dimensional polyacrylamide gel electrophoresis and 89 of these proteins were successfully identified by MALDI-TOF/TOF and LC-ESI-MS/MS analysis. Among these 89 proteins, 45 were up-regulated at pH10 while 44 were up-accumulated at pH5. At pH10, these proteins were found to involve in the modification of fumonisin backbone including up-regulated polyketide synthase, cytochrome P450, S-adenosylmethionine synthase and O-methyltransferase, which might contribute to the induction of fumonisin production. At pH5, these up-regulated proteins such as l-amino-acid oxidase, isocitrate dehydrogenase and citrate lyase might inhibit the condensation of fumonisin backbone, resulting in reduced production of fumonisins. These results may help us to understand the molecular mechanism of the fumonisin synthesis in F. proliferatum. To extend our understanding of the mechanism of the fumonisin biosynthesis of F. proliferatum, we reported the fumonisin production in relation to the differential proteins of F. proliferatum mycelium under two pH culture conditions. Among these 89 identified spots, 45 were up-accumulated at pH10 while 44 were up-accumulated at pH5. Our results revealed that increased fumonisin production at pH10 might be related to the induction of fumonisin biosynthesis caused by up-regulation of polyketide synthase, cytochrome P450, S-adenosylmethionine synthase and O-methyltransferase. Meanwhile, the up-regulation of l-amino-acid oxidase, isocitrate dehydrogenase and citrate lyase at pH5 might be related to the inhibition of the condensation of fumonisin backbone, resulting in reduced production of fumonisin. These results may help us to understand better the molecular mechanism of the fumonisin synthesis in F. proliferatum and then broaden the current knowledge of the mechanism of the fumonisin biosynthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Genome-wide methylation profiling identifies an essential role of reactive oxygen species in pediatric glioblastoma multiforme and validates a methylome specific for H3 histone family 3A with absence of G-CIMP/isocitrate dehydrogenase 1 mutation.

    PubMed

    Jha, Prerana; Pia Patric, Irene Rosita; Shukla, Sudhanshu; Pathak, Pankaj; Pal, Jagriti; Sharma, Vikas; Thinagararanjan, Sivaarumugam; Santosh, Vani; Suri, Vaishali; Sharma, Mehar Chand; Arivazhagan, Arimappamagan; Suri, Ashish; Gupta, Deepak; Somasundaram, Kumaravel; Sarkar, Chitra

    2014-12-01

    Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH)1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine-phosphate-guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation-specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and needs further evaluation. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Effect of calcium(ion) uptake by rat adrenal mitochondria on pregnenolone formation and spectral properties of cytochrome P-450.

    PubMed

    Simpson, E R; Williams-Smith, D L

    1975-10-09

    The effect of calcium on pregnenolone formation from endogenous precursors has been studied in mitochondria from rat decapsulated and capsular adrenal glands. In the presence of succinate, addition of calcium chloride in the concentration range 20-150 muM caused an inhibition of pregnenolone formation in both decapsulated and capsular adrenal mitochondria. 11beta-hydroxylation of added deoxycosticosterone in decapsulated adrenal mitochondria was also inhibited. Under these conditions, calcium inhibited the reduction of adrenodoxin, a component of the cytochrome P-450 reductase system, presumably because uptake of calcium by the mitochondria competes with energy-linked transhydrogenase for high-energy intermediates. For this reason, incubations were carried out in the presence of succinate plus isocitrate plus NADP+. Under these conditions, calcium chloride in the concentration range 120-875 muM caused a 2-4-fold stimulation of pregnenolone formation, but had no effect on corticosterone formation from added deoxycorticosterone. The effect of calcium on the optical spectra of cytochrome P-450 has also been examined in mitochondria from decapsulated and capsular rat adrenals. In the presence of succinate, calcium induced a spectral change resembling a type I difference spectrum of cytochrome P-450. Thus it appears that uptake of calcium by adrenal mitochondria can stimulate pregnenolone formation by increasing the interaction of mitochondrial cytochrome P-450 with endogenous substrate.

  2. Atypical protein disulfide isomerases (PDI): Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A

    PubMed Central

    Selles, Benjamin; Zannini, Flavien; Couturier, Jérémy; Jacquot, Jean-Pierre

    2017-01-01

    Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b’-a’ and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH), peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors) of PDI which contributes to understand why this protein family expanded along evolution. PMID:28362814

  3. Pre-steady-state kinetic studies of redox reactions catalysed by Bacillus subtilis ferredoxin-NADP(+) oxidoreductase with NADP(+)/NADPH and ferredoxin.

    PubMed

    Seo, Daisuke; Soeta, Takahiro; Sakurai, Hidehiro; Sétif, Pierre; Sakurai, Takeshi

    2016-06-01

    Ferredoxin-NADP(+) oxidoreductase ([EC1.18.1.2], FNR) from Bacillus subtilis (BsFNR) is a homodimeric flavoprotein sharing structural homology with bacterial NADPH-thioredoxin reductase. Pre-steady-state kinetics of the reactions of BsFNR with NADP(+), NADPH, NADPD (deuterated form) and B. subtilis ferredoxin (BsFd) using stopped-flow spectrophotometry were studied. Mixing BsFNR with NADP(+) and NADPH yielded two types of charge-transfer (CT) complexes, oxidized FNR (FNR(ox))-NADPH and reduced FNR (FNR(red))-NADP(+), both having CT absorption bands centered at approximately 600n m. After mixing BsFNR(ox) with about a 10-fold molar excess of NADPH (forward reaction), BsFNR was almost completely reduced at equilibrium. When BsFNR(red) was mixed with NADP(+), the amount of BsFNR(ox) increased with increasing NADP(+) concentration, but BsFNR(red) remained as the major species at equilibrium even with about 50-fold molar excess NADP(+). In both directions, the hydride-transfer was the rate-determining step, where the forward direction rate constant (~500 s(-1)) was much higher than the reverse one (<10 s(-1)). Mixing BsFd(red) with BsFNR(ox) induced rapid formation of a neutral semiquinone form. This process was almost completed within 1 ms. Subsequently the neutral semiquinone form was reduced to the hydroquinone form with an apparent rate constant of 50 to 70 s(-1) at 10°C, which increased as BsFd(red) increased from 40 to 120 μM. The reduction rate of BsFNR(ox) by BsFd(red) was markedly decreased by premixing BsFNR(ox) with BsFd(ox), indicating that the dissociation of BsFd(ox) from BsFNR(sq) is rate-limiting in the reaction. The characteristics of the BsFNR reactions with NADP(+)/NADPH were compared with those of other types of FNRs. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The regulation of OXPHOS by extramitochondrial calcium.

    PubMed

    Gellerich, Frank N; Gizatullina, Zemfira; Trumbeckaite, Sonata; Nguyen, Huu P; Pallas, Thilo; Arandarcikaite, Odeta; Vielhaber, Stephan; Seppet, Enn; Striggow, Frank

    2010-01-01

    Despite extensive research, the regulation of mitochondrial function is still not understood completely. Ample evidence shows that cytosolic Ca2+ has a strategic task in co-ordinating the cellular work load and the regeneration of ATP by mitochondria. Currently, the paradigmatic view is that Cacyt2+ taken up by the Ca2+ uniporter activates the matrix enzymes pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and isocitrate dehydrogenase. However, we have recently found that Ca2+ regulates the glutamate-dependent state 3 respiration by the supply of glutamate to mitochondria via aralar, a mitochondrial glutamate/aspartate carrier. Since this activation is not affected by ruthenium red, glutamate transport into mitochondria is controlled exclusively by extramitochondrial Ca2+. Therefore, this discovery shows that besides intramitochondrial also extramitochondrial Ca2+ regulates oxidative phosphorylation. This new mechanism acts as a mitochondrial "gas pedal", supplying the OXPHOS with substrate on demand. These results are in line with recent findings of Satrustegui and Palmieri showing that aralar as part of the malate-aspartate shuttle is involved in the Ca2+-dependent transport of reducing hydrogen equivalents (from NADH) into mitochondria. This review summarises results and evidence as well as hypothetical interpretations of data supporting the view that at the surface of mitochondria different regulatory Ca2+-binding sites exist and can contribute to cellular energy homeostasis. Moreover, on the basis of our own data, we propose that these surface Ca2+-binding sites may act as targets for neurotoxic proteins such as mutated huntingtin and others. The binding of these proteins to Ca2+-binding sites can impair the regulation by Ca2+, causing energetic depression and neurodegeneration. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes

    PubMed Central

    Sewell, Holly L.; Kaster, Anne-Kristin

    2017-01-01

    ABSTRACT The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi. 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi. We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylum Chloroflexi (DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of reductive dehalogenation, as well as the biology of abundant deep-sea Chloroflexi. PMID:29259088

  6. Biophysical Characterization of an Bifunctional Iron Regulating Enzyme

    DTIC Science & Technology

    2002-05-01

    of the direct assay 29 Citrate, cis- aconitate and d- isocitrate all absorb light in the UV-Vis region, a fact which was confirmed...experimentally using a Hewlard-Packard 8452 Diode UV-Vis Diode Array Spectrophotometer. The maximum absorbance of cis- aconitate was determined to be 240 nm...and isocitrate was 212 nm. The preponderance of cis- aconitate concentration versus the formation of isocitrate concentration made tracking a

  7. Faster Rubisco Is the Key to Superior Nitrogen-Use Efficiency in NADP-Malic Enzyme Relative to NAD-Malic Enzyme C4 Grasses1

    PubMed Central

    Ghannoum, Oula; Evans, John R.; Chow, Wah Soon; Andrews, T. John; Conroy, Jann P.; von Caemmerer, Susanne

    2005-01-01

    In 27 C4 grasses grown under adequate or deficient nitrogen (N) supplies, N-use efficiency at the photosynthetic (assimilation rate per unit leaf N) and whole-plant (dry mass per total leaf N) level was greater in NADP-malic enzyme (ME) than NAD-ME species. This was due to lower N content in NADP-ME than NAD-ME leaves because neither assimilation rates nor plant dry mass differed significantly between the two C4 subtypes. Relative to NAD-ME, NADP-ME leaves had greater in vivo (assimilation rate per Rubisco catalytic sites) and in vitro Rubisco turnover rates (kcat; 3.8 versus 5.7 s−1 at 25°C). The two parameters were linearly related. In 2 NAD-ME (Panicum miliaceum and Panicum coloratum) and 2 NADP-ME (Sorghum bicolor and Cenchrus ciliaris) grasses, 30% of leaf N was allocated to thylakoids and 5% to 9% to amino acids and nitrate. Soluble protein represented a smaller fraction of leaf N in NADP-ME (41%) than in NAD-ME (53%) leaves, of which Rubisco accounted for one-seventh. Soluble protein averaged 7 and 10 g (mmol chlorophyll)−1 in NADP-ME and NAD-ME leaves, respectively. The majority (65%) of leaf N and chlorophyll was found in the mesophyll of NADP-ME and bundle sheath of NAD-ME leaves. The mesophyll-bundle sheath distribution of functional thylakoid complexes (photosystems I and II and cytochrome f) varied among species, with a tendency to be mostly located in the mesophyll. In conclusion, superior N-use efficiency of NADP-ME relative to NAD-ME grasses was achieved with less leaf N, soluble protein, and Rubisco having a faster kcat. PMID:15665246

  8. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    PubMed

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  9. Crystal Structure of an Iron-Dependent Group III Dehydrogenase That Interconverts l-Lactaldehyde and l-1,2-Propanediol in Escherichia coli†

    PubMed Central

    Montella, Cristina; Bellsolell, Lluis; Pérez-Luque, Rosa; Badía, Josefa; Baldoma, Laura; Coll, Miquel; Aguilar, Juan

    2005-01-01

    The FucO protein, a member of the group III “iron-activated” dehydrogenases, catalyzes the interconversion between l-lactaldehyde and l-1,2-propanediol in Escherichia coli. The three-dimensional structure of FucO in a complex with NAD+ was solved, and the presence of iron in the crystals was confirmed by X-ray fluorescence. The FucO structure presented here is the first structure for a member of the group III bacterial dehydrogenases shown experimentally to contain iron. FucO forms a dimer, in which each monomer folds into an α/β dinucleotide-binding N-terminal domain and an all-α-helix C-terminal domain that are separated by a deep cleft. The dimer is formed by the swapping (between monomers) of the first chain of the β-sheet. The binding site for Fe2+ is located at the face of the cleft formed by the C-terminal domain, where the metal ion is tetrahedrally coordinated by three histidine residues (His200, His263, and His277) and an aspartate residue (Asp196). The glycine-rich turn formed by residues 96 to 98 and the following α-helix is part of the NAD+ recognition locus common in dehydrogenases. Site-directed mutagenesis and enzyme kinetic assays were performed to assess the role of different residues in metal, cofactor, and substrate binding. In contrast to previous assumptions, the essential His267 residue does not interact with the metal ion. Asp39 appears to be the key residue for discriminating against NADP+. Modeling l-1,2-propanediol in the active center resulted in a close approach of the C-1 hydroxyl of the substrate to C-4 of the nicotinamide ring, implying that there is a typical metal-dependent dehydrogenation catalytic mechanism. PMID:15995211

  10. Four studies on effects of environmental factors on the quality of National Atmospheric Deposition Program measurements

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rhodes, Mark F.

    2011-01-01

    Selected aspects of National Atmospheric Deposition Program / National Trends Network (NADP/NTN) protocols are evaluated in four studies. Meteorological conditions have minor impacts on the error in NADP/NTN sampling. Efficiency of frozen precipitation sample collection is lower than for liquid precipitation samples. Variability of NTN measurements is higher for relatively low-intensity deposition of frozen precipitation than for higher-intensity deposition of liquid precipitation. Urbanization of the landscape surrounding NADP/NTN sites is not affecting trends in wet-deposition chemistry data to a measureable degree. Five NADP siting criteria intended to preserve wet-deposition sample integrity have varying degrees of effectiveness. NADP siting criteria for objects within the 90 degrees cones and trees within the 120 degrees cones projected from the collector bucket to sky are important for protecting sample integrity. Tall vegetation, fences, and other objects located within 5 meters of the collectors are related to the frequency of visible sample contamination, indicating the importance of these factors in NADP siting criteria.

  11. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.

    PubMed

    Gold, Nicholas D; Gowen, Christopher M; Lussier, Francois-Xavier; Cautha, Sarat C; Mahadevan, Radhakrishnan; Martin, Vincent J J

    2015-05-28

    L-tyrosine is a common precursor for a wide range of valuable secondary metabolites, including benzylisoquinoline alkaloids (BIAs) and many polyketides. An industrially tractable yeast strain optimized for production of L-tyrosine could serve as a platform for the development of BIA and polyketide cell factories. This study applied a targeted metabolomics approach to evaluate metabolic engineering strategies to increase the availability of intracellular L-tyrosine in the yeast Saccharomyces cerevisiae CEN.PK. Our engineering strategies combined localized pathway engineering with global engineering of central metabolism, facilitated by genome-scale steady-state modelling. Addition of a tyrosine feedback resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase Aro4 from S. cerevisiae was combined with overexpression of either a tyrosine feedback resistant yeast chorismate mutase Aro7, the native pentafunctional arom protein Aro1, native prephenate dehydrogenase Tyr1 or cyclohexadienyl dehydrogenase TyrC from Zymomonas mobilis. Loss of aromatic carbon was limited by eliminating phenylpyruvate decarboxylase Aro10. The TAL gene from Rhodobacter sphaeroides was used to produce coumarate as a simple test case of a heterologous by-product of tyrosine. Additionally, multiple strategies for engineering global metabolism to promote tyrosine production were evaluated using metabolic modelling. The T21E mutant of pyruvate kinase Cdc19 was hypothesized to slow the conversion of phosphoenolpyruvate to pyruvate and accumulate the former as precursor to the shikimate pathway. The ZWF1 gene coding for glucose-6-phosphate dehydrogenase was deleted to create an NADPH deficiency designed to force the cell to couple its growth to tyrosine production via overexpressed NADP(+)-dependent prephenate dehydrogenase Tyr1. Our engineered Zwf1(-) strain expressing TYRC ARO4(FBR) and grown in the presence of methionine achieved an intracellular L-tyrosine accumulation up to 520 μmol/g DCW or 192 mM in the cytosol, but sustained flux through this pathway was found to depend on the complete elimination of feedback inhibition and degradation pathways. Our targeted metabolomics approach confirmed a likely regulatory site at DAHP synthase and identified another possible cofactor limitation at prephenate dehydrogenase. Additionally, the genome-scale metabolic model identified design strategies that have the potential to improve availability of erythrose 4-phosphate for DAHP synthase and cofactor availability for prephenate dehydrogenase. We evaluated these strategies and provide recommendations for further improvement of aromatic amino acid biosynthesis in S. cerevisiae.

  12. Improved mapping of National Atmospheric Deposition Program wet-deposition in complex terrain using PRISM-gridded data sets

    USGS Publications Warehouse

    Latysh, Natalie E.; Wetherbee, Gregory Alan

    2012-01-01

    High-elevation regions in the United States lack detailed atmospheric wet-deposition data. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) measures and reports precipitation amounts and chemical constituent concentration and deposition data for the United States on annual isopleth maps using inverse distance weighted (IDW) interpolation methods. This interpolation for unsampled areas does not account for topographic influences. Therefore, NADP/NTN isopleth maps lack detail and potentially underestimate wet deposition in high-elevation regions. The NADP/NTN wet-deposition maps may be improved using precipitation grids generated by other networks. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) produces digital grids of precipitation estimates from many precipitation-monitoring networks and incorporates influences of topographical and geographical features. Because NADP/NTN ion concentrations do not vary with elevation as much as precipitation depths, PRISM is used with unadjusted NADP/NTN data in this paper to calculate ion wet deposition in complex terrain to yield more accurate and detailed isopleth deposition maps in complex terrain. PRISM precipitation estimates generally exceed NADP/NTN precipitation estimates for coastal and mountainous regions in the western United States. NADP/NTN precipitation estimates generally exceed PRISM precipitation estimates for leeward mountainous regions in Washington, Oregon, and Nevada, where abrupt changes in precipitation depths induced by topography are not depicted by IDW interpolation. PRISM-based deposition estimates for nitrate can exceed NADP/NTN estimates by more than 100% for mountainous regions in the western United States.

  13. NADP/sup +/ enhances cholera and pertussis toxin-catalyzed ADP-ribosylation of membrane proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Y.; Whitsel, C.; Arinze, I.J.

    1986-05-01

    Cholera or pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation is frequently used to estimate the concentration of the stimulatory (Ns) or inhibitory (Ni) guanine nucleotide regulatory proteins which modulate the activity of adenylate cyclase. With this assay, however, the degradation of the substrate, NAD/sup +/, by endogenous enzymes such as NAD/sup +/-glycohydrolase (NADase) present in the test membranes can influence the results. In this study the authors show that both cholera and pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation of liver membrane proteins is markedly enhanced by NADP/sup +/. The effect is concentration dependent; with 20 ..mu..M (/sup 32/P)NAD/sup +/ as substrate maximal enhancement is obtainedmore » at 0.5-1.0 mM NADP/sup +/. The enhancement of (/sup 32/P)ADP-ribosylation by NADP/sup +/ was much greater than that by other known effectors such as Mg/sup 2 +/, phosphate or isoniazid. The effect of NADP/sup +/ on ADP-ribosylation may occur by inhibition of the degradation of NAD/sup +/ probably by acting as an alternate substrate for NADase. Among inhibitors tested (NADP/sup +/, isoniazid, imidazole, nicotinamide, L-Arg-methyl-ester and HgCl/sub 2/) to suppress NADase activity, NADP/sup +/ was the most effective and, 10 mM, inhibited activity of the enzyme by about 90%. In membranes which contain substantial activities of NADase the inclusion of NADP/sup +/ in the assay is necessary to obtain maximal ADP-ribosylation.« less

  14. Improved mapping of National Atmospheric Deposition Program wet-deposition in complex terrain using PRISM-gridded data sets.

    PubMed

    Latysh, Natalie E; Wetherbee, Gregory Alan

    2012-01-01

    High-elevation regions in the United States lack detailed atmospheric wet-deposition data. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) measures and reports precipitation amounts and chemical constituent concentration and deposition data for the United States on annual isopleth maps using inverse distance weighted (IDW) interpolation methods. This interpolation for unsampled areas does not account for topographic influences. Therefore, NADP/NTN isopleth maps lack detail and potentially underestimate wet deposition in high-elevation regions. The NADP/NTN wet-deposition maps may be improved using precipitation grids generated by other networks. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) produces digital grids of precipitation estimates from many precipitation-monitoring networks and incorporates influences of topographical and geographical features. Because NADP/NTN ion concentrations do not vary with elevation as much as precipitation depths, PRISM is used with unadjusted NADP/NTN data in this paper to calculate ion wet deposition in complex terrain to yield more accurate and detailed isopleth deposition maps in complex terrain. PRISM precipitation estimates generally exceed NADP/NTN precipitation estimates for coastal and mountainous regions in the western United States. NADP/NTN precipitation estimates generally exceed PRISM precipitation estimates for leeward mountainous regions in Washington, Oregon, and Nevada, where abrupt changes in precipitation depths induced by topography are not depicted by IDW interpolation. PRISM-based deposition estimates for nitrate can exceed NADP/NTN estimates by more than 100% for mountainous regions in the western United States.

  15. Proteomic analysis of the compatible interaction of wheat and powdery mildew (Blumeria graminis f. sp. tritici).

    PubMed

    Li, Jie; Yang, Xiwen; Liu, Xinhao; Yu, Haibo; Du, Congyang; Li, Mengda; He, Dexian

    2017-02-01

    Proteome characteristics of wheat leaves with the powdery mildew pathogen Blumeria graminis f. sp. tritici (Bgt) infection were investigated by two-dimensional electrophoresis and tandem MALDI-TOF/TOF-MS. We identified 46 unique proteins which were differentially expressed at 24, 48, and 72 h post-inoculation. The functional classification of these proteins showed that most of them were involved in photosynthesis, carbohydrate and nitrogen metabolism, defense responses, and signal transduction. Upregulated proteins included primary metabolism pathways and defense responses, while proteins related to photosynthesis and signal transduction were mostly downregulated. As expected, more antioxidative proteins were activated at the later infection stage than the earlier stage, suggesting that the antioxidative system of host plays a role in maintaining the compatible interaction between wheat and powdery mildew. A high accumulation of 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase in infected leaves indicated the regulation of the TCA cycle and pentose phosphate pathway in parallel to the activation of host defenses. The downregulation of MAPK5 could be facilitated for the compatible interaction of wheat plants and Bgt. qRT-PCR analysis supported the data of protein expression profiles. Our results reveal the relevance of primary plant metabolism and defense responses during compatible interaction, and provide new insights into the biology of susceptible wheat in response to Bgt infection. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex.

    PubMed

    Haggie, Peter M; Verkman, A S

    2002-10-25

    It has been proposed that enzymes in many metabolic pathways, including the tricarboxylic acid cycle in the mitochondrial matrix, are physically associated to facilitate substrate channeling and overcome diffusive barriers. We have used fluorescence recovery after photobleaching to measure the diffusional mobilities of chimeras consisting of green fluorescent protein (GFP) fused to the C terminus of four tricarboxylic acid cycle enzymes: malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinyl-CoA synthetase. The GFP-enzyme chimeras were localized selectively in the mitochondrial matrix in transfected Chinese hamster ovary (CHO) and COS7 cells. Laser photobleaching using a 0.7-microm diameter spot demonstrated restricted diffusion of the GFP-enzyme chimeras. Interestingly, all four chimeras had similar diffusional characteristics, approximately 45% of each chimera was mobile and had a diffusion coefficient of 4 x 10(-8) cm(2)/s. In contrast, unconjugated GFP in the mitochondrial matrix (targeted using COX8 leader sequence) diffused freely (nearly 100% mobility) with a greater diffusion coefficient of 20 x 10(-8) cm(2)/s. The mobility of the GFP-enzyme chimeras was insensitive to substrate source, ATP depletion, or inhibition of the adenine nucleotide translocase. These results indicate similar mobility characteristics of unrelated tricarboxylic acid cycle enzymes having different sizes and physical properties, providing biophysical evidence for a diffusible multienzyme complex in the mitochondrial matrix.

  17. Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression.

    PubMed

    Yagnik, Darshna; Serafin, Vlad; J Shah, Ajit

    2018-01-29

    The global escalation in antibiotic resistance cases means alternative antimicrobials are essential. The aim of this study was to investigate the antimicrobial capacity of apple cider vinegar (ACV) against E. coli, S. aureus and C. albicans. The minimum dilution of ACV required for growth inhibition varied for each microbial species. For C. albicans, a 1/2 ACV had the strongest effect, S. aureus, a 1/25 dilution ACV was required, whereas for E-coli cultures, a 1/50 ACV dilution was required (p < 0.05). Monocyte co-culture with microbes alongside ACV resulted in dose dependent downregulation of inflammatory cytokines (TNFα, IL-6). Results are expressed as percentage decreases in cytokine secretion comparing ACV treated with non-ACV treated monocytes cultured with E-coli (TNFα, 99.2%; IL-6, 98%), S. aureus (TNFα, 90%; IL-6, 83%) and C. albicans (TNFα, 83.3%; IL-6, 90.1%) respectively. Proteomic analyses of microbes demonstrated that ACV impaired cell integrity, organelles and protein expression. ACV treatment resulted in an absence in expression of DNA starvation protein, citrate synthase, isocitrate and malate dehydrogenases in E-coli; chaperone protein DNak and ftsz in S. aureus and pyruvate kinase, 6-phosphogluconate dehydrogenase, fructose bisphosphate were among the enzymes absent in C.albican cultures. The results demonstrate ACV has multiple antimicrobial potential with clinical therapeutic implications.

  18. The effect of enzymes upon metabolism, storage, and release of carbohydrates in normal and abnormal endometria.

    PubMed

    Hughes, E C

    1976-07-01

    This paper presents preliminary data concerning the relationship of various components of glandular epithelium and effect of enzymes on metabolism, storage, and release of certain substances in normal and abnormal endometria. Activity of these endometrial enzymes has been compared between two groups: 252 patients with normal menstrual histories and 156 patients, all over the age of 40, with abnormal uterine bleeding. Material was obtained by endometrial biopsy or curettage. In the pathologic classification of the group of 156, 30 patients had secretory endometria, 88 patients had endometria classified as proliferative, 24 were classified as endometrial hyperplasia, and 14 were classified as adenocarcinoma. All tissue was studied by histologic, histochemical, and biochemical methods. Glycogen synthetase activity caused synthesis of glucose to glycogen, increasing in amount until midcycle, when glycogen phosphorylase activity caused the breakdown to glucose during the regressive stage of endometrial activity. This normal cyclic activity did not occur in the abnormal endometria, where activity of both enzymes continued at low constant tempo. Only the I form of glycogen synthetase increased as the tissue became more hyperplastic. With the constant glycogen content and the increased activity of both the TPN isocitric dehydrogenase and glucose-6-phosphate dehydrogenase in the hyperplastic and cancerous endometria, tissue energy was created, resulting in abnormal cell proliferation. These altered biochemical and cellular activities may be the basis for malignant cell growth.

  19. Biochemical characteristics of glucose-6-phosphate dehydrogenase variants among the Malays of Singapore with report of a new non-deficient (GdSingapore) and three deficient variants.

    PubMed

    Saha, N; Hong, S H; Wong, H A; Jeyaseelan, K; Tay, J S

    1991-12-01

    Biochemical characteristics of one non-deficient fast G6PD variant (GdSingapore) and six different deficient variants (three new, two Mahidol, one each of Indonesian and Mediterranean) were studied among the Malays of Singapore. The GdSingapore variant had normal enzyme activity (82%) and fast electrophoretic mobilities (140% in TEB buffer, 160% in phosphate and 140% in Tris-HCl buffer systems respectively). This variant is further characterized by normal Km for G6P; utilization of analogues (Gal6P, 2dG6P; dAmNADP), heat stability and pH optimum. The other six deficient G6PD variants had normal electrophoretic mobility in TEB buffer with enzyme activities ranging from 1 to 12% of GdB+. The biochemical characteristics identity them to be 2 Mahidol, 1 Indonesian and 1 Mediterranean variants and three new deficient variants.

  20. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.

    PubMed

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Bao, Xiaoming; Shen, Yu

    2016-04-01

    Vanillin, a type of phenolic released during the pre-treatment of lignocellulosic materials, is toxic to microorganisms and therefore its presence inhibits the fermentation. The vanillin can be reduced to vanillyl alcohol, which is much less toxic, by the ethanol producer Saccharomyces cerevisiae. The reducing capacity of S. cerevisiae and its vanillin resistance are strongly correlated. However, the specific enzymes and their contribution to the vanillin reduction are not extensively studied. In our previous work, an evolved vanillin-resistant strain showed an increased vanillin reduction capacity compared with its parent strain. The transcriptome analysis suggested the reductases and dehydrogenases of this vanillin resistant strain were up-regulated. Using this as a starting point, 11 significantly regulated reductases and dehydrogenases were selected in the present work for further study. The roles of these reductases and dehydrogenases in the vanillin tolerance and detoxification abilities of S. cerevisiae are described. Among the candidate genes, the overexpression of the alcohol dehydrogenase gene ADH6, acetaldehyde dehydrogenase gene ALD6, glucose-6-phosphate 1-dehydrogenase gene ZWF1, NADH-dependent aldehyde reductase gene YNL134C, and aldo-keto reductase gene YJR096W increased 177, 25, 6, 15, and 18 % of the strain μmax in the medium containing 1 g L(-1) vanillin. The in vitro detected vanillin reductase activities of strain overexpressing ADH6, YNL134C and YJR096W were notably higher than control. The vanillin specific reduction rate increased by 8 times in ADH6 overexpressed strain but not in YNL134C and YJR096W overexpressed strain. This suggested that the enzymes encoded by YNL134C and YJR096W might prefer other substrate and/or could not show their effects on vanillin on the high background of Adh6p in vivo. Overexpressing ALD6 and ZWF1 mainly increased the [NADPH]/[NADP(+)] and [GSH]/[GSSG] ratios but not the vanillin reductase activities. Their contribution to strain growth and vanillin reduction were balancing the redox state of strain when vanillin was presented. Beside the reported Adh6p, the enzymes encoded by YNL134C and YJR096W were proved to have vanillin reduction activity in present study. While ALD6 and ZWF1 did not directly reduce vanillin to vanillyl alcohol, their contribution to vanillin resistance primarily depended on the enhancement of the reducing equivalent supply.

Top