Science.gov

Sample records for nadph dehydrogenase mediates

  1. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  2. A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes.

    PubMed Central

    Corpas, F J; Barroso, J B; Sandalio, L M; Distefano, S; Palma, J M; Lupiáñez, J A; Del Río, L A

    1998-01-01

    The presence of the two NADP-dependent dehydrogenases of the pentose phosphate pathway has been investigated in plant peroxisomes from pea (Pisum sativum L.) leaves. Both enzymes, glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44), were present in the matrix of leaf peroxisomes, and their kinetic properties were studied. G6PDH and 6PGDH showed a typical Michaelis-Menten kinetic saturation curve, and had specific activities of 12.4 and 29.6 mU/mg protein, respectively. The Km values of G6PDH and 6PGDH for glucose 6-phosphate and for 6-phosphogluconate were 107.3 and 10.2 microM, respectively. Dithiothreitol did not inhibit G6PDH activity. By isoelectric focusing of peroxisomal matrices, the G6PDH activity was resolved into three isoforms with isoelectric points of 5.55, 5.30 and 4.85. The isoelectric point of peroxisomal 6PGDH was 5.10. Immunoblot analyses of peroxisomal matrix with an antibody against yeast G6PDH revealed a single cross-reactive band of 56 kDa. Post-embedment, EM immunogold labelling of G6PDH confirmed that this enzyme was localized in the peroxisomal matrices, the thylakoid membrane and matrix of chloroplasts, and the cytosol. The presence of the two oxidative enzymes of the pentose phosphate pathway in plant peroxisomes implies that these organelles have the capacity to reduce NADP+ to NADPH for its re-utilization in the peroxisomal metabolism. NADPH is particularly required for the ascorbate-glutathione cycle, which has been recently demonstrated in plant peroxisomes [Jiménez, Hernández, del Río and Sevilla (1997) Plant Physiol. 114, 275-284] and represents an important antioxidant protection system against H2O2 generated in peroxisomes. PMID:9480890

  3. Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/ glyceraldehyde-3-phosphate dehydrogenase complex dissociation.

    PubMed

    Wedel, N; Soll, J

    1998-08-04

    For higher plant chloroplasts, two key enzymes of the Calvin cycle, phosphoribulokinase (EC 2.7.1.19) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.13), have recently been shown to be oligomerized onto the nonenzymatic peptide CP12. Enzymatic activity depends on complex dissociation, mediated by NADPH. The discovery of genes for CP12 in mosses, green algae, and cyanobacteria, together with the analysis of equivalent multiprotein complexes of Chlamydomonas and Synechocystis suggests that light regulation of Calvin cycle activity via NADPH-mediated reversible phosphoribulokinase/CP12/GAPDH complex dissociation is conserved in all photosynthetic organisms, prokaryotes and eukaryotes. In vitro complex reconstitution assays with heterologously expressed Synechocystis wild-type and mutagenized CP12 demonstrate a conserved subunit composition, stoichiometry, and topology in this complex. Further finding of genes, coding for chimeric proteins, carrying CP12 or parts of it as genetic fusions, indicates that evolution has used the peptide loops of CP12 as universal modules to keep various enzymatic activities under the control of NADP(H). These fusion events occurred at least twice in evolution. First was the fusion of the duplicated genes for CP12 and the ORF4 protein of Anabaena variabilis to the chimeric gene for the heterocyst-specific expressed ORF3 protein, most probably involved in N2 fixation. A second gene fusion, which led to the higher plant chloroplast-specific GAPDH subunit, GAPB, has taken place during the transition from water- to land plants.

  4. A Redox-Mediated Modulation of Stem Bolting in Transgenic Nicotiana sylvestris Differentially Expressing the External Mitochondrial NADPH Dehydrogenase1[W][OA

    PubMed Central

    Liu, Yun-Jun; Nunes-Nesi, Adriano; Wallström, Sabá V.; Lager, Ida; Michalecka, Agnieszka M.; Norberg, Fredrik E.B.; Widell, Susanne; Fredlund, Kenneth M.; Fernie, Alisdair R.; Rasmusson, Allan G.

    2009-01-01

    Cytosolic NADPH can be directly oxidized by a calcium-dependent NADPH dehydrogenase, NDB1, present in the plant mitochondrial electron transport chain. However, little is known regarding the impact of modified cytosolic NADPH reduction levels on growth and metabolism. Nicotiana sylvestris plants overexpressing potato (Solanum tuberosum) NDB1 displayed early bolting, whereas sense suppression of the same gene led to delayed bolting, with consequential changes in flowering time. The phenotype was dependent on light irradiance but not linked to any change in biomass accumulation. Whereas the leaf NADPH/NADP+ ratio was unaffected, the stem NADPH/NADP+ ratio was altered following the genetic modification and strongly correlated with the bolting phenotype. Metabolic profiling of the stem showed that the NADP(H) change affected relatively few, albeit central, metabolites, including 2-oxoglutarate, glutamate, ascorbate, sugars, and hexose-phosphates. Consistent with the phenotype, the modified NDB1 level also affected the expression of putative floral meristem identity genes of the SQUAMOSA and LEAFY types. Further evidence for involvement of the NADPH redox in stem development was seen in the distinct decrease in the stem apex NADPH/NADP+ ratio during bolting. Additionally, the potato NDB1 protein was specifically detected in mitochondria, and a survey of its abundance in major organs revealed that the highest levels are found in green stems. These results thus strongly suggest that NDB1 in the mitochondrial electron transport chain can, by modifying cell redox levels, specifically affect developmental processes. PMID:19429607

  5. Enzymic analysis of NADPH metabolism in beta-lactam-producing Penicillium chrysogenum: presence of a mitochondrial NADPH dehydrogenase.

    PubMed

    Harris, Diana M; Diderich, Jasper A; van der Krogt, Zita A; Luttik, Marijke A H; Raamsdonk, Léonie M; Bovenberg, Roel A L; van Gulik, Walter M; van Dijken, Johannes P; Pronk, Jack T

    2006-03-01

    Based on assumed reaction network structures, NADPH availability has been proposed to be a key constraint in beta-lactam production by Penicillium chrysogenum. In this study, NADPH metabolism was investigated in glucose-limited chemostat cultures of an industrial P. chrysogenum strain. Enzyme assays confirmed the NADP(+)-specificity of the dehydrogenases of the pentose-phosphate pathway and the presence of NADP(+)-dependent isocitrate dehydrogenase. Pyruvate decarboxylase/NADP(+)-linked acetaldehyde dehydrogenase and NADP(+)-linked glyceraldehyde-3-phosphate dehydrogenase were not detected. Although the NADPH requirement of penicillin-G-producing chemostat cultures was calculated to be 1.4-1.6-fold higher than that of non-producing cultures, in vitro measured activities of the major NADPH-providing enzymes were the same. Isolated mitochondria showed high rates of antimycin A-sensitive respiration of NADPH, thus indicating the presence of a mitochondrial NADPH dehydrogenase that oxidises cytosolic NADPH. The presence of this enzyme in P. chrysogenum might have important implications for stoichiometric modelling of central carbon metabolism and beta-lactam production and may provide an interesting target for metabolic engineering.

  6. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart

    USDA-ARS?s Scientific Manuscript database

    In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation dr...

  7. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress

    PubMed Central

    Natarajan, Sathish Kumar; Becker, Donald F

    2012-01-01

    Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-inducing factor (AIF), proline dehydrogenase, and NADPH oxidase. These proteins have diverse biochemical functions and influence apoptotic signaling by unique mechanisms. The role of AIF in apoptotic signaling is two-fold, with AIF changing intracellular location from the inner mitochondrial membrane space to the nucleus upon exposure of cells to apoptotic stimuli. In the mitochondria, AIF enhances mitochondrial bioenergetics and complex I activity/assembly to help maintain proper cellular redox homeostasis. After translocating to the nucleus, AIF forms a chromatin degrading complex with other proteins, such as cyclophilin A. AIF translocation from the mitochondria to the nucleus is triggered by oxidative stress, implicating AIF as a mitochondrial redox sensor. Proline dehydrogenase is a membrane-associated flavoenzyme in the mitochondrion that catalyzes the rate-limiting step of proline oxidation. Upregulation of proline dehydrogenase by the tumor suppressor, p53, leads to enhanced mitochondrial reactive oxygen species that induce the intrinsic apoptotic pathway. NADPH oxidases are a group of enzymes that generate reactive oxygen species for oxidative stress and signaling purposes. Upon activation, NADPH oxidase 2 generates a burst of superoxide in neutrophils that leads to killing of microbes during phagocytosis. NADPH oxidases also participate in redox signaling that involves hydrogen peroxide-mediated activation of different pathways regulating cell proliferation and cell death. Potential therapeutic strategies for each enzyme are also highlighted. PMID:22593641

  8. Characteristics of external and internal NAD(P)H dehydrogenases in Hoya carnosa mitochondria.

    PubMed

    Hong, Hoang Thi Kim; Nose, Akihiro

    2012-12-01

    This study aims at characterizing NAD(P)H dehydrogenases on the inside and outside of the inner membrane of mitochondria of one phosphoenolpyruvate carboxykinase-crassulacean acid metabolism plant, Hoya carnosa. In crassulacean acid metabolism plants, NADH is produced by malate decarboxylation inside and outside mitochondria. The relative importance of mitochondrial alternative NADH dehydrogenases and their association was determined in intact-and alamethicin-permeabilized mitochondria of H. carnosa to discriminate between internal and external activities. The major findings in H. carnosa mitochondria are: (i) external NADPH oxidation is totally inhibited by DPI and totally dependent on Ca(2+), (ii) external NADH oxidation is partially inhibited by DPI and mainly dependent on Ca(2+), (iii) total NADH oxidation measured in permeabilized mitochondria is partially inhibited by rotenone and also by DPI, (iv) total NADPH oxidation measured in permeabilized mitochondria is partially dependent on Ca(2+) and totally inhibited by DPI. The results suggest that complex I, external NAD(P)H dehydrogenases, and internal NAD(P)H dehydrogenases are all linked to the electron transport chain. Also, the total measurable NAD(P)H dehydrogenases activity was less than the total measurable complex I activity, and both of these enzymes could donate their electrons not only to the cytochrome pathway but also to the alternative pathway. The finding indicated that the H. carnosa mitochondrial electron transport chain is operating in a classical way, partitioning to both Complex I and alternative Alt. NAD(P)H dehydrogenases.

  9. Mitochondrial type II NAD(P)H dehydrogenases in fungal cell death

    PubMed Central

    Gonçalves, A. Pedro; Videira, Arnaldo

    2015-01-01

    During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(P)H dehydrogenases (also called alternative NAD(P)H dehydrogenases) are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(P)H dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(P)H dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF)-family. PMID:28357279

  10. Identification and Characterization of an Inducible NAD(P)H Dehydrogenase from Red Beetroot Mitochondria.

    PubMed Central

    Menz, R. I.; Day, D. A.

    1996-01-01

    Exogenous NADH oxidation of mitochondria isolated from red beetroots (Beta vulgaris L.) increased dramatically upon slicing and aging the tissue. Anion-exchange chromatography of soluble fractions derived by sonication from fresh and aged beetroot mitochondria yielded three NADH dehydrogenase activity peaks. The third peak from aged beetroot mitochondria was separated into two activities by blue-affinity chromatography. One of these (the unbound peak) readily oxidized dihydrolipoamide, whereas the other (the bound peak) did not. The latter was an NAD(P)H dehydrogenase with high quinone and ferricyanide reductase activity and was absent from fresh beet mitochondria. Further affinity chromatography of the NAD(P)H dehydrogenase indicated enrichment of a 58-kD polypeptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We propose that this 58-kD protein is the inducible, external NADH dehydrogenase. PMID:12226415

  11. Identification and Characterization of an Inducible NAD(P)H Dehydrogenase from Red Beetroot Mitochondria.

    PubMed

    Menz, R. I.; Day, D. A.

    1996-10-01

    Exogenous NADH oxidation of mitochondria isolated from red beetroots (Beta vulgaris L.) increased dramatically upon slicing and aging the tissue. Anion-exchange chromatography of soluble fractions derived by sonication from fresh and aged beetroot mitochondria yielded three NADH dehydrogenase activity peaks. The third peak from aged beetroot mitochondria was separated into two activities by blue-affinity chromatography. One of these (the unbound peak) readily oxidized dihydrolipoamide, whereas the other (the bound peak) did not. The latter was an NAD(P)H dehydrogenase with high quinone and ferricyanide reductase activity and was absent from fresh beet mitochondria. Further affinity chromatography of the NAD(P)H dehydrogenase indicated enrichment of a 58-kD polypeptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We propose that this 58-kD protein is the inducible, external NADH dehydrogenase.

  12. Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase

    PubMed Central

    Henningsen, Brooks M.; Hon, Shuen; Covalla, Sean F.; Sonu, Carolina; Argyros, D. Aaron; Barrett, Trisha F.; Wiswall, Erin; Froehlich, Allan C.

    2015-01-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  13. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    PubMed

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level.

  14. Purification and properties of an unusual UDP-glucose dehydrogenase, NADPH-dependent, from Xanthomonas albilineans.

    PubMed

    Blanch, María; Legaz, María-Estrella; Vicente, C

    2008-01-01

    Xanthomonas albilineans produces a UDP-glucose dehydrogenase growing on sucrose. The enzyme oxidizes UDP-glucose to UDP-glucuronic acid by using molecular oxygen and NADPH. Kinetics of enzymatic oxydation of NADPH is linearly dependent on the amount of oxygen supplied. The enzyme has been purified at homogeneity. The value of pI of the purified enzyme is 8.98 and its molecular mass has been estimated as about 14 kDa. The enzyme shows a michaelian kinetics for UDP-glucose concentrations. The value of K(m) for UDP-glucose is 0.87 mM and 0.26 mM for NADPH, although the enzyme has three different sites to interact with NADPH. The enzyme is inhibited by UDP-glucose concentrations higher than 1.3 mM. N-Terminal sequence has been determined as IQPYNH.

  15. Nitric oxide degradation by potato tuber mitochondria: evidence for the involvement of external NAD(P)H dehydrogenases.

    PubMed

    de Oliveira, Halley Caixeta; Wulff, Alfredo; Saviani, Elzira Elisabeth; Salgado, Ione

    2008-05-01

    The mechanisms of nitric oxide (NO) synthesis in plants have been extensively investigated. NO degradation can be just as important as its synthesis in controlling steady-state levels of NO. Here, we examined NO degradation in mitochondria isolated from potato tubers and the contribution of the respiratory chain to this process. NO degradation was faster in mitochondria energized with NAD(P)H than with succinate or malate. Oxygen consumption and the inner membrane potential were transiently inhibited by NO in NAD(P)H-energized mitochondria, in contrast to the persistent inhibition seen with succinate. NO degradation was abolished by anoxia and superoxide dismutase, which suggested that NO was consumed by its reaction with superoxide anion (O2(-)). Antimycin-A stimulated and myxothiazol prevented NO consumption in succinate- and malate-energized mitochondria. Although favored by antimycin-A, NAD(P)H-mediated NO consumption was not abolished by myxothiazol, indicating that an additional site of O2(-) generation, besides complex III, stimulated NO degradation. Larger amounts of O2(-) were generated in NAD(P)H- compared to succinate- or malate-energized mitochondria. NAD(P)H-mediated NO degradation and O2(-) production were stimulated by free Ca2+ concentration. Together, these results indicate that Ca2+-dependent external NAD(P)H dehydrogenases, in addition to complex III, contribute to O2(-) production that favors NO degradation in potato tuber mitochondria.

  16. Purification, Characterization, and Submitochondrial Localization of a 58-Kilodalton NAD(P)H Dehydrogenase.

    PubMed Central

    Luethy, M. H.; Thelen, J. J.; Knudten, A. F.; Elthon, T. E.

    1995-01-01

    An NADH dehydrogenase activity from red beet (Beta vulgaris L.) root mitochondria was purified to a 58-kD protein doublet. An immunologically related dehydrogenase was partially purified from maize (Zea mays L. B73) mitochondria to a 58-kD protein doublet, a 45-kD protein, and a few other less prevalent proteins. Polyclonal antibodies prepared against the 58-kD protein of red beet roots were found to immunoprecipitate the NAD(P)H dehydrogenase activity. The antibodies cross-reacted to similar proteins in mitochondria from a number of plant species but not to rat liver mitochondrial proteins. The polyclonal antibodies were used in conjunction with maize mitochondrial fractionation to show that the 58-kD protein was likely part of a protein complex loosely associated with the membrane fraction. A membrane-impermeable protein cross-linking agent was used to further show that the majority of the 58-kD protein was located on the outer surface of the inner mitochondrial membrane or in the intermembrane space. Analysis of the cross-linked 58-kD NAD(P)H dehydrogenase indicated that specific proteins of 64, 48, and 45 kD were cross-linked to the 58-kD protein doublet. The NAD(P)H dehydrogenase activity was not affected by ethyleneglycol-bis([beta]-aminoethyl ether)-N,N[prime] -tetraacetic acid or CaCl2, was stimulated somewhat (21%) by flavin mononucleotide, was inhibited by p-chloromercuribenzoic acid (49%) and mersalyl (40%), and was inhibited by a bud scale extract of Platanus occidentalis L. containing platanetin (61%). PMID:12228370

  17. Partial Purification and Characterization of Three NAD(P)H Dehydrogenases from Beta vulgaris Mitochondria 1

    PubMed Central

    Luethy, Michael H.; Hayes, Marianne K.; Elthon, Thomas E.

    1991-01-01

    Mitochondria isolated from the taproot of beet (Beta vulgaris) were used in an effort to identify and partially purify the proteins constituting the exogenous NADH dehydrogenase. Three NAD(P)H dehydrogenases are released from these mitochondria by sonication, and these enzymes were partially purified using fast protein liquid chromatography. One of the enzymes, designated peak I, is capable of oxidizing NADPH and the β form of NADH. The other two activities, peaks II and III, oxidize only β-NADH. All three peaks are insensitive to divalent cation chelators and a complex I inhibitor, rotenone. The major component to peak I is a polypeptide with an apparent molecular mass of approximately 42 kilodaltons. Peak I activity was insensitive to platanetin, a specific inhibitor of the exogenous dehydrogenase, and insensitive to added Ca2+ or Mg2+. Peak I displayed a broad pH activity profile with an optimum between 7.5 and 8.0 for both NADPH and NADH. Purified peak II gave a single polypeptide of about 32 kilodaltons, had a pH optimum between 7.0 and 7.5, and was slightly stimulated by Ca2+ and Mg2+. As with peak I, platanetin had no effect on peak II activity. Peak III was not purified completely, but contained two major polypeptides with apparent molecular masses of 55 and 40 kilodaltons. This enzyme was not affected by Ca2+ and Mg2+, but was inhibited by platanetin. The peak III enzyme had a rather sharp pH optimum of approximately 6.5 to 6.6. The above data indicate that peak III activity is likely the exogenous NADH dehydrogenase. ImagesFigure 2Figure 3 PMID:16668549

  18. Response of Chloroplast NAD(P)H Dehydrogenase-Mediated Cyclic Electron Flow to a Shortage or Lack in Ferredoxin-Quinone Oxidoreductase-Dependent Pathway in Rice Following Short-Term Heat Stress

    PubMed Central

    Essemine, Jemaa; Qu, Mingnan; Mi, Hualing; Zhu, Xin-Guang

    2016-01-01

    Cyclic electron flow (CEF) around photosystem I (PSI) can protect photosynthetic electron carriers under conditions of stromal over-reduction. The goal of the research reported in this paper was to investigate the responses of both PSI and photosystem II (PSII) to a short-term heat stress in two rice lines with different capacities of cyclic electron transfer, i.e., Q4149 with a high capacity (hcef) and C4023 with a low capacity (lcef). The absorbance change at 820 nm (ΔA820) was used here to assess the charge separation in the PSI reaction center (P700). The results obtained show that short-term heat stress abolishes the ferredoxin-quinone oxidoreductase (FQR)-dependent CEF in rice and accelerates the initial rate of P700+ re-reduction. The P700+ amplitude was slightly increased at a moderate heat-stress (35°C) because of a partial restriction of FQR but it was decreased following high heat-stress (42°C). Assessment of PSI and PSII activities shows that PSI is more susceptible to heat stress than PSII. Under high temperature, FQR-dependent CEF was completely removed and NDH-dependent CEF was up-regulated and strengthened to a higher extent in C4023 than in Q4149. Specifically, under normal growth temperature, hcef (Q4149) was characterized by higher FQR- and chloroplast NAD(P)H dehydrogenase (NDH)-dependent CEF rates than lcef (C4023). Following thermal stress, the activation of NDH-pathway was 130 and 10% for C4023 and Q4149, respectively. Thus, the NDH-dependent CEF may constitute the second layer of plant protection and defense against heat stress after the main route, i.e., FQR-dependent CEF, reaches its capacity. We discuss the possibility that under high heat stress, the NDH pathway serves as a safety valve to dissipate excess energy by cyclic photophosphorylation and overcome the stroma over-reduction following inhibition of CO2 assimilation and any shortage or lack in the FQR pathway. The potential role of the NDH-dependent pathway during the evolution

  19. Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-phosphate dehydrogenase.

    PubMed

    Mailloux, Ryan J; Harper, Mary-Ellen

    2010-07-01

    Reduced nicotinamide adenine dinucleotide (NADPH) is a functionally important metabolite required to support numerous cellular processes. However, despite the identification of numerous NADPH-producing enzymes, the mechanisms underlying how the organellar pools of NADPH are maintained remain elusive. Here, we have identified glucose-6-phosphate dehydrogenase (G6PDH) as an important source of NADPH in mitochondria. Activity analysis, submitochondrial fractionation, fluorescence microscopy, and protease sensitivity assays revealed that G6PDH is localized to the mitochondrial matrix. 6-ANAM, a specific G6PDH inhibitor, depleted mitochondrial NADPH pools and increased oxidative stress revealing the importance of G6PDH in NADPH maintenance. We also show that glucose availability and differences in metabolic state modulate the enzymatic sources of NADPH in mitochondria. Indeed, cells cultured in high glucose (HG) not only adopted a glycolytic phenotype but also relied heavily on matrix-associated G6PDH as a source of NADPH. In contrast, cells exposed to low-glucose (LG) concentrations, which displayed increased oxygen consumption, mitochondrial metabolic efficiency, and decreased glycolysis, relied predominantly on isocitrate dehydrogenase (ICDH) as the principal NADPH-producing enzyme in the mitochondria. Culturing glycolytic cells in LG for 48 h decreased G6PDH and increased ICDH protein levels in the mitochondria, further pointing to the regulatory role of glucose. 2-Deoxyglucose treatment also prevented the increase of mitochondrial G6PDH in response to HG. The role of glucose in regulating enzymatic sources of mitochondrial NADPH pool maintenance was confirmed using human myotubes from obese adults with a history of type 2 diabetes mellitus (post-T2DM). Myotubes from post-T2DM participants failed to increase mitochondrial G6PDH in response to HG in contrast to mitochondria in myotubes from control participants (non-T2DM). Hence, we not only identified a matrix

  20. Aqueous soluble tetrazolium/formazan MTS as an indicator of NADH- and NADPH-dependent dehydrogenase activity.

    PubMed

    Dunigan, D D; Waters, S B; Owen, T C

    1995-10-01

    Recently a new tetrazolium was described for the use of monitoring cell viability in culture. This tetrazolium, commonly referred to as MTS [3-(4,5-dimethylthiazol-2-yl)- 5-(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt], has the unusual property that it can be reduced to a water-soluble formazan. beta-Nicotinamide adenine dinucleotide/reduced (NADH) and beta-nicotinamide adenine dinucleotide phosphate/reduced (NADPH) are examples of physiologically important reducing agents. In cell-free studies, MTS was reduce to the soluble formazan in the presence of NADH and NADPH, and reaction were compared to those with dithiothreitol (DTT) or 2-mercaptoethanol (2-ME). The efficiency of these reactions was enhanced 1000-fold by the presence of phenazine methosulfate. Selectivity in the electron transfer from NADPH was slightly greater than NADH, and NADPH or NADH was much greater than the thiols DTT or 2-ME. Generation of either NADH or NADPH in solution by malate dehydrogenase or isocitrate dehydrogenase, respectively, was monitored by the MTS reduction reaction. The rate of formazan formation was comparable to the formation of NADH or NADPH. This system represents a useful tool for evaluating reaction kinetics in solutions of NAD- or NADP-dependent dehydrogenase enzymes, and these reactions can be performed in typical biological buffers containing reducing agents without significant interference to the MTS/formazan system.

  1. Solubilization and Purification of NAD(P)H Dehydrogenase of Cucurbita Microsomes 1

    PubMed Central

    Guerrini, Franca; Valenti, Vincenzo; Pupillo, Paolo

    1987-01-01

    An NAD(P)H dehydrogenase stimulated by quinone (P Pupillo, V Valenti, L de Luca, R Hertel 1986 Plant Physiol 80: 384-389) was solubilized from washed microsomes of zucchini squash hypocotyls (Cucurbita pepo L.) by use of 1% Triton X-100. The solubilized enzyme remained in solution in aqueous buffer and could be purified by a combination of Sepharose 6B chromatography and Blue Ultrogel chromatography. Of the three peaks of activity eluted from the latter column with a salt gradient, peak 3 had 50% or more of the activity and was almost pure enzyme. The preparation examined in SDS-gel electrophoresis consisted of two types of subunits, a (molecular weight 39,500) and b (37,000) in equal amounts. Peak 2 was less pure but had a similar polypeptide pattern. The active protein is proposed to be a heterotetramer (a2b2) having a molecular weight of about 150,000, as found by gel exclusion chromatography. The purified enzyme can reduce several quinones, DCPIP, cytochrome c, and with best efficiency ferricyanide, and is therefore a diaphorase. The kinetics for the substrates are negatively cooperative with Hill coefficients nH = 0.55 ± 0.05 for NADPH and 0.22 ± 0.04 for duroquinone. A weak inhibition by p-hydroxymercuric benzoate and mersalyl (stronger with microsomal preparations) suggests the presence of essential sulfhydryl group(s). The possibility is discussed that the dehydrogenase is an NAD(P)H-P450 reductase or similar flavoprotein, and that it is responsible for the NADPH-cytochrome c reductase activity of plant microsomes. Images Fig. 4 PMID:16665785

  2. The Ca2+-Regulation of the Mitochondrial External NADPH Dehydrogenase in Plants Is Controlled by Cytosolic pH

    PubMed Central

    Hao, Meng-Shu; Jensen, Anna M.; Boquist, Ann-Sofie; Liu, Yun-Jun; Rasmusson, Allan G.

    2015-01-01

    NADPH is a key reductant carrier that maintains internal redox and antioxidant status, and that links biosynthetic, catabolic and signalling pathways. Plants have a mitochondrial external NADPH oxidation pathway, which depends on Ca2+ and pH in vitro, but concentrations of Ca2+ needed are not known. We have determined the K0.5(Ca2+) of the external NADPH dehydrogenase from Solanum tuberosum mitochondria and membranes of E. coli expressing Arabidopsis thaliana NDB1 over the physiological pH range using O2 and decylubiquinone as electron acceptors. The K0.5(Ca2+) of NADPH oxidation was generally higher than for NADH oxidation, and unlike the latter, it depended on pH. At pH 7.5, K0.5(Ca2+) for NADPH oxidation was high (≈100 μM), yet 20-fold lower K0.5(Ca2+) values were determined at pH 6.8. Lower K0.5(Ca2+) values were observed with decylubiquinone than with O2 as terminal electron acceptor. NADPH oxidation responded to changes in Ca2+ concentrations more rapidly than NADH oxidation did. Thus, cytosolic acidification is an important activator of external NADPH oxidation, by decreasing the Ca2+-requirements for NDB1. The results are discussed in relation to the present knowledge on how whole cell NADPH redox homeostasis is affected in plants modified for the NDB1 gene. PMID:26413894

  3. Antimalarial NADPH-Consuming Redox-Cyclers As Superior Glucose-6-Phosphate Dehydrogenase Deficiency Copycats

    PubMed Central

    Bielitza, Max; Belorgey, Didier; Ehrhardt, Katharina; Johann, Laure; Lanfranchi, Don Antoine; Gallo, Valentina; Schwarzer, Evelin; Mohring, Franziska; Jortzik, Esther; Williams, David L.; Becker, Katja; Arese, Paolo; Elhabiri, Mourad

    2015-01-01

    Abstract Aims: Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum were shown to protect G6PD-deficient populations from severe malaria. Here, we investigated the mechanism of a novel antimalarial series, namely 3-[substituted-benzyl]-menadiones, to understand whether these NADPH-consuming redox-cyclers, which induce oxidative stress, mimic the natural protection of G6PD deficiency. Results: We demonstrated that the key benzoylmenadione metabolite of the lead compound acts as an efficient redox-cycler in NADPH-dependent methaemoglobin reduction, leading to the continuous formation of reactive oxygen species, ferrylhaemoglobin, and subsequent haemichrome precipitation. Structure–activity relationships evidenced that both drug metabolites and haemoglobin catabolites contribute to potentiate drug effects and inhibit parasite development. Disruption of redox homeostasis by the lead benzylmenadione was specifically induced in Plasmodium falciparum parasitized erythrocytes and not in non-infected cells, and was visualized via changes in the glutathione redox potential of living parasite cytosols. Furthermore, the redox-cycler shows additive and synergistic effects in combination with compounds affecting the NADPH flux in vivo. Innovation: The lead benzylmenadione 1c is the first example of a novel redox-active agent that mimics the behavior of a falciparum parasite developing inside a G6PD-deficient red blood cell (RBC) giving rise to malaria protection, and it exerts specific additive effects that are inhibitory to parasite development, without harm for non-infected G6PD-sufficient or -deficient RBCs. Conclusion: This strategy offers an innovative perspective for the development of future antimalarial drugs for G6PD-sufficient and -deficient populations. Antioxid. Redox Signal. 22, 1337–1351. PMID:25714942

  4. Cancer-associated Isocitrate Dehydrogenase Mutations Inactivate NADPH-dependent Reductive Carboxylation*

    PubMed Central

    Leonardi, Roberta; Subramanian, Chitra; Jackowski, Suzanne; Rock, Charles O.

    2012-01-01

    Isocitrate dehydrogenase (IDH) is a reversible enzyme that catalyzes the NADP+-dependent oxidative decarboxylation of isocitrate (ICT) to α-ketoglutarate (αKG) and the NADPH/CO2-dependent reductive carboxylation of αKG to ICT. Reductive carboxylation by IDH1 was potently inhibited by NADP+ and, to a lesser extent, by ICT. IDH1 and IDH2 with cancer-associated mutations at the active site arginines were unable to carry out the reductive carboxylation of αKG. These mutants were also defective in ICT decarboxylation and converted αKG to 2-hydroxyglutarate using NADPH. These mutant proteins were thus defective in both of the normal reactions of IDH. Biochemical analysis of heterodimers between wild-type and mutant IDH1 subunits showed that the mutant subunit did not inactivate reductive carboxylation by the wild-type subunit. Cells expressing the mutant IDH are thus deficient in their capacity for reductive carboxylation and may be compromised in their ability to produce acetyl-CoA under hypoxia or when mitochondrial function is otherwise impaired. PMID:22442146

  5. Regulation of p-nitroanisole O-demethylation in perfused rat liver. Adenine nucleotide inhibition of NADP+-dependent dehydrogenases and NADPH-cytochrome c reductase.

    PubMed Central

    Kauffman, F C; Evans, R K; Reinke, L A; Thurman, R G

    1979-01-01

    Perfusion of rat livers with 10 mM-fructose or pretreatment of the rat with 6-aminonicotinamide (70 mg/kg) 6 h before perfusion decreased intracellular ATP concentrations and increased the rate of p-nitroanisole O-demethylation. This increase was accompanied by a decrease in the free [NADP+]/[NADPH] ratio calculated from concentrations of substrates assumed to be in near-equilibrium with isocitrate dehydrogenase. After pretreatment with 6-aminonicotinamide the [NADP+]/[NADPH] ratio also declined. Reduction of NADP+ during mixed-function oxidation may be explained by inhibition of of one or more NADPH-generating enzymes. Glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase and "malic" enzyme, partially purified from livers of phenobarbital-treated rats, were inhibited by ATP and ADP. Inhibitor constants of ATP for the four dehydrogenases varied considerably, ranging from 9 micrometer for "malic" enzyme to 1.85 mM for glucose 6-phosphate dehydrogenase. NADPH-cytochrome c reductase was also inhibited by ATP (Ki 2.8 mM) and by ADP (Ki 0.9 mM), but not by AMP. Concentrations of ATP and ADP that inhibited glucose 6-phosphate dehydrogenase and the reductase were comparable with concentrations in the intact liver. Thus agents that lower intracellular ATP may accelerate rates of mixed-function oxidation by a concerted mechanism involving deinhibition of NADPH-cytochrome c reductase and one or more NADPH-generating enzymes. PMID:44195

  6. Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase.

    PubMed

    Gao, Chao; Zhang, Lijie; Xie, Yingjian; Hu, Chunhui; Zhang, Yue; Li, Lixiang; Wang, Yu; Ma, Cuiqing; Xu, Ping

    2013-06-01

    Production of (3S)-acetoin ((3S)-AC), an important platform chemical, is desirable but difficult to perform. An NADPH-dependent carbonyl reductase (Gox0644) from Gluconobacter oxydans DSM 2003 was confirmed to have a good ability to reduce diacetyl (DA) to produce (3S)-AC. In this work, the NADPH-dependent carbonyl reductase was expressed and purified. Glucose dehydrogenase from Bacillus subtilis 168 was coupled with the NADPH-dependent carbonyl reductase to produce (3S)-AC from DA. Under the optimal conditions, 12.2 g l(-1) (3S)-AC was produced from 14.3 g l(-1) DA in 75 min. Because DA can be biotechnological produced, the two-enzymes coupling system might be a promising alternative for the (3S)-AC production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. NADPH-dependent glutamate dehydrogenase in Penicillium chrysogenum is involved in regulation of beta-lactam production.

    PubMed

    Thykaer, Jette; Rueksomtawin, Kanchana; Noorman, Henk; Nielsen, Jens

    2008-04-01

    The interactions between the ammonium assimilatory pathways and beta-lactam production were investigated by disruption of the NADPH-dependent glutamate dehydrogenase gene (gdhA) in two industrial beta-lactam-producing strains of Penicillium chrysogenum. The strains used were an adipoyl-7-ADCA- and a penicillin-producing strain. The gdhA gene disruption caused a decrease in maximum specific growth rate of 26 % and 35 % for the adipoyl-7-ADCA-producing strain and the penicillin-producing strain, respectively, compared to the corresponding reference strains. Interestingly, no beta-lactam production was detected in either of the DeltagdhA strains. Supplementation with glutamate restored growth but no beta-lactam production was detected for the constructed strains. Cultures with high ammonium concentrations (repressing conditions) and with proline as nitrogen source (de-repressed conditions) showed continued beta-lactam production for the reference strains whereas the DeltagdhA strains remained non-productive under all conditions. By overexpressing the NAD-dependent glutamate dehydrogenase, the specific growth rate could be restored, but still no beta-lactam production was detected. The results indicate that the NADPH-dependent glutamate dehydrogenase may be directly or indirectly involved in the regulation of beta-lactam production in industrial strains of P. chrysogenum.

  8. Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana.

    PubMed

    Carrie, Chris; Murcha, Monika W; Kuehn, Kristina; Duncan, Owen; Barthet, Michelle; Smith, Penelope M; Eubel, Holger; Meyer, Etienne; Day, David A; Millar, A Harvey; Whelan, James

    2008-09-03

    We found that four type II NAD(P)H dehydrogenases (ND) in Arabidopsis are targeted to two locations in the cell; NDC1 was targeted to mitochondria and chloroplasts, while NDA1, NDA2 and NDB1 were targeted to mitochondria and peroxisomes. Targeting of NDC1 to chloroplasts as well as mitochondria was shown using in vitro and in vivo uptake assays and dual targeting of NDC1 to plastids relies on regions in the mature part of the protein. Accumulation of NDA type dehydrogenases to peroxisomes and mitochondria was confirmed using Western blot analysis on highly purified organelle fractions. Targeting of ND proteins to mitochondria and peroxisomes is achieved by two separate signals, a C-terminal signal for peroxisomes and an N-terminal signal for mitochondria.

  9. Molecular and structural characterization of NADPH-dependent d-glycerate dehydrogenase from the enteric parasitic protist Entamoeba histolytica.

    PubMed Central

    Ali, Vahab; Shigeta, Yasuo; Nozaki, Tomoyoshi

    2003-01-01

    Putative NADPH-dependent GDH (L-glycerate dehydrogenase) of the protozoan parasite Entamoeba histolytica (EhGDH) has been characterized. The EhGDH gene encodes a protein of 318 amino acids with a calculated isoelectric point of 6.29 and a molecular mass of 35.8 kDa. EhGDH showed highest identities with GDH from epsilon-proteobacteria. This close kinship was also supported by phylogenetic analyses, suggesting possible lateral transfer of the gene from epsilon-proteobacteria to E. histolytica. In contrast with the implications from protein alignment and phylogenetic analysis, kinetic studies revealed that the amoebic GDH showed biochemical properties similar to those of mammalian GDH, i.e. a preference for NADPH as cofactor and higher affinities towards NADPH and beta-hydroxypyruvate than towards NADP+ and L-glycerate. Whereas the amino acids involved in nucleotide binding and catalysis are totally conserved in EhGDH, substitution of a negatively charged amino acid with a non-charged hydroxy-group-containing amino acid is probably responsible for the observed high affinity of EhGDH for NADP+/NADPH. In addition, the amoebic GDH, dissimilar to the bacterial and mammalian GDHs, lacks glyoxylate reductase activity. Native and recombinant EhGDH showed comparable subunit structure, kinetic parameters and elution profiles on anion-exchange chromatography. We propose that the GDH enzyme is likely to be involved in regulation of the intracellular concentration of serine, and, thus, also in controlling cysteine biosynthesis located downstream of serine metabolic pathways in this protist. PMID:12877657

  10. Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.

    PubMed

    Jeon, Hyunwoo; Durairaj, Pradeepraj; Lee, Dowoo; Ahsan, Md Murshidul; Yun, Hyungdon

    2016-12-28

    Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19+FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at 30°C. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

  11. Reconstruction of an Acetogenic 2,3-Butanediol Pathway Involving a Novel NADPH-Dependent Primary-Secondary Alcohol Dehydrogenase

    PubMed Central

    Köpke, Michael; Gerth, Monica L.; Maddock, Danielle J.; Mueller, Alexander P.; Liew, FungMin

    2014-01-01

    Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 μM h−1 optical density unit−1), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production. PMID:24657865

  12. Molecular characterization of an NADPH-dependent acetoin reductase/2,3-butanediol dehydrogenase from Clostridium beijerinckii NCIMB 8052.

    PubMed

    Raedts, John; Siemerink, Marco A J; Levisson, Mark; van der Oost, John; Kengen, Servé W M

    2014-03-01

    Acetoin reductase is an important enzyme for the fermentative production of 2,3-butanediol, a chemical compound with a very broad industrial use. Here, we report on the discovery and characterization of an acetoin reductase from Clostridium beijerinckii NCIMB 8052. An in silico screen of the C. beijerinckii genome revealed eight potential acetoin reductases. One of them (CBEI_1464) showed substantial acetoin reductase activity after expression in Escherichia coli. The purified enzyme (C. beijerinckii acetoin reductase [Cb-ACR]) was found to exist predominantly as a homodimer. In addition to acetoin (or 2,3-butanediol), other secondary alcohols and corresponding ketones were converted as well, provided that another electronegative group was attached to the adjacent C-3 carbon. Optimal activity was at pH 6.5 (reduction) and 9.5 (oxidation) and around 68°C. Cb-ACR accepts both NADH and NADPH as electron donors; however, unlike closely related enzymes, NADPH is preferred (Km, 32 μM). Cb-ACR was compared to characterized close homologs, all belonging to the "threonine dehydrogenase and related Zn-dependent dehydrogenases" (COG1063). Metal analysis confirmed the presence of 2 Zn(2+) atoms. To gain insight into the substrate and cofactor specificity, a structural model was constructed. The catalytic zinc atom is likely coordinated by Cys37, His70, and Glu71, while the structural zinc site is probably composed of Cys100, Cys103, Cys106, and Cys114. Residues determining NADP specificity were predicted as well. The physiological role of Cb-ACR in C. beijerinckii is discussed.

  13. Disruption of the NADPH-dependent glutamate dehydrogenase affects the morphology of two industrial strains of Penicillium chrysogenum.

    PubMed

    Thykaer, Jette; Rueksomtawin, Kanchana; Noorman, Henk; Nielsen, Jens

    2009-02-23

    New morphological aspects of Penicillium chrysogenum were found during physiological characterisation of two NADPH-dependent glutamate dehydrogenase mutant strains. A morphological characterisation of the previously constructed strains, together with the two beta-lactam producing industrial recipient strains, was conducted. The reference strains showed a compact structure with highly branched hyphal elements whereas the morphology of the DeltagdhA strains consisting of long elongated hyphal elements with few branches. On solid medium, the hyphal growth unit (length) increased from an average of 47 microm tip(-1) in the reference strains to 117 microm tip(-1) in the DeltagdhA strains and in submerged cultures a decrease of 18% in branching frequency was measured due to the gdhA deletion. P. chrysogenum Wis 54-1255, the ancestor of most production strains was also characterised and this strain showed morphology similar to the industrial strains. Interestingly, the constructed strains showed morphology similar to wild type Aspergillus nidulans another species carrying the penicillin biosynthetic cluster. Thus, the results showed that elimination of glutamate dehydrogenase activity in high producing strains of P. chrysogenum has a radical impact on morphology.

  14. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling

    PubMed Central

    Wu, Yi-Hsuan; Chiu, Daniel Tsun-Yee; Lin, Hsin-Ru; Tang, Hsiang-Yu; Cheng, Mei-Ling; Ho, Hung-Yao

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes—tumor necrosis factor alpha (TNF-α) and GTPase myxovirus resistance 1 (MX1)—in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E) and enterovirus 71 (EV71) infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH) sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP+ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG. PMID:26694452

  15. Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases.

    PubMed

    Brandes, Ralf P; Weissmann, Norbert; Schröder, Katrin

    2014-08-01

    The only known function of the Nox family of NADPH oxidases is the production of reactive oxygen species (ROS). Some Nox enzymes show high tissue-specific expression and the ROS locally produced are required for synthesis of hormones or tissue components. In the cardiovascular system, Nox enzymes are low abundant and function as redox-modulators. By reacting with thiols, nitric oxide (NO) or trace metals, Nox-derived ROS elicit a plethora of cellular responses required for physiological growth factor signaling and the induction and adaptation to pathological processes. The interactions of Nox-derived ROS with signaling elements in the cardiovascular system are highly diverse and will be detailed in this article, which is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".

  16. Molecular Characterization of an NADPH-Dependent Acetoin Reductase/2,3-Butanediol Dehydrogenase from Clostridium beijerinckii NCIMB 8052

    PubMed Central

    Raedts, John; Siemerink, Marco A. J.; Levisson, Mark; van der Oost, John

    2014-01-01

    Acetoin reductase is an important enzyme for the fermentative production of 2,3-butanediol, a chemical compound with a very broad industrial use. Here, we report on the discovery and characterization of an acetoin reductase from Clostridium beijerinckii NCIMB 8052. An in silico screen of the C. beijerinckii genome revealed eight potential acetoin reductases. One of them (CBEI_1464) showed substantial acetoin reductase activity after expression in Escherichia coli. The purified enzyme (C. beijerinckii acetoin reductase [Cb-ACR]) was found to exist predominantly as a homodimer. In addition to acetoin (or 2,3-butanediol), other secondary alcohols and corresponding ketones were converted as well, provided that another electronegative group was attached to the adjacent C-3 carbon. Optimal activity was at pH 6.5 (reduction) and 9.5 (oxidation) and around 68°C. Cb-ACR accepts both NADH and NADPH as electron donors; however, unlike closely related enzymes, NADPH is preferred (Km, 32 μM). Cb-ACR was compared to characterized close homologs, all belonging to the “threonine dehydrogenase and related Zn-dependent dehydrogenases” (COG1063). Metal analysis confirmed the presence of 2 Zn2+ atoms. To gain insight into the substrate and cofactor specificity, a structural model was constructed. The catalytic zinc atom is likely coordinated by Cys37, His70, and Glu71, while the structural zinc site is probably composed of Cys100, Cys103, Cys106, and Cys114. Residues determining NADP specificity were predicted as well. The physiological role of Cb-ACR in C. beijerinckii is discussed. PMID:24441158

  17. Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene.

    PubMed

    Lee, Won-Heong; Park, Jin-Byung; Park, Kyungmoon; Kim, Myoung-Dong; Seo, Jin-Ho

    2007-08-01

    Whole-cell conversion of cyclohexanone to epsilon-caprolactone was attempted by recombinant Escherichia coli BL21(DE3) expressing cyclohexanone monooxygenase (CHMO) of Acinetobacter calcoaceticus NCIMB 9871. High concentrations of cyclohexanone and epsilon-caprolactone reduced CHMO-mediated bioconversion of cyclohexanone to epsilon-caprolactone in the resting recombinant E. coli cells. Metabolically active cells were employed by adopting a fed-batch culture to improve the production of epsilon-caprolactone from cyclohexanone. A glucose-limited fed-batch Baeyer-Villiger oxidation where a cyclohexanone level was maintained less than 6 g/l resulted in a maximum epsilon-caprolactone concentration of 11.0 g/l. The maximum epsilon-caprolactone concentration was improved further to 15.3 g/l by coexpression of glucose-6-phosphate dehydrogenase, an NADPH-generating enzyme encoded by the zwf gene which corresponded to a 39% enhancement in epsilon-caprolactone concentration compared with the control experiment performed under the same conditions.

  18. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification.

    PubMed

    Chung, Daehwan; Verbeke, Tobin J; Cross, Karissa L; Westpheling, Janet; Elkins, James G

    2015-01-01

    Compounds such as furfural and 5-hydroxymethylfurfural (5-HMF) are generated through the dehydration of xylose and glucose, respectively, during dilute-acid pretreatment of lignocellulosic biomass and are also potent microbial growth and fermentation inhibitors. The enzymatic reduction of these furan aldehydes to their corresponding, and less toxic, alcohols is an engineering approach that has been successfully implemented in both Saccharomyces cerevisiae and ethanologenic Escherichia coli, but has not yet been investigated in thermophiles relevant to biofuel production through consolidated bioprocessing (CBP). Developing CBP-relevant biocatalysts that are either naturally resistant to such inhibitors, or are amenable to engineered resistance, is therefore, an important component in making biofuels production from lignocellulosic biomass feasible. A butanol dehydrogenase encoding gene from Thermoanaerobacter pseudethanolicus 39E (Teth39_1597), previously shown to have furfural and 5-HMF reducing capabilities, was cloned into a suicide plasmid, pDCW171 and transformed into a lactate dehydrogenase mutant of Caldicellulosiruptor bescii. Integration of the gene into the C. bescii chromosome was verified via PCR amplification and stable expression was observed up to 75°C. Heterologous expression of the NADPH-dependent BdhA enzyme conferred increased resistance of the engineered strain to both furfural and 5-HMF relative to the wild-type and parental strains. Further, when challenged with 15 mM concentrations of either furan aldehyde, the ability to eliminate furfural or 5-HMF from the culture medium was significantly improved in the engineered strain. A genetically engineered strain of C. bescii (JWCB044) has been constructed that shows both an improved tolerance to furan aldehydes and an improved ability to eliminate furfural and 5-HMF from the culture medium. The work presented here represents the first example of engineering furan aldehyde resistance into a CBP

  19. Oxidation of guaiacol by myeloperoxidase: a two-electron-oxidized guaiacol transient species as a mediator of NADPH oxidation.

    PubMed Central

    Capeillère-Blandin, C

    1998-01-01

    The present study was first aimed at a complete steady-state kinetic analysis of the reaction between guaiacol (2-methoxyphenol) and the myeloperoxidase (MPO)/H2O2 system, including a description of the isolation and purification of MPO from human polymorphonuclear neutrophil cells. Secondly, the overall reaction of the oxidation of NADPH, mediated by the reactive intermediates formed from the oxidation of guaiacol in the MPO/H2O2 system, was analysed kinetically. The presence of guaiacol stimulates the oxidation of NADPH by the MPO/H2O2 system in a concentration-dependent manner. Concomitantly, the accumulation of biphenoquinone (BQ), the final steady-state product of guaiacol oxidation, is lowered, and even inhibited completely, at high concentrations of NADPH. Under these conditions, the stoichiometry of NADPH:H2O2 is 1, and the oxidation rate of NADPH approximates to that of the rate of guaiacol oxidation by MPO. The effects of the presence of superoxide dismutase, catalase and of anaerobic conditions on the overall oxidation of NADPH have also been examined, and the data indicated that superoxide formation did not occur. The final product of NADPH oxidation was shown to be enzymically active NADP+, while guaiacol was generated continuously from the reaction between NADPH and oxidized guaiacol product. In contrast, similar experiments performed on the indirect, tyrosine-mediated oxidation of NADPH by MPO showed that a propagation of the free radical chain was occurring, with generation of both O2(-.) and H2O2. BQ, in itself, was able to spontaneously oxidize NADPH, but neither the rate nor the stoichiometry of the reaction could account for the NADPH-oxidation process involved in the steady-state peroxidation cycle. These results provide evidence that the oxidation of NADPH does not involve a free nucleotide radical intermediate, but that this is probably due to a direct electron-transfer reaction between NADPH and a two-electron-oxidized guaiacol intermediate

  20. NdhV Is a Subunit of NADPH Dehydrogenase Essential for Cyclic Electron Transport in Synechocystis sp. Strain PCC 6803.

    PubMed

    Gao, Fudan; Zhao, Jiaohong; Wang, Xiaozhuo; Qin, Shen; Wei, Lanzhen; Ma, Weimin

    2016-02-01

    Two mutants sensitive to heat stress for growth and impaired in NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET) were isolated from the cyanobacterium Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in the same sll0272 gene, encoding a protein highly homologous to NdhV identified in Arabidopsis (Arabidopsis thaliana). Deletion of the sll0272 gene (ndhV) did not influence the assembly of NDH-1 complexes and the activities of CO2 uptake and respiration but reduced the activity of NDH-CET. NdhV interacted with NdhS, a ferredoxin-binding subunit of cyanobacterial NDH-1 complex. Deletion of NdhS completely abolished NdhV, but deletion of NdhV had no effect on the amount of NdhS. Reduction of NDH-CET activity was more significant in ΔndhS than in ΔndhV. We therefore propose that NdhV cooperates with NdhS to accept electrons from reduced ferredoxin. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Propofol Attenuates Small Intestinal Ischemia Reperfusion Injury through Inhibiting NADPH Oxidase Mediated Mast Cell Activation

    PubMed Central

    Xing, Dandan; Su, Guangjie; Li, Shun; Luo, Chenfang; Irwin, Michael G.; Hei, Ziqing

    2015-01-01

    Both oxidative stress and mast cell (MC) degranulation participate in the process of small intestinal ischemia reperfusion (IIR) injury, and oxidative stress induces MC degranulation. Propofol, an anesthetic with antioxidant property, can attenuate IIR injury. We postulated that propofol can protect against IIR injury by inhibiting oxidative stress subsequent from NADPH oxidase mediated MC activation. Cultured RBL-2H3 cells were pretreated with antioxidant N-acetylcysteine (NAC) or propofol and subjected to hydrogen peroxide (H2O2) stimulation without or with MC degranulator compound 48/80 (CP). H2O2 significantly increased cells degranulation, which was abolished by NAC or propofol. MC degranulation by CP further aggravated H2O2 induced cell degranulation of small intestinal epithelial cell, IEC-6 cells, stimulated by tryptase. Rats subjected to IIR showed significant increases in cellular injury and elevations of NADPH oxidase subunits p47phox and gp91phox protein expression, increases of the specific lipid peroxidation product 15-F2t-Isoprostane and interleukin-6, and reductions in superoxide dismutase activity with concomitant enhancements in tryptase and β-hexosaminidase. MC degranulation by CP further aggravated IIR injury. And all these changes were attenuated by NAC or propofol pretreatment, which also abrogated CP-mediated exacerbation of IIR injury. It is concluded that pretreatment of propofol confers protection against IIR injury by suppressing NADPH oxidase mediated MC activation. PMID:26246867

  2. Leflunomide induces NAD(P)H quinone dehydrogenase 1 enzyme via the aryl hydrocarbon receptor in neonatal mice.

    PubMed

    Shrestha, Amrit Kumar; Patel, Ananddeep; Menon, Renuka T; Jiang, Weiwu; Wang, Lihua; Moorthy, Bhagavatula; Shivanna, Binoy

    2017-03-25

    Aryl hydrocarbon receptor (AhR) has been increasingly recognized to play a crucial role in normal physiological homeostasis. Additionally, disrupted AhR signaling leads to several pathological states in the lung and liver. AhR activation transcriptionally induces detoxifying enzymes such as cytochrome P450 (CYP) 1A and NAD(P)H quinone dehydrogenase 1 (NQO1). The toxicity profiles of the classical AhR ligands such as 3-methylcholanthrene and dioxins limit their use as a therapeutic agent in humans. Hence, there is a need to identify nontoxic AhR ligands to develop AhR as a clinically relevant druggable target. Recently, we demonstrated that leflunomide, a FDA approved drug, used to treat rheumatoid arthritis in humans, induces CYP1A enzymes in adult mice via the AhR. However, the mechanisms by which this drug induces NQO1 in vivo are unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic NQO1 enzyme in neonatal mice via AhR-dependent mechanism(s). Leflunomide elicited significant induction of pulmonary CYP1A1 and NQO1 expression in neonatal mice. Interestingly, the dose at which leflunomide increased NQO1 was significantly higher than that required to induce CYP1A1 enzyme. Likewise, it also enhanced hepatic CYP1A1, 1A2 and NQO1 expression in WT mice. In contrast, leflunomide failed to induce these enzymes in AhR-null mice. Our results indicate that leflunomide induces pulmonary and hepatic CYP1A and NQO1 enzymes via the AhR in neonatal mice. These findings have important implications to prevent and/or treat disorders such as bronchopulmonary dysplasia in human infants where AhR may play a crucial role in the disease pathogenesis.

  3. A Dedicated Type II NADPH Dehydrogenase Performs the Penultimate Step in the Biosynthesis of Vitamin K1 in Synechocystis and Arabidopsis

    PubMed Central

    Fatihi, Abdelhak; Latimer, Scott; Schmollinger, Stefan; Block, Anna; Dussault, Patrick H.; Vermaas, Wim F.J.; Merchant, Sabeeha S.; Basset, Gilles J.

    2015-01-01

    Mutation of Arabidopsis thaliana NAD(P)H DEHYDROGENASE C1 (NDC1; At5g08740) results in the accumulation of demethylphylloquinone, a late biosynthetic intermediate of vitamin K1. Gene coexpression and phylogenomics analyses showed that conserved functional associations occur between vitamin K biosynthesis and NDC1 homologs throughout the prokaryotic and eukaryotic lineages. Deletion of Synechocystis ndbB, which encodes for one such homolog, resulted in the same defects as those observed in the cyanobacterial demethylnaphthoquinone methyltransferase knockout. Chemical modeling and assay of purified demethylnaphthoquinone methyltransferase demonstrated that, by virtue of the strong electrophilic nature of S-adenosyl-l-methionine, the transmethylation of the demethylated precursor of vitamin K is strictly dependent on the reduced form of its naphthoquinone ring. NDC1 was shown to catalyze such a prerequisite reduction by using NADPH and demethylphylloquinone as substrates and flavine adenine dinucleotide as a cofactor. NDC1 displayed Michaelis-Menten kinetics and was markedly inhibited by dicumarol, a competitive inhibitor of naphthoquinone oxidoreductases. These data demonstrate that the reduction of the demethylnaphthoquinone ring represents an authentic step in the biosynthetic pathway of vitamin K, that this reaction is enzymatically driven, and that a selection pressure is operating to retain type II NAD(P)H dehydrogenases in this process. PMID:26023160

  4. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus

    PubMed Central

    Ryder, Lauren S.; Dagdas, Yasin F.; Mentlak, Thomas A.; Kershaw, Michael J.; Thornton, Christopher R.; Schuster, Martin; Chen, Jisheng; Wang, Zonghua; Talbot, Nicholas J.

    2013-01-01

    The rice blast fungus Magnaporthe oryzae infects plants with a specialized cell called an appressorium, which uses turgor to drive a rigid penetration peg through the rice leaf cuticle. Here, we show that NADPH oxidases (Nox) are necessary for septin-mediated reorientation of the F-actin cytoskeleton to facilitate cuticle rupture and plant cell invasion. We report that the Nox2–NoxR complex spatially organizes a heteroligomeric septin ring at the appressorium pore, required for assembly of a toroidal F-actin network at the point of penetration peg emergence. Maintenance of the cortical F-actin network during plant infection independently requires Nox1, a second NADPH oxidase, which is necessary for penetration hypha elongation. Organization of F-actin in appressoria is disrupted by application of antioxidants, whereas latrunculin-mediated depolymerization of appressorial F-actin is competitively inhibited by reactive oxygen species, providing evidence that regulated synthesis of reactive oxygen species by fungal NADPH oxidases directly controls septin and F-actin dynamics. PMID:23382235

  5. Benzylidenemalononitrile derivatives as substrates and inhibitors of a new NAD(P)H dehydrogenase of erythrocytes. Purification and crystallisation of two forms of the enzyme.

    PubMed

    Ueberschär, K H; Kille, S; Laule, G; Maurer, P; Wallenfels, K

    1979-10-01

    Using the powerful lachrymator (2-chlorobenzylidene)malononitrile as electron acceptor, two types of NAD(P)H dehydrogenases have been isolated from human blood. Crystallisation of the homogenous enzymes was performed in 50% polyethylene glycol solution. The enzymes (average molecular weight 18 000) are composed of only one polypeptide chain and have a very similar amino acid composition. B-side stereospecificity was determined with respect to the cofactor by gas chromatography-mass spectrometry for the reductase. Besides (2-chlorobenzylidene)malononitrile, 2,6-dichloroindophenol, methylene blue, 4-benzoquinone, FMN and FAD are also reduced using NADH or NADPH as hydrogen donor with the rates decreasing in the given order. Reduction of methemoglobin is observed only upon addition of methylene blue, FMN or FAD as carriers. (2-Chlorobenzylidene)malononitrile reduction is inhibited by most of the compounds known to be decouplers of oxidative phosphorylation.

  6. NADPH oxidase NOX2 mediates TLR2/6-dependent release of GM-CSF from endothelial cells.

    PubMed

    Schuett, Jutta; Schuett, Harald; Oberoi, Raghav; Koch, Ann-Kathrin; Pretzer, Silke; Luchtefeld, Maren; Schieffer, Bernhard; Grote, Karsten

    2017-06-01

    NADPH oxidase-generated reactive oxygen species (ROS) from immune cells are well known to be important for pathogen killing in response to TLR ligands. Here, we investigated a new aspect of NADPH oxidase in the TLR2/6-induced release of the immunologically relevant GM-CSF by endothelial cells. Stimulation of human endothelial cells with TLR2/6 agonist, MALP-2 (macrophage-activating lipopeptide of 2 kDa), induced NADPH oxidase activation and ROS formation. Inhibition by ROS scavengers and NADPH oxidase inhibitors blocked MALP-2-induced GM-CSF release. NADPH oxidase activators or ROS donors alone did not result in GM-CSF secretion; however, additional superoxide supply augmented MALP-2-induced GM-CSF secretion and restored GM-CSF levels after NADPH oxidase inhibition. MALP-2-dependent NF-ĸB activation was suppressed by NADPH oxidase inhibition, and inhibition of NF-κB completely blunted MALP-2-induced GM-CSF release. Vascular explants from mice that were deficient for the NADPH oxidase subunit p47 (phox) showed diminished intimal superoxide production and GM-CSF release after ex vivo stimulation with MALP-2. Moreover, an increase in circulating progenitor cells after MALP-2 injection was completely abolished in p47(phox)-knockout mice. Finally, MALP-2 stimulation increased mRNA expression of the major subunit NADPH oxidase, (Nox)2, in endothelial cells, and Nox2 inhibition prevented MALP-2-induced GM-CSF release. Our findings identify a Nox2-containing NADPH oxidase as a crucial regulator of the immunologic important growth factor GM-CSF after TLR2/6 stimulation in endothelial cells.-Schuett, J., Schuett, H., Oberoi, R., Koch, A.-K., Pretzer, S., Luchtefeld, M., Schieffer, B., Grote, K. NADPH oxidase NOX2 mediates TLR2/6-dependent release of GM-CSF from endothelial cells. © FASEB.

  7. NADPH Oxidase Activation in Pancreatic Cancer Cells Is Mediated through Akt-dependent Up-regulation of p22phox*

    PubMed Central

    Edderkaoui, Mouad; Nitsche, Claudia; Zheng, Ling; Pandol, Stephen J.; Gukovsky, Ilya; Gukovskaya, Anna S.

    2011-01-01

    We recently showed that Nox4 NADPH oxidase is highly expressed in pancreatic ductal adenocarcinoma and that it is activated by growth factors and plays a pro-survival, anti-apoptotic role. Here we investigate the mechanisms through which insulin-like growth factor I and serum (FBS) activate NADPH oxidase in pancreatic cancer (PaCa) cells. We show that in PaCa cells, NADPH oxidase is composed of Nox4 and p22phox catalytic subunits, which are both required for NADPH oxidase activity. Insulin-like growth factor I and FBS activate NADPH oxidase through transcriptional up-regulation of p22phox. This involves activation of the transcription factor NF-κB mediated by Akt kinase. Up-regulation of p22phox by the growth factors results in increased Nox4-p22phox complex formation and activation of NADPH oxidase. This mechanism is different from that for receptor-induced activation of phagocytic NADPH oxidase, which is mediated by phosphorylation of its regulatory subunits. Up-regulation of p22phox represents a novel pro-survival mechanism through which growth factors and Akt inhibit apoptosis in PaCa cells. PMID:21118808

  8. NADPH oxidase-2 mediates zinc deficiency-induced oxidative stress and kidney damage.

    PubMed

    Li, Mirandy S; Adesina, Sherry E; Ellis, Carla L; Gooch, Jennifer L; Hoover, Robert S; Williams, Clintoria R

    2017-01-01

    Zn(2+) deficiency (ZnD) is comorbid with chronic kidney disease and worsens kidney complications. Oxidative stress is implicated in the detrimental effects of ZnD. However, the sources of oxidative stress continue to be identified. Since NADPH oxidases (Nox) are the primary enzymes that contribute to renal reactive oxygen species generation, this study's objective was to determine the role of these enzymes in ZnD-induced oxidative stress. We hypothesized that ZnD promotes NADPH oxidase upregulation, resulting in oxidative stress and kidney damage. To test this hypothesis, wild-type mice were pair-fed a ZnD or Zn(2+)-adequate diet. To further investigate the effects of Zn(2+) bioavailability on NADPH oxidase regulation, mouse tubular epithelial cells were exposed to the Zn(2+) chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) or vehicle followed by Zn(2+) supplementation. We found that ZnD diet-fed mice develop microalbuminuria, electrolyte imbalance, and whole kidney hypertrophy. These markers of kidney damage are accompanied by elevated Nox2 expression and H2O2 levels. In mouse tubular epithelial cells, TPEN-induced ZnD stimulates H2O2 generation. In this in vitro model of ZnD, enhanced H2O2 generation is prevented by NADPH oxidase inhibition with diphenyleneiodonium. Specifically, TPEN promotes Nox2 expression and activation, which are reversed when intracellular Zn(2+) levels are restored following Zn(2+) supplementation. Finally, Nox2 knockdown by siRNA prevents TPEN-induced H2O2 generation and cellular hypertrophy in vitro. Together, these findings reveal that Nox2 is a Zn(2+)-regulated enzyme that mediates ZnD-induced oxidative stress and kidney hypertrophy. Understanding the specific mechanisms by which ZnD contributes to kidney damage may have an important impact on the treatment of chronic kidney disease.

  9. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.

    PubMed

    Khattab, Sadat Mohammad Rezq; Saimura, Masayuki; Kodaki, Tsutomu

    2013-06-10

    The xylose-fermenting recombinant Saccharomyces cerevisiae and its improvement have been studied extensively. The redox balance between xylose reductase (XR) and xylitol dehydrogenase (XDH) is thought to be an important factor in effective xylose fermentation. Using protein engineering, we previously successfully reduced xylitol accumulation and improved ethanol production by reversing the dependency of XDH from NAD(+) to NADP(+). We also constructed a set of novel strictly NADPH-dependent XR from Pichia stipitis by site-directed mutagenesis. In the present study, we constructed a set of recombinant S. cerevisiae carrying a novel set of mutated strictly NADPH-dependent XR and NADP(+)-dependent XDH genes with overexpression of endogenous xylulokinase (XK) to study the effects of complete NADPH/NADP(+) recycling on ethanol fermentation and xylitol accumulation. All mutated strains demonstrated reduced xylitol accumulation, ranging 34.4-54.7% compared with the control strain. Moreover, compared with the control strain, the two strains showed 20% and 10% improvement in ethanol production.

  10. Suppression of NDA-Type Alternative Mitochondrial NAD(P)H Dehydrogenases in Arabidopsis thaliana Modifies Growth and Metabolism, but not High Light Stimulation of Mitochondrial Electron Transport

    PubMed Central

    Wallström, Sabá V.; Florez-Sarasa, Igor; Araújo, Wagner L.; Escobar, Matthew A.; Geisler, Daniela A.; Aidemark, Mari; Lager, Ida; Fernie, Alisdair R.; Ribas-Carbó, Miquel; Rasmusson, Allan G.

    2014-01-01

    The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)+ ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins. PMID:24486764

  11. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport.

    PubMed

    Wallström, Sabá V; Florez-Sarasa, Igor; Araújo, Wagner L; Escobar, Matthew A; Geisler, Daniela A; Aidemark, Mari; Lager, Ida; Fernie, Alisdair R; Ribas-Carbó, Miquel; Rasmusson, Allan G

    2014-05-01

    The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)⁺ ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins.

  12. Rabbit 3-hydroxyhexobarbital dehydrogenase is a NADPH-preferring reductase with broad substrate specificity for ketosteroids, prostaglandin D₂, and other endogenous and xenobiotic carbonyl compounds.

    PubMed

    Endo, Satoshi; Matsunaga, Toshiyuki; Matsumoto, Atsuko; Arai, Yuki; Ohno, Satoshi; El-Kabbani, Ossama; Tajima, Kazuo; Bunai, Yasuo; Yamano, Shigeru; Hara, Akira; Kitade, Yukio

    2013-11-01

    3-Hydroxyhexobarbital dehydrogenase (3HBD) catalyzes NAD(P)⁺-linked oxidation of 3-hydroxyhexobarbital into 3-oxohexobarbital. The enzyme has been thought to act as a dehydrogenase for xenobiotic alcohols and some hydroxysteroids, but its physiological function remains unknown. We have purified rabbit 3HBD, isolated its cDNA, and examined its specificity for coenzymes and substrates, reaction directionality and tissue distribution. 3HBD is a member (AKR1C29) of the aldo-keto reductase (AKR) superfamily, and exhibited high preference for NADP(H) over NAD(H) at a physiological pH of 7.4. In the NADPH-linked reduction, 3HBD showed broad substrate specificity for a variety of quinones, ketones and aldehydes, including 3-, 17- and 20-ketosteroids and prostaglandin D₂, which were converted to 3α-, 17β- and 20α-hydroxysteroids and 9α,11β-prostaglandin F₂, respectively. Especially, α-diketones (such as isatin and diacetyl) and lipid peroxidation-derived aldehydes (such as 4-oxo- and 4-hydroxy-2-nonenals) were excellent substrates showing low K(m) values (0.1-5.9 μM). In 3HBD-overexpressed cells, 3-oxohexobarbital and 5β-androstan-3α-ol-17-one were metabolized into 3-hydroxyhexobarbital and 5β-androstane-3α,17β-diol, respectively, but the reverse reactions did not proceed. The overexpression of the enzyme in the cells decreased the cytotoxicity of 4-oxo-2-nonenal. The mRNA for 3HBD was ubiquitously expressed in rabbit tissues. The results suggest that 3HBD is an NADPH-preferring reductase, and plays roles in the metabolisms of steroids, prostaglandin D₂, carbohydrates and xenobiotics, as well as a defense system, protecting against reactive carbonyl compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. NADPH oxidase mediates glucolipotoxicity-induced beta cell dysfunction--clinical implications.

    PubMed

    McCarty, Mark F; Barroso-Aranda, Jorge; Contreras, Francisco

    2010-03-01

    An impairment of glucose-stimulated insulin secretion--reflecting decreased glucokinase expression--and a moderate decrease in beta cell mass attributable to increased apoptosis, constitute the key features of beta cell failure in type 2 diabetes. Oxidative stress, provoked by prolonged exposure to excessive levels of glucose and/or fatty acids (glucolipotoxicity), appears to be a key mediator of these defects. Oxidant-provoked JNK activation induces nuclear export of the PDX-1 transcription factor, required for expression of glucokinase and other beta cell proteins. Conversely, increases in cAMP induced by incretin hormones promote the nuclear importation of PDX-1, counteracting the diabetogenic impact of oxidant stress; this may explain the utility of measures that slow dietary carbohydrate absorption for diabetes prevention. The ability of oxidative stress to boost apoptosis in beta cells is poorly understood, but may also entail JNK activation. Recent work establishes a phagocyte-type NADPH oxidase as the chief source of glucotoxicity-mediated oxidative stress in beta cells. Since bilirubin is now known to function physiologically as an inhibitor of NADPH oxidase, and phycocyanobilin (PCB) derived from spirulina likewise can inhibit this enzyme complex, supplemental PCB may have utility in the prevention and control of diabetes, and Gilbert syndrome, associated with chronically elevated free bilirubin, may be associated with decreased diabetes risk. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. NdhP is an exclusive subunit of large complex of NADPH dehydrogenase essential to stabilize the complex in Synechocystis sp. strain PCC 6803.

    PubMed

    Zhang, Jingsong; Gao, Fudan; Zhao, Jiaohong; Ogawa, Teruo; Wang, Quanxi; Ma, Weimin

    2014-07-04

    Two major complexes of NADPH dehydrogenase (NDH-1) have been identified in cyanobacteria. A large complex (NDH-1L) contains NdhD1 and NdhF1, which are absent in a medium size complex (NDH-1M). They play important roles in respiration, cyclic electron transport around photosystem I, and CO2 acquisition. Two mutants sensitive to high light for growth and impaired in NDH-1-mediated cyclic electron transfer were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in sml0013 encoding NdhP, a single transmembrane small subunit of the NDH-1 complex. During prolonged incubation of the wild type thylakoid membrane with n-dodecyl β-d-maltoside (DM), about half of the NDH-1L was disassembled to NDH-1M and the rest decomposed completely without forming NDH-1M. In the ndhP deletion mutant (ΔndhP), disassembling of NDH-1L to NDH-1M occurred even on ice, and decomposition to a small piece occurred at room temperature much faster than in the wild type. Deletion of the C-terminal tail of NdhP gave the same result. The C terminus of NdhP was tagged by YFP-His6. Blue native gel electrophoresis of the DM-treated thylakoid membrane of this strain and Western analysis using the antibody against GFP revealed that NdhP-YFP-His6 was exclusively confined to NDH-1L. During prolonged incubation of the thylakoid membrane of the tagged strain with DM at room temperature, NDH-1L was partially disassembled to NDH-1M and the 160-kDa band containing NdhP-YFP-His6 and possibly NdhD1 and NdhF1. We therefore conclude that NdhP, especially its C-terminal tail, is essential to assemble NdhD1 and NdhF1 and stabilize the NDH-1L complex. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Organochlorine Pesticide-Mediated Induction of NADPH Oxidase and Nitric-Oxide Synthase in Endothelial Cell

    PubMed Central

    Ghosh, Rishila; Siddharth, Manushi; Singh, Neeru; Kare, Pawan Kumar; Banerjee, Basu Dev; Wadhwa, Neelam

    2017-01-01

    Introduction Organochlorine Pesticides (OCPs) are detected ubiquitously in human and have been shown to be associated with Cardiovascular Disease (CVD) and atherosclerosis. Aim To find out the effect of organochlorine pesticides in endothelial cell with regard to oxidative stress and associated expression of enzymes producing superoxide and Nitric Oxide (NO). Materials and Methods Human Umbilical Vein Endothelial Cells (HUVEC) were cultured and treated with four OCPs which were found in human blood at a concentration of 0.1μM. The cells were tested for Reactive Oxygen Species (ROS) generation, NO production and mRNA expression of NAPDH oxidase (p47phox) and endothelial Nitric Oxide Synthase (eNOS). ROS generation was measured by using 2’, 7’-dichlorodihydrofluorescein diacetate (H2DCFDA) method. NO was analysed by Bioxytech nitric oxide assay kit method and mRNA of NADPH oxidase and eNOS was quantified by real time PCR. Data were expressed as the mean±SEM. Comparison between the groups were made by student’s t-test (2-tailed) or one-way ANOVA with Tukey’s post-hoc analysis depending on number of groups. For all statistical tests, p< 0.05 was considered to be significant. Results All the four pesticides generated ROS accompanied by enhanced expression of NADPH oxidase. Maximum effect was observed with β-endosulfan. Level of NO was found to be decreased significantly in endothelial cells treated with these pesticides accompanied by enhanced expression of eNOS. The antioxidant N-acetylcysteine (NAC) reduced ROS generation and enhanced NO formation. Pesticide-mediated ROS generation possibly reacts with NO forming peroxinitrite and thereby reducing the bioavailability of NO although eNOS expression is increased. Conclusion OCPs induce endothelial dysfunction through increased ROS generation via NADPH oxidase expression and reduced bioavailability of nitric oxide. PMID:28273962

  16. Organochlorine Pesticide-Mediated Induction of NADPH Oxidase and Nitric-Oxide Synthase in Endothelial Cell.

    PubMed

    Ghosh, Rishila; Siddharth, Manushi; Singh, Neeru; Kare, Pawan Kumar; Banerjee, Basu Dev; Wadhwa, Neelam; Tripathi, Ashok Kumar

    2017-01-01

    Organochlorine Pesticides (OCPs) are detected ubiquitously in human and have been shown to be associated with Cardiovascular Disease (CVD) and atherosclerosis. To find out the effect of organochlorine pesticides in endothelial cell with regard to oxidative stress and associated expression of enzymes producing superoxide and Nitric Oxide (NO). Human Umbilical Vein Endothelial Cells (HUVEC) were cultured and treated with four OCPs which were found in human blood at a concentration of 0.1μM. The cells were tested for Reactive Oxygen Species (ROS) generation, NO production and mRNA expression of NAPDH oxidase (p47phox) and endothelial Nitric Oxide Synthase (eNOS). ROS generation was measured by using 2', 7'-dichlorodihydrofluorescein diacetate (H2DCFDA) method. NO was analysed by Bioxytech nitric oxide assay kit method and mRNA of NADPH oxidase and eNOS was quantified by real time PCR. Data were expressed as the mean±SEM. Comparison between the groups were made by student's t-test (2-tailed) or one-way ANOVA with Tukey's post-hoc analysis depending on number of groups. For all statistical tests, p< 0.05 was considered to be significant. All the four pesticides generated ROS accompanied by enhanced expression of NADPH oxidase. Maximum effect was observed with β-endosulfan. Level of NO was found to be decreased significantly in endothelial cells treated with these pesticides accompanied by enhanced expression of eNOS. The antioxidant N-acetylcysteine (NAC) reduced ROS generation and enhanced NO formation. Pesticide-mediated ROS generation possibly reacts with NO forming peroxinitrite and thereby reducing the bioavailability of NO although eNOS expression is increased. OCPs induce endothelial dysfunction through increased ROS generation via NADPH oxidase expression and reduced bioavailability of nitric oxide.

  17. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    PubMed

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells.

  18. The anorexigenic effect of serotonin is mediated by the generation of NADPH oxidase-dependent ROS.

    PubMed

    Fang, Xin-Ling; Shu, Gang; Yu, Jian-Jian; Wang, Li-Na; Yang, Jing; Zeng, Qing-Jie; Cheng, Xiao; Zhang, Zhi-Qi; Wang, Song-Bo; Gao, Ping; Zhu, Xiao-Tong; Xi, Qian-Yun; Zhang, Yong-Liang; Jiang, Qing-Yan

    2013-01-01

    Serotonin (5-HT) is a central inhibitor of food intake in mammals. Thus far, the intracellular mechanisms for the effect of serotonin on appetite regulation remain unclear. It has been recently demonstrated that reactive oxygen species (ROS) in the hypothalamus are a crucial integrative target for the regulation of food intake. To investigate the role of ROS in the serotonin-induced anorexigenic effects, conscious mice were treated with 5-HT alone or combination with Trolox (a ROS scavenger) or Apocynin (an NADPH oxidase inhibitor) by acute intracerebroventricular injection. Both Trolox and Apocynin reversed the anorexigenic action of 5-HT and the 5-HT-induced hypothalamic ROS elevation. The mRNA and protein expression levels of pro-opiomelanocortin (POMC) were dramatically increased after ICV injection with 5-HT. The anorexigenic action of 5-HT was accompanied by markedly elevated hypothalamic MDA levels and GSH-Px activity, while the SOD activity was decreased. Moreover, 5-HT significantly increased the mRNA expression of UCP-2 but reduced the levels of UCP-3. Both Trolox and Apocynin could block the 5-HT-induced changes in UCP-2 and UCP-3 gene expression. Our study demonstrates for the first time that the anorexigenic effect of 5-HT is mediated by the generation of ROS in the hypothalamus through an NADPH oxidase-dependent pathway.

  19. NADPH oxidase 4 is a critical mediator in Ataxia telangiectasia disease.

    PubMed

    Weyemi, Urbain; Redon, Christophe E; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R; Bonner, Michael Y; Arbiser, Jack L; Bonner, William M

    2015-02-17

    Ataxia telangiectasia (A-T), a rare autosomal recessive disorder characterized by progressive cerebellar degeneration and a greatly increased incidence of cancer among other symptoms, is caused by a defective or missing ataxia telangiectasia mutated (ATM) gene. The ATM protein has roles in DNA repair and in the regulation of reactive oxygen species (ROS). Here, we provide, to our knowledge, the first evidence that NADPH oxidase 4 (NOX4) is involved in manifesting A-T disease. We showed that NOX4 expression levels are higher in A-T cells, and that ATM inhibition leads to increased NOX4 expression in normal cells. A-T cells exhibit elevated levels of oxidative DNA damage, DNA double-strand breaks and replicative senescence, all of which are partially abrogated by down-regulation of NOX4 with siRNA. Sections of degenerating cerebelli from A-T patients revealed elevated NOX4 levels. ATM-null mice exhibit A-T disease but they die from cancer before the neurological symptoms are manifested. Injecting Atm-null mice with fulvene-5, a specific inhibitor of NOX4 and NADPH oxidase 2 (NOX2), decreased their elevated cancer incidence to that of the controls. We conclude that, in A-T disease in humans and mice, NOX4 may be critical mediator and targeting it will open up new avenues for therapeutic intervention in neurodegeneration.

  20. Regulation of NAD(P)H dehydrogenase-dependent cyclic electron transport around PSI by NaHSO₃ at low concentrations in tobacco chloroplasts.

    PubMed

    Wu, Yanxia; Zheng, Fangfang; Ma, Weimin; Han, Zhiguo; Gu, Qun; Shen, Yunkang; Mi, Hualing

    2011-10-01

    Although bisulfite at low concentrations (L-NaHSO₃) has been found to increase the cyclic electron transport around PSI (CET), its regulative mechanism remains unknown. In this work, the role of L-NaHSO₃ (0.1-500 μM) in NAD(P)H dehydrogenase-dependent CET (the NDH pathway) was investigated. After treatment of tobacco leaves with L-NaHSO₃, the NDH pathway, as reflected by a transient post-illumination increase in Chl fluorescence, the dark reduction of P700+ after far-red light and the amount of NDH, was increased after the light-dark-light transition, but was slightly lowered under continuous light. Meanwhile, the linear electron transport (LET) was accelerated by L-NaHSO₃ under both the light regimes. Experiments in thylakoids further demonstrated that both LET, monitored by light-dependent oxygen uptake, and CET, as determined from the NADPH-dependent oxygen uptake and dark reduction of P700+, were enhanced by L-NaHSO₃ and the enhancements were abolished by superoxide dismutase. Furthermore, L-NaHSO₃-induced CET was partially impaired in thylakoids of the ΔndhCKJ mutant, while L-NaHSO₃-induced LET was not affected. Based on these results, we propose that the photooxidation of L-NaHSO₃ initiated by superoxide anions in PSI regulates NDH pathway to maintain efficient photosynthesis.

  1. Selective Rac1 inhibition protects renal tubular epithelial cells from oxalate-induced NADPH oxidase-mediated oxidative cell injury

    PubMed Central

    Thamilselvan, Vijayalakshmi; Menon, Mani

    2013-01-01

    Oxalate-induced oxidative cell injury is one of the major mechanisms implicated in calcium oxalate nucleation, aggregation and growth of kidney stones. We previously demonstrated that oxalate-induced NADPH oxidase-derived free radicals play a significant role in renal injury. Since NADPH oxidase activation requires several regulatory proteins, the primary goal of this study was to characterize the role of Rac GTPase in oxalate-induced NADPH oxidase-mediated oxidative injury in renal epithelial cells. Our results show that oxalate significantly increased membrane translocation of Rac1 and NADPH oxidase activity of renal epithelial cells in a time-dependent manner. We found that NSC23766, a selective inhibitor of Rac1, blocked oxalate-induced membrane translocation of Rac1 and NADPH oxidase activity. In the absence of Rac1 inhibitor, oxalate exposure significantly increased hydrogen peroxide formation and LDH release in renal epithelial cells. In contrast, Rac1 inhibitor pretreatment, significantly decreased oxalate-induced hydrogen peroxide production and LDH release. Furthermore, PKC α and δ inhibitor, oxalate exposure did not increase Rac1 protein translocation, suggesting that PKC resides upstream from Rac1 in the pathway that regulates NADPH oxidase. In conclusion, our data demonstrate for the first time that Rac1-dependent activation of NADPH oxidase might be a crucial mechanism responsible for oxalate-induced oxidative renal cell injury. These findings suggest that Rac1 signaling plays a key role in oxalate-induced renal injury, and may serve as a potential therapeutic target to prevent calcium oxalate crystal deposition in stone formers and reduce recurrence. PMID:21814770

  2. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.

    PubMed

    Ballester-Tomás, Lidia; Randez-Gil, Francisca; Pérez-Torrado, Roberto; Prieto, Jose Antonio

    2015-07-09

    Cold stress reduces microbial growth and metabolism being relevant in industrial processes like wine making and brewing. Knowledge on the cold transcriptional response of Saccharomyces cerevisiae suggests the need of a proper redox balance. Nevertheless, there are no direct evidence of the links between NAD(P) levels and cold growth and how engineering of enzymatic reactions requiring NAD(P) may be used to modify the performance of industrial strains at low temperature. Recombinant strains of S. cerevisiae modified for increased NADPH- and NADH-dependent Gdh1 and Gdh2 activity were tested for growth at low temperature. A high-copy number of the GDH2-encoded glutamate dehydrogenase gene stimulated growth at 15°C, while overexpression of GDH1 had detrimental effects, a difference likely caused by cofactor preferences. Indeed, neither the Trp(-) character of the tested strains, which could affect the synthesis of NAD(P), nor changes in oxidative stress susceptibility by overexpression of GDH1 and GDH2 account for the observed phenotypes. However, increased or reduced NADPH availability by knock-out or overexpression of GRE3, the NADPH-dependent aldose reductase gene, eliminated or exacerbated the cold-growth defect observed in YEpGDH1 cells. We also demonstrated that decreased capacity of glycerol production impairs growth at 15 but not at 30°C and that 15°C-grown baker's yeast cells display higher fermentative capacity than those cultivated at 30°C. Thus, increasing NADH oxidation by overexpression of GDH2 would help to avoid perturbations in the redox metabolism induced by a higher fermentative/oxidative balance at low temperature. Finally, it is shown that overexpression of GDH2 increases notably the cold growth in the wine yeast strain QA23 in both standard growth medium and synthetic grape must. Redox constraints limit the growth of S. cerevisiae at temperatures below the optimal. An adequate supply of NAD(P) precursors as well as a proper level of reducing

  3. NADPH oxidase-mediated redox signaling promotes oxidative stress resistance and longevity through memo-1 in C. elegans.

    PubMed

    Ewald, Collin Yvès; Hourihan, John M; Bland, Monet S; Obieglo, Carolin; Katic, Iskra; Moronetti Mazzeo, Lorenza E; Alcedo, Joy; Blackwell, T Keith; Hynes, Nancy E

    2017-01-13

    Transient increases in mitochondrially-derived reactive oxygen species (ROS) activate an adaptive stress response to promote longevity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases produce ROS locally in response to various stimuli, and thereby regulate many cellular processes, but their role in aging remains unexplored. Here, we identified the C. elegans orthologue of mammalian mediator of ErbB2-driven cell motility, MEMO-1, as a protein that inhibits BLI-3/NADPH oxidase. MEMO-1 is complexed with RHO-1/RhoA/GTPase and loss of memo-1 results in an enhanced interaction of RHO-1 with BLI-3/NADPH oxidase, thereby stimulating ROS production that signal via p38 MAP kinase to the transcription factor SKN-1/NRF1,2,3 to promote stress resistance and longevity. Either loss of memo-1 or increasing BLI-3/NADPH oxidase activity by overexpression is sufficient to increase lifespan. Together, these findings demonstrate that NADPH oxidase-induced redox signaling initiates a transcriptional response that protects the cell and organism, and can promote both stress resistance and longevity.

  4. NADPH oxidase-mediated redox signaling promotes oxidative stress resistance and longevity through memo-1 in C. elegans

    PubMed Central

    Ewald, Collin Yvès; Hourihan, John M; Bland, Monet S; Obieglo, Carolin; Katic, Iskra; Moronetti Mazzeo, Lorenza E; Alcedo, Joy; Blackwell, T Keith; Hynes, Nancy E

    2017-01-01

    Transient increases in mitochondrially-derived reactive oxygen species (ROS) activate an adaptive stress response to promote longevity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases produce ROS locally in response to various stimuli, and thereby regulate many cellular processes, but their role in aging remains unexplored. Here, we identified the C. elegans orthologue of mammalian mediator of ErbB2-driven cell motility, MEMO-1, as a protein that inhibits BLI-3/NADPH oxidase. MEMO-1 is complexed with RHO-1/RhoA/GTPase and loss of memo-1 results in an enhanced interaction of RHO-1 with BLI-3/NADPH oxidase, thereby stimulating ROS production that signal via p38 MAP kinase to the transcription factor SKN-1/NRF1,2,3 to promote stress resistance and longevity. Either loss of memo-1 or increasing BLI-3/NADPH oxidase activity by overexpression is sufficient to increase lifespan. Together, these findings demonstrate that NADPH oxidase-induced redox signaling initiates a transcriptional response that protects the cell and organism, and can promote both stress resistance and longevity. DOI: http://dx.doi.org/10.7554/eLife.19493.001 PMID:28085666

  5. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction.

    PubMed Central

    Larroy, Carol; Fernández, M Rosario; González, Eva; Parés, Xavier; Biosca, Josep A

    2002-01-01

    YMR318C represents an open reading frame from Saccharomyces cerevisiae with unknown function. It possesses a conserved sequence motif, the zinc-containing alcohol dehydrogenase (ADH) signature, specific to the medium-chain zinc-containing ADHs. In the present study, the YMR318C gene product has been purified to homogeneity from overexpressing yeast cells, and found to be a homodimeric ADH, composed of 40 kDa subunits and with a pI of 5.0-5.4. The enzyme was strictly specific for NADPH and was active with a wide variety of substrates, including aliphatic (linear and branched-chain) and aromatic primary alcohols and aldehydes. Aldehydes were processed with a 50-fold higher catalytic efficiency than that for the corresponding alcohols. The highest k(cat)/K(m) values were found with pentanal>veratraldehyde > hexanal > 3-methylbutanal >cinnamaldehyde. Taking into consideration the substrate specificity and sequence characteristics of the YMR318C gene product, we have proposed this gene to be called ADH6. The disruption of ADH6 was not lethal for the yeast under laboratory conditions. Although S. cerevisiae is considered a non lignin-degrading organism, the catalytic activity of ADHVI can direct veratraldehyde and anisaldehyde, arising from the oxidation of lignocellulose by fungal lignin peroxidases, to the lignin biodegradation pathway. ADHVI is the only S. cerevisiae enzyme able to significantly reduce veratraldehyde in vivo, and its overexpression allowed yeast to grow under toxic concentrations of this aldehyde. The enzyme may also be involved in the synthesis of fusel alcohols. To our knowledge this is the first NADPH-dependent medium-chain ADH to be characterized in S. cerevisiae. PMID:11742541

  6. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction.

    PubMed

    Larroy, Carol; Fernández, M Rosario; González, Eva; Parés, Xavier; Biosca, Josep A

    2002-01-01

    YMR318C represents an open reading frame from Saccharomyces cerevisiae with unknown function. It possesses a conserved sequence motif, the zinc-containing alcohol dehydrogenase (ADH) signature, specific to the medium-chain zinc-containing ADHs. In the present study, the YMR318C gene product has been purified to homogeneity from overexpressing yeast cells, and found to be a homodimeric ADH, composed of 40 kDa subunits and with a pI of 5.0-5.4. The enzyme was strictly specific for NADPH and was active with a wide variety of substrates, including aliphatic (linear and branched-chain) and aromatic primary alcohols and aldehydes. Aldehydes were processed with a 50-fold higher catalytic efficiency than that for the corresponding alcohols. The highest k(cat)/K(m) values were found with pentanal>veratraldehyde > hexanal > 3-methylbutanal >cinnamaldehyde. Taking into consideration the substrate specificity and sequence characteristics of the YMR318C gene product, we have proposed this gene to be called ADH6. The disruption of ADH6 was not lethal for the yeast under laboratory conditions. Although S. cerevisiae is considered a non lignin-degrading organism, the catalytic activity of ADHVI can direct veratraldehyde and anisaldehyde, arising from the oxidation of lignocellulose by fungal lignin peroxidases, to the lignin biodegradation pathway. ADHVI is the only S. cerevisiae enzyme able to significantly reduce veratraldehyde in vivo, and its overexpression allowed yeast to grow under toxic concentrations of this aldehyde. The enzyme may also be involved in the synthesis of fusel alcohols. To our knowledge this is the first NADPH-dependent medium-chain ADH to be characterized in S. cerevisiae.

  7. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord.

    PubMed

    Zhao, Wei-Cheng; Zhang, Bin; Liao, Mei-Juan; Zhang, Wen-Xuan; He, Wan-You; Wang, Han-Bing; Yang, Cheng-Xiang

    2014-02-07

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are the main enzymes that produce oxidative stress, which plays an important role in painful diabetic neuropathy. Curcumin has been reported to exert an antinociceptive effect in a rat model of diabetic neuropathy by suppressing oxidative stress in the spinal cord. However, it remains unknown whether the mechanism by which curcumin ameliorates diabetic neuropathy can be attributed to spinal NADPH oxidases. This study was designed to determine the effect of curcumin on diabetic neuropathy and to investigate its precise mechanism in relation to NADPH oxidase-mediating oxidative stress in the spinal cord. Diabetic neuropathy was induced in Sprague-Dawley rats by intraperitoneal injection with 1% streptozotocin (STZ; 60 mg/kg). After the onset of diabetic neuropathy, a subset of the diabetic rats received daily intragastric administrations of curcumin (200mg/kg) or intraperitoneal injections of apocynin (2.5mg/kg) for 14 consecutive days, whereas other diabetic rats received equivalent volumes of normal saline (NS). STZ resulted in diabetic neuropathy with hyperglycemia and a lower paw withdrawal threshold (PWT), accompanied by elevations in the expression of the NADPH oxidase subunits p47(phox) and gp91(phox) and in the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and a reduction in superoxide dismutase (SOD) activity (P<0.05) in the spinal cord. Both curcumin and apocynin ameliorated diabetic neuropathy. In conclusion, curcumin attenuated neuropathic pain in diabetic rats, at least partly by inhibiting NADPH oxidase-mediating oxidative stress in the spinal cord. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis.

    PubMed

    Madrigal-Matute, Julio; Fernandez-Garcia, Carlos-Ernesto; Blanco-Colio, Luis Miguel; Burillo, Elena; Fortuño, Ana; Martinez-Pinna, Roxana; Llamas-Granda, Patricia; Beloqui, Oscar; Egido, Jesus; Zalba, Guillermo; Martin-Ventura, José Luis

    2015-09-01

    To assess the potential association between TRX-1/PRX-1 and NADPH oxidase (Nox) activity in vivo and in vitro, TRX-1/PRX-1 levels were assessed by ELISA in 84 asymptomatic subjects with known phagocytic NADPH oxidase activity and carotid intima-media thickness (IMT). We found a positive correlation between TRX-1/PRX-1 and NADPH oxidase-dependent superoxide production (r=0.48 and 0.47; p<0.001 for both) and IMT (r=0.31 and 0.36; p<0.01 for both) adjusted by age and sex. Moreover, asymptomatic subjects with plaques have higher PRX-1 and TRX plasma levels (p<0.01 for both). These data were confirmed in a second study in which patients with carotid atherosclerosis showed higher PRX-1 and TRX plasma levels than healthy subjects (p<0.001 for both). In human atherosclerotic plaques, the NADPH oxidase subunit p22phox colocalized with TRX-1/PRX-1 in macrophages (immunohistochemistry). In monocytes and macrophages, phorbol 12-myristate 13-acetate (PMA) induced NADPH activation and TRX-1/PRX-1 release to the extracellular medium, with a concomitant decrease in their intracellular levels, which was reversed by the NADPH inhibitor apocynin (Western blot). In loss-of-function experiments, genetic silencing of the NADPH oxidase subunit Nox2 blocked PMA-induced intracellular TRX-1/PRX-1 downregulation in macrophages. Furthermore, the PMA-induced release of TRX-1/PRX-1 involves the modulation of their redox status and exosome-like vesicles. TRX-1/PRX-1 levels are associated with NADPH oxidase-activity in vivo and in vitro. These data could suggest a coordinated antioxidant response to oxidative stress in atherothrombosis.

  9. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase from Thermoanaerobacter pseudethanolicus 39E in Clostridium thermocellum 1313 results in increased hydroxymethylfurfural resistance

    DOE PAGES

    Kim, Sun -Ki; Groom, Joseph; Chung, Daehwan; ...

    2017-03-15

    Resistance to deconstruction is a major limitation to the use of lignocellulosic biomass as a substrate for the production of fuels and chemicals. Consolidated bioprocessing (CBP), the use of microbes for the simultaneous hydrolysis of lignocellulose into soluble sugars and fermentation of the resulting sugars to products of interest, is a potential solution to this obstacle. The pretreatment of plant biomass, however, releases compounds that are inhibitory to the growth of microbes used for CBP. Heterologous expression of the Thermoanaerobacter pseudethanolicus 39E bdhA gene, that encodes an alcohol dehydrogenase, in Clostridium thermocellum significantly increased resistance to furan derivatives at concentrationsmore » found in acid-pretreated biomass. The mechanism of detoxification of hydroxymethylfurfural was shown to be primarily reduction using NADPH as the cofactor. In addition, we report the construction of new expression vectors for homologous and heterologous expression in C. thermocellum. These vectors use regulatory signals from both C. bescii (the S-layer promoter) and C. thermocellum (the enolase promoter) shown to efficiently drive expression of the BdhA enzyme. Toxic compounds present in lignocellulose hydrolysates that inhibit cell growth and product formation are obstacles to the commercialization of fuels and chemicals from biomass. Lastly, expression of genes that reduce the effect of these inhibitors, such as furan derivatives, will serve to enable commercial processes using plant biomass for the production of fuels and chemicals.« less

  10. Role of Type 2 NAD(P)H Dehydrogenase NdbC in Redox Regulation of Carbon Allocation in Synechocystis1[OPEN

    PubMed Central

    Huokko, Tuomas; Muth-Pawlak, Dorota

    2017-01-01

    NAD(P)H dehydrogenases comprise type 1 (NDH-1) and type 2 (NDH-2s) enzymes. Even though the NDH-1 complex is a well-characterized protein complex in the thylakoid membrane of Synechocystis sp. PCC 6803 (hereafter Synechocystis), the exact roles of different NDH-2s remain poorly understood. To elucidate this question, we studied the function of NdbC, one of the three NDH-2s in Synechocystis, by constructing a deletion mutant (ΔndbC) for a corresponding protein and submitting the mutant to physiological and biochemical characterization as well as to comprehensive proteomics analysis. We demonstrate that the deletion of NdbC, localized to the plasma membrane, affects several metabolic pathways in Synechocystis in autotrophic growth conditions without prominent effects on photosynthesis. Foremost, the deletion of NdbC leads, directly or indirectly, to compromised sugar catabolism, to glycogen accumulation, and to distorted cell division. Deficiencies in several sugar catabolic routes were supported by severe retardation of growth of the ΔndbC mutant under light-activated heterotrophic growth conditions but not under mixotrophy. Thus, NdbC has a significant function in regulating carbon allocation between storage and the biosynthesis pathways. In addition, the deletion of NdbC increases the amount of cyclic electron transfer, possibly via the NDH-12 complex, and decreases the expression of several transporters in ambient CO2 growth conditions. PMID:28533358

  11. NADPH oxidase mediates depressive behavior induced by chronic stress in mice.

    PubMed

    Seo, Ji-Seon; Park, Jin-Young; Choi, Juli; Kim, Tae-Kyung; Shin, Joo-Hyun; Lee, Ja-Kyeong; Han, Pyung-Lim

    2012-07-11

    Stress is a potent risk factor for depression, yet the underlying mechanism is not clearly understood. In the present study, we explored the mechanism of development and maintenance of depression in a stress-induced animal model. Mice restrained for 2 h daily for 14 d showed distinct depressive behavior, and the altered behavior persisted for >3 months in the absence of intervention. Acute restraint induced a surge of oxidative stress in the brain, and stress-induced oxidative stress progressively increased with repetition of stress. In vitro, the stress hormone glucocorticoid generated superoxide via upregulation of NADPH oxidase. Consistently, repeated restraints increased the expression of the key subunits of NADPH oxidase, p47phox and p67phox, in the brain. Moreover, stressed brains markedly upregulated the expression of p47phox to weak restress evoked in the poststress period, and this molecular response was reminiscent of amplified ROS surge to restress. Pharmacological inhibition of NADPH oxidase by the NADPH oxidase inhibitor apocynin during the stress or poststress period completely blocked depressive behavior. Consistently, heterozygous p47phox knock-out mice (p47phox(+/-)) or molecular inhibition of p47phox with Lenti shRNA-p47phox in the hippocampus suppressed depressive behavior. These results suggest that repeated stress promotes depressive behavior through the upregulation of NADPH oxidase and the resultant metabolic oxidative stress, and that the inhibition of NADPH oxidase provides beneficial antidepression effects.

  12. NADPH Oxidase-Derived ROS Induced by Chronic Intermittent Hypoxia Mediates Hypersensitivity of Lung Vagal C Fibers in Rats

    PubMed Central

    Yang, Chang-Huan; Zhuang, Wei-Ling; Shen, Yan-Jhih; Lai, Ching Jung; Kou, Yu Ru

    2016-01-01

    stimulants and that this sensitization is mediated via ROS generated by NADPH oxidase. PMID:27242540

  13. C-terminal tail of NADPH oxidase organizer 1 (Noxo1) mediates interaction with NADPH oxidase activator (Noxa1) in the NOX1 complex.

    PubMed

    Shrestha, Pravesh; Yun, Ji-Hye; Ko, Yoon-Joo; Kim, Myeongkyu; Bae, Yun Soo; Lee, Weontae

    2017-08-26

    NOX1 (NADPH oxidase) similar to phagocyte NADPH oxidase, is expressed mainly in the colon epithelium and it is responsible for host defense against microbial infections by generating ROS (reactive oxygen species). NOX1 is activated by two regulatory cytosolic proteins that form a hetero-dimer, Noxo1 (NOX organizer 1) and Noxa1 (NOX activator 1). The interaction between Noxa1 and Noxo1 is critical for activating NOX1. However no structural studies for interaction between Noxa1 and Noxo1 has not been reported till date. Here, we studied the inter-molecular interaction between the SH3 domain of Noxa1 and Noxo1 using pull-down assay and NMR spectroscopy. (15)N/(13)C-labeled SH3 domain of Noxa1 has been purified for hetero-nuclear NMR experiments (HNCACB, CBCACONH, HNCA, HNCO, and HSQC). TALOS analysis using backbone assignment data of the Noxa1 SH3 domain showed that the structure primarily consists of β-sheets. Data from pull-down assay between the Noxo1 and Noxa1 showed that the SH3 domains (Noxa1) is responsible for interaction with Noxo1 C-terminal tail harboring proline rich region (PRR). The concentration-dependent titration of the Noxo1 C-terminal tail to Noxa1 shows that Noxo1 particularly in the RT loop: Q407*, H408, S409, A412*, G414*, E416, D417, L418, and F420; n-Src loop: C430, E431*, V432*, A435, W436, and L437; and terminal region: I447; F448*, F452* and V454 interact with Noxa1. Our results will provide a detailed understanding for interaction between Noxa1 and Noxo1 at the molecular level, providing insights into their cytoplasmic activity-mediated functioning as well as regulatory role of C-terminal tail of Noxo1 in the NOX1 complex. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation.

    PubMed

    Yang, Chul-Su; Lee, Jong-Soo; Rodgers, Mary; Min, Chan-Ki; Lee, June-Yong; Kim, Hee Jin; Lee, Kwang-Hoon; Kim, Chul-Joong; Oh, Byungha; Zandi, Ebrahim; Yue, Zhenyu; Kramnik, Igor; Liang, Chengyu; Jung, Jae U

    2012-03-15

    Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection.

  15. The Type II NADPH Dehydrogenase Facilitates Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation1[OPEN

    PubMed Central

    Grossman, Arthur R.

    2016-01-01

    When photosynthetic organisms are deprived of nitrogen (N), the capacity to grow and assimilate carbon becomes limited, causing a decrease in the productive use of absorbed light energy and likely a rise in the cellular reduction state. Although there is a scarcity of N in many terrestrial and aquatic environments, a mechanistic understanding of how photosynthesis adjusts to low-N conditions and the enzymes/activities integral to these adjustments have not been described. In this work, we use biochemical and biophysical analyses of photoautotrophically grown wild-type and mutant strains of Chlamydomonas reinhardtii to determine the integration of electron transport pathways critical for maintaining active photosynthetic complexes even after exposure of cells to N deprivation for 3 d. Key to acclimation is the type II NADPH dehydrogenase, NDA2, which drives cyclic electron flow (CEF), chlororespiration, and the generation of an H+ gradient across the thylakoid membranes. N deprivation elicited a doubling of the rate of NDA2-dependent CEF, with little contribution from PGR5/PGRL1-dependent CEF. The H+ gradient generated by CEF is essential to sustain nonphotochemical quenching, while an increase in the level of reduced plastoquinone would promote a state transition; both are necessary to down-regulate photosystem II activity. Moreover, stimulation of NDA2-dependent chlororespiration affords additional relief from the elevated reduction state associated with N deprivation through plastid terminal oxidase-dependent water synthesis. Overall, rerouting electrons through the NDA2 catalytic hub in response to photoautotrophic N deprivation sustains cell viability while promoting the dissipation of excess excitation energy through quenching and chlororespiratory processes. PMID:26858365

  16. Evidence for a Role for NAD(P)H Dehydrogenase in Concentration of CO2 in the Bundle Sheath Cell of Zea mays.

    PubMed

    Peterson, Richard B; Schultes, Neil P; McHale, Neil A; Zelitch, Israel

    2016-05-01

    Prior studies with Nicotiana and Arabidopsis described failed assembly of the chloroplastic NDH [NAD(P)H dehydrogenase] supercomplex by serial mutation of several subunit genes. We examined the properties of Zea mays leaves containing Mu and Ds insertions into nuclear gene exons encoding the critical o- and n-subunits of NDH, respectively. In vivo reduction of plastoquinone in the dark was sharply diminished in maize homozygous mutant compared to normal leaves but not to the extreme degree observed for the corresponding lesions in Arabidopsis. The net carbon assimilation rate (A) at high irradiance and saturating CO2 levels was reduced by one-half due to NDH mutation in maize although no genotypic effect was evident at very low CO2 levels. Simultaneous assessment of chlorophyll fluorescence and A in maize at low (2% by volume) and high (21%) O2 levels indicated the presence of a small, yet detectable, O2-dependent component of total linear photosynthetic electron transport in 21% O2 This O2-dependent component decreased with increasing CO2 level indicative of photorespiration. Photorespiration was generally elevated in maize mutant compared to normal leaves. Quantification of the proportion of total electron transport supporting photorespiration enabled estimation of the bundle sheath cell CO2 concentration (Cb) using a simple kinetic model of ribulose bisphosphate carboxylase/oxygenase function. The A versus Cb relationships overlapped for normal and mutant lines consistent with occurrence of strictly CO2-limited photosynthesis in the mutant bundle sheath cell. The results are discussed in terms of a previously reported CO2 concentration model [Laisk A, Edwards GE (2000) Photosynth Res 66: 199-224]. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Reversible phosphorylation regulation of NADPH-linked polyol dehydrogenase in the freeze-avoiding gall moth, Epiblema scudderiana: role in glycerol metabolism.

    PubMed

    Holden, Helen A; Storey, Kenneth B

    2011-05-01

    Larvae of the goldenrod gall moth, Epiblema scudderiana, use a freeze avoidance strategy of cold hardiness to survive the winter. A key metabolic adaption that supports subzero survival is the accumulation of large amounts of glycerol as a colligative antifreeze. Production of glycerol relies on polyol dehydrogenase (PDH) which catalyzes the NADPH-dependent conversion of glyceraldehyde into glycerol. Kinetic analysis of PDH from E. scudderiana revealed significant changes in properties as a result of subzero temperature acclimation; the K(m) for glyceraldehyde in 5°C-acclimated larvae was 7.0 mM and doubled in - 15°C-exposed larvae. This change suggested that PDH is regulated by a state-dependent covalent modification. Indeed, high and low K(m) forms could be interconverted by incubating larval extracts in vitro under conditions that stimulated either endogenous protein kinases or protein phosphatases. Protein kinase incubations doubled the K(m) glyceraldehyde of the 5°C enzyme, whereas protein phosphatase incubations decreased the K(m) of the - 15°C enzyme by about 50%. PDH was purified by ion exchange and affinity chromatography steps and then subjected to electrophoresis. Staining with ProQ Diamond phosphoprotein stain showed a much higher phosphate content of PDH from - 15°C-acclimated larvae, a result that was further confirmed by immunoblotting that showed a much greater phosphoserine content on the - 15°C enzyme. These experiments established that PDH is regulated by state-dependent reversible phosphorylation in E. scudderiana and suggest that this regulatory mechanism makes a significant contribution to controlling the synthesis, maintenance, and degradation of glycerol pools over the winter months.

  18. The Type II NADPH Dehydrogenase Facilitates Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation.

    PubMed

    Saroussi, Shai I; Wittkopp, Tyler M; Grossman, Arthur R

    2016-04-01

    When photosynthetic organisms are deprived of nitrogen (N), the capacity to grow and assimilate carbon becomes limited, causing a decrease in the productive use of absorbed light energy and likely a rise in the cellular reduction state. Although there is a scarcity of N in many terrestrial and aquatic environments, a mechanistic understanding of how photosynthesis adjusts to low-N conditions and the enzymes/activities integral to these adjustments have not been described. In this work, we use biochemical and biophysical analyses of photoautotrophically grown wild-type and mutant strains of Chlamydomonas reinhardtii to determine the integration of electron transport pathways critical for maintaining active photosynthetic complexes even after exposure of cells to N deprivation for 3 d. Key to acclimation is the type II NADPH dehydrogenase, NDA2, which drives cyclic electron flow (CEF), chlororespiration, and the generation of an H(+) gradient across the thylakoid membranes. N deprivation elicited a doubling of the rate of NDA2-dependent CEF, with little contribution from PGR5/PGRL1-dependent CEF The H(+) gradient generated by CEF is essential to sustain nonphotochemical quenching, while an increase in the level of reduced plastoquinone would promote a state transition; both are necessary to down-regulate photosystem II activity. Moreover, stimulation of NDA2-dependent chlororespiration affords additional relief from the elevated reduction state associated with N deprivation through plastid terminal oxidase-dependent water synthesis. Overall, rerouting electrons through the NDA2 catalytic hub in response to photoautotrophic N deprivation sustains cell viability while promoting the dissipation of excess excitation energy through quenching and chlororespiratory processes. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Functional Characterization of the Subunits N, H, J, and O of the NAD(P)H Dehydrogenase Complexes in Synechocystis sp. Strain PCC 6803.

    PubMed

    He, Zhihui; Mi, Hualing

    2016-06-01

    The cyanobacterial NAD(P)H dehydrogenase (NDH-1) complexes play crucial roles in variety of bioenergetic reactions such as respiration, CO2 uptake, and cyclic electron transport around PSI. Recently, substantial progress has been made in identifying the composition of subunits of NDH-1 complexes. However, the localization and the physiological roles of several subunits in cyanobacteria are not fully understood. Here, by constructing fully segregated ndhN, ndhO, ndhH, and ndhJ null mutants in Synechocystis sp. strain PCC 6803, we found that deletion of ndhN, ndhH, or ndhJ but not ndhO severely impaired the accumulation of the hydrophilic subunits of the NDH-1 in the thylakoid membrane, resulting in disassembly of NDH-1MS, NDH-1MS', as well as NDH-1L, finally causing the severe growth suppression phenotype. In contrast, deletion of NdhO affected the growth at pH 6.5 in air. In the cytoplasm, either NdhH or NdhJ deleted mutant, but neither NdhN nor NdhO deleted mutant, failed to accumulate the NDH-1 assembly intermediate consisting of NdhH, NdhJ, NdhK, and NdhM. Based on these results, we suggest that NdhN, NdhH, and NdhJ are essential for the stability and the activities of NDH-1 complexes, while NdhO for NDH-1 functions under the condition of inorganic carbon limitation in Synechocystis sp. strain PCC 6803. We discuss the roles of these subunits and propose a new NDH-1 model. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. NdhO, a subunit of NADPH dehydrogenase, destabilizes medium size complex of the enzyme in Synechocystis sp. strain PCC 6803.

    PubMed

    Zhao, Jiaohong; Gao, Fudan; Zhang, Jingsong; Ogawa, Teruo; Ma, Weimin

    2014-09-26

    Two mutants that grew faster than the wild-type (WT) strain under high light conditions were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in ssl1690 encoding NdhO. Deletion of ndhO increased the activity of NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET), while overexpression decreased the activity. Although deletion and overexpression of ndhO did not have significant effects on the amount of other subunits such as NdhH, NdhI, NdhK, and NdhM in the cells, the amount of these subunits in the medium size NDH-1 (NDH-1M) complex was higher in the ndhO-deletion mutant and much lower in the overexpression strain than in the WT. NdhO strongly interacts with NdhI and NdhK but not with other subunits. NdhI interacts with NdhK and the interaction was blocked by NdhO. The blocking may destabilize the NDH-1M complex and repress the NDH-CET activity. When cells were transferred from growth light to high light, the amounts of NdhI and NdhK increased without significant change in the amount of NdhO, thus decreasing the relative amount of NdhO. This might have decreased the blocking, thereby stabilizing the NDH-1M complex and increasing the NDH-CET activity under high light conditions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Plastidial Expression of Type II NAD(P)H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii1.

    PubMed

    Baltz, Anthony; Dang, Kieu-Van; Beyly, Audrey; Auroy, Pascaline; Richaud, Pierre; Cournac, Laurent; Peltier, Gilles

    2014-07-01

    Biological conversion of solar energy into hydrogen is naturally realized by some microalgae species due to a coupling between the photosynthetic electron transport chain and a plastidial hydrogenase. While promising for the production of clean and sustainable hydrogen, this process requires improvement to be economically viable. Two pathways, called direct and indirect photoproduction, lead to sustained hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures. The indirect pathway allows an efficient time-based separation of O2 and H2 production, thus overcoming the O2 sensitivity of the hydrogenase, but its activity is low. With the aim of identifying the limiting step of hydrogen production, we succeeded in overexpressing the plastidial type II NAD(P)H dehydrogenase (NDA2). We report that transplastomic strains overexpressing NDA2 show an increased activity of nonphotochemical reduction of plastoquinones (PQs). While hydrogen production by the direct pathway, involving the linear electron flow from photosystem II to photosystem I, was not affected by NDA2 overexpression, the rate of hydrogen production by the indirect pathway was increased in conditions, such as nutrient limitation, where soluble electron donors are not limiting. An increased intracellular starch was observed in response to nutrient deprivation in strains overexpressing NDA2. It is concluded that activity of the indirect pathway is limited by the nonphotochemical reduction of PQs, either by the pool size of soluble electron donors or by the PQ-reducing activity of NDA2 in nutrient-limited conditions. We discuss these data in relation to limitations and biotechnological improvement of hydrogen photoproduction in microalgae.

  2. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes.

    PubMed

    Li, Jianrong; Baud, Olivier; Vartanian, Timothy; Volpe, Joseph J; Rosenberg, Paul A

    2005-07-12

    Reactive microglia in the CNS have been implicated in the pathogenesis of white matter disorders, such as periventricular leukomalacia and multiple sclerosis. However, the mechanism by which activated microglia kill oligodendrocytes (OLs) remains elusive. Here we show that lipopolysaccharide (LPS)-induced death of developing OLs is caused by microglia-derived peroxynitrite, the reaction product of nitric oxide (NO) and superoxide anion. Blocking peroxynitrite formation with nitric oxide synthase inhibitors, superoxide dismutase mimics, or a decomposition catalyst abrogated the cytotoxicity. Only microglia, but not OLs, expressed inducible NO synthase (iNOS) after LPS challenge; microglia from iNOS knockout mice were not cytotoxic upon activation. The molecular source for superoxide was identified as the superoxide-generating enzyme NADPH oxidase. The oxidase was activated upon LPS exposure, and its inhibition prevented microglial toxicity toward OLs. Furthermore, microglia isolated from mice deficient in the catalytic component of the oxidase, gp91(phox), failed to induce cell death. Our results reveal a role for NADPH oxidase in LPS-induced OL death and suggest that peroxynitrite produced by iNOS and NADPH oxidase in activated microglia may play an important role in the pathogenesis of white matter disorders.

  3. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes

    PubMed Central

    Li, Jianrong; Baud, Olivier; Vartanian, Timothy; Volpe, Joseph J.; Rosenberg, Paul A.

    2005-01-01

    Reactive microglia in the CNS have been implicated in the pathogenesis of white matter disorders, such as periventricular leukomalacia and multiple sclerosis. However, the mechanism by which activated microglia kill oligodendrocytes (OLs) remains elusive. Here we show that lipopolysaccharide (LPS)-induced death of developing OLs is caused by microglia-derived peroxynitrite, the reaction product of nitric oxide (NO) and superoxide anion. Blocking peroxynitrite formation with nitric oxide synthase inhibitors, superoxide dismutase mimics, or a decomposition catalyst abrogated the cytotoxicity. Only microglia, but not OLs, expressed inducible NO synthase (iNOS) after LPS challenge; microglia from iNOS knockout mice were not cytotoxic upon activation. The molecular source for superoxide was identified as the superoxide-generating enzyme NADPH oxidase. The oxidase was activated upon LPS exposure, and its inhibition prevented microglial toxicity toward OLs. Furthermore, microglia isolated from mice deficient in the catalytic component of the oxidase, gp91phox, failed to induce cell death. Our results reveal a role for NADPH oxidase in LPS-induced OL death and suggest that peroxynitrite produced by iNOS and NADPH oxidase in activated microglia may play an important role in the pathogenesis of white matter disorders. PMID:15998743

  4. NADPH oxidase-mediated generation of reactive oxygen species: A new mechanism for X-ray-induced HeLa cell death

    SciTech Connect

    Liu Qing; He Xiaoqing; Liu Yongsheng; Du Bingbing; Wang Xiaoyan; Zhang Weisheng; Jia Pengfei; Dong Jingmei; Ma Jianxiu; Wang Xiaohu; Li Sha; Zhang Hong

    2008-12-19

    Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91{sup phox} was dose-dependent. Meanwhile, the cytoplasmic subunit p47{sup phox} was translocated to the cell membrane and localized with p22{sup phox} and gp91{sup phox} to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.

  5. Protective effect of HDL on NADPH oxidase-derived super oxide anion mediates hypoxia-induced cardiomyocyte apoptosis.

    PubMed

    Wen, Su-Ying; Tamilselvi, Shanmugam; Shen, Chia-Yao; Day, Cecilia Hsuan; Chun, Li-Chin; Cheng, Li-Yi; Ou, Hsiu-Chung; Chen, Ray-Jade; Viswanadha, Vijaya Padma; Kuo, Wei-Wen; Huang, Chih-Yang

    2017-01-01

    Cardiovascular diseases are the leading cause of death of death in Taiwan. Atherosclerosis can lead to serious problems, including heart attack, stroke, or even death. Coronary heart disease (CHD) occurs when plaque builds up in the coronary arteries to cause the ischemic heart disease which will enhance myocardial remodeling and also induce myocardial hypoxia. High density lipoprotein (HDL) has been proposed to have cardio-protective effects. Under hypoxic conditions (1%O2 for 24hr), in H9c2 cells, reactive oxygen species (ROS) is induced which leads to cardiomyocyte apoptosis and cardiac dysfunction. Therefore, the present study described the protective effect of HDL on hypoxia-induced cardiomyocyte damage. We investigated the NADPH oxidase-produced ROS-related signaling pathways and apoptosis in cardiomyocytes under hypoxia conditions. Results showed that the ROS mediated cardiac damage might occur via AT1 and PKC activation. Furthermore, hypoxia downregulated the survival protein (p-AKTser473) and anti-apoptotic protein (BCL2), whereas pro-apoptotic protein, Bax and caspase 3 were upregulated. These detrimental effects by ROS and apoptosis were prevented by HDL pretreatment. Our findings revealed the underlying molecular mechanism by which HDL suppresses the hypoxia-induced cardiomyocyte dysfunction. Further, we elucidated the role of HDL on preventing hypoxia induced cardiomyocyte apoptosis is mediated through the inhibition of NADPH oxidase-derived ROS.

  6. Glucose-6-Phosphate Dehydrogenase Protects Escherichia coli from Tellurite-Mediated Oxidative Stress

    PubMed Central

    Sandoval, Juan M.; Arenas, Felipe A.; Vásquez, Claudio C.

    2011-01-01

    The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH), which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH). Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS) generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P), suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH), better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress. PMID:21984934

  7. Globular adiponectin elicits neuroprotection by inhibiting NADPH oxidase-mediated oxidative damage in ischemic stroke.

    PubMed

    Song, W; Huo, T; Guo, F; Wang, H; Wei, H; Yang, Q; Dong, H; Wang, Q; Xiong, L

    2013-09-17

    Recent studies indicate that adiponectin can attenuate cerebral ischemic lesions via its functional area located in the C-terminal globular domain, which is called globular adiponectin (gAD). However, the mechanisms underlying this action remain unclear. In this study, we investigated the antioxidant properties of gAD during cerebral ischemia. Adult male C57BL/6 mice received an intracerebral injection of gAD with or without tetrabromocinnamic acid (TBCA, a NADPH oxidase activator). Mice were subjected to middle cerebral artery occlusion (MCAO) after gAD injection. Infarct volume, neurological function, the activity of antioxidant enzymes (superoxide dismutase [SOD], catalase), the content of malondialdehyde (MDA), and the expression of Bax, Bcl-2, cleaved caspase-3 and NADPH oxidase 2 (NOX2) were examined at 24h after MCAO. Infarct volume was attenuated in gAD-transduced mice when compared with mice in the MCAO group, with significant improvement in neurological function. In addition, neuronal apoptosis was attenuated, along with the expression of Bax/Bcl-2 and cleaved caspase 3. Furthermore, the activities of SOD and catalase increased, and the content of MDA reduced. However, TBCA blocked the effect of gAD on cerebral protection and its antioxidant abilities. Taken together, these results demonstrate that the neuroprotective action of gAD may result from the promotion of antioxidant capacity by inhibiting the NOX2 signaling system.

  8. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells

    PubMed Central

    Lee, Su Jeong; Park, Jeen-Woo

    2014-01-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells. [BMB Reports 2014; 47(4): 209-214] PMID:24286310

  9. Release of mitochondrial apoptogenic factors and cell death are mediated by CK2 and NADPH oxidase.

    PubMed

    Kim, Gab Seok; Jung, Joo Eun; Narasimhan, Purnima; Sakata, Hiroyuki; Yoshioka, Hideyuki; Song, Yun Seon; Okami, Nobuya; Chan, Pak H

    2012-04-01

    Activation of the NADPH oxidase subunit, NOX2, and increased oxidative stress are associated with neuronal death after cerebral ischemia and reperfusion. Inhibition of NOX2 by casein kinase 2 (CK2) leads to neuronal survival, but the mechanism is unknown. In this study, we show that in copper/zinc-superoxide dismutase transgenic (SOD1 Tg) mice, degradation of CK2α and CK2α' and dephosphorylation of CK2β against oxidative stress were markedly reduced compared with wild-type (WT) mice that underwent middle cerebral artery occlusion. Inhibition of CK2 pharmacologically or by ischemic reperfusion facilitated accumulation of poly(ADP-ribose) polymers, the translocation of apoptosis-inducing factor (AIF), and cytochrome c release from mitochondria after ischemic injury. The eventual enhancement of CK2 inhibition under ischemic injury strongly increased 8-hydroxy-2'-deoxyguanosine and phosphorylation of H2A.X. Furthermore, CK2 inhibition by tetrabromocinnamic acid (TBCA) in SOD1 Tg and gp91 knockout (KO) mice after ischemia reperfusion induced less release of AIF and cytochrome c than in TBCA-treated WT mice. Inhibition of CK2 in gp91 KO mice subjected to ischemia reperfusion did not increase brain infarction compared with TBCA-treated WT mice. These results strongly suggest that NOX2 activation releases reactive oxygen species after CK2 inhibition, triggering release of apoptogenic factors from mitochondria and inducing DNA damage after ischemic brain injury.

  10. Micro-RNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin-mediated NADPH oxidase in experimental and human nonalcoholic steatohepatitis.

    PubMed

    Dattaroy, Diptadip; Pourhoseini, Sahar; Das, Suvarthi; Alhasson, Firas; Seth, Ratanesh Kumar; Nagarkatti, Mitzi; Michelotti, Gregory A; Diehl, Anna Mae; Chatterjee, Saurabh

    2015-02-15

    Hepatic fibrosis in nonalcoholic steatohepatitis (NASH) is the common pathophysiological process resulting from chronic liver inflammation and oxidative stress. Although significant research has been carried out on the role of leptin-induced NADPH oxidase in fibrogenesis, the molecular mechanisms that connect the leptin-NADPH oxidase axis in upregulation of transforming growth factor (TGF)-β signaling have been unclear. We aimed to investigate the role of leptin-mediated upregulation of NADPH oxidase and its subsequent induction of micro-RNA 21 (miR21) in fibrogenesis. Human NASH livers and a high-fat (60% kcal) diet-fed chronic mouse model, where hepatotoxin bromodichloromethane was used to induce NASH, were used for this study. To prove the role of the leptin-NADPH oxidase-miR21 axis, mice deficient in genes for leptin, p47phox, and miR21 were used. Results showed that wild-type mice and human livers with NASH had increased oxidative stress, increased p47phox expression, augmented NF-κB activation, and increased miR21 levels. These mice and human livers showed increased TGF-β, SMAD2/3-SMAD4 colocalizations in the nucleus, increased immunoreactivity against Col1α, and α-SMA with a concomitant decrease in protein levels of SMAD7. Mice that were deficient in leptin or p47phox had decreased activated NF-κB and miR21 levels, suggesting the role of leptin and NADPH oxidase in inducing NF-κB-mediated miR21 expression. Further miR21 knockout mice had decreased colocalization events of SMAD2/3-SMAD4 in the nucleus, increased SMAD7 levels, and decreased fibrogenesis. Taken together, the studies show the novel role of leptin-NADPH oxidase induction of miR21 as a key regulator of TGF-β signaling and fibrogenesis in experimental and human NASH.

  11. NADPH oxidase (NOX) 1 mediates cigarette smoke-induced superoxide generation in rat vascular smooth muscle cells.

    PubMed

    Chang, Kyung-Hwa; Park, Jung-Min; Lee, Chang Hoon; Kim, Bumseok; Choi, Kyung-Chul; Choi, Seong-Jin; Lee, Kyuhong; Lee, Moo-Yeol

    2017-02-01

    Smoking is a well-established risk factor for cardiovascular diseases. Oxidative stress is one of the common etiological factors, and NADPH oxidase (NOX) has been suggested as a potential mediator of oxidative stress. In this study, cigarette smoke (CS)-induced superoxide production was characterized in vascular smooth muscle cells (VSMC). CS was prepared in forms of cigarette smoke extract (CSE) and total particulate matter (TPM). Several molecular probes for reactive oxygen species were trialed, and dihydroethidium (DHE) and WST-1 were chosen for superoxide detection considering the autofluorescence, light absorbance, and peroxidase inhibitory activity of CS. Both CSE and TPM generated superoxide in a VSMC culture system by stimulating cells to produce superoxide and by directly producing superoxide in the aqueous solution. NOX, specifically NOX1 was found to be an important cellular source of superoxide through experiments with the NOX inhibitors diphenyleneiodonium (DPI) and VAS2870 as well as isoform-specific NOX knockdown. NOX inhibitors and the superoxide dismutase mimetic TEMPOL reduced the cytotoxicity of CSE, thus suggesting the contribution of NOX1-derived superoxide to cytotoxicity. Since NOX1 is known to mediate diverse pathological processes in the vascular system, NOX1 may be a critical effector of cardiovascular toxicity caused by smoking.

  12. NAD kinase levels control the NADPH concentration in human cells.

    PubMed

    Pollak, Nadine; Niere, Marc; Ziegler, Mathias

    2007-11-16

    NAD kinases (NADKs) are vital, as they generate the cellular NADP pool. As opposed to three compartment-specific isoforms in plants and yeast, only a single NADK has been identified in mammals whose cytoplasmic localization we established by immunocytochemistry. To understand the physiological roles of the human enzyme, we generated and analyzed cell lines stably deficient in or overexpressing NADK. Short hairpin RNA-mediated down-regulation led to similar (about 70%) decrease of both NADK expression, activity, and the NADPH concentration and was accompanied by increased sensitivity toward H(2)O(2). Overexpression of NADK resulted in a 4-5-fold increase in the NADPH, but not NADP(+), concentration, although the recombinant enzyme phosphorylated preferentially NAD(+). Surprisingly, NADK overexpression and the ensuing increase of the NADPH level only moderately enhanced protection against oxidant treatment. Apparently, to maintain the NADPH level for the regeneration of oxidative defense systems human cells depend primarily on NADP-dependent dehydrogenases (which re-reduce NADP(+)), rather than on a net increase of NADP. The stable shifts of the NADPH level in the generated cell lines were also accompanied by alterations in the expression of peroxiredoxin 5 and Nrf2. Because the basal oxygen radical level in the cell lines was only slightly changed, the redox state of NADP may be a major transmitter of oxidative stress.

  13. Listeriolysin O suppresses Phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection

    PubMed Central

    Lam, Grace Y.; Fattouh, Ramzi; Muise, Aleixo M.; Grinstein, Sergio; Higgins, Darren E.; Brumell, John H.

    2012-01-01

    Summary The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L. monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bacteria can be complemented by perfringolysin O, a related cytolysin, suggesting that other pathogens may also use pore-forming cytolysins to inhibit the NADPH oxidase. Our studies demonstrate that while the PLCs induce antimicrobial NADPH oxidase activity, this effect is alleviated by the pore-forming activity of LLO. Therefore, the combined activities of PLCs and LLO on membrane lysis and the inhibitory effects of LLO on NADPH oxidase activity allows L. monocytogenes to efficiently escape the phagosome while avoiding the microbicidal respiratory burst. PMID:22177565

  14. Chlorella triggers stomatal closure mediated by NADPH oxidase and improves instantaneous water use efficiency in Vicia faba

    PubMed Central

    Li, Yan; Xu, Shan-Shan; Gao, Jing; Pan, Sha; Wang, Gen-Xuan

    2014-01-01

    Stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs) has been associated with early defense responses of plants. Chlorella is a unicellular autotrophic microorganism that can synthesize many bioactive substances with positive effects on humans, animals and plants. However, its effects on stomatal movement and instantaneous intrinsic water use efficiency (WUEi) in plants have been not explored yet. Our present work showed that application of Chlorella to isolated epidermal peels of Vicia faba induced stomatal closure in a dose-and time-dependent manner. Pharmacological study revealed that the Chlorella-triggered stomatal closure was mainly mediated by reactive oxygen species (ROS) production via NADPH oxidase. Additionally, exogenous application of optimal concentrations of Chlorella suspension caused an obvious reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (Pn), favoring the improvement of WUEi in Vicia faba. The chlorophyll fluorescence and content analysis further indicated that Chlorella had no effects on plant photosynthetic reactions center after short-term foliar application. PMID:24801212

  15. Resveratrol inhibits foam cell formation via NADPH oxidase 1-mediated reactive oxygen species and monocyte chemotactic protein-1

    PubMed Central

    Park, Dae-Weon; Baek, Kheewoong; Kim, Jae-Ryong; Lee, Jae-Jin; Ryu, Sang-Ho; Chin, Byung-Rho

    2009-01-01

    Resveratrol is a polyphenolic compound in red wine that has anti-oxidant and cardioprotective effects in animal models. Reactive oxygen species (ROS) and monocyte chemotactic protein-1 (MCP-1) play key roles in foam cell formation and atherosclerosis. We studied LPS-mediated foam cell formation and the effect of resveratrol. Resveratrol pretreatment strongly suppressed LPS-induced foam cell formation. To determine if resveratrol affected the expression of genes that control ROS generation in macrophages, NADPH oxidase 1 (Nox1) was measured. Resveratrol treatment of macrophages inhibited LPS-induced Nox1 expression as well as ROS generation, and also suppressed LPS-induced MCP-1 mRNA and protein expression. We investigated the upstream targets of Nox1 and MCP-1 expression and found that Akt-forkhead transcription factors of the O class (FoxO3a) is an important signaling pathway that regulates both genes. These inhibitory effects of resveratrol on Nox1 expression and MCP-1 production may target to the Akt and FoxO3a signaling pathways. PMID:19293636

  16. Effects of iodonium-class flavin dehydrogenase inhibitors on growth, reactive oxygen production, cell cycle progression, NADPH oxidase 1 levels, and gene expression in human colon cancer cells and xenografts.

    PubMed

    Doroshow, James H; Gaur, Shikha; Markel, Susan; Lu, Jiamo; van Balgooy, Josephus; Synold, Timothy W; Xi, Bixin; Wu, Xiwei; Juhasz, Agnes

    2013-04-01

    Iodonium-class flavoprotein dehydrogenase inhibitors have been demonstrated to possess antiproliferative potential and to inhibit reactive oxygen production in human tumor cells, although the mechanism(s) that explains the relationship between altered cell growth and the generation of reactive oxygen species (ROS) remains an area of active investigation. Because of the ability of these compounds to inhibit the activity of flavoprotein-containing epithelial NADPH oxidases, we chose to examine the effects of several iodonium-class flavoprotein inhibitors on human colon cancer cell lines that express high, functional levels of a single such oxidase (NADPH oxidase 1, or Nox1). We found that diphenyleneiodonium (DPI), di-2-thienyliodonium (DTI), and iodonium diphenyl inhibited the growth of Caco2, HT-29, and LS-174T colon cancer cells at concentrations (10-250nM for DPI, 0.5-2.5μM for DTI, and 155nM to 10μM for iodonium diphenyl) substantially lower than needed for DU145 human prostate cancer cells, which do not possess functional NADPH oxidase activity. Drug treatment was associated with decreased H2O2 production and diminished intracellular ROS levels, lasting up to 24h, after short-term (1-h) exposure to the iodonium analogs. Decreased tumor cell proliferation was caused, in part, by a profound block in cell cycle progression at the G1/S interface in both LS-174T and HT-29 cells exposed to either DPI or DTI; and the G1 block was produced, for LS-174T cells, by upregulation of p27 and a drug concentration-related decrease in the expression of cyclins D1, A, and E that was partially prevented by exogenous H2O2. Not only did DPI and DTI decrease intracellular ROS, they both also significantly decreased the mRNA expression levels of Nox1, potentially contributing to the prolonged reduction in tumor cell reactive oxygen levels. We also found that DPI and DTI significantly decreased the growth of both HT-29 and LS-174T human tumor xenografts, at dose levels that produced

  17. Involvement of NADPH oxidase in A2A adenosine receptor-mediated increase in coronary flow in isolated mouse hearts.

    PubMed

    Zhou, Zhichao; Rajamani, Uthra; Labazi, Hicham; Tilley, Stephen L; Ledent, Catherine; Teng, Bunyen; Mustafa, S Jamal

    2015-06-01

    Adenosine increases coronary flow mainly through the activation of A2A and A2B adenosine receptors (ARs). However, the mechanisms for the regulation of coronary flow are not fully understood. We previously demonstrated that adenosine-induced increase in coronary flow is in part through NADPH oxidase (Nox) activation, which is independent of activation of either A1 or A3ARs. In this study, we hypothesize that adenosine-mediated increase in coronary flow through Nox activation depends on A2A but not A2BARs. Functional studies were conducted using isolated Langendorff-perfused mouse hearts. Hydrogen peroxide (H2O2) production was measured in isolated coronary arteries from WT, A2AAR knockout (KO), and A2BAR KO mice using dichlorofluorescein immunofluorescence. Adenosine-induced concentration-dependent increase in coronary flow was attenuated by the specific Nox2 inhibitor gp91 ds-tat or reactive oxygen species (ROS) scavenger EUK134 in both WT and A2B but not A2AAR KO isolated hearts. Similarly, the A2AAR selective agonist CGS-21680-induced increase in coronary flow was significantly blunted by Nox2 inhibition in both WT and A2BAR KO, while the A2BAR selective agonist BAY 60-6583-induced increase in coronary flow was not affected by Nox2 inhibition in WT. In intact isolated coronary arteries, adenosine-induced (10 μM) increase in H2O2 formation in both WT and A2BAR KO mice was attenuated by Nox2 inhibition, whereas adenosine failed to increase H2O2 production in A2AAR KO mice. In conclusion, adenosine-induced increase in coronary flow is partially mediated by Nox2-derived H2O2, which critically depends upon the presence of A2AAR.

  18. Unique targeting of cytosolic phospholipase A2 to plasma membranes mediated by the NADPH oxidase in phagocytes

    PubMed Central

    Shmelzer, Zeev; Haddad, Nurit; Admon, Ester; Pessach, Itai; Leto, Thomas L.; Eitan-Hazan, Zahit; Hershfinkel, Michal; Levy, Rachel

    2003-01-01

    Cytosolic phospholipase A2 (cPLA2)–generated arachidonic acid (AA) has been shown to be an essential requirement for the activation of NADPH oxidase, in addition to its being the major enzyme involved in the formation of eicosanoid at the nuclear membranes. The mechanism by which cPLA2 regulates NADPH oxidase activity is not known, particularly since the NADPH oxidase complex is localized in the plasma membranes of stimulated cells. The present study is the first to demonstrate that upon stimulation cPLA2 is transiently recruited to the plasma membranes by a functional NADPH oxidase in neutrophils and in granulocyte-like PLB-985 cells. Coimmunoprecipitation experiments and double labeling immunofluorescence analysis demonstrated the unique colocalization of cPLA2 and the NADPH oxidase in plasma membranes of stimulated cells, in correlation with the kinetic burst of superoxide production. A specific affinity in vitro binding was detected between GST-p47phox or GST-p67phox and cPLA2 in lysates of stimulated cells. The association between these two enzymes provides the molecular basis for AA released by cPLA2 to activate the assembled NADPH oxidase. The ability of cPLA2 to regulate two different functions in the same cells (superoxide generation and eicosanoid production) is achieved by a novel dual subcellular localization of cPLA2 to different targets. PMID:12913107

  19. Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection.

    PubMed

    Lam, Grace Y; Fattouh, Ramzi; Muise, Aleixo M; Grinstein, Sergio; Higgins, Darren E; Brumell, John H

    2011-12-15

    The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L. monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bacteria can be complemented by perfringolysin O, a related cytolysin, suggesting that other pathogens may also use pore-forming cytolysins to inhibit the NADPH oxidase. Our studies demonstrate that while the PLCs induce antimicrobial NADPH oxidase activity, this effect is alleviated by the pore-forming activity of LLO. Therefore, the combined activities of PLCs and LLO on membrane lysis and the inhibitory effects of LLO on NADPH oxidase activity allow L. monocytogenes to efficiently escape the phagosome while avoiding the microbicidal respiratory burst. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Propionyl-L-carnitine improves postischemic blood flow recovery and arteriogenetic revascularization and reduces endothelial NADPH-oxidase 4-mediated superoxide production.

    PubMed

    Stasi, Maria Antonietta; Scioli, Maria Giovanna; Arcuri, Gaetano; Mattera, Giovan Giuseppe; Lombardo, Katia; Marcellini, Marcella; Riccioni, Teresa; De Falco, Sandro; Pisano, Claudio; Spagnoli, Luigi Giusto; Borsini, Franco; Orlandi, Augusto

    2010-03-01

    The beneficial effect of the natural compound propionyl-l-carnitine (PLC) on intermittent claudication in patients with peripheral arterial disease is attributed to its anaplerotic function in ischemic tissues, but inadequate information is available concerning action on the vasculature. We investigated the effects of PLC in rabbit hind limb collateral vessels after femoral artery excision, mouse dorsal air pouch, chicken chorioallantoic membrane, and vascular cells by angiographic, Doppler flow, and histomorphometrical and biomolecular analyses. PLC injection accelerated hind limb blood flow recovery after 4 days (P<0.05) and increased angiographic quadriceps collateral vascularization after 7 days (P<0.001) Histomorphometry confirmed the increased vascular area (P<0.05), with unchanged intramuscular capillary density. PLC-induced dilatative adaptation, and growth was found associated with increased inducible nitric oxide synthase and reduced arterial vascular endothelial growth factor and intracellular adhesion molecule-1 expression. PLC also increased vascularization in air pouch and chorioallantoic membrane (P<0.05), particularly in large vessels. PLC increased endothelial and human umbilical vascular endothelial cell proliferation and rapidly reduced inducible nitric oxide synthase and NADPH-oxidase 4-mediated reactive oxygen species production in human umbilical vascular endothelial cells; NADPH-oxidase 4 also regulated NF-kappaB-independent intracellular adhesion molecule-1 expression. Our results provided strong evidence that PLC improves postischemic flow recovery and revascularization and reduces endothelial NADPH-oxidase-related superoxide production. We recommend that PLC should be included among therapeutic interventions that target endothelial function.

  1. NADPH Oxidase-Dependent Reactive Oxygen Species Mediate Amplified TLR4 Signaling and Sepsis-Induced Mortality in Nrf2-deficient Mice

    PubMed Central

    Kong, Xiaoni; Thimmulappa, Rajesh; Kombairaju, Ponvijay; Biswal, Shyam

    2010-01-01

    Sepsis syndrome is characterized by a dysregulated inflammatory response to infection. NADPH oxidase-dependent reactive oxygen species (ROS) play significant roles in the pathophysiology of sepsis. We previously showed that disruption of Nrf2, a master regulator of antioxidant defenses, caused a dysregulation of innate immune response that resulted in greater mortality in a polymicrobial sepsis and lipopolysaccharide (LPS) shock model; however, the underlying mechanisms are unclear. In the present study, compared to wild-type (Nrf2+/+) macrophages, we observed greater PKC-induced NADPH oxidase-dependent ROS generation in Nrf2-disrupted (Nrf2−/−) macrophages that was modulated by glutathione (GSH) levels. To address the NADPH oxidase-mediated hyper-inflammatory response and sepsis-induced lung injury and mortality in Nrf2−/− mice, we used double knockout mice lacking Nrf2 and NADPH oxidase subunit, gp91phox (Nrf2−/−//Gp91phox−/−). Compared to Nrf2+/+ macrophages, LPS induced greater activation of TLR4 as evident by TLR4 surface trafficking and downstream recruitment of MYD88 and TRIF in Nrf2−/− macrophages that was diminished by ablation of gp91phox. Similarly, phosphorylation of IκB and IRF3 as well as cytokine expression was markedly higher in Nrf2−/− macrophages, while it was similar in Nrf2+/+ and Nrf2−/−//Gp91phox−/−. In vivo studies showed greater LPS-induced pulmonary inflammation in Nrf2−/− mice that was significantly reduced by ablation of gp91phox. Furthermore, LPS shock and polymicrobial sepsis induced early and greater mortality in Nrf2−/− mice, while Nrf2−/−//Gp91phox−/− showed prolong survival. Together, these results demonstrate that Nrf2 is essential for the regulation of NADPH oxidase-dependent ROS-mediated TLR4 activation and lethal innate immune response in sepsis. PMID:20511556

  2. Influence of long-term hyper-gravity on the reactivity of succinic acid dehydrogenase and NADPH-diaphorase in the central nervous system of fish: a histochemical study

    NASA Astrophysics Data System (ADS)

    Anken, R. H.; Rahmann, H.

    In the course of a densitometric evaluation, the histochemically demonstrated reactivity of succinic acid dehydrogenase (SDH) and of NADPH-diaphorase (NADPHD) was determined in different brain nuclei of two teleost fish (cichlid fish Oreochromis mossambicus, swordtail fish Xiphophorus helleri), which had been kept under 3g hyper-gravity for 8 days. SDH was chosen since it is a rate limiting enzyme of the Krebs cycle and therefore it is regarded as a marker for metabolic and neuronal activity. NADPHD reactivity reflects the activity of nitric oxide synthase. Nitric oxide (NO) is a gaseous intercellular messenger that has been suggested to play a major role in several different in vivo models of neuronal plasticity including learning. Within particular vestibulum-connected brain centers, significant effects of hyper-gravity were obtained, e.g., in the magnocellular nucleus, a primary vestibular relay ganglion of the brain stem octavolateralis area, in the superior rectus subdivision of the oculomotoric nucleus and within cerebellar eurydendroid cells, which in teleosts possibly resemble the deep cerebellar nucleus of higher vertebrates. Non-vestibulum related nuclei did not respond to hypergravity in a significant way. The effect of hyper-gravity found was much less distinct in adult animals as compared to the circumstances seen in larval fish (Anken et al., Adv. Space Res. 17, 1996), possibly due to a development correlated loss of neuronal plasticity.

  3. Inhibition of stress mediated cell death by human lactate dehydrogenase B in yeast.

    PubMed

    Sheibani, Sara; Jones, Natalie K; Eid, Rawan; Gharib, Nada; Arab, Nagla T T; Titorenko, Vladimir; Vali, Hojatollah; Young, Paul A; Greenwood, Michael T

    2015-08-01

    We report the identification of human L- lactate dehydrogenase B (LDHB) as a novel Bax suppressor. Yeast heterologously expressing LDHB is also resistant to the lethal effects of copper indicating that it is a general suppressor of stress mediated cell death. To identify potential LDHB targets, LDHB was expressed in yeast mutants defective in apoptosis, necrosis and autophagy. The absence of functional PCD regulators including MCA1, YBH3, cyclophilin (CPR3) and VMA3, as well as the absence of the pro-survival autophagic pathway (ATG1,7) did not interfere with the LDHB mediated protection against copper indicating that LDHB functions independently of known PCD regulators or by simply blocking or stimulating a common PCD promoting or inhibitory pathway. Measurements of lactate levels revealed that short-term copper stress (1.6 mM, 4 h), does not increase intracellular levels of lactate, instead a three-fold increase in extracellular lactate was observed. Thus, yeast cells resemble mammalian cells where different stresses are known to lead to increased lactate production leading to lactic acidosis. In agreement with this, we found that the addition of exogenous lactic acid to growth media was sufficient to induce cell death that could be inhibited by the expression of LDHB. Taken together our results suggest that lactate dehydrogenase is a general suppressor of PCD in yeast. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. The three-dimensional structure of Clostridium absonum 7α-hydroxysteroid dehydrogenase: new insights into the conserved arginines for NADP(H) recognition

    PubMed Central

    Lou, Deshuai; Wang, Bochu; Tan, Jun; Zhu, Liancai; Cen, Xiaoxi; Ji, Qingzhi; Wang, Yue

    2016-01-01

    7α-hydroxysteroid dehydrogenase (7α-HSDH) can catalyse the oxidation of C7 α-OH of the steroid nucleus in the bile acid metabolism. In the paper we determined the crystal structure of 7α-HSDH from Clostridium absonum (CA 7α-HSDH) complexed with taurochenodeoxycholic acid (TCDCA) and NADP+ by X-ray diffraction, which, as a tetramer, possesses the typical α/β folding pattern. The four subunits of an asymmetric unit lie in the fact that there are the stable hydrophobic interactions between Q-axis-related subunits. Significantly, we captured an active state of the NADP+, confirming that nicotinamide moiety of NADP+ act as electron carrier in the dehydrogenation. On the basis of crystal structure analysis, site-directed mutagenesis and MD simulation, furthermore, we find that the guanidinium of Arg38 can form the stable cation-π interaction with the adenine ring of NADP+, and the cation-π interaction and hydrogen bonds between Arg38 and NADP+ have a significant anchor effect on the cofactor binding to CA 7α-HSDH. PMID:26961171

  5. Proinflammatory cytokines provoke oxidative damage to actin in neuronal cells mediated by Rac1 and NADPH oxidase.

    PubMed

    Barth, Brian M; Stewart-Smeets, Shelli; Kuhn, Thomas B

    2009-06-01

    The proinflammatory cytokines TNFalpha and Il-1beta orchestrate the progression of CNS inflammation, which substantially contributes to neurodegeneration in many CNS pathologies. TNFalpha and Il-1beta stimulate actin filament reorganization in non-neuronal cells often accompanied by the formation of reactive oxygen species (ROS). Actin filament dynamics is vital for cellular plasticity, mitochondrial function, and gene expression despite being highly susceptible to oxidative damage. We demonstrated that, in neuronal cells, TNFalpha and Il-1beta stimulate a transient, redox-dependent reorganization of the actin cytoskeleton into lamellipodia under the regulation of Rac1 and a neuronal NADPH oxidase as the source of ROS. The persistent presence of intracellular ROS provoked oxidative damage (carbonylation) to actin coinciding with the loss of lamellipodia and arrest of cellular plasticity. Inhibition of NADPH oxidase activity or Rac1 abolished the adverse effects of cytokines. These findings suggest that oxidative damage to the neuronal actin cytoskeleton could represent a key step in CNS neurodegeneration.

  6. FFA-induced hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative stress.

    PubMed

    Pereira, Sandra; Park, Edward; Mori, Yusaku; Haber, C Andrew; Han, Ping; Uchida, Toyoyoshi; Stavar, Laura; Oprescu, Andrei I; Koulajian, Khajag; Ivovic, Alexander; Yu, Zhiwen; Li, Deling; Bowman, Thomas A; Dewald, Jay; El-Benna, Jamel; Brindley, David N; Gutierrez-Juarez, Roger; Lam, Tony K T; Najjar, Sonia M; McKay, Robert A; Bhanot, Sanjay; Fantus, I George; Giacca, Adria

    2014-07-01

    Fat-induced hepatic insulin resistance plays a key role in the pathogenesis of type 2 diabetes in obese individuals. Although PKC and inflammatory pathways have been implicated in fat-induced hepatic insulin resistance, the sequence of events leading to impaired insulin signaling is unknown. We used Wistar rats to investigate whether PKCδ and oxidative stress play causal roles in this process and whether this occurs via IKKβ- and JNK-dependent pathways. Rats received a 7-h infusion of Intralipid plus heparin (IH) to elevate circulating free fatty acids (FFA). During the last 2 h of the infusion, a hyperinsulinemic-euglycemic clamp with tracer was performed to assess hepatic and peripheral insulin sensitivity. An antioxidant, N-acetyl-L-cysteine (NAC), prevented IH-induced hepatic insulin resistance in parallel with prevention of decreased IκBα content, increased JNK phosphorylation (markers of IKKβ and JNK activation, respectively), increased serine phosphorylation of IRS-1 and IRS-2, and impaired insulin signaling in the liver without affecting IH-induced hepatic PKCδ activation. Furthermore, an antisense oligonucleotide against PKCδ prevented IH-induced phosphorylation of p47(phox) (marker of NADPH oxidase activation) and hepatic insulin resistance. Apocynin, an NADPH oxidase inhibitor, prevented IH-induced hepatic and peripheral insulin resistance similarly to NAC. These results demonstrate that PKCδ, NADPH oxidase, and oxidative stress play a causal role in FFA-induced hepatic insulin resistance in vivo and suggest that the pathway of FFA-induced hepatic insulin resistance is FFA → PKCδ → NADPH oxidase and oxidative stress → IKKβ/JNK → impaired hepatic insulin signaling.

  7. Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; evidence of resistance mediated through NADPH oxidases.

    PubMed

    Foley, Rhonda C; Gleason, Cynthia A; Anderson, Jonathan P; Hamann, Thorsten; Singh, Karam B

    2013-01-01

    Rhizoctonia solani is an important soil-borne necrotrophic fungal pathogen, with a broad host range and little effective resistance in crop plants. Arabidopsis is resistant to R. solani AG8 but susceptible to R. solani AG2-1. A screen of 36 Arabidopsis ecotypes and mutants affected in the auxin, camalexin, salicylic acid, abscisic acid and ethylene/jasmonic acid pathways did not reveal any variation in response to R. solani and demonstrated that resistance to AG8 was independent of these defense pathways. The Arabidopsis Affymetrix ATH1 Genome array was used to assess global gene expression changes in plants infected with AG8 and AG2-1 at seven days post-infection. While there was considerable overlap in the response, some gene families were differentially affected by AG8 or AG2-1 and included those involved in oxidative stress, cell wall associated proteins, transcription factors and heat shock protein genes. Since a substantial proportion of the gene expression changes were associated with oxidative stress responses, we analysed the role of NADPH oxidases in resistance. While single NADPH oxidase mutants had no effect, a NADPH oxidase double mutant atrbohf atrbohd resulted in an almost complete loss of resistance to AG8, suggesting that reactive oxidative species play an important role in Arabidopsis's resistance to R. solani.

  8. Rat liver insulin mediator which stimulates pyruvate dehydrogenase phosphate contains galactosamine and D-chiroinositol.

    PubMed

    Larner, J; Huang, L C; Schwartz, C F; Oswald, A S; Shen, T Y; Kinter, M; Tang, G Z; Zeller, K

    1988-03-30

    It has been established that insulin treatment of cells, isolated plasma membranes, or whole animals leads to the generation of low molecular weight mediators which serve as intermediates in the signalling pathway. At least two distinct classes of mediator have been described, based on differences in apparent molecular weight, isoelectric point and biological activity (Cheng, K., and Larner, J. (1985) Ann. Rev. Physiol. 45, 407-424). Recently, Saltiel's (Saltiel, A.R., and Cuatrecasas, P. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5793-5797) and Mato's (Mato, J.M., Kelly, K.L., Abler, A., and Jarett, L. (1987) J. Biol. Chem. 262, 2131-2137) laboratories have described an insulin "modulator" which was apparently derived from glycosylphosphoinositol linker, similar to those known to anchor proteins to the external surface of the cell membrane (Low, M.G. (1987) Bioch. J. 244, 1-13). In this paper, we report that highly purified preparations of the insulin mediator which stimulates pyruvate dehydrogenase phosphatase contain mannose, galactosamine, and D-chiroinositol. These determinations are based upon analyses using paper chromatography and gas chromatography/mass spectroscopy. Nitrous acid deamination of the mediator resulted in release of inositol phosphate, indicating that the galactosamine and D-chiroinositol are linked. Although the presence of chiroinositol in modulator from H35 hepatoma cells has been recently reported (Mato, J.M., Kelly, K.L., Abler, A., Jarett, L., Corkey, B.E., Cashel, J.A., and Zopf, D. (1987) Bioch. Biophys. Res. Comm. 146, 764-770), the optical identity of the inositol remained unknown until the present report. Likewise, the presence of galactosamine rather than glucosamine in insulin mediator is a novel finding. These findings, coupled with those of Saltiel and Mato's groups, provide clear evidence for the existence of multiple forms of insulin mediators. Additionally, the results presented here afford further confirmation for the

  9. Amphiphilic Polymer Mediators Promoting Electron Transfer on Bioanodes with PQQ-Dependent Glucose Dehydrogenase.

    PubMed

    Nakashima, Yasuo; Mizoshita, Norihiro; Tanaka, Hiromitsu; Nakaoki, Yuichiro

    2016-12-13

    Redox-active phenazinium salts bonded to amphiphilic polymer backbones are demonstrated to function as high-performance electron-transfer mediators in enzymatic bioanodes applicable to biofuel cells. The redox-active moieties could be easily tethered to the electrodes by physical adsorption of the hydrophobic regions of the polymer backbones onto the electrode surface. On the other hand, long hydrophilic chains were essential to ensure high mobility of the redox-active moieties in aqueous solutions and to enhance their electron-transfer properties. We found that an amphiphilic mediator with a linear polymer backbone exhibited stable adsorption behavior on the electrode surface and generated high bioelectrocatalytic current (>1.8 ± 0.32 mA/cm(2)) in the presence of pyrroloquinoline quinone-dependent glucose dehydrogenase and an aqueous solution of glucose fuel. This current was more than two times higher than that of an electrode treated with a low-molecular-weight phenazinium salt. Moreover, the bioelectrode modified with the polymer mediator retained the high electrocatalytic current after 10 exchanges of the glucose fuel. The mediator-modified bioelectrodes are expected to be useful for various bio-related energy and electronic devices.

  10. ATL9, a RING Zinc Finger Protein with E3 Ubiquitin Ligase Activity Implicated in Chitin- and NADPH Oxidase-Mediated Defense Responses

    PubMed Central

    Berrocal-Lobo, Marta; Stone, Sophia; Yang, Xin; Antico, Jay; Callis, Judy; Ramonell, Katrina M.; Somerville, Shauna

    2010-01-01

    Pathogen associated molecular patterns (PAMPs) are signals detected by plants that activate basal defenses. One of these PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response was independent of the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling pathways. One of these genes is ATL9 ( = ATL2G), which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3 ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment with known defense hormones (SA, JA or ET), full expression in response to chitin is compromised slightly in mutants where ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst. PMID:21203445

  11. NADPH-oxidase-driven oxygen radical production determines chondrocyte death and partly regulates metalloproteinase-mediated cartilage matrix degradation during interferon-γ-stimulated immune complex arthritis

    PubMed Central

    van Lent, Peter LEM; Nabbe, Karin CAM; Blom, Arjen B; Sloetjes, Annet; Holthuysen, Astrid EM; Kolls, Jay; Van De Loo, Fons AJ; Holland, Steven M; Van Den Berg, Wim B

    2005-01-01

    In previous studies we have found that FcγRI determines chondrocyte death and matrix metalloproteinase (MMP)-mediated cartilage destruction during IFN-γ-regulated immune complex arthritis (ICA). Binding of immune complexes (ICs) to FcγRI leads to the prominent production of oxygen radicals. In the present study we investigated the contribution of NADPH-oxidase-driven oxygen radicals to cartilage destruction by using p47phox-/- mice lacking a functional NADPH oxidase complex. Induction of a passive ICA in the knee joints of p47phox-/- mice resulted in a significant elevation of joint inflammation at day 3 when compared with wild-type (WT) controls as studied by histology. However, when IFN-γ was overexpressed by injection of adenoviral IFN-γ in the knee joint before ICA induction, a similar influx of inflammatory cells was found at days 3 and 7, comprising mainly macrophages in both mouse strains. Proteoglycan depletion from the cartilage layers of the knee joints in both groups was similar at days 3 and 7. Aggrecan breakdown in cartilage caused by MMPs was further studied by immunolocalisation of MMP-mediated neoepitopes (VDIPEN). VDIPEN expression in the cartilage layers of arthritic knee joints was markedly lower (between 30 and 60%) in IFN-γ-stimulated arthritic p47phox-/- mice at day 7 than in WT controls, despite significant upregulation of mRNA levels of various MMPs such as MMP-3, MMP-9, MMP-12 and MMP-13 in synovia and MMP-13 in cartilage layers as measured with quantitative RT-PCR. The latter observation suggests that oxygen radicals are involved in the activation of latent MMPs. Chondrocyte death, determined as the percentage of empty lacunae in articular cartilage, ranged between 20 and 60% at day 3 and between 30 and 80% at day 7 in WT mice, and was completely blocked in p47phox-/- mice at both time points. FcγRI mRNA expression was significantly lower, and FcγRII and FcγRIII were higher, in p47phox-/- mice than in controls. NADPH

  12. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    SciTech Connect

    Oh, Se Jeong; Gu, Dong Ryun; Jin, Su Hyun; Park, Keun Ha; Lee, Seoung Hoon

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  13. Plastidial Expression of Type II NAD(P)H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii1[W][OPEN

    PubMed Central

    Baltz, Anthony; Dang, Kieu-Van; Beyly, Audrey; Auroy, Pascaline; Richaud, Pierre; Cournac, Laurent; Peltier, Gilles

    2014-01-01

    Biological conversion of solar energy into hydrogen is naturally realized by some microalgae species due to a coupling between the photosynthetic electron transport chain and a plastidial hydrogenase. While promising for the production of clean and sustainable hydrogen, this process requires improvement to be economically viable. Two pathways, called direct and indirect photoproduction, lead to sustained hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures. The indirect pathway allows an efficient time-based separation of O2 and H2 production, thus overcoming the O2 sensitivity of the hydrogenase, but its activity is low. With the aim of identifying the limiting step of hydrogen production, we succeeded in overexpressing the plastidial type II NAD(P)H dehydrogenase (NDA2). We report that transplastomic strains overexpressing NDA2 show an increased activity of nonphotochemical reduction of plastoquinones (PQs). While hydrogen production by the direct pathway, involving the linear electron flow from photosystem II to photosystem I, was not affected by NDA2 overexpression, the rate of hydrogen production by the indirect pathway was increased in conditions, such as nutrient limitation, where soluble electron donors are not limiting. An increased intracellular starch was observed in response to nutrient deprivation in strains overexpressing NDA2. It is concluded that activity of the indirect pathway is limited by the nonphotochemical reduction of PQs, either by the pool size of soluble electron donors or by the PQ-reducing activity of NDA2 in nutrient-limited conditions. We discuss these data in relation to limitations and biotechnological improvement of hydrogen photoproduction in microalgae. PMID:24820024

  14. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    PubMed Central

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-01-01

    Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  15. Modified gold surfaces by poly(amidoamine) dendrimers and fructose dehydrogenase for mediated fructose sensing.

    PubMed

    Damar, Kadir; Odaci Demirkol, Dilek

    2011-12-15

    An electrochemical biosensor for detection of fructose in food samples was developed by immobilization of fructose dehydrogenase (FDH) on cysteamine and poly(amidoamine) dendrimers (PAMAM)-modified gold electrode surface. Electrochemical analysis was carried out by using hexacyanoferrate (HCF) as a mediator and the response time was 35s at +300 mV vs. Ag/AgCl. Moreover, some parameters such as pH, enzyme loading and type of PAMAM (Generations 2, 3 and 4) were investigated. Then, the FDH biosensor was calibrated for fructose in the concentration range of 0.25-5.0mM. To evaluate its utility, the FDH biosensor was applied for fructose analysis in real samples. Finally, obtained data were compared with those measured with HPLC as a reference method. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    NASA Astrophysics Data System (ADS)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  17. Inositol 1,4,5-triphosphate receptors and NAD(P)H mediate Ca2+ signaling required for hypoxic preconditioning of hippocampal neurons

    PubMed Central

    Bickler, Philip E.; Fahlman, Christian S.; Gray, Jonathan; McKleroy, William; Warren, Daniel E.

    2009-01-01

    Exposure of neurons to a non-lethal hypoxic stress greatly reduces cell death during subsequent severe ischemia (hypoxic preconditioning, HPC). In organotypic cultures of rat hippocampus, we demonstrate that HPC requires inositol triphosphate (IP3) receptor-dependent Ca2+ release from the endoplasmic reticulum (ER) triggered by increased cytosolic NAD(P)H. Ca2+ chelation with intracellular BAPTA, ER Ca2+ store depletion with thapsigargin, IP3 receptor block with xestospongin, and RNA interference against subtype 1 of the IP3 receptor all blunted the moderate increases in [Ca2+]i (50–100 nM) required for tolerance induction. Increases in [Ca2+]i during HPC and neuroprotection following HPC was not prevented with NMDA receptor block or by removing Ca2+ from the bathing medium. Increased NAD(P)H fluorescence in CA1 neurons during hypoxia and demonstration that NADH manipulation increases [Ca2+]i in an IP3R-dependent manner revealed a primary role of cellular redox state in liberation of Ca2+ from the ER. Blockade of IP3Rs and intracellular Ca2+ chelation prevented phosphorylation of known HPC signaling targets, including MAPK p42/44 (ERK), protein kinase B (Akt) and CREB. We conclude that the endoplasmic reticulum, acting via redox/NADH-dependent intracellular Ca2+ store release, is an important mediator of the neuroprotective response to hypoxic stress. PMID:19217932

  18. Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase.

    PubMed

    Yang, Yu; Zhang, Yanrong; Cuevas, Santiago; Villar, Van Anthony; Escano, Crisanto; D Asico, Laureano; Yu, Peiying; Grandy, David K; Felder, Robin A; Armando, Ines; Jose, Pedro A

    2012-08-01

    iodonium (10μM/30 min) inhibited the increase in ROS production caused by PON2 silencing. Our results suggest that renal PON2 is involved in the inhibition of renal NADPH oxidase activity and ROS production and contributes to the maintenance of normal blood pressure. PON2 is positively regulated by D(2)R and may, in part, mediate the inhibitory effect of renal D(2)R on NADPH oxidase activity and ROS production. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. 15-Oxoeicosatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways.

    PubMed

    Snyder, Nathaniel W; Golin-Bisello, Franca; Gao, Yang; Blair, Ian A; Freeman, Bruce A; Wendell, Stacy Gelhaus

    2015-06-05

    Bioactive lipids govern cellular homeostasis and pathogenic inflammatory processes. Current dogma holds that bioactive lipids, such as prostaglandins and lipoxins, are inactivated by 15-hydroxyprostaglandin dehydrogenase (15PGDH). In contrast, the present results reveal that catabolic "inactivation" of hydroxylated polyunsaturated fatty acids (PUFAs) yields electrophilic α,β-unsaturated ketone derivatives. These endogenously produced species are chemically reactive signaling mediators that induce tissue protective events. Electrophilic fatty acids diversify the proteome through post-translational alkylation of nucleophilic cysteines in key transcriptional regulatory proteins and enzymes that govern cellular metabolic and inflammatory homeostasis. 15PGDH regulates these processes as it is responsible for the formation of numerous electrophilic fatty acids including the arachidonic acid metabolite, 15-oxoeicosatetraenoic acid (15-oxoETE). Herein, the role of 15-oxoETE in regulating signaling responses is reported. In cell cultures, 15-oxoETE activates Nrf2-regulated antioxidant responses (AR) and inhibits NF-κB-mediated pro-inflammatory responses via IKKβ inhibition. Inhibition of glutathione S-transferases using ethacrynic acid incrementally increased the signaling capacity of 15-oxoETE by decreasing 15-oxoETE-GSH adduct formation. This work demonstrates that 15PGDH plays a role in the regulation of cell and tissue homeostasis via the production of electrophilic fatty acid signaling mediators.

  20. NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp. PCC7120.

    PubMed

    Sánchez-Riego, Ana M; Mata-Cabana, Alejandro; Galmozzi, Carla V; Florencio, Francisco J

    2016-01-01

    NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of the 2-Cys peroxiredoxin (2-Cys Prx) as well as through other functions related to redox enzyme regulation. In cyanobacteria, the Anabaena NTRC has been characterized in vitro, however, nothing was known about its in vivo function. In order to study that, we have generated the first knockout mutant strain (ΔntrC), apart from the previously described in Arabidopsis. Detailed characterization of this strain reveals a differential sensitivity to oxidative stress treatments with respect to the wild-type Anabaena strain, including a higher level of ROS (reactive oxygen species) in normal growth conditions. In the mutant strain, different oxidative stress treatments such as hydrogen peroxide, methyl-viologen or high light irradiance provoke an increase in the expression of genes related to ROS detoxification, including AnNTRC and peroxiredoxin genes, with a concomitant increase in the amount of AnNTRC and 2-Cys Prx. Moreover, the role of AnNTRC in the antioxidant response is confirmed by the observation of a pronounced overoxidation of the 2-Cys Prx and a time-delay recovery of the reduced form of this protein upon oxidative stress treatments. Our results suggest the participation of this enzyme in the peroxide detoxification in Anabaena. In addition, we describe the role of Anabaena NTRC in thermotolerance, by the appearance of high molecular mass AnNTRC complexes, showing that the mutant strain is more sensitive to high temperature treatments.

  1. Resveratrol decreases fructose-induced oxidative stress, mediated by NADPH oxidase via an AMPK-dependent mechanism

    PubMed Central

    Cheng, Pei-Wen; Ho, Wen-Yu; Su, Yu-Ting; Lu, Pei-Jung; Chen, Bo-Zone; Cheng, Wen-Han; Lu, Wen-Hsien; Sun, Gwo-Ching; Yeh, Tung-Chen; Hsiao, Michael; Tseng, Ching-Jiunn

    2014-01-01

    Background and Purpose Oxidative stress is an important pathogenic factor in the development of hypertension. Resveratrol, the main antioxidant in red wine, improves NO bioavailability and prevents cardiovascular disease. The aim of this study was to examine whether resveratrol decreases the generation of reactive oxygen species (ROS), thereby reducing BP in rats with fructose-induced hypertension. Experimental Approach Rats were fed 10% fructose with or without resveratrol (10 mg·kg−1·day−1) for 1 week or for 4 weeks with resveratrol treatment beginning at week 2; systolic BP (SBP) was measured by tail-cuff method. Endogenous in vivo O2− production in the nucleus tractus solitarii (NTS) was determined with dihydroethidium. Real-time PCR and immunoblotting analyses were used to quantify RNA and protein expression levels. Key Results In fructose-fed rats, ROS levels in the NTS were higher, whereas the NO level was significantly decreased. Also, RNA and protein levels of NADPH oxidase subunits (p67, p22-phox) were elevated, superoxide dismutase 2 (SOD2) reduced and AMP-activated PK (AMPK) T172 phosphorylation levels in the NTS were lower in fructose-fed rats. Treatment with the AMPK activator resveratrol decreased levels of NADPH oxidase subunits and ROS, and increased NO and SOD2 levels in the NTS of fructose-fed rats. Administration of resveratrol, in combination with fructose at week 0 and later at week 2, significantly reduced the SBP of fructose-fed rats. Conclusions and Implications Collectively, resveratrol decreased BP through the phosphorylation of AMPK, Akt and neuronal NOS in fructose-fed rats. These novel findings suggest that resveratrol may be a potential pharmacological candidate for the treatment of hypertension. PMID:24547812

  2. NADPH OXIDASE 4 MEDIATES TGF-β-INDUCED SMOOTH MUSCLE α-ACTIN VIA p38MAPK AND SRF

    PubMed Central

    Martin-Garrido, Abel; Brown, David I.; Lyle, Alicia N.; Dikalova, Anna; Seidel-Rogol, Bonnie; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K.

    2010-01-01

    In contrast to other cell types, vascular smooth muscle cells modify their phenotype in response to external signals. NADPH oxidase 4 (Nox4) is critical for maintenance of smooth muscle gene expression; however, the underlying mechanisms are incompletely characterized. Using smooth muscle α-actin (SMA) as a prototypical smooth muscle gene and transforming growth factor-β (TGF-β) as a differentiating agent, we examined Nox4-dependent signaling. TGF-β increases Nox4 expression and activity in human aortic smooth muscle cells (HASMC). Transfection of HASMC with siRNA against Nox4 (siNox4) abolishes TGF-β-induced SMA expression and stress fiber formation. siNox4 also significantly inhibits TGF-β-stimulated p38MAPK phosphorylation, as well as that of its substrate, mitogen-activated protein kinase-activated protein kinase-2 (MK-2). Moreover, the p38MAPK inhibitor SB-203580 nearly completely blocks the SMA increase induced by TGF-β. Inhibition of either p38MAPK or NADPH oxidase-derived reactive oxygen species impairs the TGF-β-induced phosphorylation of Ser103 on serum response factor (SRF) and reduces its transcriptional activity. Binding of SRF to myocardin-related transcription factor (MRTF) is also necessary, because downregulation of MRTF by siRNA abolishes TGF-β-induced SMA expression. Taken together, these data suggest that Nox4 regulates SMA expression via activation of a p38MAPK/SRF/MRTF pathway in response to TGF-β. PMID:21074607

  3. NAD(P)H oxidase-derived peroxide mediates elevated basal and impaired flow-induced NO production in SHR mesenteric arteries in vivo.

    PubMed

    Zhou, Xiaosun; Bohlen, H Glenn; Miller, Steven J; Unthank, Joseph L

    2008-09-01

    Nitric oxide (NO) and reactive oxygen species (ROS) have fundamentally important roles in the regulation of vascular tone and remodeling. Although arterial disease and endothelial dysfunction alter NO and ROS levels to impact vasodilation and vascular structure, direct measurements of these reactive species under in vivo conditions with flow alterations are unavailable. In this study, in vivo measurements of NO and H2O2 were made on mesenteric arteries to determine whether antioxidant therapies could restore normal NO production in spontaneously hypertensive rats (SHR). Flow was altered from approximately 50-200% of control in anesthetized Wistar-Kyoto rats (WKY) and SHR by selective placement of microvascular clamps on adjacent arteries while NO and H2O2 were directly measured with microelectrodes. Relative to WKY, SHR had significantly increased baseline NO and H2O2 concentrations (2,572 +/- 241 vs. 1,059 +/- 160 nM, P < 0.01; and 26 +/- 7 vs. 7 +/- 1 microM, P < 0.05, respectively). With flow elevation, H2O2 but not NO increased in SHR; NO but not H2O2 was elevated in WKY. Apocynin and polyethylene-glycolated catalase decreased baseline SHR NO and H2O2 to WKY levels and restored flow-mediated NO production. Suppression of NAD(P)H oxidase with gp91ds-tat decreased SHR H2O2 to WKY levels. Addition of topical H2O2 to increase peroxide to the basal concentration measured in SHR elevated WKY NO to levels observed in SHR. The results support the hypothesis that increased vascular peroxide in SHR is primarily derived from NAD(P)H oxidase and increases NO concentration to levels that cannot be further elevated with increased flow. Short-term and even acute administration of antioxidants are able to restore normal flow-mediated NO signaling in young SHR.

  4. NADPH-cytochrome P450 reductase-mediated denitration reaction of 2,4,6-trinitrotoluene to yield nitrite in mammals.

    PubMed

    Shinkai, Yasuhiro; Nishihara, Yuya; Amamiya, Masahiro; Wakayama, Toshihiko; Li, Song; Kikuchi, Tomohiro; Nakai, Yumi; Shimojo, Nobuhiro; Kumagai, Yoshito

    2016-02-01

    While the biodegradation of 2,4,6-trinitrotoluene (TNT) via the release of nitrite is well established, mechanistic details of the reaction in mammals are unknown. To address this issue, we attempted to identify the enzyme from rat liver responsible for the production of nitrite from TNT. A NADPH-cytochrome P450 reductase (P450R) was isolated and identified from rat liver microsomes as the enzyme responsible for not only the release of nitrite from TNT but also formation of superoxide and 4-hydroxyamino-2,6-dinitrotoluene (4-HADNT) under aerobic conditions. In this context, reactive oxygen species generated during P450R-catalyzed TNT reduction were found to be, at least in part, a mediator for the production of 4-HADNT from TNT via formation of 4-nitroso-2,6-dinitrotoluene. P450R did not catalyze the formation of the hydride-Meisenheimer complex (H(-)-TNT) that is thought to be an intermediate for nitrite release from TNT. Furthermore, in a time-course experiment, 4-HADNT formation reached a plateau level and then declined during the reaction between TNT and P450R with NADPH, while the release of nitrite was subjected to a lag period. Notably, the produced 4-HADNT can react with the parent compound TNT to produce nitrite and dimerized products via formation of a Janovsky complex. Our results demonstrate for the first time that P450R-mediated release of nitrite from TNT results from the process of chemical interaction of TNT and its 4-electron reduction metabolite 4-HADNT. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. PCR-mediated recombination of the amplification products of the Hibiscus tiliaceus cytosolic glyceraldehyde-3-phosphate dehydrogenase gene.

    PubMed

    Wu, Linghui; Tang, Tian; Zhou, Renchao; Shi, Suhua

    2007-03-31

    PCR-mediated recombination describes the process of in vitro chimera formation from related template sequences present in a single PCR amplification. The high levels of genetic redundancy in eukaryotic genomes should make recombination artifacts occur readily. However, few evolutionary biologists adequately consider this phenomenon when studying gene lineages. The cytosolic glyceraldehyde-3-phosphate dehydrogenase gene (GapC), which encodes a NADP-dependent nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase in the cytosol, is a classical low-copy nuclear gene marker and is commonly used in molecular evolutionary studies. Here, we report on the occurrence of PCR-mediated recombination in the GapC gene family of Hibiscus tiliaceus. The study suggests that recombinant areas appear to be correlated with DNA template secondary structures. Our observations highlight that recombination artifacts should be considered when studying specific and allelic phylogenies. The authors suggest that nested PCR be used to suppress PCR-mediated recombination.

  6. Mitochondria contribute to NADPH generation in mouse rod photoreceptors.

    PubMed

    Adler, Leopold; Chen, Chunhe; Koutalos, Yiannis

    2014-01-17

    NADPH is the primary source of reducing equivalents in the cytosol. Its major source is considered to be the pentose phosphate pathway, but cytosolic NADP(+)-dependent dehydrogenases using intermediates of mitochondrial pathways for substrates have been known to contribute. Photoreceptors, a nonproliferating cell type, provide a unique model for measuring the functional utilization of NADPH at the single cell level. In these cells, NADPH availability can be monitored from the reduction of the all-trans-retinal generated by light to all-trans-retinol using single cell fluorescence imaging. We have used mouse rod photoreceptors to investigate the generation of NADPH by different metabolic pathways. In the absence of extracellular metabolic substrates, NADPH generation was severely compromised. Extracellular glutamine supported NADPH generation to levels comparable to those of glucose, but pyruvate and lactate were relatively ineffective. At low extracellular substrate concentrations, partial inhibition of ATP synthesis lowered, whereas suppression of ATP consumption augmented NADPH availability. Blocking pyruvate transport into mitochondria decreased NADPH availability, and addition of glutamine restored it. Our findings demonstrate that in a nonproliferating cell type, mitochondria-linked pathways can generate substantial amounts of NADPH and do so even when the pentose phosphate pathway is operational. Competing demands for ATP and NADPH at low metabolic substrate concentrations indicate a vulnerability to nutrient shortages. By supporting substantial NADPH generation, mitochondria provide alternative metabolic pathways that may support cell function and maintain viability under transient nutrient shortages. Such pathways may play an important role in protecting against retinal degeneration.

  7. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67phox

    NASA Astrophysics Data System (ADS)

    Bechor, Edna; Dahan, Iris; Fradin, Tanya; Berdichevsky, Yevgeny; Zahavi, Anat; Rafalowski, Meirav; Federman-Gross, Aya; Pick, Edgar

    2015-02-01

    The superoxide (O2.-)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b558 (a heterodimer of Nox2 and p22phox), and four cytosolic components, p47phox, p67phox, p40phox, and Rac. The catalytic component, responsible for O2.- generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67phox. Using a peptide-protein binding assay, we found that Nox2 peptides containing a 369CysGlyCys371 triad (CGC) bound p67phox with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67phox only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67phox via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: 1. Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; 2. Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; 3. Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; 4. Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; 5. A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; 6. p67phox, in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67phox to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.

  8. Endothelial NADPH oxidase 4 mediates vascular endothelial growth factor receptor 2-induced intravitreal neovascularization in a rat model of retinopathy of prematurity.

    PubMed

    Wang, Haibo; Yang, Zhihong; Jiang, Yanchao; Hartnett, M Elizabeth

    2014-01-01

    NADPH oxidase-generated reactive oxygen species (ROS) are implicated in angiogenesis. Isoforms of NADPH oxidase NOX1, NOX2, and NOX4 are reported to be expressed in endothelial cells (ECs). Of these, NOX1 and NOX2 have been reported to contribute to intravitreal neovascularization (IVNV) in oxygen-induced retinopathy (OIR) models. In this study, we tested the hypothesis that the isoform NOX4 in ECs contributed to vascular endothelial growth factor (VEGF)-induced angiogenesis and IVNV. Isoforms of NADPH oxidase MRNA were measured in several types of cultured vascular ecs: human retinal microvascular ECs (hRMVECs), choroidal ECs (CECs), and human umbilical vascular ECs (HUVECs) using real-time PCR. Newborn rat pups and dams were placed into an OIR model that cycled oxygen concentration between 50% and 10% every 24 h for 14 days, and then were placed in room air (RA) for an additional 4 days (rat OIR model). NOX4 expression in retinal lysates from the RA-raised pups at postnatal day 0 (P0), P14, and P18 was determined with western blots. STAT3 activation was determined as the ratio of phosphorylated STAT3 to total STAT3 with western blot analysis of retinal lysates from pups raised in RA or from the rat OIR model at P18. Semiquantitative assessment of the density of NOX4 colabeling with lectin-stained retinal ECs was determined by immunolabeling of retinal cryosections from P18 pups in OIR or in RA. In hRMVECs transfected with NOX4 siRNA and treated with VEGF or control, 1) ROS generation was measured using the 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester fluorescence assay and 2) phosphorylated VEGF receptor 2 and STAT3, and total VEGFR2 and STAT3 were measured in western blot analyses. VEGF-stimulated hRMVEC proliferation was measured following transfection with NOX4 siRNA or STAT3 siRNA, or respective controls. NOX4 was the most prevalent isoform of NADPH oxidase in vascular ECs. NOX4 expression in retinal lysates was

  9. Effects of various compounds on lipid peroxidation mediated by detergent-solubilized rat liver NADPH-cytochrome C reductase.

    PubMed

    Kamataki, T; Sugita, O; Naminohira, S; Kitagawa, H

    1978-12-01

    A reconstituted lipid peroxidation system containing NADPH-cytochrome c reductase isolated from detergent-solubilized rat liver microsomes was used to determine the effects of several compounds, including drugs, on the lipid peroxidation activity. EDTA and ferrous ion were essential requirements for reconstitution of the activity. The addition of 1,10-phenanthroline to the system containing both EDTA and ferrous ion further enhanced the activity. Pyrocatecol, thymol, p-aminophenol, imipramine, p-chloromercuribenzoate (PCMB) and alpha-tocopherol exhibited strong inhibition, aniline, N-monomethylaniline, aminopyrine, benzphetamine, SKF 525-A and NADP exhibited moderate inhibition, and phenol, benzoic acid, acetanilide and nicotinamide exhibited less or no inhibition at the concentrations lower than 1000 micron M. Metal ions such as Hg+, Hg2+, Co2+, Cu2+, Mn2+ and U6+ inhibited lipid peroxidation strongly. In addition, Cd2+, St2+ and Ca2+ exhibited less potent to moderate inhibition, and Ba2+ and Mg2+ were without effects on the activity. Among sulfhydryl compounds tested, dithiothreitol inhibited lipid peroxidation to a greater extent than did the other three compounds, glutathione, cysteine and mercaptoethanol.

  10. NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis

    PubMed Central

    Zhang, Min; Brewer, Alison C.; Schröder, Katrin; Santos, Celio X. C.; Grieve, David J.; Wang, Minshu; Anilkumar, Narayana; Yu, Bin; Dong, Xuebin; Walker, Simon J.; Brandes, Ralf P.; Shah, Ajay M.

    2010-01-01

    Cardiac failure occurs when the heart fails to adapt to chronic stresses. Reactive oxygen species (ROS)-dependent signaling is implicated in cardiac stress responses, but the role of different ROS sources remains unclear. Here we report that NADPH oxidase-4 (Nox4) facilitates cardiac adaptation to chronic stress. Unlike other Nox proteins, Nox4 activity is regulated mainly by its expression level, which increases in cardiomyocytes under stresses such as pressure overload or hypoxia. To investigate the functional role of Nox4 during the cardiac response to stress, we generated mice with a genetic deletion of Nox4 or a cardiomyocyte-targeted overexpression of Nox4. Basal cardiac function was normal in both models, but Nox4-null animals developed exaggerated contractile dysfunction, hypertrophy, and cardiac dilatation during exposure to chronic overload whereas Nox4-transgenic mice were protected. Investigation of mechanisms underlying this protective effect revealed a significant Nox4-dependent preservation of myocardial capillary density after pressure overload. Nox4 enhanced stress-induced activation of cardiomyocyte hypoxia inducible factor 1 and the release of vascular endothelial growth factor, resulting in increased paracrine angiogenic activity. These data indicate that cardiomyocyte Nox4 is a unique inducible regulator of myocardial angiogenesis, a key determinant of cardiac adaptation to overload stress. Our results also have wider relevance to the use of nonspecific antioxidant approaches in cardiac disease and may provide an explanation for the failure of such strategies in many settings. PMID:20921387

  11. Chloroplastic NADPH oxidase-like activity-mediated perpetual hydrogen peroxide generation in the chloroplast induces apoptotic-like death of Brassica napus leaf protoplasts.

    PubMed

    Tewari, Rajesh Kumar; Watanabe, Daisuke; Watanabe, Masami

    2012-01-01

    Despite extensive research over the past years, regeneration from protoplasts has been observed in only a limited number of plant species. Protoplasts undergo complex metabolic modification during their isolation. The isolation of protoplasts induces reactive oxygen species (ROS) generation in Brassica napus leaf protoplasts. The present study was conducted to provide new insight into the mechanism of ROS generation in B. napus leaf protoplasts. In vivo localization of H(2)O(2) and enzymes involved in H(2)O(2) generation and detoxification, molecular antioxidant-ascorbate and its redox state and lipid peroxidation were investigated in the leaf and isolated protoplasts. Incubating leaf strips in the macerating enzyme (ME) for different duration (3, 6, and 12 h) induced accumulation of H(2)O(2) and malondialdehyde (lipid peroxidation, an index of membrane damage) in protoplasts. The level of H(2)O(2) was highest just after protoplast isolation and subsequently decreased during culture. Superoxide generating NADPH oxidase (NOX)-like activity was enhanced, whereas superoxide dismutase (SOD) and ascorbate peroxidase (APX) decreased in the protoplasts compared to leaves. Diaminobenzidine peroxidase (DAB-POD) activity was also lower in the protoplasts compared to leaves. Total ascorbate content, ascorbate to dehydroascorbate ratio (redox state), were enhanced in the protoplasts compared to leaves. Higher activity of NOX-like enzyme and weakening in the activity of antioxidant enzymes (SOD, APX, and DAB-POD) in protoplasts resulted in excessive accumulation of H(2)O(2) in chloroplasts of protoplasts. Chloroplastic NADPH oxidase-like activity mediated perpetual H(2)O(2) generation probably induced apoptotic-like cell death of B. napus leaf protoplasts as indicated by parallel DNA laddering and decreased mitochondrial membrane potential.

  12. MxaY regulates the lanthanide-mediated methanol dehydrogenase switch in Methylomicrobium buryatense

    PubMed Central

    Chu, Frances; Beck, David A.C.

    2016-01-01

    Many methylotrophs, microorganisms that consume carbon compounds lacking carbon–carbon bonds, use two different systems to oxidize methanol for energy production and biomass accumulation. The MxaFI methanol dehydrogenase (MDH) contains calcium in its active site, while the XoxF enzyme contains a lanthanide in its active site. The genes encoding the MDH enzymes are differentially regulated by the presence of lanthanides. In this study, we found that the histidine kinase MxaY controls the lanthanide-mediated switch in Methylomicrobium buryatense 5GB1C. MxaY controls the transcription of genes encoding MxaFI and XoxF at least partially by controlling the transcript levels of the orphan response regulator MxaB. We identify a constitutively active version of MxaY, and identify the mutated residue that may be involved in lanthanide sensing. Lastly, we find evidence to suggest that tight control of active MDH production is required for wild-type growth rates. PMID:27651996

  13. E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis.

    PubMed

    Goguet-Rubio, Perrine; Seyran, Berfin; Gayte, Laurie; Bernex, Florence; Sutter, Anne; Delpech, Hélène; Linares, Laetitia Karine; Riscal, Romain; Repond, Cendrine; Rodier, Geneviève; Kirsh, Olivier; Touhami, Jawida; Noel, Jean; Vincent, Charles; Pirot, Nelly; Pavlovic, Guillaume; Herault, Yann; Sitbon, Marc; Pellerin, Luc; Sardet, Claude; Lacroix, Matthieu; Le Cam, Laurent

    2016-09-27

    The multifunctional protein E4 transcription factor 1 (E4F1) is an essential regulator of epidermal stem cell (ESC) maintenance. Here, we found that E4F1 transcriptionally regulates a metabolic program involved in pyruvate metabolism that is required to maintain skin homeostasis. E4F1 deficiency in basal keratinocytes resulted in deregulated expression of dihydrolipoamide acetyltransferase (Dlat), a gene encoding the E2 subunit of the mitochondrial pyruvate dehydrogenase (PDH) complex. Accordingly, E4f1 knock-out (KO) keratinocytes exhibited impaired PDH activity and a redirection of the glycolytic flux toward lactate production. The metabolic reprogramming of E4f1 KO keratinocytes associated with remodeling of their microenvironment and alterations of the basement membrane, led to ESC mislocalization and exhaustion of the ESC pool. ShRNA-mediated depletion of Dlat in primary keratinocytes recapitulated defects observed upon E4f1 inactivation, including increased lactate secretion, enhanced activity of extracellular matrix remodeling enzymes, and impaired clonogenic potential. Altogether, our data reveal a central role for Dlat in the metabolic program regulated by E4F1 in basal keratinocytes and illustrate the importance of PDH activity in skin homeostasis.

  14. MxaY regulates the lanthanide-mediated methanol dehydrogenase switch in Methylomicrobium buryatense

    DOE PAGES

    Chu, Frances; Beck, David A. C.; Lidstrom, Mary E.

    2016-09-07

    Many methylotrophs, microorganisms that consume carbon compounds lacking carbon–carbon bonds, use two different systems to oxidize methanol for energy production and biomass accumulation. The MxaFI methanol dehydrogenase (MDH) contains calcium in its active site, while the XoxF enzyme contains a lanthanide in its active site. The genes encoding the MDH enzymes are differentially regulated by the presence of lanthanides. In this study, we found that the histidine kinase MxaY controls the lanthanide-mediated switch in Methylomicrobium buryatense 5GB1C. MxaY controls the transcription of genes encoding MxaFI and XoxF at least partially by controlling the transcript levels of the orphan response regulatormore » MxaB. We identify a constitutively active version of MxaY, and identify the mutated residue that may be involved in lanthanide sensing. Finally, we find evidence to suggest that tight control of active MDH production is required for wild-type growth rates.« less

  15. Determination of beta-hydroxyacyl CoA-dehydrogenase activity in meat by electrophoretically mediated microanalysis.

    PubMed

    Vallejo-Cordoba, Belinda; Mazorra-Manzano, Miguel A; González-Córdova, Aarón F

    2003-01-01

    The combined use of an in-tube enzyme assay and capillary electrophoresis for determining beta-hydroxyacyl CoA-dehydrogenase (beta-HADH) activity in meat was investigated. Beta-HADH is a significant mitochondrial enzyme in food muscle; thus, the determination of its activity is important in food analysis. The enzymatic assay and the separation of the reaction products were carried out by electrophoretically mediated microanalysis (EMMA) using a plug-plug reaction mode at variable potential. For the quantification of beta-HADH activity, the rate of conversion of reduced beta-nicotinamide adenine dinucleotide (NADH) to beta-nicotinamide adenine dinucleotide (NAD+) was calculated by determining NAD+ at 260 nm. A calibration curve for NAD+ concentration versus normalized areas showed a highly significant (p < 0.001) linear relationship (R2 = 0.993). Accurate quantification of beta-HADH activity was achieved since on-line monitoring allowed us to account for the NAD+ produced from NADH degradation by applying a correction factor. An average reaction time of 0.66 +/- 0.06 sec was determined for a protein concentration in the range of 0.1-0.5 mg protein/mL. The assay was reproducible since coefficients of variation of less than 6.2% were calculated for triplicate analyses.

  16. E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis

    PubMed Central

    Goguet-Rubio, Perrine; Seyran, Berfin; Gayte, Laurie; Sutter, Anne; Delpech, Hélène; Linares, Laetitia Karine; Riscal, Romain; Repond, Cendrine; Rodier, Geneviève; Touhami, Jawida; Noel, Jean; Vincent, Charles; Pirot, Nelly; Herault, Yann; Pellerin, Luc; Sardet, Claude; Lacroix, Matthieu; Le Cam, Laurent

    2016-01-01

    The multifunctional protein E4 transcription factor 1 (E4F1) is an essential regulator of epidermal stem cell (ESC) maintenance. Here, we found that E4F1 transcriptionally regulates a metabolic program involved in pyruvate metabolism that is required to maintain skin homeostasis. E4F1 deficiency in basal keratinocytes resulted in deregulated expression of dihydrolipoamide acetyltransferase (Dlat), a gene encoding the E2 subunit of the mitochondrial pyruvate dehydrogenase (PDH) complex. Accordingly, E4f1 knock-out (KO) keratinocytes exhibited impaired PDH activity and a redirection of the glycolytic flux toward lactate production. The metabolic reprogramming of E4f1 KO keratinocytes associated with remodeling of their microenvironment and alterations of the basement membrane, led to ESC mislocalization and exhaustion of the ESC pool. ShRNA-mediated depletion of Dlat in primary keratinocytes recapitulated defects observed upon E4f1 inactivation, including increased lactate secretion, enhanced activity of extracellular matrix remodeling enzymes, and impaired clonogenic potential. Altogether, our data reveal a central role for Dlat in the metabolic program regulated by E4F1 in basal keratinocytes and illustrate the importance of PDH activity in skin homeostasis. PMID:27621431

  17. Serratia marcescens Quinoprotein Glucose Dehydrogenase Activity Mediates Medium Acidification and Inhibition of Prodigiosin Production by Glucose

    PubMed Central

    Fender, James E.; Bender, Cody M.; Stella, Nicholas A.; Lahr, Roni M.; Kalivoda, Eric J.

    2012-01-01

    Serratia marcescens is a model organism for the study of secondary metabolites. The biologically active pigment prodigiosin (2-methyl-3-pentyl-6-methoxyprodiginine), like many other secondary metabolites, is inhibited by growth in glucose-rich medium. Whereas previous studies indicated that this inhibitory effect was pH dependent and did not require cyclic AMP (cAMP), there is no information on the genes involved in mediating this phenomenon. Here we used transposon mutagenesis to identify genes involved in the inhibition of prodigiosin by glucose. Multiple genetic loci involved in quinoprotein glucose dehydrogenase (GDH) activity were found to be required for glucose inhibition of prodigiosin production, including pyrroloquinoline quinone and ubiquinone biosynthetic genes. Upon assessing whether the enzymatic products of GDH activity were involved in the inhibitory effect, we observed that d-glucono-1,5-lactone and d-gluconic acid, but not d-gluconate, were able to inhibit prodigiosin production. These data support a model in which the oxidation of d-glucose by quinoprotein GDH initiates a reduction in pH that inhibits prodigiosin production through transcriptional control of the prodigiosin biosynthetic operon, providing new insight into the genetic pathways that control prodigiosin production. Strains generated in this report may be useful in large-scale production of secondary metabolites. PMID:22752173

  18. A novel role of microglial NADPH oxidase in mediating extra-synaptic function of norepinephrine in regulating brain immune homeostasis

    PubMed Central

    Jiang, Lulu; Chen, Shih-Heng; Chu, Chun-Hsien; Wang, Shi-Jun; Oyarzabal, Esteban; Wilson, Belinda; Sanders, Virginia; Xie, Keqin; Wang, Qingshan; Hong, Jau-Shyong

    2015-01-01

    Although the peripheral anti-inflammatory effect of norepinephrine (NE) is well-documented, the mechanism by which this neurotransmitter functions as an anti-inflammatory/neuroprotective agent in the central nervous system is unclear. This study aimed to determine the anti-inflammatory/neuroprotective effects and underlying mechanisms of NE in inflammation-based dopaminergic neurotoxicity models. In mice, NE-depleting toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) was injected at 6 months of lipopolysaccharide (LPS)-induced neuroinflammation. We found that NE depletion enhanced LPS-induced dopaminergic neuron loss in the substantia nigra. This piece of in vivo data prompted us to conduct a series of studies in an effort to elucidate the mechanism as to how NE affects dopamine neuron survival by using primary midbrain neuron-glia cultures. Results showed that sub-micromolar concentrations of NE dose-dependently protected dopaminergic neurons from LPS-induced neurotoxicity by inhibiting microglia activation and subsequent release of pro-inflammatory factors. However, NE-elicited neuroprotection was not totally abolished in cultures from β2-adrenergic receptor (β2-AR) deficient mice, suggesting that novel pathways other than β2-AR are involved. To this end, we found that sub-micromolar NE dose-dependently inhibited NADPH oxidase (NOX2)-generated superoxide, which contributes to the anti-inflammatory and neuroprotective effects of NE. This novel mechanism was indeed adrenergic receptors independent since both (+) and (−) optic isomers of NE displayed the same potency. We further demonstrated that NE inhibited LPS-induced NOX2 activation by blocking the translocation of its cytosolic subunit to plasma membranes. In summary, we revealed a potential physiological role of NE in maintaining brain immune homeostasis and protecting neurons via a novel mechanism. PMID:25740080

  19. Amyloid β-induced astrogliosis is mediated by β1-integrin via NADPH oxidase 2 in Alzheimer's disease.

    PubMed

    Wyssenbach, Ane; Quintela, Tania; Llavero, Francisco; Zugaza, Jose L; Matute, Carlos; Alberdi, Elena

    2016-10-05

    Astrogliosis is a hallmark of Alzheimer's disease (AD) and may constitute a primary pathogenic component of that disorder. Elucidation of signaling cascades inducing astrogliosis should help characterizing the function of astrocytes and identifying novel molecular targets to modulate AD progression. Here, we describe a novel mechanism by which soluble amyloid-β modulates β1-integrin activity and triggers NADPH oxidase (NOX)-dependent astrogliosis in vitro and in vivo. Amyloid-β oligomers activate a PI3K/classical PKC/Rac1/NOX pathway which is initiated by β1-integrin in cultured astrocytes. This mechanism promotes β1-integrin maturation, upregulation of NOX2 and of the glial fibrillary acidic protein (GFAP) in astrocytes in vitro and in hippocampal astrocytes in vivo. Notably, immunochemical analysis of the hippocampi of a triple-transgenic AD mouse model shows increased levels of GFAP, NOX2, and β1-integrin in reactive astrocytes which correlates with the amyloid β-oligomer load. Finally, analysis of these proteins in postmortem frontal cortex from different stages of AD (II to V/VI) and matched controls confirmed elevated expression of NOX2 and β1-integrin in that cortical region and specifically in reactive astrocytes, which was most prominent at advanced AD stages. Importantly, protein levels of NOX2 and β1-integrin were significantly associated with increased amyloid-β load in human samples. These data strongly suggest that astrogliosis in AD is caused by direct interaction of amyloid β oligomers with β1-integrin which in turn leads to enhancing β1-integrin and NOX2 activity via NOX-dependent mechanisms. These observations may be relevant to AD pathophysiology.

  20. Rhinovirus-Induced Barrier Dysfunction in Polarized Airway Epithelial Cells Is Mediated by NADPH Oxidase 1▿

    PubMed Central

    Comstock, Adam T.; Ganesan, Shyamala; Chattoraj, Asamanja; Faris, Andrea N.; Margolis, Benjamin L.; Hershenson, Marc B.; Sajjan, Umadevi S.

    2011-01-01

    Previously, we showed that rhinovirus (RV), which is responsible for the majority of common colds, disrupts airway epithelial barrier function, as evidenced by reduced transepithelial resistance (RT), dissociation of zona occludins 1 (ZO-1) from the tight junction complex, and bacterial transmigration across polarized cells. We also showed that RV replication is required for barrier function disruption. However, the underlying biochemical mechanisms are not known. In the present study, we found that a double-stranded RNA (dsRNA) mimetic, poly(I:C), induced tight junction breakdown and facilitated bacterial transmigration across polarized airway epithelial cells, similar to the case with RV. We also found that RV and poly(I:C) each stimulated Rac1 activation, reactive oxygen species (ROS) generation, and Rac1-dependent NADPH oxidase 1 (NOX1) activity. Inhibitors of Rac1 (NSC23766), NOX (diphenylene iodonium), and NOX1 (small interfering RNA [siRNA]) each blocked the disruptive effects of RV and poly(I:C) on RT, as well as the dissociation of ZO-1 and occludin from the tight junction complex. Finally, we found that Toll-like receptor 3 (TLR3) is not required for either poly(I:C)- or RV-induced reductions in RT. Based on these results, we concluded that Rac1-dependent NOX1 activity is required for RV- or poly(I:C)-induced ROS generation, which in turn disrupts the barrier function of polarized airway epithelia. Furthermore, these data suggest that dsRNA generated during RV replication is sufficient to disrupt barrier function. PMID:21507984

  1. Intermittent Hypoxia-Induced Parvalbumin-Immunoreactive Interneurons Loss and Neurobehavioral Impairment is Mediated by NADPH-Oxidase-2.

    PubMed

    Yuan, Liang; Wu, Jing; Liu, Jiang; Li, Guowei; Liang, Dong

    2015-06-01

    Obstructive sleep apnea usually contribute to psychiatric diseases and cognitive impairments in adults. Loss of parvalbumin (PV)-immunoreactive interneurons (PV-IN) in the brain cortex is an important feature of psychiatric diseases, such as schizophrenia. Here we investigate the causal contribution of oxidative stress in the brain cortex to neuropathological alterations in a mouse model of sleep apnea. Wild-type (WT) and the NADPH-oxidase-2 (gp91-phox/NOX2) knock-out adult male C57BL/6J mice were exposed to intermittent hypoxia (IH) or standard room air in the same chamber. In vivo we determined the impact (1) of IH exposures on NOX2 expression, (2) of genetic gp91-phox/NOX2 knock-out and (3) of pharmacological NOX2 inhibition on IH-induced neuropathological alterations in adult mice. Endpoints were oxidative stress, PV-IN and neurobehavioral alterations. The results showed IH exposures increased NOX2 expression in the prefrontal cortex of WT mice, which was accompanied with elevations of indirect markers of oxidative stress (HNE, HIF-1α, 8-OHDG). WT mice showed loss of PV-IN in the prefrontal cortex and increased locomotion activity and anxiety levels after exposed to IH, while no change emerged in NOX2 knock-out mice. Treatment of WT mice with the antioxidant/NOX inhibitor apocynin prevented the neuropathological and neurobehavioral alterations induced by IH exposures. Our data suggest that NOX2-derived oxidative stress is involved in the loss of PV-IN in the prefrontal cortex and development of neurobehavioral alterations for adult mice exposed to IH. These results provide a molecular mechanism for the coupling between sleep apnea and brain oxidative stress as well as potential new therapeutic avenues.

  2. A novel role of microglial NADPH oxidase in mediating extra-synaptic function of norepinephrine in regulating brain immune homeostasis.

    PubMed

    Jiang, Lulu; Chen, Shih-Heng; Chu, Chun-Hsien; Wang, Shi-Jun; Oyarzabal, Esteban; Wilson, Belinda; Sanders, Virginia; Xie, Keqin; Wang, Qingshan; Hong, Jau-Shyong

    2015-06-01

    Although the peripheral anti-inflammatory effect of norepinephrine (NE) is well documented, the mechanism by which this neurotransmitter functions as an anti-inflammatory/neuroprotective agent in the central nervous system (CNS) is unclear. This article aimed to determine the anti-inflammatory/neuroprotective effects and underlying mechanisms of NE in inflammation-based dopaminergic neurotoxicity models. In mice, NE-depleting toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) was injected at 6 months of lipopolysaccharide (LPS)-induced neuroinflammation. It was found that NE depletion enhanced LPS-induced dopaminergic neuron loss in the substantia nigra. This piece of in vivo data prompted us to conduct a series of studies in an effort to elucidate the mechanism as to how NE affects dopamine neuron survival by using primary midbrain neuron/glia cultures. Results showed that submicromolar concentrations of NE dose-dependently protected dopaminergic neurons from LPS-induced neurotoxicity by inhibiting microglia activation and subsequent release of pro-inflammatory factors. However, NE-elicited neuroprotection was not totally abolished in cultures from β2-adrenergic receptor (β2-AR)-deficient mice, suggesting that novel pathways other than β2-AR are involved. To this end, It was found that submicromolar NE dose-dependently inhibited NADPH oxidase (NOX2)-generated superoxide, which contributes to the anti-inflammatory and neuroprotective effects of NE. This novel mechanism was indeed adrenergic receptors independent since both (+) and (-) optic isomers of NE displayed the same potency. We further demonstrated that NE inhibited LPS-induced NOX2 activation by blocking the translocation of its cytosolic subunit to plasma membranes. In summary, we revealed a potential physiological role of NE in maintaining brain immune homeostasis and protecting neurons via a novel mechanism.

  3. NOX3 NADPH Oxidase Couples Transient Receptor Potential Vanilloid 1 to Signal Transducer and Activator of Transcription 1-Mediated Inflammation and Hearing Loss

    PubMed Central

    Mukherjea, Debashree; Jajoo, Sarvesh; Sheehan, Kelly; Kaur, Tejbeer; Sheth, Sandeep; Bunch, Jennifer; Perro, Christopher; Rybak, Leonard P.

    2011-01-01

    Abstract Transient receptor potential vanilloid 1 (TRPV1) is implicated in cisplatin ototoxicity. Activation of this channel by cisplatin increases reactive oxygen species generation, which contribute to loss of outer hair cells in the cochlea. Knockdown of TRPV1 by short interfering RNA protected against cisplatin ototoxicity. In this study, we examined the mechanism underlying TRPV1-mediated ototoxicity using cultured organ of Corti transformed cells (UB/OC-1) and rats. Trans-tympanic injections of capsaicin produced transient hearing loss within 24 h, which recovered by 72 h. In UB/OC-1 cells, capsaicin increased NOX3 NADPH oxidase activity and activation of signal transducer and activator of transcription 1 (STAT1). Intratympanic administration of capsaicin transiently increased STAT1 activity and expression of downstream proinflammatory molecules. Capsaicin produced a transient increase in CD14-positive inflammatory cells into the cochlea, which mimicked the temporal course of STAT1 activation but did not alter the expression of apoptotic genes or damage to outer hair cells. In addition, trans-tympanic administration of STAT1 short interfering RNA protected against capsaicin-induced hearing loss. These data suggest that activation of TRPV1 mediates temporary hearing loss by initiating an inflammatory process in the cochlea via activation of NOX3 and STAT1. Thus, these proteins represent reasonable targets for ameliorating hearing loss. Antioxid. Redox Signal. 14, 999–1010. PMID:20712533

  4. NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss.

    PubMed

    Mukherjea, Debashree; Jajoo, Sarvesh; Sheehan, Kelly; Kaur, Tejbeer; Sheth, Sandeep; Bunch, Jennifer; Perro, Christopher; Rybak, Leonard P; Ramkumar, Vickram

    2011-03-15

    Transient receptor potential vanilloid 1 (TRPV1) is implicated in cisplatin ototoxicity. Activation of this channel by cisplatin increases reactive oxygen species generation, which contribute to loss of outer hair cells in the cochlea. Knockdown of TRPV1 by short interfering RNA protected against cisplatin ototoxicity. In this study, we examined the mechanism underlying TRPV1-mediated ototoxicity using cultured organ of Corti transformed cells (UB/OC-1) and rats. Trans-tympanic injections of capsaicin produced transient hearing loss within 24 h, which recovered by 72 h. In UB/OC-1 cells, capsaicin increased NOX3 NADPH oxidase activity and activation of signal transducer and activator of transcription 1 (STAT1). Intratympanic administration of capsaicin transiently increased STAT1 activity and expression of downstream proinflammatory molecules. Capsaicin produced a transient increase in CD14-positive inflammatory cells into the cochlea, which mimicked the temporal course of STAT1 activation but did not alter the expression of apoptotic genes or damage to outer hair cells. In addition, trans-tympanic administration of STAT1 short interfering RNA protected against capsaicin-induced hearing loss. These data suggest that activation of TRPV1 mediates temporary hearing loss by initiating an inflammatory process in the cochlea via activation of NOX3 and STAT1. Thus, these proteins represent reasonable targets for ameliorating hearing loss.

  5. Burkholderia pseudomallei Evades Nramp1 (Slc11a1)- and NADPH Oxidase-Mediated Killing in Macrophages and Exhibits Nramp1-Dependent Virulence Gene Expression

    PubMed Central

    Muangsombut, Veerachat; Withatanung, Patoo; Srinon, Varintip; Chantratita, Narisara; Stevens, Mark P.; Blackwell, Jenefer M.; Korbsrisate, Sunee

    2017-01-01

    Bacterial survival in macrophages can be affected by the natural resistance-associated macrophage protein 1 (Nramp1; also known as solute carrier family 11 member a1 or Slc11a1) which localizes to phagosome membranes and transports divalent cations, including iron. Little is known about the role of Nramp1 in Burkholderia infection, in particular whether this differs for pathogenic species like Burkholderia pseudomallei causing melioidosis or non-pathogenic species like Burkholderia thailandensis. Here we show that transfected macrophages stably expressing wild-type Nramp1 (Nramp1+) control the net replication of B. thailandensis, but not B. pseudomallei. Control of B. thailandensis was associated with increased cytokine responses, and could be abrogated by blocking NADPH oxidase-mediated production of reactive oxygen species but not by blocking generation of reactive nitrogen species. The inability of Nramp1+ macrophages to control B. pseudomallei was associated with rapid escape of bacteria from phagosomes, as indicated by decreased co-localization with LAMP1 compared to B. thailandensis. A B. pseudomallei bipB mutant impaired in escape from phagosomes was controlled to a greater extent than the parent strain in Nramp1+ macrophages, but was also attenuated in Nramp1− cells. Consistent with reduced escape from phagosomes, B. thailandensis formed fewer multinucleated giant cells in Nramp1+ macrophages at later time points compared to B. pseudomallei. B. pseudomallei exhibited elevated transcription of virulence-associated genes of Type VI Secretion System cluster 1 (T6SS-1), the Bsa Type III Secretion System (T3SS-3) and the bimA gene required for actin-based motility in Nramp1+ macrophages. Nramp1+ macrophages were found to contain decreased iron levels that may impact on expression of such genes. Our data show that B. pseudomallei is able to evade Nramp1- and NADPH oxidase-mediated killing in macrophages and that expression of virulence-associated genes by

  6. Role of gp91phox-Containing NADPH Oxidase in Mediating the Effect of K Restriction on ROMK Channels and Renal K Excretion

    PubMed Central

    Babilonia, Elisa; Lin, Daohong; Zhang, Yan; Wei, Yuan; Yue, Peng; Wang, Wen-Hui

    2009-01-01

    Previous study has demonstrated that superoxide and the related products are involved in mediating the effect of low K intake on renal K secretion and ROMK channel activity in the cortical collecting duct (CCD). This study investigated the role of gp91phox-containing NADPH oxidase (NOXII) in mediating the effect of low K intake on renal K excretion and ROMK channel activity in gp91(-/-) mice. K depletion increased superoxide levels, phosphorylation of c-Jun, expression of c-Src, and tyrosine phosphorylation of ROMK in renal cortex and outer medulla in wild-type (WT) mice. In contrast, tempol treatment in WT mice abolished whereas deletion of gp91 significantly attenuated the effect of low K intake on superoxide production, c-Jun phosphorylation, c-Src expression, and tyrosine phosphorylation of ROMK. Patch-clamp experiments demonstrated that low K intake decreased mean product of channel number (N) and open probability (P) (NPo) of ROMK channels from 1.1 to 0.4 in the CCD. However, the effect of low K intake on ROMK channel activity was significantly attenuated in the CCD from gp91(-/-) mice and completely abolished by tempol treatment. Immunocytochemical staining also was used to examine the ROMK distribution in WT, gp91(-/-), and WT mice with tempol treatment in response to K restriction. K restriction decreased apical staining of ROMK in WT mice. In contrast, a sharp apical ROMK staining was observed in the tempol-treated WT or gp91(-/-) mice. Metabolic cage study further showed that urinary K loss is significantly higher in gp91(-/-) mice than in WT mice. It is concluded that superoxide anions play a key role in suppressing K secretion during K restriction and that NOXII is involved in mediating the effect of low K intake on renal K secretion and ROMK channel activity. PMID:17538186

  7. Role of gp91phox -containing NADPH oxidase in mediating the effect of K restriction on ROMK channels and renal K excretion.

    PubMed

    Babilonia, Elisa; Lin, Daohong; Zhang, Yan; Wei, Yuan; Yue, Peng; Wang, Wen-Hui

    2007-07-01

    Previous study has demonstrated that superoxide and the related products are involved in mediating the effect of low K intake on renal K secretion and ROMK channel activity in the cortical collecting duct (CCD). This study investigated the role of gp91(phox)-containing NADPH oxidase (NOXII) in mediating the effect of low K intake on renal K excretion and ROMK channel activity in gp91(-/-) mice. K depletion increased superoxide levels, phosphorylation of c-Jun, expression of c-Src, and tyrosine phosphorylation of ROMK in renal cortex and outer medulla in wild-type (WT) mice. In contrast, tempol treatment in WT mice abolished whereas deletion of gp91 significantly attenuated the effect of low K intake on superoxide production, c-Jun phosphorylation, c-Src expression, and tyrosine phosphorylation of ROMK. Patch-clamp experiments demonstrated that low K intake decreased mean product of channel number (N) and open probability (P) (NP(o)) of ROMK channels from 1.1 to 0.4 in the CCD. However, the effect of low K intake on ROMK channel activity was significantly attenuated in the CCD from gp91(-/-) mice and completely abolished by tempol treatment. Immunocytochemical staining also was used to examine the ROMK distribution in WT, gp91(-/-), and WT mice with tempol treatment in response to K restriction. K restriction decreased apical staining of ROMK in WT mice. In contrast, a sharp apical ROMK staining was observed in the tempol-treated WT or gp91(-/-) mice. Metabolic cage study further showed that urinary K loss is significantly higher in gp91(-/-) mice than in WT mice. It is concluded that superoxide anions play a key role in suppressing K secretion during K restriction and that NOXII is involved in mediating the effect of low K intake on renal K secretion and ROMK channel activity.

  8. Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803.

    PubMed

    Choi, Yun-Nam; Park, Jong Moon

    2016-08-01

    This study demonstrates that increased NADPH production can improve biomass and ethanol production in cyanobacteria. We over-expressed the endogenous zwf gene, which encodes glucose-6-phosphate dehydrogenase of pentose phosphate pathway, in the model cyanobacterium Synechocystis sp. PCC 6803. zwf over-expression resulted in increased NADPH production, and promoted biomass production compared to the wild type in both autotrophic and mixotrophic conditions. Ethanol production pathway including NADPH-dependent alcohol dehydrogenase was also integrated with and without zwf over-expression. Excessive NADPH production by zwf over-expression could improve both biomass and ethanol production in the autotrophic conditions.

  9. Phosphorylation of the pyruvate dehydrogenase complex precedes HIF-1-mediated effects and pyruvate dehydrogenase kinase 1 upregulation during the first hours of hypoxic treatment in hepatocellular carcinoma cells

    PubMed Central

    Zimmer, Andreas David; Walbrecq, Geoffroy; Kozar, Ines; Behrmann, Iris; Haan, Claude

    2016-01-01

    The pyruvate dehydrogenase complex (PDC) is an important gatekeeper enzyme connecting glycolysis to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, it has a strong impact on the glycolytic flux as well as the metabolic phenotype of a cell. PDC activity is regulated via reversible phosphorylation of three serine residues on the pyruvate dehydrogenase (PDH) E1α subunit. Phosphorylation of any of these residues by the PDH kinases (PDKs) leads to a strong decrease in PDC activity. Under hypoxia, the inactivation of the PDC has been described to be dependent on the hypoxia-inducible factor 1 (HIF-1)-induced PDK1 protein upregulation. In this study, we show in two hepatocellular carcinoma cell lines (HepG2 and JHH-4) that, during the adaptation to hypoxia, PDH is already phosphorylated at time points preceding HIF-1-mediated transcriptional events and PDK1 protein upregulation. Using siRNAs and small molecule inhibitor approaches, we show that this inactivation of PDC is independent of HIF-1α expression but that the PDKs need to be expressed and active. Furthermore, we show that reactive oxygen species might be important for the induction of this PDH phosphorylation since it correlates with the appearance of an altered redox state in the mitochondria and is also inducible by H2O2 treatment under normoxic conditions. Overall, these results show that neither HIF-1 expression nor PDK1 upregulation is necessary for the phosphorylation of PDH during the first hours of the adaptation to hypoxia. PMID:27800515

  10. Critical role of X-box binding protein 1 in NADPH oxidase 4-triggered cardiac hypertrophy is mediated by receptor interacting protein kinase 1.

    PubMed

    Chen, Li; Zhao, Mingyue; Li, Junli; Wang, Yu; Bao, Qinxue; Wu, Siyuan; Deng, Xueqin; Tang, Xiaoju; Wu, Wenchao; Liu, Xiaojing

    2017-02-16

    NADPH oxidase 4 (NOX4) and the NOX4-related redox signaling are implicated in cardiac hypertrophy. NOX4 is interrelated with endoplasmic reticulum stress (ERS). Spliced X-box binding protein 1 (Xbp1s) is a key mediator of ERS while its role in cardiac hypertrophy is still poorly understood. Recently, receptor interacting protein kinase 1(RIPK1) has been increasingly reported to be associated with ERS. Therefore, we aimed to test the hypothesis that Xbp1s mediates NOX4-triggered cardiac hypertrophy via RIPK1 signaling. In the heart tissue of transverse aortic constriction (TAC) rats and in primary cultured neonatal cardiomyocytes(NCMs) treated with angiotensinII(AngII) or isoproterenol (ISO), NOX4 expression and reactive oxygen species (ROS) generation, and expression of Xbp1s as well as RIPK1-related phosphorylation of P65 subunit of NF-κB were elevated. Gene silencing of NOX4 by specific small interfering RNA (siRNA) significantly blocked the upregulation of NOX4, generation of ROS, splicing of Xbp1 and activation of the RIPK1-related NF-κB signaling, meanwhile attenuated cardiomyocyte hypertrophy. In addition, ROS scavenger (N-acetyl-L-cysteine, NAC) and NOX4 inhibitor GKT137831 reduced ROS generation and alleviated activation of Xbp1 and RIPK1-related NF-κB signaling. Furthermore, splicing of Xbp1 was responsible for the increase in RIPK1 expression in AngII or ISO-treated NCMs. Upregulated RIPK1 in turn activates NF-κB signaling in a kinase activity-independent manner. These findings suggest that Xbp1s plays an important role in NOX4-triggered cardiomyocyte hypertrophy via activating its downstream effector RIPK1, which may prove significant for the development of future therapeutic strategies.

  11. Aldehyde dehydrogenase 2 activation and coevolution of its εPKC-mediated phosphorylation sites.

    PubMed

    Nene, Aishwarya; Chen, Che-Hong; Disatnik, Marie-Hélène; Cruz, Leslie; Mochly-Rosen, Daria

    2017-01-05

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a key enzyme for the metabolism of many toxic aldehydes such as acetaldehyde, derived from alcohol drinking, and 4HNE, an oxidative stress-derived lipid peroxidation aldehyde. Post-translational enhancement of ALDH2 activity can be achieved by serine/threonine phosphorylation by epsilon protein kinase C (εPKC). Elevated ALDH2 is beneficial in reducing injury following myocardial infarction, stroke and other oxidative stress and aldehyde toxicity-related diseases. We have previously identified three εPKC phosphorylation sites, threonine 185 (T185), serine 279 (S279) and threonine 412 (T412), on ALDH2. Here we further characterized the role and contribution of each phosphorylation site to the enhancement of enzymatic activity by εPKC. Each individual phosphorylation site was mutated to a negatively charged amino acid, glutamate, to mimic a phosphorylation, or to a non-phosphorylatable amino acid, alanine. ALDH2 enzyme activities and protection against 4HNE inactivation were measured in the presence or absence of εPKC phosphorylation in vitro. Coevolution of ALDH2 and its εPKC phosphorylation sites was delineated by multiple sequence alignments among a diverse range of species and within the ALDH multigene family. We identified S279 as a critical εPKC phosphorylation site in the activation of ALDH2. The critical catalytic site, cysteine 302 (C302) of ALDH2 is susceptible to adduct formation by reactive aldehyde, 4HNE, which readily renders the enzyme inactive. We show that phosphomimetic mutations of T185E, S279E and T412E confer protection of ALDH2 against 4HNE-induced inactivation, indicating that phosphorylation on these three sites by εPKC likely also protects the enzyme against reactive aldehydes. Finally, we demonstrate that the three ALDH2 phosphorylation sites co-evolved with εPKC over a wide range of species. Alignment of 18 human ALDH isozymes, indicates that T185 and S279 are unique ALDH2, ε

  12. NADPH-generating systems in bacteria and archaea

    PubMed Central

    Spaans, Sebastiaan K.; Weusthuis, Ruud A.; van der Oost, John; Kengen, Servé W. M.

    2015-01-01

    Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided. PMID:26284036

  13. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    SciTech Connect

    Castro, Miguel E.; Molina, Roberto C.; Diaz, Waldo A.; Pradenas, Gonzalo A.; Vasquez, Claudio C.

    2009-02-27

    Potassium tellurite (K{sub 2}TeO{sub 3}) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  14. REGULATION OF NADPH OXIDASES IN SKELETAL MUSCLE

    PubMed Central

    Ferreira, Leonardo F.; Laitano, Orlando

    2016-01-01

    The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions. PMID:27184955

  15. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    PubMed

    Hong, Jie; Li, Dan; Cao, Weibiao

    2016-01-01

    Mechanisms of the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  16. H2O2 generated by NADPH oxidase 4 contributes to transient receptor potential vanilloid 1 channel-mediated mechanosensation in the rat kidney.

    PubMed

    Lin, Chian-Shiung; Lee, Shang-Hsing; Huang, Ho-Shiang; Chen, Yih-Sharng; Ma, Ming-Chieh

    2015-08-15

    The presence of NADPH oxidase (Nox) in the kidney, especially Nox4, results in H2O2 production, which regulates Na(+) excretion and urine formation. Redox-sensitive transient receptor potential vanilloid 1 channels (TRPV1s) are distributed in mechanosensory fibers of the renal pelvis and monitor changes in intrapelvic pressure (IPP) during urine formation. The present study tested whether H2O2 derived from Nox4 affects TRPV1 function in renal sensory responses. Perfusion of H2O2 into the renal pelvis dose dependently increased afferent renal nerve activity and substance P (SP) release. These responses were attenuated by cotreatment with catalase or TRPV1 blockers. In single unit recordings, H2O2 activated afferent renal nerve activity in response to rising IPP but not high salt. Western blots revealed that Nox2 (gp91(phox)) and Nox4 are both present in the rat kidney, but Nox4 is abundant in the renal pelvis and originates from dorsal root ganglia. This distribution was associated with expression of the Nox4 regulators p22(phox) and polymerase δ-interacting protein 2. Coimmunoprecipitation experiments showed that IPP increases polymerase δ-interacting protein 2 association with Nox4 or p22(phox) in the renal pelvis. Interestingly, immunofluorescence labeling demonstrated that Nox4 colocalizes with TRPV1 in sensory fibers of the renal pelvis, indicating that H2O2 generated from Nox4 may affect TRPV1 activity. Stepwise increases in IPP and saline loading resulted in H2O2 and SP release, sensory activation, diuresis, and natriuresis. These effects, however, were remarkably attenuated by Nox inhibition. Overall, these results suggest that Nox4-positive fibers liberate H2O2 after mechanostimulation, thereby contributing to a renal sensory nerve-mediated diuretic/natriuretic response.

  17. Wild-type and mutant p53 differentially regulate NADPH oxidase 4 in TGF-β-mediated migration of human lung and breast epithelial cells.

    PubMed

    Boudreau, H E; Casterline, B W; Burke, D J; Leto, T L

    2014-05-13

    Transforming growth factor-beta (TGF-β) induces the epithelial-to-mesenchymal transition (EMT) leading to increased cell plasticity at the onset of cancer cell invasion and metastasis. Mechanisms involved in TGF-β-mediated EMT and cell motility are unclear. Recent studies showed that p53 affects TGF-β/SMAD3-mediated signalling, cell migration, and tumorigenesis. We previously demonstrated that Nox4, a Nox family NADPH oxidase, is a TGF-β/SMAD3-inducible source of reactive oxygen species (ROS) affecting cell migration and fibronectin expression, an EMT marker, in normal and metastatic breast epithelial cells. Our present study investigates the involvement of p53 in TGF-β-regulated Nox4 expression and cell migration. We investigated the effect of wild-type p53 (WT-p53) and mutant p53 proteins on TGF-β-regulated Nox4 expression and cell migration. Nox4 mRNA and protein, ROS production, cell migration, and focal adhesion kinase (FAK) activation were examined in three different cell models based on their p53 mutational status. H1299, a p53-null lung epithelial cell line, was used for heterologous expression of WT-p53 or mutant p53. In contrast, functional studies using siRNA-mediated knockdown of endogenous p53 were conducted in MDA-MB-231 metastatic breast epithelial cells that express p53-R280K and MCF-10A normal breast cells that have WT-p53. We found that WT-p53 is a potent suppressor of TGF-β-induced Nox4, ROS production, and cell migration in p53-null lung epithelial (H1299) cells. In contrast, tumour-associated mutant p53 proteins (R175H or R280K) caused enhanced Nox4 expression and cell migration in both TGF-β-dependent and TGF-β-independent pathways. Moreover, knockdown of endogenous mutant p53 (R280K) in TGF-β-treated MDA-MB-231 metastatic breast epithelial cells resulted in decreased Nox4 protein and reduced phosphorylation of FAK, a key regulator of cell motility. Expression of WT-p53 or dominant-negative Nox4 decreased TGF-β-mediated FAK

  18. Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays

    PubMed Central

    Aleshin, Vasily A.; Artiukhov, Artem V.; Oppermann, Henry; Kazantsev, Alexey V.; Lukashev, Nikolay V.; Bunik, Victoria I.

    2015-01-01

    Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay. PMID:26308058

  19. Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays.

    PubMed

    Aleshin, Vasily A; Artiukhov, Artem V; Oppermann, Henry; Kazantsev, Alexey V; Lukashev, Nikolay V; Bunik, Victoria I

    2015-08-21

    Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay.

  20. NAD(P)H oxidase and renal epithelial ion transport

    PubMed Central

    Schreck, Carlos

    2011-01-01

    A fundamental requirement for cellular vitality is the maintenance of plasma ion concentration within strict ranges. It is the function of the kidney to match urinary excretion of ions with daily ion intake and nonrenal losses to maintain a stable ionic milieu. NADPH oxidase is a source of reactive oxygen species (ROS) within many cell types, including the transporting renal epithelia. The focus of this review is to describe the role of NADPH oxidase-derived ROS toward local renal tubular ion transport in each nephron segment and to discuss how NADPH oxidase-derived ROS signaling within the nephron may mediate ion homeostasis. In each case, we will attempt to identify the various subunits of NADPH oxidase and reactive oxygen species involved and the ion transporters, which these affect. We will first review the role of NADPH oxidase on renal Na+ and K+ transport. Finally, we will review the relationship between tubular H+ efflux and NADPH oxidase activity. PMID:21270341

  1. Ethanol-induced erectile dysfunction and increased expression of pro-inflammatory proteins in the rat cavernosal smooth muscle are mediated by NADPH oxidase-derived reactive oxygen species.

    PubMed

    Leite, Letícia N; do Vale, Gabriel T; Simplicio, Janaina A; De Martinis, Bruno S; Carneiro, Fernando S; Tirapelli, Carlos R

    2017-06-05

    Ethanol consumption is associated with an increased risk of erectile dysfunction (ED), but the molecular mechanisms through which ethanol causes ED remain elusive. Reactive oxygen species are described as mediators of ethanol-induced cell toxicity/damage in distinctive tissues. The enzyme NADPH oxidase is the main source of reactive oxygen species in the endothelium and vascular smooth muscle cells and ethanol is described to increase NADPH oxidase activation and reactive oxygen species generation. This study evaluated the contribution of NADPH oxidase-derived reactive oxygen species to ethanol-induced ED, endothelial dysfunction and production of pro-inflammatory and redox-sensitive proteins in the rat cavernosal smooth muscle (CSM). Male Wistar rats were treated with ethanol (20% v/v) or ethanol plus apocynin (30mg/kg/day; p.o. gavage) for six weeks. Apocynin prevented both the decreased in acetylcholine-induced relaxation and intracavernosal pressure induced by ethanol. Ethanol increased superoxide anion (O2(-)) generation and catalase activity in CSM, and treatment with apocynin prevented these responses. Similarly, apocynin prevented the ethanol-induced decreased of nitrate/nitrite (NOx), hydrogen peroxide (H2O2) and SOD activity. Treatment with ethanol increased p47phox translocation to the membrane as well as the expression of Nox2, COX-1, catalase, iNOS, ICAM-1 and p65. Apocynin prevented the effects of ethanol on protein expression and p47phox translocation. Finally, treatment with ethanol increased both TNF-α production and neutrophil migration in CSM. The major new finding of this study is that NADPH oxidase-derived reactive oxygen species play a role on chronic ethanol consumption-induced ED and endothelial dysfunction in the rat CSM. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The NADPH oxidase-mediated production of hydrogen peroxide (H(2)O(2)) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus.

    PubMed

    Yang, Siwy Ling; Chung, Kuang-Ren

    2012-10-01

    It has become increasingly apparent that the production of reactive oxygen species (ROS) by the NADPH oxidase (Nox) complex is vital for cellular differentiation and signalling in fungi. We cloned and characterized an AaNoxA gene of the necrotrophic fungus Alternaria alternata, which encodes a polypeptide analogous to mammalian gp91(phox) and fungal Noxs implicated in the generation of ROS. Genetic analysis confirmed that AaNoxA is responsible for the production of ROS. Moreover, deletion of AaNoxA in A. alternata resulted in an elevated hypersensitivity to hydrogen peroxide (H(2)O(2)), menadione, potassium superoxide (KO(2)), diamide and many ROS-generating compounds. The results implicate the involvement of AaNoxA in cellular resistance to ROS stress. The impaired phenotypes strongly resemble those previously seen for the ap1 null mutant defective in a YAP1-like transcriptional regulator and for the hog1 mutant defective in a HOG1-like mitogen-activated protein (MAP) kinase. The noxA null mutant was also hypersensitive to Nox inhibitors, nitric oxide (NO(·)) donors and NO(·) synthase inhibitors, implying a role of AaNoxA in the NO(·) signalling pathway. Expression of AaNoxA was activated by H(2)O(2), menadione, KO(2), NO(·) donors and L-arginine (a substrate for NO(·) synthase). AaNoxA may be able to sense and respond to both ROS and nitric oxide. Moreover, AaNoxA is required for normal conidiation and full fungal virulence. AaNoxA promoted the expression of the AaAP1 and AaHOG1 genes in A. alternata. Inactivation of AaNoxA greatly reduced the transcriptional activation of AaAP1 in response to ROS stress. Thus, we conclude that the regulatory functions of AaNoxA conferring ROS resistance are modulated partially through the activation of the YAP1- and HOG1 MAP kinase-mediated signalling pathways. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  3. Role of Quinones in Electron Transfer of PQQ-Glucose Dehydrogenase Anodes—Mediation or Orientation Effect.

    PubMed

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow; Atanassov, Plamen

    2015-06-24

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-dependent glucose dehydrogenase (PQQ-sGDH) anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ-sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ-sGDH anodes in the presence of 1,2- and 1,4-benzoquinones introduced in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.

  4. Role of Quinones in Electron Transfer of PQQ–Glucose Dehydrogenase Anodes—Mediation or Orientation Effect

    SciTech Connect

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow; Atanassov, Plamen

    2015-06-24

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-dependent glucose dehydrogenase (PQQ–sGDH) anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ–sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ–sGDH anodes in the presence of 1,2- and 1,4-benzoquinones introduced in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.

  5. FAD-Dependent Glucose Dehydrogenase Immobilization and Mediation Within a Naphthoquinone Redox Polymer.

    PubMed

    Milton, Ross D

    2017-01-01

    Electrochemically-active polymers (redox polymers) are useful tools for simultaneous immobilization and electron transfer of enzymes at electrode surfaces, which also serve to increase the localized concentration of the biocatalyst. The properties of the employed redox couple must be compatible with the target biocatalyst from both an electrochemical (potential) and biochemical standpoint. This chapter details the synthesis of a naphthoquinone-functionalized redox polymer (NQ-LPEI) that is used to immobilize and electronically communicate with flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH), yielding an enzymatic bioanode that is able to deliver large catalytic current densities for glucose oxidation at a relatively low associated potential.

  6. Quantitative flux analysis reveals folate-dependent NADPH production

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  7. Endothelins and NADPH oxidases in the cardiovascular system.

    PubMed

    Dammanahalli, Karigowda J; Sun, Zhongjie

    2008-01-01

    1. The endothelin (ET) system and NADPH oxidase play important roles in the regulation of cardiovascular function, as well as in the pathogenesis of hypertension and other cardiovascular diseases. 2. Endothelins activate NADPH oxidases and thereby increase superoxide production, resulting in oxidative stress and cardiovascular dysfunction. Thus, NADPH oxidases may mediate the role of endothelins in some cardiovascular diseases. However, the role of reactive oxygen species (ROS) in mediating ET-induced vasoconstriction and cardiovascular disease remains under debate, as evidenced by conflicting reports from different research teams. Conversely, activation of NADPH oxidase can stimulate ET secretion via ROS generation, which further enhances the cardiovascular effects of NADPH oxidase. However, little is known about how ROS activate the endothelin system. It seems that the relationship between ET-1 and ROS may vary with cardiovascular disorders. 3. Endothelins activate NADPH oxidase via the ET receptor-proline-rich tyrosine kinase-2 (Pyk2)-Rac1 pathway. Rac1 is an important regulator of NADPH oxidase. There is ample evidence supporting direct stimulation by Rac1 of NADPH oxidase activity. In addition, Rac1-induced cardiomyocyte hypertrophy is mediated by the generation of ROS.

  8. Roles for cytosolic NADPH redox in regulating pulmonary artery relaxation by thiol oxidation-elicited subunit dimerization of protein kinase G1α

    PubMed Central

    Neo, Boon Hwa; Patel, Dhara; Kandhi, Sharath

    2013-01-01

    The activity of glucose-6-phosphate dehydrogenase (G6PD) appears to control a vascular smooth muscle relaxing mechanism regulated through cytosolic NADPH oxidation. Since our recent studies suggest that thiol oxidation-elicited dimerization of the 1α form of protein kinase G (PKG1α) contributes to the relaxation of isolated endothelium-removed bovine pulmonary arteries (BPA) to peroxide and responses to hypoxia, we investigated whether cytosolic NADPH oxidation promoted relaxation by PKG1α dimerization. Relaxation of BPA to G6PD inhibitors 6-aminonicotinamide (6-AN) and epiandrosterone (studied under hypoxia to minimize basal levels of NADPH oxidation and PKG1α dimerization) was associated with increased PKG1α dimerization and PKG-mediated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. Depletion of PKG1α by small inhibitory RNA (siRNA) inhibited relaxation of BPA to 6-AN and attenuated the increase in VASP phosphorylation. Relaxation to 6-AN did not appear to be altered by depletion of soluble guanylate cyclase (sGC). Depletion of G6PD, thioredoxin-1 (Trx-1), and Trx reductase-1 (TrxR-1) in BPA with siRNA increased PKG1α dimerization and VASP phosphorylation and inhibited force generation under aerobic and hypoxic conditions. Depletion of TrxR-1 with siRNA inhibited the effects of 6-AN and enhanced similar responses to peroxide. Peroxiredoxin-1 depletion by siRNA inhibited PKG dimerization to peroxide, but it did not alter PKG dimerization under hypoxia or the stimulation of dimerization by 6-AN. Thus regulation of cytosolic NADPH redox by G6PD appears to control PKG1α dimerization in BPA through its influence on Trx-1 redox regulation by the NADPH dependence of TrxR-1. NADPH regulation of PKG dimerization may contribute to vascular responses to hypoxia that are associated with changes in NADPH redox. PMID:23709600

  9. Single-Protein Tracking Reveals That NADPH Mediates the Insertion of Cytochrome P450 Reductase into a Biomimetic of the Endoplasmic Reticulum.

    PubMed

    Barnaba, Carlo; Martinez, Michael J; Taylor, Evan; Barden, Adam O; Brozik, James A

    2017-04-06

    Cytochrome P450 reductase (CPR) is the redox partner for most human cytochrome P450 enzymes. It is also believed that CPR is an integral membrane protein exclusively. Herein, we report that, contrary to this belief, CPR can exist as a peripheral membrane protein in the absence of NADPH and will transition to an integral membrane protein in the presence of stoichiometric amounts of NADPH or greater. All experiments were performed in a solid-supported cushioned lipid bilayer that closely matched the chemical composition of the human endoplasmic reticulum and served as an ER biomimetic. The phase characteristics and fluidity of the ER biomimetic was characterized with fluorescence micrographs and temperature-dependent fluorescence recovery after photobleaching. The interactions of CPR with the ER biomimetic were directly observed by tracking single CPR molecules using time-lapse single-molecule fluorescence imaging and subsequent analysis of tracks. These studies revealed dramatic changes in diffusion coefficient and the degree of partitioning of CPR as a function of NADPH concentration.

  10. Integration of Inhibition Kinetics and Molecular Dynamics Simulations: A Urea-Mediated Folding Study on Acetaldehyde Dehydrogenase 1.

    PubMed

    Xu, Yingying; Lee, Jinhyuk; Lü, Zhi-Rong; Mu, Hang; Zhang, Qian; Park, Yong-Doo

    2016-07-01

    Understanding the mechanism of acetaldehyde dehydrogenase 1 (ALDH1) folding is important because this enzyme is directly involved in several types of cancers and other diseases. We investigated the urea-mediated unfolding of ALDH1 by integrating kinetic inhibition studies with computational molecular dynamics (MD) simulations. Conformational changes in the enzyme structure were also analyzed using intrinsic and 1-anilinonaphthalene-8-sulfonate (ANS)-binding fluorescence measurements. Kinetic studies revealed that the direct binding of urea to ALDH1 induces inactivation of ALDH1 in a manner of mixed-type inhibition. Tertiary structural changes associated with regional hydrophobic exposure of the active site were observed. The urea binding regions on ALDH1 were predicted by docking simulations and were partly shared with active site residues of ALDH1 and with interface residues of the oligomerization domain for tetramer formation. The docking results suggest that urea prevents formation of the ALDH1 normal shape for the tetramer state as well as entrance of the substrate into the active site. Our study provides insight into the structural changes that accompany urea-mediated unfolding of ALDH1 and the catalytic role associated with conformational changes.

  11. Cardiac Ryanodine Receptor (Ryr2)-mediated Calcium Signals Specifically Promote Glucose Oxidation via Pyruvate Dehydrogenase.

    PubMed

    Bround, Michael J; Wambolt, Rich; Cen, Haoning; Asghari, Parisa; Albu, Razvan F; Han, Jun; McAfee, Donald; Pourrier, Marc; Scott, Nichollas E; Bohunek, Lubos; Kulpa, Jerzy E; Chen, S R Wayne; Fedida, David; Brownsey, Roger W; Borchers, Christoph H; Foster, Leonard J; Mayor, Thibault; Moore, Edwin D W; Allard, Michael F; Johnson, James D

    2016-11-04

    Cardiac ryanodine receptor (Ryr2) Ca(2+) release channels and cellular metabolism are both disrupted in heart disease. Recently, we demonstrated that total loss of Ryr2 leads to cardiomyocyte contractile dysfunction, arrhythmia, and reduced heart rate. Acute total Ryr2 ablation also impaired metabolism, but it was not clear whether this was a cause or consequence of heart failure. Previous in vitro studies revealed that Ca(2+) flux into the mitochondria helps pace oxidative metabolism, but there is limited in vivo evidence supporting this concept. Here, we studied heart-specific, inducible Ryr2 haploinsufficient (cRyr2Δ50) mice with a stable 50% reduction in Ryr2 protein. This manipulation decreased the amplitude and frequency of cytosolic and mitochondrial Ca(2+) signals in isolated cardiomyocytes, without changes in cardiomyocyte contraction. Remarkably, in the context of well preserved contractile function in perfused hearts, we observed decreased glucose oxidation, but not fat oxidation, with increased glycolysis. cRyr2Δ50 hearts exhibited hyperphosphorylation and inhibition of pyruvate dehydrogenase, the key Ca(2+)-sensitive gatekeeper to glucose oxidation. Metabolomic, proteomic, and transcriptomic analyses revealed additional functional networks associated with altered metabolism in this model. These results demonstrate that Ryr2 controls mitochondrial Ca(2+) dynamics and plays a specific, critical role in promoting glucose oxidation in cardiomyocytes. Our findings indicate that partial RYR2 loss is sufficient to cause metabolic abnormalities seen in heart disease.

  12. 15-Hydroxyprostaglandin Dehydrogenase Generation of Electrophilic Lipid Signaling Mediators from Hydroxy Ω-3 Fatty Acids*

    PubMed Central

    Wendell, Stacy Gelhaus; Golin-Bisello, Franca; Wenzel, Sally; Sobol, Robert W.; Holguin, Fernando; Freeman, Bruce A.

    2015-01-01

    15-Hydroxyprostaglandin dehydrogenase (15PGDH) is the primary enzyme catalyzing the conversion of hydroxylated arachidonic acid species to their corresponding oxidized metabolites. The oxidation of hydroxylated fatty acids, such as the conversion of prostaglandin (PG) E2 to 15-ketoPGE2, by 15PGDH is viewed to inactivate signaling responses. In contrast, the typically electrophilic products can also induce anti-inflammatory and anti-proliferative responses. This study determined that hydroxylated docosahexaenoic acid metabolites (HDoHEs) are substrates for 15PGDH. Examination of 15PGDH substrate specificity was conducted in cell culture (A549 and primary human airway epithelia and alveolar macrophages) using chemical inhibition and shRNA knockdown of 15PGDH. Substrate specificity is broad and relies on the carbon position of the acyl chain hydroxyl group. 14-HDoHE was determined to be the optimal DHA substrate for 15PGDH, resulting in the formation of its electrophilic metabolite, 14-oxoDHA. Consistent with this, 14-HDoHE was detected in bronchoalveolar lavage cells of mild to moderate asthmatics, and the exogenous addition of 14-oxoDHA to primary alveolar macrophages inhibited LPS-induced proinflammatory cytokine mRNA expression. These data reveal that 15PGDH-derived DHA metabolites are biologically active and can contribute to the salutary signaling actions of Ω-3 fatty acids. PMID:25586183

  13. p210 Bcr-Abl confers overexpression of inosine monophosphate dehydrogenase : an intrinsic pathway to drug resistance mediated by oncogene.

    SciTech Connect

    Gharehbaghi, K.; Burgess, G. S.; Collart, F. R.; Litz-Jackson, S.; Huberman, E.; Jayaram, H. N.; Boswell, H. S.; Center for Mechanistic Biology and Biotechnology; Lab. for Experimental Oncology; Indiana Univ. School of Medicine

    1994-01-01

    The p210 bcr-abl fusion protein tyrosine kinase oncogene has been implicated in the pathogenesis of chronic granulocytic leukemia (CGL). Specific intracellular functions performed by p210 bcr-abl have recently been delineated. We considered the possibility that p210 bcr-abl may also regulate the abundance of inosine 5'-monophosphate dehydrogenase (IMPDH) which is a rate-limiting enzyme for de novo guanylate synthesis. We performed studies of the inhibition of IMPDH by tiazofurin, which acts as a competitive inhibitor through its active species that mimics nicotinamide adenine dinucleotide (NAD), i.e. thiazole-4-carboxamide adenine dinucleotide (TAD). The mean inhibitory concentration (IC50) of tiazofurin for cellular proliferation inhibition was 2.3-2.8-fold greater in cells expressing p210 bcr-abl than in their corresponding parent cells proliferating under the influence of growth factors or in growth factor-independent derivative cells not expressing detectable p210 bcr-abl. IMPDH activity was 1.5-2.3-fold greater within cells expressing p210 bcr-abl than in their parent cells. This increase in enzyme activity was a result of 2-fold increased IMPDH protein as determined by immunoblotting. In addition, an increase in the Km value for NAD utilization by IMPDH was observed in p210 bcr-abl transformed cells, but this increase was within the range of resident NAD concentrations observed in the cells. Increased IMPDH protein in p210 bcr-abl transformed cells was traced to an increased level of IMP dehydrogenase II messenger RNA. Thus, regulation of IMPDH gene expression is mediated at least in part by the bcr-abl gene product and may therefore be indicative of a specific mechanism of intrinsic resistance to tiazofurin.

  14. Urotensin II-induced insulin resistance is mediated by NADPH oxidase-derived reactive oxygen species in HepG2 cells

    PubMed Central

    Li, Ying-Ying; Shi, Zheng-Ming; Yu, Xiao-Yong; Feng, Ping; Wang, Xue-Jiang

    2016-01-01

    AIM: To investigated the effects of urotensin II (UII) on hepatic insulin resistance in HepG2 cells and the potential mechanisms involved. METHODS: Human hepatoma HepG2 cells were cultured with or without exogenous UII for 24 h, in the presence or absence of 100 nmol/L insulin for the last 30 min. Glucose levels were detected by the glucose-oxidase method and glycogen synthesis was analyzed by glycogen colorimetric/fluorometric assay. Reactive oxygen species (ROS) levels were detected with a multimode reader using a 2′,7′-dichlorofluorescein diacetate probe. The protein expression and phosphorylation levels of c-Jun N-terminal kinase (JNK), insulin signal essential molecules such as insulin receptor substrate -1 (IRS-1), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), and glucose transporter-2 (Glut 2), and NADPH oxidase subunits such as gp91phox, p67phox, p47phox, p40phox, and p22phox were evaluated by Western blot. RESULTS: Exposure to 100 nmol/L UII reduced the insulin-induced glucose consumption (P < 0.05) and glycogen content (P < 0.01) in HepG2 cells compared with cells without UII. UII also abolished insulin-stimulated protein expression (P < 0.01) and phosphorylation of IRS-1 (P < 0.05), associated with down-regulation of Akt (P < 0.05) and GSK-3β (P < 0.05) phosphorylation levels, and the expression of Glut 2 (P < 0.001), indicating an insulin-resistance state in HepG2 cells. Furthermore, UII enhanced the phosphorylation of JNK (P < 0.05), while the activity of JNK, insulin signaling, such as total protein of IRS-1 (P < 0.001), phosphorylation of IRS-1 (P < 0.001) and GSK-3β (P < 0.05), and glycogen synthesis (P < 0.001) could be reversed by pretreatment with the JNK inhibitor SP600125. Besides, UII markedly improved ROS generation (P < 0.05) and NADPH oxidase subunit expression (P < 0.05). However, the antioxidant/NADPH oxidase inhibitor apocynin could decrease UII-induced ROS production (P < 0.05), JNK phosphorylation (P < 0

  15. Urotensin II-induced insulin resistance is mediated by NADPH oxidase-derived reactive oxygen species in HepG2 cells.

    PubMed

    Li, Ying-Ying; Shi, Zheng-Ming; Yu, Xiao-Yong; Feng, Ping; Wang, Xue-Jiang

    2016-07-07

    To investigated the effects of urotensin II (UII) on hepatic insulin resistance in HepG2 cells and the potential mechanisms involved. Human hepatoma HepG2 cells were cultured with or without exogenous UII for 24 h, in the presence or absence of 100 nmol/L insulin for the last 30 min. Glucose levels were detected by the glucose-oxidase method and glycogen synthesis was analyzed by glycogen colorimetric/fluorometric assay. Reactive oxygen species (ROS) levels were detected with a multimode reader using a 2',7'-dichlorofluorescein diacetate probe. The protein expression and phosphorylation levels of c-Jun N-terminal kinase (JNK), insulin signal essential molecules such as insulin receptor substrate -1 (IRS-1), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), and glucose transporter-2 (Glut 2), and NADPH oxidase subunits such as gp91(phox), p67(phox), p47(phox), p40(phox), and p22(phox) were evaluated by Western blot. Exposure to 100 nmol/L UII reduced the insulin-induced glucose consumption (P < 0.05) and glycogen content (P < 0.01) in HepG2 cells compared with cells without UII. UII also abolished insulin-stimulated protein expression (P < 0.01) and phosphorylation of IRS-1 (P < 0.05), associated with down-regulation of Akt (P < 0.05) and GSK-3β (P < 0.05) phosphorylation levels, and the expression of Glut 2 (P < 0.001), indicating an insulin-resistance state in HepG2 cells. Furthermore, UII enhanced the phosphorylation of JNK (P < 0.05), while the activity of JNK, insulin signaling, such as total protein of IRS-1 (P < 0.001), phosphorylation of IRS-1 (P < 0.001) and GSK-3β (P < 0.05), and glycogen synthesis (P < 0.001) could be reversed by pretreatment with the JNK inhibitor SP600125. Besides, UII markedly improved ROS generation (P < 0.05) and NADPH oxidase subunit expression (P < 0.05). However, the antioxidant/NADPH oxidase inhibitor apocynin could decrease UII-induced ROS production (P < 0.05), JNK phosphorylation (P < 0.05), and insulin

  16. Dynamin 2 and c-Abl are novel regulators of hyperoxia-mediated NADPH oxidase activation and reactive oxygen species production in caveolin-enriched microdomains of the endothelium.

    PubMed

    Singleton, Patrick A; Pendyala, Srikanth; Gorshkova, Irina A; Mambetsariev, Nurbek; Moitra, Jaideep; Garcia, Joe G N; Natarajan, Viswanathan

    2009-12-11

    Reactive oxygen species (ROS) generation, particularly by the endothelial NADPH oxidase family of proteins, plays a major role in the pathophysiology associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. We examined potential regulators of ROS production and discovered that hyperoxia treatment of human pulmonary artery endothelial cells induced recruitment of the vesicular regulator, dynamin 2, the non-receptor tyrosine kinase, c-Abl, and the NADPH oxidase subunit, p47(phox), to caveolin-enriched microdomains (CEMs). Silencing caveolin-1 (which blocks CEM formation) and/or c-Abl expression with small interference RNA inhibited hyperoxia-mediated tyrosine phosphorylation and association of dynamin 2 with p47(phox) and ROS production. In addition, treatment of human pulmonary artery endothelial cells with dynamin 2 small interfering RNA or the dynamin GTPase inhibitor, Dynasore, attenuated hyperoxia-mediated ROS production and p47(phox) recruitment to CEMs. Using purified recombinant proteins, we observed that c-Abl tyrosine-phosphorylated dynamin 2, and this phosphorylation increased p47(phox)/dynamin 2 association (change in the dissociation constant (K(d)) from 85.8 to 6.9 nm). Furthermore, exposure of mice to hyperoxia increased ROS production, c-Abl activation, dynamin 2 association with p47(phox), and pulmonary leak, events that were attenuated in the caveolin-1 knock-out mouse confirming a role for CEMs in ROS generation. These results suggest that hyperoxia induces c-Abl-mediated dynamin 2 phosphorylation required for recruitment of p47(phox) to CEMs and subsequent ROS production in lung endothelium.

  17. Comparative study of the tissue distribution of NADH and NADPH-dependent chloral hydrate reducing enzymes in the rat

    SciTech Connect

    Ogino, Keiki; Hobara, Tatsuya; Kobayashi, Haruo; Iwamoto, Susumu )

    1990-03-01

    Chloral hydrate (CH), an intermediate metabolite of trichloroethylene, is reduced to trichloroethanol (TCE) by alcohol dehydrogenase and aldehyde reductase. Alcohol dehydrogenase requires reduced nicotinamide adenine dinucleotide (NADH), and aldehyde reductase requires reduced nicotinamide adenine dinucleotide phosphate (NADPH). No reports have appeared concerning comparative studies of the tissue distribution of CH-reducing enzymes. In this report, NADH and NADPH-dependent CH-reducing activities were investigated in various organs of the rat.

  18. Evidence that adrenal hexose-6-phosphate dehydrogenase can effect microsomal P450 cytochrome steroidogenic enzymes.

    PubMed

    Foster, Christy A; Mick, Gail J; Wang, Xudong; McCormick, Kenneth

    2013-09-01

    The role of adrenal hexose-6-phosphate dehydrogenase in providing reducing equivalents to P450 cytochrome steroidogenic enzymes in the endoplasmic reticulum is uncertain. Hexose-6-phosphate dehydrogenase resides in the endoplasmic reticulum lumen and co-localizes with the bidirectional enzyme 11β-hydroxysteroid dehydrogenase 1. Hexose-6-phosphate dehydrogenase likely provides 11β-hydroxysteroid dehydrogenase 1 with NADPH electrons via channeling. Intracellularly, two compartmentalized reactions generate NADPH upon oxidation of glucose-6-phosphate: cytosolic glucose-6-phosphate dehydrogenase and microsomal hexose-6-phosphate dehydrogenase. Because some endoplasmic reticulum enzymes require an electron donor (NADPH), it is conceivable that hexose-6-phosphate dehydrogenase serves in this capacity for these pathways. Besides 11β-hydroxysteroid dehydrogenase 1, we examined whether hexose-6-phosphate dehydrogenase generates reduced pyridine nucleotide for pivotal adrenal microsomal P450 enzymes. 21-hydroxylase activity was increased with glucose-6-phosphate and, also, glucose and glucosamine-6-phosphate. The latter two substrates are only metabolized by hexose-6-phosphate dehydrogenase, indicating that requisite NADPH for 21-hydroxylase activity was not via glucose-6-phosphate dehydrogenase. Moreover, dihydroepiandrostenedione, a non-competitive inhibitor of glucose-6-phosphate dehydrogenase, but not hexose-6-phosphate dehydrogenase, did not curtail activation by glucose-6-phosphate. Finally, the most compelling observation was that the microsomal glucose-6-phosphate transport inhibitor, chlorogenic acid, blunted the activation by glucose-6-phosphate of both 21-hydroxylase and 17-hydroxylase indicating that luminal hexose-6-phosphate dehydrogenase can supply NADPH for these enzymes. Analogous kinetic observations were found with microsomal 17-hydroxylase. These findings indicate that hexose-6-phosphate dehydrogenase can be a source, but not exclusively so, of NADPH

  19. MxaY regulates the lanthanide-mediated methanol dehydrogenase switch in Methylomicrobium buryatense

    SciTech Connect

    Chu, Frances; Beck, David A. C.; Lidstrom, Mary E.

    2016-09-07

    Many methylotrophs, microorganisms that consume carbon compounds lacking carbon–carbon bonds, use two different systems to oxidize methanol for energy production and biomass accumulation. The MxaFI methanol dehydrogenase (MDH) contains calcium in its active site, while the XoxF enzyme contains a lanthanide in its active site. The genes encoding the MDH enzymes are differentially regulated by the presence of lanthanides. In this study, we found that the histidine kinase MxaY controls the lanthanide-mediated switch in Methylomicrobium buryatense 5GB1C. MxaY controls the transcription of genes encoding MxaFI and XoxF at least partially by controlling the transcript levels of the orphan response regulator MxaB. We identify a constitutively active version of MxaY, and identify the mutated residue that may be involved in lanthanide sensing. Finally, we find evidence to suggest that tight control of active MDH production is required for wild-type growth rates.

  20. Jinggangmycin-suppressed reproduction in the small brown planthopper (SBPH), Laodelphax striatellus (Fallen), is mediated by glucose dehydrogenase (GDH).

    PubMed

    Ding, Jun; Wu, You; You, Lin-Lin; Xu, Bin; Ge, Lin-Quan; Yang, Guo-Qing; Wu, Jin-Cai

    2017-06-01

    The small brown planthopper (SBPH), Laodelphax striatellus (Fallen), is a serious pest insect of rice, wheat, and maize in China. SBPH not only sucks plant sap but also transmits plant disease viruses, causing serious damage. These viruses include rice striped virus disease (RSV disease), black streaked dwarf, and maize rough disease virus. SBPH outbreaks are related to the overuse of pesticides in China. Some pesticides, such as triazophos, stimulate the reproduction of SBPH, but an antibiotic fungicide jinggangmycin (JGM) suppresses its reproduction. However, mechanisms of decreased reproduction of SBPH induced by JGM remain unclear. The present findings show that JGM suppressed reproduction of SBPH (↓approximately 35.7%) and resulted in the down-regulated expression of glucose dehydrogenase (GDH). GDH-silenced control females (control+dsGDH) show that the number of eggs laid was reduced by 48.6% compared to control females. Biochemical tests show that the total lipid and fatty acid contents in JGM-treated and control+dsGDH females decreased significantly. Thus, we propose that the suppression of reproduction in SBPH induced by JGM is mediated by GDH via metabolic pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase

    PubMed Central

    Mailloux, Ryan J.; Craig Ayre, D.; Christian, Sherri L.

    2016-01-01

    2-Oxoglutarate dehydrogenase (Ogdh) is an important mitochondria redox sensor that can undergo S-glutathionylation following an increase in H2O2 levels. Although S-glutathionylation is required to protect Ogdh from irreversible oxidation while simultaneously modulating its activity it remains unknown if glutathione can also modulate reactive oxygen species (ROS) production by the complex. We report that reduced (GSH) and oxidized (GSSG) glutathione control O2∙-/H2O2 formation by Ogdh through protein S-glutathionylation reactions. GSSG (1 mM) induced a modest decrease in Ogdh activity which was associated with a significant decrease in O2∙-/H2O2 formation. GSH had the opposite effect, amplifying O2∙-/H2O2 formation by Ogdh. Incubation of purified Ogdh in 2.5 mM GSH led to significant increase in O2∙-/H2O2 formation which also lowered NADH production. Inclusion of enzymatically active glutaredoxin-2 (Grx2) in reaction mixtures reversed the GSH-mediated amplification of O2∙-/H2O2 formation. Similarly pre-incubation of permeabilized liver mitochondria from mouse depleted of GSH showed an approximately ~3.5-fold increase in Ogdh-mediated O2∙-/H2O2 production that was matched by a significant decrease in NADH formation which could be reversed by Grx2. Taken together, our results demonstrate GSH and GSSG modulate ROS production by Ogdh through S-glutathionylation of different subunits. This is also the first demonstration that GSH can work in the opposite direction in mitochondria-amplifying ROS formation instead of quenching it. We propose that this regulatory mechanism is required to modulate ROS emission from Ogdh in response to variations in glutathione redox buffering capacity. PMID:26928132

  2. The soluble NAD+-Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH.

    PubMed

    Burgdorf, Tanja; van der Linden, Eddy; Bernhard, Michael; Yin, Qing Yuan; Back, Jaap W; Hartog, Aloysius F; Muijsers, Anton O; de Koster, Chris G; Albracht, Simon P J; Friedrich, Bärbel

    2005-05-01

    The soluble [NiFe]-hydrogenase (SH) of the facultative lithoautotrophic proteobacterium Ralstonia eutropha H16 has up to now been described as a heterotetrameric enzyme. The purified protein consists of two functionally distinct heterodimeric moieties. The HoxHY dimer represents the hydrogenase module, and the HoxFU dimer constitutes an NADH-dehydrogenase. In the bimodular form, the SH mediates reduction of NAD(+) at the expense of H(2). We have purified a new high-molecular-weight form of the SH which contains an additional subunit. This extra subunit was identified as the product of hoxI, a member of the SH gene cluster (hoxFUYHWI). Edman degradation, in combination with protein sequencing of the SH high-molecular-weight complex, established a subunit stoichiometry of HoxFUYHI(2). Cross-linking experiments indicated that the two HoxI subunits are the closest neighbors. The stability of the hexameric SH depended on the pH and the ionic strength of the buffer. The tetrameric form of the SH can be instantaneously activated with small amounts of NADH but not with NADPH. The hexameric form, however, was also activated by adding small amounts of NADPH. This suggests that HoxI provides a binding domain for NADPH. A specific reaction site for NADPH adds to the list of similarities between the SH and mitochondrial NADH:ubiquinone oxidoreductase (Complex I).

  3. The Soluble NAD+-Reducing [NiFe]-Hydrogenase from Ralstonia eutropha H16 Consists of Six Subunits and Can Be Specifically Activated by NADPH

    PubMed Central

    Burgdorf, Tanja; van der Linden, Eddy; Bernhard, Michael; Yuan Yin, Qing; Back, Jaap W.; Hartog, Aloysius F.; Muijsers, Anton O.; de Koster, Chris G.; Albracht, Simon P. J.; Friedrich, Bärbel

    2005-01-01

    The soluble [NiFe]-hydrogenase (SH) of the facultative lithoautotrophic proteobacterium Ralstonia eutropha H16 has up to now been described as a heterotetrameric enzyme. The purified protein consists of two functionally distinct heterodimeric moieties. The HoxHY dimer represents the hydrogenase module, and the HoxFU dimer constitutes an NADH-dehydrogenase. In the bimodular form, the SH mediates reduction of NAD+ at the expense of H2. We have purified a new high-molecular-weight form of the SH which contains an additional subunit. This extra subunit was identified as the product of hoxI, a member of the SH gene cluster (hoxFUYHWI). Edman degradation, in combination with protein sequencing of the SH high-molecular-weight complex, established a subunit stoichiometry of HoxFUYHI2. Cross-linking experiments indicated that the two HoxI subunits are the closest neighbors. The stability of the hexameric SH depended on the pH and the ionic strength of the buffer. The tetrameric form of the SH can be instantaneously activated with small amounts of NADH but not with NADPH. The hexameric form, however, was also activated by adding small amounts of NADPH. This suggests that HoxI provides a binding domain for NADPH. A specific reaction site for NADPH adds to the list of similarities between the SH and mitochondrial NADH:ubiquinone oxidoreductase (Complex I). PMID:15838039

  4. NADPH Oxidase 4 is required for interleukin-1β-mediated activation of protein kinase Cδ and downstream activation of c-Jun N-terminal kinase signaling in smooth muscle

    PubMed Central

    Ginnan, Roman; Jourd’heuil, Frances L.; Guikema, Benjamin; Simons, Malorie; Singer, Harold A.; Jourd’heuil, David

    2012-01-01

    Reactive oxygen species (ROS) are generated in the vascular wall upon stimulation by pro-inflammatory cytokines and are important mediators of diverse cellular responses that occur as a result of vascular injury. Member of the NADPH oxidase (NOX) family of proteins have been identified in vascular smooth muscle cells (VSM) as important sources of ROS. In this study, we tested the hypothesis that NOX4 is a proximal mediator of IL-1β-dependent activation of PKCδ and increases IL-1β stimulated c-Jun kinase (JNK) signaling in primary rat aortic VSM cells. We found that stimulation of VSM cells with IL-1β increased PKCδ activity and intracellular ROS generation. SiRNA silencing of NOX4 but not NOX1 ablated the IL-1β-dependent increase in ROS production. Pharmacological inhibition of PKCδ activity as well as siRNA depletion of PKCδ or NOX4 blocked the IL-1β-dependent activation of JNK. Further studies showed that the IL-1β-dependent upregulation of iNOS expression was inhibited through JNK inhibition and NOX4 silencing. Taken together, these results indicate that IL-1β-dependent activation of PKCδ is modulated by NOX4-derived ROS. Our study positions PKCδ as an important redox sensitive mediator of IL-1β-dependent signaling and downstream activation of inflammatory mediators in VSM cells. PMID:23022406

  5. NADPH oxidases participate to doxorubicin-induced cardiac myocyte apoptosis.

    PubMed

    Gilleron, Mylène; Marechal, Xavier; Montaigne, David; Franczak, Jessica; Neviere, Remi; Lancel, Steve

    2009-10-30

    Cumulative doses of doxorubicin, a potent anticancer drug, lead to serious myocardial dysfunction. Numerous mechanisms including apoptosis have been proposed to account for its cardiotoxicity. Cardiac apoptosis induced by doxorubicin has been related to excessive reactive oxygen species production by the mitochondrial NADH dehydrogenase. Here, we explored whether doxorubicin treatment activates other superoxide anion generating systems such as the NADPH oxidases, membrane-embedded flavin-containing enzymes, and whether the subsequent oxidative stress contributes to apoptosis. We showed that doxorubicin treatment of rat cardiomyoblasts H9c2 triggers increases in caspase-3 like activity and hypoploid cells, both common features of apoptosis. Doxorubicin exposure also leads to a rapid superoxide production through NADPH oxidase activation. Inhibition of these enzymes using diphenyliodonium and apocynin reduces doxorubicin-induced reactive oxygen species production, caspase-3 like activity and sub-G1 cell population. In conclusion, NADPH oxidases participate to doxorubicin-induced cardiac apoptosis.

  6. The N-terminal Domain of Escherichia coli Assimilatory NADPH-Sulfite Reductase Hemoprotein Is an Oligomerization Domain That Mediates Holoenzyme Assembly.

    PubMed

    Askenasy, Isabel; Pennington, Joseph M; Tao, Yeqing; Marshall, Alan G; Young, Nicolas L; Shang, Weifeng; Stroupe, M Elizabeth

    2015-07-31

    Assimilatory NADPH-sulfite reductase (SiR) from Escherichia coli is a structurally complex oxidoreductase that catalyzes the six-electron reduction of sulfite to sulfide. Two subunits, one a flavin-binding flavoprotein (SiRFP, the α subunit) and the other an iron-containing hemoprotein (SiRHP, the β subunit), assemble to make a holoenzyme of about 800 kDa. How the two subunits assemble is not known. The iron-rich cofactors in SiRHP are unique because they are a covalent arrangement of a Fe4S4 cluster attached through a cysteine ligand to an iron-containing porphyrinoid called siroheme. The link between cofactor biogenesis and SiR stability is also ill-defined. By use of hydrogen/deuterium exchange and biochemical analysis, we show that the α8β4 SiR holoenzyme assembles through the N terminus of SiRHP and the NADPH binding domain of SiRFP. By use of small angle x-ray scattering, we explore the structure of the SiRHP N-terminal oligomerization domain. We also report a novel form of the hemoprotein that occurs in the absence of its cofactors. Apo-SiRHP forms a homotetramer, also dependent on its N terminus, that is unable to assemble with SiRFP. From these results, we propose that homotetramerization of apo-SiRHP serves as a quality control mechanism to prevent formation of inactive holoenzyme in the case of limiting cellular siroheme.

  7. The N-terminal Domain of Escherichia coli Assimilatory NADPH-Sulfite Reductase Hemoprotein Is an Oligomerization Domain That Mediates Holoenzyme Assembly*

    PubMed Central

    Askenasy, Isabel; Pennington, Joseph M.; Tao, Yeqing; Marshall, Alan G.; Young, Nicolas L.; Shang, Weifeng; Stroupe, M. Elizabeth

    2015-01-01

    Assimilatory NADPH-sulfite reductase (SiR) from Escherichia coli is a structurally complex oxidoreductase that catalyzes the six-electron reduction of sulfite to sulfide. Two subunits, one a flavin-binding flavoprotein (SiRFP, the α subunit) and the other an iron-containing hemoprotein (SiRHP, the β subunit), assemble to make a holoenzyme of about 800 kDa. How the two subunits assemble is not known. The iron-rich cofactors in SiRHP are unique because they are a covalent arrangement of a Fe4S4 cluster attached through a cysteine ligand to an iron-containing porphyrinoid called siroheme. The link between cofactor biogenesis and SiR stability is also ill-defined. By use of hydrogen/deuterium exchange and biochemical analysis, we show that the α8β4 SiR holoenzyme assembles through the N terminus of SiRHP and the NADPH binding domain of SiRFP. By use of small angle x-ray scattering, we explore the structure of the SiRHP N-terminal oligomerization domain. We also report a novel form of the hemoprotein that occurs in the absence of its cofactors. Apo-SiRHP forms a homotetramer, also dependent on its N terminus, that is unable to assemble with SiRFP. From these results, we propose that homotetramerization of apo-SiRHP serves as a quality control mechanism to prevent formation of inactive holoenzyme in the case of limiting cellular siroheme. PMID:26088143

  8. The study of the mechanism of arsenite toxicity in respiration-deficient cells reveals that NADPH oxidase-derived superoxide promotes the same downstream events mediated by mitochondrial superoxide in respiration-proficient cells.

    PubMed

    Guidarelli, Andrea; Fiorani, Mara; Carloni, Silvia; Cerioni, Liana; Balduini, Walter; Cantoni, Orazio

    2016-09-15

    We herein report the results from a comparative study of arsenite toxicity in respiration-proficient (RP) and -deficient (RD) U937 cells. An initial characterization of these cells led to the demonstration that the respiration-deficient phenotype is not associated with apparent changes in mitochondrial mass and membrane potential. In addition, similar levels of superoxide (O2(.-)) were generated by RP and RD cells in response to stimuli specifically triggering respiratory chain-independent mitochondrial mechanisms or extramitochondrial, NADPH-oxidase dependent, mechanisms. At the concentration of 2.5μM, arsenite elicited selective formation of O2(.-) in the respiratory chain of RP cells, with hardly any contribution of the above mechanisms. Under these conditions, O2(.-) triggered downstream events leading to endoplasmic reticulum (ER) stress, autophagy and apoptosis. RD cells challenged with similar levels of arsenite failed to generate O2(.-) because of the lack of a functional respiratory chain and were therefore resistant to the toxic effects mediated by the metalloid. Their resistance, however, was lost after exposure to four fold greater concentrations of arsenite, coincidentally with the release of O2(.-) mediated by NADPH oxidase. Interestingly, extramitochondrial O2(.-) triggered the same downstream events and an identical mode of death previously observed in RP cells. Taken together, the results obtained in this study indicate that arsenite toxicity is strictly dependent on O2(.-) availability that, regardless of whether generated in the mitochondrial or extramitochondrial compartments, triggers similar downstream events leading to ER stress, autophagy and apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effects of high fat and high carbohydrate diets on liver pyruvate dehydrogenase and its activation by a chemical mediator released from insulin-treated liver particulate fraction: effect of neuraminidase treatment on the chemical mediator activity.

    PubMed

    Begum, N; Tepperman, H M; Tepperman, J

    1983-01-01

    Rats were fed a high fat diet or a high glucose diet for 5-7 days. Basal pyruvate dehydrogenase activity (both the active form and the total enzyme activity) was decreased in liver homogenates from fat diet-adapted rats as compared to those fed the glucose diet. Supernatants from insulin-exposed liver particulate fractions from fat-fed rats showed decreased stimulation of pyruvate dehydrogenase activity as compared to those from glucose-fed rats. There was no difference in the response of the mitochondria from the two groups when they were stimulated by supernatants from insulin-treated liver particulate fractions from stock diet-fed rats. Liver particulate fractions from fat-fed rats showed decreased generation of the chemical activator in response to Concanavalin A and trypsin stimulation. This suggests that fat feeding results in a decrease in membrane protease substrate availability. Treatment of the insulin mediator with neuraminidase and beta-D-galactosidase resulted in inactivation of the mediator. Presence of exogenous enzyme substrates during enzyme digestion protected the mediator from inactivation, suggesting that carbohydrate residues are important in the action of the insulin mediator. This fat diet-induced decrease in the generation of a chemical mediator of insulin action may result from 1) a decrease in insulin binding, shown earlier; 2) a decrease in the amount of protease substrate; and 3) an alteration in its carbohydrate composition, which is important in its ability to activate pyruvate dehydrogenase.

  10. Pyruvate Dehydrogenase Kinase-mediated Glycolytic Metabolic Shift in the Dorsal Root Ganglion Drives Painful Diabetic Neuropathy.

    PubMed

    Rahman, Md Habibur; Jha, Mithilesh Kumar; Kim, Jong-Heon; Nam, Youngpyo; Lee, Maan Gee; Go, Younghoon; Harris, Robert A; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Suk, Kyoungho

    2016-03-11

    The dorsal root ganglion (DRG) is a highly vulnerable site in diabetic neuropathy. Under diabetic conditions, the DRG is subjected to tissue ischemia or lower ambient oxygen tension that leads to aberrant metabolic functions. Metabolic dysfunctions have been documented to play a crucial role in the pathogenesis of diverse pain hypersensitivities. However, the contribution of diabetes-induced metabolic dysfunctions in the DRG to the pathogenesis of painful diabetic neuropathy remains ill-explored. In this study, we report that pyruvate dehydrogenase kinases (PDK2 and PDK4), key regulatory enzymes in glucose metabolism, mediate glycolytic metabolic shift in the DRG leading to painful diabetic neuropathy. Streptozotocin-induced diabetes substantially enhanced the expression and activity of the PDKs in the DRG, and the genetic ablation of Pdk2 and Pdk4 attenuated the hyperglycemia-induced pain hypersensitivity. Mechanistically, Pdk2/4 deficiency inhibited the diabetes-induced lactate surge, expression of pain-related ion channels, activation of satellite glial cells, and infiltration of macrophages in the DRG, in addition to reducing central sensitization and neuroinflammation hallmarks in the spinal cord, which probably accounts for the attenuated pain hypersensitivity. Pdk2/4-deficient mice were partly resistant to the diabetes-induced loss of peripheral nerve structure and function. Furthermore, in the experiments using DRG neuron cultures, lactic acid treatment enhanced the expression of the ion channels and compromised cell viability. Finally, the pharmacological inhibition of DRG PDKs or lactic acid production substantially attenuated diabetes-induced pain hypersensitivity. Taken together, PDK2/4 induction and the subsequent lactate surge induce the metabolic shift in the diabetic DRG, thereby contributing to the pathogenesis of painful diabetic neuropathy.

  11. Malate synthesis and secretion mediated by a manganese-enhanced malate dehydrogenase confers superior manganese tolerance in Stylosanthes guianensis.

    PubMed

    Chen, Zhijian; Sun, Lili; Liu, Pandao; Liu, Guodao; Tian, Jiang; Liao, Hong

    2015-01-01

    Manganese (Mn) toxicity is a major constraint limiting plant growth on acidic soils. Superior Mn tolerance in Stylosanthes spp. has been well documented, but its molecular mechanisms remain largely unknown. In this study, superior Mn tolerance in Stylosanthes guianensis was confirmed, as reflected by a high Mn toxicity threshold. Furthermore, genetic variation of Mn tolerance was evaluated using two S. guianensis genotypes, which revealed that the Fine-stem genotype had higher Mn tolerance than the TPRC2001-1 genotype, as exhibited through less reduction in dry weight under excess Mn, and accompanied by lower internal Mn concentrations. Interestingly, Mn-stimulated increases in malate concentrations and exudation rates were observed only in the Fine-stem genotype. Proteomic analysis of Fine-stem roots revealed that S. guianensis Malate Dehydrogenase1 (SgMDH1) accumulated in response to Mn toxicity. Western-blot and quantitative PCR analyses showed that Mn toxicity resulted in increased SgMDH1 accumulation only in Fine-stem roots, but not in TPRC2001-1. The function of SgMDH1-mediated malate synthesis was verified through in vitro biochemical analysis of SgMDH1 activities against oxaloacetate, as well as in vivo increased malate concentrations in yeast (Saccharomyces cerevisiae), soybean (Glycine max) hairy roots, and Arabidopsis (Arabidopsis thaliana) with SgMDH1 overexpression. Furthermore, SgMDH1 overexpression conferred Mn tolerance in Arabidopsis, which was accompanied by increased malate exudation and reduced plant Mn concentrations, suggesting that secreted malate could alleviate Mn toxicity in plants. Taken together, we conclude that the superior Mn tolerance of S. guianensis is achieved by coordination of internal and external Mn detoxification through malate synthesis and exudation, which is regulated by SgMDH1 at both transcription and protein levels. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Malate Synthesis and Secretion Mediated by a Manganese-Enhanced Malate Dehydrogenase Confers Superior Manganese Tolerance in Stylosanthes guianensis1

    PubMed Central

    Chen, Zhijian; Sun, Lili; Liu, Pandao; Liu, Guodao; Tian, Jiang; Liao, Hong

    2015-01-01

    Manganese (Mn) toxicity is a major constraint limiting plant growth on acidic soils. Superior Mn tolerance in Stylosanthes spp. has been well documented, but its molecular mechanisms remain largely unknown. In this study, superior Mn tolerance in Stylosanthes guianensis was confirmed, as reflected by a high Mn toxicity threshold. Furthermore, genetic variation of Mn tolerance was evaluated using two S. guianensis genotypes, which revealed that the Fine-stem genotype had higher Mn tolerance than the TPRC2001-1 genotype, as exhibited through less reduction in dry weight under excess Mn, and accompanied by lower internal Mn concentrations. Interestingly, Mn-stimulated increases in malate concentrations and exudation rates were observed only in the Fine-stem genotype. Proteomic analysis of Fine-stem roots revealed that S. guianensis Malate Dehydrogenase1 (SgMDH1) accumulated in response to Mn toxicity. Western-blot and quantitative PCR analyses showed that Mn toxicity resulted in increased SgMDH1 accumulation only in Fine-stem roots, but not in TPRC2001-1. The function of SgMDH1-mediated malate synthesis was verified through in vitro biochemical analysis of SgMDH1 activities against oxaloacetate, as well as in vivo increased malate concentrations in yeast (Saccharomyces cerevisiae), soybean (Glycine max) hairy roots, and Arabidopsis (Arabidopsis thaliana) with SgMDH1 overexpression. Furthermore, SgMDH1 overexpression conferred Mn tolerance in Arabidopsis, which was accompanied by increased malate exudation and reduced plant Mn concentrations, suggesting that secreted malate could alleviate Mn toxicity in plants. Taken together, we conclude that the superior Mn tolerance of S. guianensis is achieved by coordination of internal and external Mn detoxification through malate synthesis and exudation, which is regulated by SgMDH1 at both transcription and protein levels. PMID:25378694

  13. Pyruvate Dehydrogenase Kinase 4 Deficiency Results in Expedited Cellular Proliferation through E2F1-Mediated Increase of Cyclins.

    PubMed

    Choiniere, Jonathan; Wu, Jianguo; Wang, Li

    2017-03-01

    Hepatocellular carcinoma (HCC) is a common form of cancer with prevalence worldwide. There are many factors that lead to the development and progression of HCC. This study aimed to identify potential new tumor suppressors, examine their function as cell cycle modulators, and investigate their impact on the cyclin family of proteins and cyclin-dependent kinases (CDKs). In this study, the pyruvate dehydrogenase kinase (PDK)4 gene was shown to have potential tumor suppressor characteristics. PDK4 expression was significantly downregulated in human HCC. Pdk4(-/-) mouse liver exhibited a consistent increase in cell cycle regulator proteins, including cyclin D1, cyclin E1, cyclin A2, some associated CDKs, and transcription factor E2F1. PDK4-knockdown HCC cells also progressed faster through the cell cycle, which concurrently expressed high levels of cyclins and E2F1 as seen in the Pdk4(-/-) mice. Interestingly, the induced cyclin E1 and cyclin A2 caused by Pdk4 deficiency was repressed by arsenic treatment in mouse liver and in HCC cells. E2f1 deficiency in E2f1(-/-) mouse liver or knockdown E2F1 using small hairpin RNAs in HCC cells significantly decreased cyclin E1, cyclin A2, and E2F1 proteins. In contrast, inhibition of PDK4 activity in HCC cells increased cyclin E1, cyclin A2, and E2F1 proteins. These findings demonstrate that PDK4 is a critical regulator of hepatocyte proliferation via E2F1-mediated regulation of cyclins. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Pyruvate Dehydrogenase Kinase-mediated Glycolytic Metabolic Shift in the Dorsal Root Ganglion Drives Painful Diabetic Neuropathy*

    PubMed Central

    Rahman, Md Habibur; Jha, Mithilesh Kumar; Kim, Jong-Heon; Nam, Youngpyo; Lee, Maan Gee; Go, Younghoon; Harris, Robert A.; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Suk, Kyoungho

    2016-01-01

    The dorsal root ganglion (DRG) is a highly vulnerable site in diabetic neuropathy. Under diabetic conditions, the DRG is subjected to tissue ischemia or lower ambient oxygen tension that leads to aberrant metabolic functions. Metabolic dysfunctions have been documented to play a crucial role in the pathogenesis of diverse pain hypersensitivities. However, the contribution of diabetes-induced metabolic dysfunctions in the DRG to the pathogenesis of painful diabetic neuropathy remains ill-explored. In this study, we report that pyruvate dehydrogenase kinases (PDK2 and PDK4), key regulatory enzymes in glucose metabolism, mediate glycolytic metabolic shift in the DRG leading to painful diabetic neuropathy. Streptozotocin-induced diabetes substantially enhanced the expression and activity of the PDKs in the DRG, and the genetic ablation of Pdk2 and Pdk4 attenuated the hyperglycemia-induced pain hypersensitivity. Mechanistically, Pdk2/4 deficiency inhibited the diabetes-induced lactate surge, expression of pain-related ion channels, activation of satellite glial cells, and infiltration of macrophages in the DRG, in addition to reducing central sensitization and neuroinflammation hallmarks in the spinal cord, which probably accounts for the attenuated pain hypersensitivity. Pdk2/4-deficient mice were partly resistant to the diabetes-induced loss of peripheral nerve structure and function. Furthermore, in the experiments using DRG neuron cultures, lactic acid treatment enhanced the expression of the ion channels and compromised cell viability. Finally, the pharmacological inhibition of DRG PDKs or lactic acid production substantially attenuated diabetes-induced pain hypersensitivity. Taken together, PDK2/4 induction and the subsequent lactate surge induce the metabolic shift in the diabetic DRG, thereby contributing to the pathogenesis of painful diabetic neuropathy. PMID:26769971

  15. Crystal structures and atomic model of NADPH oxidase.

    PubMed

    Magnani, Francesca; Nenci, Simone; Millana Fananas, Elisa; Ceccon, Marta; Romero, Elvira; Fraaije, Marco W; Mattevi, Andrea

    2017-06-27

    NADPH oxidases (NOXs) are the only enzymes exclusively dedicated to reactive oxygen species (ROS) generation. Dysregulation of these polytopic membrane proteins impacts the redox signaling cascades that control cell proliferation and death. We describe the atomic crystal structures of the catalytic flavin adenine dinucleotide (FAD)- and heme-binding domains of Cylindrospermum stagnale NOX5. The two domains form the core subunit that is common to all seven members of the NOX family. The domain structures were then docked in silico to provide a generic model for the NOX family. A linear arrangement of cofactors (NADPH, FAD, and two membrane-embedded heme moieties) injects electrons from the intracellular side across the membrane to a specific oxygen-binding cavity on the extracytoplasmic side. The overall spatial organization of critical interactions is revealed between the intracellular loops on the transmembrane domain and the NADPH-oxidizing dehydrogenase domain. In particular, the C terminus functions as a toggle switch, which affects access of the NADPH substrate to the enzyme. The essence of this mechanistic model is that the regulatory cues conformationally gate NADPH-binding, implicitly providing a handle for activating/deactivating the very first step in the redox chain. Such insight provides a framework to the discovery of much needed drugs that selectively target the distinct members of the NOX family and interfere with ROS signaling.

  16. Cyclic AMP and AKAP-mediated targeting of protein kinase A regulates lactate dehydrogenase subunit A mRNA stability.

    PubMed

    Jungmann, Richard A; Kiryukhina, Olga

    2005-07-01

    Expression of the lactate dehydrogenase A subunit (ldh-A) gene is controlled through transcriptional as well as post-transcriptional mechanisms. Both mechanisms involve activation of protein kinase A (PKA) into its subunits and subsequent phosphorylation and activation of several key regulatory factors. In rat C6 glioma cells, post-transcriptional gene regulation occurs through PKA-mediated stabilization of LDH-A mRNA and subsequent increase of intracellular LDH-A mRNA levels. Previous studies have demonstrated a cAMP-stabilizing region (CSR) located in the LDH-A 3'-untranslated region which, in combination with several phosphorylated CSR-binding proteins (CSR-BP), regulates the PKA-mediated stabilization of LDH-A mRNA. However, the mechanistic details of interaction of CSR with proteins as they pertain to mRNA stabilization by PKA are so far largely unknown. In this study we tested the hypothesis that ribosomal protein extracts (RSW) from glioma cells contain PKA regulatory (RII) and catalytic (C) subunits that, in combination with a protein kinase A anchoring protein (AKAP 95) and CSR-BPs participate in forming CSR-protein complexes that are responsible for mRNA stability regulation. To demonstrate the importance of CSR-protein complex formation, the PKA subunits and AKAP 95 were removed from the RSW by immunoprecipitation, and the antigen-deleted RSW were subjected to CSR binding analysis using gel mobility shift and UV cross-linking. It was shown that AKAP 95 as well as RII formed a direct linkage with CSR during CSR-protein complex formation. In contrast, the catalytic subunit formed part of the CSR-protein complex but did not bind to CSR directly in a covalent linkage. To determine whether formation of CSR complexes that included C, RII, and AKAP 95 constituted a functional event and was necessary for mRNA stabilization, cell-free decay reactions were carried out with RSW extracts, and the kinetics of decay of LDH-A mRNA was determined. Depletion of PKA

  17. Metyrapone prevents cortisone-induced preadipocyte differentiation by depleting luminal NADPH of the endoplasmic reticulum.

    PubMed

    Marcolongo, Paola; Senesi, Silvia; Gava, Barbara; Fulceri, Rosella; Sorrentino, Vincenzo; Margittai, Eva; Lizák, Beáta; Csala, Miklós; Bánhegyi, Gábor; Benedetti, Angelo

    2008-08-01

    Preadipocyte differentiation is greatly affected by prereceptorial glucocorticoid activation catalyzed by 11beta-hydroxysteroid dehydrogenase type 1 in the lumen of the endoplasmic reticulum. The role of the local NADPH pool in this process was investigated using metyrapone as an NADPH-depleting agent. Metyrapone administered at low micromolar concentrations caused the prompt oxidation of the endogenous NADPH, inhibited the reduction of cortisone and enhanced the oxidation of cortisol in native rat liver microsomal vesicles. However, in permeabilized microsomes, it only slightly decreased both NADPH-dependent cortisone reduction and NADP(+)-dependent cortisol oxidation. Accordingly, metyrapone administration caused a switch in 11beta-hydroxysteroid dehydrogenase activity from reductase to dehydrogenase in both 3T3-L1-derived and human stem cell-derived differentiated adipocytes. Metyrapone greatly attenuated the induction of 11beta-hydroxysteroid dehydrogenase type 1 and the accumulation of lipid droplets during preadipocyte differentiation when 3T3-L1 cells were stimulated with cortisone, while it was much less effective in case of cortisol or dexamethasone. In conclusion, the positive feedback of glucocorticoid activation during preadipocyte differentiation is interrupted by metyrapone, which depletes NADPH in the endoplasmic reticulum. The results also indicate that the reduced state of luminal pyridine nucleotides in the endoplasmic reticulum is important in the process of adipogenesis.

  18. Engineering of Corynebacterium glutamicum with an NADPH-Generating Glycolytic Pathway for l-Lysine Production ▿

    PubMed Central

    Takeno, Seiki; Murata, Ryosuke; Kobayashi, Ryosuke; Mitsuhashi, Satoshi; Ikeda, Masato

    2010-01-01

    A sufficient supply of NADPH is a critical factor in l-lysine production by Corynebacterium glutamicum. Endogenous NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) of C. glutamicum was replaced with nonphosphorylating NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) of Streptococcus mutans, which catalyzes the reaction of glyceraldehyde 3-phosphate to 3-phosphoglycerate with the reduction of NADP+ to NADPH, resulting in the reconstruction of the functional glycolytic pathway. Although the growth of the engineered strain on glucose was significantly retarded, a suppressor mutant with an increased ability to utilize sugars was spontaneously isolated from the engineered strain. The suppressor mutant was characterized by the properties of GapN as well as the nucleotide sequence of the gene, confirming that no change occurred in either the activity or the basic properties of GapN. The suppressor mutant was engineered into an l-lysine-producing strain by plasmid-mediated expression of the desensitized lysC gene, and the performance of the mutant as an l-lysine producer was evaluated. The amounts of l-lysine produced by the suppressor mutant were larger than those produced by the reference strain (which was created by replacement of the preexisting gapN gene in the suppressor mutant with the original gapA gene) by ∼70% on glucose, ∼120% on fructose, and ∼100% on sucrose, indicating that the increased l-lysine production was attributed to GapN. These results demonstrate effective l-lysine production by C. glutamicum with an additional source of NADPH during glycolysis. PMID:20851994

  19. Salt-Inducible Kinase 3 Provides Sugar Tolerance by Regulating NADPH/NADP(+) Redox Balance.

    PubMed

    Teesalu, Mari; Rovenko, Bohdana M; Hietakangas, Ville

    2017-02-06

    Nutrient-sensing pathways respond to changes in the levels of macronutrients, such as sugars, lipids, or amino acids, and regulate metabolic pathways to maintain organismal homeostasis [1, 2]. Consequently, nutrient sensing provides animals with the metabolic flexibility necessary for enduring temporal fluctuations in nutrient intake. Recent studies have shown that an animal's ability to survive on a high-sugar diet is determined by sugar-responsive gene regulation [3-8]. It remains to be elucidated whether other levels of metabolic control, such as post-translational regulation of metabolic enzymes, also contribute to organismal sugar tolerance. Furthermore, the sugar-regulated metabolic pathways contributing to sugar tolerance remain insufficiently characterized. Here, we identify Salt-inducible kinase 3 (SIK3), a member of the AMP-activated protein kinase (AMPK)-related kinase family, as a key determinant of Drosophila sugar tolerance. SIK3 allows sugar-feeding animals to increase the reductive capacity of nicotinamide adenine dinucleotide phosphate (NADPH/NADP(+)). NADPH mediates the reduction of the intracellular antioxidant glutathione, which is essential for survival on a high-sugar diet. SIK3 controls NADP(+) reduction by phosphorylating and activating Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway. SIK3 gene expression is regulated by the sugar-regulated transcription factor complex Mondo-Mlx, which was previously identified as a key determinant of sugar tolerance. SIK3 converges with Mondo-Mlx in sugar-induced activation of G6PD, and simultaneous inhibition of SIK3 and Mondo-Mlx leads to strong synergistic lethality on a sugar-containing diet. In conclusion, SIK3 cooperates with Mondo-Mlx to maintain organismal sugar tolerance through the regulation of NADPH/NADP(+) redox balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Phytochrome-mediated regulation of plant respiration and photorespiration.

    PubMed

    Igamberdiev, Abir U; Eprintsev, Alexander T; Fedorin, Dmitry N; Popov, Vasily N

    2014-02-01

    The expression of genes encoding various enzymes participating in photosynthetic and respiratory metabolism is regulated by light via the phytochrome system. While many photosynthetic, photorespiratory and some respiratory enzymes, such as the rotenone-insensitive NADH and NADPH dehydrogenases and the alternative oxidase, are stimulated by light, succinate dehydrogenase, subunits of the pyruvate dehydrogenase complex, cytochrome oxidase and fumarase are inhibited via the phytochrome mechanism. The effect of light, therefore, imposes limitations on the tricarboxylic acid cycle and on the mitochondrial electron transport coupled to ATP synthesis, while the non-coupled pathways become activated. Phytochrome-mediated regulation of gene expression also creates characteristic distribution patterns of photosynthetic, photorespiratory and respiratory enzymes across the leaf generating different populations of mitochondria, either enriched by glycine decarboxylase (in the upper part) or by succinate dehydrogenase (in the bottom part of the leaf). © 2013 John Wiley & Sons Ltd.

  1. NADPH oxidase-derived H2O2 mediates the regulatory effects of microglia on astrogliosis in experimental models of Parkinson's disease.

    PubMed

    Hou, Liyan; Zhou, Xueying; Zhang, Cong; Wang, Ke; Liu, Xiaofang; Che, Yuning; Sun, Fuqiang; Li, Huihua; Wang, Qingshan; Zhang, Dan; Hong, Jau-Shyong

    2017-02-22

    Astrogliosis has long been recognized in Parkinson's disease (PD), the most common neurodegenerative movement disorder. However, the mechanisms of how astroglia become activated remain unclear. Reciprocal interactions between microglia and astroglia play a pivotal role in regulating the activities of astroglia. The purpose of this study is to investigate the mechanism by which microglia regulate astrogliosis by using lipopolysaccharide (LPS) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse PD models. We found that the activation of microglia preceded astroglia in the substantia nigra of mice treated with either LPS or MPTP. Furthermore, suppression of microglial activation by pharmacological inhibition or genetic deletion of NADPH oxidase (NOX2) in mice attenuated astrogliosis. The important role of NOX2 in microglial regulation of astrogliosis was further mirrored in a mixed-glia culture system. Mechanistically, H2O2, a product of microglial NOX2 activation, serves as a direct signal to regulate astrogliosis. Astrogliosis was induced by H2O2 through a process in which extracellularly generated H2O2 diffused into the cytoplasm and subsequently stimulated activation of transcription factors, STAT1 and STAT3. STAT1/3 activation regulated the immunological functions of H2O2-induced astrogliosis since AG490, an inhibitor of STAT1/3, attenuated the gene expressions of both proinflammatory and neurotrophic factors in H2O2-treated astrocyte. Our findings indicate that microglial NOX2-generated H2O2 is able to regulate the immunological functions of astroglia via a STAT1/3-dependent manner, providing additional evidence for the immune pathogenesis and therapeutic studies of PD.

  2. Yarrowia lipolytica dehydrogenase/reductase: an enzyme tolerant for lipophilic compounds and carbohydrate substrates.

    PubMed

    Napora, Kamila; Wrodnigg, Tanja M; Kosmus, Patrick; Thonhofer, Martin; Robins, Karen; Winkler, Margit

    2013-06-01

    Yarrowia lipolytica short chain dehydrogenase/reductase (YlSDR) was expressed in Escherichia coli, purified and characterized in vitro. The substrate scope for YlSDR mediated oxidation was investigated with alcohols and unprotected carbohydrates spectrophotometrically, revealing a preference for secondary compared to primary alcohols. In reduction direction, YlSDR was highly active on ribulose and fructose, suggesting that the enzyme is a mannitol-2-dehydrogenase. In order to explore substrate tolerance especially for space-demanding, lipophilic protecting groups, 5-O-trityl-D-ribitol and 5-O-trityl-α,β-D-ribose were investigated as substrates: YlSDR oxidized 5-O-trityl-D-ribitol and 5-O-trityl-α,β-D-ribose and reduced the latter at the expense of NADP(H). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Dihydroorotate dehydrogenase (DHODH) inhibitors affect ATP depletion, endogenous ROS and mediate S-phase arrest in breast cancer cells.

    PubMed

    Mohamad Fairus, A K; Choudhary, B; Hosahalli, S; Kavitha, N; Shatrah, O

    2017-04-01

    Dihydroorotate dehydrogenase (DHODH) is the key enzyme in de novo biosynthesis of pyrimidine in both prokaryotes and eukaryotes. The de novo pathway of pyrimidine biosynthesis is essential in cancer cells proliferation. Leflunomide is an approved DHODH inhibitor that has been widely used for the treatment of arthritis. Similarly, brequinar sodium is another DHODH inhibitor that showed anti-tumour effect in MC38 colon carcinoma cells when used in combination with fluorouracil. Despite the potential role of DHODH inhibitors in cancer therapy, their mechanisms of action remain obscure and await further elucidation. Here, we evaluated the effect of DHODH inhibitors on the production of ATP and ROS in sensitive and non-sensitive breast cancer cells. Subsequently, the effects of DHODH inhibitors on cell cycle as well as on signalling molecules such as p53, p65 and STAT6 were evaluated in sensitive T-47D and non-sensitive MDAMB-436 cells. The correlations between DHODH protein expression, proliferation speed and sensitivity to DHODH inhibitors were also investigated in a panel of cancer cell lines. DHODH inhibitors-sensitive T-47D and MDAMB-231 cells appeared to preserve ROS production closely to endogenous ROS level whereas the opposite was observed in non-sensitive MDAMB-436 and W3.006 cells. In addition, we observed approximately 90% of intracellular ATP depletion in highly sensitive T-47D and MDAMB-231 cells compared to non-sensitive MDAMB-436 cells. There was significant over-expression of p53, p65 and STAT6 signalling molecules in sensitive cells which may be involved in mediating the S-phase arrest in cell cycle progression. The current study suggests that DHODH inhibitors are most effective in cells that express high levels of DHODH enzyme. The inhibition of cell proliferation by these inhibitors appears to be accompanied by ROS production as well as ATP depletion. The increase in expression of signalling molecules observed may be due to pyrimidine depletion

  4. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode.

    PubMed

    Jenkins, Peter; Tuurala, Saara; Vaari, Anu; Valkiainen, Matti; Smolander, Maria; Leech, Dónal

    2012-03-10

    Enzyme electrodes show great potential for many applications, as biosensors and more recently as anodes and cathodes in biocatalytic fuel cells for power generation. Enzymes have advantages over metal catalysts, as they provide high specificity and reaction rates, while operating under mild conditions. Here we report on studies related to development of mass-producible, completely enzymatic printed glucose/oxygen biofuel cells. The cells are based on filter paper coated with conducting carbon inks containing mediators and laccase, for reduction of oxygen, or aldose dehydrogenase, for oxidation of glucose. Mediator performance in these printed formats is compared to relative rate constants for the enzyme-mediator reaction in solution, for a range of anode and cathode mediators. The power output and stability of fuels cells using an acidophilic laccase isolated from Trametes hirsuta is greater, at pH 5, than that for cells based on Melanocarpus albomyces laccase, that shows optimal activity closer to neutral pH, at pH 6. Highest power output, although of limited stability, was observed for ThL/ABTS cathodes, providing a maximum power density of 3.5 μWcm(-2) at 0.34 V, when coupled to an ALDH glucose anode mediated by an osmium complex. The stability of cell voltage above a threshold of 200 mV under a moderate 75 kΩ load is used to benchmark printed fuel cell performance. Highest stability was obtained for a printed fuel cell using osmium complexes as mediators of glucose oxidation by aldose dehydrogenase, and oxygen reduction by T. hirsuta laccase, maintaining cell voltage above 200 mV for 137 h at pH 5. These results provide promising directions for further development of mass-producible, completely enzymatic, printed biofuel cells.

  5. Physiological Regulation of Isocitrate Dehydrogenase and the Role of 2-Oxoglutarate in Prochlorococcus sp. Strain PCC 9511

    PubMed Central

    Diez, Jesús; Gómez-Baena, Guadalupe; Rangel-Zúñiga, Oriol Alberto; García-Fernández, José Manuel

    2014-01-01

    The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus. PMID:25061751

  6. Cytosolic NADPH Homeostasis in Glucose-starved Procyclic Trypanosoma brucei Relies on Malic Enzyme and the Pentose Phosphate Pathway Fed by Gluconeogenic Flux*

    PubMed Central

    Allmann, Stefan; Morand, Pauline; Ebikeme, Charles; Gales, Lara; Biran, Marc; Hubert, Jane; Brennand, Ana; Mazet, Muriel; Franconi, Jean-Michel; Michels, Paul A. M.; Portais, Jean-Charles; Boshart, Michael; Bringaud, Frédéric

    2013-01-01

    All living organisms depend on NADPH production to feed essential biosyntheses and for oxidative stress defense. Protozoan parasites such as the sleeping sickness pathogen Trypanosoma brucei adapt to different host environments, carbon sources, and oxidative stresses during their infectious life cycle. The procyclic stage develops in the midgut of the tsetse insect vector, where they rely on proline as carbon source, although they prefer glucose when grown in rich media. Here, we investigate the flexible and carbon source-dependent use of NADPH synthesis pathways in the cytosol of the procyclic stage. The T. brucei genome encodes two cytosolic NADPH-producing pathways, the pentose phosphate pathway (PPP) and the NADP-dependent malic enzyme (MEc). Reverse genetic blocking of those pathways and a specific inhibitor (dehydroepiandrosterone) of glucose-6-phosphate dehydrogenase together established redundancy with respect to H2O2 stress management and parasite growth. Blocking both pathways resulted in ∼10-fold increase of susceptibility to H2O2 stress and cell death. Unexpectedly, the same pathway redundancy was observed in glucose-rich and glucose-depleted conditions, suggesting that gluconeogenesis can feed the PPP to provide NADPH. This was confirmed by (i) a lethal phenotype of RNAi-mediated depletion of glucose-6-phosphate isomerase (PGI) in the glucose-depleted Δmec/Δmec null background, (ii) an ∼10-fold increase of susceptibility to H2O2 stress observed for the Δmec/Δmec/RNAiPGI double mutant when compared with the single mutants, and (iii) the 13C enrichment of glycolytic and PPP intermediates from cells incubated with [U-13C]proline, in the absence of glucose. Gluconeogenesis-supported NADPH supply may also be important for nucleotide and glycoconjugate syntheses in the insect host. PMID:23665470

  7. TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy.

    PubMed

    Kowluru, Renu A; Kowluru, Anjaneyulu; Veluthakal, Rajakrishnan; Mohammad, Ghulam; Syed, Ismail; Santos, Julia M; Mishra, Manish

    2014-05-01

    In diabetes, increased retinal oxidative stress is seen before the mitochondria are damaged. Phagocyte-like NADPH oxidase-2 (NOX2) is the predominant cytosolic source of reactive oxygen species (ROS). Activation of Ras-related C3 botulinum toxin substrate 1 (RAC1), a NOX2 holoenzyme member, is necessary for NOX2 activation and ROS generation. In this study we assessed the role of T cell lymphoma invasion and metastasis (TIAM1), a guanine nucleotide exchange factor for RAC1, in RAC1 and NOX2 activation and the onset of mitochondrial dysfunction in in vitro and in vivo models of glucotoxicity and diabetes. RAC1 and NOX2 activation, ROS generation, mitochondrial damage and cell apoptosis were quantified in bovine retinal endothelial cells exposed to high glucose concentrations, in the retina from normal and streptozotocin-induced diabetic rats and mice, and the retina from human donors with diabetic retinopathy. High glucose activated RAC1 and NOX2 (expression and activity) and increased ROS in endothelial cells before increasing mitochondrial ROS and mitochondrial DNA (mtDNA) damage. N6-[2-[[4-(diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine, trihydrochloride (NSC23766), a known inhibitor of TIAM1-RAC1, markedly attenuated RAC1 activation, total and mitochondrial ROS, mtDNA damage and cell apoptosis. An increase in NOX2 expression and membrane association of RAC1 and p47(phox) were also seen in diabetic rat retina. Administration of NSC23766 to diabetic mice attenuated retinal RAC1 activation and ROS generation. RAC1 activation and p47(phox) expression were also increased in the retinal microvasculature from human donors with diabetic retinopathy. The TIAM1-RAC1-NOX2 signalling axis is activated in the initial stages of diabetes to increase intracellular ROS leading to mitochondrial damage and accelerated capillary cell apoptosis. Strategies targeting TIAM1-RAC1 signalling could have the potential to halt the progression of

  8. Nox4 NADPH Oxidase Mediates Peroxynitrite-dependent Uncoupling of Endothelial Nitric-oxide Synthase and Fibronectin Expression in Response to Angiotensin II

    PubMed Central

    Lee, Doug-Yoon; Wauquier, Fabien; Eid, Assaad A.; Roman, Linda J.; Ghosh-Choudhury, Goutam; Khazim, Khaled; Block, Karen; Gorin, Yves

    2013-01-01

    Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces endothelial nitric-oxide synthase (eNOS) uncoupling with enhanced generation of reactive oxygen species (ROS) and decreased production of NO. Ang II promotes a rapid increase in 3-nitrotyrosine formation, and uric acid attenuates Ang II-induced decrease in NO bioavailability, demonstrating that peroxynitrite mediates the effects of Ang II on eNOS dysfunction. Ang II rapidly up-regulates Nox4 protein. Inhibition of Nox4 abolishes the increase in ROS and peroxynitrite generation as well as eNOS uncoupling triggered by Ang II, indicating that Nox4 is upstream of eNOS. This pathway contributes to Ang II-mediated fibronectin accumulation in MCs. Ang II also elicits an increase in mitochondrial abundance of Nox4 protein, and the oxidase contributes to ROS production in mitochondria. Overexpression of mitochondrial manganese superoxide dismutase prevents the stimulatory effects of Ang II on mitochondrial ROS production, loss of NO availability, and MC fibronectin accumulation, whereas manganese superoxide dismutase depletion increases mitochondrial ROS, NO deficiency, and fibronectin synthesis basally and in cells exposed to Ang II. This work provides the first evidence that uncoupled eNOS is responsible for Ang II-induced MC fibronectin accumulation and identifies Nox4 and mitochondrial ROS as mediators of eNOS dysfunction. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal fibrosis. PMID:23940049

  9. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress#

    PubMed Central

    Wang, Yi-Ping; Zhou, Li-Sha; Zhao, Yu-Zheng; Wang, Shi-Wen; Chen, Lei-Lei; Liu, Li-Xia; Ling, Zhi-Qiang; Hu, Fu-Jun; Sun, Yi-Ping; Zhang, Jing-Ye; Yang, Chen; Yang, Yi; Xiong, Yue; Guan, Kun-Liang; Ye, Dan

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re-expression of wild-type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2-dependent manner. The SIRT2-mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress. PMID:24769394

  10. Enzymatic product-mediated stabilization of CdS quantum dots produced in situ: application for detection of reduced glutathione, NADPH, and glutathione reductase activity.

    PubMed

    Garai-Ibabe, Gaizka; Saa, Laura; Pavlov, Valeri

    2013-06-04

    Glutathione is the most abundant nonprotein molecule in the cell and plays an important role in many biological processes, including the maintenance of intracellular redox states, detoxification, and metabolism. Furthermore, glutathione levels have been linked to several human diseases, such as AIDS, Alzheimer disease, alcoholic liver disease, cardiovascular disease, diabetes mellitus, and cancer. A novel concept in bioanalysis is introduced and applied to the highly sensitive and inexpensive detection of reduced glutathione (GSH), over its oxidized form (GSSG), and glutathione reductase (GR) in human serum. This new fluorogenic bioanalytical system is based on the GSH-mediated stabilization of growing CdS nanoparticles. The sensitivity of this new assay is 5 pM of GR, which is 3 orders of magnitude better than other fluorogenic methods previously reported.

  11. Arsenic-induced stress activates sulfur metabolism in different organs of garlic (Allium sativum L.) plants accompanied by a general decline of the NADPH-generating systems in roots.

    PubMed

    Ruíz-Torres, Carmelo; Feriche-Linares, Rafael; Rodríguez-Ruíz, Marta; Palma, José M; Corpas, Francisco J

    2017-04-01

    Arsenic (As) contamination is a major environmental problem which affects most living organisms from plants to animals. This metalloid poses a health risk for humans through its accumulation in crops and water. Using garlic (Allium sativum L.) plants as model crop exposed to 200μM arsenate, a comparative study among their main organs (roots and shoots) was made. The analysis of arsenic, glutathione (GSH), phytochelatins (PCs) and lipid peroxidation contents with the activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate-glutathione cycle), and the main components of the NADPH-generating system, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH) was carried out. Data showed a correlation among arsenic accumulation in the different organs, PCs content and the antioxidative response, with a general decline of the NADPH-generating systems in roots. Overall, our results demonstrate that there are clear connections between arsenic uptake, increase of their As-chelating capacity in roots and a decline of antioxidative enzyme activities (catalase and the ascorbate peroxidase) whose alteration provoked As-induced oxidative stress. Thus, the data suggest that roots act as barrier of arsenic mediated by a prominent sulfur metabolism which is characterized by the biosynthesis of high amount of PCs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Oxidation of External NAD(P)H by Mitochondria from Taproots and Tissue Cultures of Sugar Beet (Beta vulgaris).

    PubMed Central

    Zottini, M.; Mandolino, G.; Zannoni, D.

    1993-01-01

    The present study compares the exogenous NAD(P)H oxidation and the membrane potential ([delta][psi]) generated in mitochondria isolated from different tissues of an important agricultural crop, sugar beet (Beta vulgaris}. We observed that mitochondria from taproots, cold-stored taproots, and in vitro-grown tissue cultures contain a functional NADH dehydrogenase, whereas only those isolated from tissue cultures displayed a functional NAD(P)H dehydrogenase. It is interesting that the NADH-dependent [delta][psi] of mitochondria from cold-stored taproots and from tissue cultures was not affected by free Ca2+ ions, whereas free Ca2+ was required for the mitochondrial NADPH oxidation by in vitro-grown cells and cytosolic NADH oxidation by mitochondria from fresh taproots. A tentative model accounting for the different response to Ca2+ ions of the NADH dehydrogenase in mitochondria from cold-stored taproots and tissue cultures of B. vulgaris is discussed. PMID:12231847

  13. Nox4 NAD(P)H Oxidase Mediates Src-dependent Tyrosine Phosphorylation of PDK-1 in Response to Angiotensin II

    PubMed Central

    Block, Karen; Eid, Assaad; Griendling, Kathy K.; Lee, Duck-Yoon; Wittrant, Yohann; Gorin, Yves

    2008-01-01

    Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to hypertrophy and extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces an increase in PDK-1 (3-phosphoinositide-dependent protein kinase-1) kinase activity that required its phosphorylation on tyrosine 9 and 373/376. Introduction into the cells of PDK-1, mutated on these tyrosine residues or kinase-inactive, attenuates Ang II-induced hypertrophy and fibronectin accumulation. Ang II-mediated PDK-1 activation and tyrosine phosphorylation (total and on residues 9 and 373/376) are inhibited in cells transfected with small interfering RNA for Src, indicating that Src is upstream of PDK-1. In cells expressing oxidation-resistant Src mutant C487A, Ang II-induced hypertrophy and fibronectin expression are prevented, suggesting that the pathway is redox-sensitive. Ang II also up-regulates Nox4 protein, and siNox4 abrogates the Ang II-induced increase in intracellular reactive oxygen species (ROS) generation. Small interfering RNA for Nox4 also inhibits Ang II-induced activation of Src and PDK-1 tyrosine phosphorylation (total and on residues 9 and 373/376), demonstrating that Nox4 functions upstream of Src and PDK-1. Importantly, inhibition of Nox4, Src, or PDK-1 prevents the stimulatory effect of Ang II on fibronectin accumulation and cell hypertrophy. This work provides the first evidence that Nox4-derived ROS are responsible for Ang II-induced PDK-1 tyrosine phosphorylation and activation through stimulation of Src. Importantly, this pathway contributes to Ang II-induced MC hypertrophy and fibronectin accumulation. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal hypertrophy and fibrosis. PMID:18559349

  14. Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells.

    PubMed

    Tesoriere, L; Attanzio, A; Allegra, M; Gentile, C; Livrea, M A

    2014-02-01

    Dietary redox-active/antioxidant phytochemicals may help control or mitigate the inflammatory response in chronic inflammatory bowel disease (IBD). In the present study, the anti-inflammatory activity of indicaxanthin (Ind), a pigment from the edible fruit of cactus pear (Opuntia ficus-indica, L.), was shown in an IBD model consisting of a human intestinal epithelial cell line (Caco-2 cells) stimulated by IL-1β, a cytokine known to play a major role in the initiation and amplification of inflammatory activity in IBD. The exposure of Caco-2 cells to IL-1β brought about the activation of NADPH oxidase (NOX-1) and the generation of reactive oxygen species (ROS) to activate intracellular signalling leading to the activation of NF-κB, with the over-expression of inflammatory enzymes and release of pro-inflammatory mediators. The co-incubation of the cells with Ind, at a nutritionally relevant concentration (5-25 μM), and IL-1β prevented the release of the pro-inflammatory cytokines IL-6 and IL-8, PGE2 and NO, the formation of ROS and the loss of thiols in a dose-dependent manner. The co-incubation of the cells with Ind and IL-1β also prevented the IL-1β-induced increase of epithelial permeability. It was also shown that the activation of NOX-1 and NF-κB was prevented by Ind and the expression of COX-2 and inducible NO synthase was reduced. The uptake of Ind in Caco-2 cell monolayers appeared to be unaffected by the inflamed state of the cells. In conclusion, our findings suggest that the dietary pigment Ind may have the potential to modulate inflammatory processes at the intestinal level.

  15. RNAi-mediated silencing of a pyruvate dehydrogenase kinase enhances triacylglycerol biosynthesis in the oleaginous marine alga Nannochloropsis salina.

    PubMed

    Ma, Xiaonian; Yao, Lina; Yang, Bo; Lee, Yuan Kun; Chen, Feng; Liu, Jin

    2017-09-13

    Oleaginous microalgae have been emerging as the third-generation feedstocks for biofuel production. Genetic manipulation for improving triacylglycerol (TAG) accumulation represents a promising approach towards the economics of microalgal biofuels. Acetyl-CoA, the essential carbon precursor for de novo fatty acid biosynthesis, can be derived from pyruvate catalyzed by pyruvate dehydrogenase, which is negatively regulated by pyruvate dehydrogenase kinase (PDK). In the present study, we characterized a PDK gene (NsPDK) from Nannochloropsis salina. Subcellular localization assay assisted by green fluorescence protein (GFP) fusion indicated the localization of NsPDK in mitochondria of N. salina cells. NsPDK knockdown via RNA interference strategy attenuated NsPDK expression at the mRNA level and its enzymatic activity in vivo, leading to faster TAG accumulation without compromising cell growth under high light stress conditions. Interestingly, the TAG increase was accompanied by a decline in membrane polar lipids. NsPDK knockdown also altered fatty acid profile in N. salina. Furthermore, transcriptional analysis suggested that the carbon metabolic pathways might be influenced by NsPDK knockdown leading to diverted carbon flux towards TAG synthesis. Taken together, our results demonstrate the role of NsPDK in regulating TAG accumulation and provide valuable insights into future manipulation of oleaginous microalgae for improving biofuel production.

  16. Methylmalonate-Semialdehyde Dehydrogenase Mediated Metabolite Homeostasis Essentially Regulate Conidiation, Polarized Germination and Pathogenesis in Magnaporthe oryzae.

    PubMed

    Norvienyeku, Justice; Zhong, Zhenhui; Lin, Lili; Dang, Xie; Chen, Meilian; Lin, Xiaolian; Zhang, Honghong; Anjago, Wilfred Mabeche; Lin, Lianyu; Abdul, Waheed; Wang, Zonghua

    2017-08-11

    Plants generate multitude of aldehydes under abiotic and biotic stress conditions. Ample demonstrations have shown that rice-derived aldehydes enhance the resistance of rice against the rice-blast fungus Magnaporthe oryzae. However, how the fungal pathogen nullifies the inhibitory effects of host aldehydes to establish compatible interaction remains unknown. Here we identified and evaluated the in vivo transcriptional activities of M. oryzae aldehyde dehydrogenase (ALDH) genes. Transcriptional analysis of M. oryzae ALDH genes revealed that the acetylating enzyme Methylmalonate-Semialdehyde Dehydrogenase (MoMsdh/MoMmsdh) elevated activities during host invasion and colonization of the fungus. We further examined the pathophysiological importance of MoMSDH by deploying integrated functional genetics, and biochemical approaches. MoMSDH deletion mutant ΔMomsdh exhibited germination defect, hyper-branching of germ tube and failed to form appressoria on hydrophobic and hydrophilic surface. The MoMSDH disruption caused accumulation of small branch-chain amino acids, pyridoxine and AMP/cAMP in the ΔMomsdh mutant and altered Spitzenkörper organisation in the conidia. We concluded that MoMSDH contribute significantly to the pathogenesis of M. oryzae by regulating the mobilization of Spitzenkörper during germ tube morphogenesis, appressoria formation by acting as metabolic switch regulating small branch-chain amino acids, inositol, pyridoxine and AMP/cAMP homeostasis. This article is protected by copyright. All rights reserved. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    SciTech Connect

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun; Kim, Hyoung Jin; Park, Ji-hoon; Koo, Sun Young; Kwak, Hyo-Shin; Park, Heui Sul; Kim, Dong Wook; Song, Myoungsub; Yim, Hyeon Joo; Seo, Dong Ook; Kim, Soon Ha

    2012-08-15

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  18. Pharmacological activation of the pyruvate dehydrogenase complex reduces statin-mediated upregulation of FOXO gene targets and protects against statin myopathy in rodents.

    PubMed

    Mallinson, Joanne E; Constantin-Teodosiu, Dumitru; Glaves, Philip D; Martin, Elizabeth A; Davies, Wendy J; Westwood, F Russell; Sidaway, James E; Greenhaff, Paul L

    2012-12-15

    We previously reported that statin myopathy is associated with impaired carbohydrate (CHO) oxidation in fast-twitch rodent skeletal muscle, which we hypothesised occurred as a result of forkhead box protein O1 (FOXO1) mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) gene transcription. Upregulation of FOXO gene targets known to regulate proteasomal and lysosomal muscle protein breakdown was also evident. We hypothesised that increasing CHO oxidation in vivo, using the pyruvate dehydrogenase complex (PDC) activator, dichloroacetate (DCA), would blunt activation of FOXO gene targets and reduce statin myopathy. Female Wistar Hanover rats were dosed daily for 12 days (oral gavage) with either vehicle (control, 0.5% w/v hydroxypropyl-methylcellulose 0.1% w/v polysorbate-80; n = 9), 88 mg( )kg(-1) day(-1) simvastatin (n = 8), 88 mg( )kg(-1) day(-1) simvastatin + 30 mg kg(-1) day(-1) DCA (n = 9) or 88 mg kg(-1) day(-1) simvastatin + 40 mg kg(-1) day(-1) DCA (n = 9). Compared with control, simvastatin reduced body mass gain and food intake, increased muscle fibre necrosis, plasma creatine kinase levels, muscle PDK4, muscle atrophy F-box (MAFbx) and cathepsin-L mRNA expression, increased PDK4 protein expression, and proteasome and cathepsin-L activity, and reduced muscle PDC activity. Simvastatin with DCA maintained body mass gain and food intake, abrogated the myopathy, decreased muscle PDK4 mRNA and protein, MAFbx and cathepsin-L mRNA, increased activity of PDC and reduced proteasome activity compared with simvastatin. PDC activation abolished statin myopathy in rodent skeletal muscle, which occurred at least in part via inhibition of FOXO-mediated transcription of genes regulating muscle CHO utilisation and protein breakdown.

  19. NADPH Oxidases in Vascular Pathology

    PubMed Central

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814. PMID:24180474

  20. A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes.

    PubMed

    Jenkins, Peter; Tuurala, Saara; Vaari, Anu; Valkiainen, Matti; Smolander, Maria; Leech, Dónal

    2012-10-01

    Current generation by mediated enzyme electron transfer at electrode surfaces can be harnessed to provide biosensors and redox reactions in enzymatic fuel cells. A glucose/oxygen enzymatic fuel cell can provide power for portable and implantable electronic devices. High volume production of enzymatic fuel cell prototypes will likely require printing of electrode and catalytic materials. Here we report on preparation and performance of, completely enzymatic, printed glucose/oxygen biofuel cells. The cells are based on filter paper coated with conducting carbon inks, enzyme and mediator. A comparison of cell performance using a range of mediators for either glucose oxidase (GOx) or aldose dehydrogenase (ALDH) oxidation of glucose at the anode and ABTS and a fungal laccase, for reduction of oxygen at the cathode, is reported. Highest power output, although of limited stability, is observed for ALDH anodes mediated by an osmium complex, providing a maximum power density of 3.5 μW cm(-2) at 0.34 V, when coupled to a laccase/ABTS cathode. The stability of cell voltage in a biobattery format, above a threshold of 200 mV under a moderate 75 kΩ load, is used to benchmark printed fuel cell performance. Highest stability is obtained for printed fuel cells using ALDH, providing cell voltages over the threshold for up to 74 h, compared to only 2 h for cells with anodes using GOx. These results provide promising directions for further development of mass-producible, completely enzymatic, printed biofuel cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. NADP+-Preferring d-Lactate Dehydrogenase from Sporolactobacillus inulinus

    PubMed Central

    Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Ma, Yanhe

    2015-01-01

    Hydroxy acid dehydrogenases, including l- and d-lactate dehydrogenases (L-LDH and D-LDH), are responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids and extensively used in a wide range of biotechnological applications. A common feature of LDHs is their high specificity for NAD+ as a cofactor. An LDH that could effectively use NADPH as a coenzyme could be an alternative enzymatic system for regeneration of the oxidized, phosphorylated cofactor. In this study, a d-lactate dehydrogenase from a Sporolactobacillus inulinus strain was found to use both NADH and NADPH with high efficiencies and with a preference for NADPH as its coenzyme, which is different from the coenzyme utilization of all previously reported LDHs. The biochemical properties of the D-LDH enzyme were determined by X-ray crystal structural characterization and in vivo and in vitro enzymatic activity analyses. The residue Asn174 was demonstrated to be critical for NADPH utilization. Characterization of the biochemical properties of this enzyme will contribute to understanding of the catalytic mechanism and provide referential information for shifting the coenzyme utilization specificity of 2-hydroxyacid dehydrogenases. PMID:26150461

  2. Ethanol Augments PDGF-Induced NADPH Oxidase Activity and Proliferation in Rat Pancreatic Stellate Cells

    PubMed Central

    Hu, Richard; Wang, Yan-Ling; Edderkaoui, Mouad; Lugea, Aurelia; Apte, Minoti V.; Pandol, Stephen J.

    2007-01-01

    Background/Aims Activated stellate cells are considered the principal mediators of chronic alcoholic pancreatitis/fibrosis. However the mechanisms of alcohol action on pancreatic stellate cells (PaSCs) are poorly understood. The aims of this study were to determine the presence and role of the NADPH oxidase system in mediating alcohol effects on PaSCs with specific emphasis on proliferation. Methods PaSC NADPH oxidase components mRNA and protein were determined by RT-PCR and Western blot. The NADPH oxidase activity was measured by detecting the production of reactive oxygen species using lucigenin-derived chemiluminescence assay. PaSC DNA synthesis, a measure of proliferation, was performed by determining the [3H] thymidine incorporation into DNA. Results mRNA for NADPH oxidase components Nox1, gp91phox, Nox4, p22phox, p47phox and p67phox and protein for NADPH oxidase subunits gp91phox, p22phox, p47phox and p67phox are present in PaSCs. Treatment with platelet-derived growth factor (PDGF) significantly increased the NADPH oxidase activity and DNA synthesis in cultured PaSCs. Alcohol treatment markedly augmented both the NADPH oxidase activity and the DNA synthesis caused by PDGF, which was prevented by antioxidant N-acetyl-L-cysteine, ROS scavenger tiron, and the NADPH oxidase inhibitor diphenylene iodium. The effects of PDGF on NADPH oxidase activity and DNA synthesis were prevented in PaSCs isolated from the pancreas of mice with a genetic deficiency of p47phox. Conclusions Ethanol causes proliferation of stellate cells by augmenting the activation of the cell's NADPH oxidase system stimulated by PDGF. These results provide new insights into the mechanisms of alcohol-induced fibrosing disorders. PMID:17627098

  3. Mediated electron transfer of cellobiose dehydrogenase and glucose oxidase at osmium polymer-modified nanoporous gold electrodes.

    PubMed

    Salaj-Kosla, Urszula; Scanlon, Micheál D; Baumeister, Tobias; Zahma, Kawah; Ludwig, Roland; Ó Conghaile, Peter; MacAodha, Domhnall; Leech, Dónal; Magner, Edmond

    2013-04-01

    Nanoporous and planar gold electrodes were utilised as supports for the redox enzymes Aspergillus niger glucose oxidase (GOx) and Corynascus thermophilus cellobiose dehydrogenase (CtCDH). Electrodes modified with hydrogels containing enzyme, Os-redox polymers and the cross-linking agent poly(ethylene glycol)diglycidyl ether were used as biosensors for the determination of glucose and lactose. Limits of detection of 6.0 (±0.4), 16.0 (±0.1) and 2.0 (±0.1) μM were obtained for CtCDH-modified lactose and glucose biosensors and GOx-modified glucose biosensors, respectively, at nanoporous gold electrodes. Biofuel cells composed of GOx- and CtCDH-modified gold electrodes were utilised as anodes, together with Myrothecium verrucaria bilirubin oxidase (MvBOD) or Melanocarpus albomyces laccase as cathodes, in biofuel cells. A maximum power density of 41 μW/cm(2) was obtained for a CtCDH/MvBOD biofuel cell in 5 mM lactose and O2-saturated buffer (pH 7.4, 0.1 M phosphate, 150 mM NaCl).

  4. Role of quinones in electron transfer of PQQ–glucose dehydrogenase anodes—mediation or orientation effect

    SciTech Connect

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow; Atanassov, Plamen

    2015-06-16

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-sGDH anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ–sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ–sGDH anodes in the presence of 1,2- and 1,4-benzoquinones introduced in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.

  5. Role of quinones in electron transfer of PQQ–glucose dehydrogenase anodes—mediation or orientation effect

    DOE PAGES

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow; ...

    2015-06-16

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-sGDH anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ–sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ–sGDH anodes in the presence of 1,2- and 1,4-benzoquinones introducedmore » in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.« less

  6. Influence of human serum albumin on the bile acid-mediated inhibition of liver microsomal type 1 11β-hydroxysteroid dehydrogenase.

    PubMed

    Maeda, Yorio; Funagayama, Mayumi; Shinohara, Akio; Koshimoto, Chihiro; Furusawa, Hidemi; Nakahara, Hiroshi; Yamaguchi, Yukiko; Saitoh, Tomokazu; Yamamoto, Takashi; Komaki, Kansei

    2014-09-01

    The influence of human serum albumin (HSA) on the bile acid-mediated inhibition of liver microsomal type 1 11β-hydroxysteroid dehydrogenase (11β-HSD1) was studied in vitro. A rat liver microsomal fraction was prepared, and the 11β-HSD1 enzyme activity in the presence of various concentrations of bile acids and HSA was determined using hydrocortisone as the substrate. The products of the reaction were extracted and analyzed using high-performance liquid chromatography. The magnitude of the inhibition decreased with the addition of HSA in a dose-dependent manner. Four percent human albumin decreased the inhibitory effects of 100 μM chenodeoxycholic acid and lithocholic acid from 89.9 ± 5.6 to 54.5 ± 6.1% and from 83.8 ± 4.8 to 20.8 ± 4.2%, respectively. In contrast, ursodeoxycholic acid and deoxycholic acid showed no inhibitory effect on the enzyme activity in the presence of 4% human serum albumin, and the addition of 1% γ-globulin to the assay mixture in the presence of bile acids did not affect the enzyme activity. Our in vitro study showed that the addition of HSA ameliorated the inhibition of 11β-HSD1 and that the magnitude of the change is dependent on the species of bile acid, presumably based on the numbers of hydroxyl groups. These results suggest that HSA seems to protect the bile acid-mediated inhibition of 11β-HSD1 in the healthy subject. On the other hand, in the patients with obstructive biliary diseases, not only elevated serum bile acid but also the accompanying hypoalbuminemia is important to evaluate the pathophysiology of the bile acid-mediated inhibition of 11β-HSD1 of the disease.

  7. Targeting NADPH oxidase and phospholipases A2 in Alzheimer's disease.

    PubMed

    Simonyi, Agnes; He, Yan; Sheng, Wenwen; Sun, Albert Y; Wood, W Gibson; Weisman, Gary A; Sun, Grace Y

    2010-06-01

    Alzheimer's disease (AD) is marked by an increase in the production of extracellular beta amyloid plaques and intracellular neurofibrillary tangles associated with a decline in brain function. Increases in oxidative stress are regarded as an early sign of AD pathophysiology, although the source of reactive oxygen species (ROS) and the mechanism(s) whereby beta amyloid peptides (Abeta) impact oxidative stress have not been adequately investigated. Recent studies provide strong evidence for the involvement of NADPH oxidase and its downstream oxidative signaling pathways in the toxic effects elicited by Abeta. ROS produced by NADPH oxidase activate multiple signaling pathways leading to neuronal excitotoxicity and glial cell-mediated inflammation. This review describes recent studies demonstrating the neurotoxic effects of Abeta in conjunction with ROS produced by NADPH oxidase and the downstream pathways leading to activation of cytosolic phospholipase A(2) (PLA(2)) and secretory PLA(2). In addition, this review also describes recent studies using botanical antioxidants to protect against oxidative damage associated with AD. Investigating the metabolic and signaling pathways involving Abeta NADPH oxidase and PLA(2) can help understand the mechanisms underlying the neurodegenerative effects of oxidative stress in AD. This information should provide new therapeutic approaches for prevention of this debilitating disease.

  8. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.

    PubMed

    Lee, Won-Heong; Chin, Young-Wook; Han, Nam Soo; Kim, Myoung-Dong; Seo, Jin-Ho

    2011-08-01

    Biosynthesis of guanosine 5'-diphosphate-L-fucose (GDP-L-fucose) requires NADPH as a reducing cofactor. In this study, endogenous NADPH regenerating enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (Icd), and NADP(+)-dependent malate dehydrogenase (MaeB) were overexpressed to increase GDP-L-fucose production in recombinant Escherichia coli. The effects of overexpression of each NADPH regenerating enzyme on GDP-L-fucose production were investigated in a series of batch and fed-batch fermentations. Batch fermentations showed that overexpression of G6PDH was the most effective for GDP-L-fucose production. However, GDP-L-fucose production was not enhanced by overexpression of G6PDH in the glucose-limited fed-batch fermentation. Hence, a glucose feeding strategy was optimized to enhance GDP-L-fucose production. Fed-batch fermentation with a pH-stat feeding mode for sufficient supply of glucose significantly enhanced GDP-L-fucose production compared with glucose-limited fed-batch fermentation. A maximum GDP-L-fucose concentration of 235.2 ± 3.3 mg l(-1), corresponding to a 21% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes only, was achieved in the pH-stat fed-batch fermentation of the recombinant E. coli overexpressing G6PDH. It was concluded that sufficient glucose supply and efficient NADPH regeneration are crucial for NADPH-dependent GDP-L-fucose production in recombinant E. coli.

  9. The interaction of the Arabidopsis response regulator ARR18 with bZIP63 mediates the regulation of PROLINE DEHYDROGENASE expression.

    PubMed

    Veerabagu, Manikandan; Kirchler, Tobias; Elgass, Kirstin; Stadelhofer, Bettina; Stahl, Mark; Harter, Klaus; Mira-Rodado, Virtudes; Chaban, Christina

    2014-10-01

    As the first and rate-limiting enzyme of proline degradation, PROLINE DEHYDROGENASE1 (PDH1) is tightly regulated during plant stress responses, including induction under hypoosmolarity and repression under water deficit. The plant receptor histidine kinases AHKs, elements of the two-component system (TCS) in Arabidopsis thaliana, are proposed to function in water stress responses by regulating different stress-responsive genes. However, little information is available concerning AHK phosphorelay-mediated downstream signaling. Here we show that the Arabidopsis type-B response regulator 18 (ARR18) functions as a positive osmotic stress response regulator in Arabidopsis seeds and affects the activity of the PDH1 promoter, known to be controlled by C-group bZIP transcription factors. Moreover, direct physical interaction of ARR18 with bZIP63 was identified and shown to be dependent on phosphorylation of the conserved aspartate residue in the ARR18 receiver domain. We further show that bZIP63 itself functions as a negative regulator of seed germination upon osmotic stress. Using reporter gene assays in protoplasts, we demonstrated that ARR18 interaction negatively interferes with the transcriptional activity of bZIP63 on the PDH1 promoter. Our findings provide new insight into the function of ARR18 and bZIP63 as antagonistic regulators of gene expression in Arabidopsis.

  10. Group II intron-mediated deletion of lactate dehydrogenase gene in an isolated 1,3-propanediol producer Hafnia alvei AD27.

    PubMed

    Celińska, Ewelina; Drożdżyńska, Agnieszka; Wita, Agnieszka; Juzwa, Wojciech; Białas, Wojciech; Czaczyk, Katarzyna; Grajek, Włodzimierz

    2016-03-03

    Our previous studies showed that glycerol fermentation by Hafnia alvei AD27 strain was accompanied by formation of high quantities of lactate. The ultimate aim of this work was the elimination of excessive lactate production in the 1,3-propanediol producer cultures. Group II intron-mediated deletion of ldh (lactate dehydrogenase) gene in an environmental isolate of H. alvei AD27 strain was conducted. The effect of the Δldh genotype in H. alvei AD27 strain varied depending on the culture medium applied. Under lower initial glycerol concentration (20 gL(-1)), lactate and 1,3-propanediol production was fully abolished, and the main carbon flux was directed to ethanol synthesis. On the other hand, at higher initial glycerol concentrations (40 gL(-1)), 1,3-propanediol and lactate production was recovered in the recombinant strain. The final titers of 1,3-propanediol and ethanol were similar for the recombinant and the WT strains, while the Δldh genotype displayed significantly decreased lactate titer. The by-products profile was altered upon ldh gene deletion, while glycerol utilization and biomass accumulation remained unaltered. As indicated by flow-cytometry analyses, the internal pH was not different for the WT and the recombinant Δldh strains over the culture duration, however, the WT strain was characterized by higher redox potential.

  11. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between

  12. Nox NADPH oxidases and the endoplasmic reticulum.

    PubMed

    Laurindo, Francisco R M; Araujo, Thaís L S; Abrahão, Thalita B

    2014-06-10

    Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between Noxes and the ER may provide relevant insights in Nox-related (patho)physiology.

  13. The role of nicotinamide–adenine dinucleotide phosphate-dependent malate dehydrogenase and isocitrate dehydrogenase in the supply of reduced nicotinamide–adenine dinucleotide phosphate for steroidogenesis in the superovulated rat ovary

    PubMed Central

    Flint, A. P. F.; Denton, R. M.

    1970-01-01

    1. Superovulated rat ovary was found to contain high activities of NADP–malate dehydrogenase and NADP–isocitrate dehydrogenase. The activity of each enzyme was approximately four times that of glucose 6-phosphate dehydrogenase and equalled or exceeded the activities reported to be present in other mammalian tissues. Fractionation of a whole tissue homogenate of superovulated rat ovary indicated that both enzymes were exclusively cytoplasmic. The tissue was also found to contain pyruvate carboxylase (exclusively mitochondrial), NAD–malate dehydrogenase and aspartate aminotransferase (both mitochondrial and cytoplasmic) and ATP–citrate lyase (exclusively cytoplasmic). 2. The kinetic properties of glucose 6-phosphate dehydrogenase, NADP–malate dehydrogenase and NADP–isocitrate dehydrogenase were determined and compared with the whole-tissue concentrations of their substrates and NADPH; NADPH is a competitive inhibitor of all three enzymes. The concentrations of glucose 6-phosphate, malate and isocitrate in incubated tissue slices were raised at least tenfold by the addition of glucose to the incubation medium, from the values below to values above the respective Km values of the dehydrogenases. Glucose doubled the tissue concentration of NADPH. 3. Steroidogenesis from acetate is stimulated by glucose in slices of superovulated rat ovary incubated in vitro. It was found that this stimulatory effect of glucose can be mimicked by malate, isocitrate, lactate and pyruvate. 4. It is concluded that NADP–malate dehydrogenase or NADP–isocitrate dehydrogenase or both may play an important role in the formation of NADPH in the superovulated rat ovary. It is suggested that the stimulatory effect of glucose on steroidogenesis from acetate results from an increased rate of NADPH formation through one or both dehydrogenases, brought about by the increases in the concentrations of malate, isocitrate or both. Possible pathways involving the two enzymes are discussed

  14. Cytosolic NADPH balancing in Penicillium chrysogenum cultivated on mixtures of glucose and ethanol.

    PubMed

    Zhao, Zheng; Kuijvenhoven, Karel; van Gulik, Walter M; Heijnen, Joseph J; van Winden, Wouter A; Verheijen, Peter J T

    2011-01-01

    The in vivo flux through the oxidative branch of the pentose phosphate pathway (oxPPP) in Penicillium chrysogenum was determined during growth in glucose/ethanol carbon-limited chemostat cultures, at the same growth rate. Non-stationary (13)C flux analysis was used to measure the oxPPP flux. A nearly constant oxPPP flux was found for all glucose/ethanol ratios studied. This indicates that the cytosolic NADPH supply is independent of the amount of assimilated ethanol. The cofactor assignment in the model of van Gulik et al. (Biotechnol Bioeng 68(6):602-618, 2000) was supported using the published genome annotation of P. chrysogenum. Metabolic flux analysis showed that NADPH requirements in the cytosol remain nearly the same in these experiments due to constant biomass growth. Based on the cytosolic NADPH balance, it is known that the cytosolic aldehyde dehydrogenase in P. chrysogenum is NAD(+) dependent. Metabolic modeling shows that changing the NAD(+)-aldehyde dehydrogenase to NADP(+)-aldehyde dehydrogenase can increase the penicillin yield on substrate.

  15. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue.

  16. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis

    PubMed Central

    Bataller, Ramón; Schwabe, Robert F.; Choi, Youkyung H.; Yang, Liu; Paik, Yong Han; Lindquist, Jeffrey; Qian, Ting; Schoonhoven, Robert; Hagedorn, Curt H.; Lemasters, John J.; Brenner, David A.

    2003-01-01

    Angiotensin II (Ang II) is a pro-oxidant and fibrogenic cytokine. We investigated the role of NADPH oxidase in Ang II–induced effects in hepatic stellate cells (HSCs), a fibrogenic cell type. Human HSCs express mRNAs of key components of nonphagocytic NADPH oxidase. Ang II phosphorylated p47phox, a regulatory subunit of NADPH oxidase, and induced reactive oxygen species formation via NADPH oxidase activity. Ang II phosphorylated AKT and MAPKs and increased AP-1 DNA binding in a redox-sensitive manner. Ang II stimulated DNA synthesis, cell migration, procollagen α1(I) mRNA expression, and secretion of TGF-β1 and inflammatory cytokines. These effects were attenuated by N-acetylcysteine and diphenylene iodonium, an NADPH oxidase inhibitor. Moreover, Ang II induced upregulation of genes potentially involved in hepatic wound-healing response in a redox-sensitive manner, as assessed by microarray analysis. HSCs isolated from p47phox–/– mice displayed a blunted response to Ang II compared with WT cells. We also assessed the role of NADPH oxidase in experimental liver fibrosis. After bile duct ligation, p47phox–/– mice showed attenuated liver injury and fibrosis compared with WT counterparts. Moreover, expression of smooth muscle α-actin and expression of TGF-β1 were reduced in p47phox–/– mice. Thus, NADPH oxidase mediates the actions of Ang II on HSCs and plays a critical role in liver fibrogenesis. PMID:14597764

  17. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels

    NASA Astrophysics Data System (ADS)

    DeCoursey, Thomas E.; Morgan, Deri; Cherny, Vladimir V.

    2003-04-01

    The enzyme NADPH oxidase in phagocytes is important in the body's defence against microbes: it produces superoxide anions (O2-, precursors to bactericidal reactive oxygen species). Electrons move from intracellular NADPH, across a chain comprising FAD (flavin adenine dinucleotide) and two haems, to reduce extracellular O2 to O2-. NADPH oxidase is electrogenic, generating electron current (Ie) that is measurable under voltage-clamp conditions. Here we report the complete current-voltage relationship of NADPH oxidase, the first such measurement of a plasma membrane electron transporter. We find that Ie is voltage-independent from -100mV to >0mV, but is steeply inhibited by further depolarization, and is abolished at about +190mV. It was proposed that H+ efflux mediated by voltage-gated proton channels compensates Ie, because Zn2+ and Cd2+ inhibit both H+ currents and O2- production. Here we show that COS-7 cells transfected with four NADPH oxidase components, but lacking H+ channels, produce O2- in the presence of Zn2+ concentrations that inhibit O2- production in neutrophils and eosinophils. Zn2+ does not inhibit NADPH oxidase directly, but through effects on H+ channels. H+ channels optimize NADPH oxidase function by preventing membrane depolarization to inhibitory voltages.

  18. Molecular basis for thermoprotection in Bemisia: structural differences between whitefly ketose reductase and other medium-chain dehydrogenases/reductases.

    PubMed

    Wolfe, G R; Smith, C A; Hendrix, D L; Salvucci, M E

    1999-02-01

    The silverleaf whitefly (Bemisia argentifolii, Bellows and Perring) accumulates sorbitol as a thermoprotectant in response to elevated temperature. Sorbitol synthesis in this insect is catalyzed by an unconventional ketose reductase (KR) that uses NADPH to reduce fructose. A cDNA encoding the NADPH-KR from adult B. argentifolii was cloned and sequenced to determine the primary structure of this enzyme. The cDNA encoded a protein of 352 amino acids with a calculated molecular mass of 38.2 kDa. The deduced amino acid sequence of the cDNA shared 60% identity with sheep NAD(+)-dependent sorbitol dehydrogenase (SDH). Residues in SDH involved in substrate binding were conserved in the whitefly NADPH-KR. An important structural difference between the whitefly NADPH-KR and NAD(+)-SDHs occurred in the nucleotide-binding site. The Asp residue that coordinates the adenosyl ribose hydroxyls in NAD(+)-dependent dehydrogenases (including NAD(+)-SDH), was replaced by an Ala in the whitefly NADPH-KR. The whitefly NADPH-KR also contained two neutral to Arg substitutions within four residues of the Asp to Ala substitution. Molecular modeling indicated that addition of the Arg residues and loss of the Asp decreased the electric potential of the adenosine ribose-binding pocket, creating an environment favorable for NADPH-binding. Because of the ability to use NADPH, the whitefly NADPH-KR synthesizes sorbitol under physiological conditions, unlike NAD(+)-SDHs, which function in sorbitol catabolism.

  19. A sensitive radioisotopic method for the measurement of NAD(P)H: Its application to the assay of metabolites and enzymatic activities

    SciTech Connect

    Sener, A.; Malaisse, W.J. )

    1990-05-01

    A radioisotopic method for the assay of NADH or NADPH is presented, which is based on the conversion of 2-(U-{sup 14}C)ketoglutarate to {sup 14}C-labeled glutamate in the reaction catalyzed by glutamate dehydrogenase. The efficiency of the method is close to 75%, its precision (coefficient of variation) close to 5%, and its sensitivity close to 0.1 pmol/sample. This simple and rapid method can be applied to the measurement of several metabolites and enzymatic activities. In the present study, its application to the assay of sorbitol, 3-hydroxybutyrate, glutamate dehydrogenase, 3-hydroxybutyrate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase is documented.

  20. Dehydrogenase-Catalyzed Oxidation of Furanics: Exploitation of Hemoglobin Catalytic Promiscuity.

    PubMed

    Jia, Hao-Yu; Zong, Min-Hua; Yu, Hui-Lei; Li, Ning

    2017-09-22

    The catalytic promiscuity of hemoglobin (Hb) was explored for regenerating oxidized nicotinamide cofactors [NAD(P)(+) ]. With H2 O2 as oxidant, Hb efficiently oxidized NAD(P)H into NAD(P)(+) within 30 min. The new NAD(P)(+) regeneration system was coupled with horse liver alcohol dehydrogenase (HLADH) for the oxidation of bio-based furanics such as furfural and 5-hydroxymethylfurfural (HMF). The target acids (e.g., 2,5-furandicarboxylic acid, FDCA) were prepared with moderate-to-good yields. The enzymatic regeneration method was applied in l-glutamic dehydrogenase (DH)-mediated oxidative deamination of lglutamate and for l-lactic-DH-mediated oxidation of l-lactate, which furnished α-ketoglutarate and pyruvate in yields of 97 % and 81 %, respectively. A total turnover number (TTON) of up to approximately 5000 for cofactor and an E factor of less than 110 were obtained in the bi-enzymatic cascade synthesis of α-ketoglutarate. Overall, a proof-of-concept based on catalytic promiscuity of Hb was provided for in situ regeneration of NAD(P)(+) in DH-catalyzed oxidation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Knockdown of glucose-6-phosphate dehydrogenase (G6PD) following cerebral ischemic reperfusion: the pros and cons.

    PubMed

    Zhao, Gang; Zhao, Yanxin; Wang, Xingyu; Xu, Ying

    2012-07-01

    NADPH derived from glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, has been implicated not only to promote reduced glutathione (GSH) but also enhance oxidative stress in specific cellular conditions. In this study, the effects of G6PD antisense oligodeoxynucleotides (AS-ODNs) was examined on the CA1 pyramidal neurons following transient cerebral ischemia. Specifically knockdown of G6PD protein expression in hippocampus CA1 subregion at early reperfusion period (1-24 h) with a strategy to pre-treated G6PD AS-ODNs significantly reduced G6PD activity and NADPH level, an effect correlated with attenuation of NADPH oxidase activation and superoxide anion production. Concomitantly, pre-treatment of G6PD AS-ODNs markedly reduced oxidative DNA damage and the delayed neuronal cell death in rat hippocampal CA1 region induced by global cerebral ischemia. By contrast, knockdown of G6PD protein at late reperfusion period (48-96 h) increased oxidative DNA damage and exacerbated the ischemia-induced neuronal cell death in hippocampal CA1 region, an effect associated with reduced NADPH level and GSH/GSSG ratio. These findings indicate that G6PD not only plays a role in oxidative neuronal damage but also a neuroprotective role during different ischemic reperfusion period. Therefore, G6PD mediated oxidative response and redox regulation in the hippocampal CA1 act as the two sides of the same coin and may represent two potential applications of G6PD during different stage of cerebral ischemic reperfusion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Kinetic studies of dogfish liver glutamate dehydrogenase.

    PubMed Central

    Electricwala, A H; Dickinson, F M

    1979-01-01

    Initial-rate studies were made of the oxidation of L-glutamate by NAD+ and NADP+ catalysed by highly purified preparations of dogfish liver glutamate dehydrogenase. With NAD+ as coenzyme the kinetics show the same features of coenzyme activation as seen with the bovine liver enzyme [Engel & Dalziel (1969) Biochem. J. 115, 621--631]. With NADP+ as coenzyme, initial rates are much slower than with NAD+, and Lineweaver--Burk plots are linear over extended ranges of substrate and coenzyme concentration. Stopped-flow studies with NADP+ as coenzyme give no evidence for the accumulation of significant concentrations of NADPH-containing complexes with the enzyme in the steady state. Protection studies against inactivation by pyridoxal 5'-phosphate indicate that NAD+ and NADP+ give the same degree of protection in the presence of sodium glutarate. The results are used to deduce information about the mechanism of glutamate oxidation by the enzyme. Initial-rate studies of the reductive amination of 2-oxoglutarate by NADH and NADPH catalysed by dogfish liver glutamate dehydrogenase showed that the kinetic features of the reaction are very similar with both coenzymes, but reactions with NADH are much faster. The data show that a number of possible mechanisms for the reaction may be discarded, including the compulsory mechanism (previously proposed for the enzyme) in which the sequence of binding is NAD(P)H, NH4+ and 2-oxoglutarate. The kinetic data suggest either a rapid-equilibrium random mechanism or the compulsory mechanism with the binding sequence NH4+, NAD(P)H, 2-oxoglutarate. However, binding studies and protection studies indicate that coenzyme and 2-oxoglutarate do bind to the free enzyme. PMID:35153

  3. The effects of urotensin II on migration and invasion are mediated by NADPH oxidase-derived reactive oxygen species through the c-Jun N-terminal kinase pathway in human hepatoma cells.

    PubMed

    Li, Ying-Ying; Shi, Zheng-Ming; Yu, Xiao-Tong; Feng, Ping; Wang, Xue-Jiang

    2017-02-01

    Urotensin II (UII) is a vasoactive neuropeptide involved in migration and invasion in various cell types. However, the effects of UII on human hepatoma cells still remain unclear. The aim of this study was to investigate the role and mechanism of UII on migration and invasion in human hepatoma cells. Migration was measured by wound healing assays and a Transwell(®) methodology, and invasion was analyzed using Matrigel(®) invasion chambers. Reactive oxygen species (ROS) levels were detected using a 2', 7'-dichlorofluorescein diacetate probe, and flow cytometry, and protein expression levels were evaluated by western blotting. Cell proliferation and actin polymerization were examined using cell proliferation reagent WST-1 and F-actin immunohistochemistry staining. Exposure to UII promoted migration and invasion in hepatoma cells compared with that in cells without UII. UII also increased matrix metalloproteinase-2 (MMP2) expression in a time-independent manner. Furthermore, UII markedly enhanced ROS generation and NADPH oxidase subunit expression, and consequently facilitated the phosphorylation of c-Jun N-terminal kinase (JNK). The UT antagonist urantide or the antioxidant/NADPH oxidase inhibitor apocynin decreased UII-induced ROS production. JNK phosphorylation, migration, invasion, and MMP9/2 expression were also reversed by pretreatment with apocynin. Urantide and JNK inhibitor SP600125 abrogated migration, invasion, or MMP9/2 expression in response to UII. UII induced actin polymerization and fascin protein expression, and could be reversed by apocynin and SP600125. Exogenous UII induced migration and invasion in hepatoma cells that mainly involved NADPH oxidase-derived ROS through JNK activation. UT played an additional role in regulating hepatoma cells migration and invasion. Thus, our data suggested an important effect of UII in hepatocellular carcinoma metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Wiring of PQQ-dehydrogenases.

    PubMed

    Laurinavicius, Valdas; Razumiene, Julija; Ramanavicius, Arunas; Ryabov, Alexander D

    2004-12-15

    The performance of pyrroloquinoline quinone (PQQ) dependent alcohol dehydrogenase (ADH) and two types of PQQ-glucose dehydrogenases in solution and when immobilized on the carbon paste electrodes modified with ferrocene derivatives is investigated. The immobilization of ADH consisting of PQQ and four hemes improves its stability up to 10 times. Both PQQ and heme moieties are involved in the electron transport from substrate to electrode. The ferrocene derivatives improve the electron transport 10-fold. Membrane-bound alcohol dehydrogenase from Gluconobacter sp. 33, intracellular soluble glucose dehydrogenase from Acinetobacter calcoaceticus L.M.D. 79.41 (s-GDH), and the membrane-bound enzyme (m-GDH) from Erwinia sp. 34-1 were purified and investigated. Soluble and membrane-bound PQQ-glucose dehydrogenases display different behavior during the immobilization on the modified carbon electrodes. The immobilization of s-GDH leads to a decrease in both stability and substrate specificity of the enzyme. This suggests that PQQ dissociates from the enzyme active center and operates as a free-diffusing mediator. The rate-limiting step of the process is likely the loading of PQQ onto the apo-enzyme. The immobilization of m-GDH leads to its substantial stabilization and improves the substrate specificity. The nature of m-GDH binding to the electrode surface is presumably similar to the binding to the cell membrane through its anchor-subunit. The enzyme operates as an enzyme and mediator complex.

  5. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas.

    PubMed

    Chung, Taemoon; Na, Juri; Kim, Young-Il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy.

  6. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas

    PubMed Central

    Chung, Taemoon; Na, Juri; Kim, Young-il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy. PMID:27446484

  7. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit.

    PubMed

    Fisher-Wellman, Kelsey H; Lin, Chien-Te; Ryan, Terence E; Reese, Lauren R; Gilliam, Laura A A; Cathey, Brook L; Lark, Daniel S; Smith, Cody D; Muoio, Deborah M; Neufer, P Darrell

    2015-04-15

    Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+/NADH) and anabolic (NADP+/NADPH) processes integrate during metabolism to maintain cellular redox homoeostasis, however, is unknown. The present work identifies a continuously cycling mitochondrial membrane potential (ΔΨm)-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced, however, is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyses the regeneration of NADPH from NADH at the expense of ΔΨm. The net effect is an automatic fine-tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy-expenditure rates, consistent with their well-known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homoeostasis is maintained and body weight is defended during periods of positive and negative energy balance.

  8. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit

    PubMed Central

    Fisher-Wellman, Kelsey H.; Lin, Chien-Te; Ryan, Terence E.; Reese, Lauren R.; Gilliam, Laura A. A.; Cathey, Brook L.; Lark, Daniel S.; Smith, Cody D.; Muoio, Deborah M.; Neufer, P. Darrell

    2015-01-01

    SUMMARY Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+:NADH) and anabolic (NADP+:NADPH) processes integrate during metabolism to maintain cellular redox homeostasis however is unknown. The present work identifies a continuously cycling, mitochondrial membrane potential-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced however is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyzes the regeneration of NADPH from NADH at the expense of the mitochondrial membrane potential. The net effect is an automatic fine tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy expenditure rates, consistent with their well known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homeostasis is maintained and body weight is defended during periods of positive and negative energy balance. PMID:25643703

  9. The Type I NADH Dehydrogenase of Mycobacterium tuberculosis Counters Phagosomal NOX2 Activity to Inhibit TNF-α-Mediated Host Cell Apoptosis

    PubMed Central

    Miller, Jessica L.; Velmurugan, Kamalakannan; Cowan, Mark J.; Briken, Volker

    2010-01-01

    The capacity of infected cells to undergo apoptosis upon insult with a pathogen is an ancient innate immune defense mechanism. Consequently, the ability of persisting, intracellular pathogens such as the human pathogen Mycobacterium tuberculosis (Mtb) to inhibit infection-induced apoptosis of macrophages is important for virulence. The nuoG gene of Mtb, which encodes the NuoG subunit of the type I NADH dehydrogenase, NDH-1, is important in Mtb-mediated inhibition of host macrophage apoptosis, but the molecular mechanism of this host pathogen interaction remains elusive. Here we show that the apoptogenic phenotype of MtbΔnuoG was significantly reduced in human macrophages treated with caspase-3 and -8 inhibitors, TNF-α-neutralizing antibodies, and also after infection of murine TNF−/− macrophages. Interestingly, incubation of macrophages with inhibitors of reactive oxygen species (ROS) reduced not only the apoptosis induced by the nuoG mutant, but also its capacity to increase macrophage TNF-α secretion. The MtbΔnuoG phagosomes showed increased ROS levels compared to Mtb phagosomes in primary murine and human alveolar macrophages. The increase in MtbΔnuoG induced ROS and apoptosis was abolished in NOX-2 deficient (gp91−/−) macrophages. These results suggest that Mtb, via a NuoG-dependent mechanism, can neutralize NOX2-derived ROS in order to inhibit TNF-α-mediated host cell apoptosis. Consistently, an Mtb mutant deficient in secreted catalase induced increases in phagosomal ROS and host cell apoptosis, both of which were dependent upon macrophage NOX-2 activity. In conclusion, these results serendipitously reveal a novel connection between NOX2 activity, phagosomal ROS, and TNF-α signaling during infection-induced apoptosis in macrophages. Furthermore, our study reveals a novel function of NOX2 activity in innate immunity beyond the initial respiratory burst, which is the sensing of persistent intracellular pathogens and subsequent induction of host

  10. 13C-flux Analysis Reveals NADPH-balancing Transhydrogenation Cycles in Stationary Phase of Nitrogen-starving Bacillus subtilis *

    PubMed Central

    Rühl, Martin; Le Coq, Dominique; Aymerich, Stéphane; Sauer, Uwe

    2012-01-01

    In their natural habitat, microorganisms are typically confronted with nutritional limitations that restrict growth and force them to persevere in a stationary phase. Despite the importance of this phase, little is known about the metabolic state(s) that sustains it. Here, we investigate metabolically active but non-growing Bacillus subtilis during nitrogen starvation. In the absence of biomass formation as the major NADPH sink, the intracellular flux distribution in these resting B. subtilis reveals a large apparent catabolic NADPH overproduction of 5.0 ± 0.6 mmol·g−1·h−1 that was partly caused by high pentose phosphate pathway fluxes. Combining transcriptome analysis, stationary 13C-flux analysis in metabolic deletion mutants, 2H-labeling experiments, and kinetic flux profiling, we demonstrate that about half of the catabolic excess NADPH is oxidized by two transhydrogenation cycles, i.e. isoenzyme pairs of dehydrogenases with different cofactor specificities that operate in reverse directions. These transhydrogenation cycles were constituted by the combined activities of the glyceraldehyde 3-phosphate dehydrogenases GapA/GapB and the malic enzymes MalS/YtsJ. At least an additional 6% of the overproduced NADPH is reoxidized by continuous cycling between ana- and catabolism of glutamate. Furthermore, in vitro enzyme data show that a not yet identified transhydrogenase could potentially reoxidize ∼20% of the overproduced NADPH. Overall, we demonstrate the interplay between several metabolic mechanisms that concertedly enable network-wide NADPH homeostasis under conditions of high catabolic NADPH production in the absence of cell growth in B. subtilis. PMID:22740702

  11. Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase.

    PubMed

    Shikanai, Toshiharu

    2016-07-01

    Eleven genes encoding chloroplast NADH dehydrogenase-like (NDH) complex have been discovered in plastid genomes on the basis of their homology with genes encoding respiratory complex I. Despite this structural similarity, chloroplast NDH and its evolutionary origin NDH-1 in cyanobacteria accept electrons from ferredoxin (Fd), indicating that chloroplast NDH is an Fd-dependent plastoquinone (PQ) reductase rather than an NAD(P)H dehydrogenase. In Arabidopsis thaliana, chloroplast NDH interacts with photosystem I (PSI); this interaction is needed to stabilize NDH, especially under high light. On the basis of these distinct characters of chloroplast and cyanobacterial NDH, it can be distinguished as a photosynthetic NDH from respiratory complex I. In fact, chloroplast NDH forms part of the machinery of photosynthesis by mediating the minor pathway of PSI cyclic electron transport. Along with the antimycin A-sensitive main pathway of PSI cyclic electron transport, chloroplast NDH compensates the ATP/NADPH production ratio in the light reactions of photosynthesis. In this review, I revisit the original concept of chloroplast NDH on the basis of its similarity to respiratory complex I and thus introduce current progress in the field to researchers focusing on respiratory complex I. I summarize recent progress on the basis of structure and function. Finally, I introduce the results of our examination of the process of assembly of chloroplast NDH. Although the process requires many plant-specific non-subunit factors, the core processes of assembly are conserved between chloroplast NDH and respiratory complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Metabolism of glycyrrhetic acid by rat liver microsomes: glycyrrhetinate dehydrogenase.

    PubMed

    Akao, T; Akao, T; Kobashi, K

    1990-02-06

    Glycyrrhetic acid, derived from a main component of liquorice, was converted to 3-ketoglycyrrhetic acid reversibly by rat liver homogenates in the presence of NADPH or NADP+. Glycyrrhetic acid-oxidizing and 3-ketoglycyrrhetic acid-reducing activities were localized in microsomes among the subcellular fractions of rat liver. Glycyrrhetic acid-oxidizing activity and 3-ketoglycyrrhetic acid-reducing activities showed pH optima at 6.3 and 8.5, respectively, and required NADP+ or NAD+ and NADPH or NADH, respectively, indicating that these activities were due to glycyrrhetinate dehydrogenase. The dehydrogenase was not solubilized from the membranes by the treatment with 1 M NaCl or sonication, indicating that the enzyme is a membrane component. The dehydrogenase was solubilized with detergents such as Emalgen 913, Triton X-100 and sodium cholate, and then separated from 3 beta-hydroxysteroid dehydrogenase (5 beta-androstan-3 beta-ol-17-one-oxidizing activity) by butyl-Toyopearl 650 M column chromatography. Partially purified enzyme catalyzed the reversible reaction between glycyrrhetic acid and 3-ketoglycyrrhetic acid, but was inactive toward 3-epiglycyrrhetic acid and other steroids having the 3 beta-hydroxyl group. The enzyme required NADP+ and NADPH for the highest activities of oxidation and reduction, respectively, and NAD+ and NADH for considerable activities, similar to the results with microsomes. From these results the enzyme is defined as glycyrrhetinate dehydrogenase, being quite different from 3 beta-hydroxysteroid dehydrogenase of Ruminococcus sp. from human intestine, which is active for both glycyrrhetic acid and steroids having the 3 beta-hydroxyl group.

  13. In silico model-driven cofactor engineering strategies for improving the overall NADP(H) turnover in microbial cell factories.

    PubMed

    Lakshmanan, Meiyappan; Yu, Kai; Koduru, Lokanand; Lee, Dong-Yup

    2015-10-01

    Optimizing the overall NADPH turnover is one of the key challenges in various value-added biochemical syntheses. In this work, we first analyzed the NADPH regeneration potentials of common cell factories, including Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis, and Pichia pastoris across multiple environmental conditions and determined E. coli and glycerol as the best microbial chassis and most suitable carbon source, respectively. In addition, we identified optimal cofactor specificity engineering (CSE) enzyme targets, whose cofactors when switched from NAD(H) to NADP(H) improve the overall NADP(H) turnover. Among several enzyme targets, glyceraldehyde-3-phosphate dehydrogenase was recognized as a global candidate since its CSE improved the NADP(H) regeneration under most of the conditions examined. Finally, by analyzing the protein structures of all CSE enzyme targets via homology modeling, we established that the replacement of conserved glutamate or aspartate with serine in the loop region could change the cofactor dependence from NAD(H) to NADP(H).

  14. Protein engineering reveals ancient adaptive replacements in isocitrate dehydrogenase

    PubMed Central

    Dean, Antony M.; Golding, G. Brian

    1997-01-01

    Evolutionary analysis indicates that eubacterial NADP-dependent isocitrate dehydrogenases (EC 1.1.1.42) first evolved from an NAD-dependent precursor about 3.5 billion years ago. Selection in favor of utilizing NADP was probably a result of niche expansion during growth on acetate, where isocitrate dehydrogenase provides 90% of the NADPH necessary for biosynthesis. Amino acids responsible for differing coenzyme specificities were identified from x-ray crystallographic structures of Escherichia coli isocitrate dehydrogenase and the distantly related Thermus thermophilus NAD-dependent isopropylmalate dehydrogenase. Site-directed mutagenesis at sites lining the coenzyme binding pockets has been used to invert the coenzyme specificities of both enzymes. Reconstructed ancestral sequences indicate that these replacements are ancestral. Hence the adaptive history of molecular evolution is amenable to experimental investigation. PMID:9096353

  15. A specific radiochemical assay for pyrroline-5-carboxylate dehydrogenase.

    PubMed

    Small, C; Jones, M E

    1987-03-01

    Previous studies of pyrroline-5-carboxylate dehydrogenase have been conducted using a spectrophotometric method to monitor substrate-dependent NAD(P)H production. For the assay of the mammalian enzyme, the spectrophotometric assay was found to be unacceptable for kinetic studies as the production of NAD(P)H was nonlinear with time and protein concentration. An assay which measures radiolabeled glutamate production by this enzyme in the presence of NAD+ from radiolabeled pyrroline-5-carboxylate has been developed. Separation of substrate from product is achieved by column chromatography using Dowex 50 cation-exchange resin. The product isolated by this procedure was identified as glutamate. This new assay is linear with time and protein concentration and gives reproducible results. The assay is not influenced by competing enzyme activities, such as glutamate dehydrogenase, in a liver homogenate so that quantitative conversion of pyrroline-5-carboxylate to glutamate is observed.

  16. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    SciTech Connect

    Riganti, Chiara . E-mail: dario.ghigo@unito.it

    2006-05-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H{sub 2}O{sub 2} concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution.

  17. Riboflavin (vitamin B2 ) deficiency impairs NADPH oxidase 2 (Nox2) priming and defense against Listeria monocytogenes.

    PubMed

    Schramm, Michael; Wiegmann, Katja; Schramm, Sandra; Gluschko, Alexander; Herb, Marc; Utermöhlen, Olaf; Krönke, Martin

    2014-03-01

    Riboflavin, also known as vitamin B2 , is converted by riboflavin kinase (RFK) into flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are essential cofactors of dehydrogenases, reductases, and oxidases including the phagocytic NADPH oxidase 2 (Nox2). Riboflavin deficiency is common in young adults and elderly individuals, who are at the coincidental risk for listeriosis. To address the impact of acute riboflavin deficiency on host defense against Listeria monocytogenes (L.m.), we generated conditional RFK knockout (KO) strains of mice. Phagocyte-specific RFK KO impaired the capability of phagocytes to control intracellular L.m., which corresponded to a greater susceptibility of mice to in vivo challenge with L.m. The oxidative burst of RFK-deficient phagocytes in response to L.m. infection was significantly reduced. Mechanistically, TNF-induced priming of Nox2, which is needed for oxidative burst, was defective in RFK-deficient phagocytes. Lack of riboflavin in wild-type macrophages for only 6 h shut down TNF-induced, RFK-mediated de novo FMN/FAD generation, which was accompanied by diminished ROS production and impaired anti-listerial activity. Vice versa, ROS production by riboflavin-deprived macrophages was rapidly restored by riboflavin supplementation. Our results suggest that acute riboflavin deficiency immediately impairs priming of Nox2, which is of crucial relevance for an effective phagocytic immune response in vivo. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Activity of the glutathione antioxidant system and NADPH-generating enzymes in blood serum of rats with type 2 diabetes mellitus after administration of melatonin-correcting drugs.

    PubMed

    Agarkov, A A; Popova, T N; Verevkin, A N; Matasova, L V

    2014-06-01

    We studied the effects of epifamin and melaxen on serum content of reduced glutathione and activities of glutathione peroxidase, glutathione reductase, and NADPH-generating enzymes (glucose-6-phosphate dehydrogenase and NADP-isocitrate dehydrogenase) in rats with type 2 diabetes mellitus. The concentration of reduced glutathione was decreased in rats with this disease (by 1.8 times), but increased after treatment with epifamin and melaxen (by 1.6 and 1.7 times, respectively). Activities of glutathione peroxidase, glutathione reductase, and NADPH-generating enzymes returned to the control level. Correction of melatonin concentration after treatment with the test drugs was probably followed by inhibition of free radical processes. The observed changes were accompanied by normalization of activity of the glutathione antioxidant system and NADPH-generating enzymes required for normal function of this system.

  19. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells

    PubMed Central

    Lewis, Caroline A.; Parker, Seth J.; Fiske, Brian P.; McCloskey, Douglas; Gui, Dan Y.; Green, Courtney R.; Vokes, Natalie I.; Feist, Adam M.; Heiden, Matthew G. Vander; Metallo, Christian M.

    2014-01-01

    Summary Eukaryotic cells compartmentalize biochemical processes in different organelles, often relying on metabolic cycles to shuttle reducing equivalents across intracellular membranes. NADPH serves as the electron carrier for the maintenance of redox homeostasis and reductive biosynthesis, with separate cytosolic and mitochondrial pools providing reducing power in each respective location. This cellular organization is critical for numerous functions but complicates analysis of metabolic pathways using available methods. Here we develop an approach to resolve NADP(H)-dependent pathways present within both the cytosol and the mitochondria. By tracing hydrogen in compartmentalized reactions that use NADPH as a cofactor, including the production of 2-hydroxyglutarate by mutant isocitrate dehydrogenase enzymes, we can observe metabolic pathway activity in these distinct cellular compartments. Using this system we determine the direction of serine/glycine interconversion within the mitochondria and cytosol, highlighting the ability of this approach to resolve compartmentalized reactions in intact cells. PMID:24882210

  20. Unique coenzyme binding mode of hyperthermophilic archaeal sn-glycerol-1-phosphate dehydrogenase from Pyrobaculum calidifontis.

    PubMed

    Hayashi, Junji; Yamamoto, Kaori; Yoneda, Kazunari; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2016-12-01

    A gene encoding an sn-glycerol-1-phosphate dehydrogenase (G1PDH) was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The gene was overexpressed in Escherichia coli, and its product was purified and characterized. In contrast to conventional G1PDHs, the expressed enzyme showed strong preference for NADH: the reaction rate (Vmax ) with NADPH was only 2.4% of that with NADH. The crystal structure of the enzyme was determined at a resolution of 2.45 Å. The asymmetric unit consisted of one homohexamer. Refinement of the structure and HPLC analysis showed the presence of the bound cofactor NADPH in subunits D, E, and F, even though it was not added in the crystallization procedure. The phosphate group at C2' of the adenine ribose of NADPH is tightly held through the five biased hydrogen bonds with Ser40 and Thr42. In comparison with the known G1PDH structure, the NADPH molecule was observed to be pushed away from the normal coenzyme binding site. Interestingly, the S40A/T42A double mutant enzyme acquired much higher reactivity than the wild-type enzyme with NADPH, which suggests that the biased interactions around the C2'-phosphate group make NADPH binding insufficient for catalysis. Our results provide a unique structural basis for coenzyme preference in NAD(P)-dependent dehydrogenases. Proteins 2016; 84:1786-1796. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. A role for cytosolic isocitrate dehydrogenase as a negative regulator of glucose signaling for insulin secretion in pancreatic ß-cells.

    PubMed

    Guay, Claudiane; Joly, Erik; Pepin, Emilie; Barbeau, Annie; Hentsch, Lisa; Pineda, Marco; Madiraju, S R Murthy; Brunengraber, Henri; Prentki, Marc

    2013-01-01

    Cytosolic NADPH may act as one of the signals that couple glucose metabolism to insulin secretion in the pancreatic ß-cell. NADPH levels in the cytoplasm are largely controlled by the cytosolic isoforms of malic enzyme and isocitrate dehydrogenase (IDHc). Some studies have provided evidence for a role of malic enzyme in glucose-induced insulin secretion (GIIS) via pyruvate cycling, but the role of IDHc in ß-cell signaling is unsettled. IDHc is an established component of the isocitrate/α-ketoglutarate shuttle that transfers reducing equivalents (NADPH) from the mitochondrion to the cytosol. This shuttle is energy consuming since it is coupled to nicotinamide nucleotide transhydrogenase that uses the mitochondrial proton gradient to produce mitochondrial NADPH and NAD(+) from NADP(+) and NADH. To determine whether flux through IDHc is positively or negatively linked to GIIS, we performed RNAi knockdown experiments in ß-cells. Reduced IDHc expression in INS 832/13 cells and isolated rat islet ß-cells resulted in enhanced GIIS. This effect was mediated at least in part via the KATP-independent amplification arm of GIIS. IDHc knockdown in INS 832/13 cells did not alter glucose oxidation but it reduced fatty acid oxidation and increased lipogenesis from glucose. Metabolome profiling in INS 832/13 cells showed that IDHc knockdown increased isocitrate and NADP(+) levels. It also increased the cellular contents of several metabolites linked to GIIS, in particular some Krebs cycle intermediates, acetyl-CoA, glutamate, cAMP and ATP. The results identify IDHc as a component of the emerging pathways that negatively regulate GIIS.

  2. Lactate dehydrogenase test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003471.htm Lactate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Lactate dehydrogenase (LDH) is a protein that helps produce energy ...

  3. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  4. Chorion peroxidase-mediated NADH/O2 oxidoreduction cooperated by chorion malate dehydrogenase-catalyzed NADH production: a feasible pathway leading to H2O2 formation during chorion hardening in Aedes aegypti mosquitoes

    PubMed Central

    Han, Qian; Li, Guoyu; Li, Jianyong

    2010-01-01

    A specific chorion peroxidase is present in Aedes aegypti and this enzyme is responsible for catalyzing chorion protein cross-linking through dityrosine formation during chorion hardening. Peroxidase-mediated dityrosine cross-linking requires H2O2, and this study discusses the possible involvement of the chorion peroxidase in H2O2 formation by mediating NADH/O2 oxidoreduction during chorion hardening in A. aegypti eggs. Our data show that mosquito chorion peroxidase is able to catalyze pH-dependent NADH oxidation, which is enhanced in the presence of Mn2+. Molecular oxygen is the electron acceptor during peroxidase-catalyzed NADH oxidation, and reduction of O2 leads to the production of H2O2, demonstrated by the formation of dityrosine in a NADH/peroxidase reaction mixture following addition of tyrosine. An oxidoreductase capable of catalyzing malate/NAD+ oxidoreduction is also present in the egg chorion of A. aegypti. The cooperative roles of chorion malate/NAD+ oxidoreductase and chorion peroxidase on generating H2O2 with NAD+ and malate as initial substrates were demonstrated by the production of dityrosine after addition of tyrosine to a reaction mixture containing NAD+ and malate in the presence of both malate dehydrogenase fractions and purified chorion peroxidase. Data suggest that chorion peroxidase-mediated NADH/O2 oxidoreduction may contribute to the formation of the H2O2 required for chorion protein cross-linking mediated by the same peroxidase, and that the chorion associated malate dehydrogenase may be responsible for the supply of NADH for the H2O2 production. PMID:11042391

  5. Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH.

    PubMed

    Cardoso, Luciano A; Ferreira, Sérgio T; Hermes-Lima, Marcelo

    2008-11-01

    Glutathione reductase (GR) carries out the enzymatic reduction of glutathione disulfide (GSSG) to its reduced form (GSH) at the expense of the reducing power of NADPH. Previous studies have shown that GR from several species is progressively inactivated in the presence of NADPH, but that the mechanism of inactivation (especially in the presence of metals) has not been fully elucidated. We have investigated the involvement of iron ions in the inactivation of yeast (Saccharomyces cerevisiae) GR in the presence of NADPH. Even in the absence of added iron, inactivation of GR was partly blocked by the iron chelators, deferoxamine and ortho-phenanthroline, suggesting the involvement of trace amounts of contaminating iron in the mechanism of inhibition. Exogenously added antioxidants including ethanol, dimethylsulfoxide and 2-deoxyribose did not protect GR against NADPH-induced inactivation, whilst addition of exogenous Fe(II) (but not Fe(III)) potentiated the inactivation. Moreover, removal of oxygen from the medium led to increased inhibition of GR, whereas pre-incubation of the Fe(II)-containing medium for 30 min under normoxic conditions prior to the addition of GR abolished the enzyme inactivation by NADPH. Under these pre-incubation conditions, Fe(II) is fully oxidized to Fe(III) within 1 min. Furthermore, GR that had been previously inactivated in the presence of Fe(II) plus NADPH could be partially reactivated by treatment with ortho-phenanthroline and deferoxamine. In contrast, Fe(III) had no effect on GR reactivation. Together, these results indicate that yeast GR is inactivated by a reductive mechanism mediated by NADPH and Fe(II). According to this mechanism, GR is diverted from its normal redox cycling by the generation of an inactive reduced enzyme form in which both the FAD and thiol groups at the active site are likely in a reduced state.

  6. NADPH oxidase plays a crucial role in the activation of pancreatic stellate cells.

    PubMed

    Masamune, Atsushi; Watanabe, Takashi; Kikuta, Kazuhiro; Satoh, Kennichi; Shimosegawa, Tooru

    2008-01-01

    Activated pancreatic stellate cells (PSCs) play an important role in pancreatic fibrosis and inflammation, where oxidative stress is implicated in the pathogenesis. NADPH oxidase might be a source of reactive oxygen species (ROS) in the injured pancreas. This study aimed to clarify the expression and regulation of cell functions by NADPH oxidase in PSCs. PSCs were isolated from rat and human pancreas tissues. Expression of NADPH oxidase was assessed by reverse transcription-PCR and immunostaining. Intracellular ROS production was assessed using 2',7'-dichlorofluorescin diacetate. The effects of diphenylene iodonium (DPI) and apocynin, inhibitors of NADPH oxidase, on key parameters of PSC activation were evaluated in vitro. In vivo, DPI (at 1 mg.kg body wt(-1).day(-1)) was administered in drinking water to 10-wk-old male Wistar Bonn/Kobori rats for 10 wk and to rats with chronic pancreatitis induced by dibutyltin dichloride (DBTC). PSCs expressed key components of NADPH oxidase (p22(phox), p47(phox), NOX1, gp91(phox)/NOX2, NOX4, and NOX activator 1). PDGF-BB, IL-1beta, and angiotensin II induced ROS production, which was abolished by DPI and apocynin. DPI inhibited PDGF-induced proliferation, IL-1beta-induced chemokine production, and expression of alpha-smooth muscle actin and collagen. DPI inhibited transformation of freshly isolated cells to a myofibroblast-like phenotype. In addition, DPI inhibited the development of pancreatic fibrosis in Wistar Bonn/Kobori rats and in rats with DBTC-induced chronic pancreatitis. In conclusion, PSCs express NADPH oxidase to generate ROS, which mediates key cell functions and activation of PSCs. NADPH oxidase might be a potential target for the treatment of pancreatic fibrosis.

  7. Modification of substrate specificity in single point mutants of Agrobacterium tumefaciens type II NADH dehydrogenase.

    PubMed

    Desplats, C; Beyly, A; Cuiné, S; Bernard, L; Cournac, L; Peltier, G

    2007-08-21

    Type II NADH dehydrogenases (NDH-2) are monomeric flavoenzymes catalyzing electron transfer from NADH to quinones. While most NDH-2 preferentially oxidize NADH, some of these enzymes have been reported to efficiently oxidize NADPH. With the aim to modify the NADPH vs NADH specificity of the relatively NADH specific Agrobacterium tumefaciens NDH-2, two conserved residues (E and A) of the substrate binding domain were, respectively, mutated to Q and S. We show that when E was replaced by Q at position 203 the enzyme was able to oxidize NADPH as efficiently as NADH. Growth on a minimal medium of an Escherichia coli double mutant lacking both NDH-1 and NDH-2 was restored more efficiently when mutated proteins able to oxidize NADPH were expressed. The biotechnological interest of expressing such modified enzymes in photosynthetic organisms is discussed.

  8. A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02.

    PubMed

    Cai, Dongbo; He, Penghui; Lu, Xingcheng; Zhu, Chengjun; Zhu, Jiang; Zhan, Yangyang; Wang, Qin; Wen, Zhiyou; Chen, Shouwen

    2017-02-23

    Poly-γ-glutamic acid (γ-PGA) is an important biochemical product with a variety of applications. This work reports a novel approach to improve γ-PGA through over expression of key enzymes in cofactor NADPH generating process for NADPH pool. Six genes encoding the key enzymes in NADPH generation were over-expressed in the γ-PGA producing strain B. licheniformis WX-02. Among various recombinants, the strain over-expressing zwf gene (coding for glucose-6-phosphate dehydrogenase), WX-zwf, produced the highest γ-PGA concentration (9.13 g/L), 35% improvement compared to the control strain WX-pHY300. However, the growth rates and glucose uptake rates of the mutant WX-zwf were decreased. The transcriptional levels of the genes pgsB and pgsC responsible for γ-PGA biosynthesis were increased by 8.21- and 5.26-fold, respectively. The Zwf activity of the zwf over expression strain increased by 9.28-fold, which led to the improvement of the NADPH generation, and decrease of accumulation of by-products acetoin and 2,3-butanediol. Collectively, these results demonstrated that NADPH generation via over-expression of Zwf is as an effective strategy to improve the γ-PGA production in B. licheniformis.

  9. A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02

    PubMed Central

    Cai, Dongbo; He, Penghui; Lu, Xingcheng; Zhu, Chengjun; Zhu, Jiang; Zhan, Yangyang; Wang, Qin; Wen, Zhiyou; Chen, Shouwen

    2017-01-01

    Poly-γ-glutamic acid (γ-PGA) is an important biochemical product with a variety of applications. This work reports a novel approach to improve γ-PGA through over expression of key enzymes in cofactor NADPH generating process for NADPH pool. Six genes encoding the key enzymes in NADPH generation were over-expressed in the γ-PGA producing strain B. licheniformis WX-02. Among various recombinants, the strain over-expressing zwf gene (coding for glucose-6-phosphate dehydrogenase), WX-zwf, produced the highest γ-PGA concentration (9.13 g/L), 35% improvement compared to the control strain WX-pHY300. However, the growth rates and glucose uptake rates of the mutant WX-zwf were decreased. The transcriptional levels of the genes pgsB and pgsC responsible for γ-PGA biosynthesis were increased by 8.21- and 5.26-fold, respectively. The Zwf activity of the zwf over expression strain increased by 9.28-fold, which led to the improvement of the NADPH generation, and decrease of accumulation of by-products acetoin and 2,3-butanediol. Collectively, these results demonstrated that NADPH generation via over-expression of Zwf is as an effective strategy to improve the γ-PGA production in B. licheniformis. PMID:28230096

  10. A Pitcher-and-Catcher Mechanism Drives Endogenous Substrate Isomerization by a Dehydrogenase in Kynurenine Metabolism.

    PubMed

    Yang, Yu; Davis, Ian; Ha, Uyen; Wang, Yifan; Shin, Inchul; Liu, Aimin

    2016-12-16

    Aldehyde dehydrogenase typically performs oxidation of aldehydes to their corresponding carboxylic acid while reducing NAD(P)(+) to NAD(P)H via covalent catalysis mediated by an active-site cysteine residue. One member of this superfamily, the enzyme 2-aminomuconate-6-semialdehyde dehydrogenase (AMSDH), is a component of the kynurenine pathway, which catabolizes tryptophan in mammals and certain bacteria. AMSDH catalyzes the NAD(+)-dependent oxidation of 2-aminomuconate semialdehyde to 2-aminomuconate. We recently determined the first crystal structure of AMSDH and several catalytic cycle intermediates. A conserved asparagine in the oxyanion hole, Asn-169, is found to be H-bonded to substrate-derived intermediates in the active site of AMSDH during catalysis, including both the covalently bound thiohemiacetal and thioacyl intermediates. To better interrogate the significance of the hydrogen bond provided by Asn-169 to the reaction mechanism of AMSDH, we created Ala, Ser, Asp, and Gln mutants and studied them using biochemical, kinetic, crystallographic, and computational studies. The in crystallo chemical reaction of the primary substrate with the co-crystalized complex of the N169D mutant and NAD(+) led to the successful trapping of a new catalytic intermediate that was not previously seen. The structural and computational data are consistent with a substrate imine/enol tautomer intermediate being formed prior to the formation of the covalent bond between the substrate and the active-site cysteine. Thus, AMSDH surprisingly includes an isomerization process within its known catalytic mechanism. These data establish a hidden intrinsic isomerization activity of the dehydrogenase and allow us to propose a pitcher-catcher type of catalytic mechanism for the isomerization. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    PubMed

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  12. Activated barrier crossing dynamics in the non-radiative decay of NADH and NADPH

    NASA Astrophysics Data System (ADS)

    Blacker, Thomas S.; Marsh, Richard J.; Duchen, Michael R.; Bain, Angus J.

    2013-08-01

    In live tissue, alterations in metabolism induce changes in the fluorescence decay of the biological coenzyme NAD(P)H, the mechanism of which is not well understood. In this work, the fluorescence and anisotropy decay dynamics of NADH and NADPH were investigated as a function of viscosity in a range of water-glycerol solutions. The viscosity dependence of the non-radiative decay is well described by Kramers and Kramers-Hubbard models of activated barrier crossing over a wide viscosity range. Our combined lifetime and anisotropy analysis indicates common mechanisms of non-radiative relaxation in the two emitting states (conformations) of both molecules. The low frequencies associated with barrier crossing suggest that non-radiative decay is mediated by small scale motion (e.g. puckering) of the nicotinamide ring. Variations in the fluorescence lifetimes of NADH and NADPH when bound to different enzymes may therefore be attributed to differing levels of conformational restriction upon binding.

  13. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior.

    PubMed

    Campbell, Elliot; Wheeldon, Ian R; Banta, Scott

    2010-12-01

    Cofactor specificity in the aldo-keto reductase (AKR) superfamily has been well studied, and several groups have reported the rational alteration of cofactor specificity in these enzymes. Although most efforts have focused on mesostable AKRs, several putative AKRs have recently been identified from hyperthermophiles. The few that have been characterized exhibit a strong preference for NAD(H) as a cofactor, in contrast to the NADP(H) preference of the mesophilic AKRs. Using the design rules elucidated from mesostable AKRs, we introduced two site-directed mutations in the cofactor binding pocket to investigate cofactor specificity in a thermostable AKR, AdhD, which is an alcohol dehydrogenase from Pyrococcus furiosus. The resulting double mutant exhibited significantly improved activity and broadened cofactor specificity as compared to the wild-type. Results of previous pre-steady-state kinetic experiments suggest that the high affinity of the mesostable AKRs for NADP(H) stems from a conformational change upon cofactor binding which is mediated by interactions between a canonical arginine and the 2'-phosphate of the cofactor. Pre-steady-state kinetics with AdhD and the new mutants show a rich conformational behavior that is independent of the canonical arginine or the 2'-phosphate. Additionally, experiments with the highly active double mutant using NADPH as a cofactor demonstrate an unprecedented transient behavior where the binding mechanism appears to be dependent on cofactor concentration. These results suggest that the structural features involved in cofactor specificity in the AKRs are conserved within the superfamily, but the dynamic interactions of the enzyme with cofactors are unexpectedly complex.

  14. An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus.

    PubMed

    Wilson, Richard A; Gibson, Robert P; Quispe, Cristian F; Littlechild, Jennifer A; Talbot, Nicholas J

    2010-12-14

    To cause rice blast disease, the fungus Magnaporthe oryzae breaches the tough outer cuticle of the rice leaf by using specialized infection structures called appressoria. These cells allow the fungus to invade the host plant and proliferate rapidly within leaf tissue. Here, we show that a unique NADPH-dependent genetic switch regulates plant infection in response to the changing nutritional and redox conditions encountered by the pathogen. The biosynthetic enzyme trehalose-6-phosphate synthase (Tps1) integrates control of glucose-6-phosphate metabolism and nitrogen source utilization by regulating the oxidative pentose phosphate pathway, the generation of NADPH, and the activity of nitrate reductase. We report that Tps1 directly binds to NADPH and, thereby, regulates a set of related transcriptional corepressors, comprising three proteins, Nmr1, Nmr2, and Nmr3, which can each bind NADP. Targeted deletion of any of the Nmr-encoding genes partially suppresses the nonpathogenic phenotype of a Δtps1 mutant. Tps1-dependent Nmr corepressors control the expression of a set of virulence-associated genes that are derepressed during appressorium-mediated plant infection. When considered together, these results suggest that initiation of rice blast disease by M. oryzae requires a regulatory mechanism involving an NADPH sensor protein, Tps1, a set of NADP-dependent transcriptional corepressors, and the nonconsuming interconversion of NADPH and NADP acting as signal transducer.

  15. Mechanism of NADPH oxidation catalyzed by horse-radish peroxidase and 2,4-diacetyl-[2H]heme-substituted horse-radish peroxidase.

    PubMed

    De Sandro, V; Dupuy, C; Kaniewski, J; Ohayon, R; Dème, D; Virion, A; Pommier, J

    1991-10-15

    The mechanism of NADPH oxidation catalyzed by horse-radish peroxidase (HRP) and 2,4-diacetyl-[2H]heme-substituted horse-radish peroxidase (DHRP) was studied. The roles of the different H2O2/peroxidase compounds were examined by spectral studies. The oxidized NADPH species were identified using the superoxide dismutase effect and by measuring the stoichiometry between NADPH oxidized and H2O2 used. In the presence of a mediating molecule, like scopoletin, both enzymes acted via a similar mechanism, producing only NADP degrees, which in turn reacted with O2 producing O2-. Consequently H2O2 was completely regenerated in the presence of superoxide dismutase and partially regenerated in its absence. In the absence of a mediating molecule, the H2O2 complex of both enzymes (compound I) catalysed NADPH oxidation by single-electron transfer, producing NADP degrees; compound II of these enzymes catalyzed NADPH oxidation more slowly by a direct two-electron transfer, producing NADPH+. There were difference between HRP and DHRP. HRP compound II was produced by the oxidation of 1 mol NADPH/mole compound I, while DHRP compound II was formed by the spontaneous conversion of compound I to compound II. The NADPH oxidation catalyzed by DHRP compound I did not lead to the formation of compound II. When H2O2 was produced slowly by the glucose/glucose-oxidase system, compound II was never formed and a pure O2- adduct of DHRP (compound III) accumulated.

  16. Biphasic Regulation of the NADPH Oxidase by HGF/c-Met Signaling Pathway in Primary Mouse Hepatocytes

    PubMed Central

    Clavijo-Cornejo, Denise; Enriquez-Cortina, Cristina; López-Reyes, Alberto; Domínguez-Pérez, Mayra; Nuño, Natalia; Domínguez-Meraz, Marcela; Bucio, Leticia; Souza, Verónica; Factor, Valentina M.; Thorgeirsson, Snorri S.; Gutiérrez-Ruiz, María Concepción; Gómez-Quiroz, Luis E.

    2013-01-01

    Redox signaling is emerging as an essential mechanism in the regulation of biological activities of the cell. The HGF/c-Met signaling pathway has been implicated as a key regulator of the cellular redox homeostasis and oxidative stress. We previously demonstrated that genetic deletion of c-met in hepatocytes disrupts redox homeostasis by a mechanism involving NADPH oxidase. Here, we were focused to address the mechanism of NADPH oxidase regulation by HGF/c-Met signaling in primary mouse hepatocytes and its relevance. HGF induced a biphasic mechanism of NADPH oxidase regulation. The first phase employed the rapid increase in production of ROS as signaling effectors to activate the Nrf2-mediated protective response resulting in up-regulation of the antioxidant proteins, such as NAD(P)H quinone oxidoreductase and γ-glutamylcysteine synthetase. The second phase operated under a prolonged HGF exposure, caused a suppression of the NADPH oxidase components, including NOX2, NOX4, p22 and p67, and was able to abrogate the TGFβ-induced ROS production and improve cell viability. In conclusion, HGF/c-Met induces a Nrf2-mediated protective response by a double mechanism driven by NADPH oxidase. PMID:23333744

  17. Bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) by human NAD(P)H quinone oxidoreductase 2: a novel co-substrate-mediated antitumor prodrug therapy.

    PubMed

    Knox, R J; Jenkins, T C; Hobbs, S M; Chen, S; Melton, R G; Burke, P J

    2000-08-01

    A novel prodrug activation system, endogenous in human tumor cells, is described. A latent enzyme-prodrug system is switched on by a simple synthetic, small molecule co-substrate. This ternary system is inactive if any one of the components is absent. CB 1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide] is an antitumor prodrug that is activated in certain rat tumors via its 4-hydroxylamine derivative to a potent bifunctional alkylating agent. However, human tumor cells are resistant to CB 1954 because they are unable to catalyze this bioactivation efficiently. A human enzyme has been discovered that can activate CB 1954, and it has been shown to be commonly present in human tumor cells. The enzyme is NQO2 [NAD(P)H quinone oxidoreductase 2], but its activity is normally latent, and a nonbiogenic co-substrate such as NRH [nicotinamide riboside (reduced)] is required for enzymatic activity. There is a very large (100-3000-fold) increase in CB 1954 cytotoxicity toward either NQO2-transfected rodent or nontransfected human tumor cell lines in the presence of NRH. Other reduced pyridinium compounds can also act as co-substrates for NQO2. Thus, the simplest quaternary salt of nicotinamide, 1-methyl-3-carboxamidopyridinium iodide, was a co-substrate for NQO2 when reduced to the corresponding 1,4-dihydropyridine derivative. Increased chain length and/or alkyl load at the 1-position of the dihydropyridine ring improved specific activity, and compounds more active than NRH were found. However, little activity was seen with either the 1-benzyl or 1-(2-phenylethyl) derivatives. A negatively charged substituent at the 3-position of the reduced pyridine ring also negated the ability of these compounds to act as cosubstrates for NQO2. In particular, 1-carbamoylmethyl-3-carbamoyl-1,4dihydropyridine was shown to be a co-substrate for NQO2 with greater stability than NRH, with the ability to enter cells and potentiate the cytotoxicity of CB 1954. Furthermore, this agent is synthetically

  18. Stereo-specificity for pro-(R) hydrogen of NAD(P)H during enzyme-catalyzed hydride transfer to CL-20

    SciTech Connect

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal . E-mail: jalal.hawari@nrc.ca

    2005-12-02

    A dehydrogenase from Clostridium sp. EDB2 and a diaphorase from Clostridium kluyveri were reacted with CL-20 to gain insights into the enzyme-catalyzed hydride transfer to CL-20, and the enzyme's stereo-specificity for either pro-R or pro-S hydrogens of NAD(P)H. Both enzymes biotransformed CL-20 at rates of 18.5 and 24 nmol/h/mg protein, using NADH and NADPH as hydride-source, respectively, to produce a N-denitrohydrogenated product with a molecular weight of 393 Da. In enzyme kinetics studies using reduced deuterated pyridine nucleotides, we found a kinetic deuterium isotopic effect of 2-fold on CL-20 biotransformation rate using dehydrogenase enzyme against (R)NADD as a hydride-source compared to either (S)NADD or NADH. Whereas, in case of diaphorase, the kinetic deuterium isotopic effect of about 1.5-fold was observed on CL-20 biotransformation rate using (R)NADPD as hydride-source. In a comparative study with LC-MS, using deuterated and non-deuterated NAD(P)H, we found a positive mass-shift of 1 Da in the N-denitrohydrogenated product suggesting the involvement of a deuteride (D{sup -}) transfer from NAD(P)D. The present study thus revealed that both dehydrogenase and diaphorase enzymes from the two Clostridium species catalyzed a hydride transfer to CL-20 and showed stereo-specificity for pro-R hydrogen of NAD(P)H.

  19. The Contribution of Nicotinamide Nucleotide Transhydrogenase to Peroxide Detoxification Is Dependent on the Respiratory State and Counterbalanced by Other Sources of NADPH in Liver Mitochondria*

    PubMed Central

    Ronchi, Juliana Aparecida; Francisco, Annelise; Passos, Luiz Augusto Correa; Figueira, Tiago Rezende; Castilho, Roger Frigério

    2016-01-01

    The forward reaction of nicotinamide nucleotide transhydrogenase (NNT) reduces NADP+ at the expense of NADH oxidation and H+ movement down the electrochemical potential across the inner mitochondrial membrane, establishing an NADPH/NADP+ ratio severalfold higher than the NADH/NAD+ ratio in the matrix. In turn, NADPH drives processes, such as peroxide detoxification and reductive biosynthesis. In this study, we generated a congenic mouse model carrying a mutated NntC57BL/6J allele from the C57BL/6J substrain. Suspensions of isolated mitochondria from Nnt+/+, Nnt+/−, and Nnt−/− mouse liver were biochemically evaluated and challenged with exogenous peroxide under different respiratory states. The respiratory substrates were also varied, and the participation of concurrent NADPH sources (i.e. isocitrate dehydrogenase-2, malic enzymes, and glutamate dehydrogenase) was assessed. The principal findings include the following: Nnt+/− and Nnt−/− exhibit ∼50% and absent NNT activity, respectively, but the activities of concurrent NADPH sources are unchanged. The lack of NNT activity in Nnt−/− mice impairs peroxide metabolism in intact mitochondria. The contribution of NNT to peroxide metabolism is decreased during ADP phosphorylation compared with the non-phosphorylating state; however, it is accompanied by increased contributions of concurrent NADPH sources, especially glutamate dehydrogenase. NNT makes a major contribution to peroxide metabolism during the blockage of mitochondrial electron transport. Interestingly, peroxide metabolism in the Nnt+/− mitochondria matched that in the Nnt+/+ mitochondria. Overall, this study demonstrates that the respiratory state and/or substrates that sustain energy metabolism markedly influence the relative contribution of NNT (i.e. varies between nearly 0 and 100%) to NADPH-dependent mitochondrial peroxide metabolism. PMID:27474736

  20. The Contribution of Nicotinamide Nucleotide Transhydrogenase to Peroxide Detoxification Is Dependent on the Respiratory State and Counterbalanced by Other Sources of NADPH in Liver Mitochondria.

    PubMed

    Ronchi, Juliana Aparecida; Francisco, Annelise; Passos, Luiz Augusto Correa; Figueira, Tiago Rezende; Castilho, Roger Frigério

    2016-09-16

    The forward reaction of nicotinamide nucleotide transhydrogenase (NNT) reduces NADP(+) at the expense of NADH oxidation and H(+) movement down the electrochemical potential across the inner mitochondrial membrane, establishing an NADPH/NADP(+) ratio severalfold higher than the NADH/NAD(+) ratio in the matrix. In turn, NADPH drives processes, such as peroxide detoxification and reductive biosynthesis. In this study, we generated a congenic mouse model carrying a mutated Nnt(C57BL/6J) allele from the C57BL/6J substrain. Suspensions of isolated mitochondria from Nnt(+/+), Nnt(+/-), and Nnt(-/-) mouse liver were biochemically evaluated and challenged with exogenous peroxide under different respiratory states. The respiratory substrates were also varied, and the participation of concurrent NADPH sources (i.e. isocitrate dehydrogenase-2, malic enzymes, and glutamate dehydrogenase) was assessed. The principal findings include the following: Nnt(+/-) and Nnt(-/-) exhibit ∼50% and absent NNT activity, respectively, but the activities of concurrent NADPH sources are unchanged. The lack of NNT activity in Nnt(-/-) mice impairs peroxide metabolism in intact mitochondria. The contribution of NNT to peroxide metabolism is decreased during ADP phosphorylation compared with the non-phosphorylating state; however, it is accompanied by increased contributions of concurrent NADPH sources, especially glutamate dehydrogenase. NNT makes a major contribution to peroxide metabolism during the blockage of mitochondrial electron transport. Interestingly, peroxide metabolism in the Nnt(+/-) mitochondria matched that in the Nnt(+/+) mitochondria. Overall, this study demonstrates that the respiratory state and/or substrates that sustain energy metabolism markedly influence the relative contribution of NNT (i.e. varies between nearly 0 and 100%) to NADPH-dependent mitochondrial peroxide metabolism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Exploiting algal NADPH oxidase for biophotovoltaic energy

    DOE PAGES

    Anderson, Alexander; Laohavisit, Anuphon; Blaby, Ian K.; ...

    2015-01-29

    Photosynthetic microbes exhibit light-dependent electron export across the cell membrane, which can generate electricity in biological photovoltaic (BPV) devices. How electrons are exported remains to be determined; the identification of mechanisms would help selection or generation of photosynthetic microbes capable of enhanced electrical output. We show that plasma membrane NADPH oxidase activity is a significant component of light-dependent generation of electricity by the unicellular green alga Chlamydomonas reinhardtii. NADPH oxidases export electrons across the plasma membrane to form superoxide anion from oxygen. The C. reinhardtii mutant lacking the NADPH oxidase encoded by RBO1 is impaired in both extracellular superoxide anionmore » production and current generation in a BPV device. Complementation with the wild-type gene restores both capacities, demonstrating the role of the enzyme in electron export. Monitoring light-dependent extracellular superoxide production with a colorimetric assay is shown to be an effective way of screening for electrogenic potential of candidate algal strains. Furthermore, the results show that algal NADPH oxidases are important for superoxide anion production and open avenues for optimizing the biological component of these devices.« less

  2. Exploiting algal NADPH oxidase for biophotovoltaic energy.

    PubMed

    Anderson, Alexander; Laohavisit, Anuphon; Blaby, Ian K; Bombelli, Paolo; Howe, Christopher J; Merchant, Sabeeha S; Davies, Julia M; Smith, Alison G

    2016-01-01

    Photosynthetic microbes exhibit light-dependent electron export across the cell membrane, which can generate electricity in biological photovoltaic (BPV) devices. How electrons are exported remains to be determined; the identification of mechanisms would help selection or generation of photosynthetic microbes capable of enhanced electrical output. We show that plasma membrane NADPH oxidase activity is a significant component of light-dependent generation of electricity by the unicellular green alga Chlamydomonas reinhardtii. NADPH oxidases export electrons across the plasma membrane to form superoxide anion from oxygen. The C. reinhardtii mutant lacking the NADPH oxidase encoded by RBO1 is impaired in both extracellular superoxide anion production and current generation in a BPV device. Complementation with the wild-type gene restores both capacities, demonstrating the role of the enzyme in electron export. Monitoring light-dependent extracellular superoxide production with a colorimetric assay is shown to be an effective way of screening for electrogenic potential of candidate algal strains. The results show that algal NADPH oxidases are important for superoxide anion production and open avenues for optimizing the biological component of these devices.

  3. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.

    PubMed

    Boles, E; Lehnert, W; Zimmermann, F K

    1993-10-01

    Phosphoglucose isomerase pgi1-deletion mutants of Saccharomyces cerevisiae cannot grow on glucose as the sole carbon source and are even inhibited by glucose. These growth defects could be suppressed by an over-expression on a multi-copy plasmid of the structural gene GDH2 coding for the NAD-dependent glutamate dehydrogenase. GDH2 codes for a protein with 1092 amino acids which is located on chromosome XII and shows high sequence similarity to the Neurospora crassa NAD-glutamate dehydrogenase. Suppression of the pgi1 deletion by over-expression of GDH2 was abolished in strains with a deletion of the glucose-6-phosphate dehydrogenase gene ZWF1 or gene GDH1 coding for the NADPH-dependent glutamate dehydrogenase. Moreover, this suppression required functional mitochondria. It is proposed that the growth defect of pgi1 deletion mutants on glucose is due to a rapid depletion of NADP which is needed as a cofactor in the oxidative reactions of the pentose phosphate pathway. Over-expression of the NAD-dependent glutamate dehydrogenase leads to a very efficient conversion of glutamate with NADH generation to 2-oxoglutarate which can be converted back to glutamate by the NADPH-dependent glutamate dehydrogenase with the consumption of NADPH. Consequently, over-expression of the NAD-dependent glutamate dehydrogenase causes a substrate cycling between 2-oxoglutarate and glutamate which restores NADP from NADPH through the coupled conversion of NAD to NADH which can be oxidized in the mitochondria. Furthermore, the requirement for an increase in NADPH consumption for the suppression of the phosphoglucose isomerase defect could be met by addition of oxidizing agents which are known to reduce the level of NADPH.

  4. Changing kinetic properties of glucose-6-phosphate dehydrogenase from pea chloroplasts during photosynthetic induction

    SciTech Connect

    Yuan, X.; Anderson, L.E.

    1987-04-01

    The first enzyme of the oxidative pentose phosphate pathway, glucose-6-P dehydrogenase (EC 1.1.1.49), is inactivated when pea chloroplasts are irradiated. They have examined the kinetics of light inactivation of glucose-6-P dehydrogenase in intact chloroplasts during photosynthetic induction and the kinetic parameters of the active (dark) and less active (light) form of the dehydrogenase. Light inactivation of the dehydrogenase is rapid and occurs before photosynthetic O/sub 2/ evolution is measureable in intact chloroplasts. Likewise dark activation is quite rapid. The major change in the kinetic parameters of glucose-6-phosphate dehydrogenase is in maximal velocity. This light inactivation probably prevents operation of a futile cycle involving glucose-6-P, NADPH and oxidative and reductive pentose phosphate pathway enzymes.

  5. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    SciTech Connect

    Iyanagi, Takashi . E-mail: iyanagi@spring8.or.jp

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.

  6. CHANGES IN DISULFIDE BOND CONTENT OF PROTEINS IN A YEAST STRAIN LACKING MAJOR SOURCES OF NADPH

    PubMed Central

    Minard, Karyl I.; Carroll, Christopher A.; Weintraub, Susan T.; Mc-Alister-Henn, Lee

    2006-01-01

    A yeast mutant lacking the two major cytosolic sources of NADPH, glucose-6-phosphate dehydrogenase (Zwf1p) and NADP+-specific isocitrate dehydrogenase (Idp2p), has been demonstrated to lose viability when shifted to medium with acetate or oleate as the carbon source. This loss in viability was found to correlate with an accumulation of endogenous oxidative byproducts of respiration and peroxisomal β-oxidation. To assess effects on cellular protein of endogenous versus exogenous oxidative stress, a proteomics approach was used to compare disulfide bond-containing proteins in the idp2Δzwf1Δ strain following shifts to acetate and oleate media with those in the parental strain following similar shifts to media containing hydrogen peroxide. Among prominent disulfide bond-containing proteins were several with known antioxidant functions. These and several other proteins were detected as multiple electrophoretic isoforms, with some isoforms containing disulfide bonds under all conditions and other isoforms exhibiting a redox-sensitive content of disulfide bonds, i.e., in the idp2Δzwf1Δ strain and in the hydrogen peroxide-challenged parental strain. The disulfide bond content of some isoforms of these proteins was also elevated in the parental strain grown on glucose, possibly suggesting a redirection of NADPH reducing equivalents to support rapid growth. Further examination of protein carbonylation in the idp2Δzwf1Δ strain shifted to oleate medium also led to identification of common and unique protein targets of endogenous oxidative stress. PMID:17157197

  7. NAD kinase regulates the size of the NADPH pool and insulin secretion in pancreatic β-cells

    PubMed Central

    Gray, Joshua P.; Alavian, Kambiz N.; Jonas, Elizabeth A.

    2012-01-01

    NADPH is an important component of the antioxidant defense system and a proposed mediator in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. An increase in the NADPH/NADP+ ratio has been reported to occur within minutes following the rise in glucose concentration in β-cells. However, 30 min following the increase in glucose, the total NADPH pool also increases through a mechanism not yet characterized. NAD kinase (NADK) catalyzes the de novo formation of NADP+ by phosphorylation of NAD+. NAD kinases have been shown to be essential for redox regulation, oxidative stress defense, and survival in bacteria and yeast. However, studies on NADK in eukaryotic cells are scarce, and the function of this enzyme has not been described in β-cells. We employed INS-1 832/13 cells, an insulin-secreting rat β-cell line, and isolated rodent islets to investigate the role of NADK in β-cell metabolic pathways. Adenoviral-mediated overexpression of NADK resulted in a two- to threefold increase in the total NADPH pool and NADPH/NADP+ ratio, suggesting that NADP+ formed by the NADK-catalyzed reaction is rapidly reduced to NADPH via cytosolic reductases. This increase in the NADPH pool was accompanied by an increase in GSIS in NADK-overexpressing cells. Furthermore, NADK overexpression protected β-cells against oxidative damage by the redox cycling agent menadione and reversed menadione-mediated inhibition of GSIS. Knockdown of NADK via shRNA exerted the opposite effect on all these parameters. These data suggest that NADK kinase regulates intracellular redox and affects insulin secretion and oxidative defense in the β-cell. PMID:22550069

  8. Structure of Hordeum vulgare NADPH-dependent thioredoxin reductase 2. Unwinding the reaction mechanism

    SciTech Connect

    Kirkensgaard, Kristine G.; Hägglund, Per; Finnie, Christine; Svensson, Birte; Henriksen, Anette

    2009-09-01

    The first crystal structure of a cereal NTR, a protein involved in seed development and germination, has been determined. The structure is in a conformation that excludes NADPH binding and indicates that a domain reorientation facilitated by Trx binding precedes NADPH binding in the reaction mechanism. Thioredoxins (Trxs) are protein disulfide reductases that regulate the intracellular redox environment and are important for seed germination in plants. Trxs are in turn regulated by NADPH-dependent thioredoxin reductases (NTRs), which provide reducing equivalents to Trx using NADPH to recycle Trxs to the active form. Here, the first crystal structure of a cereal NTR, HvNTR2 from Hordeum vulgare (barley), is presented, which is also the first structure of a monocot plant NTR. The structure was determined at 2.6 Å resolution and refined to an R{sub cryst} of 19.0% and an R{sub free} of 23.8%. The dimeric protein is structurally similar to the structures of AtNTR-B from Arabidopsis thaliana and other known low-molecular-weight NTRs. However, the relative position of the two NTR cofactor-binding domains, the FAD and the NADPH domains, is not the same. The NADPH domain is rotated by 25° and bent by a 38% closure relative to the FAD domain in comparison with AtNTR-B. The structure may represent an intermediate between the two conformations described previously: the flavin-oxidizing (FO) and the flavin-reducing (FR) conformations. Here, analysis of interdomain contacts as well as phylogenetic studies lead to the proposal of a new reaction scheme in which NTR–Trx interactions mediate the FO to FR transformation.

  9. A new regulatory element mediates ethanol repression of KlADH3, a Kluyveromyces lactis gene coding for a mitochondrial alcohol dehydrogenase.

    PubMed

    Saliola, Michele; Getuli, Claudia; Mazzoni, Cristina; Fantozzi, Ivana; Falcone, Claudio

    2007-08-01

    KlADH3 is a Kluyveromyces lactis alcohol dehydrogenase gene induced in the presence of all respiratory carbon sources except ethanol, which specifically represses this gene. Deletion analysis of the KlADH3 promoter revealed the presence of both positive and negative elements. However, by site-directed mutagenesis and gel retardation experiments, we identified a 15-bp element responsible for the transcriptional repression of this gene by ethanol. In particular, this element showed putative sites required for the sequential binding of ethanol-induced factors responsible for the repressed conditions, and the binding of additional factors relieved repression. In addition, we showed that the ethanol element was required for in vivo repression of KlAdh3 activity.

  10. TGL-mediated lipolysis in Manduca sexta fat body: possible roles for lipoamide-dehydrogenase (LipDH) and high-density lipophorin (HDLp)

    PubMed Central

    Wu, Zengying; Soulages, Jose L; Joshi, Bharat D.; Daniel, Stuart M.; Hager, Zachary J.; Arrese, Estela L

    2014-01-01

    Triglyceride-lipase (TGL) is a major fat body lipase in Manduca sexta. The knowledge of how TGL activity is regulated is very limited. A WWE domain, presumably involved in protein-protein interactions, has been previously identified in the N-terminal region of TGL. In this study, we searched for proteins partners that interact with the N-terminal region of TGL. Thirteen proteins were identified by mass spectrometry, and the interaction with four of these proteins was confirmed by immunoblot. The oxidoreductase lipoamide-dehydrogenase (LipDH) and the apolipoprotein components of the lipid transporter, HDLp, were among these proteins. LipDH is the common component of the mitochondrial α-keto acid dehydrogenase complexes whereas HDLp occurs in the hemolymph. However, subcellular fractionation demonstrated that these two proteins are relatively abundant in the soluble fraction of fat body adipocytes. The cofactor lipoate found in typical LipDH substrates was not detected in TGL. However, TGL proved to have critical thiol groups. Additional studies with inhibitors are consistent with the notion that LipDH acting as a diaphorase could preserve the activity of TGL by controlling the redox state of thiol groups. On the other hand, when TG hydrolase activity of TGL was assayed in the presence of HDLp, the production of diacylglycerol (DG) increased. TGL-HDLp interaction could drive the intracellular transport of DG. TGL may be directly involved in the lipoprotein assembly and loading with DG, a process that occurs in the fat body and is essential for insects to mobilize fatty acids. Overall the study suggests that TGL occurs as a multi-protein complex supported by interactions through the WWE domain. PMID:24333838

  11. Methylglyoxal-induced modification of arginine residues decreases the activity of NADPH-generating enzymes.

    PubMed

    Morgan, Philip E; Sheahan, Pamela J; Pattison, David I; Davies, Michael J

    2013-08-01

    Inadequate control of plasma and cellular glucose and ketone levels in diabetes is associated with increased generation of reactive aldehydes, including methylglyoxal (MGO). These aldehydes react with protein side chains to form advanced glycation end-products (AGEs). Arg residues are particularly susceptible to MGO glycation and are essential for binding NADP(+) in several enzymes that generate NADPH, a coenzyme for many critical metabolic and antioxidant enzymes. In most animal cells, NADPH is produced predominantly by glucose-6-phosphate dehydrogenase (G6PD) in the oxidative phase of the pentose phosphate pathway and, to a lesser extent, by isocitrate dehydrogenase (IDH) and malic enzyme (ME). In this study, the activities of isolated G6PD, IDH, and ME were inhibited by MGO (0-2.5mM, 2-3h, 37°C), in a dose- and time-dependent manner, with G6PD and IDH more sensitive to modification than ME. Significant inhibition of these two enzymes occurred with MGO levels ≥500μM. Incubation with radiolabeled MGO (0-500µM, 0-3h, 37°C) demonstrated dose- and time-dependent adduction to G6PD and IDH. HPLC analysis provided evidence for AGE formation and particularly the hydroimidazolones MG-H1 and MG-H2 from Arg residues, with corresponding loss of parent Arg residues. Peptide mass mapping studies confirmed hydroimidazolone formation on multiple peptides in G6PD and IDH, including those critical for NADP(+) binding, and substrate binding, in the case of IDH. These results suggest that modification of NADPH-producing enzymes by reactive aldehydes may result in alterations to the cellular redox environment, potentially predisposing cells to further damage by oxidants and reactive aldehydes.

  12. Reversal of coenzyme specificity of 2,3-butanediol dehydrogenase from Saccharomyces cerevisae and in vivo functional analysis.

    PubMed

    Ehsani, Maryam; Fernández, Maria R; Biosca, Josep A; Dequin, Sylvie

    2009-10-01

    Saccharomyces cerevisiae NAD(H)-dependent 2,3-butanediol dehydrogenase (Bdh1), a medium chain dehydrogenase/reductase is the main enzyme catalyzing the reduction of acetoin to 2,3-butanediol. In this work we focused on altering the coenzyme specificity of Bdh1 from NAD(H) to NADP(H). Based on homology studies and the crystal structure of the NADP(H)-dependent yeast alcohol dehydrogenase Adh6, three adjacent residues (Glu(221), Ile(222), and Ala(223)) were predicted to be involved in the coenzyme specificity of Bdh1 and were altered by site-directed mutagenesis. Coenzyme reversal of Bdh1 was obtained with double Glu221Ser/Ile222Arg and triple Glu221Ser/Ile222Arg/Ala223Ser mutants. The performance of the triple mutant for NADPH was close to that of native Bdh1 for NADH. The three engineered mutants were able to restore the growth of a phosphoglucose isomerase deficient strain (pgi), which cannot grow on glucose unless an alternative NADPH oxidizing system is provided, thus demonstrating their in vivo functionality. These mutants are interesting tools to reduce the excess of acetoin produced by engineered brewing or wine yeasts overproducing glycerol. In addition, they represent promising tools for the manipulation of the NADP(H) metabolism and for the development of a powerful catalyst in biotransformations requiring NADPH regeneration.

  13. The NADPH oxidase Nox4 and aging in the heart.

    PubMed

    Ago, Tetsuro; Matsushima, Shouji; Kuroda, Junya; Zablocki, Daniela; Kitazono, Takanari; Sadoshima, Junichi

    2010-12-01

    Oxidative stress in mitochondria is believed to promote aging. Although passive leakage of electron from the mitochondrial electron transport chain has been considered as a major source of oxidative stress in the heart and the cardiomyocytes therein, enzymes actively producing reactive oxygen species may also exist in mitochondria. We have shown recently that Nox4, a member of the NADPH oxidase family, is localized on intracellular membranes, primarily at mitochondria, in cardiomyocytes. Mitochondrial expression of Nox4 is upregulated by cardiac stress and aging in the heart, where Nox4 could become a major source of oxidative stress. This raises an intriguing possibility that Nox4 may play an important role in mediating aging of the heart. Here we discuss the potential involvement of Nox4 in mitochondrial oxidative stress and aging in the heart.

  14. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.

    PubMed

    Starkov, Anatoly A; Fiskum, Gary; Chinopoulos, Christos; Lorenzo, Beverly J; Browne, Susan E; Patel, Mulchand S; Beal, M Flint

    2004-09-08

    Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H(2)O(2) production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or carbonyl cyanide p-trifluoromethoxyphenylhydrazone,alpha-ketoglutarate supported the highest rate of H(2)O(2) production. In the absence of ADP or in the presence of rotenone, H(2)O(2) production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of alpha-ketoglutarate. Isolated mitochondrial alpha-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehydrogenase (PDHC) complexes produced superoxide and H(2)O(2). NAD(+) inhibited ROS production by the isolated enzymes and by permeabilized mitochondria. We also measured H(2)O(2) production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld). Although this enzyme is a part of both KGDHC and PDHC, there was greater impairment of KGDHC activity in Dld-deficient mitochondria. These mitochondria also produced significantly less H(2)O(2) than mitochondria isolated from their littermate wild-type mice. The data strongly indicate that KGDHC is a primary site of ROS production in normally functioning mitochondria.

  15. Glutamate dehydrogenases: the why and how of coenzyme specificity.

    PubMed

    Engel, Paul C

    2014-01-01

    NAD(+) and NADP(+), chemically similar and with almost identical standard oxidation-reduction potentials, nevertheless have distinct roles, NAD(+) serving catabolism and ATP generation whereas NADPH is the biosynthetic reductant. Separating these roles requires strict specificity for one or the other coenzyme for most dehydrogenases. In many organisms this holds also for glutamate dehydrogenases (GDH), NAD(+)-dependent for glutamate oxidation, NADP(+)-dependent for fixing ammonia. In higher animals, however, GDH has dual specificity. It has been suggested that GDH in mitochondria reacts only with NADP(H), the NAD(+) reaction being an in vitro artefact. However, contrary evidence suggests mitochondrial GDH not only reacts with NAD(+) but maintains equilibrium using the same pool as accessed by β-hydroxybutyrate dehydrogenase. Another complication is the presence of an energy-linked dehydrogenase driving NADP(+) reduction by NADH, maintaining the coenzyme pools at different oxidation-reduction potentials. Its coexistence with GDH makes possible a futile cycle, control of which is not yet properly explained. Structural studies show NAD(+)-dependent, NADP(+)-dependent and dual-specificity GDHs are closely related and a few site-directed mutations can reverse specificity. Specificity for NAD(+) or for NADP(+) has probably emerged repeatedly during evolution, using different structural solutions on different occasions. In various GDHs the P7 position in the coenzyme-binding domain plays a key role. However, whereas in other dehydrogenases an acidic P7 residue usually hydrogen bonds to the 2'- and 3'-hydroxyls, dictating NAD(+) specificity, among GDHs, depending on detailed conformation of surrounding residues, an acidic P7 may permit binding of NAD(+) only, NADP(+) only, or in higher animals both.

  16. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart.

    PubMed

    Reyes, Levy A; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L

    2015-09-15

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.

  17. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart

    PubMed Central

    Reyes, Levy A.; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J.; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L.

    2015-01-01

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP+, coincided with formation of 2’-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes. PMID:26297248

  18. Effect of NADPH availability on free fatty acid production in E. coli.

    PubMed

    Li, Wei; Wu, Hui; Li, Mai; San, Ka-Yiu

    2017-10-04

    Microbial conversion of renewable carbon sources to free fatty acids has attracted significant attention in recent years. Accumulation of free fatty acids in E. coli by overexpression of an acyl-ACP thioesterase which can break the fatty acid elongation has been well established. Various efforts have been made to increase fatty acid production in E. coli by enhancing the enzymes involved in the fatty acid synthesis cycle or host strain manipulations. The current study focused on the effect of NADPH availability on free fatty acids (FFAs) productivity. There are two reduction steps in the fatty acid elongation cycle which are catalyzed by beta keto-ACP reductase (FabG) and enoyl-ACP reductase (FabI), respectively. It is reported that FabI can use either NADH or NADPH as cofactor, while FabG only uses NADPH in E. coli. Fatty acid production dropped dramatically in the glucose-6-phosphate dehydrogenase (encoded by the zwf gene) deficient strain. Similarly, the pntB (which encodes one of the subunit of proton-translocating membrane bounded transhydrogenase PntAB) and udhA (which encodes the energy dependent cytoplasmic transhydrogenase UdhA) double mutant strain also showed an 88.8% decrease in free fatty acid production. Overexpression of PntAB and NadK restored the fatty acid production capability of these two mutant strains. These results indicated that the availability of NADPH played a very important role in fatty acid production. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein.

    PubMed Central

    Huang, Shaohui; Heikal, Ahmed A; Webb, Watt W

    2002-01-01

    Two-photon (2P) ratiometric redox fluorometry and microscopy of pyridine nucleotide (NAD(P)H) and flavoprotein (FP) fluorescence, at 800-nm excitation, has been demonstrated as a function of mitochondrial metabolic states in isolated adult dog cardiomyocytes. We have measured the 2P-excitation spectra of NAD(P)H, flavin adenine dinucleotide (FAD), and lipoamide dehydrogenase (LipDH) over the wavelength range of 720-1000 nm. The 2P-excitation action cross sections (sigma2P) increase rapidly at wavelengths below 800 nm, and the maximum sigma2P of LipDH is approximately 5 and 12 times larger than those of FAD and NAD(P)H, respectively. Only FAD and LipDH can be efficiently excited at wavelengths above 800 nm with a broad 2P-excitation band around 900 nm. Two autofluorescence spectral regions (i.e., approximately 410-490 nm and approximately 510-650 nm) of isolated cardiomyocytes were imaged using 2P-laser scanning microscopy. At 750-nm excitation, fluorescence of both regions is dominated by NAD(P)H emission, as indicated by fluorescence intensity changes induced by mitochondrial inhibitor NaCN and mitochondria uncoupler carbonyl cyanide p-(trifluoromethoxy) phenyl hydrazone (FCCP). In contrast, 2P-FP fluorescence dominates at 900-nm excitation, which is in agreement with the sigma2P measurements. Finally, 2P-autofluorescence emission spectra of single cardiac cells have been obtained, with results suggesting potential for substantial improvement of the proposed 2P-ratiometric technique. PMID:11964266

  20. Creation of a thermostable NADP⁺-dependent D-amino acid dehydrogenase from Ureibacillus thermosphaericus strain A1 meso-diaminopimelate dehydrogenase by site-directed mutagenesis.

    PubMed

    Akita, Hironaga; Doi, Katsumi; Kawarabayasi, Yutaka; Ohshima, Toshihisa

    2012-09-01

    A thermostable, NADP(+)-dependent D: -amino acid dehydrogenase (DAADH) was created from the meso-diaminopimelate dehydrogenase of Ureibacillus thermosphaericus strain A1 by introducing five point mutations into amino acid residues located in the active site. The recombinant protein, expressed in Escherichia coli, was purified to homogeneity using a two-step separation procedure and then characterized. In the presence of NADP(+), the protein catalyzed the oxidative deamination of several D: -amino acids, including D: -cyclohexylalanine, D: -isoleucine and D: -2-aminooctanoate, but not meso-diaminopimelate, confirming the creation of a NADP(+)-dependent DAADH. For the reverse reaction, the corresponding 2-oxo acids were aminated in the presence of NADPH and ammonia. In addition, the D: -amino acid dehydrogenase showed no loss of activity at 65 °C, indicating the mutant enzyme was more thermostable than its parental meso-diaminopimelate dehydrogenase.

  1. Natural Compounds as Modulators of NADPH Oxidases

    PubMed Central

    2013-01-01

    Reactive oxygen species (ROS) are cellular signals generated ubiquitously by all mammalian cells, but their relative unbalance triggers also diseases through intracellular damage to DNA, RNA, proteins, and lipids. NADPH oxidases (NOX) are the only known enzyme family with the sole function to produce ROS. The NOX physiological functions concern host defence, cellular signaling, regulation of gene expression, and cell differentiation. On the other hand, increased NOX activity contributes to a wide range of pathological processes, including cardiovascular diseases, neurodegeneration, organ failure, and cancer. Therefore targeting these enzymatic ROS sources by natural compounds, without affecting the physiological redox state, may be an important tool. This review summarizes the current state of knowledge of the role of NOX enzymes in physiology and pathology and provides an overview of the currently available NADPH oxidase inhibitors derived from natural extracts such as polyphenols. PMID:24381714

  2. Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant

    SciTech Connect

    Tomita, Takeo; Fushinobu, Shinya; Kuzuyama, Tomohisa; Nishiyama, Makoto . E-mail: umanis@mail.ecc.u-tokyo.ac.jp

    2006-08-25

    To elucidate the structural basis for the alteration of coenzyme specificity from NADH toward NADPH in a malate dehydrogenase mutant EX7 from Thermus flavus, we determined the crystal structures at 2.0 A resolution of EX7 complexed with NADPH and NADH, respectively. In the EX7-NADPH complex, Ser42 and Ser45 form hydrogen bonds with the 2'-phosphate group of the adenine ribose of NADPH, although the adenine moiety is not seen in the electron density map. In contrast, although Ser42 and Ser45 occupy a similar position in the EX7-NADH complex structure, both the adenine and adenine ribose moieties of NADH are missing in the map. These results and kinetic analysis of site-directed mutant enzymes indicate (1) that the preference of EX7 for NADPH over NADH is ascribed to the recognition of the 2'-phosphate group by two Ser and Arg44, and (2) that the adenine moiety of NADPH is not recognized in this mutant.

  3. Dehydroepiandrosterone promotes pulmonary artery relaxation by NADPH oxidation-elicited subunit dimerization of protein kinase G 1α

    PubMed Central

    Patel, Dhara; Kandhi, Sharath; Kelly, Melissa; Neo, Boon Hwa

    2013-01-01

    The activity of glucose-6-phosphate dehydrogenase (G6PD) controls a vascular smooth muscle relaxing mechanism promoted by the oxidation of cytosolic NADPH, which has been associated with activation of the 1α form of protein kinase G (PKG-1α) by a thiol oxidation-elicited subunit dimerization. This PKG-1α-activation mechanism appears to contribute to responses of isolated endothelium-removed bovine pulmonary arteries (BPA) elicited by peroxide, cytosolic NADPH oxidation resulting from G6PD inhibition, and hypoxia. Dehydroepiandrosterone (DHEA) is a steroid hormone with pulmonary vasodilator activity, which has beneficial effects in treating pulmonary hypertension. Because multiple mechanisms have been suggested for the vascular effects of DHEA and one of the known actions of DHEA is inhibiting G6PD, we investigated whether it promoted relaxation associated with NADPH oxidation, PKG-1α dimerization, and PKG activation detected by increased vasodilator-stimulated phosphoprotein (VASP) phosphorylation. Relaxation of BPA to DHEA under aerobic or hypoxic conditions was associated with NADPH oxidation, PKG-1α dimerization, and increased VASP phosphorylation. The vasodilator activity of DHEA was markedly attenuated in pulmonary arteries and aorta from a PKG knockin mouse containing a serine in place of a cysteine involved in PKG dimerization. DHEA promoted increased PKG dimerization in lungs from wild-type mice, which was not detected in the PKG knockin mouse model. Thus PKG-1α dimerization is a major contributing factor to the vasodilator actions of DHEA and perhaps its beneficial effects in treating pulmonary hypertension. PMID:24375799

  4. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability.

    PubMed

    Moreira dos Santos, Margarida; Thygesen, Gerda; Kötter, Peter; Olsson, Lisbeth; Nielsen, Jens

    2003-10-01

    Recombinant strains altered in the ammonium assimilation pathways were constructed with the purpose of increasing NADPH availability. The NADPH-dependent glutamate dehydrogenase encoded by GDH1, which accounts for a major fraction of the NADPH consumption during growth on ammonium, was deleted, and alternative pathways for ammonium assimilation were overexpressed: GDH2 (NADH-consuming) or GLN1 and GLT1 (the GS-GOGAT system). The flux through the pentose phosphate pathway during aerobic growth on glucose decreased to about half that of the reference strain Saccharomyces cerevisiae CEN.PK113-7D, indicating a major redox alteration in the strains. The basic growth characteristics of the recombinant strains were not affected to a great extent, but the dilution rate at which the onset of aerobic fermentation occurred decreased, suggesting a relation between the onset of the Crabtree effect and the flux through the Embden-Meyerhof-Parnas pathway downstream of glucose 6-phosphate. No redox effect was observed in a strain containing a deletion of GLR1, encoding glutathione reductase, an enzyme that is NADPH-consuming.

  5. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.

    PubMed

    Burdette, D; Zeikus, J G

    1994-08-15

    The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling.

  6. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.

    PubMed Central

    Burdette, D; Zeikus, J G

    1994-01-01

    The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling. Images Figure 1 PMID:8068002

  7. Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture.

    PubMed

    Araújo, Wagner L; Nunes-Nesi, Adriano; Osorio, Sonia; Usadel, Björn; Fuentes, Daniela; Nagy, Réka; Balbo, Ilse; Lehmann, Martin; Studart-Witkowski, Claudia; Tohge, Takayuki; Martinoia, Enrico; Jordana, Xavier; Damatta, Fábio M; Fernie, Alisdair R

    2011-02-01

    Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the Sl SDH2-2 gene encoding the iron sulfur subunit of the succinate dehydrogenase protein complex in the antisense orientation under the control of the 35S promoter exhibit an enhanced rate of photosynthesis. The rate of the tricarboxylic acid (TCA) cycle was reduced in these transformants, and there were changes in the levels of metabolites associated with the TCA cycle. Furthermore, in comparison to wild-type plants, carbon dioxide assimilation was enhanced by up to 25% in the transgenic plants under ambient conditions, and mature plants were characterized by an increased biomass. Analysis of additional photosynthetic parameters revealed that the rate of transpiration and stomatal conductance were markedly elevated in the transgenic plants. The transformants displayed a strongly enhanced assimilation rate under both ambient and suboptimal environmental conditions, as well as an elevated maximal stomatal aperture. By contrast, when the Sl SDH2-2 gene was repressed by antisense RNA in a guard cell-specific manner, changes in neither stomatal aperture nor photosynthesis were observed. The data obtained are discussed in the context of the role of TCA cycle intermediates both generally with respect to photosynthetic metabolism and specifically with respect to their role in the regulation of stomatal aperture.

  8. Lactate dehydrogenase downregulation mediates the inhibitory effect of diallyl trisulfide on proliferation, metastasis, and invasion in triple-negative breast cancer.

    PubMed

    Cheng, Shi-Yann; Yang, Yao-Chih; Ting, Kuan-Lun; Wen, Su-Ying; Viswanadha, Vijaya Padma; Huang, Chih-Yang; Kuo, Wei-Wen

    2017-04-01

    The Warburg effect plays a critical role in tumorigenesis, suggesting that specific agents targeting Warburg effect key proteins may be a promising strategy for cancer therapy. Previous studies have shown that diallyl trisulfide (DATS) inhibits proliferation of breast cancer cells by inducing apoptosis in vitro and in vivo. However, whether the Warburg effect is involved with the apoptosis-promoting action of DATS is unclear. Here, we show that the action of DATS is associated with downregulation of lactate dehydrogenase A (LDHA), an essential protein of the Warburg effect whose upregulation is closely related to tumorigenesis. Interestingly, inhibition of the Warburg effect by DATS in breast cancer cells did not greatly affect normal cells. Furthermore, DATS inhibited growth of breast cancer cells, particularly in MDA-MB-231, a triple-negative breast cancer (TNBC) cell, and reduced proliferation and migration; invasion was reversed by over-expression of LDHA. These data suggest that DATS inhibits breast cancer growth and aggressiveness through a novel pathway targeting the key enzyme of the Warburg effect. Our study shows that LDHA downregulation is involved in the apoptotic effect of DATS on TNBC. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1390-1398, 2017.

  9. 11β-Hydroxysteroid Dehydrogenase Type 1(11β-HSD1) mediates insulin resistance through JNK activation in adipocytes

    PubMed Central

    Peng, Kesong; Pan, Yong; Li, Jieli; Khan, Zia; Fan, Mendi; Yin, Haimin; Tong, Chao; Zhao, Yunjie; Liang, Guang; Zheng, Chao

    2016-01-01

    Glucocorticoids are used to treat a number of human diseases but often lead to insulin resistance and metabolic syndrome. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a key enzyme that catalyzes the intracellular conversion of cortisone to physiologically active cortisol. Despite the known role of 11β-HSD1 and active glucocorticoid in causing insulin resistance, the molecular mechanisms by which insulin resistance is induced remain elusive. The aim of this study is to identify these mechanisms in high fat diet (HFD) experimental models. Mice on a HFD were treated with 11β-HSD1 inhibitor as well as a JNK inhibitor. We then treated 3T3-L1-derived adipocytes with prednisone, a synthetic glucocorticoid, and cells with 11β-HSD1 overexpression to study insulin resistance. Our results show that 11β-HSD1 and JNK inhibition mitigated insulin resistance in HFD mice. Prednisone stimulation or overexpression of 11β-HSD1 also caused JNK activation in cultured adipocytes. Inhibition of 11β-HSD1 blocked the activation of JNK in adipose tissue of HFD mice as well as in cultured adipocytes. Furthermore, prednisone significantly impaired the insulin signaling pathway, and these effects were reversed by 11β-HSD1 and JNK inhibition. Our study demonstrates that glucocorticoid-induced insulin resistance was dependent on 11β-HSD1, resulting in the critical activation of JNK signaling in adipocytes. PMID:27841334

  10. NADPH Oxidase-Driven Phagocyte Recruitment Controls Candida albicans Filamentous Growth and Prevents Mortality

    PubMed Central

    Brothers, Kimberly M.; Gratacap, Remi L.; Barker, Sarah E.; Newman, Zachary R.; Norum, Ashley; Wheeler, Robert T.

    2013-01-01

    Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in promoting phagocyte chemotaxis and intracellular containment of fungi to limit filamentous growth. We exploit the transparent zebrafish model to show that failed NADPH oxidase-dependent phagocyte recruitment to C. albicans in the first four hours post-infection permits fungi to germinate extracellularly and kill the host. We combine chemical and genetic tools with high-resolution time-lapse microscopy to implicate both phagocyte oxidase and dual-specific oxidase in recruitment, suggesting that both myeloid and non-myeloid cells promote chemotaxis. We show that early non-invasive imaging provides a robust tool for prognosis, strongly connecting effective early immune response with survival. Finally, we demonstrate a new role of a key regulator of the yeast-to-hyphal switching program in phagocyte-mediated containment, suggesting that there are species-specific methods for modulation of NADPH oxidase-independent immune responses. These novel links between ROS-driven chemotaxis and fungal dimorphism expand our view of a key host defense mechanism and have important implications for pathogenesis. PMID:24098114

  11. Protein kinase C-beta contributes to NADPH oxidase activation in neutrophils.

    PubMed Central

    Dekker, L V; Leitges, M; Altschuler, G; Mistry, N; McDermott, A; Roes, J; Segal, A W

    2000-01-01

    We have analysed the involvement of the beta isotype of the protein kinase C (PKC) family in the activation of NADPH oxidase in primary neutrophils. Using immunofluorescence and cell fractionation, PKC-beta is shown to be recruited to the plasma membrane upon stimulation with phorbol ester and to the phagosomal membrane upon phagocytosis of IgG-coated particles (Fcgamma-receptor stimulus). The time course of recruitment is similar to that of NADPH oxidase activation by these stimuli. The PKC-beta specific inhibitor 379196 inhibits the response to PMA as well as to IgG-coated bacteria. Partial inhibition occurs between 10 and 100 nM of inhibitor, the concentration at which PKC-beta, but not other PKC isotypes, is targeted. Neutrophils isolated from a mouse that lacks PKC-beta also showed an inhibition of NADPH oxidase activation by PMA and IgG-coated particles. The level of inhibition is comparable to that achieved with 379196 in human neutrophils. Thus the PKC-beta isotype mediates activation of NADPH oxidase by PMA and by stimulation of Fcgamma receptors in neutrophils. PMID:10727429

  12. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    SciTech Connect

    Woodward, J.

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  13. Nox4 NAD(P)H oxidase mediates Src-dependent tyrosine phosphorylation of PDK-1 in response to angiotensin II: role in mesangial cell hypertrophy and fibronectin expression.

    PubMed

    Block, Karen; Eid, Assaad; Griendling, Kathy K; Lee, Duck-Yoon; Wittrant, Yohann; Gorin, Yves

    2008-08-29

    Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to hypertrophy and extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces an increase in PDK-1 (3-phosphoinositide-dependent protein kinase-1) kinase activity that required its phosphorylation on tyrosine 9 and 373/376. Introduction into the cells of PDK-1, mutated on these tyrosine residues or kinase-inactive, attenuates Ang II-induced hypertrophy and fibronectin accumulation. Ang II-mediated PDK-1 activation and tyrosine phosphorylation (total and on residues 9 and 373/376) are inhibited in cells transfected with small interfering RNA for Src, indicating that Src is upstream of PDK-1. In cells expressing oxidation-resistant Src mutant C487A, Ang II-induced hypertrophy and fibronectin expression are prevented, suggesting that the pathway is redox-sensitive. Ang II also up-regulates Nox4 protein, and siNox4 abrogates the Ang II-induced increase in intracellular reactive oxygen species (ROS) generation. Small interfering RNA for Nox4 also inhibits Ang II-induced activation of Src and PDK-1 tyrosine phosphorylation (total and on residues 9 and 373/376), demonstrating that Nox4 functions upstream of Src and PDK-1. Importantly, inhibition of Nox4, Src, or PDK-1 prevents the stimulatory effect of Ang II on fibronectin accumulation and cell hypertrophy. This work provides the first evidence that Nox4-derived ROS are responsible for Ang II-induced PDK-1 tyrosine phosphorylation and activation through stimulation of Src. Importantly, this pathway contributes to Ang II-induced MC hypertrophy and fibronectin accumulation. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal hypertrophy and fibrosis.

  14. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells

    PubMed Central

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells. PMID:26221064

  15. Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase 19 (AtNUDX19) gene.

    PubMed

    Corpas, Francisco J; Aguayo-Trinidad, Simeón; Ogawa, Takahisa; Yoshimura, Kazuya; Shigeoka, Shigeru

    2016-03-15

    NADPH is an important cofactor in cell growth, proliferation and detoxification. Arabidopsis thaliana Nudix hydrolase 19 (AtNUDX19) belongs to a family of proteins defined by the conserved amino-acid sequence GX5-EX7REUXEEXGU which has the capacity to hydrolyze NADPH as a physiological substrate in vivo. Given the importance of NADPH in the cellular redox homeostasis of plants, the present study compares the responses of the main NADPH-recycling systems including NADP-isocitrate dehydrogenase (ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and NADP-malic enzyme (ME) in the leaves and roots of Arabidopsis wild-type (Wt) and knock-out (KO) AtNUDX19 mutant (Atnudx19) plants under physiological and arsenic-induced stress conditions. Two major features were observed in the behavior of the main NADPH-recycling systems: (i) under optimal conditions in both organs, the levels of these activities were higher in nudx19 mutants than in Wt plants; and, (ii) under 500μM AsV conditions, these activities increase, especially in nudx19 mutant plants. Moreover, G6PDH activity in roots was the most affected enzyme in both Wt and nudx19 mutant plants, with a 4.6-fold and 5.0-fold increase, respectively. In summary, the data reveals a connection between the absence of chloroplastic AtNUDX19 and the rise in all NADP-dehydrogenase activities under physiological and arsenic-induced stress conditions, particularly in roots. This suggests that AtNUDX19 could be a key factor in modulating the NADPH pool in plants and consequently in redox homeostasis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Dual coenzyme activities of high-Km aldehyde dehydrogenase from rat liver mitochondria.

    PubMed

    Tsai, C S; Senior, D J

    1990-04-01

    Various kinetic approaches were carried out to investigate kinetic attributes for the dual coenzyme activities of mitochondrial aldehyde dehydrogenase from rat liver. The enzyme catalyses NAD(+)- and NADP(+)-dependent oxidations of ethanal by an ordered bi-bi mechanism with NAD(P)+ as the first reactant bound and NAD(P)H as the last product released. The two coenzymes presumably interact with the kinetically identical site. NAD+ forms the dynamic binary complex with the enzyme, while the enzyme-NAD(P)H complex formation is associated with conformation change(s). A stopped-flow burst of NAD(P)H formation, followed by a slower steady-state turnover, suggests that either the deacylation or the release of NAD(P)H is rate limiting. Although NADP+ is reduced by a faster burst rate, NAD+ is slightly favored as the coenzyme by virtue of its marginally faster turnover rate.

  17. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  18. Kinetic Characterization of Reduced Pyridine Nucleotide Dehydrogenases (Duroquinone-Dependent) in Cucurbita Microsomes 1

    PubMed Central

    Pupillo, Paolo; Valenti, Vincenzo; De Luca, Letizia; Hertel, Rainer

    1986-01-01

    Some properties of microsomal electron transfer chains, dependent for oxidase activity on addition of NADH or NADPH, duroquinone, and oxygen (L. De Luca et al., 1984, Plant Sci Lett 36: 93-98) are described. Activity is characterized by negatively cooperative kinetics toward reduced pyridine nucleotides, with limiting Km of 10 to 50 micromolar at pH 7.0 (increasing at lower pH), as well as toward duroquinone with limiting Km of 100 to 400 micromolar regardless of pH. Molecular oxygen is reduced by the enzyme complex with S0.5 of about 30 micromolar and production of H2O and H2O2, without superoxide involvement. The ratio NAD(P)H:O2 averages 1.35 in the presence of KCN and 1.85 in its absence. The pyridine nucleotide specificity of the dehydrogenases has been investigated by kinetic competition experiments. Some enzyme heterogeneity was established for all preparations. At least two enzymes are detectable in plasma membrane-enriched fractions: a major NAD(P)H dehydrogenase having an acid pH optimum, and an NADPH dehydrogenase active around neutrality. Addition of Triton X-100 strongly enhances the activity over most of the pH scale, but depresses it increasingly at pH values higher than 8.0, to the effect that pH profile shows, under these conditions, a major peak at about pH 5.8 for both NADH and NADPH oxidase. Results with endoplasmic reticulum preparations are similar, except that they suggest the presence of still more activities at and above pH 7. The results are interpreted in terms of different complexes catalyzing electron transfer from NAD(P)H to O2 without release of intermediates. PMID:16664630

  19. Multiple mechanisms of NADPH oxidase inhibition by type A and type B Francisella tularensis

    PubMed Central

    McCaffrey, Ramona L.; Schwartz, Justin T.; Lindemann, Stephen R.; Moreland, Jessica G.; Buchan, Blake W.; Jones, Bradley D.; Allen, Lee-Ann H.

    2010-01-01

    Ft is a facultative intracellular pathogen that infects many cell types, including neutrophils. In previous work, we demonstrated that the type B Ft strain LVS disrupts NADPH oxidase activity throughout human neutrophils, but how this is achieved is incompletely defined. Here, we used several type A and type B strains to demonstrate that Ft-mediated NADPH oxidase inhibition is more complex than appreciated previously. We confirm that phagosomes containing Ft opsonized with AS exclude flavocytochrome b558 and extend previous results to show that soluble phox proteins were also affected, as indicated by diminished phosphorylation of p47phox and other PKC substrates. However, a different mechanism accounts for the ability of Ft to inhibit neutrophil activation by formyl peptides, Staphylococcus aureus, OpZ, and phorbol esters. In this case, enzyme targeting and assembly were normal, and impaired superoxide production was characterized by sustained membrane accumulation of dysfunctional NADPH oxidase complexes. A similar post-assembly inhibition mechanism also diminished the ability of anti-Ft IS to confer neutrophil activation and bacterial killing, consistent with the limited role for antibodies in host defense during tularemia. Studies of mutants that we generated in the type A Ft strain Schu S4 demonstrate that the regulatory factor fevR is essential for NADPH oxidase inhibition, whereas iglI and iglJ, candidate secretion system effectors, and the acid phosphatase acpA are not. As Ft uses multiple mechanisms to block neutrophil NADPH oxidase activity, our data strongly suggest that this is a central aspect of virulence. PMID:20610796

  20. Purification of the enzyme NADPH: protochlorophyllide oxidoreductase.

    PubMed

    Beer, N S; Griffiths, W T

    1981-04-01

    A procedure for the purification of the enzyme NADPH:protochlorophyllide oxidoreductase is described. This involves fractionation of sonicated oat etioplast membranes by discontinuous-sucrose-density-gradient centrifugation, which gives membranes in which the enzyme is present at a high specific activity. The enzyme is solubilized from the membranes with Triton X-100, followed by gel filtration of the extract; enzyme activity is eluted in fractions corresponding to a mol.wt of approx. 35000. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the enzyme-containing fractions from gel filtration shows two peptides, of mol.wts. approx. 35000 and 37000.

  1. NADPH Oxidase-Dependent Reactive Oxygen Species Stimulate β-Cell Regeneration Through Differentiation of Endocrine Progenitors in Murine Pancreas.

    PubMed

    Liang, Juan; Wu, Shang Ying; Zhang, Dan; Wang, Lin; Leung, Kwan Keung; Leung, Po Sing

    2016-03-10

    Reactive oxygen species (ROS) act as second messengers for redox modification of transcription factors essential for differentiation. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a major source of ROS, has been shown to regulate differentiation of various progenitor cells, while its role in pancreatic endocrine cell differentiation is unclear. This study was aimed at this knowledge gap. Our results showed that ROS levels were dynamically changed during pancreas development concomitant with endocrine cell differentiation induced by modest exogenous ROS in rudiment cultures. NOX4, but not NOX2, the member of NADPH oxidase, was expressed persistently in endocrine lineage and showed high activity in critical pancreas development phase. Inhibition of NADPH oxidase activity impeded the differentiation of endocrine progenitors in vitro, and exogenous ROS reversed this effect. Studies performed in streptozotocin (STZ)-injected neonatal rats showed that diphenyleneiodonium (DPI) obstructed β-cell regeneration through the suppression of neurogenin 3 (NGN3) expression, but not Ki67-labeling β-cells, indicating that ROS stimulation promoted differentiation beyond proliferation of β-cells. Inhibition of NADPH oxidase also reduced expression of SRY (sex-determining region Y)-box 9 (SOX9), a transcriptional regulator of Ngn3, in endocrine precursor cells, both in vivo and in vitro. Overexpression of SOX9 attenuated the reduction of NGN3 induced by suppression of NADPH oxidase. This is the first study to demonstrate NADPH oxidase, especially NOX4-dependent ROS that promotes pancreatic progenitor cell differentiation into endocrine cells both in vitro and in vivo, probably through the regulation of SOX9. We provide evidence that NADPH oxidase-dependent ROS-mediated signaling is necessary for endocrine cell differentiation, which provides a potential strategy for efficient generation of insulin-producing cells in clinical application.

  2. Association of ferredoxin-NADP oxidoreductase with the chloroplastic pyridine nucleotide dehydrogenase complex in barley leaves

    PubMed

    Jose Quiles M; Cuello

    1998-05-01

    Barley (Hordeum vulgare L.) leaves were used to isolate and characterize the chloroplast NAD(P)H dehydrogenase complex. The stroma fraction and the thylakoid fraction solubilized with sodium deoxycholate were analyzed by native polyacrylamide gel electrophoresis, and the enzymes detected with NADH and nitroblue tetrazolium were electroeluted. The enzymes electroeluted from band S from the stroma fraction and from bands T1 (ET1) and T2 from the thylakoid fraction solubilized with sodium deoxycholate had ferredoxin-NADP oxidoreductase (FNR; EC 1.18.1.2) and NAD(P)H-FeCN oxidoreductase (NAD[P]H-FeCNR) activities. Their NADPH-FeCNR activities were inhibited by 2'-monophosphoadenosine-5'-diphosphoribose and by enzyme incubation with p-chloromercuriphenylsulfonic acid (p-CMPS), NADPH, and p-CMPS plus NADPH. They presented Michaelis constant NADPH values that were similar to those of FNRs from several sources. Their NADH-FeCNR activities, however, were not inhibited by 2'-monophosphoadenosine-5'-diphosphoribose but were weakly inhibited by enzyme incubation with NADH, p-CMPS, and p-CMPS plus NADH. We found that only ET1 contained two polypeptides of 29 and 35 kD, which reacted with the antibodies raised against the mitochondrial complex I TYKY subunit and the chloroplast ndhA gene product, respectively. However, all three enzymes contained two polypeptides of 35 and 53 kD, which reacted with the antibodies raised against barley FNR and the NADH-binding 51-kD polypeptide of the mitochondrial complex I, respectively. The results suggest that ET1 is the FNR-containing thylakoidal NAD(P)H dehydrogenase complex.

  3. Benzene toxicity: emphasis on cytosolic dihydrodiol dehydrogenases

    SciTech Connect

    Bolcsak, L.E.

    1982-01-01

    Blood dyscrasias such as leukopenia and anemia have been clearly identified as consequences of chronic benzene exposure. The metabolites, phenol, catechol, and hydroquinone produced inhibition of /sup 59/Fe uptake in mice which followed the same time course as that produced by benzene. The inhibitor of benzene oxidation, 3-amino-1,2,4-triazole, mitigated the inhibitory effects of benzene and phenol only. These data support the contention that benzene toxicity is mediated by a metabolite and suggest that the toxicity of phenol is a consequence of its metabolism to hydroquinone and that the route of metabolism to catechol may also contribute to the production of toxic metabolite(s). The properties of mouse liver cytosolic dihydrodiol dehydrogenases were examined. These enzymes catalyze the NADP/sup +/-dependent oxidation of trans-1,2-dihydro-1,2-dihydroxybenzene (BDD) to catechol, a possible toxic metabolite of benzene produced via this metabolic route. Four distinct dihydrodiol dehydrogenases (DD1, DD2, DD3, and DD4) were purified to apparent homogeneity as judged by SDS polyacrylamide gel electrophoresis and isoelectric focusing. DD1 appeared to be identical to the major ketone reductase and 17..beta..-hydroxysteroid dehydrogenase activity in the liver. DD2 exhibited aldehyde reductase activity. DD3 and DD4 oxidized 17..beta..-hydroxysteroids, but no carbonyl reductase activity was detected. These relationships between BDD dehydrogenases and carbonyl reductase and/or 17..beta..-hydroxysteroid dehydrogenase activities were supported by several lines of evidence.

  4. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.

    PubMed

    Chin, Jonathan W; Cirino, Patrick C

    2011-01-01

    Escherichia coli engineered to uptake xylose while metabolizing glucose was previously shown to produce high levels of xylitol from a mixture of glucose and xylose when expressing NADPH-dependent xylose reductase from Candida boidinii (CbXR) (Cirino et al., Biotechnol Bioeng. 2006;95:1167-1176). We then described the effects of deletions of key metabolic pathways (e.g., Embden-Meyerhof-Parnas and pentose phosphate pathway) and reactions (e.g., transhydrogenase and NADH dehydrogenase) on resting-cell xylitol yield (Y RPG: moles of xylitol produced per mole of glucose consumed) (Chin et al., Biotechnol Bioeng. 2009;102:209-220). These prior results demonstrated the importance of direct NADPH supply by NADP+-utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions. This study describes strain modifications that improve coupling between glucose catabolism (oxidation) and xylose reduction using two fundamentally different strategies. We first examined the effects of deleting the phosphofructokinase (pfk) gene(s) on growth-uncoupled xylitol production and found that deleting both pfkA and sthA (encoding the E. coli-soluble transhydrogenase) improved the xylitol Y RPG from 3.4 ± 0.6 to 5.4 ± 0.4. The second strategy focused on coupling aerobic growth on glucose to xylitol production by deleting pgi (encoding phosphoglucose isomerase) and sthA. Impaired growth due to imbalanced NADPH metabolism (Sauer et al., J Biol Chem. 2004;279:6613-6619) was alleviated upon expressing CbXR, resulting in xylitol production similar to that of the growth-uncoupled precursor strains but with much less acetate secretion and more efficient utilization of glucose. Intracellular nicotinamide cofactor levels were also quantified, and the magnitude of the change in the NADPH/NADP+ ratio measured from cells consuming glucose in the absence vs. presence of xylose showed a strong correlation to the resulting Y RPG. Copyright © 2011 American Institute of Chemical

  5. P450BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations.

    PubMed

    Beyer, Nina; Kulig, Justyna K; Bartsch, Anette; Hayes, Martin A; Janssen, Dick B; Fraaije, Marco W

    2017-03-01

    To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the regeneration of NADPH.The well-expressed fusion enzyme was purified and analyzed in comparison to the parent enzymes. Using lauric acid as substrate for P450BM3, it was found that the fusion enzyme had similar substrate affinity and hydroxylation selectivity while it displayed a significantly higher activity than the non-fused monooxygenase. Phosphite-driven conversions of lauric acid at restricted NADPH concentrations confirmed multiple turnovers of the cofactor. Interestingly, both the fusion enzyme and the native P450BM3 displayed enzyme concentration dependent activity and the fused enzyme reached optimal activity at a lower enzyme concentration. This suggests that the fusion enzyme has an improved tendency to form functional oligomers.To explore the constructed phosphite-driven P450BM3 as a biocatalyst, conversions of the drug compounds omeprazole and rosiglitazone were performed. PTDH-P450BM3 driven by phosphite was found to be more efficient in terms of total turnover when compared with P450BM3 driven by NADPH. The results suggest that PTDH-P450BM3 is an attractive system for use in biocatalytic and drug metabolism studies.

  6. [Agrobacterium-mediated sunflower transformation (Helianthus annuus L.) in vitro and in Planta using strain of LBA4404 harboring binary vector pBi2E with dsRNA-suppressor proline dehydrogenase gene].

    PubMed

    Tishchenko, E N; Komisarenko, A G; Mikhal'skaia, S I; Sergeeva, L E; Adamenko, N I; Morgun, B V; Kochetov, A V

    2014-01-01

    To estimate the efficiency of proline dehydrogenase gene suppression towards increasing of sunflower (Helianthus annuus L.) tolerance level to water deficit and salinity, we employed strain LBA4404 harboring pBi2E with double-stranded RNA-suppressor, which were prepared on basis arabidopsis ProDH1 gene. The techniques of Agrobacterium-mediated transformation in vitro and in planta during fertilization sunflower have been proposed. There was shown the genotype-depended integration of T-DNA in sunflower genome. PCR-analysis showed that ProDH1 presents in genome of inbred lines transformed in planta, as well as in T1- and T2-generations. In trans-genic regenerants the essential accumulation of free L-proline during early stages of in vitro cultivation under normal conditions was shown. There was established the essential accumulation of free proline in transgenic regenerants during cultivation under lethal stress pressure (0.4 M mannitol and 2.0% sea water salts) and its decline upon the recovery period. These data are declared about effectiveness of suppression of sunflower ProDH and gene participation in processes connected with osmotolerance.

  7. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity.

    PubMed

    Yun, Byung-Wook; Feechan, Angela; Yin, Minghui; Saidi, Noor B B; Le Bihan, Thierry; Yu, Manda; Moore, John W; Kang, Jeong-Gu; Kwon, Eunjung; Spoel, Steven H; Pallas, Jacqueline A; Loake, Gary J

    2011-10-13

    Changes in redox status are a conspicuous feature of immune responses in a variety of eukaryotes, but the associated signalling mechanisms are not well understood. In plants, attempted microbial infection triggers the rapid synthesis of nitric oxide and a parallel accumulation of reactive oxygen intermediates, the latter generated by NADPH oxidases related to those responsible for the pathogen-activated respiratory burst in phagocytes. Both nitric oxide and reactive oxygen intermediates have been implicated in controlling the hypersensitive response, a programmed execution of plant cells at sites of attempted infection. However, the molecular mechanisms that underpin their function and coordinate their synthesis are unknown. Here we show genetic evidence that increases in cysteine thiols modified using nitric oxide, termed S-nitrosothiols, facilitate the hypersensitive response in the absence of the cell death agonist salicylic acid and the synthesis of reactive oxygen intermediates. Surprisingly, when concentrations of S-nitrosothiols were high, nitric oxide function also governed a negative feedback loop limiting the hypersensitive response, mediated by S-nitrosylation of the NADPH oxidase, AtRBOHD, at Cys 890, abolishing its ability to synthesize reactive oxygen intermediates. Accordingly, mutation of Cys 890 compromised S-nitrosothiol-mediated control of AtRBOHD activity, perturbing the magnitude of cell death development. This cysteine is evolutionarily conserved and specifically S-nitrosylated in both human and fly NADPH oxidase, suggesting that this mechanism may govern immune responses in both plants and animals.

  8. Persistent activation of microglia and NADPH drive hippocampal dysfunction in experimental multiple sclerosis

    PubMed Central

    Di Filippo, Massimiliano; de Iure, Antonio; Giampà, Carmela; Chiasserini, Davide; Tozzi, Alessandro; Orvietani, Pier Luigi; Ghiglieri, Veronica; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Mancini, Andrea; Costa, Cinzia; Sarchielli, Paola; Fusco, Francesca Romana; Calabresi, Paolo

    2016-01-01

    Cognitive impairment is common in multiple sclerosis (MS). Unfortunately, the synaptic and molecular mechanisms underlying MS-associated cognitive dysfunction are largely unknown. We explored the presence and the underlying mechanism of cognitive and synaptic hippocampal dysfunction during the remission phase of experimental MS. Experiments were performed in a chronic-relapsing experimental autoimmune encephalomyelitis (EAE) model of MS, after the resolution of motor deficits. Immunohistochemistry and patch-clamp recordings were performed in the CA1 hippocampal area. The hole-board was utilized as cognitive/behavioural test. In the remission phase of experimental MS, hippocampal microglial cells showed signs of activation, CA1 hippocampal synapses presented an impaired long-term potentiation (LTP) and an alteration of spatial tests became evident. The activation of hippocampal microglia mediated synaptic and cognitive/behavioural alterations during EAE. Specifically, LTP blockade was found to be caused by the reactive oxygen species (ROS)-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We suggest that in the remission phase of experimental MS microglia remains activated, causing synaptic dysfunctions mediated by NADPH oxidase. Inhibition of microglial activation and NADPH oxidase may represent a promising strategy to prevent neuroplasticity impairment associated with active neuro-inflammation, with the aim to improve cognition and counteract MS disease progression. PMID:26887636

  9. Impact of NADPH oxidase functional polymorphisms in acute myeloid leukemia induction chemotherapy.

    PubMed

    Megías-Vericat, J E; Montesinos, P; Herrero, M J; Moscardó, F; Bosó, V; Rojas, L; Martínez-Cuadrón, D; Rodríguez-Veiga, R; Sendra, L; Cervera, J; Poveda, J L; Sanz, M Á; Aliño, S F

    2017-05-09

    Efficacy and toxicity of anthracycline treatment in acute myeloid leukemia (AML) is mediated by reactive oxygen species (ROS). NADPH oxidase is the major endogenous source of ROS and a key mediator of oxidative cardiac damage. The impact of NADPH oxidase polymorphisms (CYBA:rs4673, NCF4:rs1883112, RAC2:rs13058338) was evaluated in 225 adult de novo AML patients. Variant alleles of NCF4 and RAC2 were related to higher complete remission (P=0.035, P=0.016), and CYBA homozygous variant showed lower overall survival with recessive model (P=0.045). Anthracycline-induced cardiotoxicity was associated to NCF4 homozygous variant (P=0.012) and CYBA heterozygous genotype (P=0.027). Novel associations were found between variant allele of CYBA and lower lung and gastrointestinal toxicities, and a protective effect in nephrotoxicity and RAC2 homozygous variant. Moreover, RAC2 homozygous variant was related to delayed thrombocytopenia recovery. This study supports the interest of NADPH oxidase polymorphisms regarding efficacy and toxicity of AML induction therapy, in a coherent integrated manner.The Pharmacogenomics Journal advance online publication, 9 May 2017; doi:10.1038/tpj.2017.19.

  10. NADPH Oxidase Promotes Neutrophil Extracellular Trap Formation in Pulmonary Aspergillosis

    PubMed Central

    Röhm, Marc; Grimm, Melissa J.; D'Auria, Anthony C.; Almyroudis, Nikolaos G.

    2014-01-01

    NADPH oxidase is a crucial enzyme in antimicrobial host defense and in regulating inflammation. Chronic granulomatous disease (CGD) is an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates. Aspergillus species are ubiquitous, filamentous fungi, which can cause invasive aspergillosis, a major cause of morbidity and mortality in CGD, reflecting the critical role for NADPH oxidase in antifungal host defense. Activation of NADPH oxidase in neutrophils can be coupled to the release of proteins and chromatin that comingle in neutrophil extracellular traps (NETs), which can augment extracellular antimicrobial host defense. NETosis can be driven by NADPH oxidase-dependent and -independent pathways. We therefore undertook an analysis of whether NADPH oxidase was required for NETosis in Aspergillus fumigatus pneumonia. Oropharyngeal instillation of live Aspergillus hyphae induced neutrophilic pneumonitis in both wild-type and NADPH oxidase-deficient (p47phox−/−) mice which had resolved in wild-type mice by day 5 but progressed in p47phox−/− mice. NETs, identified by immunostaining, were observed in lungs of wild-type mice but were absent in p47phox−/− mice. Using bona fide NETs and nuclear chromatin decondensation as an early NETosis marker, we found that NETosis required a functional NADPH oxidase in vivo and ex vivo. In addition, NADPH oxidase increased the proportion of apoptotic neutrophils. Together, our results show that NADPH oxidase is required for pulmonary clearance of Aspergillus hyphae and generation of NETs in vivo. We speculate that dual modulation of NETosis and apoptosis by NADPH oxidase enhances antifungal host defense and promotes resolution of inflammation upon infection clearance. PMID:24549323

  11. Nebivolol Reduces Proteinuria and Renal NADPH Oxidase-Generated Reactive Oxygen Species in the Transgenic Ren2 Rat

    PubMed Central

    Whaley-Connell, Adam; Habibi, Javad; Johnson, Megan; Tilmon, Roger; Rehmer, Nathan; Rehmer, Jenna; Wiedmeyer, Charles; Ferrario, Carlos M.; Sowers, James R.

    2009-01-01

    Background/Aims Renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system activation are crucial in the pathogenesis of hypertension, cardiovascular and renal disease. NADPH oxidase-mediated increases in reactive oxygen species (ROS) are an important mediator for RAAS-induced cardiovascular and renal injury. Increased levels of ROS can diminish the bioactivity of nitric oxide (NO), a critical modulator of RAAS effects on the kidney. Thereby, we hypothesized that in vivo nebivolol therapy in a rodent model of activated RAAS would attenuate glomerular damage and proteinuria through its actions to reduce NADPH oxidase activity/ROS and increase bioavailable NO. Methods We utilized the transgenic Ren2 rat which displays heightened tissue RAAS, hypertension, and proteinuria. Ren2 rats (6–9 weeks of age) and age-matched Sprague-Dawley littermates were treated with nebivolol 10 mg/kg/day (osmotic mini-pump) for 21 days. Results Ren2 rats exhibited increases in systolic blood pressure, proteinuria, kidney cortical tissue total NADPH oxidase activity and subunits (Rac1, p67phox, and p47phox), ROS and 3-nitrotyrosine, as well as reductions in podocyte protein markers; each of these parameters improved with nebivolol treatment along with increases in renal endothelial NO synthase expression. Conclusions Our data suggest that nebivolol improves proteinuria through reductions in renal RAAS-mediated increases in NADPH oxidase/ROS and increases in bioavailable NO. PMID:19609077

  12. Contrasting Influence of NADPH and a NADPH-Regenerating System on the Metabolism of Carbonyl-Containing Compounds in Hepatic Microsomes

    EPA Science Inventory

    Carbonyl containing xenobiotics may be susceptible to NADPH-dependent cytochrome P450 (P450) and carbonyl-reduction reactions. In vitro hepatic microsome assays are routinely supplied NADPH either by direct addition of NADPH or via an NADPH-regenerating system (NRS). In contrast ...

  13. Contrasting Influence of NADPH and a NADPH-Regenerating System on the Metabolism of Carbonyl-Containing Compounds in Hepatic Microsomes

    EPA Science Inventory

    Carbonyl containing xenobiotics may be susceptible to NADPH-dependent cytochrome P450 (P450) and carbonyl-reduction reactions. In vitro hepatic microsome assays are routinely supplied NADPH either by direct addition of NADPH or via an NADPH-regenerating system (NRS). In contrast ...

  14. Zinc pyrithione salvages reperfusion injury by inhibiting NADPH oxidase activation in cardiomyocytes.

    PubMed

    Kasi, Viswanath; Bodiga, Sreedhar; Kommuguri, Upendra Nadh; Sankuru, Suneetha; Bodiga, Vijaya Lakshmi

    2011-07-01

    Zinc pyrithione (ZPT), has a strong anti-apoptotic effect when administered just before reperfusion. Because oxidative stress has been proposed to contribute to myocardial reperfusion injury, we tested whether ZPT can reduce the production of reactive oxygen species during reoxygenation in cultured neonatal rat cardiac myocytes and evaluated the role of NADPH oxidase in hypoxia/reoxygenation (H/R) injury. The cells were subjected to 8h of simulated ischemia, followed by either 30 min or 16 h of reoxygenation. ZPT when started just before reoxygenation significantly reduced superoxide generation, LDH release and improved cell survival compared to H/R. Attenuation of the ROS production by ZPT paralleled its capacity to prevent pyknotic nuclei formation. In addition, ZPT reversed the H/R-induced expression of NOX2 and p47(phox) phosphorylation indicating that ZPT directly protects cardiomyocytes from reperfusion injury by a mechanism that attenuates NADPH oxidase mediated intracellular oxidative stress.

  15. Purification, Characterization, and Submitochondrial Localization of the 32-Kilodalton NADH Dehydrogenase from Maize.

    PubMed Central

    Knudten, A. F.; Thelen, J. J.; Luethy, M. H.; Elthon, T. E.

    1994-01-01

    Plant mitochondria have the unique ability to directly oxidize exogenous NAD(P)H. We recently separated two NAD(P)H dehydrogenase activities from maize (Zea mays L.) mitochondria using anion-exchange (Mono Q) chromatography. The first peak of activity oxidized only NADH, whereas the second oxidized both NADH and NADPH. In this paper we describe the purification of the first peak of activity to a 32-kD protein. Polyclonal antibodies to the 32-kD protein were used to show that it was present in mitochondria from several plant species. Two-dimensional gel analysis of the 32-kD NADH dehydrogenase indicated that it consisted of two major and one minor isoelectric forms. Immunoblot analysis of submitochondrial fractions indicated that the 32-kD protein was enriched in the soluble protein fraction after mitochondrial disruption and fractionation; however, some association with the membrane fraction was observed. The membrane-impermeable protein cross-linking agent 3,3[prime] -dithiobis-(sulfosuccinimidylpropionate) was used to further investigate the submitochondrial location of the 32-kD NADH dehydrogenase. The 32-kD protein was localized to the outer surface of the inner mitochondrial membrane or to the intermembrane space. The pH optimum for the enzyme was 7.0. The activity was found to be severely inhibited by p-chloromercuribenzoic acid, mersalyl, and dicumarol, and stimulated somewhat by flavin mononucleotide. PMID:12232393

  16. Adaptation of an enzymatic cycling assay for NADP(H) measurement to the COBAS-FARA centrifugal analyzer.

    PubMed

    Lewis, B L; McGuinness, E T

    1990-01-01

    NADP(H) measurements by enzymatic amplification are described in which the interface step between cycling (glucose-6-phosphate and glutamic dehydrogenases) and indicator (6-phosphogluconic dehydrogenase) enzymes has been reconfigured, permitting the entire operation to run as a continuous assay on a centrifugal fast analyzer. This is accomplished by using the sequential load feature of the analyzer and incorporating either sodium dodecyl sulfate (SDS) or SDS and hydrogen peroxide as kill reagents to replace the thermal step (destruction of cycle enzymes by boiling). The ability of SDS to render a cycle inoperative during the run time of the indicator enzyme depends on the inherent resistivity and absolute amount of its enzyme proteins to this surfactant. Criteria used to judge the efficacy of a potential kill reagent are based on the sample blank time-response curve and the cycle product recovery by the indicator enzyme. Various other enzyme cycling systems which can be fitted to the centrifugal fast analyzer are highlighted.

  17. Mixed Disulfide Formation at Cys141 Leads to Apparent Unidirectional Attenuation of Aspergillus niger NADP-Glutamate Dehydrogenase Activity

    PubMed Central

    Walvekar, Adhish S.; Choudhury, Rajarshi; Punekar, Narayan S.

    2014-01-01

    NADP-Glutamate dehydrogenase from Aspergillus niger (AnGDH) exhibits sigmoid 2-oxoglutarate saturation. Incubation with 2-hydroxyethyl disulfide (2-HED, the disulfide of 2-mercaptoethanol) resulted in preferential attenuation of AnGDH reductive amination (forward) activity but with a negligible effect on oxidative deamination (reverse) activity, when monitored in the described standard assay. Such a disulfide modified AnGDH displaying less than 1.0% forward reaction rate could be isolated after 2-HED treatment. This unique forward inhibited GDH form (FIGDH), resembling a hypothetical ‘one-way’ active enzyme, was characterized. Kinetics of 2-HED mediated inhibition and protein thiol titrations suggested that a single thiol group is modified in FIGDH. Two site-directed cysteine mutants, C141S and C415S, were constructed to identify the relevant thiol in FIGDH. The forward activity of C141S alone was insensitive to 2-HED, implicating Cys141 in FIGDH formation. It was observed that FIGDH displayed maximal reaction rate only after a pre-incubation with 2-oxoglutarate and NADPH. In addition, compared to the native enzyme, FIGDH showed a four fold increase in K0.5 for 2-oxoglutarate and a two fold increase in the Michaelis constants for ammonium and NADPH. With no change in the GDH reaction equilibrium constant, the FIGDH catalyzed rate of approach to equilibrium from reductive amination side was sluggish. Altered kinetic properties of FIGDH at least partly account for the observed apparent loss of forward activity when monitored under defined assay conditions. In sum, although Cys141 is catalytically not essential, its covalent modification provides a striking example of converting the biosynthetic AnGDH into a catabolic enzyme. PMID:24987966

  18. Low Extracellular Zinc Increases Neuronal Oxidant Production Through NADPH Oxidase and Nitric Oxide Synthase Activation

    PubMed Central

    Aimo, Lucila; Cherr, Gary N.; Oteiza, Patricia I.

    2012-01-01

    A decrease in zinc (Zn) levels increases the production of cell oxidants, affects the oxidant defense system and triggers oxidant sensitive signals in neuronal cells. However, the underlying mechanisms are still unclear. This work tested the hypothesis that the increase in neuronal oxidants that occurs when cellular Zn decreases is mediated by the activation of the NMDA receptor. Differentiated PC12 cells were cultured in control, Zn-deficient or Zn-repleted media. The incubation in Zn deficient media led to a rapid increase in cellular calcium levels, which was prevented by a NMDA receptor antagonist (MK-801). Cellular calcium accumulation was associated with NADPH oxidase and nitric oxide synthase (NOS) activation, an increase in cell oxidant levels, and an associated activation of a redox-sensitive signal (AP-1). In cells incubated in the Zn deficient medium, NADPH oxidase activation was prevented by MK-801 and by a protein kinase C inhibitor. The rise in cell oxidants was prevented by inhibitors of NADPH oxidase, of the NOS and by MK-801. A similar pattern of inhibitor action was observed for zinc deficiency-induced AP-1 activation. Results demonstrate that a decrease in extracellular Zn leads to an increase in neuronal oxidants through the activation of the NMDAR that leads to calcium influx and to a calcium-mediated activation of protein kinase C/NADPH oxidase and NOS. Changes in extracellular Zn concentrations can be sensed by neurons, which using reactive oxygen and nitrogen species as second messengers, can regulate signaling involved in neuronal development and function. PMID:20211250

  19. Genetic Phagocyte NADPH Oxidase Deficiency Enhances Nonviable Candida albicans-Induced Inflammation in Mouse Lungs.

    PubMed

    Endo, Daiki; Fujimoto, Kenta; Hirose, Rika; Yamanaka, Hiroko; Homme, Mizuki; Ishibashi, Ken-Ichi; Miura, Noriko; Ohno, Naohito; Aratani, Yasuaki

    2017-02-01

    Patients with chronic granulomatous disease (CGD) have mutated phagocyte NADPH oxidase, resulting in reduced production of reactive oxygen species (ROS). While the mechanism underlying hyperinfection in CGD is well understood, the basis for inflammatory disorders that arise in the absence of evident infection has not been fully explained. This study aimed to evaluate the effect of phagocyte NADPH oxidase deficiency on lung inflammation induced by nonviable Candida albicans (nCA). Mice deficient in this enzyme (CGD mice) showed more severe neutrophilic pneumonia than nCA-treated wild-type mice, which exhibited significantly higher lung concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and keratinocyte-derived chemokine (KC). Neutralization of these proinflammatory mediators significantly reduced neutrophil infiltration. In vitro, production of IL-1β and TNF-α from neutrophils and that of KC from macrophages was enhanced in nCA-stimulated neutrophils from CGD mice. Expression of IL-1β mRNA was higher in the stimulated CGD neutrophils than in the stimulated wild-type cells, concomitant with upregulation of nuclear factor (NF)-κB and its upstream regulator extracellular-signal regulated kinase (ERK) 1/2. Pretreatment with an NADPH oxidase inhibitor significantly enhanced IL-1β production in the wild-type neutrophils stimulated with nCA. These results suggest that lack of ROS production because of NADPH oxidase deficiency results in the production of higher levels of proinflammatory mediators from neutrophils and macrophages, which may at least partly contribute to the exacerbation of nCA-induced lung inflammation in CGD mice.

  20. Computational design of short-chain dehydrogenase Gox2181 for altered coenzyme specificity.

    PubMed

    Cui, Dongbing; Zhang, Lujia; Zhang, Lujiang; Yao, Zhiqiang; Liu, Xu; Lin, Jinping; Yuan, Y Adam; Wei, Dongzhi

    2013-09-20

    Short-chain dehydrogenase Gox2181 from Gluconobacter oxydans catalyzes the reduction of 2,3-pentanedione by using NADH as the physiological electron donor. To realize its synthetic biological application for coenzyme recycling use, computational design and site-directed mutagenesis have been used to engineer Gox2181 to utilize not only NADH but also NADPH as the electron donor. Single and double mutations at residues Q20 and D43 were made in a recombinant expression system that corresponded to Gox2181-D43Q and Gox2181-Q20R&D43Q, respectively. The design of mutant Q20R not only resolved the hydrogen bond interaction and electrostatic interaction between R and 2'-phosphate of NADPH, but also could enhance the binding with 2'-phophated of NADPH by combining with D43Q. Molecular dynamics simulation has been carried out to testify the hydrogen bond interactions between mutation sites and 2'-phosphate of NADPH. Steady-state turnover measurement results indicated that Gox2181-D43Q could use both NADH and NADPH as its coenzyme, and so could Gox2181-Q20R&D43Q. Meanwhile, compared to the wild-type enzyme, Gox2181-D43Q exhibited dramatically reduced enzymatic activity while Gox2181-Q20R&D43Q successfully retained the majority of enzymatic activity.

  1. The complex roles of NADPH oxidases in fungal infection

    PubMed Central

    Hogan, Deborah; Wheeler, Robert T.

    2014-01-01

    Summary NADPH oxidases play key roles in immunity and inflammation that go beyond the production of microbicidal reactive oxygen species (ROS). The past decade has brought a new appreciation for the diversity of roles played by ROS in signaling associated with inflammation and immunity. NADPH oxidase activity affects disease outcome during infections by human pathogenic fungi, an important group of emerging and opportunistic pathogens that includes Candida, Aspergillus and Cryptococcus species. Here we review how alternative roles of NADPH oxidase activity impact fungal infection and how ROS signaling affects fungal physiology. Particular attention is paid to roles for NADPH oxidase in immune migration, immunoregulation in pulmonary infection, neutrophil extracellular trap formation, autophagy and inflammasome activity. These recent advances highlight the power and versatility of spatiotemporally controlled redox regulation in the context of infection, and point to a need to understand the molecular consequences of NADPH oxidase activity in the cell. PMID:24905433

  2. NADPH Oxidases in Lung Health and Disease

    PubMed Central

    Bernard, Karen; Hecker, Louise; Luckhardt, Tracy R.; Cheng, Guangjie

    2014-01-01

    Abstract Significance: The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molecular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. Recent advances: The purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adaptation, most notably in host defense against invading pathogens and in cellular signaling. Critical issues: However, there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the pathogenesis of a number of lung diseases. Future Directions: Here, we review evolving functions of Nox enzymes in normal lung physiology and emerging pathophysiologic roles in lung disease. Antioxid. Redox Signal. 20, 2838–2853. PMID:24093231

  3. [NADPH oxidases, Nox: new isoenzymes family].

    PubMed

    Chuong Nguyen, Minh Vu; Lardy, Bernard; Paclet, Marie-Hélène; Rousset, Francis; Berthier, Sylvie; Baillet, Athan; Grange, Laurent; Gaudin, Philippe; Morel, Françoise

    2015-01-01

    NADPH oxidases, Nox, are a family of isoenzymes, composed of seven members, whose sole function is to produce reactive oxygen species (ROS). Although Nox catalyze the same enzymatic reaction, they acquired from a common ancestor during evolution, specificities related to their tissue expression, subcellular localization, activation mechanisms and regulation. Their functions could vary depending on the pathophysiological state of the tissues. Indeed, ROS are not only bactericidal weapons in phagocytes but also essential cellular signaling molecules and their overproduction is involved in chronic diseases and diseases of aging. The understanding of the mechanisms involved in the function of Nox and the emergence of Nox inhibitors, require a thorough knowledge of their nature and structure. The objectives of this review are to highlight, in a structure/function approach, the main similar and differentiated properties shared by the human Nox isoenzymes.

  4. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Exposure of Madin-Darby canine kidney (MDCK) cells to oxalate and calcium oxalate crystals activates nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase.

    PubMed

    Khan, Aslam; Byer, Karen; Khan, Saeed R

    2014-02-01

    To investigate nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase activity in Madin-Darby canine kidney (MDCK) cells and the production of reactive oxygen species on exposure to oxalate (Ox) or calcium oxalate (CaOx) crystals. Monolayers of confluent Madin-Darby canine kidney cells were exposed to 100, 300, 500 μmol, 1 mmol Ox or 33, 66, 132 μg/cm(2) CaOx crystals for 15 minutes, 30 minutes, 1 hour, 2 hours, or 3 hours. After specified periods of exposure to Ox and CaOx crystals, lactate dehydrogenase release, trypan blue exclusion, activation of NADPH oxidase, and superoxide production were determined using standard procedures. The production of Nox4, a membrane associated subunit of the NADPH oxidase enzyme, was determined by western blot analysis. Exposure to Ox and CaOx crystals leads to time- and concentration-dependent activation of NADPH oxidase. Western blot analysis showed an increase in the production of Nox4. The production of superoxide also changed in a time- and concentration-dependent manner, with maximum increases after 30-minute exposure to the highest concentrations of Ox and CaOx crystals. Longer exposures did not change the results or resulted in decreased activities. Exposure to higher concentrations also caused increased lactate dehydrogenase release and trypan blue exclusion indicating cell damage. Results indicate that cells of the distal tubular origin are equipped with NADPH oxidase that is activated by exposures to Ox and CaOx crystals. Higher concentrations of both lead to cell injury, most probably through the increased reactive oxygen species production by the exposed cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Modulating betulinic acid production in Saccharomyces cerevisiae by managing the intracellular supplies of the co-factor NADPH and oxygen.

    PubMed

    Li, Jing; Zhang, Yansheng

    2015-01-01

    Betulinic acid is a plant derived triterpenoid with beneficial effects for anti-tumor and anti-human immunodeficiency virus treatments. In Saccharomyces cerevisiae, we previously constructed the betulinic acid biosynthetic pathway, in which several enzymes function in a NADPH or oxygen-dependent manner. To seek whether the intracellular supply of the NADPH/oxygen of S. cerevisiae could be managed for improving betulinic acid production, the expressions of the mutated 2,3-butanediol dehydrogenase (mBDH1) and the yeast codon optimized Vitreoscilla hemoglobin (mvhb) were separately introduced into the betulinic acid forming yeast strain. The effect of these expressions on betulinic acid productivity was evaluated. Our results showed that the expression of mBDH1 and mvhb increased the concentration of betulinic acid to 1.5 and 3.2 times, respectively relative to the controls. Meanwhile, the growth property of these engineered yeast strains was also monitored. Though the mvhb expression greatly improved the production of betulinic acid but exerted a serious inhibition on yeast growth. However, it was possible to keep desirable yeast growth phenotype using an appropriate concentration of acetoin with the expression of mBDH1. The results of this study would provide a general reference to modulate the production of other triterpenoids in S. cerevisiae by managing the supplies of NADPH and oxygen. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Ultrastructural localization of NADPH diaphorase and nitric oxide synthase in the neuropils of the snail CNS.

    PubMed

    Nacsa, Kálmán; Elekes, Károly; Serfőző, Zoltán

    2015-08-01

    Comparative studies on the nervous system revealed that nitric oxide (NO) retains its function through the evolution. In vertebrates NO can act in different ways: it is released solely or as a co-transmitter, released from presynaptic or postsynaptic site, spreads as a volumetric signal or targets synaptic proteins. In invertebrates, however, the possible sites of NO release have not yet been identified. Therefore, in the present study, the subcellular distribution of the NO synthase (NOS) was examined in the central nervous system (CNS) of two gastropod species, the terrestrial snail, Helix pomatia and the pond snail, Lymnaea stagnalis, which are model species in comparative neurobiology. For the visualization of NOS NADPH-diaphorase histochemistry and an immunohistochemical procedure using a universal anti-NOS antibody were applied. At light microscopic level both techniques labeled identical structures in sensory tracts ramifying in the neuropils of central ganglia and cell bodies of the Lymnaea and Helix CNS. At ultrastructural level NADPH-d reactive/NOS-immunoreactive materials were localized on the nuclear envelope and membrane segments of the rough and smooth endoplasmic reticulum, as well as the cell membrane and axolemma of positive perikarya. NADPH-d reactive and NOS-immunoreactive varicosities connected to neighboring neurons with both unspecialized and specialized synaptic contacts. In the varicosities, the majority of the NADPH-d reactive/NOS-immunoreactive membrane segments were detected in round and pleomorph agranular vesicles of small size (50-200 nm). However, only a small portion (16%) of the vesicles displayed the NADPH-d reactivity/NOS-immunoreactivity. No evidence for the postsynaptic location of NOS was found. Our results suggest that the localization of NADPH-diaphorase and NOS is identical in the snail nervous system. In contrast to vertebrates, however, NO seems to act exclusively in an anterograde way possibly released from membrane

  8. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria.

    PubMed

    Tonin, Anelise M; Amaral, Alexandre U; Busanello, Estela N B; Grings, Mateus; Castilho, Roger F; Wajner, Moacir

    2013-02-01

    Cardiomyopathy is a common clinical feature of some inherited disorders of mitochondrial fatty acid β-oxidation including mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies. Since individuals affected by these disorders present tissue accumulation of various fatty acids, including long-chain 3-hydroxy fatty acids, in the present study we investigated the effect of 3-hydroxydecanoic (3 HDCA), 3-hydroxydodecanoic (3 HDDA), 3-hydroxytetradecanoic (3 HTA) and 3-hydroxypalmitic (3 HPA) acids on mitochondrial oxidative metabolism, estimated by oximetry, NAD(P)H content, hydrogen peroxide production, membrane potential (ΔΨ) and swelling in rat heart mitochondrial preparations. We observed that 3 HTA and 3 HPA increased resting respiration and diminished the respiratory control and ADP/O ratios using glutamate/malate or succinate as substrates. Furthermore, 3 HDDA, 3 HTA and 3 HPA decreased ΔΨ, the matrix NAD(P)H pool and hydrogen peroxide production. These data indicate that these fatty acids behave as uncouplers of oxidative phosphorylation. We also verified that 3 HTA-induced uncoupling-effect was not mediated by the adenine nucleotide translocator and that this fatty acid induced the mitochondrial permeability transition pore opening in calcium-loaded organelles since cyclosporin A prevented the reduction of mitochondrial ΔΨ and swelling provoked by 3 HTA. The present data indicate that major 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies behave as strong uncouplers of oxidative phosphorylation potentially impairing heart energy homeostasis.

  9. NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs

    PubMed Central

    Wen, Zhenke; Shimojima, Yasuhiro; Shirai, Tsuyoshi; Li, Yinyin; Ju, Jihang; Yang, Zhen; Tian, Lu; Goronzy, Jörg J.

    2016-01-01

    Immune aging results in progressive loss of both protective immunity and T cell–mediated suppression, thereby conferring susceptibility to a combination of immunodeficiency and chronic inflammatory disease. Here, we determined that older individuals fail to generate immunosuppressive CD8+CCR7+ Tregs, a defect that is even more pronounced in the age-related vasculitic syndrome giant cell arteritis. In young, healthy individuals, CD8+CCR7+ Tregs are localized in T cell zones of secondary lymphoid organs, suppress activation and expansion of CD4 T cells by inhibiting the phosphorylation of membrane-proximal signaling molecules, and effectively inhibit proliferative expansion of CD4 T cells in vitro and in vivo. We identified deficiency of NADPH oxidase 2 (NOX2) as the molecular underpinning of CD8 Treg failure in the older individuals and in patients with giant cell arteritis. CD8 Tregs suppress by releasing exosomes that carry preassembled NOX2 membrane clusters and are taken up by CD4 T cells. Overexpression of NOX2 in aged CD8 Tregs promptly restored suppressive function. Together, our data support NOX2 as a critical component of the suppressive machinery of CD8 Tregs and suggest that repairing NOX2 deficiency in these cells may protect older individuals from tissue-destructive inflammatory disease, such as large-vessel vasculitis. PMID:27088800

  10. NADPH Oxidase Deficiency Regulates Th Lineage Commitment and Modulates Autoimmunity

    PubMed Central

    Tse, Hubert M.; Thayer, Terri C.; Steele, Chad; Cuda, Carla M.; Morel, Laurence; Piganelli, Jon D.; Mathews, Clayton E.

    2011-01-01

    Reactive oxygen species are used by the immune system to eliminate infections; however, they may also serve as signaling intermediates to coordinate the efforts of the innate and adaptive immune systems. In this study, we show that by eliminating macrophage and T cell superoxide production through the NADPH oxidase (NOX), T cell polarization was altered. After stimulation with immobilized anti-CD3 and anti-CD28 or priming recall, T cells from NOX-deficient mice exhibited a skewed Th17 phenotype, whereas NOX-intact cells produced cytokines indicative of a Th1 response. These findings were corroborated in vivo by studying two different autoimmune diseases mediated by Th17 or Th1 pathogenic T cell responses. NOX-deficient NOD mice were Th17 prone with a concomitant susceptibility to experimental allergic encephalomyelitis and significant protection against type 1 diabetes. These data validate the role of superoxide in shaping Th responses and as a signaling intermediate to modulate Th17 and Th1 T cell responses. PMID:20881184

  11. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies.

    PubMed

    Lin, Li-Jen; Tai, Sorgan S K; Peng, Chi-Chung; Tzen, Jason T C

    2002-04-01

    Besides abundant oleosin, three minor proteins, Sop 1, 2, and 3, are present in sesame (Sesamum indicum) oil bodies. The gene encoding Sop1, named caleosin for its calcium-binding capacity, has recently been cloned. In this study, Sop2 gene was obtained by immunoscreening, and it was subsequently confirmed by amino acid partial sequencing and immunological recognition of its overexpressed protein in Escherichia coli. Immunological cross recognition implies that Sop2 exists in seed oil bodies of diverse species. Along with oleosin and caleosin genes, Sop2 gene was transcribed in maturing seeds where oil bodies are actively assembled. Sequence analysis reveals that Sop2, tentatively named steroleosin, possesses a hydrophobic anchoring segment preceding a soluble domain homologous to sterol-binding dehydrogenases/reductases involved in signal transduction in diverse organisms. Three-dimensional structure of the soluble domain was predicted via homology modeling. The structure forms a seven-stranded parallel beta-sheet with the active site, S-(12X)-Y-(3X)-K, between an NADPH and a sterol-binding subdomain. Sterol-coupling dehydrogenase activity was demonstrated in the overexpressed soluble domain of steroleosin as well as in purified oil bodies. Southern hybridization suggests that one steroleosin gene and certain homologous genes may be present in the sesame genome. Comparably, eight hypothetical steroleosin-like proteins are present in the Arabidopsis genome with a conserved NADPH-binding subdomain, but a divergent sterol-binding subdomain. It is indicated that steroleosin-like proteins may represent a class of dehydrogenases/reductases that are involved in plant signal transduction regulated by various sterols.

  12. p21-activated kinase (Pak) regulates NADPH oxidase activation in human neutrophils

    PubMed Central

    Martyn, Kendra D.; Kim, Moon-Ju; Quinn, Mark T.; Dinauer, Mary C.; Knaus, Ulla G.

    2005-01-01

    The phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase plays an instrumental role in host defense and contributes to microbicial killing by releasing highly reactive oxygen species. This multicomponent enzyme is composed of membrane and cytosolic components that assemble in the plasma membrane or phagolysosome. While the guanosine S′-triphosphatase (GTPase) Rac2 has been shown to be a critical regulator of NADPH oxidase activity and assembly, the role of its effector, p21-activated kinase (Pak), in oxidase function has not been well defined. Using HIV-1 Tat-mediated protein transduction of Pak inhibitory domain, we show here that Pak activity is indeed required for efficient superoxide generation in intact neutrophils. Furthermore, we show that Pak translocates to the plasma membrane upon N-formyl-methionyl-leucyl-phenylalanine (fMLF) stimulation and colocalizes with translocated p47phox and with p22phox, a subunit of flavocytochrome b558. Although activated Pak phosphorylated several essential serine residues in the C-terminus of p47phox, direct binding to p47phox was not observed. In contrast, active Pak bound directly to p22phox, suggesting flavocytochrome b was the oxidase-associated membrane target of this kinase and this association may facilitate further phosphorylation of p47phox in the assembling NADPH oxidase complex. PMID:16099876

  13. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase

    PubMed Central

    Pick, Edgar

    2014-01-01

    The superoxide-generating NADPH oxidase of phagocytes consists of the membrane-associated cytochrome b558 (a heterodimer of Nox2 and p22phox) and 4 cytosolic components: p47phox, p67phox, p40phox, and the small GTPase, Rac, in complex with RhoGDI. Superoxide is produced by the NADPH-driven reduction of molecular oxygen, via a redox gradient located in Nox2. Electron flow in Nox2 is initiated by interaction with cytosolic components, which translocate to the membrane, p67phox playing the central role. The participation of Rac is expressed in the following sequence: (1) Translocation of the RacGDP-RhoGDI complex to the membrane; (2) Dissociation of RacGDP from RhoGDI; (3) GDP to GTP exchange on Rac, mediated by a guanine nucleotide exchange factor; (4) Binding of RacGTP to p67phox; (5) Induction of a conformational change in p67phox, promoting interaction with Nox2. The particular involvement of Rac in NADPH oxidase assembly serves as a paradigm for signaling by Rho GTPases, in general. PMID:24598074

  14. Novel role of NADPH oxidase in ischemic myocardium: a study with Nox2 knockout mice.

    PubMed

    Thirunavukkarasu, Mahesh; Adluri, Ram Sudheer; Juhasz, Bela; Samuel, Samson Mathews; Zhan, Lijun; Kaur, Anupinder; Maulik, Gautam; Sanchez, Juan A; Hager, Janet; Maulik, Nilanjana

    2012-08-01

    Several potential sources of reactive oxygen species (ROS) in cells exist. One source is NADPH oxidase, which is especially important for superoxide radical production. Nox2 is a primary regulatory subunit of NADPH oxidase. In the present study, we examined the role of ROS and NADPH oxidase in ischemic preconditioning (IP)-mediated cardioprotection by using Nox2(-/-) mice. Both wild-type (WT) and Nox2(-/-) mice were subjected to either 30 min of ischemia followed by 2 h of reperfusion (IR) or IP prior to 30 min ischemia and 2 h of reperfusion. Reduction in left ventricular developed pressure (60.1 versus 63 mmHg), dp/dt (max) (893 versus 1,027 mmHg/s), and aortic flow (0.9 versus 1.8 ml/min) was observed in Nox2(-/-)IPIR compared to WTIPIR along with increased infarct size (33% versus 22%) and apoptosis after 120 min of reperfusion. Differentially regulated genes were demonstrated by comparing gene expression in WTIPIR versus Nox2(-/-) IPIR hearts. Selected differentially regulated genes such as β-catenin, SRPK3, ERDR1, ACIN1, Syntaxin-8, and STC1 were validated by real-time PCR. Taken together, this is the first report identifying important, differentially expressed genes during ischemic preconditioning in Nox2(-/-) mice by using microarray analysis.

  15. Current status of NADPH oxidase research in cardiovascular pharmacology

    PubMed Central

    Rodiño-Janeiro, Bruno K; Paradela-Dobarro, Beatriz; Castiñeiras-Landeira, María Isabel; Raposeiras-Roubín, Sergio; González-Juanatey, José R; Álvarez, Ezequiel

    2013-01-01

    The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new

  16. Method to Detect the Cellular Source of Over-Activated NADPH Oxidases Using NAD(P)H Fluorescence Lifetime Imaging.

    PubMed

    Bremer, Daniel; Leben, Ruth; Mothes, Ronja; Radbruch, Helena; Niesner, Raluca

    2017-04-03

    Fluorescence-lifetime imaging microscopy (FLIM) is a technique to generate images, in which the contrast is obtained by the excited-state lifetime of fluorescent molecules instead of their intensity and emission spectrum. The ubiquitous coenzymes NADH and NADPH, hereafter NAD(P)H, in cells show a short fluorescence lifetime ≈400 psec in the free-state and a longer fluorescence lifetime when bound to enzymes. The fluorescence lifetime of NAD(P)H in this state depends on the binding-site on the specific enzyme. In the case of NADPH bound to members of the NADPH oxidases family we measured a fluorescence lifetime of 3650 psec as compared to enzymes typically active in cells, in which case fluorescence lifetimes of ∼2000 psec are measured. Here we present a robust protocol based on NAD(P)H fluorescence lifetime imaging in isolated cells to distinguish between normally active enzymes and NADPH oxidases, mainly responsible for oxidative stress. © 2017 by John Wiley & Sons, Inc.

  17. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level.

    PubMed

    Li, Ying; Cong, Hua; Liu, Bingnan; Song, Jinzhu; Sun, Xueying; Zhang, Junzheng; Yang, Qian

    2016-09-01

    Relieving the feedback inhibition of key enzymes in a metabolic pathway is frequently the first step of producer-strain construction by genetic engineering. However, the strict feedback regulation exercised by microorganisms in methionine biosynthesis often makes it difficult to produce methionine at a high level. In this study, Corynebacterium glutamicum ATCC 13032 was metabolically engineered for methionine production. First, the metD gene encoding the methionine uptake system was deleted to achieve extracellular accumulation of methionine. Then, random mutagenesis was performed to remove feedback inhibition by metabolic end-products. The resulting strain C. glutamicum ENM-16 was further engineered to block or decrease competitive branch pathways by deleting the thrB gene and changing the start codon of the dapA gene, followed by point mutations of lysC (C932T) and pyc (G1A, C1372T) to increase methionine precursor supply. To enrich the NADPH pool, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the pentose phosphate pathway were mutated to reduce their sensitivity to inhibition by intracellular metabolites. The resultant strain C. glutamicum LY-5 produced 6.85 ± 0.23 g methionine l(-1) with substrate-specific yield (Y P/S) of 0.08 mol per mol of glucose after 72 h fed-batch fermentation. The strategies described here will be useful for construction of methionine engineering strains.

  18. PLATELET-ASSOCIATED NAD(P)H OXIDASE CONTRIBUTES TO THE THROMBOGENIC PHENOTYPE INDUCED BY HYPERCHOLESTEROLEMIA

    PubMed Central

    Stokes, Karen Y.; Russell, Janice M.; Jennings, Merilyn H.; Alexander, J. Steven; Granger., D. Neil

    2007-01-01

    Elevated cholesterol levels promote pro-inflammatory and prothrombogenic responses in venules and impaired endothelium-dependent arteriolar dilation. Although NAD(P)H oxidase-derived superoxide has been implicated in the altered vascular responses to hypercholesterolemia, it remains unclear whether this oxidative pathway mediates the associated arteriolar dysfunction and platelet adhesion in venules. Platelet and leukocyte adhesion in cremasteric postcapillary venules, and arteriolar dilation responses to acetylcholine were monitored in wild-type (WT), Cu,Zn-superoxide dismutase transgenic (SOD-TgN) and NAD(P)H oxidase-knockout (gp91phox-/-) mice placed on normal (ND) or high cholesterol (HC) diet for 2 wk. HC elicited increased platelet and leukocyte adhesion in WT mice, versus ND. Cytosolic subunits of NAD(P)H oxidase (p47phox and p67phox) were expressed in platelets. This was not altered by hypercholesterolemia, however platelets and leukocytes from HC mice exhibited elevated generation of reactive oxygen species when compared to ND mice. Hypercholesterolemia-induced leukocyte recruitment was attenuated in SOD-TgN-HC and gp91phox-/--HC mice. Recruitment of platelets derived from WT-HC mice in venules of SOD-TgN-HC or gp91phox-/--HC recipients was comparable to ND levels. Adhesion of SOD-TgN-HC platelets paralleled the leukocyte response and was attenuated in SOD-TgN-HC recipients, but not in WT-HC recipients. However, gp91phox-/--HC platelets exhibited low levels of adhesion comparable to WT-ND in both hypercholesterolemic gp91phox-/- and WT recipients. Arteriolar dysfunction was evident in WT-HC mice, compared to WT-ND. Overexpression of SOD or, to a lesser extent, gp91phox deficiency, restored arteriolar vasorelaxation responses towards WT-ND levels. These findings reveal a novel role for platelet-associated NAD(P)H oxidase in producing the thrombogenic phenotype in hypercholesterolemia and demonstrate that NAD(P)H oxidase-derived superoxide mediates the HC

  19. A synthetic peptide from transforming growth factor-β₁ type III receptor inhibits NADPH oxidase and prevents oxidative stress in the kidney of spontaneously hypertensive rats.

    PubMed

    Baltanás, Ana; Miguel-Carrasco, José Luis; San José, Gorka; Cebrián, Carolina; Moreno, María U; Dotor, Javier; Borrás-Cuesta, Francisco; López, Begoña; González, Arantxa; Díez, Javier; Fortuño, Ana; Zalba, Guillermo

    2013-11-10

    The NADPH oxidases constitute a major source of superoxide anion (·O2(-)) in hypertension. Several studies suggest an important role of NADPH oxidases in different effects mediated by transforming growth factor-β₁ (TGF-β₁). We investigated whether a chronic treatment with P144, a peptide synthesized from type III TGF-β₁ receptor, inhibited NADPH oxidases in the renal cortex of spontaneously hypertensive rats (SHR). Here, we show that chronic administration of P144 significantly reduced the NADPH oxidase expression and activity as well as the oxidative stress observed in control vehicle-treated SHR (V-SHR). In addition, P144 was also able to reduce the significant increase in the renal fibrosis and in mRNA expression of different components of collagen metabolism, as well as in the levels of connective tissue growth factor observed in V-SHR. Finally, TGF-β₁-stimulated NRK52E exhibited a significant increase in NADPH oxidase expression and activity as well as a TGF-β₁-dependent intracellular pathway that were inhibited in the presence of P144. Our experimental evidence suggests that reversing oxidative stress may be therapeutically useful in preventing fibrosis-associated renal damage. We show here that (i) the TGF-β₁-NADPH oxidases axis is crucial in the development of fibrosis in an experimental hypertensive renal disease animal model, and (ii) the use of P144 reverses TGF-β₁-dependent NADPH oxidase activity; thus, P144 may be considered a novel therapeutic tool in kidney disease associated with hypertension. We demonstrate that P144 inhibits NADPH oxidases and prevents oxidative stress in kidneys from hypertensive rats. Our data also suggest that these effects are associated with the renal antifibrotic effect of P144.

  20. Plants Utilize a Highly Conserved System for Repair of NADH and NADPH Hydrates1[W][OPEN

    PubMed Central

    Niehaus, Tom D.; Richardson, Lynn G.L.; Gidda, Satinder K.; ElBadawi-Sidhu, Mona; Meissen, John K.; Mullen, Robert T.; Fiehn, Oliver; Hanson, Andrew D.

    2014-01-01

    NADH and NADPH undergo spontaneous and enzymatic reactions that produce R and S forms of NAD(P)H hydrates [NAD(P)HX], which are not electron donors and inhibit various dehydrogenases. In bacteria, yeast (Saccharomyces cerevisiae), and mammals, these hydrates are repaired by the tandem action of an ADP- or ATP-dependent dehydratase that converts (S)-NAD(P)HX to NAD(P)H and an epimerase that facilitates interconversion of the R and S forms. Plants have homologs of both enzymes, the epimerase homolog being fused to the vitamin B6 salvage enzyme pyridoxine 5′-phosphate oxidase. Recombinant maize (Zea mays) and Arabidopsis (Arabidopsis thaliana) NAD(P)HX dehydratases (GRMZM5G840928, At5g19150) were able to reconvert (S)-NAD(P)HX to NAD(P)H in an ATP-dependent manner. Recombinant maize and Arabidopsis epimerases (GRMZM2G061988, At5g49970) rapidly interconverted (R)- and (S)-NAD(P)HX, as did a truncated form of the Arabidopsis epimerase lacking the pyridoxine 5′-phosphate oxidase domain. All plant NAD(P)HX dehydratase and epimerase sequences examined had predicted organellar targeting peptides with a potential second start codon whose use would eliminate the targeting peptide. In vitro transcription/translation assays confirmed that both start sites were used. Dual import assays with purified pea (Pisum sativum) chloroplasts and mitochondria, and subcellular localization of GFP fusion constructs in tobacco (Nicotiana tabacum) suspension cells, indicated mitochondrial, plastidial, and cytosolic localization of the Arabidopsis epimerase and dehydratase. Ablation of the Arabidopsis dehydratase gene raised seedling levels of all NADHX forms by 20- to 40-fold, and levels of one NADPHX form by 10- to 30-fold. We conclude that plants have a canonical two-enzyme NAD(P)HX repair system that is directed to three subcellular compartments via the use of alternative translation start sites. PMID:24599492

  1. Selected dehydrogenases in Yarrowia lipolytica JMY 861: their role in the synthesis of flavor compounds.

    PubMed

    Aziz, Marya; St-Louis, Richard; Husson, Florence; Kermasha, Selim

    2016-09-01

    The presence of selected dehydrogenases, including alcohol dehydrogenase (ADH-YL) and aldehyde dehydrogenase (ALDH-YL), in Yarrowia lipolytica JMY 861, and their potential role in flavor synthesis were investigated. The experimental findings showed that using reduced form of nicotinamide adenine dinucleotide (NADH) as cofactor, the ADH-YL activity in vitro was 6-fold higher than that with reduced form of nicotinamide adenine dinucleotide phosphate (NADPH); however, under the experimental conditions used in this study, an ALDH-YL activity was not detected. The in situ hexanal reduction reaction was found to be instantaneous; however, when the yeast cells suspension was diluted 150 times, the initial relative hexanal concentration was increased by 84.1%. The chromatographic analyses indicated the conversion, in situ, of linoleic acid hydroperoxides (HPODs) into volatile C6-compounds after 60 min of HPODs addition to the yeast cells suspension.

  2. Targeting isocitrate dehydrogenase (IDH) in cancer.

    PubMed

    Fujii, Takeo; Khawaja, Muhammad Rizwan; DiNardo, Courtney D; Atkins, Johnique T; Janku, Filip

    2016-05-01

    Isocitrate dehydrogenase (IDH) is an essential enzyme for cellular respiration in the tricarboxylic acid (TCA) cycle. Recurrent mutations in IDH1 or IDH2 are prevalent in several cancers including glioma, acute myeloid leukemia (AML), cholangiocarcinoma and chondrosarcoma. The mutated IDH1 and IDH2 proteins have a gain-of-function, neomorphic activity, catalyzing the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG) by NADPH. Cancer-associated IDH mutations block normal cellular differentiation and promote tumorigenesis via the abnormal production of the oncometabolite 2-HG. High levels of 2-HG have been shown to inhibit α-KG dependent dioxygenases, including histone and deoxyribonucleic acid (DNA) demethylases, which play a key role in regulating the epigenetic state of cells. Current targeted inhibitors of IDH1 (AG120, IDH305), IDH2 (AG221), and pan-IDH1/2 (AG881) selectively inhibit mutant IDH protein and induce cell differentiation in in vitro and in vivo models. Preliminary results from phase I clinical trials with IDH inhibitors in patients with advanced hematologic malignancies have demonstrated an objective response rate ranging from 31% to 40% with durable responses (>1 year) observed. Furthermore, the IDH inhibitors have demonstrated early signals of activity in solid tumors with IDH mutations, including cholangiocarcinomas and low grade gliomas.

  3. NADP-Dependent Isocitrate Dehydrogenase from Arabidopsis Roots Contributes in the Mechanism of Defence against the Nitro-Oxidative Stress Induced by Salinity

    PubMed Central

    Leterrier, Marina; Barroso, Juan B.; Valderrama, Raquel; Palma, José M.; Corpas, Francisco J.

    2012-01-01

    NADPH regeneration appears to be essential in the mechanism of plant defence against oxidative stress. Plants contain several NADPH-generating dehydrogenases including isocitrate dehydrogenase (NADP-ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and malic enzyme (ME). In Arabidopsis seedlings grown under salinity conditions (100 mM NaCl) the analysis of physiological parameters, antioxidant enzymes (catalase and superoxide dismutase) and content of superoxide radical (O2   ∙−), nitric oxide (NO), and peroxynitrite (ONOO−) indicates a process of nitro-oxidative stress induced by NaCl. Among the analysed NADPH-generating dehydrogenases under salinity conditions, the NADP-ICDH showed the maximum activity mainly attributable to the root NADP-ICDH. Thus, these data provide new insights on the relevance of the NADP-ICDH which could be considered as a second barrier in the mechanism of response against the nitro-oxidative stress generated by salinity. PMID:22649311

  4. Purification and characterization of dimeric dihydrodiol dehydrogenase from dog liver.

    PubMed

    Sato, K; Nakanishi, M; Deyashiki, Y; Hara, A; Matsuura, K; Ohya, I

    1994-09-01

    High NADP(+)-linked dihydrodiol dehydrogenase activity was detected in dog liver cytosol, from which a dimeric enzyme composed of M(r) 39,000 subunits was purified to homogeneity. The enzyme oxidized trans-cyclohexanediol, and trans-dihydrodiols of benzene and naphthalene, the [1R,2R]-isomers of which were selectively oxidized. In the reverse reaction in the presence of NADPH as a coenzyme, the enzyme reduced alpha-dicarbonyl compounds, such as methylglyoxal, 3-deoxyglucosone, and diacetyl, and some compounds with a carbonyl group, such as glyceraldehyde, lactaldehyde, and acetoin. 4-Hydroxyphenylketones and ascorbates inhibited the enzyme. The results of steady-state kinetic analyses indicated that the reaction proceeds through an ordered bi bi mechanism with the coenzyme binding to the free enzyme, and suggested that the inhibitors bind to the enzyme-NADP+ binary complex. The dimeric enzyme was detected in liver and kidney of dog, and was immunochemically similar to the dimeric enzymes from monkey kidney, rabbit lens, and pig liver. The sequences (total 127 amino acid residues) of eight peptides derived on enzymatic digestion of the dog liver enzyme did not show significant similarity with the primary structures of members of the aldo-keto reductase and short chain dehydrogenase superfamilies, which include monomeric dihydrodiol dehydrogenases and carbonyl reductase, respectively.

  5. Thioredoxin f1 and NADPH-Dependent Thioredoxin Reductase C Have Overlapping Functions in Regulating Photosynthetic Metabolism and Plant Growth in Response to Varying Light Conditions.

    PubMed

    Thormählen, Ina; Meitzel, Tobias; Groysman, Julia; Öchsner, Alexandra Bianca; von Roepenack-Lahaye, Edda; Naranjo, Belén; Cejudo, Francisco J; Geigenberger, Peter

    2015-11-01

    Two different thiol redox systems exist in plant chloroplasts, the ferredoxin-thioredoxin (Trx) system, which depends on ferredoxin reduced by the photosynthetic electron transport chain and, thus, on light, and the NADPH-dependent Trx reductase C (NTRC) system, which relies on NADPH and thus may be linked to sugar metabolism in the dark. Previous studies suggested, therefore, that the two different systems may have different functions in plants. We now report that there is a previously unrecognized functional redundancy of Trx f1 and NTRC in regulating photosynthetic metabolism and growth. In Arabidopsis (Arabidopsis thaliana) mutants, combined, but not single, deficiencies of Trx f1 and NTRC led to severe growth inhibition and perturbed light acclimation, accompanied by strong impairments of Calvin-Benson cycle activity and starch accumulation. Light activation of key enzymes of these pathways, fructose-1,6-bisphosphatase and ADP-glucose pyrophosphorylase, was almost completely abolished. The subsequent increase in NADPH-NADP(+) and ATP-ADP ratios led to increased nitrogen assimilation, NADP-malate dehydrogenase activation, and light vulnerability of photosystem I core proteins. In an additional approach, reporter studies show that Trx f1 and NTRC proteins are both colocalized in the same chloroplast substructure. Results provide genetic evidence that light- and NADPH-dependent thiol redox systems interact at the level of Trx f1 and NTRC to coordinately participate in the regulation of the Calvin-Benson cycle, starch metabolism, and growth in response to varying light conditions.

  6. Thioredoxin f1 and NADPH-Dependent Thioredoxin Reductase C Have Overlapping Functions in Regulating Photosynthetic Metabolism and Plant Growth in Response to Varying Light Conditions1[OPEN

    PubMed Central

    Thormählen, Ina; Meitzel, Tobias; Groysman, Julia; Öchsner, Alexandra Bianca; von Roepenack-Lahaye, Edda; Naranjo, Belén; Cejudo, Francisco J.; Geigenberger, Peter

    2015-01-01

    Two different thiol redox systems exist in plant chloroplasts, the ferredoxin-thioredoxin (Trx) system, which depends on ferredoxin reduced by the photosynthetic electron transport chain and, thus, on light, and the NADPH-dependent Trx reductase C (NTRC) system, which relies on NADPH and thus may be linked to sugar metabolism in the dark. Previous studies suggested, therefore, that the two different systems may have different functions in plants. We now report that there is a previously unrecognized functional redundancy of Trx f1 and NTRC in regulating photosynthetic metabolism and growth. In Arabidopsis (Arabidopsis thaliana) mutants, combined, but not single, deficiencies of Trx f1 and NTRC led to severe growth inhibition and perturbed light acclimation, accompanied by strong impairments of Calvin-Benson cycle activity and starch accumulation. Light activation of key enzymes of these pathways, fructose-1,6-bisphosphatase and ADP-glucose pyrophosphorylase, was almost completely abolished. The subsequent increase in NADPH-NADP+ and ATP-ADP ratios led to increased nitrogen assimilation, NADP-malate dehydrogenase activation, and light vulnerability of photosystem I core proteins. In an additional approach, reporter studies show that Trx f1 and NTRC proteins are both colocalized in the same chloroplast substructure. Results provide genetic evidence that light- and NADPH-dependent thiol redox systems interact at the level of Trx f1 and NTRC to coordinately participate in the regulation of the Calvin-Benson cycle, starch metabolism, and growth in response to varying light conditions. PMID:26338951

  7. Complete reversal of coenzyme specificity by concerted mutation of three consecutive residues in alcohol dehydrogenase.

    PubMed

    Rosell, Albert; Valencia, Eva; Ochoa, Wendy F; Fita, Ignacio; Parés, Xavier; Farrés, Jaume

    2003-10-17

    Gastric tissues from amphibian Rana perezi express the only vertebrate alcohol dehydrogenase (ADH8) that is specific for NADP(H) instead of NAD(H). In the crystallographic ADH8-NADP+ complex, a binding pocket for the extra phosphate group of coenzyme is formed by ADH8-specific residues Gly223-Thr224-His225, and the highly conserved Leu200 and Lys228. To investigate the minimal structural determinants for coenzyme specificity, several ADH8 mutants involving residues 223 to 225 were engineered and kinetically characterized. Computer-assisted modeling of the docked coenzymes was also performed with the mutant enzymes and compared with the wild-type crystallographic binary complex. The G223D mutant, having a negative charge in the phosphate-binding site, still preferred NADP(H) over NAD(H), as did the T224I and H225N mutants. Catalytic efficiency with NADP(H) dropped dramatically in the double mutants, G223D/T224I and T224I/H225N, and in the triple mutant, G223D/T224I/H225N (kcat/KmNADPH = 760 mm-1 min-1), as compared with the wild-type enzyme (kcat/KmNADPH = 133330 mm-1 min-1). This was associated with a lower binding affinity for NADP+ and a change in the rate-limiting step. Conversely, in the triple mutant, catalytic efficiency with NAD(H) increased, reaching values (kcat/KmNADH = 155000 mm-1 min-1) similar to those of the wild-type enzyme with NADP(H). The complete reversal of ADH8 coenzyme specificity was therefore attained by the substitution of only three consecutive residues in the phosphate-binding site, an unprecedented achievement within the ADH family.

  8. Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17β-hydroxysteroid dehydrogenase.

    PubMed

    Endo, Satoshi; Miyagi, Namiki; Matsunaga, Toshiyuki; Hara, Akira; Ikari, Akira

    2016-03-25

    We report characterization of a member of the short-chain dehydrogenase/reductase superfamily encoded in a human gene, DHRS11. The recombinant protein (DHRS11) efficiently catalyzed the conversion of the 17-keto group of estrone, 4- and 5-androstenes and 5α-androstanes into their 17β-hydroxyl metabolites with NADPH as a coenzyme. In contrast, it exhibited reductive 3β-hydroxysteroid dehydrogenase activity toward 5β-androstanes, 5β-pregnanes, 4-pregnenes and bile acids. Additionally, DHRS11 reduced α-dicarbonyls (such as diacetyl and methylglyoxal) and alicyclic ketones (such as 1-indanone and loxoprofen). The enzyme activity was inhibited in a mixed-type manner by flavonoids, and competitively by carbenoxolone, glycyrrhetinic acid, zearalenone, curcumin and flufenamic acid. The expression of DHRS11 mRNA was observed widely in human tissues, most abundantly in testis, small intestine, colon, kidney and cancer cell lines. Thus, DHRS11 represents a novel type of 17β-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution.

  9. Association of Ferredoxin-NADP Oxidoreductase with the Chloroplastic Pyridine Nucleotide Dehydrogenase Complex in Barley Leaves1

    PubMed Central

    José Quiles, María; Cuello, Juan

    1998-01-01

    Barley (Hordeum vulgare L.) leaves were used to isolate and characterize the chloroplast NAD(P)H dehydrogenase complex. The stroma fraction and the thylakoid fraction solubilized with sodium deoxycholate were analyzed by native polyacrylamide gel electrophoresis, and the enzymes detected with NADH and nitroblue tetrazolium were electroeluted. The enzymes electroeluted from band S from the stroma fraction and from bands T1 (ET1) and T2 from the thylakoid fraction solubilized with sodium deoxycholate had ferredoxin-NADP oxidoreductase (FNR; EC 1.18.1.2) and NAD(P)H-FeCN oxidoreductase (NAD[P]H-FeCNR) activities. Their NADPH-FeCNR activities were inhibited by 2′-monophosphoadenosine-5′-diphosphoribose and by enzyme incubation with p-chloromercuriphenylsulfonic acid (p-CMPS), NADPH, and p-CMPS plus NADPH. They presented Michaelis constant NADPH values that were similar to those of FNRs from several sources. Their NADH-FeCNR activities, however, were not inhibited by 2′-monophosphoadenosine-5′-diphosphoribose but were weakly inhibited by enzyme incubation with NADH, p-CMPS, and p-CMPS plus NADH. We found that only ET1 contained two polypeptides of 29 and 35 kD, which reacted with the antibodies raised against the mitochondrial complex I TYKY subunit and the chloroplast ndhA gene product, respectively. However, all three enzymes contained two polypeptides of 35 and 53 kD, which reacted with the antibodies raised against barley FNR and the NADH-binding 51-kD polypeptide of the mitochondrial complex I, respectively. The results suggest that ET1 is the FNR-containing thylakoidal NAD(P)H dehydrogenase complex. PMID:9576793

  10. Use of the anti-Prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols.

    PubMed

    Itoh, Nobuya

    2014-05-01

    The asymmetric reduction of ketones is one of the most promising processes for producing chiral alcohols. However, dehydrogenases or reductases that can catalyze the reduction of ketones to give anti-Prelog chiral alcohols have been limited to some NADP(+)/NADPH-dependent enzymes. Recently, we reported a novel NAD(+)/NADH-dependent alcohol dehydrogenase (ADH) from Leifsonia sp. and Pseudomonas ADH homologs from soil metagenomes. Moreover, we have established an efficient hydrogen-transfer bioreduction process with 2-propanol as a hydrogen donor using Leifsonia ADH. This review focuses on the recent development of novel ADHs for producing industrially useful anti-Prelog chiral alcohols from various ketones.

  11. PTGER1 and PTGER2 receptors mediate regulation of progesterone synthesis and type 1 11β-hydroxysteroid dehydrogenase activity by prostaglandin E2 in human granulosa–lutein cells

    PubMed Central

    Chandras, C; Harris, T E; López Bernal, A; Abayasekara, D R E; Michael, A E

    2007-01-01

    In luteinizing granulosa cells, prostaglandin E2 (PGE2) can exert luteotrophic actions, apparently via the cAMP signalling pathway. In addition to stimulating progesterone synthesis, PGE2 can also stimulate oxidation of the physiological glucocorticoid, cortisol, to its inactive metabolite, cortisone, by the type 1 11β-hydroxysteroid dehydrogenase (11βHSD1) enzyme in human granulosa–lutein cells. Having previously shown these human ovarian cells to express functional G-protein coupled, E-series prostaglandin (PTGER)1, PTGER2 and PTGER4 receptors, the aim of this study was to delineate the roles of PTGER1 and PTGER2 receptors in mediating the effects of PGE2 on steroidogenesis and cortisol metabolism in human granulosa–lutein cells. PGE2-stimulated concentration-dependent increases in both progesterone production and cAMP accumulation (by 1·9±0·1- and 18·7±6·8-fold respectively at 3000 nM PGE2). While a selective PTGER1 antagonist, SC19220, could partially inhibit the steroidogenic response to PGE2 (by 55·9±4·1% at 1000 nM PGE2), co-treatment with AH6809, a mixed PTGER1/PTGER2 receptor antagonist, completely abolished the stimulation of progesterone synthesis at all tested concentrations of PGE2 and suppressed the stimulation of cAMP accumulation. Both PGE2 and butaprost (a preferential PTGER2 receptor agonist) stimulated concentration-dependent increases in cortisol oxidation by 11βHSD1 (by 42·5±3·1 and 40·0±3·0% respectively, at PGE2 and butaprost concentrations of 1000 nM). Co-treatment with SC19220 enhanced the ability of both PGE2 and butaprost to stimulate 11βHSD1 activity (by 30·2±0·2 and 30·5±0·6% respectively), whereas co-treatment with AH6809 completely abolished the 11βHSD1 responses to PGE2 and butaprost. These findings implicate the PTGER2 receptor–cAMP signalling pathway in the stimulation of progesterone production and 11βHSD1 activity by PGE2 in human granulosa–lutein cells. PMID:17761898

  12. IDH1 R132H Mutation Enhances Cell Migration by Activating AKT-mTOR Signaling Pathway, but Sensitizes Cells to 5-FU Treatment as NADPH and GSH Are Reduced

    PubMed Central

    Qiu, Jiangdong; Huang, Keting; Wu, Mindan; Xia, Chunlin

    2017-01-01

    Aim of study Mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) gene were recently discovered in vast majority of World Health Organization (WHO) grade II/III gliomas. This study is to understand the effects of IDH1 R132H mutation in gliomagenesis and to develop new strategies to treat glioma with IDH1 R132H mutation. Materials and methods Over expression of IDH1 R132H in U87MG cells was done by transfecting cells with IDH1 R132H plasmid. MTT assay, scratch repair assay and western blot were performed to study effects of IDH1 R132H mutation on cell proliferation, migration, regulating AKT-mTOR signaling pathway and cell death respectively. NADP+/NADPH and GSH quantification assays were performed to evaluate effects of IDH1 R132H mutation on the production of antioxidant NADPH and GSH. Results We found that over expression of IDH1 R132H mutation decreased cell proliferation consistent with previous reports; however, it increased cell migration and enhanced AKT-mTOR signaling pathway activation. Mutations in isocitrate dehydrogenase (IDH) 1 also change the function of the enzymes and cause them to produce 2-hydroxyglutarate and not produce NADPH. We tested the level of NADPH and GSH and demonstrated that IDH1 R132H mutant stable cells had significantly low NADPH and GSH level compared to control or IDH1 wild type stable cells. The reduced antioxidants (NADPH and GSH) sensitized U87MG cells with IDH R132H mutant to 5-FU treatment. Conclusion Our study highlights the important role of IHD1 R132H mutant in up- regulating AKT-mTOR signaling pathway and enhancing cell migration. Furthermore, we demonstrate that IDH1 R132H mutation affects cellular redox status and sensitizes gliomas cells with IDH1 R132H mutation to 5FU treatment. PMID:28052098

  13. Melatonin modifies basal and stimulated insulin secretion via NADPH oxidase.

    PubMed

    Simões, Daniel; Riva, Patrícia; Peliciari-Garcia, Rodrigo Antonio; Cruzat, Vinicius Fernandes; Graciano, Maria Fernanda; Munhoz, Ana Claudia; Taneda, Marco; Cipolla-Neto, José; Carpinelli, Angelo Rafael

    2016-12-01

    Melatonin is a hormone synthesized in the pineal gland, which modulates several functions within the organism, including the synchronization of glucose metabolism and glucose-stimulated insulin secretion (GSIS). Melatonin can mediate different signaling pathways in pancreatic islets through two membrane receptors and via antioxidant or pro-oxidant enzymes modulation. NADPH oxidase (NOX) is a pro-oxidant enzyme responsible for the production of the reactive oxygen specie (ROS) superoxide, generated from molecular oxygen. In pancreatic islets, NOX-derived ROS can modulate glucose metabolism and regulate insulin secretion. Considering the roles of both melatonin and NOX in islets, the aim of this study was to evaluate the association of NOX and ROS production on glucose metabolism, basal and GSIS in pinealectomized rats (PINX) and in melatonin-treated isolated pancreatic islets. Our results showed that ROS content derived from NOX activity was increased in PINX at baseline (2.8 mM glucose), which was followed by a reduction in glucose metabolism and basal insulin secretion in this group. Under 16.7 mM glucose, an increase in both glucose metabolism and GSIS was observed in PINX islets, without changes in ROS content. In isolated pancreatic islets from control animals incubated with 2.8 mM glucose, melatonin treatment reduced ROS content, whereas in 16.7 mM glucose, melatonin reduced ROS and GSIS. In conclusion, our results demonstrate that both basal and stimulated insulin secretion can be regulated by melatonin through the maintenance of ROS homeostasis in pancreatic islets. © 2016 Society for Endocrinology.

  14. Regulation of NADPH Oxidase 5 by Protein Kinase C Isoforms

    PubMed Central

    Chen, Feng; Yu, Yanfang; Haigh, Steven; Johnson, John; Lucas, Rudolf; Stepp, David W.; Fulton, David J. R.

    2014-01-01

    NADPH oxidase5 (Nox5) is a novel Nox isoform which has recently been recognized as having important roles in the pathogenesis of coronary artery disease, acute myocardial infarction, fetal ventricular septal defect and cancer. The activity of Nox5 and production of reactive oxygen species is regulated by intracellular calcium levels and phosphorylation. However, the kinases that phosphorylate Nox5 remain poorly understood. Previous studies have shown that the phosphorylation of Nox5 is PKC dependent, but this contention was based on the use of pharmacological inhibitors and the isoforms of PKC involved remain unknown. Thus, the major goals of this study were to determine whether PKC can directly regulate Nox5 phosphorylation and activity, to identify which isoforms are involved in the process, and to understand the functional significance of this pathway in disease. We found that a relatively specific PKCα inhibitor, Ro-32-0432, dose-dependently inhibited PMA-induced superoxide production from Nox5. PMA-stimulated Nox5 activity was significantly reduced in cells with genetic silencing of PKCα and PKCε, enhanced by loss of PKCδ and the silencing of PKCθ expression was without effect. A constitutively active form of PKCα robustly increased basal and PMA-stimulated Nox5 activity and promoted the phosphorylation of Nox5 on Ser490, Thr494, and Ser498. In contrast, constitutively active PKCε potently inhibited both basal and PMA-dependent Nox5 activity. Co-IP and in vitro kinase assay experiments demonstrated that PKCα directly binds to Nox5 and modifies Nox5 phosphorylation and activity. Exposure of endothelial cells to high glucose significantly increased PKCα activation, and enhanced Nox5 derived superoxide in a manner that was in prevented by a PKCα inhibitor, Go 6976. In summary, our study reveals that PKCα is the primary isoform mediating the activation of Nox5 and this maybe of significance in our understanding of the vascular complications of diabetes

  15. POLYOL DEHYDROGENASES OF AZOTOBACTER AGILIS

    PubMed Central

    Marcus, Leon; Marr, Allen G.

    1961-01-01

    Marcus, Leon (University of California, Davis), and Allen G. Marr. Polyol dehydrogenases of Azotobacter agilis. J. Bacteriol. 82:224–232. 1961.—Two soluble diphosphopyridine-linked polyol dehydrogenases are formed by Azotobacter agilis (A. vinelandii). The first, d-mannitol dehydrogenase is induced by d-mannitol and all of the pentitols except l-arabitol. Ribitol is an excellent inducer of mannitol dehydrogenase although it is not metabolized, nor does the enzyme act upon it. This allows study of the gratuitous induction of mannitol dehydrogenase. Of the polyols tested, mannitol dehydrogenase oxidizes d-mannitol, d-arabitol, d-rhamnitol, and perseitol, demonstrating its requirement for substrates bearing the d-manno configuration. The corresponding 2-ketoses, d-fructose, d-xylulose, and presumably d-rhamnulose, and perseulose are reduced. The second enzyme, l-iditol dehydrogenase is induced only by polyols containing the d-xylo configuration, i.e., sorbitol and xylitol. l-Iditol dehydrogenase oxidizes d-xylo polyols seven times faster than it does d-ribo polyols. Substrates oxidized include l-iditol, sorbitol, xylitol, and ribitol. The corresponding 2-ketoses, l-sorbose, d-fructose, d-xylulose, and d-ribulose, are reduced. The two polyol dehydrogenases have been separated and purified by chromatography on a modified cellulose ion exchanger. PMID:13766585

  16. NADPH oxidase hyperactivity induces plantaris atrophy in heart failure rats.

    PubMed

    Bechara, Luiz R G; Moreira, Jose B N; Jannig, Paulo R; Voltarelli, Vanessa A; Dourado, Paulo M; Vasconcelos, Andrea R; Scavone, Cristoforo; Ramires, Paulo R; Brum, Patricia C

    2014-08-20

    Skeletal muscle wasting is associated with poor prognosis and increased mortality in heart failure (HF) patients. Glycolytic muscles are more susceptible to catabolic wasting than oxidative ones. This is particularly important in HF since glycolytic muscle wasting is associated with increased levels of reactive oxygen species (ROS). However, the main ROS sources involved in muscle redox imbalance in HF have not been characterized. Therefore, we hypothesized that NADPH oxidases would be hyperactivated in the plantaris muscle of infarcted rats, contributing to oxidative stress and hyperactivation of the ubiquitin-proteasome system (UPS), ultimately leading to atrophy. Rats were submitted to myocardial infarction (MI) or Sham surgery. Four weeks after surgery, MI and Sham groups underwent eight weeks of treatment with apocynin, a NADPH oxidase inhibitor, or placebo. NADPH oxidase activity, oxidative stress markers, NF-κB activity, p38 MAPK phosphorylation, mRNA and sarcolemmal protein levels of NADPH oxidase components, UPS activation and fiber cross-sectional area were assessed in the plantaris muscle. The plantaris of MI rats displayed atrophy associated with increased Nox2 mRNA and sarcolemmal protein levels, NADPH oxidase activity, ROS production, lipid hydroperoxides levels, NF-κB activity, p38 MAPK phosphorylation and UPS activation. NADPH oxidase inhibition by apocynin prevented MI-induced skeletal muscle atrophy by reducing ROS production, NF-κB hyperactivation, p38 MAPK phosphorylation and proteasomal hyperactivity. Our data provide evidence for NADPH oxidase hyperactivation as an important source of ROS production leading to plantaris atrophy in heart failure rats, suggesting that this enzyme complex plays key role in skeletal muscle wasting in HF. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    PubMed

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. © 2016 by the American Diabetes Association.

  18. Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein.

    PubMed

    Cacas, Jean-Luc; Gerbeau-Pissot, Patricia; Fromentin, Jérôme; Cantrel, Catherine; Thomas, Dominique; Jeannette, Emmanuelle; Kalachova, Tetiana; Mongrand, Sébastien; Simon-Plas, Françoise; Ruelland, Eric

    2017-04-01

    Cryptogein is a 10 kDa protein secreted by the oomycete Phytophthora cryptogea that activates defence mechanisms in tobacco plants. Among early signalling events triggered by this microbial-associated molecular pattern is a transient apoplastic oxidative burst which is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity of the RESPIRATORY BURST OXIDASE HOMOLOG isoform D (RBOHD). Using radioactive [(33) P]-orthophosphate labelling of tobacco Bright Yellow-2 suspension cells, we here provide in vivo evidence for a rapid accumulation of phosphatidic acid (PA) in response to cryptogein because of the coordinated onset of phosphoinositide-dependent phospholipase C and diacylglycerol kinase (DGK) activities. Both enzyme specific inhibitors and silencing of the phylogenetic cluster III of the tobacco DGK family were found to reduce PA production upon elicitation and to strongly decrease the RBOHD-mediated oxidative burst. Therefore, it appears that PA originating from DGK controls NADPH-oxidase activity. Amongst cluster III DGKs, the expression of DGK5-like was up-regulated in response to cryptogein. Besides DGK5-like is likely to be the main cluster III DGK isoform silenced in one of our mutant lines, making it a strong candidate for the observed response to cryptogein. The relevance of these results is discussed with regard to early signalling lipid-mediated events in plant immunity.

  19. Suppression of NADPH Oxidase Activity May Slow the Expansion of Osteolytic Bone Metastases

    PubMed Central

    McCarty, Mark F.; DiNicolantonio, James

    2016-01-01

    Lysophosphatidic acid (LPA), generated in the microenvironment of cancer cells, can drive the proliferation, invasion, and migration of cancer cells by activating G protein-coupled LPA receptors. Moreover, in cancer cells that have metastasized to bone, LPA signaling can promote osteolysis by inducing cancer cell production of cytokines, such as IL-6 and IL-8, which can stimulate osteoblasts to secrete RANKL, a key promoter of osteoclastogenesis. Indeed, in cancers prone to metastasize to bone, LPA appears to be a major driver of the expansion of osteolytic bone metastases. Activation of NADPH oxidase has been shown to play a mediating role in the signaling pathways by which LPA, as well as RANKL, promote osteolysis. In addition, there is reason to suspect that Nox4 activation is a mediator of the feed-forward mechanism whereby release of TGF-beta from bone matrix by osteolysis promotes expression of PTHrP in cancer cells, and thereby induces further osteolysis. Hence, measures which can down-regulate NADPH oxidase activity may have potential for slowing the expansion of osteolytic bone metastases in cancer patients. Phycocyanin and high-dose statins may have utility in this regard, and could be contemplated as complements to bisphosphonates or denosumab for the prevention and control of osteolytic lesions. Ingestion of omega-3-rich flaxseed or fish oil may also have potential for controlling osteolysis in cancer patients. PMID:27571113

  20. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism.

    PubMed

    Putnam, C D; Arvai, A S; Bourne, Y; Tainer, J A

    2000-02-11

    Human catalase is an heme-containing peroxisomal enzyme that breaks down hydrogen peroxide to water and oxygen; it is implicated in ethanol metabolism, inflammation, apoptosis, aging and cancer. The 1. 5 A resolution human enzyme structure, both with and without bound NADPH, establishes the conserved features of mammalian catalase fold and assembly, implicates Tyr370 as the tyrosine radical, suggests the structural basis for redox-sensitive binding of cognate mRNA via the catalase NADPH binding site, and identifies an unexpectedly substantial number of water-mediated domain contacts. A molecular ruler mechanism based on observed water positions in the 25 A-long channel resolves problems for selecting hydrogen peroxide. Control of water-mediated hydrogen bonds by this ruler selects for the longer hydrogen peroxide and explains the paradoxical effects of mutations that increase active site access but lower catalytic rate. The heme active site is tuned without compromising peroxide binding through a Tyr-Arg-His-Asp charge relay, arginine residue to heme carboxylate group hydrogen bonding, and aromatic stacking. Structures of the non-specific cyanide and specific 3-amino-1,2, 4-triazole inhibitor complexes of human catalase identify their modes of inhibition and help reveal the catalytic mechanism of catalase. Taken together, these resting state and inhibited human catalase structures support specific, structure-based mechanisms for the catalase substrate recognition, reaction and inhibition and provide a molecular basis for understanding ethanol intoxication and the likely effects of human polymorphisms. Copyright 2000 Academic Press.

  1. Induction and inhibition of NAD(P)H: quinone reductase in murine and human skin.

    PubMed

    Merk, H; Jugert, F; Bonnekoh, B; Mahrle, G

    1991-01-01

    The purpose of this study was to characterize the human cutaneous NAD(P)H: quinone reductase (NQR) activity by known inhibitors of different reductases and to compare it with the murine skin and liver NQR activity. This enzyme plays a major role in the defence of cells against oxygen stress because it inhibits the 1-electron reduction of quinones to semiquinones and their subsequent oxidation to quinones termed as quinone redox cycle. It belongs to the aromatic hydrocarbon-responsive (Ah) battery. This gene battery includes Cyp1a1 (cytochrome P-450 IA1), Cyp1a2 (cytochrome P-450 IA2) and Nmo-1 [NAD(P)H: quinone reductase]. In the skin cytochrome P-450 IA1-dependent activity is about 1-5% compared to the corresponding activity in the liver, whereas NQR has the same activity in skin and liver. NQR was determined in the cytoplasm of murine skin, liver, and human keratinocytes using 2,6-dichlorophenolindophenol as the substrate. The Ah-receptor binding compounds, such as coal tar constituents, or 3-methylcholanthrene induce cytochrome P-450-dependent activities such as aryl hydrocarbon hydroxylase or 7-ethoxyresorufin-O-de-ethylase and NQR, whereas butyl hydroxytoluol, which does not bind to the Ah receptor, induces only NQR. For inhibition studies several known inhibitors of dihydrodiol dehydrogenase, aldo-keto and carbonyl reductase activities were used. There was a similar pattern of inhibition of the basal and induced activity in all tissues investigated. Pyrazole, progesterone and phenobarbital did not inhibit, whereas dicoumarol, rutin and indomethacin inhibited NQR activity in murine skin and liver as well as in human keratinocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Physicochemical Characterization of a Thermostable Alcohol Dehydrogenase from Pyrobaculum aerophilum

    PubMed Central

    Vitale, Annalisa; Thorne, Natasha; Lovell, Scott; Battaile, Kevin P.; Hu, Xin; Shen, Min; D'Auria, Sabato; Auld, Douglas S.

    2013-01-01

    In this work we characterize an alcohol dehydrogenase (ADH) from the hyperthermophilic archaeon Pyrobaculum aerophilum (PyAeADHII). We have previously found that PyAeADHII has no activity when standard ADH substrates are used but is active when α-tetralone is used as substrate. Here, to gain insights into enzyme function, we screened several chemical libraries for enzymatic modulators using an assay employing α-tetralone. The results indicate that PyAeADHII activity in the presence of α-tetralone was inhibited by compounds such as flunarizine. We also examined metal coordination of the enzyme in solution by performing metal substitution of the enzyme-bound zinc (Zn2+) with cobalt. The solution-based absorption spectra for cobalt substituted PyAeADHII supports substitution at the structural Zn2+ site. To gain structural insight, we obtained the crystal structure of both wild-type and cobalt-substituted PyAeADHII at 1.75 Å and 2.20 Å resolution, respectively. The X-ray data confirmed one metal ion per monomer present only at the structural site with otherwise close conservation to other ADH enzymes. We next determined the co-crystal structure of the NADPH-bound form of the enzyme at 2.35 Å resolution to help define the active site region of the enzyme and this data shows close structural conservation with horse ADH, despite the lack of a catalytic Zn2+ ion in PyAeADHII. Modeling of α-tetralone into the NADPH bound structure suggests an arginine as a possible catalytic residue. The data presented here can yield a better understanding of alcohol dehydrogenases lacking the catalytic zinc as well as the structural features inherent to thermostable enzymes. PMID:23755111

  3. Engineering an NADPH/NADP(+) Redox Biosensor in Yeast.

    PubMed

    Zhang, Jie; Sonnenschein, Nikolaus; Pihl, Thomas P B; Pedersen, Kasper R; Jensen, Michael K; Keasling, Jay D

    2016-12-16

    Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science and biotechnology. Still, there is a need for bioprospecting and engineering of more biosensors to enable real-time monitoring of specific cellular states and controlling downstream actuation. In this study, we report the engineering and application of a transcription factor-based NADPH/NADP(+) redox biosensor in the budding yeast Saccharomyces cerevisiae. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP(+) ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon NADPH deficiency by activation of NADPH regeneration. Finally, we couple the biosensor with an expression of dosage-sensitive genes (DSGs) and thereby create a novel tunable sensor-selector useful for synthetic selection of cells with higher NADPH/NADP(+) ratios from mixed cell populations. We show that the combination of exploitation and rational engineering of native signaling components is applicable for diagnosis, regulation, and selection of cellular redox states.

  4. NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.

    PubMed

    Filip-Ciubotaru, Florina; Manciuc, Carmen; Stoleriu, Gabriela; Foia, Liliana

    2016-01-01

    NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase), with its generically termed NOX isoforms, is the major source of ROS (reactive oxigen species) in biological systems. ROS are small oxygen-derived molecules with an important role in various biological processes (physiological or pathological). If under physiological conditions some processes are beneficial and necessary for life, under pathophysiological conditions they are noxious, harmful. NADPH oxidases are present in phagocytes and in a wide variety of nonphagocytic cells. The enzyme generates superoxide by transferring electrons from NADPH inside the cell across the membrane and coupling them to molecular oxygen to produce superoxide anion, a reactive free-radical. Structurally, NADPH oxidase is a multicomponent enzyme which includes two integral membrane proteins, glycoprotein gp9 1 Phox and adaptor protein p22(phox), which together form the heterodimeric flavocytochrome b558 that constitutes the core of the enzyme. During the resting state, the multidomain regulatory subunits p40P(phox), p47(phox), p67(Phox) are located in the cytosol organized as a complex. The activation of phagocytic NADPH oxidase occurs through a complex series of protein interactions.

  5. The Reduction of Glyceraldehyde by Human Erythrocytes L-HEXONATE DEHYDROGENASE ACTIVITY

    PubMed Central

    Beutler, E.; Guinto, E.

    1974-01-01

    Incubation of red cell suspensions with D-glyceraldehyde resulted in disappearance of glyceraldehyde and appearance of glycerol. Concomitantly, there was an increase of CO2 formation from glucose. This indicated that the reduction of glyceraldehyde to glycerol occurred through a NADPH-linked system. Studies in hemolysates revealed the presence of an enzyme with the capacity to catalyze the reduction of glyceraldehyde to glycerol by NADPH. This enzyme was partially purified by DEAE chromatography. The elution pattern of the enzyme and its kinetic characteristics indicated that the enzyme was L-hexonate dehydrogenase (L-gulonate: NADP oxidoreductase, EC 1.1.1.19), not aldose reductase (Alditol: NADP oxidoreductase, EC 1.1.1.21), which had previously been thought present in erythrocytes. The reduction of glyceraldehyde to glycerol is one of a number of pathways for the metabolism of glyceraldehyde that have been found in red cells and/or other mammalian tissues. PMID:4825223

  6. Inhibition effects of some metal ions on the rat liver 6-phosphogluconate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Adem, Şevki; Kayhan, Naciye

    2016-04-01

    6-phosphogluconate dehydrogenase is an enzyme in the pentose phosphate path. The main functions of the pathway are the manufacture of the reduced coenzyme NADPH and the formation of ribose 5-phosphate for nucleic acid synthesis and nucleotide. Both NADPH and ribose 5-phosphate involve a critical biochemical process. Metals have been recognized as important toxic agents for living for a long time. It has been considered that they lead to in the emergence of many diseases. To evaluate whether metals is effect towards rat liver 6PGD, we apply various concentrations of metals and enzyme inhibition was analyzed using enzyme activity assays. The IC50 values of Pb+2, Cr+3, Co+2, Ni+2, Cd+2, and Va+2, metals on rat liver 6PGD were calculated as 138,138, 169, 214, 280, and 350 µM, respectively.

  7. NADPH production, a growth marker, is stimulated by maslinic acid in gilthead sea bream by increased NADP-IDH and ME expression.

    PubMed

    Rufino-Palomares, Eva E; Reyes-Zurita, Fernando J; García-Salguero, Leticia; Peragón, Juan; de la Higuera, Manuel; Lupiáñez, José A

    2016-09-01

    NADPH plays a central role in reductive biosynthesis of membrane lipids, maintenance of cell integrity, protein synthesis and redox balance maintenance. Hence, NADPH is involved in the growth and proliferation processes. In addition, it has been shown that changes in nutritional conditions produced changes in NADPH levels and growth rate. Maslinic acid (MA), a pentacyclic triterpene of natural origin, is able to stimulate NADPH production, through regulation of the two oxidative phase dehydrogenases of the pentose phosphate pathway. Our main objective was to study the effects of MA on the kinetic behaviour and on the molecular expression of two NADPH-generating systems, NADP-dependent isocitrate dehydrogenase (NADP-IDH) and malic enzyme (ME), in the liver and white muscle of gilthead sea bream (Sparus aurata). Four groups of 12g of a mean body mass were fed for 210days in a fish farm, with diets containing 0 (control), and 0.1g of MA per kg of diet. Two groups were fed ad libitum (C-AL and MA-AL) and another's two, with restricted diet of 1% of fish weight (C-R and MA-R). Results showed that MA significantly increased the main kinetic parameter of the NADPH-forming enzymes (NADP-IDH and ME). In this sense, specific activity, maximum velocity, catalytic efficiency and activity ratio values were higher in MA conditions than control groups. Moreover, these changes were observed in both feeding regimen, AL and R. Meanwhile, the Michaelis constant changed mainly in groups fed with the MA and restricted diet, these changes are related to the best substrate affinity by enzyme. Moreover, in the Western-blot result, we found that MA increased both protein levels studied, this behaviour being consistent with the regulation of the number of enzyme molecules. All results, indicate that MA, independently of the fed regimen, could potentially be a nutritional additive for fish as it improved the metabolic state of fish, as consequence of increased activity and expression of NADP

  8. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2006-08-01

    Non-phosphorylating glyceraldehyde- 3-phosphate dehydrogenase (NP-GAPDH) is a conserved cytosolic protein found in higher plants. In photosynthetic cells, the enzyme is involved in a shuttle transfer mechanism to export NADPH from the chloroplast to the cytosol. To investigate the role of this enzyme in plant tissues, we characterized a mutant from Arabidopsis thaliana having an insertion at the NP-GAPDH gene locus. The homozygous mutant was determined to be null respect to NP-GAPDH, as it exhibited undetectable levels of both transcription of NP-GAPDH mRNA, protein expression and enzyme activity. Transcriptome analysis demonstrated that the insertion mutant plant shows altered expression of several enzymes involved in carbohydrate metabolism. Significantly, cytosolic phosphorylating (NAD-dependent) glyceraldehyde-3-phosphate dehydrogenase mRNA levels are induced in the mutant, which correlates with an increase in enzyme activity. mRNA levels and enzymatic activity of glucose-6-phosphate dehydrogenase were also elevated, correlating with an increase in NADPH concentration. Moreover, increased ROS levels were measured in the mutant plants. Down-regulation of several glycolytic and photosynthetic genes suggests that NP-GAPDH is important for the efficiency of both metabolic processes. The results presented demonstrate that NP-GAPDH has a relevant role in plant growth and development.

  9. Sorbitol production in charged membrane bioreactor with coenzyme regeneration system: II. Theoretical analysis of a continuous reaction with retained and regenerated NADPH.

    PubMed

    Ikemi, M; Ishimatsu, Y; Kise, S

    1990-06-20

    A theoretical model was constructed in order to study charged membrane bioreactors (CMBRs). In this model, it was postulated that a native nicotinamide coenzyme NADP(H) can be partially retained by a charged membrane in continuous operation. A multienzyme system composed of NADPH-dependent aldose reductase (AR) and glucose dehydrogenase (GDH) was used for the production of sorbitol and gluconic acid from glucose and for the conjugated enzymatic regeneration of NADP(H). Both enzymes were studied with respect to their reaction kinetics. AR was determined to obey the Theorell-Chance mechanism. GDH reaction was approximated by the initial velocity equation of the sequential Bi-Bi mechanism since the reverse reaction could be neglected. Significant inhibitions of both enzymes by sorbitol, gluconic acid, and glucose were observed, and the mode of inhibition was estimated to modify the velocity equations. The differential equation system for each component was derived and numerically analyzed according to the model. The theoretical model elucidated several features of the CMBR. (1) When compared at the same productivity, higher retainment was found to bring about a higher coenzyme turnover number, indicating that the feed coenzyme concentration can be reduced. (2) Under constant conversion, a contradictory relationship between turnover number and residence time arises if the feed concentration of a coenzyme varies. The theoretical model predicts that there is a practically optimal concentration for using NADP(H) efficiently. This concentration was consistent with that yielding the estimated minimum total cost. (3) In this system, excess-GDH-to-AR activity was required because of differences in their kinetic constants. The amount of regeneration enzyme required can be reduced by the accumulation of excels NADPH due to coenzyme retainment. (4) Comparison with an ideal repeated batch reaction revealed that the continuously operated CMBR was vastly superior with respect to

  10. Activation of neuronal nitric oxide synthase in cerebellum of chronic hepatic encephalopathy rats is associated with up-regulation of NADPH-producing pathway.

    PubMed

    Singh, Santosh; Trigun, Surendra K

    2010-09-01

    Cerebellum-associated functions get affected during mild hepatic encephalopathy (MHE) in patients with chronic liver failure (CLF). Involvement of nitrosative and antioxidant factors in the pathogenesis of chronic hepatic encephalopathy is an evolving concept and needs to be defined in a true CLF animal model. This article describes profiles of NADPH-dependent neuronal nitric oxide synthase (nNOS) and those of glutathione peroxidase and glutathione reductase (GR) vis-a-vis regulation of NADPH-producing pathway in the cerebellum of CLF rats induced by administration of thioacetamide (100 mg kg⁻¹ b.w., i.p.) up to 10 days and confirming MHE on Morris water maze tests. Significant increases in the expression of nNOS protein and nitric oxide (NOx) level coincided with a similar increment in NADPH-diaphorase activity in the cerebellum of CLF rats. Glutathione peroxidase and GR utilize NADPH to regenerate reduced glutathione (GSH) in the cells. Both these enzymes and GSH level were found to be static and thus suggested efficient turnover of GSH in the cerebellum of MHE rats. Relative levels of glucose-6-phosphate dehydrogenase (G6PD) vs. phosphofructokinase 2 (PFK2) determine the rate of pentose phosphate pathway (PPP) responsible to synthesize NADPH. The cerebellum of CLF rats showed overactivation of G6PD with a significant decline in the expression of PFK2 and thus suggested activation of PPP in the cerebellum during MHE. It is concluded that concordant activations of PPP and nNOS in cerebellum of MHE rats could be associated with the implication of NOx in the pathogenesis of MHE.

  11. LACTIC DEHYDROGENASES OF PSEUDOMONAS NATRIEGENS.

    PubMed

    WALKER, H; EAGON, R G

    1964-07-01

    Walker, Hazel (University of Georgia, Athens), and R. G. Eagon. Lactic dehydrogenases of Pseudomonas natriegens. J. Bacteriol. 88:25-30. 1964.-Lactic dehydrogenases specific for d- and l-lactate were demonstrated in Pseudomonas natriegens. The l-lactic dehydrogenase showed considerable heat stability, and 40% of the activity remained in extracts after heating at 60 C for 10 min. An essential thiol group for enzyme activity was noted. The results of these experiments were consistent with the view that lactate was dehydrogenated initially by a flavin cofactor and that electrons were transported through a complete terminal oxidase system to oxygen. The intracellular site of these lactic dehydrogenases was shown to be the cell membrane. It was suggested that the main physiological role of these lactic dehydrogenases is that of lactate utilization.

  12. LACTIC DEHYDROGENASES OF PSEUDOMONAS NATRIEGENS

    PubMed Central

    Walker, Hazel; Eagon, R. G.

    1964-01-01

    Walker, Hazel (University of Georgia, Athens), and R. G. Eagon. Lactic dehydrogenases of Pseudomonas natriegens. J. Bacteriol. 88:25–30. 1964.—Lactic dehydrogenases specific for d- and l-lactate were demonstrated in Pseudomonas natriegens. The l-lactic dehydrogenase showed considerable heat stability, and 40% of the activity remained in extracts after heating at 60 C for 10 min. An essential thiol group for enzyme activity was noted. The results of these experiments were consistent with the view that lactate was dehydrogenated initially by a flavin cofactor and that electrons were transported through a complete terminal oxidase system to oxygen. The intracellular site of these lactic dehydrogenases was shown to be the cell membrane. It was suggested that the main physiological role of these lactic dehydrogenases is that of lactate utilization. Images PMID:14197895

  13. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases?

    PubMed Central

    Sahoo, Sanghamitra; Meijles, Daniel N.; Pagano, Patrick J.

    2016-01-01

    Reactive oxygen species (ROS) and oxidative stress have long been linked to aging and diseases prominent in the elderly such as hypertension, atherosclerosis, diabetes and atrial fibrillation (AF). NADPH oxidases (Nox) are a major source of ROS in the vasculature and are key players in mediating redox signalling under physiological and pathophysiological conditions. In this review, we focus on the Nox-mediated ROS signalling pathways involved in the regulation of ‘longevity genes’ and recapitulate their role in age-associated vascular changes and in the development of age-related cardiovascular diseases (CVDs). This review is predicated on burgeoning knowledge that Nox-derived ROS propagate tightly regulated yet varied signalling pathways, which, at the cellular level, may lead to diminished repair, the aging process and predisposition to CVDs. In addition, we briefly describe emerging Nox therapies and their potential in improving the health of the elderly population. PMID:26814203

  14. Oscillatory Shear Stress Induces Mitochondrial Superoxide Production: Implication of NADPH Oxidase and c-Jun NH2-Terminal Kinase Signaling

    PubMed Central

    Takabe, Wakako; Jen, Nelson; Ai, Lisong; Hamilton, Ryan; Wang, Sky; Holmes, Kristin; Dharbandi, Farhad; Khalsa, Bhavraj; Bressler, Steven; Barr, Mark L.; Li, Rongsong

    2011-01-01

    Abstract Fluid shear stress is intimately linked with vascular oxidative stress and atherosclerosis. We posited that atherogenic oscillatory shear stress (OSS) induced mitochondrial superoxide (mtO2•−) production via NADPH oxidase and c-Jun NH2-terminal kinase (JNK-1 and JNK-2) signaling. In bovine aortic endothelial cells, OSS (±3 dyn/cm2) induced JNK activation, which peaked at 1 h, accompanied by an increase in fluorescein isothiocyanate-conjugated JNK fluorescent and MitoSOX Red (specific for mtO2•− production) intensities. Pretreatment with apocynin (NADPH oxidase inhibitor) or N-acetyl cysteine (antioxidant) significantly attenuated OSS-induced JNK activation. Apocynin further reduced OSS-mediated dihydroethidium and MitoSOX Red intensities specific for cytosolic O2•− and mtO2•− production, respectively. As a corollary, transfecting bovine aortic endothelial cells with JNK siRNA (siJNK) and pretreating with SP600125 (JNK inhibitor) significantly attenuated OSS-mediated mtO2•− production. Immunohistochemistry on explants of human coronary arteries further revealed prominent phosphorylated JNK staining in OSS-exposed regions. These findings indicate that OSS induces mtO2•− production via NADPH oxidase and JNK activation relevant for vascular oxidative stress. Antioxid. Redox Signal. 15, 1379–1388. PMID:20919940

  15. Tumor Necrosis Factor-α-Induced Colitis Increases NADPH Oxidase 1 Expression, Oxidative Stress, and Neutrophil Recruitment in the Colon: Preventive Effect of Apocynin

    PubMed Central

    Mouzaoui, Souad; Djerdjouri, Bahia; Makhezer, Nesrine; Kroviarski, Yolande; El-Benna, Jamel; Dang, Pham My-Chan

    2014-01-01

    Reactive oxygen species- (ROS-) mediated injury has been implicated in several inflammatory disorders, including inflammatory bowel disease (IBD). NADPH oxidases (NOXs) are the major source of endogenous ROS. Here, we investigated the role of NOXs derived-ROS in a mouse model of colitis induced by the proinflammatory cytokine, tumor necrosis factor-α (TNF-α). Intraperitoneal injection of TNFα (10 μg · kg−1) induced an acute inflammation of the colon and a marked increase in expression of NADPH oxidase 1 (NOX1), a colon specific NADPH oxidase isoform. TNFα-induced colitis was also characterized by high production of keratinocyte-derived chemokine (KC) and mucosal infiltration of neutrophils, NOX2-expressing cells. Concomitantly, ROS production and lipid peroxidation were significantly enhanced while catalase activity and glutathione level were reduced indicating a redox imbalance in the colon. Furthermore, the redox-sensitive MAP kinases, ERK1/2 and p38 MAPK, were activated during TNFα-induced colitis. Pretreatment of mice with apocynin, an NADPH oxidase inhibitor with antioxidant properties, before TNFα challenge, prevented all these events. These data suggest that ROS derived from NADPH oxidases (mainly NOX1 and NOX2) and MAP kinase pathways could contribute to the induction and expansion of oxidative lesions characteristics of IBD and that apocynin could potentially be beneficial in IBD treatment. PMID:25276054

  16. Leukotriene B(4) inhibits neutrophil apoptosis via NADPH oxidase activity: redox control of NF-κB pathway and mitochondrial stability.

    PubMed

    Barcellos-de-Souza, Pedro; Canetti, Cláudio; Barja-Fidalgo, Christina; Arruda, Maria Augusta

    2012-10-01

    Leukotriene B(4), an arachidonic acid-derived lipid mediator, is a known proinflammatory agent that has a direct effect upon neutrophil physiology, inducing reactive oxygen species generation by the NADPH oxidase complex and impairing neutrophil spontaneous apoptosis, which in turn may corroborate to the onset of chronic inflammation. Despite those facts, a direct link between inhibition of neutrophil spontaneous apoptosis and NADPH oxidase activation by leukotriene B(4) has not been addressed so far. In this study, we aim to elucidate the putative role of NADPH oxidase-derived reactive oxygen species in leukotriene B(4)-induced anti-apoptotic effect. Our results indicate that NADPH oxidase-derived reactive oxygen species are critical to leukotriene B(4) pro-survival effect on neutrophils. This effect also relies on redox modulation of nuclear factor kappaB signaling pathway. We have also observed that LTB(4)-induced Bad degradation and mitochondrial stability require NADPH oxidase activity. All together, our results strongly suggest that LTB(4)-induced anti-apoptotic effect in neutrophils occurs in a reactive oxygen species-dependent manner. We do believe that a better knowledge of the molecular mechanisms underlying neutrophil spontaneous apoptosis may contribute to the development of more successful strategies to control chronic inflammatory conditions such as rheumatoid arthritis. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-α–induced priming of the NADPH oxidase in human neutrophils

    PubMed Central

    Boussetta, Tarek; Gougerot-Pocidalo, Marie-Anne; Hayem, Gilles; Ciappelloni, Silvia; Raad, Houssam; Arabi Derkawi, Riad; Bournier, Odile; Kroviarski, Yolande; Zhou, Xiao Zhen; Malter, James S.; Lu, Ping K.; Bartegi, Aghleb; Dang, Pham My-Chan

    2010-01-01

    Neutrophils play a key role in host defense by releasing reactive oxygen species (ROS). However, excessive ROS production by neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can damage bystander tissues, thereby contributing to inflammatory diseases. Tumor necrosis factor-α (TNF-α), a major mediator of inflammation, does not activate NADPH oxidase but induces a state of hyperresponsiveness to subsequent stimuli, an action known as priming. The molecular mechanisms by which TNF-α primes the NADPH oxidase are unknown. Here we show that Pin1, a unique cis-trans prolyl isomerase, is a previously unrecognized regulator of TNF-α–induced NADPH oxidase hyperactivation. We first showed that Pin1 is expressed in neutrophil cytosol and that its activity is markedly enhanced by TNF-α. Inhibition of Pin1 activity with juglone or with a specific peptide inhibitor abrogated TNF-α–induced priming of neutrophil ROS production induced by N-formyl-methionyl-leucyl-phenylalanine peptide (fMLF). TNF-α enhanced fMLF-induced Pin1 and p47phox translocation to the membranes and juglone inhibited this process. Pin1 binds to p47phox via phosphorylated Ser345, thereby inducing conformational changes that facilitate p47phox phosphorylation on other sites by protein kinase C. These findings indicate that Pin1 is critical for TNF-α–induced priming of NADPH oxidase and for excessive ROS production. Pin1 inhibition could potentially represent a novel anti-inflammatory strategy. PMID:20956805

  18. Comparative studies on the cumene hydroperoxide- and NADPH-supported N-oxidation of 4-chloroaniline by cytochrome P-450.

    PubMed

    Hlavica, P; Golly, I; Mietaschk, J

    1983-06-15

    The present study confirms that cytochrome P-450 can act as a catalyst in the cumene hydroperoxide-supported N-oxidation of 4-chloroaniline. Analogous to the NADPH/O2-driven N-oxidation process, product dissociation is likely to limit the overall rate of cytochrome P-450 cycling also in the peroxidatic pathway. The oxy complexes involved in either metabolic route differ with respect to stability, spectral properties and need for thiolate-mediated resonance stabilization. With the organic hydroperoxide, the metabolic profile is shifted from the preponderant production of N-(4-chlorophenyl)hydroxylamine to the formation of 1-chloro-4-nitrobenzene. This finding suggests that the peroxide-sustained N-oxidation mechanism differs in several ways from that functional in the NADPH/O2-dependent oxenoid reaction. Thus one-electron oxidation, triggered by homolytic cleavage of the oxygen donor, is proposed as the mechanism of peroxidatic transformation of 4-chloroaniline.

  19. NADPH oxidase-2 is a key regulator of human dermal fibroblasts: a potential therapeutic strategy for the treatment of skin fibrosis.

    PubMed

    Zhang, Guo-You; Wu, Liang-Cai; Dai, Tao; Chen, Shi-Yi; Wang, An-Yuan; Lin, Kang; Lin, Da-Mu; Yang, Jing-Quan; Cheng, Biao; Zhang, Li; Gao, Wei-Yang; Li, Zhi-Jie

    2014-09-01

    The proliferation of human skin dermal fibroblasts (HDFs) is a critical step in skin fibrosis, and transforming growth factor-beta1 (TGF-β1) exerts pro-oxidant and fibrogenic effects on HDFs. In addition, the oxidative stress system has been implicated in the pathogenesis of skin disease. However, the role of NADPH oxidase as a mediator of TGF-β1-induced effects in HDFs remains unknown. Thus, our aim was to investigate the role of NADPH in human skin dermal fibroblasts. Primary fibroblasts were cultured and pretreated with various stimulants. Real-time Q-PCR and Western blotting analyses were used for mRNA and protein detection. In addition, siRNA technology was applied for gene knock-down analysis. Hydrogen peroxide production and 2',7'-dichlorofluorescein diacetate (DCFDA) measurement assay were performed. Here, our findings demonstrated that HDFs express key components of non-phagocytic NADPH oxidase mRNA. TGF-β1 induced NOX2 and reactive oxygen species formation via NADPH oxidase activity. In contrast, NOX3 was barely detectable, and other NOXs did not display significant changes. In addition, TGF-β1 phosphorylated MAPKs and increased activator protein-1 (AP-1) in a redox-sensitive manner, and NOX2 suppression inhibited baseline and TGF-β1-mediated stimulation of Smad2 phosphorylation. Moreover, TGF-β1 stimulated cell proliferation, migration, collagen I and fibronectin expression, and bFGF and PAI-1 secretion: these effects were attenuated by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and NOX2 siRNA. Importantly, NOX2 siRNA suppresses collagen production in primary keloid dermal fibroblasts. These findings provide the proof of concept for NADPH oxidase as a potential target for the treatment of skin fibrosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Engineering of alanine dehydrogenase from Bacillus subtilis for novel cofactor specificity.

    PubMed

    Lerchner, Alexandra; Jarasch, Alexander; Skerra, Arne

    2016-09-01

    The l-alanine dehydrogenase of Bacillus subtilis (BasAlaDH), which is strictly dependent on NADH as redox cofactor, efficiently catalyzes the reductive amination of pyruvate to l-alanine using ammonia as amino group donor. To enable application of BasAlaDH as regenerating enzyme in coupled reactions with NADPH-dependent alcohol dehydrogenases, we alterated its cofactor specificity from NADH to NADPH via protein engineering. By introducing two amino acid exchanges, D196A and L197R, high catalytic efficiency for NADPH was achieved, with kcat /KM  = 54.1 µM(-1)  Min(-1) (KM  = 32 ± 3 µM; kcat  = 1,730 ± 39 Min(-1) ), almost the same as the wild-type enzyme for NADH (kcat /KM  = 59.9 µM(-1)  Min(-1) ; KM  = 14 ± 2 µM; kcat  = 838 ± 21 Min(-1) ). Conversely, recognition of NADH was much diminished in the mutated enzyme (kcat /KM  = 3 µM(-1)  Min(-1) ). BasAlaDH(D196A/L197R) was applied in a coupled oxidation/transamination reaction of the chiral dicyclic dialcohol isosorbide to its diamines, catalyzed by Ralstonia sp. alcohol dehydrogenase and Paracoccus denitrificans ω-aminotransferase, thus allowing recycling of the two cosubstrates NADP(+) and l-Ala. An excellent cofactor regeneration with recycling factors of 33 for NADP(+) and 13 for l-Ala was observed with the engineered BasAlaDH in a small-scale biocatalysis experiment. This opens a biocatalytic route to novel building blocks for industrial high-performance polymers.

  1. Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways.

    PubMed

    Wang, Yiran; Huang, Weidong; Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y-H Percival

    2011-03-25

    Different from NAD(P)H regeneration approaches mediated by a single enzyme or a whole-cell microorganism, we demonstrate high-yield generation of NAD(P)H from a renewable biomass sugar--cellobiose through in vitro synthetic enzymatic pathways consisting of 12 purified enzymes and coenzymes. When the NAD(P)H generation system was coupled with its consumption reaction mediated by xylose reductase, the NADPH yield was as high as 11.4 mol NADPH per cellobiose (i.e., 95% of theoretical yield--12 NADPH per glucose unit) in a batch reaction. Consolidation of endothermic reactions and exothermic reactions in one pot results in a very high energy-retaining efficiency of 99.6% from xylose and cellobiose to xylitol. The combination of this high-yield and projected low-cost biohydrogenation and aqueous phase reforming may be important for the production of sulfur-free liquid jet fuel in the future.

  2. [Effects of melaxen and valdoxan on the activity of glutathione antioxidant system and NADPH-producing enzymes in rat heart under experimental hyperthyroidism conditions].

    PubMed

    Gorbenko, M V; Popova, T N; Shul'gin, K K; Popov, S S

    2013-01-01

    The effects of melaxen and valdoxan on the activity of glutathione antioxidant system and some NADPH-producing enzymes have been studied under conditions of experimental hyperthyroidism in rat heart. Under the action of these drugs, reduced glutathione (GSH) content increased as compared to values observed under the conditions of pathology. It has been established that the activities of glutathione reductase (GR), glutathione peroxidase (GP), glucose-6-phosphate dehydrogenase, and NADP isocitrate dehydrogenase (increased under pathological conditions) change toward the intact control values upon the introduction of both drugs. The influence of melaxen and valdoxan, capable of producing antioxidant effect, leads apparently to the inhibition of free-radical oxidation processes and, as a consequence, the reduction of mobilization degree of the glutathione antioxidant system.

  3. Phagocyte NADPH-oxidase. Studies with flavin analogues as active site probes in triton X-100-solubilized preparations.

    PubMed

    Parkinson, J F; Gabig, T G

    1988-06-25

    NADPH-oxidase of stimulated human neutrophil membranes was solubilized in Triton X-100 and activity reconstituted with FAD, 8-F-FAD, 8-phenyl-S-FAD, and 8-S-FAD. The enzyme had similar affinities for all the flavins with Km values in the 60-80 nM range. Vmax was found to increase 4-fold with increasing redox midpoint potential of the flavin. 8-F-FAD reconstituted with the enzyme was reactive toward thiophenol, suggesting exposure of the 8-position to solvent, a finding supported by unsuccessful attempts to label the enzyme with the photoaffinity probe 8-N3-[32P]FAD. Solubilized oxidase stabilized the red thiolate form of 8-S-FAD, a characteristic of flavoproteins of the dehydrogenase/electron transferase classes which stabilize the blue neutral form of the flavin semiquinone radical.

  4. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    PubMed Central

    Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases. PMID:24970175

  5. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    NASA Technical Reports Server (NTRS)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  6. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress.

    PubMed

    McNally, J Scott; Davis, Michael E; Giddens, Don P; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G

    2003-12-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  7. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    NASA Technical Reports Server (NTRS)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  8. Involvement of activation of NADPH oxidase and extracellular signal-regulated kinase (ERK) in renal cell injury induced by zinc.

    PubMed

    Matsunaga, Yoshiko; Kawai, Yoshiko; Kohda, Yuka; Gemba, Munekazu

    2005-05-01

    Zinc is employed as a supplement; however, zinc-related nephropathy is not generally known. In this study, we investigated zinc-induced renal cell injury using a pig kidney-derived cultured renal epithelial cell line, LLC-PK(1), with proximal kidney tubule-like features, and examined the involvement of free radicals and extracellular signal-regulated kinase (ERK) in the cell injury. The LLC-PK(1) cells showed early uptake of zinc (30 microM), and the release of lactate dehydrogenase (LDH), an index of cell injury, was observed 24 hr after uptake. Three hours after zinc exposure, generation of reactive oxygen species (ROS) was increased. An antioxidant, N, N'-diphenyl-p-phenylenediamine (DPPD), inhibited a zinc-related increase in ROS generation and zinc-induced renal cell injury. An NADPH oxidase inhibitor, diphenyleneiodonium (DPI), inhibited a zinc-related increase in ROS generation and cell injury. We investigated translocation from the cytosol fraction of the p67(phox) subunit, which is involved in the activation of NADPH oxidase, to the membrane fraction, and translocation was induced 3 hr after zinc exposure. We examined the involvement of ERK1/2 in the deterioration of zinc-induced renal cell injury, and the association between ERK1/2 and an increase in ROS generation. Six hours after zinc exposure, the activation (phosphorylation) of ERK1/2 was observed. An antioxidant, DPPD, inhibited the zinc-related activation of ERK1/2. An MAPK/ERK kinase (MEK1/2) inhibitor, U0126, almost completely inhibited zinc-related cell injury (the release of LDH), but did not influence ROS generation. These results suggest that early intracellular uptake of zinc by LLC-PK(1) cells causes the activation of NADPH oxidase, and that ROS generation by the activation of the enzyme leads to the deterioration of renal cell injury via the activation of ERK1/2.

  9. Priming and activation of NADPH oxidases in plants and animals.

    PubMed

    Canton, Johnathan; Grinstein, Sergio

    2014-09-01

    In mammals, engagement of Toll-like receptors by microbe-associated molecular patterns enhances the responsiveness of NADPH oxidases. Two recent papers report a similar 'priming' mechanism for the plant oxidase RbohD. Despite lacking structural homology, the functional parallels between plants and animals reveal that a common regulatory logic arose by convergent evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Cloning and expression of an NADP(+)-dependent alcohol dehydrogenase gene of Entamoeba histolytica.

    PubMed

    Kumar, A; Shen, P S; Descoteaux, S; Pohl, J; Bailey, G; Samuelson, J

    1992-11-01

    Ethanol is the major metabolic product of glucose fermentation by the protozoan parasite Entamoeba histolytica under the anaerobic conditions found in the lumen of the colon. Here an internal peptide sequence determined from a major 39-kDa amoeba protein isolated by isoelectric focusing followed by SDS/PAGE was used to clone the gene for the E. histolytica NADP(+)-dependent alcohol dehydrogenase (EhADH1; EC 1.1.1.2). The EhADH1 clone had an open reading frame that was 360 amino acids long and encoded a protein of approximately 39 kDa (calculated size). EhADH1 showed a 62% amino acid identity with the tetrameric NADP(+)-dependent alcohol dehydrogenase of Thermoanaerobium brockii. In contrast, EhADH1 showed a 15% amino acid identity with the closest human alcohol dehydrogenase. EhADH1 contained 18 of the 22 amino acids conserved in other alcohol dehydrogenases, including glycines involved in binding NAD(P)+ as well as histidine and cysteine residues involved in binding the catalytic zinc ion. Like the T. brockii alcohol dehydrogenase, EhADH1 lacked a 23-amino acid stretch present in other alcohol dehydrogenases that includes four cysteines that bind a second noncatalytic zinc ion. An EhADH1-glutathione-S-transferase fusion protein showed the expected NADP(+)-dependent alcohol dehydrogenase and NADPH-dependent acetaldehyde reductase activities. The enzymatic activities of the EhADH1 fusion protein were inhibited by pyrazole and 4-methylpyrazole.

  11. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase

    PubMed Central

    2009-01-01

    Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1) is 68-fold larger than that for the mutant K69A (0.73 s-1). There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM) and NADPH (K69A = 30 μM; wild-type = 11 μM). The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4) μM and 134 (± 21), respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs. PMID:19917104

  12. Biochemical and physiological analyses of NADPH-dependent thioredoxin reductase isozymes in Euglena gracilis.

    PubMed

    Tamaki, Shun; Maruta, Takanori; Sawa, Yoshihiro; Shigeoka, Shigeru; Ishikawa, Takahiro

    2015-07-01

    At least four peroxiredoxins that are coupled with the thioredoxin (Trx) system have been shown to play a key role in redox metabolism in the unicellular phytoflagellate Euglena gracilis. In order to clarify Trx-mediated redox regulation in this alga, we herein identified three NADPH-dependent thioredoxin reductases (NTRs) using a homologous search and characterized their enzymatic properties and physiological roles. Each Euglena NTR protein belonged to the small, large, and NTRC types, and were named EgNTR1, EgNTR2, and EgNTRC, respectively. EgNTR2 was phylogenetically different from the known NTRs in eukaryotic algae. EgNTR1 was predicted to be localized in mitochondria, EgNTR2 in the cytosol, and EgNTRC in plastids. The catalytic efficiency of EgNTR2 for NADPH was 30-46-fold higher than those of EgNTR1 and truncated form of EgNTRC, suggested that large type EgNTR2 reduced Trx more efficiently. The silencing of EgNTR2 gene expression resulted in significant growth inhibition and cell hypertrophy in Euglena cells. These results suggest that EgNTRs function in each cellular compartment and are physiologically important, particularly in the cytosol.

  13. A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia.

    PubMed

    Montiel, Jesús; Nava, Noreide; Cárdenas, Luis; Sánchez-López, Rosana; Arthikala, Manoj-Kumar; Santana, Olivia; Sánchez, Federico; Quinto, Carmen

    2012-10-01

    Plant NADPH oxidases [respiratory burst oxidase homologs (RBOHs)] have emerged as key players in the regulation of plant-pathogen interactions. Nonetheless, their role in mutualistic associations, such as the rhizobia-legume symbiosis, is poorly understood. In this work, nine members of the Phaseolus vulgaris Rboh gene family were identified. The transcript of one of these, PvRbohB, accumulated abundantly in shoots, roots and nodules. PvRbohB promoter activity was detected in meristematic regions of P. vulgaris roots, as well as during infection thread (IT) progression and nodule development. RNA interference (RNAi)-mediated PvRbohB down-regulation in transgenic roots reduced reactive oxygen species (ROS) production and lateral root density, and greatly impaired nodulation. Microscopy analysis revealed that progression of the ITs was impeded at the base of root hairs in PvRbohB-RNAi roots. Furthermore, the few nodules that formed in PvRbohB-down-regulated roots displayed abnormally wide ITs and reduced nitrogen fixation. These findings indicate that this common bean NADPH oxidase is crucial for successful rhizobial colonization and probably maintains proper IT growth and shape.

  14. The role of NADPH oxidase in taurine attenuation of Streptococcus uberis-induced mastitis in rats.

    PubMed

    Miao, Jinfeng; Zhang, Jinqiu; Ma, Zili; Zheng, Liuhai

    2013-08-01

    In order to evaluate the role of taurine on the oxidative stress mediated by NADPH oxidase in Streptococcus uberis-induced (S. uberis) mastitis, rats were administered daily (per os) 100mg/kg of taurine (group TS) or an equal volume of physiological saline (group CS) from gestation day 14 until parturition. Seventy-two hours after parturition, approximately 100cfu of S. uberis was infused into each of 2 mammary glands. Pretreatment with taurine significantly decreased mRNA and protein expression of p47phox and p22phox in mammary tissues. The total anti-oxidation capability (T-AOC) levels and superoxide dismutase (SOD) activities decreased, while malondialdehyde (MDA) levels increased both in mammary tissues and serum of rats with intramammary S. uberis infusion. Gavage administration of taurine moderated this change. Concentrations of interleukin-1β (IL-1β) and IL-6 in mammary glands decreased as a result of taurine administration. Significant differences (P<0.05) were present at 48 and 72 h post S. uberis-infusion (PI) for IL-1β and 72 h PI for IL-6. Our data indicate that, in S. uberis-induced mastitis, taurine has the ability of regulating redox conditions which leads to the suppression of oxidative stress and secretion of proinflammatory cytokines. This phenomenon may be ascribed to taurines's ability to inhibit the expression of NADPH oxidase. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Mechanism of melanoma cells selective apoptosis induced by a photoactive NADPH analogue

    PubMed Central

    Rouaud, Florian; Boucher, Jean-Luc; Slama-Schwok, Anny; Rocchi, Stéphane

    2016-01-01

    Melanoma is one of the most lethal cancers when it reaches a metastatic stage. Despite the spectacular achievements of targeted therapies (BRAF inhibitors) or immuno-therapies (anti-CTLA4 or anti-PD1), most patients with melanoma will need additional treatments. Here we used a photoactive NADPH analogue called NS1 to induce cell death by inhibition of NADPH oxidases NOX in melanoma cells, including melanoma cells isolated from patients. In contrast, healthy melanocytes growth was unaffected by NS1 treatment. NS1 established an early Endoplasmic Reticulum stress by the early release of calcium mediated by (a) calcium-dependent redox-sensitive ion channel(s). These events initiated autophagy and apoptosis in all tested melanoma cells independently of their mutational status. The autophagy promoted by NS1 was incomplete. The autophagic flux was blocked at late stage events, consistent with the accumulation of p62, and a close localization of LC3 with NS1 associated with NS1 inhibition of NOX1 in autophagosomes. This hypothesis of a specific incomplete autophagy and apoptosis driven by NS1 was comforted by the use of siRNAs and pharmacological inhibitors blocking different processes. This study highlights the potential therapeutic interest of NS1 inducing cell death by triggering a selective ER stress and incomplete autophagy in melanoma cells harbouring wt and BRAF mutation. PMID:27756874

  16. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here

  17. Which NADPH Oxidase Isoform Is Relevant for Ischemic Stroke? The Case for Nox 2

    PubMed Central

    Kahles, Timo

    2013-01-01

    Abstract Significance and Recent Advances: Ischemic stroke is the leading cause of disability and third in mortality in industrialized nations. Immediate restoration of cerebral blood flow is crucial to salvage brain tissue, but only few patients are eligible for recanalization therapy. Thus, the need for alternative neuroprotective strategies is huge, and antioxidant interventions have long been studied in this context. Reactive oxygen species (ROS) physiologically serve as signaling molecules, but excessive amounts of ROS, as generated during ischemia/reperfusion (I/R), contribute to tissue injury. Critical Issues: Nevertheless and despite a strong rational of ROS being a pharmacological target, all antioxidant interventions failed to improve functional outcome in human clinical trials. Antioxidants may interfere with physiological functions of ROS or do not reach the crucial target structures of ROS-induced injury effectively. Future Directions: Thus, a potentially more promising approach is the inhibition of the source of disease-promoting ROS. Within recent years, NADPH oxidases (Nox) of the Nox family have been identified as mediators of neuronal pathology. As, however, several Nox homologs are expressed in neuronal tissue, and as many of the pharmacological inhibitors employed are rather unspecific, the concept of Nox as mediators of brain damage is far from being settled. In this review, we will discuss the contribution of Nox homologs to I/R injury at large as well as to neuronal damage in particular. We will illustrate that the current data provide evidence for Nox2 as the most important NADPH oxidase mediating cerebral injury. Antioxid. Redox Signal. 18, 1400–1417. PMID:22746273

  18. Lactate dehydrogenase-elevating virus

    USDA-ARS?s Scientific Manuscript database

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  19. Human hydroxysteroid dehydrogenases and pre-receptor regulation: Insights into inhibitor design and evaluation

    PubMed Central

    Penning, Trevor M.

    2011-01-01

    Hydroxysteroid dehydrogenases (HSDs) represent a major class of NAD(P)(H) dependent steroid hormone oxidoreductases involved in the pre-receptor regulation of hormone action. This is achieved by HSDs working in pairs so that they can interconvert ketosteroids with hydroxysteroids resulting in a change in ligand potency for nuclear receptors. HSDs belong to two protein superfamilies the aldo-keto reductases and the short-chain dehydrogenase/reductases. In humans, many of the important enzymes have been thoroughly characterized including the elucidation of their three-dimensional structures. Because these enzymes play fundamental roles in steroid hormone action they can be considered to be drug targets for a variety of steroid driven diseases: e.g. metabolic syndrome and obesity, inflammation, and hormone dependent malignancies of the endometrium, prostate and breast. This article will review how fundamental knowledge of these enzymes can be exploited in the development of isoform specific HSD inhibitors from both protein superfamilies. PMID:21272640

  20. The mitochondrial 2-oxoglutarate carrier is part of a metabolic pathway that mediates glucose- and glutamine-stimulated insulin secretion.

    PubMed

    Odegaard, Matthew L; Joseph, Jamie W; Jensen, Mette V; Lu, Danhong; Ilkayeva, Olga; Ronnebaum, Sarah M; Becker, Thomas C; Newgard, Christopher B

    2010-05-28

    Glucose-stimulated insulin secretion from pancreatic islet beta-cells is dependent in part on pyruvate cycling through the pyruvate/isocitrate pathway, which generates cytosolic alpha-ketoglutarate, also known as 2-oxoglutarate (2OG). Here, we have investigated if mitochondrial transport of 2OG through the 2-oxoglutarate carrier (OGC) participates in control of nutrient-stimulated insulin secretion. Suppression of OGC in clonal pancreatic beta-cells (832/13 cells) and isolated rat islets by adenovirus-mediated delivery of small interfering RNA significantly decreased glucose-stimulated insulin secretion. OGC suppression also reduced insulin secretion in response to glutamine plus the glutamate dehydrogenase activator 2-amino-2-norbornane carboxylic acid. Nutrient-stimulated increases in glucose usage, glucose oxidation, glutamine oxidation, or ATP:ADP ratio were not affected by OGC knockdown, whereas suppression of OGC resulted in a significant decrease in the NADPH:NADP(+) ratio during stimulation with glucose but not glutamine + 2-amino-2-norbornane carboxylic acid. Finally, OGC suppression reduced insulin secretion in response to a membrane-permeant 2OG analog, dimethyl-2OG. These data reveal that the OGC is part of a mechanism of fuel-stimulated insulin secretion that is common to glucose, amino acid, and organic acid secretagogues, involving flux through the pyruvate/isocitrate cycling pathway. Although the components of this pathway must remain intact for appropriate stimulus-secretion coupling, production of NADPH does not appear to be the universal second messenger signal generated by these reactions.

  1. Alcohol Dehydrogenase from Methylobacterium organophilum

    PubMed Central

    Wolf, H. J.; Hanson, R. S.

    1978-01-01

    The alcohol dehydrogenase from Methylobacterium organophilum, a facultative methane-oxidizing bacterium, has been purified to homogeneity as indicated by sodium dodecyl sulfate-gel electrophoresis. It has several properties in common with the alcohol dehydrogenases from other methylotrophic bacteria. The active enzyme is a dimeric protein, both subunits having molecular weights of about 62,000. The enzyme exhibits broad substrate specificity for primary alcohols and catalyzes the two-step oxidation of methanol to formate. The apparent Michaelis constants of the enzyme are 2.9 × 10−5 M for methanol and 8.2 × 10−5 M for formaldehyde. Activity of the purified enzyme is dependent on phenazine methosulfate. Certain characteristics of this enzyme distinguish it from the other alcohol dehydrogenases of other methylotrophic bacteria. Ammonia is not required for, but stimulates the activity of newly purified enzyme. An absolute dependence on ammonia develops after storage of the purified enzyme. Activity is not inhibited by phosphate. The fluorescence spectrum of the enzyme indicates that it and the cofactor associated with it may be chemically different from the alcohol dehydrogenases from other methylotrophic bacteria. The alcohol dehydrogenases of Hyphomicrobium WC-65, Pseudomonas methanica, Methylosinus trichosporium, and several facultative methylotrophs are serologically related to the enzyme purified in this study. The enzymes of Rhodopseudomonas acidophila and of organisms of the Methylococcus group did not cross-react with the antiserum prepared against the alcohol dehydrogenase of M. organophilum. Images PMID:80974

  2. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.

    PubMed

    Ma, Menggen; Wang, Xu; Zhang, Xiaoping; Zhao, Xianxian

    2013-09-01

    Aldehyde inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) are generated from biomass pretreatment. Scheffersomyces stipitis is able to reduce furfural and HMF to less toxic furanmethanol and furan-2,5-dimethanol; however, the enzymes involved in the reductive reaction still remain unknown. In this study, transcription responses of two known and five putative alcohol dehydrogenase genes from S. stipitis were analyzed under furfural and HMF stress conditions. All the seven alcohol dehydrogenase genes were also cloned and overexpressed for their activity analyses. Our results indicate that transcriptions of SsADH4 and SsADH6 were highly induced under furfural and HMF stress conditions, and the proteins encoded by them exhibited NADH- and/or NADPH-dependent activities for furfural and HMF reduction, respectively. For furfural reduction, NADH-dependent activity was also observed in SsAdh1p and NAD(P)H-dependent activities were also observed in SsAdh5p and SsAdh7p. For HMF reduction, NADPH-dependent activities were also observed in SsAdh5p and SsAdh7p. SsAdh4p displayed the highest NADPH-dependent specific activity and catalytic efficiency for reduction of both furfural and HMF among the seven alcohol dehydrogenases. Enzyme activities of all SsADH proteins were more stable under acidic condition. For most SsADH proteins, the optimum temperature for enzyme activities was 30 °C and more than 50 % enzyme activities remained at 60 °C. Reduction activities of formaldehyde, acetaldehyde, isovaleraldehyde, benzaldehyde, and phenylacetaldehyde were also observed in some SsADH proteins. Our results indicate that multiple alcohol dehydrogenases in S. stipitis are involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.

  3. AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: implication of the cell survival in mitochondrial diseases.

    PubMed

    Wu, Shi-Bei; Wei, Yau-Huei

    2012-02-01

    We report that the energy metabolism shifts to anaerobic glycolysis as an adaptive response to oxidative stress in the primary cultures of skin fibroblasts from patients with MERRF syndrome. In order to unravel the molecular mechanism involved in the alteration of energy metabolism under oxidative stress, we treated normal human skin fibroblasts (CCD-966SK cells) with sub-lethal doses of H(2)O(2). The results showed that several glycolytic enzymes including hexokinase type II (HK II), lactate dehydrogenase (LDH) and glucose transporter 1 (GLUT1) were up-regulated in H(2)O(2)-treated normal skin fibroblasts. In addition, the glycolytic flux of skin fibroblasts was increased by H(2)O(2) in a dose-dependent manner through the activation of AMP-activated protein kinase (AMPK) and phosphorylation of its downstream target, phosphofructokinase 2 (PFK2). Moreover, we found that the AMPK-mediated increase of glycolytic flux by H(2)O(2) was accompanied by an increase of intracellular NADPH content. By treatment of the cells with glycolysis inhibitors, an AMPK inhibitor or genetic knockdown of AMPK, respectively, the H(2)O(2)-induced increase of NADPH was abrogated leading to the overproduction of intracellular ROS and cell death. Significantly, we showed that phosphorylation levels of AMPK and glycolysis were up-regulated to confer an advantage of survival for MERRF skin fibroblasts. Taken together, our findings suggest that the increased production of NADPH by AMPK-mediated increase of the glycolytic flux contributes to the adaptation of MERRF skin fibroblasts and H(2)O(2)-treated normal skin fibroblasts to oxidative stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: influence on global gene expression and role of oxygen supply.

    PubMed

    Siedler, Solvej; Bringer, Stephanie; Polen, Tino; Bott, Michael

    2014-10-01

    An Escherichia coli ΔpfkA mutant lacking the major phosphofructokinase possesses a partially cyclized pentose phosphate pathway leading to an increased NADPH per glucose ratio. This effect decreases the amount of glucose required for NADPH regeneration in reductive biotransformations, such as the conversion of methyl acetoacetate (MAA) to (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis. Here, global transcriptional analyses were performed to study regulatory responses during reductive biotransformation. DNA microarray analysis revealed amongst other things increased expression of soxS, supporting previous results indicating that a high NADPH demand contributes to the activation of SoxR, the transcriptional activator of soxS. Furthermore, several target genes of the ArcAB two-component system showed a lower mRNA level in the reference strain than in the ΔpfkA mutant, pointing to an increased QH2 /Q ratio in the reference strain. This prompted us to analyze yields and productivities of MAA reduction to MHB under different oxygen regimes in a bioreactor. Under anaerobic conditions, the specific MHB production rates of both strains were comparable (7.4 ± 0.2 mmolMHB  h(-1)  gcdw (-1) ) and lower than under conditions of 15% dissolved oxygen, where those of the reference strain (12.8 mmol h(-1)  gcdw (-1) ) and of the ΔpfkA mutant (11.0 mmol h(-1)  gcdw (-1) ) were 73% and 49% higher. While the oxygen transfer rate (OTR) of the reference strain increased after the addition of MAA, presumably due to the oxidation of the acetate accumulated before MAA addition, the OTR of the ΔpfkA strain strongly decreased, indicating a very low respiration rate despite sufficient oxygen supply. The latter effect can likely be attributed to a restricted conversion of NADPH into NADH via the soluble transhydrogenase SthA, as the enzyme is outcompeted in the presence of MAA by the recombinant NADPH-dependent alcohol

  5. Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C-dependent NADPH oxidase activation: effect on platelet recruitment.

    PubMed

    Pignatelli, P; Di Santo, S; Buchetti, B; Sanguigni, V; Brunelli, A; Violi, F

    2006-06-01

    Several studies demonstrated an inverse association between polyphenol intake and cardiovascular events. Platelet recruitment is an important phase of platelet activation at the site of vascular injury, but it has never been investigated whether polyphenols influence platelet recruitment. The aim of the study was to analyze in vitro whether two polyphenols, quercetin and catechin, were able to affect platelet recruitment. Platelet recruitment was reduced by NO donors and by NADPH oxidase inhibitors and was enhanced by L-NAME, an inhibitor of NO synthase. Quercetin and catechin, but not single polyphenol, significantly inhibited platelet recruitment in a concentration-dependent fashion. The formation of superoxide anion was significantly inhibited in platelets incubated with quercetin and catechin but was unaffected by a single polyphenol. Incubation of platelets with quercetin and catechin resulted in inhibition of PKC and NADPH oxidase activation. Treatment of platelets with quercetin and catechin resulted in an increase of NO and also down-regulated the expression of GpIIb/IIIa glycoprotein. This study shows that the polyphenols quercetin and catechin synergistically act in reducing platelet recruitment via inhibition of PKC-dependent NADPH oxidase activation. This effect, resulting in NO-mediated platelet glycoprotein GpIIb/IIIa down-regulation, could provide a novel mechanism through which polyphenols reduce cardiovascular disease.

  6. Purification and characterization of an anti-Prelog alcohol dehydrogenase from Oenococcus oeni that reduces 2-octanone to (R)-2-octanol.

    PubMed

    Meng, Fantao; Xu, Yan

    2010-04-01

    An anti-Prelog alcohol dehydrogenase from Oenococcus oeni that reduces 2-octanone to (R)-2-octanol was purified by 26-fold to homogeneity. The enzyme had a homodimeric structure consisting of 49 kDa subunits, required NADPH, but not NADH, as a cofactor and was a Zn-independent short-chain dehydrogenase. Aliphatic methyl ketones (chain length > or =6 carbon atoms) and aromatic methyl ketones were the preferred substrates for the enzyme, the best being 2-octanone. Maximum enzyme activity with 2-octanone was at 45 degrees C and at pH 8.0.

  7. 20-HETE increases NADPH oxidase-derived ROS production and stimulates the L-type Ca2+ channel via a PKC-dependent mechanism in cardiomyocytes

    PubMed Central

    Han, Yong; Bao, Yuyan; Li, Wei; Li, Xingting; Shen, Xin; Wang, Xu; Yao, Fanrong; O'Rourke, Stephen T.; Sun, Chengwen

    2010-01-01

    The production of 20-hydroxyeicosatetraenoic acid (20-HETE) is increased during ischemia-reperfusion, and inhibition of 20-HETE production has been shown to reduce infarct size caused by ischemia. This study was aimed to discover the molecular mechanism underlying the action of 20-HETE in cardiac myocytes. The effect of 20-HETE on L-type Ca2+ currents (ICa,L) was examined in rat isolated cardiomyocytes by patch-clamp recording in the whole cell mode. Superfusion of cardiomyocytes with 20-HETE (10–100 nM) resulted in a concentration-dependent increase in ICa,L, and this action of 20-HETE was attenuated by a specific NADPH oxidase inhibitor, gp91ds-tat (5 μM), or a superoxide scavenger, polyethylene glycol-superoxide dismutase (25 U/ml), suggesting that NADPH-oxidase-derived superoxide is involved in the stimulatory action of 20-HETE on ICa,L. Treatment of cardiomyocytes with 20-HETE (100 nM) increased both NADPH oxidase activity and superoxide production by approximately twofold. To study the molecular mechanism mediating the 20-HETE-induced increase in NADPH oxidase activity, PKC activity was measured in cardiomyocytes. Incubation of the cells with 20-HETE (100 nM) significantly increased PKC activity, and pretreatment of cardiomyocytes with a selective PKC inhibitor, GF-109203 (1 μM), attenuated the 20-HETE-induced increases in ICa,L and in NADPH oxidase activity. In summary, 20-HETE stimulates NADPH oxidase-derived superoxide production, which activates L-type Ca2+ channels via a PKC-dependent mechanism in cardiomyocytes. 20-HETE and 20-HETE-producing enzymes could be novel targets for the treatment of cardiac ischemic diseases. PMID:20675568

  8. NADPH oxidase deficient mice develop colitis and bacteremia upon infection with normally avirulent, TTSS-1- and TTSS-2-deficient Salmonella Typhimurium.

    PubMed

    Felmy, Boas; Songhet, Pascal; Slack, Emma Marie Caroline; Müller, Andreas J; Kremer, Marcus; Van Maele, Laurye; Cayet, Delphine; Heikenwalder, Mathias; Sirard, Jean-Claude; Hardt, Wolf-Dietrich

    2013-01-01

    Infections, microbe sampling and occasional leakage of commensal microbiota and their products across the intestinal epithelial cell layer represent a permanent challenge to the intestinal immune system. The production of reactive oxygen species by NADPH oxidase is thought to be a key element of defense. Patients suffering from chronic granulomatous disease are deficient in one of the subunits of NADPH oxidase. They display a high incidence of Crohn's disease-like intestinal inflammation and are hyper-susceptible to infection with fungi and bacteria, including a 10-fold increased risk of Salmonellosis. It is not completely understood which steps of the infection process are affected by the NADPH oxidase deficiency. We employed a mouse model for Salmonella diarrhea to study how NADPH oxidase deficiency (Cybb (-/-)) affects microbe handling by the large intestinal mucosa. In this animal model, wild type S. Typhimurium causes pronounced enteropathy in wild type mice. In contrast, an avirulent S. Typhimurium mutant (S.Tm(avir); invGsseD), which lacks virulence factors boosting trans-epithelial penetration and growth in the lamina propria, cannot cause enteropathy in wild type mice. We found that Cybb (-/-) mice are efficiently infected by S.Tm(avir) and develop enteropathy by day 4 post infection. Cell depletion experiments and infections in Cybb (-/-) Myd88 (-/-) mice indicated that the S.Tm(avir)-inflicted disease in Cybb (-/-) mice hinges on CD11c(+)CX3CR1(+) monocytic phagocytes mediating colonization of the cecal lamina propria and on Myd88-dependent proinflammatory immune responses. Interestingly, in mixed bone marrow chimeras a partial reconstitution of Cybb-proficiency in the bone marrow derived compartment was sufficient to ameliorate disease severity. Our data indicate that NADPH oxidase expression is of key importance for restricting the growth of S.Tm(avir) in the mucosal lamina propria. This provides important insights into microbe handling by the large

  9. Sildenafil promotes eNOS activation and inhibits NADPH oxidase in the transgenic sickle cell mouse penis.

    PubMed

    Musicki, Biljana; Bivalacqua, Trinity J; Champion, Hunter C; Burnett, Arthur L

    2014-02-01

    Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Continuous treatment with sildenafil reversed (P < 0.05) the abnormalities in protein expressions of P-eNOS (Ser-1177), eNOS/HSP90 interaction, P-AKT, protein expression of gp91(phox), and 4-HNE, in the sickle cell mouse penis. Sildenafil treatment of WT mice did not affect any of these parameters. Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. © 2013 International Society for Sexual Medicine.

  10. Sildenafil Promotes eNOS Activation and Inhibits NADPH Oxidase in the Transgenic Sickle Cell Mouse Penis

    PubMed Central

    Musicki, Biljana; Bivalacqua, Trinity J.; Champion, Hunter C.; Burnett, Arthur L.

    2014-01-01

    Introduction Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. Aims We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. Methods SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Main Outcome Measures Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Results Continuous treatment with sildenafil reversed (P < 0.05) the abnormalities in protein expressions of P-eNOS (Ser-1177), eNOS/HSP90 int