Sample records for nai detector system

  1. Experimental validation and testing of a NaI boron-lined neutron detector

    NASA Astrophysics Data System (ADS)

    Metwally, Walid A.; Emam, Amira G.

    2018-05-01

    Effective neutron detection systems are critical in various nuclear fields. Most of the current detection systems rely on He-3 detectors due to their high neutron cross section. However, the limited sizes and worldwide scarcity of He-3 lead to major research efforts to find alternative neutron detectors. One of the proposed cost-effective alternatives is using boron-lined NaI detectors to detect the gamma ray resulting from the 10B(n,α)7Li reaction. The proposed detector assembly has been experimentally tested and its results were compared with those from a He-3 detector. In addition to detecting the gamma rays from the source and surrounding medium, the boron-lined NaI detector showed a good sensitivity to changes in neutron flux distributions and a higher efficiency when compared to the He-3 detector used.

  2. Neutron detection with a NaI spectrometer using high-energy photons

    NASA Astrophysics Data System (ADS)

    Holm, Philip; Peräjärvi, Kari; Sihvonen, Ari-Pekka; Siiskonen, Teemu; Toivonen, Harri

    2013-01-01

    Neutrons can be indirectly detected by high-energy photons. The performance of a 4″×4″×16″ NaI portal monitor was compared to a 3He-based portal monitor with a comparable cross-section of the active volume. Measurements were performed with bare and shielded 252Cf and AmBe sources. With an optimum converter and moderator structure for the NaI detector, the detection efficiencies and minimum detectable activities of the portal monitors were similar. The NaI portal monitor preserved its detection efficiency much better with shielded sources, making the method very interesting for security applications. For heavily shielded sources, the NaI detector was 2-3 times more sensitive than the 3He-based detector.

  3. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  4. Study on detection geometry and detector shielding for portable PGNAA system using PHITS

    NASA Astrophysics Data System (ADS)

    Ithnin, H.; Dahing, L. N. S.; Lip, N. M.; Rashid, I. Q. Abd; Mohamad, E. J.

    2018-01-01

    Prompt gamma-ray neutron activation analysis (PGNAA) measurements require efficient detectors for gamma-ray detection. Apart from experimental studies, the Monte Carlo (MC) method has become one of the most popular tools in detector studies. The absolute efficiency for a 2 × 2 inch cylindrical Sodium Iodide (NaI) detector has been modelled using the PHITS software and compared with previous studies in literature. In the present work, PHITS code is used for optimization of portable PGNAA system using the validated NaI detector. The detection geometry is optimized by moving the detector along the sample to find the highest intensity of the prompt gamma generated from the sample. Shielding material for the validated NaI detector is also studied to find the best option for the PGNAA system setup. The result shows the optimum distance for detector is on the surface of the sample and around 15 cm from the source. The results specify that this process can be followed to determine the best setup for PGNAA system for a different sample size and detector type. It can be concluded that data from PHITS code is a strong tool not only for efficiency studies but also for optimization of PGNAA system.

  5. Characterization of NaI crystal scintillators for the COHERENT collaboration

    NASA Astrophysics Data System (ADS)

    Erkela, Eric; Coherent Collaboration

    2017-09-01

    The COHERENT project aims to make a first observation of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) using a set of complimentary detector arrays located at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Using NaI scintillators acquired from the DHS-ASP program, we plan to construct a multi-tonne array with the capacity to detect CEvNS even in the presence of moderate background. Such an array would also have sensitivity to charged-current scattering of the SNS' pion Decay-At-Rest neutrinos with potential application to neutrinoless double-beta decay nuclear matrix element calculations. Optimization of the array design requires detailed characterization of the NaI scintillators themselves. We will show results on measurements of the light response and its linearity, as well as the energy resolution as a function of detector voltage. We also measured detector thresholds, dynamic range, and spatial and temporal variation of the detector response. This work is supported by the University of Washington Royalty Research Fund.

  6. Comparative estimations of 137Cs distribution in a boreal forest in northern Sweden using a traditional sampling approach and a portable NaI detector.

    PubMed

    Plamboeck, A H; Nylén, T; Agren, G

    2006-01-01

    Field-portable detectors have been frequently used in routine monitoring and hazard assessment studies. However, there have been few thorough attempts to evaluate their potential as an alternative to the traditional procedure of collecting samples and analysing them in the laboratory. Thus, in this study the two approaches were compared in terms of their utility for monitoring (137)Cs activity in the Nyänget catchment in northern Sweden. The objectives were: (i) to determine the (137)Cs activity in soils associated with three types of vegetation, (ii) to map the geographical distribution of (137)Cs using the portable NaI detector connected to a GPS system (GDM-40), (iii) to identify (137)Cs anomalies in the catchment, and (iv) to compare the measurements obtained with the NaI detector and traditional sampling followed by laboratory analysis. Our results demonstrate that the GDM-40 has very good potential for making (137)Cs inventories and for detecting (137)Cs anomalies within large areas. The GDM-40 measurements identified differences between different hydrological areas that were not determined with the soil sampling method. The GDM-40 method is much faster than a traditional soil sampling method. However, soil sampling cannot be totally excluded because it is needed to calibrate the GDM-40. The agreement between the (137)Cs activity values obtained by the two approaches was 20% which is good in the field where so many factors vary.

  7. The quick and ultrasensitive determination of K in NaI using inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnquist, Isaac J.; Hoppe, Eric W.

    A highly sensitive, novel and quick assay method utilizing inductively coupled plasma mass spectrometry was developed for the determination of K in NaI powders and NaI(Tl) scintillator crystals for use in ultralow background applications. The determination of K (viz. 40K), as well as Th and U and their daughters, is important in ultralow background detector materials to ensure incorporation of materials of sufficiently high radiopurity. Through the use of improved instrumentation, cool plasma operating conditions, and meticulously clean sample preparations, detection limits of 11 fg natK∙g-1 (or 341 pBq 40K∙kg-1) was attained for K in pure water. Detection limits inmore » the sample matrix (i.e., NaI) were 0.529 ng natK∙g NaI-1 (or 16.4 Bq 40K∙kg NaI -1). A number of different precursor NaI powder samples and NaI(Tl) scintillator crystals were assayed for their K content. Determinations ranged from 0.757 – 31.4 ng natK∙g NaI-1. This method allows for the screening of materials to unprecedented levels in a fraction of the time compared to gamma counting techniques, providing a useful method for a more effective screening tool of K in ultralow background detector materials.« less

  8. Digital instrumentation and management of dead time: first results on a NaI well-type detector setup.

    PubMed

    Censier, B; Bobin, C; Bouchard, J; Aubineau-Lanièce, I

    2010-01-01

    The LNE-LNHB is engaged in a development program on digital instrumentation, the first step being the instrumentation of a NaI well-type detector set-up. The prototype acquisition card and its technical specifications are presented together with the first comparison with the classical NIM-based acquisition chain, for counting rates up to 100 kcps. The digital instrumentation is shown to be counting-loss free in this range. This validates the main option adopted in this project, namely the implementation of an extending dead time with live-time measurement already successfully used in the MTR2 NIM module developed at LNE-LNHB. Copyright 2010. Published by Elsevier Ltd.

  9. Validation and uncertainty quantification of detector response functions for a 1″×2″ NaI collimated detector intended for inverse radioisotope source mapping applications

    NASA Astrophysics Data System (ADS)

    Nelson, N.; Azmy, Y.; Gardner, R. P.; Mattingly, J.; Smith, R.; Worrall, L. G.; Dewji, S.

    2017-11-01

    Detector response functions (DRFs) are often used for inverse analysis. We compute the DRF of a sodium iodide (NaI) nuclear material holdup field detector using the code named g03 developed by the Center for Engineering Applications of Radioisotopes (CEAR) at NC State University. Three measurement campaigns were performed in order to validate the DRF's constructed by g03: on-axis detection of calibration sources, off-axis measurements of a highly enriched uranium (HEU) disk, and on-axis measurements of the HEU disk with steel plates inserted between the source and the detector to provide attenuation. Furthermore, this work quantifies the uncertainty of the Monte Carlo simulations used in and with g03, as well as the uncertainties associated with each semi-empirical model employed in the full DRF representation. Overall, for the calibration source measurements, the response computed by the DRF for the prediction of the full-energy peak region of responses was good, i.e. within two standard deviations of the experimental response. In contrast, the DRF tended to overestimate the Compton continuum by about 45-65% due to inadequate tuning of the electron range multiplier fit variable that empirically represents physics associated with electron transport that is not modeled explicitly in g03. For the HEU disk measurements, computed DRF responses tended to significantly underestimate (more than 20%) the secondary full-energy peaks (any peak of lower energy than the highest-energy peak computed) due to scattering in the detector collimator and aluminum can, which is not included in the g03 model. We ran a sufficiently large number of histories to ensure for all of the Monte Carlo simulations that the statistical uncertainties were lower than their experimental counterpart's Poisson uncertainties. The uncertainties associated with least-squares fits to the experimental data tended to have parameter relative standard deviations lower than the peak channel relative standard

  10. Validation and uncertainty quantification of detector response functions for a 1″×2″ NaI collimated detector intended for inverse radioisotope source mapping applications

    DOE PAGES

    Nelson, N.; Azmy, Y.; Gardner, R. P.; ...

    2017-08-05

    Detector response functions (DRFs) are often used for inverse analysis. We compute the DRF of a sodium iodide (NaI) nuclear material holdup field detector using the code named g03 developed by the Center for Engineering Applications of Radioisotopes (CEAR) at NC State University. Three measurement campaigns were performed in order to validate the DRF’s constructed by g03: on-axis detection of calibration sources, off-axis measurements of a highly enriched uranium (HEU) disk, and on-axis measurements of the HEU disk with steel plates inserted between the source and the detector to provide attenuation. Furthermore, this work quantifies the uncertainty of the Montemore » Carlo simulations used in and with g03, as well as the uncertainties associated with each semi-empirical model employed in the full DRF rep-resentation. Overall, for the calibration source measurements, the response computed by the DRF for the prediction of the full-energy peak region of responses was good, i.e. within two standard deviations of the experimental response. In contrast, the DRF tended to overestimate the Compton continuum by about 45–65% due to inadequate tuning of the electron range multiplier fit variable that empirically represents physics associated with electron transport that is not modeled explicitly in g03. For the HEU disk mea-surements, computed DRF responses tended to significantly underestimate (more than 20%) the sec-ondary full-energy peaks (any peak of lower energy than the highest-energy peak computed) due to scattering in the detector collimator and aluminum can, which is not included in the g03 model. We ran a sufficiently large number of histories to ensure for all of the Monte Carlo simulations that the sta-tistical uncertainties were lower than their experimental counterpart’s Poisson uncertainties. The uncer-tainties associated with least-squares fits to the experimental data tended to have parameter relative standard deviations lower than the peak

  11. Validation and uncertainty quantification of detector response functions for a 1″×2″ NaI collimated detector intended for inverse radioisotope source mapping applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, N.; Azmy, Y.; Gardner, R. P.

    Detector response functions (DRFs) are often used for inverse analysis. We compute the DRF of a sodium iodide (NaI) nuclear material holdup field detector using the code named g03 developed by the Center for Engineering Applications of Radioisotopes (CEAR) at NC State University. Three measurement campaigns were performed in order to validate the DRF’s constructed by g03: on-axis detection of calibration sources, off-axis measurements of a highly enriched uranium (HEU) disk, and on-axis measurements of the HEU disk with steel plates inserted between the source and the detector to provide attenuation. Furthermore, this work quantifies the uncertainty of the Montemore » Carlo simulations used in and with g03, as well as the uncertainties associated with each semi-empirical model employed in the full DRF rep-resentation. Overall, for the calibration source measurements, the response computed by the DRF for the prediction of the full-energy peak region of responses was good, i.e. within two standard deviations of the experimental response. In contrast, the DRF tended to overestimate the Compton continuum by about 45–65% due to inadequate tuning of the electron range multiplier fit variable that empirically represents physics associated with electron transport that is not modeled explicitly in g03. For the HEU disk mea-surements, computed DRF responses tended to significantly underestimate (more than 20%) the sec-ondary full-energy peaks (any peak of lower energy than the highest-energy peak computed) due to scattering in the detector collimator and aluminum can, which is not included in the g03 model. We ran a sufficiently large number of histories to ensure for all of the Monte Carlo simulations that the sta-tistical uncertainties were lower than their experimental counterpart’s Poisson uncertainties. The uncer-tainties associated with least-squares fits to the experimental data tended to have parameter relative standard deviations lower than the peak

  12. Environmental Monitoring and Characterization of Radiation Sources on UF Campus Using a Large Volume NaI Detector

    NASA Astrophysics Data System (ADS)

    Bruner, Jesse A.; Gardiner, Hannah E.; Jordan, Kelly A.; Baciak, James E.

    2016-09-01

    Environmental radiation surveys are important for applications such as safety and regulations. This is especially true for areas exposed to emissions from nuclear reactors, such as the University of Florida Training Reactor (UFTR). At the University of Florida, surveys are performed using the RSX-1 NaI detector, developed by Radiation Solutions Inc. The detector uses incoming gamma rays and an Advanced Digital Spectrometer module to produce a linear energy spectrum. These spectra can then be analyzed in real time with a personal computer using the built in software, RadAssist. We report on radiation levels around the University of Florida campus using two mobile detection platforms, car-borne and cart-borne. The car-borne surveys provide a larger, broader map of campus radiation levels. On the other hand, cart-borne surveys provide a more detailed radiation map because of its ability to reach places on campus cars cannot go. Throughout the survey data, there are consistent radon decay product energy peaks in addition to other sources such as medical I-131 found in a large crowd of people. Finally, we investigate further applications of this mobile detection platform, such as tracking the Ar-41 plume emitted from the UFTR and detection of potential environmental hazards.

  13. The National Aerospace Initiative (NAI): Technologies For Responsive Space Access

    NASA Technical Reports Server (NTRS)

    Culbertson, Andrew; Bhat, Biliyar N.

    2003-01-01

    The Secretary of Defense has set new goals for the Department of Defense (DOD) to transform our nation's military forces. The Director for Defense Research and Engineering (DDR&E) has responded to this challenge by defining and sponsoring a transformational initiative in Science and Technology (S&T) - the National Aerospace Initiative (NAI) - which will have a fundamental impact on our nation's military capabilities and on the aerospace industry in general. The NAI is planned as a joint effort among the tri-services, DOD agencies and National Aeronautics and Space Administration (NASA). It is comprised of three major focus areas or pillars: 1) High Speed Hypersonics (HSH), 2) Space Access (SA), and 3) Space Technology (ST). This paper addresses the Space Access pillar. The NAI-SA team has employed a unique approach to identifying critical technologies and demonstrations for satisfying both military and civilian space access capabilities needed in the future. For planning and implementation purposes the NAI-SA is divided into five technology subsystem areas: Airframe, Propulsion, Flight Subsystems, Operations and Payloads. Detailed technology roadmaps were developed under each subsystem area using a time-phased, goal oriented approach that provides critical space access capabilities in a timely manner and involves subsystem ground and flight demonstrations. This S&T plan addresses near-term (2009), mid-term (2016), and long-term (2025) goals and objectives for space access. In addition, system engineering and integration approach was used to make sure that the plan addresses the requirements of the end users. This paper describes in some detail the technologies in NAI-Space Access pillar. Some areas of emphasis are: high temperature materials, thermal protection systems, long life, lightweight, highly efficient airframes, metallic and composite cryotanks, advanced liquid rocket engines, integrated vehicle health monitoring and management, highly operable systems and

  14. NAIS Member School Operations, 1982-83; NAIS Membership, 1983-84. NAIS Statistics, Spring 1984.

    ERIC Educational Resources Information Center

    National Association of Independent Schools, Boston, MA.

    This report shows responses to two National Association of Independent Schools (NAIS) surveys distributed in September 1983. Section I focuses on financial aid income for 593 schools, including those deriving income from one source, and on aid to students at 644 schools during 1982-83. Section II shows minority student enrollment in 784 United…

  15. A method to calculate the gamma ray detection efficiency of a cylindrical NaI (Tl) crystal

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Ashrafi, S.; Yazdansetad, F.

    2018-05-01

    Given a wide range application of NaI(Tl) detector in industrial and medical sectors, computation of the related detection efficiency in different distances of a radioactive source, especially for calibration purposes, is the subject of radiation detection studies. In this work, a 2in both in radius and height cylindrical NaI (Tl) scintillator was used, and by changing the radial, axial, and diagonal positions of an isotropic 137Cs point source relative to the detector, the solid angles and the interaction probabilities of gamma photons with the detector's sensitive area have been calculated. The calculations present the geometric and intrinsic efficiency as the functions of detector's dimensions and the position of the source. The calculation model is in good agreement with experiment, and MCNPX simulation.

  16. Aerial Measuring System Sensor Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. S. Detwiler

    2002-04-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimatingmore » detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 {micro}Ci/m{sup 2}. The helicopter calculations modeled the transport of americium-241 ({sup

  17. Luminescence and radiation resistance of undoped NaI crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiran, N., E-mail: shiran@isc.kharkov.com; Boiaryntseva, I.; Gektin, A.

    2014-11-15

    Highlights: • The performance of NaI scintillators depends on luminescence properties. • A criterion of crystals’ purity level is radiation colorability at room temperature. • The traces of the most dangerous impurities were detected. • Crucial role in efficiency of pure NaI scintillator play the crystal perfection. - Abstract: Undoped NaI single crystal is an excellent scintillator at low temperature. However, scintillation parameters of different quality crystals vary in a wide range, significantly exceeding measurement error. Experimental data demonstrate the features of luminescence, radiation induced coloration, and afterglow dependence on the quality of nominally pure crystals. It is found thatmore » defects level that allows to elucidate artefacts introduced by traces of harmful impurities corresponds to 3 × 10{sup 15} cm{sup −3} that significantly overhead accuracy of chemical and absorption analysis. It is shown that special raw material treatment before and during the single crystal growth allows to reach NaI purity level that avoids impurities influence to the basic luminescence data.« less

  18. Method and system for detecting an explosive

    DOEpatents

    Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.

    2010-12-07

    A method and system for detecting at least one explosive in a vehicle using a neutron generator and a plurality of NaI detectors. Spectra read from the detectors is calibrated by performing Gaussian peak fitting to define peak regions, locating a Na peak and an annihilation peak doublet, assigning a predetermined energy level to one peak in the doublet, and predicting a hydrogen peak location based on a location of at least one peak of the doublet. The spectra are gain shifted to a common calibration, summed for respective groups of NaI detectors, and nitrogen detection analysis performed on the summed spectra for each group.

  19. NAI Education and Public Outreach

    NASA Technical Reports Server (NTRS)

    Grymes, Rose; Tsairides, Catherine

    2000-01-01

    The NAI's Education and Public Outreach Office is committed to building a strong partnership with each member institute to develop a comprehensive interest in educating the public and global community on the activities of the institute and the field of Astrobiology.

  20. SU-C-201-02: Quantitative Small-Animal SPECT Without Scatter Correction Using High-Purity Germanium Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, A; Peterson, T; Johnson, L

    2015-06-15

    Purpose: To evaluate the impact of the exceptional energy resolution of germanium detectors for preclinical SPECT in comparison to conventional detectors. Methods: A cylindrical water phantom was created in GATE with a spherical Tc-99m source in the center. Sixty-four projections over 360 degrees using a pinhole collimator were simulated. The same phantom was simulated using air instead of water to establish the true reconstructed voxel intensity without attenuation. Attenuation correction based on the Chang method was performed on MLEM reconstructed images from the water phantom to determine a quantitative measure of the effectiveness of the attenuation correction. Similarly, a NEMAmore » phantom was simulated, and the effectiveness of the attenuation correction was evaluated. Both simulations were carried out using both NaI detectors with an energy resolution of 10% FWHM and Ge detectors with an energy resolution of 1%. Results: Analysis shows that attenuation correction without scatter correction using germanium detectors can reconstruct a small spherical source to within 3.5%. Scatter analysis showed that for standard sized objects in a preclinical scanner, a NaI detector has a scatter-to-primary ratio between 7% and 12.5% compared to between 0.8% and 1.5% for a Ge detector. Preliminary results from line profiles through the NEMA phantom suggest that applying attenuation correction without scatter correction provides acceptable results for the Ge detectors but overestimates the phantom activity using NaI detectors. Due to the decreased scatter, we believe that the spillover ratio for the air and water cylinders in the NEMA phantom will be lower using germanium detectors compared to NaI detectors. Conclusion: This work indicates that the superior energy resolution of germanium detectors allows for less scattered photons to be included within the energy window compared to traditional SPECT detectors. This may allow for quantitative SPECT without implementing

  1. A measurement routine to determine 137Cs activities at steep mountain slopes

    NASA Astrophysics Data System (ADS)

    Schaub, Monika; Konz, Nadine; Meusburger, Katrin; Alewell, Chrstine

    2010-05-01

    Caesium-137 (137Cs) is a common tracer for soil erosion. So far, in-situ measurements in steep alpine environments have not often been done. Most studies have been carried out in arable lands and with Ge detectors. However, the NaI detector system is a good priced, easy to handle field instrument. A comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of 137Cs gamma soil radiation has been done in an alpine catchment (Urseren Valley, Swizerland). The aim of this study was to calibrate the in-situ NaI detector system for application at steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley were measured ex situ in the laboratory with a GeLi detector, and compared to in situ NaI detector measurements. Ex situ soil samples showed a big variability in 137Cs activities at a meter-scale. This large, small scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provide integrated estimates of 137Cs within the field of view of each measurement (3.1 m2). There was no dependency of 137Cs on pH, clay content and carbon content. However, a close relationship was determined between 137Cs and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation (R2 = 0.86) was found for 137Cs activities (in Bq kg-1) estimated with both, in-situ (NaI detector) and laboratory (GeLi detector) methods which proves the validity of the in-situ measurements with the NaI detector system. This paper describes the calibration of the NaI detector system for field application under elevated 137Cs activities originating from Chernobyl fallout.

  2. First principles molecular dynamics of molten NaI: Structure, self-diffusion, polarization effects, and charge transfer

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-09-01

    The structure and self-diffusion of NaI and NaCl at temperatures close to their melting points are studied by first principles Hellmann-Feynman molecular dynamics (HFMD). The results are compared with classical MD using rigid-ion (RI) and shell-model (ShM) interionic potentials. HFMD for NaCl was reported before at a higher temperature [N. Galamba and B. J. Costa Cabral, J. Chem. Phys. 126, 124502 (2007)]. The main differences between the structures predicted by HFMD and RI MD for NaI concern the cation-cation and the anion-cation pair correlation functions. A ShM which allows only for the polarization of I- reproduces the main features of the HFMD structure of NaI. The inclusion of polarization effects for both ionic species leads to a more structured ionic liquid, although a good agreement with HFMD is also observed. HFMD Green-Kubo self-diffusion coefficients are larger than those obtained from RI and ShM simulations. A qualitative study of charge transfer in molten NaI and NaCl was also carried out with the Hirshfeld charge partitioning method. Charge transfer in molten NaI is comparable to that in NaCl, and results for NaCl at two temperatures support the view that the magnitude of charge transfer is weakly state dependent for ionic systems. Finally, Hirshfeld charge distributions indicate that differences between RI and HFMD results are mainly related to polarization effects, while the influence of charge transfer fluctuations is minimal for these systems.

  3. Proton-induced radioactivity in NaI (Tl) scintillation detectors

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1977-01-01

    Radioactivity induced by protons in sodium iodide scintillation crystals were calculated and directly measured. These data are useful in determining trapped radiation and cosmic-ray induced, background-counting rates in spaceborne detectors.

  4. The puzzling interpretation of NIR indices: The case of NaI2.21

    NASA Astrophysics Data System (ADS)

    Röck, B.; Vazdekis, A.; La Barbera, F.; Peletier, R. F.; Knapen, J. H.; Allende-Prieto, C.; Aguado, D. S.

    2017-11-01

    We present a detailed study of the Na I line strength index centred in the K band at 22 100 Å (NaI2.21 hereafter) relying on different samples of early-type galaxies. Consistent with previous studies, we find that the observed line strength indices cannot be fit by state-of-the-art scaled-solar stellar population models, even using our newly developed models in the near infrared (NIR). The models clearly underestimate the large NaI2.21 values measured for most early-type galaxies. However, we develop an Na-enhanced version of our newly developed models in the NIR, which - together with the effect of a bottom-heavy initial mass function - yield NaI2.21 indices in the range of the observations. Therefore, we suggest a scenario in which the combined effect of [Na/Fe] enhancement and a bottom-heavy initial mass function are mainly responsible for the large NaI2.21 indices observed for most early-type galaxies. To a smaller extent, also [C/Fe] enhancement might contribute to the large observed NaI2.21 values.

  5. Application of in-situ measurement to determine 137Cs in the Swiss Alps.

    PubMed

    Schaub, M; Konz, N; Meusburger, K; Alewell, C

    2010-05-01

    Establishment of (137)Cs inventories is often used to gain information on soil stability. The latter is crucial in mountain systems, where ecosystem stability is tightly connected to soil stability. In-situ measurements of (137)Cs in steep alpine environments are scarce. Most studies have been carried out in arable lands and with Germanium (Ge) detectors. Sodium Iodide (NaI) detector system is an inexpensive and easy to handle field instrument, but its validity on steep alpine environments has not been tested yet. In this study, a comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of (137)Cs gamma soil radiation has been done in an alpine catchment with high (137)Cs concentration (Urseren Valley, Switzerland). The aim of this study was to calibrate the in-situ NaI detector system for application on steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley, measured in the laboratory with a GeLi detector, showed a large variability in (137)Cs activities at a meter scale. This small-scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provides integrated estimates of (137)Cs within the field of view (3.1 m(2)) of each measurement. There was no dependency of (137)Cs on pH, clay content and carbon content, but a close relationship was determined between measured (137)Cs activities and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation (R(2) = 0.86, p < 0.0001) was found for (137)Cs activities (in Bq kg(-1)) estimated with in-situ (NaI detector) and laboratory (GeLi detector) methods. We thus concluded that the NaI detector system is a suitable tool for in-situ measurements in alpine environments. This paper describes the calibration of the NaI detector system for field application under elevated (137)Cs activities originating from Chernobyl fallout. Copyright (c

  6. Performance characteristics of dedicated molecular breast imaging systems at low doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Zaiyang; Conners, Amy L.; Hunt, Katie N.

    Purpose: The purpose of this study was to compare the system performance characteristics and lesion detection capability of two molecular breast imaging (MBI) systems: a multicrystal sodium iodide (NaI)-based single-head system and a cadmium zinc telluride (CZT)-based dual-head system at low administered doses (150–300 MBq) of Tc-99m sestamibi. Methods: System performance characteristics including count sensitivity, uniformity, energy resolution, and spatial resolution were measured using standard NEMA methods, or a modified version thereof in cases where the standard NEMA protocol could not be applied. A contrast-detail phantom with 48 lesions at varying depths from the collimator surface was used to assessmore » lesion contrast-to-noise-ratio (CNR) using background count densities comparable to those observed in patient studies performed with administered doses of 150 MBq Tc-99m sestamibi. Lesions with CNR >3 were deemed to be detectable. Thirty patients undergoing MBI examinations with administered doses of 150–300 MBq were scanned for an additional view on the pixelated NaI system. CNR was calculated for lesions observed on patient images. Background count densities of patient images were measured and compared between the two systems. Results: Over the central field of view, integral and differential uniformity were 6.1% and 4.2%, respectively, for the pixelated NaI system, and 3.8% and 2.7%, respectively, for the CZT system. Count sensitivity was 10.8 kcts/min/MBq for the NaI system and 32.9 kcts/min/MBq for the CZT system. Energy resolution was 13.5% on the pixelated NaI system and 4.5% on the CZT system. Spatial resolution (full-width at half-maximum) for the pixelated NaI detector was 4.2 mm at a distance of 1.2 cm from the collimator and 5.2 mm at 3.1 cm. Spatial resolution of a single CZT detector was 2.9 mm at a distance of 1.2 cm from the collimator and 4.7 mm at 3.1 cm. Effective spatial resolution obtained with dual-head CZT was below 4.7 mm

  7. Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model

    NASA Astrophysics Data System (ADS)

    Krogh-Madsen, Trine; Christini, David J.

    2017-09-01

    Accumulation of intracellular Na+ is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na+ concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na+ concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na+]i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na+]i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na+]i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na+]i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na+]i may play complex roles in cellular and tissue-level cardiac dynamics.

  8. Vehicle and cargo container inspection system for drugs

    NASA Astrophysics Data System (ADS)

    Verbinski, Victor V.; Orphan, Victor J.

    1999-06-01

    A vehicle and cargo container inspection system has been developed which uses gamma-ray radiography to produce digital images useful for detection of drugs and other contraband. The system is comprised of a 1 Ci Cs137 gamma-ray source collimated into a fan beam which is aligned with a linear array of NaI gamma-ray detectors located on the opposite side of the container. The NaI detectors are operated in the pulse-counting mode. A digital image of the vehicle or container is obtained by moving the aligned source and detector array relative to the object. Systems have been demonstrated in which the object is stationary (source and detector array move on parallel tracks) and in which the object moves past a stationary source and detector array. Scanning speeds of ˜30 cm/s with a pixel size (at the object) of ˜1 cm have been achieved. Faster scanning speeds of ˜2 m/s have been demonstrated on railcars with more modest spatial resolution (4 cm pixels). Digital radiographic images are generated from the detector count rates. These images, recorded on a PC-based data acquisition and display system, are shown from several applications: 1) inspection of trucks and containers at a border crossing, 2) inspection of railcars at a border crossing, 3) inspection of outbound cargo containers for stolen automobiles, and 4) inspection of trucks and cars for terrorist bombs.

  9. Gamma signatures of the C-BORD Tagged Neutron Inspection System

    NASA Astrophysics Data System (ADS)

    Sardet, A.; Pérot, B.; Carasco, C.; Sannié, G.; Moretto, S.; Nebbia, G.; Fontana, C.; Pino, F.; Iovene, A.; Tintori, C.

    2018-01-01

    In the frame of C-BORD project (H2020 program of the EU), a Rapidly relocatable Tagged Neutron Inspection System (RRTNIS) is being developed to non-intrusively detect explosives, chemical threats, and other illicit goods in cargo containers. Material identification is performed through gamma spectroscopy, using twenty NaI detectors and four LaBr3 detectors, to determine the different elements composing the inspected item from their specific gamma signatures induced by fast neutrons. This is performed using an unfolding algorithm to decompose the energy spectrum of a suspect item, selected by X-ray radiography and on which the RRTNIS inspection is focused, on a database of pure element gamma signatures. This paper reports on simulated signatures for the NaI and LaBr3 detectors, constructed using the MCNP6 code. First experimental spectra of a few elements of interest are also presented.

  10. NExSS/NAI Joint ExoPAG SAG 16 Report on Remote Biosignatures for Exoplanets

    NASA Technical Reports Server (NTRS)

    Kiang, Nancy Y.; Parenteau, Mary Nicole; Domagal-Goldman, Shawn

    2017-01-01

    Future exoplanet observations will soon focus on the search for life beyond the Solar System. Exoplanet biosignatures to be sought are those with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, and stellar processes and interactions may work to enhance, suppress or mimic these biosignatures. Thus biosignature scienceis inherently interdisciplinary. Its advance is necessary to inform the design of the next flagship missions that will obtain spectra of habitable extrasolar planets. The NExSS NAI Joint Exoplanet Biosignatures Workshop Without Walls brought together the astrobiology, exoplanet, and mission concept communities to review, discuss, debate, and advance the science of remote detection of planetary biosignatures. The multi-meeting workshop began in June 2016, and was a process that engaged a broad range of experts across the interdisciplinary reaches of NASA's Nexus for Exoplanet System Science (NExSS) program, the NASA Astrobiology Institute (NAI), NASAs Exoplanet Exploration Program (ExEP), and international partners, such as the European Astrobiology Network Association (EANA) and Japans Earth Life Science Institute (ELSI). These groups spanned expertise in astronomy, planetary science, Earth sciences, heliophysics, biology, instrument mission development, and engineering.

  11. The investigation of fast neutron Threshold Activation Detectors (TAD)

    NASA Astrophysics Data System (ADS)

    Gozani, T.; King, M. J.; Stevenson, J.

    2012-02-01

    constituent of available scintillators (e.g., BaF2, CaF2, hydrogen free liquid fluorocarbon). Thus the activation products of the fast prompt neutrons, in particular, the beta particles, can be measured with a very high efficiency in the detector. Other detectors and substances were investigated, such as 6Li and even common detectors such as NaI. The principles and experimental results obtained with F, NaI and 6Li based TAD are shown. The various contributing activation products are identified. The insensitivity of the fluorine based TAD to (d,D) neutrons is demonstrated. Ways and means to reduce or subtract the various neutron induced activations of NaI detector are elucidated along with its fast neutron detection capabilities. 6Li could also be a useful TAD.

  12. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of threemore » used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).« less

  13. 235U enrichment determination on UF6 cylinders with CZT detectors

    NASA Astrophysics Data System (ADS)

    Berndt, Reinhard; Mortreau, Patricia

    2018-04-01

    Measurements of uranium enrichment in UF6 transit cylinders are an important nuclear safeguards verification task, which is performed using a non-destructive assay method, the traditional enrichment meter, which involves measuring the count rate of the 186 keV gamma ray. This provides a direct measure of the 235U enrichment. Measurements are typically performed using either high-resolution detectors (Germanium) with e-cooling and battery operation, or portable devices equipped with low resolution detectors (NaI). Despite good results being achieved when measuring Low Enriched Uranium in 30B type cylinders and natural uranium in 48Y type containers using both detector systems, there are situations, which preclude the use of one or both of these systems. The focus of this work is to address some of the recognized limitations in relation to the current use of the above detector systems by considering the feasibility of an inspection instrument for 235U enrichment measurements on UF6 cylinders using the compact and light Cadmium Zinc Telluride (CZT) detectors. In the present work, test measurements were carried out, under field conditions and on full-size objects, with different CZT detectors, in particular for situations where existing systems cannot be used e.g. for stacks of 48Y type containers with depleted uranium. The main result of this study shows that the CZT detectors, actually a cluster of four μCZT1500 micro spectrometers provide as good results as the germanium detector in the ORTEC Micro-trans SPEC HPGe Portable spectrometer, and most importantly in particular for natural and depleted uranium in 48Y cylinders.

  14. Modular optical detector system

    DOEpatents

    Horn, Brent A [Livermore, CA; Renzi, Ronald F [Tracy, CA

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  15. Geant4 simulations of the absorption of photons in CsI and NaI produced by electrons with energies up to 4 MeV and their application to precision measurements of the β-energy spectrum with a calorimetric technique

    NASA Astrophysics Data System (ADS)

    Huyan, X.; Naviliat-Cuncic, O.; Voytas, P.; Chandavar, S.; Hughes, M.; Minamisono, K.; Paulauskas, S. V.

    2018-01-01

    The yield of photons produced by electrons slowing down in CsI and NaI was studied with four electromagnetic physics constructors included in the Geant4 toolkit. The subsequent absorption of photons in detector geometries used for measurements of the β spectrum shape was also studied with a focus on the determination of the absorption fraction. For electrons with energies in the range 0.5-4 MeV, the relative photon yields determined with the four Geant4 constructors differ at the level of 10-2 in amplitude and the relative absorption fractions differ at the level of 10-4 in amplitude. The differences among constructors enabled the estimation of the sensitivity to Geant4 simulations for the measurement of the β energy spectrum shape in 6He decay using a calorimetric technique with ions implanted in the active volume of detectors. The size of the effect associated with photons escaping the detectors was quantified in terms of a slope which, on average, is respectively - 5 . 4 %/MeV and - 4 . 8 %/MeV for the CsI and NaI geometries. The corresponding relative uncertainties as determined from the spread of results obtained with the four Geant4 constructors are 0.0067 and 0.0058.

  16. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  17. Calculated WIMP signals at the ANDES laboratory: comparison with northern and southern located dark matter detectors

    NASA Astrophysics Data System (ADS)

    Civitarese, O.; Fushimi, K. J.; Mosquera, M. E.

    2016-12-01

    Weakly interacting massive particles (WIMPs) are possible components of the Universe’s dark matter (DM). The detection of WIMPs is signaled by the recoil of the atomic nuclei which form a detector. CoGeNT at the Soudan Underground Laboratory (SUL) and DAMA at the Laboratori Nazionali del Gran Sasso (LNGS) have reported data on annual modulation of signals attributed to WIMPs. Both experiments are located in laboratories in the Northern Hemisphere. DM detectors are planned to operate (or already operate) in laboratories in the Southern Hemisphere, including SABRE at Stawell Underground Physics Laboratory (SUPL) in Australia, and DM-ICE in Antarctica. In this work we have analyzed the dependence of diurnal and annual modulation of signals, pertaining to the detection of WIMP, on the coordinates of the laboratory, for experiments which may be performed in the planned new Agua Negra Deep Experimental Site (ANDES) underground facility, to be built in San Juan, Argentina. We made predictions for NaI and Ge-type detectors placed in ANDES, to compare with DAMA, CoGeNT, SABRE and DM-ICE arrays, and found that the diurnal modulation of the signals, at the ANDES site, is amplified at its maximum value, both for NaI (Ge)-type detectors, while the annual modulation remains unaffected by the change in coordinates from north to south.

  18. Excitons in scintillator materials: Optical properties and electron-energy loss spectra of NaI, LaBr 3, BaI 2, and SrI 2

    DOE PAGES

    Schleife, Andre; Zhang, Xiao; Li, Qi; ...

    2016-11-03

    In this paper, materials for scintillator radiation detectors need to fulfill a diverse set of requirements such as radiation hardness and highly specific response to incoming radiation, rendering them a target of current materials design efforts. Even though they are amenable to cutting-edge theoretical spectroscopy techniques, surprisingly many fundamental properties of scintillator materials are still unknown or not well explored. In this work, we use first-principles approaches to thoroughly study the optical properties of four scintillator materials: NaI, LaBr 3, BaI 2, and SrI 2. By solving the Bethe–Salpeter equation for the optical polarization function we study the influence ofmore » excitonic effects on dielectric and electron-energy loss functions. This work sheds light into fundamental optical properties of these four scintillator materials and lays the ground-work for future work that is geared toward accurate modeling and computational materials design of advanced radiation detectors with unprecedented energy resolution.« less

  19. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells

    PubMed Central

    Brunati, Cristina; Thomsen, Thomas T; Gaspari, Eleonora; Maffioli, Sonia; Sosio, Margherita; Jabes, Daniela; Løbner-Olesen, Anders; Donadio, Stefano

    2018-01-01

    Abstract Objectives To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. Methods We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time–kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. Results The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Conclusions Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance. PMID:29092042

  20. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells.

    PubMed

    Brunati, Cristina; Thomsen, Thomas T; Gaspari, Eleonora; Maffioli, Sonia; Sosio, Margherita; Jabes, Daniela; Løbner-Olesen, Anders; Donadio, Stefano

    2018-02-01

    To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time-kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial

  1. Applicability of self-activation of an NaI scintillator for measurement of photo-neutrons around a high-energy X-ray radiotherapy machine.

    PubMed

    Wakabayashi, Genichiro; Nohtomi, Akihiro; Yahiro, Eriko; Fujibuchi, Toshioh; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Nakamura, Katsumasa; Hosono, Makoto; Itoh, Tetsuo

    2015-01-01

    The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.

  2. The Zero-Degree Detector System

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Howell, Leonard W.; Kouznetsov, Evgueni

    2006-01-01

    We will report on a detector system used for accelerator measurement of nuclear fragmentation cross sections. This system consists of two detector planes, each carrying a ring of 8 detectors. Each detector has 64 pads. These two detector planes are arranged facing each other so that the matching detector pads on each plane form a two element charged particle telescope. Each of these telescopes is capable of determining the elemental identity of nuclear fragments passing through it. The system is used to measure light fragment production in the presence of heavier fragments. We will present a detailed discussion of the 64-pad detector design, the substrate design. The front-end electronics used to read out the signals is based on a custom VLSI chip developed for the Advanced Thin Ionization Calorimeter experiment which has been flown successfully twice in Antarctica. Each of these chips has 16 channels and each channel consists of a charge-sensitive preamplifier followed by a shaping amplifier and a track-and-hold circuit. The track-and-hold circuits are connected via a multiplexer to an output line driver. This allows the held signals to be presented, one-by-one via a common data line to a analog-to-digital converter. Because the output line driver can be placed in a high input impedance state when not in use, it is possible to daisy-change many chips on the same common data line. The front-end electronics and data readout scheme will be discussed in detail. The Zero Degree Detector has been used in several accelerator experiments conducted at the NASA Space Radiation Laboratory and the Alternating Gradient Synchrotron at Brookhaven National Laboratory as well as at the HIMAC accelerator in Japan. We will show examples of data taken at these accelerator runs to demonstrate how the system works.

  3. Ecophysiology of Nais elinguis (Oligochaeta) in a brackish-water lagoon

    NASA Astrophysics Data System (ADS)

    Little, Colin

    1984-02-01

    Population densities of Nais elinguis Müller were determined in Swanpool, a brackish-water lagoon at Falmouth, Cornwall, U.K., over a four-year period. High densities were found only from January to May, usually with a peak in March. Significant negative correlations were shown between population density and both salinity and temperature. In laboratory tests, feeding rates remained unchanged from freshwater to 20‰ salinity (S), but declined above this salinity. Nais elinguis was shown to be a good osmoregulator, remaining hyperosmotic below 7‰ S, and hypo-osmotic above this. Feeding rate showed a Q 10 of approximately 2 from 1 to 25°C, but above this the rate declined. Feeding rate was unaffected between pH 6 and 11. Increased salinity to (10‰ S) did not influence the effect of temperature on feeding rate. This high salinity did reduce feeding rate at a pH of 10 and above. It is concluded that the physical and chemical variables considered are unlikely to be direct causal factors limiting populations of N. elinguis in Swanpool. The influence of food supply, competition, predation and changes in reproductive mode are discussed as possible controlling factors. It is shown that the population decline of N. elinguis in early summer usually coincides with the rise of populations of chironomid larvae.

  4. Pillar-structured neutron detector based multiplicity system

    NASA Astrophysics Data System (ADS)

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.

    2018-01-01

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.

  5. RETRACTED: Neutron detection by large NaI crystal

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Gervino, G.

    2016-07-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor. The article includes many textual similarities with a work that had already appeared in Nuclear Instruments and Methods in Physics Research A, Volume 697, January 2013, p. 59-63 (10.1016/j.nima.2012.09.010), as well as the Master thesis Neutron detection with high-energy photons using NaI portal monitor, Aalto University, 2012 (https://aaltodoc.aalto.fi/bitstream/handle/123456789/5206/master_holm_philip_2012.pdf?isAllowed=y&sequence=1). One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents an abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  6. Impact of upgraded in vivo lung measurement capability on an internal dosimetry program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Sula, M.J.; Aldridge, T.L.

    1985-08-01

    Implementation of high-purity germanium (Ge) detectors in place of sodium iodide (NaI) detectors for in vivo lung measurements of low-energy photon-emitting radionuclides resulted in significant improvement in detection capability and corresponding improvements in the monitoring of potentially exposed workers. Lung activities below those detectable with the NaI system were discovered during the first 18 months of operation. In a number of cases, these activities were estimated to represent intakes resulting in lung doses as high as 25% of the 15 rem/y United States Department of Energy Radiation Protection Standard. Evaluation of these lung activities and their associated intakes was substantiallymore » more time consuming than originally anticipated due to calibration differences between the Ge and NaI systems and to the difficulty of completing some of the follow-up investigations.« less

  7. Pillar-structured neutron detector based multiplicity system

    DOE PAGES

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; ...

    2017-10-04

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm 2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252more » neutron source, in which the source mass, system efficiency, and die-away time were determined. As a result, this demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.« less

  8. Control of photodissociation and photoionization of the NaI molecule by dynamic Stark effect.

    PubMed

    Han, Yong-Chang; Yuan, Kai-Jun; Hu, Wen-Hui; Cong, Shu-Lin

    2009-01-28

    The diabatic photodissociation and photoionization processes of the NaI molecule are studied theoretically using the quantum wave packet method. A pump laser pulse is used to prepare a dissociation wave packet that propagates through both the ionic channel (NaI-->Na(+)+I(-)) and the covalent channel (NaI-->Na+I). A Stark pulse is used to control the diabatic dissociation dynamics and a probe pulse is employed to ionize the products from the two channels. Based on the first order nonresonant nonperturbative dynamic Stark effect, the dissociation probabilities and the branching ratio of the products from the two channels can be controlled. Moreover the final photoelectron kinetic energy distribution can also be affected by the Stark pulse. The influences of the delay time, intensity, frequency, and carrier-envelope phase of the Stark pulse on the dissociation and ionization dynamics of the NaI molecule are discussed in detail.

  9. Explosives (and other threats) detection using pulsed neutron interrogation and optimized detectors

    NASA Astrophysics Data System (ADS)

    Strellis, Dan A.; Elsalim, Mashal; Gozani, Tsahi

    2011-06-01

    We have previously reported results from a human-portable system using neutron interrogation to detect contraband and explosives. We summarized our methodology for distinguishing threat materials such as narcotics, C4, and mustard gas in the myriad of backgrounds present in the maritime environment. We are expanding our mission for the Domestic Nuclear Detection Office (DNDO) to detect Special Nuclear Material (SNM) through the detection of multiple fission signatures without compromising the conventional threat detection performance. This paper covers our initial investigations into using neutrons from compact pulsed neutron generators via the d(D,n)3He or d(T,n)α reactions with energies of ~2.5 and 14 MeV, respectively, for explosives (and other threats) detection along with a variety of gamma-ray detectors. Fast neutrons and thermal neutrons (after successive collisions) can stimulate the emission of various threat detection signatures. For explosives detection, element-specific gamma-ray signatures via the (n,n'γ) inelastic scattering reaction and the (n,'γ) thermal capture reaction are detected. For SNM, delayed gamma-rays following fission can be measured with the same detector. Our initial trade-off investigations of several gamma-ray detectors types (NaI, CsI, LaBr3, HPGe) for measuring gamma-ray signatures in a pulsed neutron environment for potential application in a human-portable active interrogation system are covered in this paper.

  10. 14 CFR 27.1195 - Fire detector systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire detector systems. 27.1195 Section 27.1195 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... detector systems. Each turbine engine powered rotorcraft must have approved quick-acting fire detectors in...

  11. 14 CFR 27.1195 - Fire detector systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire detector systems. 27.1195 Section 27.1195 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... detector systems. Each turbine engine powered rotorcraft must have approved quick-acting fire detectors in...

  12. 14 CFR 27.1195 - Fire detector systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire detector systems. 27.1195 Section 27.1195 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... detector systems. Each turbine engine powered rotorcraft must have approved quick-acting fire detectors in...

  13. 14 CFR 27.1195 - Fire detector systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire detector systems. 27.1195 Section 27.1195 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... detector systems. Each turbine engine powered rotorcraft must have approved quick-acting fire detectors in...

  14. 14 CFR 27.1195 - Fire detector systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire detector systems. 27.1195 Section 27.1195 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... detector systems. Each turbine engine powered rotorcraft must have approved quick-acting fire detectors in...

  15. 14 CFR 121.273 - Fire-detector systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire-detector systems. 121.273 Section 121.273 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED...-detector systems. Enough quick-acting fire detectors must be provided in each designated fire zone to...

  16. 14 CFR 121.273 - Fire-detector systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fire-detector systems. 121.273 Section 121.273 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED...-detector systems. Enough quick-acting fire detectors must be provided in each designated fire zone to...

  17. 14 CFR 121.273 - Fire-detector systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fire-detector systems. 121.273 Section 121.273 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED...-detector systems. Enough quick-acting fire detectors must be provided in each designated fire zone to...

  18. 14 CFR 125.171 - Fire-detector systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire-detector systems. 125.171 Section 125.171 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.171 Fire-detector systems. Enough quick-acting fire detectors must be provided in each...

  19. 14 CFR 125.171 - Fire-detector systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fire-detector systems. 125.171 Section 125.171 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.171 Fire-detector systems. Enough quick-acting fire detectors must be provided in each...

  20. 14 CFR 125.171 - Fire-detector systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fire-detector systems. 125.171 Section 125.171 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.171 Fire-detector systems. Enough quick-acting fire detectors must be provided in each...

  1. 14 CFR 121.273 - Fire-detector systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fire-detector systems. 121.273 Section 121.273 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED...-detector systems. Enough quick-acting fire detectors must be provided in each designated fire zone to...

  2. 14 CFR 121.273 - Fire-detector systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fire-detector systems. 121.273 Section 121.273 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED...-detector systems. Enough quick-acting fire detectors must be provided in each designated fire zone to...

  3. 14 CFR 125.171 - Fire-detector systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fire-detector systems. 125.171 Section 125.171 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.171 Fire-detector systems. Enough quick-acting fire detectors must be provided in each...

  4. 14 CFR 125.171 - Fire-detector systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fire-detector systems. 125.171 Section 125.171 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.171 Fire-detector systems. Enough quick-acting fire detectors must be provided in each...

  5. Data fusion for a vision-aided radiological detection system: Calibration algorithm performance

    NASA Astrophysics Data System (ADS)

    Stadnikia, Kelsey; Henderson, Kristofer; Martin, Allan; Riley, Phillip; Koppal, Sanjeev; Enqvist, Andreas

    2018-05-01

    In order to improve the ability to detect, locate, track and identify nuclear/radiological threats, the University of Florida nuclear detection community has teamed up with the 3D vision community to collaborate on a low cost data fusion system. The key is to develop an algorithm to fuse the data from multiple radiological and 3D vision sensors as one system. The system under development at the University of Florida is being assessed with various types of radiological detectors and widely available visual sensors. A series of experiments were devised utilizing two EJ-309 liquid organic scintillation detectors (one primary and one secondary), a Microsoft Kinect for Windows v2 sensor and a Velodyne HDL-32E High Definition LiDAR Sensor which is a highly sensitive vision sensor primarily used to generate data for self-driving cars. Each experiment consisted of 27 static measurements of a source arranged in a cube with three different distances in each dimension. The source used was Cf-252. The calibration algorithm developed is utilized to calibrate the relative 3D-location of the two different types of sensors without need to measure it by hand; thus, preventing operator manipulation and human errors. The algorithm can also account for the facility dependent deviation from ideal data fusion correlation. Use of the vision sensor to determine the location of a sensor would also limit the possible locations and it does not allow for room dependence (facility dependent deviation) to generate a detector pseudo-location to be used for data analysis later. Using manually measured source location data, our algorithm-predicted the offset detector location within an average of 20 cm calibration-difference to its actual location. Calibration-difference is the Euclidean distance from the algorithm predicted detector location to the measured detector location. The Kinect vision sensor data produced an average calibration-difference of 35 cm and the HDL-32E produced an average

  6. Seal system with integral detector

    DOEpatents

    Fiarman, Sidney

    1985-01-01

    There is disclosed a seal system for materials where security is of the essence, such as nuclear materials, which is tamper-indicating, which indicates changes in environmental conditions that evidence attempts to by-pass the seal, which is unique and cost effective, said seal system comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  7. Seal system with integral detector

    DOEpatents

    Fiarman, S.

    1982-08-12

    A seal system is disclosed for materials where security is of the essence, such as nuclear materials. The seal is tamper-indicating, indicates changes in environmental conditions that evidence attempts to bypass the seal, is unique and cost effective. The seal system is comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  8. Identification of Multiple Water-Iodide Species in Concentrated NaI Solutions Based on the Raman Bending Vibration of Water.

    PubMed

    Besemer, Matthieu; Bloemenkamp, Rob; Ariese, Freek; van Manen, Henk-Jan

    2016-02-11

    The influence of aqueous electrolytes on the water bending vibration was studied with Raman spectroscopy. For all salts investigated (NaI, NaBr, NaCl, and NaSCN), we observed a nonlinear intensity increase of the water bending vibration with increasing concentration. Different lasers and a tunable frequency-doubled optical parametric oscillator system were used to achieve excitation wavelengths between 785 and 374 nm. Focusing on NaI solutions, the relative enhancement of the water bending vibration was found to increase strongly with excitation photon energy, in line with a preresonance effect from the iodide-water charge-transfer transition. We used multivariate curve resolution (MCR) to decompose the measured Raman spectra of NaI solutions into three interconverting spectral components assigned to bulk water and water molecules interacting with one (X···H-O-H···O) and two (X···H-O-H···X) iodide ions (X = I(-)). The Raman spectrum of solid sodium iodide dihydrate supports the assignment of the latter. Using the MCR results, relative Raman scattering cross sections of 4.0 ± 0.6 and 14.0 ± 0.1 were calculated for the mono- and di-iodide species, respectively (compared to that of bulk water set to unity). In addition, it was found that at relatively low concentrations each iodide ion affects the Raman spectrum of roughly 22 surrounding water molecules, indicating that the influence of iodide extends beyond the first solvation shell. Our results demonstrate that the Raman bending vibration of water is a sensitive probe, providing new insights into anion solvation in aqueous environments.

  9. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  10. NAIplot: An opensource web tool to visualize neuraminidase inhibitor (NAI) phenotypic susceptibility results using kernel density plots.

    PubMed

    Lytras, Theodore; Kossyvakis, Athanasios; Mentis, Andreas

    2016-02-01

    The results of neuraminidase inhibitor (NAI) enzyme inhibition assays are commonly expressed as 50% inhibitory concentration (IC50) fold-change values and presented graphically in box plots (box-and-whisker plots). An alternative and more informative type of graph is the kernel density plot, which we propose should be the preferred one for this purpose. In this paper we discuss the limitations of box plots and the advantages of the kernel density plot, and we present NAIplot, an opensource web application that allows convenient creation of density plots specifically for visualizing the results of NAI enzyme inhibition assays, as well as for general purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The CENNS-10 liquid argon detector to measure CEvNS at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Tayloe, R.

    2018-04-01

    The COHERENT collaboration is deploying a suite of low-energy detectors in a low-background corridor of the ORNL Spallation Neutron Source (SNS) to measure coherent elastic neutrino-nucleus scattering (CEvNS) on an array of nuclear targets employing different detector technologies. A measurement of CEvNS on different nuclei will test the N2-dependence of the CEvNS cross section and further the physics reach of the COHERENT effort. The first step of this program has been realized recently with the observation of CEvNS in a 14.6 kg CsI detector. Operation and deployment of Ge and NaI detectors are also underway. A 22 kg, single-phase, liquid argon detector (CENNS-10) started data-taking in Dec. 2016 and will provide results on CEvNS from a lighter nucleus. Initial results indicate that light output, pulse-shape discrimination, and background suppression are sufficient for a measurement of CEvNS on argon.

  12. Detector Control System for the AFP detector in ATLAS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Banaś, E.; Caforio, D.; Czekierda, S.; Hajduk, Z.; Olszowska, J.; Seabra, L.; Šícho, P.

    2017-10-01

    The ATLAS Forward Proton (AFP) detector consists of two forward detectors located at 205 m and 217 m on either side of the ATLAS experiment. The aim is to measure the momenta and angles of diffractively scattered protons. In 2016, two detector stations on one side of the ATLAS interaction point were installed and commissioned. The detector infrastructure and necessary services were installed and are supervised by the Detector Control System (DCS), which is responsible for the coherent and safe operation of the detector. A large variety of used equipment represents a considerable challenge for the AFP DCS design. Industrial Supervisory Control and Data Acquisition (SCADA) product Siemens WinCCOA, together with the CERN Joint Control Project (JCOP) framework and standard industrial and custom developed server applications and protocols are used for reading, processing, monitoring and archiving of the detector parameters. Graphical user interfaces allow for overall detector operation and visualization of the detector status. Parameters, important for the detector safety, are used for alert generation and interlock mechanisms.

  13. A Rapid Turnaround Cryogenic Detector Characterization System

    NASA Technical Reports Server (NTRS)

    Benford, Dominic j.; Dipirro, Michael J.; Forgione, Joshua B.; Jackson, Clifton E.; Jackson, Michael L.; Kogut, Al; Moseley, S. Harvey; Shirron, Peter J.

    2004-01-01

    Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.

  14. Observations of a weak gamma ray burst, A0535 plus 26, NP0532 and solar flare events by a balloon-borne detector array

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Fishman, G. J.; Meegan, C. A.

    1982-01-01

    Observations of a cosmic gamma ray burst of about 10 to the -6 erg/sq cm, pulsed emission profiles of A0535 plus 26 and NP0532, and two solar flare events are reported for several energy intervals in 45-500 keV. The measurements were made with a NaI (Tl) detector array flown on a balloon to 4 g/sq cm residual atmosphere from Palestine, Texas Oct. 6-8, 1980 for 28 hours. The detector is a prototype of the Burst and Transient Source Experiment to be flown on the Gamma Ray Observatory.

  15. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.

    2016-03-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x

  16. VizieR Online Data Catalog: GRB prompt emission fitted with the DREAM model (Ahlgren+, 2015)

    NASA Astrophysics Data System (ADS)

    Ahlgren, B.; Larsson, J.; Nymark, T.; Ryde, F.; Pe'Er, A.

    2018-01-01

    We illustrate the application of the DREAM model by fitting it to two different, bright Fermi GRBs; GRB 090618 and GRB 100724B. While GRB 090618 is well fitted by a Band function, GRB 100724B was the first example of a burst with a significant additional BB component (Guiriec et al. 2011ApJ...727L..33G). GRB 090618 is analysed using Gamma-ray Burst Monitor (GBM) data (Meegan et al. 2009ApJ...702..791M) from the NaI and BGO detectors. For GRB 100724B, we used GBM data from the NaI and BGO detectors as well as Large Area Telescope Low Energy (LAT-LLE) data. For both bursts we selected NaI detectors seeing the GRB at an off-axis angle lower than 60° and the BGO detector as being the best aligned of the two BGO detectors. The spectra were fitted in the energy ranges 8-1000 keV (NaI), 200-40000 keV (BGO) and 30-1000 MeV (LAT-LLE). (2 data files).

  17. Predictive modeling of infrared detectors and material systems

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin

    Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming. In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.

  18. High precision detector robot arm system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Deming; Chu, Yong

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  19. Cascaded systems analysis of photon counting detectors.

    PubMed

    Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H

    2014-10-01

    Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of

  20. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  1. Development of a flexible γ-ray detector using a liquid scintillation light guide (LSLG).

    PubMed

    Nomura, Kiyoshi; Yunoki, Akira; Hara, Masayuki; Morito, Yuko; Fujishima, Akira

    2018-04-10

    A flexible γ detector using a liquid scintillation light guide (LSLG) was developed. The analyzed pulse height (PHA) spectrum depended on the diameter, length and scintillator concentration of the LSLG, and the distance of a γ ray irradiation point from the head of photomultiplier tube (PMT). From the analysis of PHA spectrum, it was found that the count ratio of two divided channel regions linearly decreases as the distance from the PMT head increases. It was further found that the radiation dose rate can be estimated by setting the flexible LSLG tube to a circular shape since the count rate is proportional to the dose rate measured by a conventional NaI (Tl) scintillation detector. Therefore, a flexible and long LSLG detector using a single PMT is useful for determination of the dose rate and has a potential to detect local contaminations in a certain narrow space. Copyright © 2018. Published by Elsevier Ltd.

  2. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Detectors for electric fire detection system. 108.407... DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire detection system. (a) Each detector in an electric fire detection system must be located where— (1) No...

  3. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  4. Cascaded systems analysis of photon counting detectors

    PubMed Central

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Lundqvist, M.; Fredenberg, E.; Carrino, J. A.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at

  5. Seismic intrusion detector system

    DOEpatents

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  6. Camera System MTF: combining optic with detector

    NASA Astrophysics Data System (ADS)

    Andersen, Torben B.; Granger, Zachary A.

    2017-08-01

    MTF is one of the most common metrics used to quantify the resolving power of an optical component. Extensive literature is dedicated to describing methods to calculate the Modulation Transfer Function (MTF) for stand-alone optical components such as a camera lens or telescope, and some literature addresses approaches to determine an MTF for combination of an optic with a detector. The formulations pertaining to a combined electro-optical system MTF are mostly based on theory, and assumptions that detector MTF is described only by the pixel pitch which does not account for wavelength dependencies. When working with real hardware, detectors are often characterized by testing MTF at discrete wavelengths. This paper presents a method to simplify the calculation of a polychromatic system MTF when it is permissible to consider the detector MTF to be independent of wavelength.

  7. Calibration with MCNP of NaI detector for the determination of natural radioactivity levels in the field.

    PubMed

    Cinelli, Giorgia; Tositti, Laura; Mostacci, Domiziano; Baré, Jonathan

    2016-05-01

    In view of assessing natural radioactivity with on-site quantitative gamma spectrometry, efficiency calibration of NaI(Tl) detectors is investigated. A calibration based on Monte Carlo simulation of detector response is proposed, to render reliable quantitative analysis practicable in field campaigns. The method is developed with reference to contact geometry, in which measurements are taken placing the NaI(Tl) probe directly against the solid source to be analyzed. The Monte Carlo code used for the simulations was MCNP. Experimental verification of the calibration goodness is obtained by comparison with appropriate standards, as reported. On-site measurements yield a quick quantitative assessment of natural radioactivity levels present ((40)K, (238)U and (232)Th). On-site gamma spectrometry can prove particularly useful insofar as it provides information on materials from which samples cannot be taken. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. RADIATION DETECTOR SYSTEM

    DOEpatents

    Gundlach, J.C.; Kelley, G.G.

    1958-02-25

    This patent relates to radiation detection devices and presents a unique detection system especialiy desirable for portable type instruments using a Geiger-Mueller for a high voltage battery, thereby reducing the size and weight of the instrument, by arranging a one-shot multivibrator to recharge a capacitance applying operating potential to tho Geiger-Mueller tube each time a nuclear particle is detected. When detection occurs, the multivibrator further delivers a pulse to an appropriate indicator doing away with the necessity for the pulse amplifier conventionally intermediate between the detector and indicator in pulse detection systems.

  9. Method and system for calibrating acquired spectra for use in spectral analysis

    DOEpatents

    Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.

    2010-09-14

    A method for calibrating acquired spectra for use in spectral analysis includes performing Gaussian peak fitting to spectra acquired by a plurality of NaI detectors to define peak regions. A Na and annihilation doublet may be located among the peak regions. A predetermined energy level may be applied to one of the peaks in the doublet and a location of a hydrogen peak may be predicted based on the location of at least one of the peaks of the doublet. Control systems for calibrating spectra are also disclosed.

  10. Research on application of several tracking detectors in APT system

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    APT system is the key technology in free space optical communication system, and acquisition and tracking detector is the key component in PAT system. There are several candidate detectors that can be used in PAT system, such as CCD, QAPD and CMOS Imager etc. The characteristics of these detectors are quite different, i.e., the structures and the working schemes. This paper gives thoroughly compare of the usage and working principle of CCD and CMOS imager, and discusses the key parameters like tracking error, noise analyses, power analyses etc. Conclusion is given at the end of this paper that CMOS imager is a good candidate detector for PAT system in free space optical communication system.

  11. Next generation molten NaI batteries for grid scale energy storage

    NASA Astrophysics Data System (ADS)

    Small, Leo J.; Eccleston, Alexis; Lamb, Joshua; Read, Andrew C.; Robins, Matthew; Meaders, Thomas; Ingersoll, David; Clem, Paul G.; Bhavaraju, Sai; Spoerke, Erik D.

    2017-08-01

    Robust, safe, and reliable grid-scale energy storage continues to be a priority for improved energy surety, expanded integration of renewable energy, and greater system agility required to meet modern dynamic and evolving electrical energy demands. We describe here a new sodium-based battery based on a molten sodium anode, a sodium iodide/aluminum chloride (NaI/AlCl3) cathode, and a high conductivity NaSICON (Na1+xZr2SixP3-xO12) ceramic separator. This NaI battery operates at intermediate temperatures (120-180 °C) and boasts an energy density of >150 Wh kg-1. The energy-dense NaI-AlCl3 ionic liquid catholyte avoids lifetime-limiting plating and intercalation reactions, and the use of earth-abundant elements minimizes materials costs and eliminates economic uncertainties associated with lithium metal. Moreover, the inherent safety of this system under internal mechanical failure is characterized by negligible heat or gas production and benign reaction products (Al, NaCl). Scalability in design is exemplified through evolution from 0.85 to 10 Ah (28 Wh) form factors, displaying lifetime average Coulombic efficiencies of 99.45% and energy efficiencies of 81.96% over dynamic testing lasting >3000 h. This demonstration promises a safe, cost-effective, and long-lifetime technology as an attractive candidate for grid scale storage.

  12. 14 CFR 25.1733 - Fire detector systems, general: EWIS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire detector systems, general: EWIS. 25.1733 Section 25.1733 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Systems (EWIS) § 25.1733 Fire detector systems, general: EWIS. EWIS associated with any installed fire...

  13. 14 CFR 25.1733 - Fire detector systems, general: EWIS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire detector systems, general: EWIS. 25.1733 Section 25.1733 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Systems (EWIS) § 25.1733 Fire detector systems, general: EWIS. EWIS associated with any installed fire...

  14. 14 CFR 25.1733 - Fire detector systems, general: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire detector systems, general: EWIS. 25.1733 Section 25.1733 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Systems (EWIS) § 25.1733 Fire detector systems, general: EWIS. EWIS associated with any installed fire...

  15. 14 CFR 25.1733 - Fire detector systems, general: EWIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire detector systems, general: EWIS. 25.1733 Section 25.1733 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Systems (EWIS) § 25.1733 Fire detector systems, general: EWIS. EWIS associated with any installed fire...

  16. 14 CFR 25.1733 - Fire detector systems, general: EWIS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire detector systems, general: EWIS. 25.1733 Section 25.1733 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Systems (EWIS) § 25.1733 Fire detector systems, general: EWIS. EWIS associated with any installed fire...

  17. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  18. Electrochemical sensor/detector system and method

    DOEpatents

    Glass, Robert S.; Perone, Sam P.; Ciarlo, Dino R.; Kimmons, James F.

    1992-01-01

    An electrochemical detection system is described comprising in combination: (a) a multielement, microelectrode array detector containing means for acquiring a plurality of signals; (b) electronic means for receiving said signals and converting said signals into a readout or display providing information with respect to the nature and concentration of elements present in a solution being tested. Also described is the means of making the above described microelectrode detector.

  19. Electrochemical sensor/detector system and method

    DOEpatents

    Glass, Robert S.; Perone, Sam P.; Ciarlo, Dino R.; Kimmons, James F.

    1994-01-01

    An electrochemical detection system is described comprising in combination: (a) a multielement, microelectrode array detector containing means for acquiring a plurality of signals; (b) electronic means for receiving said signals and converting said signals into a readout or display providing information with respect to the nature and concentration of elements present in a solution being tested. Also described is the means of making the above described microelectrode detector.

  20. MCNP Simulation Benchmarks for a Portable Inspection System for Narcotics, Explosives, and Nuclear Material Detection

    NASA Astrophysics Data System (ADS)

    Alfonso, Krystal; Elsalim, Mashal; King, Michael; Strellis, Dan; Gozani, Tsahi

    2013-04-01

    MCNPX simulations have been used to guide the development of a portable inspection system for narcotics, explosives, and special nuclear material (SNM) detection. The system seeks to address these threats to national security by utilizing a high-yield, compact neutron source to actively interrogate the threats and produce characteristic signatures that can then be detected by radiation detectors. The portability of the system enables rapid deployment and proximity to threats concealed in small spaces. Both dD and dT electronic neutron generators (ENG) were used to interrogate ammonium nitrate fuel oil (ANFO) and cocaine hydrochloride, and the detector response of NaI, CsI, and LaBr3 were compared. The effect of tungsten shielding on the neutron flux in the gamma ray detectors was investigated, while carbon, beryllium, and polyethylene ENG moderator materials were optimized by determining the reaction rate density in the threats. In order to benchmark the modeling results, experimental measurements are compared with MCNPX simulations. In addition, the efficiency and die-away time of a portable differential die-away analysis (DDAA) detector using 3He proportional counters for SNM detection has been determined.

  1. 14 CFR 25.1731 - Powerplant and APU fire detector system: EWIS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Powerplant and APU fire detector system... Systems (EWIS) § 25.1731 Powerplant and APU fire detector system: EWIS. (a) EWIS that are part of each fire or overheat detector system in a fire zone must be fire-resistant. (b) No EWIS component of any...

  2. 14 CFR 25.1731 - Powerplant and APU fire detector system: EWIS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Powerplant and APU fire detector system... Systems (EWIS) § 25.1731 Powerplant and APU fire detector system: EWIS. (a) EWIS that are part of each fire or overheat detector system in a fire zone must be fire-resistant. (b) No EWIS component of any...

  3. 14 CFR 25.1731 - Powerplant and APU fire detector system: EWIS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Powerplant and APU fire detector system... Systems (EWIS) § 25.1731 Powerplant and APU fire detector system: EWIS. (a) EWIS that are part of each fire or overheat detector system in a fire zone must be fire-resistant. (b) No EWIS component of any...

  4. 14 CFR 25.1731 - Powerplant and APU fire detector system: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Powerplant and APU fire detector system... Systems (EWIS) § 25.1731 Powerplant and APU fire detector system: EWIS. (a) EWIS that are part of each fire or overheat detector system in a fire zone must be fire-resistant. (b) No EWIS component of any...

  5. 14 CFR 25.1731 - Powerplant and APU fire detector system: EWIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Powerplant and APU fire detector system... Systems (EWIS) § 25.1731 Powerplant and APU fire detector system: EWIS. (a) EWIS that are part of each fire or overheat detector system in a fire zone must be fire-resistant. (b) No EWIS component of any...

  6. Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS

    NASA Technical Reports Server (NTRS)

    Burton, William D., Jr.; Schultz, J. Albert; Vaughn, Valentine; McCully, Michael; Ulrich, Steven; Egan, Thomas F.

    2006-01-01

    A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal.

  7. Asymmetric Data Acquisition System for an Endoscopic PET-US Detector

    NASA Astrophysics Data System (ADS)

    Zorraquino, Carlos; Bugalho, Ricardo; Rolo, Manuel; Silva, Jose C.; Vecklans, Viesturs; Silva, Rui; Ortigão, Catarina; Neves, Jorge A.; Tavernier, Stefaan; Guerra, Pedro; Santos, Andres; Varela, João

    2016-02-01

    According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from time-of- flight (TOF) positron emission tomography (PET) with anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance data acquisition system (DAQ) able to control and readout data from different detectors. The system is composed of two novel detectors: a PET head extension for a commercial US endoscope placed internally close to the region-of-interest (ROI) and a PET plate placed over the patient's abdomen in coincidence with the PET head. These two detectors will send asymmetric data streams that need to be handled by the DAQ system. The approach chosen to cope with these needs goes through the implementation of a DAQ capable of performing multi-level triggering and which is distributed across two different on-detector electronics and the off-detector electronics placed inside the reconstruction workstation. This manuscript provides an overview on the design of this innovative DAQ system and, based on results obtained by means of final prototypes of the two detectors and DAQ, we conclude that a distributed multi-level triggering DAQ system is suitable for endoscopic PET detectors and it shows potential for its application in different scenarios with asymmetric sources of data.

  8. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  9. The Zero-Degree Detector System for Fragmentation Studies

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Howell, L. W.; Kuznetsov, E.

    2006-01-01

    The measurement of nuclear fragmentation cross sections requires the detection and identification of individual projectile fragments. If light and heavy fragments are recorded in 'ne same detector, it may be impossible distinguish the signal from the light fragment. To overcome this problem, we have developed the Zero-Degree Detector System. The ZDDS enables the measurement of cross sections for light fragment production by using pixelated detectors to separately measure the signals of each fragment. The system has been used to measure the fragmentation of beams as heavy as Fe at the NASA Space Radiation Laboratory at Brookhaven National Laboratory and the Heavy Ion Medical Accelerator in Chiba, Japan.

  10. Device for calibrating a radiation detector system

    DOEpatents

    Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.

    1994-01-01

    A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.

  11. Wafer-scale pixelated detector system

    DOEpatents

    Fahim, Farah; Deptuch, Grzegorz; Zimmerman, Tom

    2017-10-17

    A large area, gapless, detection system comprises at least one sensor; an interposer operably connected to the at least one sensor; and at least one application specific integrated circuit operably connected to the sensor via the interposer wherein the detection system provides high dynamic range while maintaining small pixel area and low power dissipation. Thereby the invention provides methods and systems for a wafer-scale gapless and seamless detector systems with small pixels, which have both high dynamic range and low power dissipation.

  12. A Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System

    PubMed Central

    Yoo, Seong-eun

    2013-01-01

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy. PMID:23344388

  13. A wireless sensor network-based portable vehicle detector evaluation system.

    PubMed

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  14. Characterization of Two Ton NaI Scintillator

    NASA Astrophysics Data System (ADS)

    Maier, Alleta; Coherent Collaboration

    2017-09-01

    The COHERENT collaboration is dedicated to measuring Coherent Elastic Neutrino-Nucleus Scattering (CE νNS), an interaction predicted by the standard model that ultimately serves as a background floor for dark matter detection. In the pursuit of observing the N2 scaling predicted, COHERENT is deploying two tons of NaI[Tl] detector to observe CE νNS recoils of sodium nuclei. Before the two tons of this NaI[Tl] scintillator are deployed, however, all crystals and PMTs must be characterized to understand the individual properties vital to precision in the measurement of CE νNS. This detector is also expected to allow COHERENT to observe charged current and CE νNS interactions with 127I. A standard operating procedure is developed to characterize each detector based on seven properties relevant to precision in the measurement of CE νNS: energy scale, energy resolution, low-energy light yield non-linearity, decay time energy dependence, position variance, time variance, and background levels. Crystals will be tested and characterized for these properties in the context of a ton-scale NaI[Tl] detector. Preliminary development of the SOP has allowed for greater understanding of optimization methods needed for characterization for the ton scale detector. TUNL, NSF, Duke University.

  15. The Slow Control System of the Auger Fluorescence Detectors

    NASA Astrophysics Data System (ADS)

    Barenthien, N.; Bethge, C.; Daumiller, K.; Gemmeke, H.; Kampert, K.-H.; Wiebusch, C.

    2003-07-01

    The fluorescence detector (FD) of the Pierre Auger experiment [1] comprises 24 telescopes that will be situated in 4 remote buildings in the Pampa Amarilla. It is planned to run the fluorescence detectors in absence of operators on site. Therefore, the main task of the Slow Control System (SCS) is to ensure a secure remote operation of the FD system. The Slow Control System works autonomously and continuously monitors those parameters which may disturb a secure operation. Commands from the data-acquisition system or the remote operator are accepted only if they do not violate safety rules that depend on the actual experimental conditions (e.g. high-voltage, wind-sp eed, light, etc.). In case of malfunctions (power failure, communication breakdown, ...) the SCS performs an orderly shutdown and subsequent startup of the fluorescence detector system. The concept and the implementation of the Slow Control System are presented.

  16. Device for calibrating a radiation detector system

    DOEpatents

    McFee, M.C.; Kirkham, T.J.; Johnson, T.H.

    1994-12-27

    A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.

  17. Throughput of Coded Optical CDMA Systems with AND Detectors

    NASA Astrophysics Data System (ADS)

    Memon, Kehkashan A.; Umrani, Fahim A.; Umrani, A. W.; Umrani, Naveed A.

    2012-09-01

    Conventional detection techniques used in optical code-division multiple access (OCDMA) systems are not optimal and result in poor bit error rate performance. This paper analyzes the coded performance of optical CDMA systems with AND detectors for enhanced throughput efficiencies and improved error rate performance. The results show that the use of AND detectors significantly improve the performance of an optical channel.

  18. Design Study of the Absorber Detector of a Compton Camera for On-Line Control in Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Richard, M.-H.; Dahoumane, M.; Dauvergne, D.; De Rydt, M.; Dedes, G.; Freud, N.; Krimmer, J.; Letang, J. M.; Lojacono, X.; Maxim, V.; Montarou, G.; Ray, C.; Roellinghoff, F.; Testa, E.; Walenta, A. H.

    2012-10-01

    The goal of this study is to tune the design of the absorber detector of a Compton camera for prompt γ-ray imaging during ion beam therapy. The response of the Compton camera to a photon point source with a realistic energy spectrum (corresponding to the prompt γ-ray spectrum emitted during the carbon irradiation of a water phantom) is studied by means of Geant4 simulations. Our Compton camera consists of a stack of 2 mm thick silicon strip detectors as a scatter detector and of a scintillator plate as an absorber detector. Four scintillators are considered: LYSO, NaI, LaBr3 and BGO. LYSO and BGO appear as the most suitable materials, due to their high photo-electric cross-sections, which leads to a high percentage of fully absorbed photons. Depth-of-interaction measurements are shown to have limited influence on the spatial resolution of the camera. In our case, the thickness which gives the best compromise between a high percentage of photons that are fully absorbed and a low parallax error is about 4 cm for the LYSO detector and 4.5 cm for the BGO detector. The influence of the width of the absorber detector on the spatial resolution is not very pronounced as long as it is lower than 30 cm.

  19. High-speed microstrip multi-anode multichannel plate detector system

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Tulej, Marek; Rohner, Urs; Wurz, Peter

    2017-04-01

    High-speed detector systems with high dynamic range and pulse width characteristics in the sub-nanosecond regime are mandatory for high resolution and highly sensitive time-of-flight mass spectrometers. Typically, for a reasonable detector area, an impedance-matched anode design is necessary to transmit the registered signal fast and distortion-free from the anode to the signal acquisition system. In this report, a high-speed microstrip multi-anode multichannel plate detector is presented and discussed. The anode consists of four separate active concentric anode segments allowing a simultaneous readout of signal with a dynamic range of about eight orders of magnitude. The impedance matched anode segments show pulse width of about 250 ps, measured at full width at half maximum, and rise time of ˜170 ps, measured with an oscilloscope with a sampling rate of 20 GS/s and 4 GHz analogue bandwidth. The usage of multichannel plates as signal amplifier allowed the design of a lightweight, low power consuming, and compact detector system, suitable, e.g., for the integration into space instrumentation or portable systems where size, weight, and power consumption are limited parameters.

  20. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Detectors for electric fire detection system. 108.407 Section 108.407 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire...

  1. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Detectors for electric fire detection system. 108.407 Section 108.407 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire...

  2. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Detectors for electric fire detection system. 108.407 Section 108.407 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire...

  3. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Detectors for electric fire detection system. 108.407 Section 108.407 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire...

  4. The development and test of multi-anode microchannel array detector systems. Part 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1986-01-01

    Detector systems based on the high gain microchannel plate (MCP) electron multiplier were used extensively for imaging at soft X-ray wavelengths both on the ground and in space. The latest pulse counting electronic readout systems provide zero readout noise, spatial resolutions (FWHM) of 25 microns or better and can determine the arrival times of detected photons to an accuracy of the order of 100 ns. These systems can be developed to produce detectors with active areas of 100 nm in diameter or greater. The use of CsI photocathodes produces very high detective quantum efficiencies at wavelengths between about 100 and 1A (approximately 0.1 to 10 keV) with moderate energy resolution. The operating characteristics of the different types of soft X-ray MCP detector systems are described and the prospects for future developments are discussed.

  5. The development and test of ultra-large-format multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The specific tasks that were accomplished with each of the key elements of the multi-anode microchannel array detector system are described. The modes of operation of position-sensitive electronic readout systems for use with high-gain microchannel plates are described and their performance characteristics compared and contrasted. Multi-anode microchannel array detector systems with formats as large as 256 x 1024 pixels are currently under evaluation. Preliminary performance data for sealed ultraviolet and visible-light detector tubes show that the detector systems have unique characteristics which make them complementary to photoconductive array detectors, such as CCDs, and superior to alternative pulse-counting detector systems employing high-gain MCPs.

  6. A pixel detector system for laser-accelerated ion detection

    NASA Astrophysics Data System (ADS)

    Reinhardt, S.; Draxinger, W.; Schreiber, J.; Assmann, W.

    2013-03-01

    Laser ion acceleration is an unique acceleration process that creates ultra-short ion pulses of high intensity ( > 107 ions/cm2/ns), which makes online detection an ambitious task. Non-electronic detectors such as radio-chromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39) are broadly used at present. Only offline information on ion pulse intensity and position are available by these detectors, as minutes to hours of processing time are required after their exposure. With increasing pulse repetition rate of the laser system, there is a growing need for detection of laser accelerated ions in real-time. Therefore, we have investigated a commercial pixel detector system for online detection of laser-accelerated proton pulses. The CMOS imager RadEye1 was chosen, which is based on a photodiode array, 512 × 1024 pixels with 48 μm pixel pitch, thus offering a large sensitive area of approximately 25 × 50 mm2. First detection tests were accomplished at the conventional electrostatic 14 MV Tandem accelerator in Munich as well as Atlas laser accelerator. Detector response measurements at the conventional accelerator have been accomplished in a proton beam in dc (15 MeV) and pulsed (20 MeV) irradiation mode, the latter providing comparable particle flux as under laser acceleration conditions. Radiation hardness of the device was studied using protons (20 MeV) and C-ions (77 MeV), additionally. The detector system shows a linear response up to a maximum pulse flux of about 107 protons/cm2/ns. Single particle detection is possible in a low flux beam (104 protons/cm2/s) for all investigated energies. The radiation hardness has shown to give reasonable lifetime for an application at the laser accelerator. The results from the irradiation at a conventional accelerator are confirmed by a cross-calibration with CR39 in a laser-accelerated proton beam at the MPQ Atlas Laser in Garching, showing no problems of detector operation in presence of electro

  7. The Daya Bay antineutrino detector filling system and liquid mass measurement

    NASA Astrophysics Data System (ADS)

    Band, H. R.; Cherwinka, J. J.; Draeger, E.; Heeger, K. M.; Hinrichs, P.; Lewis, C. A.; Mattison, H.; McFarlane, M. C.; Webber, D. M.; Wenman, D.; Wang, W.; Wise, T.; Xiao, Q.

    2013-09-01

    The Daya Bay Reactor Neutrino Experiment has measured the neutrino mixing angle θ13 to world-leading precision. The experiment uses eight antineutrino detectors filled with 20-tons of gadolinium-doped liquid scintillator to detect antineutrinos emitted from the Daya Bay nuclear power plant through the inverse beta decay reaction. The precision measurement of sin22θ13 relies on the relative antineutrino interaction rates between detectors at near (400 m) and far (roughly 1.8 km) distances from the nuclear reactors. The measured interaction rate in each detector is directly proportional to the number of protons in the liquid scintillator target. A precision detector filling system was developed to simultaneously fill the three liquid zones of the antineutrino detectors and measure the relative target mass between detectors to < 0.02%. This paper describes the design, operation, and performance of the system and the resulting precision measurement of the detectors' target liquid masses.

  8. TRIPLICATE SODIUM IODIDE GAMMA RAY MONITORS FOR THE SMALL COLUMN ION EXCHANGE PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.

    2011-09-20

    This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ({sup 137}Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241({sup 241}Am). Two energy regions of the detector outputmore » will be monitored using single-channel analyzers (SCAs), the {sup 137}Cs full-energy {gamma}-ray peak and the {sup 241}Am alpha peak. The count rate in the gamma peak region will be proportional to the {sup 137}Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical {sup 137}Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing {sup 137}Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production

  9. Test results of a new detector system for gamma ray isotopic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcom, J.E.; Bonner, C.A.; Hurd, J.R.

    1993-08-01

    A new type of gamma-ray detector system for isotopic measurements has been developed. This new system, a ``Duo detector`` array, consists of two intrinsic germanium detectors, a planar followed by a coaxial mounted on the same axis within a single cryostat assembly. This configuration allows the isotopic analysis system to take advantage of spectral data results that are collected simultaneously from different gamma-ray energy regimes. Princeton Gamma Tech (PGT) produced several prototypes of this Duo detector array which were then tested by Rocky Flats personnel until the design was optimized. An application for this detector design is in automated, roboticizedmore » NDA systems such as those being developed at the Los Alamos TA-55 Plutonium Facility. The Duo detector design reduces the space necessary for the isotopic instrument by a factor of two (only one liquid nitrogen dewar is needed), and also reduces the complexity of the mechanical systems and controlling software. Data will be presented on measurements of nuclear material with a Duo detector for a wide variety of matrices. Results indicate that the maximum count rate can be increased up to 100,000 counts per second yet maintaining excellent resolution and energy rate product.« less

  10. Characterization and optimization for detector systems of IGRINS

    NASA Astrophysics Data System (ADS)

    Jeong, Ueejeong; Chun, Moo-Young; Oh, Jae Sok; Park, Chan; Yuk, In-Soo; Oh, Heeyoung; Kim, Kang-Min; Ko, Kyeong Yeon; Pavel, Michael D.; Yu, Young Sam; Jaffe, Daniel T.

    2014-07-01

    IGRINS (Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by the Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). This spectrograph has H-band and K-band science cameras and a slit viewing camera, all three of which use Teledyne's λc~2.5μm 2k×2k HgCdTe HAWAII-2RG CMOS detectors. The two spectrograph cameras employ science grade detectors, while the slit viewing camera includes an engineering grade detector. Teledyne's cryogenic SIDECAR ASIC boards and JADE2 USB interface cards were installed to control those detectors. We performed experiments to characterize and optimize the detector systems in the IGRINS cryostat. We present measurements and optimization of noise, dark current, and referencelevel stability obtained under dark conditions. We also discuss well depth, linearity and conversion gain measurements obtained using an external light source.

  11. Low gamma counting for measuring NORM/TENORM with a radon reducing system

    NASA Astrophysics Data System (ADS)

    Paschoa, Anselmo S.

    2001-06-01

    A detection system for counting low levels of gamma radiation was built by upgrading an existing rectangular chamber made of 18 metric tonne of steel fabricated before World War II. The internal walls, the ceiling, and the floor of the chamber are covered with copper sheets. The new detection system consists of a stainless steel hollow cylinder with variable circular apertures in the cylindrical wall and in the base, to allow introduction of a NaI (Tl) crystal, or alternatively, a HPGe detector in its interior. This counting system is mounted inside the larger chamber, which in turn is located in a subsurface air-conditioned room. The access to the subsurface room is made from a larger entrance room through a tunnel plus a glass anteroom to decrease the air-exchange rate. Both sample and detector are housed inside the stainless steel cylinder. This cylinder is filled with hyper pure nitrogen gas, before counting a sample, to prevent radon coming into contact with the detector surface. As a consequence, the contribution of the 214Bi photopeaks to the background gamma spectra is minimized. The reduction of the gamma radiation background near the detector facilitates measurement of naturally occurring radioactive materials (NORM), and/or technologically enhanced NORM (TENORM), which are usually at concentration levels only slightly higher than those typically found in the natural radioactive background.

  12. Development of the RAIDS extreme ultraviolet wedge and strip detector. [Remote Atmospheric and Ionospheric Detector System

    NASA Technical Reports Server (NTRS)

    Kayser, D. C.; Chater, W. T.; Christensen, A. B.; Howey, C. K.; Pranke, J. B.

    1988-01-01

    In the next few years the Remote Atmospheric and Ionospheric Detector System (RAIDS) package will be flown on a Tiros spacecraft. The EUV spectrometer experiment contains a position-sensitive detector based on wedge and strip anode technology. A detector design has been implemented in brazed alumina and kovar to provide a rugged bakeable housing and anode. A stack of three 80:1 microchannel plates is operated at 3500-4100 V. to achieve a gain of about 10 to the 7th. The top MCP is to be coated with MgF for increased quantum efficiency in the range of 50-115 nm. A summary of fabrication techniques and detector performance characteristics is presented.

  13. Data acquisition system for segmented reactor antineutrino detector

    NASA Astrophysics Data System (ADS)

    Hons, Z.; Vlášek, J.

    2017-01-01

    This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.

  14. The design of a Nai(Tl) crystal in a system optimised for high-throughput and emergency measurement of iodine 131 in the human thyroid

    NASA Astrophysics Data System (ADS)

    Vrba, Tomas; Fojtik, Pavel

    2014-11-01

    In the case of an accidental release of 131I, a system for large-scale monitoring of the population for the radionuclide intake is needed. A monitoring system is required to be capable of measuring adult as well as child subjects across a wide range of ages. Such system has been developed by the National Radiation Protection Institute in Prague (NRPI) and the Evinet company (member of the Nuvia Group). This paper describes the optimisation of the NaI(Tl) detector chosen for this system. The design of the crystal was based on Monte Carlo (MC) simulations, and supported by literature. These simulations examined three different crystal shapes and several dimensions. Based on the MC study, two prototype detectors, with crystal diameters 80 and 73 mm, were manufactured and compared with the crystals having dimensions ∅45×40 mm used for thyroid measurement at NRPI and with a standard NaI(Tl) probe (∅76.2×76.2 mm). The detector with a crystal of 80 mm diameter gave the best results and was chosen for further production.

  15. A charged aerosol detector/chemiluminescent nitrogen detector/liquid chromatography/mass spectrometry system for regular and fragment compound analysis in drug discovery.

    PubMed

    Jiang, Yutao; Hascall, Daniel; Li, Delia; Pease, Joseph H

    2015-09-11

    In this paper, we introduce a high throughput LCMS/UV/CAD/CLND system that improves upon previously reported systems by increasing both the quantitation accuracy and the range of compounds amenable to testing, in particular, low molecular weight "fragment" compounds. This system consists of a charged aerosol detector (CAD) and chemiluminescent nitrogen detector (CLND) added to a LCMS/UV system. Our results show that the addition of CAD and CLND to LCMS/UV is more reliable for concentration determination for a wider range of compounds than either detector alone. Our setup also allows for the parallel analysis of each sample by all four detectors and so does not significantly increase run time per sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The electronics and data acquisition system for the DarkSide-50 veto detectors

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2016-12-01

    DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles. It utilizes a liquid argon time projection chamber for the inner main detector, surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors. The system is made of a custom built front end electronics and commercial National Instruments high speed digitizers. The front end electronics, the DAQ, and the trigger system have been used to acquire data in the form of zero-suppressed waveform samples from the 110 PMTs of the LSV and the 80 PMTs of the WCV. The veto DAQ system has proven its performance and reliability. This electronics and DAQ system can be scaled and used as it is for the veto of the next generation DarkSide-20k detector.

  17. Robust MOE Detector for DS-CDMA Systems with Signature Waveform Mismatch

    NASA Astrophysics Data System (ADS)

    Lin, Tsui-Tsai

    In this letter, a decision-directed MOE detector with excellent robustness against signature waveform mismatch is proposed for DS-CDMA systems. Both the theoretic analysis and computer simulation results demonstrate that the proposed detector can provide better SINR performance than that of conventional detectors.

  18. Bolometric detector systems for IR and mm-wave space astronomy

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.

    1996-01-01

    Recent developments in bolometric detector systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric detectors. These technologies lend themselves to the fabrication of the large format arrays required for the Far Infrared and Submillimeter Space Telescope (FIRST). The scientific goals and detector requirements of the COBRAS/SAMBA platform that will use infrared bolometers are reviewed and the baseline detector system is described, including the feed optics, the infrared filters, the cold amplifiers and the warm readout electronics.

  19. Detection efficiency calculation for photons, electrons and positrons in a well detector. Part I: Analytical model

    NASA Astrophysics Data System (ADS)

    Pommé, S.

    2009-06-01

    An analytical model is presented to calculate the total detection efficiency of a well-type radiation detector for photons, electrons and positrons emitted from a radioactive source at an arbitrary position inside the well. The model is well suited to treat a typical set-up with a point source or cylindrical source and vial inside a NaI well detector, with or without lead shield surrounding it. It allows for fast absolute or relative total efficiency calibrations for a wide variety of geometrical configurations and also provides accurate input for the calculation of coincidence summing effects. Depending on its accuracy, it may even be applied in 4π-γ counting, a primary standardisation method for activity. Besides an accurate account of photon interactions, precautions are taken to simulate the special case of 511 keV annihilation quanta and to include realistic approximations for the range of (conversion) electrons and β -- and β +-particles.

  20. Characterization of on-site digital mammography systems: Direct versus indirect conversion detectors

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Yun, Seungman; Kam, Soohwa; Cho, Seungryong; Kim, Ho Kyung

    2015-06-01

    We investigated the performances of two digital mammography systems. The systems use a cesium-iodide (CsI) scintillator and an amorphous selenium ( a-Se) photoconductor for X-ray detection and are installed in the same hospital. As physical metrics, we measured the modulationtransfer function (MTF), the noise-power spectrum (NPS), and the detective quantum efficiency (DQE). In addition, we analyzed the contrast-detail performances of the two systems by using a commercial contrast-detail phantom. The CsI-based indirect conversion detector provided better MTF and DQE performances than the a-Se-based direct conversion detector whereas the former provided a poorer NPS performance than the latter. These results are explained by the fact that the CsI-based detector used an MTF restoration preprocessing algorithm. The a-Se-based detector showed better contrast-detail performance than the CsI-based detector. We believe that the highfrequency noise characteristic of a detector is more responsible for the visibility of small details than its spatial-resolution performance.

  1. FPGA-based GEM detector signal acquisition for SXR spectroscopy system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Zabolotny, W.; Chernyshova, M.; Czarski, T.; Malinowski, K.

    2016-11-01

    The presented work is related to the Gas Electron Multiplier (GEM) detector soft X-ray spectroscopy system for tokamak applications. The used GEM detector has one-dimensional, 128 channel readout structure. The channels are connected to the radiation-hard electronics with configurable analog stage and fast ADCs, supporting speeds of 125 MSPS for each channel. The digitalized data is sent directly to the FPGAs using fast serial links. The preprocessing algorithms are implemented in the FPGAs, with the data buffering made in the on-board 2Gb DDR3 memory chips. After the algorithmic stage, the data is sent to the Intel Xeon-based PC for further postprocessing using PCI-Express link Gen 2. For connection of multiple FPGAs, PCI-Express switch 8-to-1 was designed. The whole system can support up to 2048 analog channels. The scope of the work is an FPGA-based implementation of the recorder of the raw signal from GEM detector. Since the system will work in a very challenging environment (neutron radiation, intense electro-magnetic fields), the registered signals from the GEM detector can be corrupted. In the case of the very intense hot plasma radiation (e.g. laser generated plasma), the registered signals can overlap. Therefore, it is valuable to register the raw signals from the GEM detector with high number of events during soft X-ray radiation. The signal analysis will have the direct impact on the implementation of photon energy computation algorithms. As the result, the system will produce energy spectra and topological distribution of soft X-ray radiation. The advanced software was developed in order to perform complex system startup and monitoring of hardware units. Using the array of two one-dimensional GEM detectors it will be possible to perform tomographic reconstruction of plasma impurities radiation in the SXR region.

  2. Interactive display system having a matrix optical detector

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard

    2007-01-23

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. An image beam is projected across the inlet face laterally and transversely for display on the outlet face. An optical detector including a matrix of detector elements is optically aligned with the inlet face for detecting a corresponding lateral and transverse position of an inbound light spot on the outlet face.

  3. Sub-millimeter wave frequency heterodyne detector system

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2009-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  4. Sub-millimeter wave frequency heterodyne detector system

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2010-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  5. Development of a Bolometer Detector System for the NIST High Accuracy Infrared Spectrophotometer

    PubMed Central

    Zong, Y.; Datla, R. U.

    1998-01-01

    A bolometer detector system was developed for the high accuracy infrared spectrophotometer at the National Institute of Standards and Technology to provide maximum sensitivity, spatial uniformity, and linearity of response covering the entire infrared spectral range. The spatial response variation was measured to be within 0.1 %. The linearity of the detector output was measured over three decades of input power. After applying a simple correction procedure, the detector output was found to deviate less than 0.2 % from linear behavior over this range. The noise equivalent power (NEP) of the bolometer system was 6 × 10−12 W/Hz at the frequency of 80 Hz. The detector output 3 dB roll-off frequency was 200 Hz. The detector output was stable to within ± 0.05 % over a 15 min period. These results demonstrate that the bolometer detector system will serve as an excellent detector for the high accuracy infrared spectrophotometer. PMID:28009364

  6. Critical Configuration and Physics Measurements for Beryllium Reflected Assemblies of U(93.15)O₂ Fuel Rods (1.506-cm Pitch and 7-Tube Clusters)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Margaret A.; Bess, John D.; Briggs, J. Blair

    2015-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil whenmore » it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one NaI

  7. The digital trigger system for the RED-100 detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naumov, P. P., E-mail: ddr727@yandex.ru; Akimov, D. Yu.; Belov, V. A.

    The system for forming a trigger for the liquid xenon detector RED-100 is developed. The trigger can be generated for all types of events that the detector needs for calibration and data acquisition, including the events with a single electron of ionization. In the system, a mechanism of event detection is implemented according to which the timestamp and event type are assigned to each event. The trigger system is required in the systems searching for rare events to select and keep only the necessary information from the ADC array. The specifications and implementation of the trigger unit which provides amore » high efficiency of response even to low-energy events are considered.« less

  8. Python based integration of GEM detector electronics with JET data acquisition system

    NASA Astrophysics Data System (ADS)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dalley, Simon; Hogben, Colin; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek; Shumack, Amy

    2014-11-01

    This paper presents the system integrating the dedicated measurement and control electronic systems for Gas Electron Multiplier (GEM) detectors with the Control and Data Acquisition system (CODAS) in the JET facility in Culham, England. The presented system performs the high level procedures necessary to calibrate the GEM detector and to protect it against possible malfunctions or dangerous changes in operating conditions. The system also allows control of the GEM detectors from CODAS, setting of their parameters, checking their state, starting the plasma measurement and to reading the results. The system has been implemented using the Python language, using the advanced libraries for implementation of network communication protocols, for object based hardware management and for data processing.

  9. Modularized compact positron emission tomography detector for rapid system development

    PubMed Central

    Xi, Daoming; Liu, Xiang; Zeng, Chen; Liu, Wei; Li, Yanzhao; Hua, Yuexuan; Mei, Xiongze; Kim, Heejong; Xiao, Peng; Kao, Chien-Min; Xie, Qingguo

    2016-01-01

    Abstract. We report the development of a modularized compact positron emission tomography (PET) detector that outputs serial streams of digital samples of PET event pulses via an Ethernet interface using the UDP/IP protocol to enable rapid configuration of a PET system by connecting multiple such detectors via a network switch to a computer. Presently, the detector is 76  mm×50  mm×55  mm in extent (excluding I/O connectors) and contains an 18×12 array of 4.2×4.2×20  mm3 one-to-one coupled lutetium-yttrium oxyorthosilicate/silicon photomultiplier pixels. It employs cross-wire and stripline readouts to merge the outputs of the 216 detector pixels to 24 channels. Signals at these channels are sampled using a built-in 24-ch, 4-level field programmable gate arrays-only multivoltage threshold digitizer. In the computer, software programs are implemented to analyze the digital samples to extract event information and to perform energy qualification and coincidence filtering. We have developed two such detectors. We show that all their pixels can be accurately discriminated and measure a crystal-level energy resolution of 14.4% to 19.4% and a detector-level coincidence time resolution of 1.67 ns FWHM. Preliminary imaging results suggests that a PET system based on the detectors can achieve an image resolution of ∼1.6  mm. PMID:28018941

  10. HP-41CX Programs for HgCdTe Detectors and IR Systems.

    DTIC Science & Technology

    1987-10-01

    FIELD GROUP SUB-GROUP IPocket Computer HgCdTe PhotoSensor Programs Detectors Analysis I I l-IP-41 Infrared IR Systems __________ 19 ABSTRACT (Continue... HgCdTe detectors , focal planes, and infrared systems. They have been written to run in a basic HP-41CV or HP-41CX with no card reader or additional ROMs...Programs have been written for the HP-41CX which aid in the analysis of HgCdTe detectors , focal r planes, and infrared systems. They have been installed as a

  11. Method and system for improved resolution of a compensated calorimeter detector

    DOEpatents

    Dawson, John W.

    1991-01-01

    An improved method and system for a depleted uranium calorimeter detector used in high energy physics experiments. In a depleted uranium calorimeter detector, the energy of a particle entering the calorimeter detector is determined and the output response of the calorimeter detector is compensated so that the ratio of the integrated response of the calorimeter detector from a lepton to the integrated response of the calorimeter detector from a hadron of the same energy as the lepton is approximately equal to 1. In the present invention, the energy of a particle entering the calorimeter detector is determined as a function of time and the hadron content of the response of the calorimeter detector is inferred based upon the time structure of the energy pulse measured by the calorimeter detector. The energy measurement can be corrected based on the inference of the hadron content whereby the resolution of the calorimeter can be improved.

  12. An Hybrid liquid nitrogen system to cool a large detector

    NASA Astrophysics Data System (ADS)

    l'Allemand, J. L. Lizon a.

    2017-12-01

    OmegaCAM is a wide field camera housing a mosaic of 32 CCD detectors. For the optimal trade-off between dark current, sensitivity, and cosmetics, these detectors need to be operated at a temperature of about 155 K. The detectors mosaic with a total area of 630 cm2 directly facing the Dewar entrance window, is exposed to a considerable radiation heat load. This can only be achieved with a high-performing cooling system. In addition this system has to be operated at the moving focal plane of a telescope. The paper describes the cooling system, which is build such that it makes the most efficient use of the cooling power of the liquid nitrogen. This is obtained by forcing the nitrogen through a series of well designed and strategically distributed heat exchangers. Results and performance of the system recorded during the laboratory system testing are reported as well. In addition to the cryogenic performance, the document reports also about the overall performance of the instrument including long term vacuum behavior.

  13. System to quantify gamma-ray radial energy deposition in semiconductor detectors

    DOEpatents

    Kammeraad, Judith E.; Blair, Jerome J.

    2001-01-01

    A system for measuring gamma-ray radial energy deposition is provided for use in conjunction with a semiconductor detector. The detector comprises two electrodes and a detector material, and defines a plurality of zones within the detecting material in parallel with the two electrodes. The detector produces a charge signal E(t) when a gamma-ray interacts with the detector. Digitizing means are provided for converting the charge signal E(t) into a digitized signal. A computational means receives the digitized signal and calculates in which of the plurality of zones the gamma-ray deposited energy when interacting with the detector. The computational means produces an output indicating the amount of energy deposited by the gamma-ray in each of the plurality of zones.

  14. Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay.

    PubMed

    Kasar, Sharayu; Kumar, Sumit; Bajpai, R K; Tomar, B S

    2016-01-01

    Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay, proposed as a backfill material in the Indian geological repository, was studied using the out-diffusion method. Radiotracers (22)Na, (137)Cs, (85)Sr and (154)Eu were used; the first three are carrier-free enabling experimental work at sub-micromolar metal ion concentration, and Eu(III) tracer (154)Eu was used at sub millimolar concentration. An out-diffusion methodology, wherein a thin planar source of radioactivity placed between two clay columns diffuses out, was used to obtain the apparent diffusion coefficient (Da) values. This methodology enabled determination of diffusion coefficient even for strongly sorbing (154)Eu. Da values for (22)Na, (137)Cs, (85)Sr and (154)Eu were 2.35 (±0.14) × 10(-11), 2.65 (±0.09) × 10(-12), 3.32 (±0.15) × 10(-11) and 1.23 (±0.15) × 10(-13) m(2) s(-1), respectively. Da values were found to be in fair agreement with literature data reported for similar mineralogical sediments. Sorption of radionuclides on the clay was also determined in the present study and differences in Da values were rationalized on the basis of sorption data. Distribution ratios (Kd) for Cs(I) and Eu(III) were higher than that for Sr(II), which in turn was higher than that for Na(I). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Automated Test Systems for Toxic Vapor Detectors

    NASA Technical Reports Server (NTRS)

    Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.

    1997-01-01

    The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/ temperature / humidity (FTH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the

  16. Automated Test Systems for Toxic Vapor Detectors

    NASA Technical Reports Server (NTRS)

    Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.

    1997-01-01

    The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/temperature/humidity (FIFH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the Kennedy

  17. ARES: automated response function code. Users manual. [HPGAM and LSQVM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maung, T.; Reynolds, G.M.

    This ARES user's manual provides detailed instructions for a general understanding of the Automated Response Function Code and gives step by step instructions for using the complete code package on a HP-1000 system. This code is designed to calculate response functions of NaI gamma-ray detectors, with cylindrical or rectangular geometries.

  18. Data Quality Monitoring System for New GEM Muon Detectors for the CMS Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    King, Robert; CMS Muon Group Team

    2017-01-01

    The Gas Electron Multiplier (GEM) detectors are novel detectors designed to improve the muon trigger and tracking performance in CMS experiment for the high luminosity upgrade of the LHC. Partial installation of GEM detectors is planned during the 2016-2017 technical stop. Before the GEM system is installed underground, its data acquisition (DAQ) electronics must be thoroughly tested. The DAQ system includes several commercial and custom-built electronic boards running custom firmware. The front-end electronics are radiation-hard and communicate via optical fibers. The data quality monitoring (DQM) software framework has been designed to provide online verification of the integrity of the data produced by the detector electronics, and to promptly identify potential hardware or firmware malfunctions in the system. Local hits reconstruction and clustering algorithms allow quality control of the data produced by each GEM chamber. Once the new detectors are installed, the DQM will monitor the stability and performance of the system during normal data-taking operations. We discuss the design of the DQM system, the software being developed to read out and process the detector data, and the methods used to identify and report hardware and firmware malfunctions of the system.

  19. Research on correction algorithm of laser positioning system based on four quadrant detector

    NASA Astrophysics Data System (ADS)

    Gao, Qingsong; Meng, Xiangyong; Qian, Weixian; Cai, Guixia

    2018-02-01

    This paper first introduces the basic principle of the four quadrant detector, and a set of laser positioning experiment system is built based on the four quadrant detector. Four quadrant laser positioning system in the actual application, not only exist interference of background light and detector dark current noise, and the influence of random noise, system stability, spot equivalent error can't be ignored, so it is very important to system calibration and correction. This paper analyzes the various factors of system positioning error, and then propose an algorithm for correcting the system error, the results of simulation and experiment show that the modified algorithm can improve the effect of system error on positioning and improve the positioning accuracy.

  20. The Detector System for the Stratospheric Kinetic Inductance Polarimeter ( Skip)

    NASA Astrophysics Data System (ADS)

    Johnson, B. R.; Ade, P. A. R.; Araujo, D.; Bradford, K. J.; Chapman, D.; Day, P. K.; Didier, J.; Doyle, S.; Eriksen, H. K.; Flanigan, D.; Groppi, C.; Hillbrand, S.; Jones, G.; Limon, M.; Mauskopf, P.; McCarrick, H.; Miller, A.; Mroczkowski, T.; Reichborn-Kjennerud, B.; Smiley, B.; Sobrin, J.; Wehus, I. K.; Zmuidzinas, J.

    2014-09-01

    The stratospheric kinetic inductance polarimeter is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background and Galactic dust emission by observing 1,133 deg of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2,317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors ( Lekids). The Lekids will be maintained at 100 mK with an adiabatic demagnetization refrigerator. The polarimeter operates in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcmin FWHM beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical system will be cooled to 1 K. Linearly polarized sky signals will be modulated with a metal-mesh half-wave plate that is mounted at the telescope aperture and rotated by a superconducting magnetic bearing. The observation program consists of at least two, 5-day flights beginning with the 150 GHz observations.

  1. Improved IR detectors to swap heavy systems for SWaP

    NASA Astrophysics Data System (ADS)

    Manissadjian, Alain; Rubaldo, Laurent; Rebeil, Yann; Kerlain, Alexandre; Brellier, Delphine; Mollard, Laurent

    2012-06-01

    Cooled IR technologies are challenged for answering new system needs like the compactness and the reduction of cryopower which is a key feature for the SWaP (Size, Weight and Power) requirements. Over the last years, SOFRADIR has improved its HgCdTe technology, with effect on dark current reduction, opening the way for High Operating Temperature (HOT) systems that can get rid of the 80K temperature constraint, and therefore releases the Stirling cooler engine power consumption. Performances of the 640×512 15μm pitch LW detector working above 100K will be presented. A compact 640×512 15μm pitch MW detector presenting high EO performance above 130K with cut-off wavelength above 5.0μm has been developed. Its different performances with respect to the market requirements for SWaP will be discussed. High performance compact systems will make no compromise on detector resolution. The pixel pitch reduction is the answer for resolution enhancement with size reduction. We will therefore also discuss the ongoing developments and market needs for SWaP systems.

  2. The ALICE-HMPID Detector Control System: Its evolution towards an expert and adaptive system

    NASA Astrophysics Data System (ADS)

    De Cataldo, G.; Franco, A.; Pastore, C.; Sgura, I.; Volpe, G.

    2011-05-01

    The High Momentum Particle IDentification (HMPID) detector is a proximity focusing Ring Imaging Cherenkov (RICH) for charged hadron identification. The HMPID is based on liquid C 6F 14 as the radiator medium and on a 10 m 2 CsI coated, pad segmented photocathode of MWPCs for UV Cherenkov photon detection. To ensure full remote control, the HMPID is equipped with a detector control system (DCS) responding to industrial standards for robustness and reliability. It has been implemented using PVSS as Slow Control And Data Acquisition (SCADA) environment, Programmable Logic Controller as control devices and Finite State Machines for modular and automatic command execution. In the perspective of reducing human presence at the experiment site, this paper focuses on DCS evolution towards an expert and adaptive control system, providing, respectively, automatic error recovery and stable detector performance. HAL9000, the first prototype of the HMPID expert system, is then presented. Finally an analysis of the possible application of the adaptive features is provided.

  3. A high-speed pnCCD detector system for optical applications

    NASA Astrophysics Data System (ADS)

    Hartmann, R.; Buttler, W.; Gorke, H.; Herrmann, S.; Holl, P.; Meidinger, N.; Soltau, H.; Strüder, L.

    2006-11-01

    Measurements of a frame-store pnCCD detector system, optimized for high-speed applications in the optical and near infrared (NIR) region, will be presented. The device with an image area of 13.5 mm by 13.5 mm and a pixelsize of 51 μm by 51 μm exhibits a readout time faster than 1100 frames per second with an overall electronic noise contribution of less than three electrons. Variable operation modes of the detector system allow for even higher readout speeds by a pixel binning in transfer direction or, at slightly slower readout speeds, a further improvement in noise performance. We will also present the concept of a data acquisition system being able to handle pixel rates of more than 75 megapixel per second. The application of an anti-reflective coating on the ultra-thin entrance window of the back illuminated detector together with the large sensitive volume ensures a high and uniform detection efficiency from the ultra violet to the NIR.

  4. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.

    PubMed

    Khrustalev, K; Popov, V Yu; Popov, Yu S

    2017-08-01

    We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The detector calibration system for the CUORE cryogenic bolometer array

    DOE PAGES

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; ...

    2016-11-14

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO 2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires themore » placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less

  6. The proposed monitoring system for the Fermilab D0 colliding beams detector

    NASA Astrophysics Data System (ADS)

    Goodwin, Robert; Florian, Robert; Johnson, Marvin; Jones, Alan; Shea, Mike

    1986-06-01

    The Fermilab D0 Detector is a collaborative effort that includes seventeen universities and national laboratories. The monitoring and control system for this detector will be separate from the online detector data system. A distributed, stand-alone, microprocessor-based system is being designed to allow monitoring and control functions to be available to the collaborators at their home institutions during the design, fabrication, and testing phases of the project. Individual stations are VMEbus-based 68000 systems that are networked together during installation using an ARCnet (by Datapoint Corporation) Local Area Network. One station, perhaps a MicroVAX, would have a hard disk to store a backup copy of the distributed database located in non-volatile RAM in the local stations. This station would also serve as a gateway to the online system, so that data from the control system will be available for logging with the detector data. Apple Macintosh personal computers are being developed for use as the local control consoles. Each would be interfaced to ARCnet to provide access to all control system data. Through the use of bit-mapped graphics with multiple windows and pull-down menus, a cost effective, flexible display system can be provided, taking advantage of familiar modern software tools to support the operator interface.

  7. Calibration, Monitoring, and Control of Complex Detector Systems

    NASA Astrophysics Data System (ADS)

    Breidenbach, M.

    1981-04-01

    LEP Detectors will probably be complex devices having tens of subsystems; some subsystems having perhaps tens of thousands of channels. Reasonable design goals for such a detector will include economic use of money and people, rapid and reliable calibration and monitoring of the detector, and simple control and operation of the device. The synchronous operation of an e+e- storage ring, coupled with its relatively low interaction rate, allow the design of simple circuits for time and charge measurements. These circuits, and more importantly, the basic detector channels, can usually be tested and calibrated by signal injection into the detector. Present detectors utilize semi-autonomous controllers which collect such calibration data and calculate statistics as well as control sparse data scans. Straightforward improvements in programming technology should move the entire calibration into these local controllers, so that calibration and testing time will be a constant independent of the number of channels in a system. Considerable programming effort may be saved by emphasizing the similarities of the subsystems, so that the subsystems can be described by a reasonable database and general purpose calibration and test routines can be used. Monitoring of the apparatus will probably continue to be of two classes: "passive" histogramming of channel occupancies and other more complex combinations of the data; and "active" injection of test patterns and calibration signals during a run. The relative importance of active monitoring will increase for the low data rates expected off resonances at high s. Experience at SPEAR and PEP is used to illustrate these approaches.

  8. A generic readout system for astrophysical detectors

    NASA Astrophysics Data System (ADS)

    Doumayrou, E.; Lortholary, M.

    2012-09-01

    We have developed a generic digital platform to fulfill the needs for the development of new detectors in astrophysics, which is used in lab, for ground-based telescopes instruments and also in prototype versions for space instruments development. This system is based on hardware FPGA electronic board (called MISE) together with software on a PC computer (called BEAR). The MISE board generates the fast clocking which reads the detectors thanks to a programmable digital sequencer and performs data acquisition, buffering of digitalized pixels outputs and interfaces with others boards. The data are then sent to the PC via a SpaceWire or Usb link. The BEAR software sets the MISE board up, makes data acquisition and enables the visualization, processing and the storage of data in line. These software tools are made of C++ and Labview (NI) on a Linux OS. MISE and BEAR make a generic acquisition architecture, on which dedicated analog boards are plugged, so that to accommodate with detectors specificity: number of pixels, the readout channels and frequency, analog bias and clock interfaces. We have used this concept to build a camera for the P-ARTEMIS project including a 256 pixels sub-millimeter bolometer detector at 10Kpixel/s (SPIE 7741-12 (2010)). For the EUCLID project, a lab camera is now working for the test of CCDs 4Mpixels at 4*200Kpixel/s. Another is working for the testing of new near infrared detectors (NIR LFSA for the ESA TRP program) 110Kpixels at 2*100Kpixels/s. Other projects are in progress for the space missions PLATO and SPICA.

  9. 14 CFR 29.1203 - Fire detector systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... detector systems. (a) For each turbine engine powered rotorcraft and Category A reciprocating engine... fire zones and in the combustor, turbine, and tailpipe sections of turbine installations (whether or... affected by any oil, water, other fluids, or fumes that might be present. (d) There must be means to allow...

  10. 14 CFR 29.1203 - Fire detector systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... detector systems. (a) For each turbine engine powered rotorcraft and Category A reciprocating engine... fire zones and in the combustor, turbine, and tailpipe sections of turbine installations (whether or... affected by any oil, water, other fluids, or fumes that might be present. (d) There must be means to allow...

  11. 14 CFR 29.1203 - Fire detector systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... detector systems. (a) For each turbine engine powered rotorcraft and Category A reciprocating engine... fire zones and in the combustor, turbine, and tailpipe sections of turbine installations (whether or... affected by any oil, water, other fluids, or fumes that might be present. (d) There must be means to allow...

  12. 14 CFR 29.1203 - Fire detector systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... detector systems. (a) For each turbine engine powered rotorcraft and Category A reciprocating engine... fire zones and in the combustor, turbine, and tailpipe sections of turbine installations (whether or... affected by any oil, water, other fluids, or fumes that might be present. (d) There must be means to allow...

  13. 14 CFR 29.1203 - Fire detector systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... detector systems. (a) For each turbine engine powered rotorcraft and Category A reciprocating engine... fire zones and in the combustor, turbine, and tailpipe sections of turbine installations (whether or... affected by any oil, water, other fluids, or fumes that might be present. (d) There must be means to allow...

  14. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  15. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  16. Spillage detector for liquid chromatography systems

    NASA Technical Reports Server (NTRS)

    Jarvis, M. J.; Fulton, D. S. (Inventor)

    1986-01-01

    A spillage detector device for use in conjunction with fractionation of liquid chromatography systems which includes a spillage recieving enclosure beneath the fractionation area is described. A sensing device having a plurality of electrodes of alternating polarity is mounted within the spillage recieving enclosure. Detection circuitry, responsive to conductivity between electrodes, is operatively connected to the sensing device. The detection circuitry feeds into the output circuitry. The output circuit has relaying and switching circuitry directed to a solenoid, an alarm system and a pump. The solenoid is connected to the pliable conduit of the chromatography system. The alarm system comprises an audio alarm and a visual signal. A 115-volt power system interconnected with the pump, the solenoid, the sensing device, and the detection and output circuitry.

  17. Can direct electron detectors outperform phosphor-CCD systems for TEM?

    NASA Astrophysics Data System (ADS)

    Moldovan, G.; Li, X.; Kirkland, A.

    2008-08-01

    A new generation of imaging detectors is being considered for application in TEM, but which device architectures can provide the best images? Monte Carlo simulations of the electron-sensor interaction are used here to calculate the expected modulation transfer of monolithic active pixel sensors (MAPS), hybrid active pixel sensors (HAPS) and double sided Silicon strip detectors (DSSD), showing that ideal and nearly ideal transfer can be obtained using DSSD and MAPS sensors. These results highly recommend the replacement of current phosphor screen and charge coupled device imaging systems with such new directly exposed position sensitive electron detectors.

  18. Focal-plane detector system for the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Amsbaugh, J. F.; Barrett, J.; Beglarian, A.; Bergmann, T.; Bichsel, H.; Bodine, L. I.; Bonn, J.; Boyd, N. M.; Burritt, T. H.; Chaoui, Z.; Chilingaryan, S.; Corona, T. J.; Doe, P. J.; Dunmore, J. A.; Enomoto, S.; Formaggio, J. A.; Fränkle, F. M.; Furse, D.; Gemmeke, H.; Glück, F.; Harms, F.; Harper, G. C.; Hartmann, J.; Howe, M. A.; Kaboth, A.; Kelsey, J.; Knauer, M.; Kopmann, A.; Leber, M. L.; Martin, E. L.; Middleman, K. J.; Myers, A. W.; Oblath, N. S.; Parno, D. S.; Peterson, D. A.; Petzold, L.; Phillips, D. G.; Renschler, P.; Robertson, R. G. H.; Schwarz, J.; Steidl, M.; Tcherniakhovski, D.; Thümmler, T.; Van Wechel, T. D.; VanDevender, B. A.; Vöcking, S.; Wall, B. L.; Wierman, K. L.; Wilkerson, J. F.; Wüstling, S.

    2015-04-01

    The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.

  19. Track analysis of laser-illuminated etched track detectors using an opto-digital imaging system

    NASA Astrophysics Data System (ADS)

    Eghan, Moses J.; Buah-Bassuah, Paul K.; Oppon, Osborne C.

    2007-11-01

    An opto-digital imaging system for counting and analysing tracks on a LR-115 detector is described. One batch of LR-115 track detectors was irradiated with Am-241 for a determined period and distance for linearity test and another batch was exposed to radon gas. The laser-illuminated etched track detector area was imaged, digitized and analysed by the system. The tracks that were counted on the opto-digital system with the aid of media cybernetics software as well as spark gap counter showed comparable track density results ranging between 1500 and 2750 tracks cm-2 and 65 tracks cm-2 in the two different batch detector samples with 0.5% and 1% track counts, respectively. Track sizes of the incident alpha particles from the radon gas on the LR-115 detector demonstrating different track energies are statistically and graphically represented. The opto-digital imaging system counts and measures other track parameters at an average process time of 3-5 s.

  20. Development of a circular shape Si-PM-based detector ring for breast-dedicated PET system

    NASA Astrophysics Data System (ADS)

    Nakanishi, Kouhei; Yamamoto, Seiichi; Watabe, Hiroshi; Abe, Shinji; Fujita, Naotoshi; Kato, Katsuhiko

    2018-02-01

    In clinical situations, various breast-dedicated positron emission tomography (PET) systems have been used. However, clinical breast-dedicated PET systems have polygonal detector ring. Polygonal detector ring sometimes causes image artifact, so complicated reconstruction algorithm is needed to reduce artifact. Consequently, we developed a circular detector ring for breast-dedicated PET to obtain images without artifact using a simple reconstruction algorithm. We used Lu1.9Gd0.1SiO5 (LGSO) scintillator block which was made of 1.5 x 1.9 x 15 mm pixels that were arranged in an 8 x 24 matrix. As photodetectors, we used silicon photomultiplier (Si-PM) arrays whose channel size was 3 x 3 mm. A detector unit was composed of four scintillator blocks, 16 Si-PM arrays and a light guide. The developed detector unit had angled configuration since the light guide was bending. A detector unit had three gaps with an angle of 5.625° between scintillator blocks. With these configurations, we could arrange 64 scintillator blocks in nearly circular shape (regular 64-sided polygon) using 16 detector units. The use of the smaller number of detector units could reduce the size of the front-end electronics circuits. The inner diameter of the developed detector ring was 260 mm. This size was similar to those of brain PET systems, so our breast-dedicated PET detector ring can measure not only breast but also brain. Measured radial, tangential and axial spatial resolution of the detector ring reconstructed by the filtered back-projection (FBP) algorithm were 2.1 mm FWHM, 2.0 mm FWHM and 1.7 mm FWHM at center of field of view (FOV), respectively. The sensitivity was 2.0% at center of the axial FOV. With the developed detector ring, we could obtain high resolution image of the breast phantom and the brain phantom. We conclude that our developed Si-PM-based detector ring is promising for a high resolution breast-dedicated PET system that can also be used for brain PET system.

  1. Preliminary design study of astronomical detector cooling system

    NASA Technical Reports Server (NTRS)

    Norman, R. H.

    1976-01-01

    The preliminary design of an astronomical detector cooling system for possible use in the NASA C-141 Airborne Infrared Observatory is presented. The system consists of the following elements: supercritical helium tank, Joule-Thomson supply gas conditioner, Joule-Thomson expander (JTX), optical cavity dewar, optical cavity temperature controller, adjustable J-T discharge gas pressure controller, and vacuum pump.

  2. The electronics and data acquisition system for the DarkSide-50 veto detectors

    DOE PAGES

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; ...

    2016-12-01

    DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles (WIMPs). It utilizes a liquid argon time projection chamber (LAr TPC) for the inner main detector. The TPC is surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV, both instrumented with PMTs, act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors.

  3. Design, construction, and evaluation of new high resolution medical imaging detector/systems

    NASA Astrophysics Data System (ADS)

    Jain, Amit

    Increasing need of minimally invasive endovascular image guided interventional procedures (EIGI) for accurate and successful treatment of vascular disease has set a quest for better image quality. Current state of the art detectors are not up to the mark for these complex procedures due to their inherent limitations. Our group has been actively working on the design and construction of a high resolution, region of interest CCD-based X-ray imager for some time. As a part of that endeavor, a Micro-angiographic fluoroscope (MAF) was developed to serve as a high resolution, ROI X-ray imaging detector in conjunction with large lower resolution full field of view (FOV) state-of-the-art x-ray detectors. The newly developed MAF is an indirect x-ray imaging detector capable of providing real-time images with high resolution, high sensitivity, no lag and low instrumentation noise. It consists of a CCD camera coupled to a light image intensifier (LII) through a fiber optic taper. The CsI(Tl) phosphor serving as the front end is coupled to the LII. For this work, the MAF was designed and constructed. The linear system cascade theory was used to evaluate the performance theoretically. Linear system metrics such as MTF and DQE were used to gauge the detector performance experimentally. The capabilities of the MAF as a complete system were tested using generalized linear system metrics. With generalized linear system metrics the effects of finite size focal spot, geometric magnification and the presence of scatter are included in the analysis and study. To minimize the effect of scatter, an anti-scatter grid specially designed for the MAF was also studied. The MAF was compared with the flat panel detector using signal-to-noise ratio and the two dimensional linear system metrics. The signal-to-noise comparison was carried out to point out the effect of pixel size and Point Spread Function of the detector. The two dimensional linear system metrics were used to investigate the

  4. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  5. Focal-plane detector system for the KATRIN experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amsbaugh, J. F.; Barrett, J.; Beglarian, A.

    Here, the local plane detector system for the KArlsiuhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high vacuum system, a high vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system, It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.

  6. Focal-plane detector system for the KATRIN experiment

    DOE PAGES

    Amsbaugh, J. F.; Barrett, J.; Beglarian, A.; ...

    2015-01-09

    Here, the local plane detector system for the KArlsiuhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high vacuum system, a high vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system, It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.

  7. Development of multichannel analyzer using sound card ADC for nuclear spectroscopy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Maslina Mohd; Yussup, Nolida; Lombigit, Lojius

    This paper describes the development of Multi-Channel Analyzer (MCA) using sound card analogue to digital converter (ADC) for nuclear spectroscopy system. The system was divided into a hardware module and a software module. Hardware module consist of detector NaI (Tl) 2” by 2”, Pulse Shaping Amplifier (PSA) and a build in ADC chip from readily available in any computers’ sound system. The software module is divided into two parts which are a pre-processing of raw digital input and the development of the MCA software. Band-pass filter and baseline stabilization and correction were implemented for the pre-processing. For the MCA development,more » the pulse height analysis method was used to process the signal before displaying it using histogram technique. The development and tested result for using the sound card as an MCA are discussed.« less

  8. The detector system of the Daya Bay reactor neutrino experiment

    DOE PAGES

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 22θ 13 and the effective mass splitting Δm 2 ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrummore » due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.« less

  9. Trigger and Readout System for the Ashra-1 Detector

    NASA Astrophysics Data System (ADS)

    Aita, Y.; Aoki, T.; Asaoka, Y.; Morimoto, Y.; Motz, H. M.; Sasaki, M.; Abiko, C.; Kanokohata, C.; Ogawa, S.; Shibuya, H.; Takada, T.; Kimura, T.; Learned, J. G.; Matsuno, S.; Kuze, S.; Binder, P. M.; Goldman, J.; Sugiyama, N.; Watanabe, Y.

    Highly sophisticated trigger and readout system has been developed for All-sky Survey High Resolution Air-shower (Ashra) detector. Ashra-1 detector has 42 degree diameter field of view. Detection of Cherenkov and fluorescence light from large background in the large field of view requires finely segmented and high speed trigger and readout system. The system is composed of optical fiber image transmission system, 64 × 64 channel trigger sensor and FPGA based trigger logic processor. The system typically processes the image within 10 to 30 ns and opens the shutter on the fine CMOS sensor. 64 × 64 coarse split image is transferred via 64 × 64 precisely aligned optical fiber bundle to a photon sensor. Current signals from the photon sensor are discriminated by custom made trigger amplifiers. FPGA based processor processes 64 × 64 hit pattern and correspondent partial area of the fine image is acquired. Commissioning earth skimming tau neutrino observational search was carried out with this trigger system. In addition to the geometrical advantage of the Ashra observational site, the excellent tau shower axis measurement based on the fine imaging and the night sky background rejection based on the fine and fast imaging allow zero background tau shower search. Adoption of the optical fiber bundle and trigger LSI realized 4k channel trigger system cheaply. Detectability of tau shower is also confirmed by simultaneously observed Cherenkov air shower. Reduction of the trigger threshold appears to enhance the effective area especially in PeV tau neutrino energy region. New two dimensional trigger LSI was introduced and the trigger threshold was lowered. New calibration system of the trigger system was recently developed and introduced to the Ashra detector

  10. Cryocooled terahertz photoconductive detector system with background-limited performance in 1.5-4 THz frequency range.

    PubMed

    Aoki, Makoto; Hiromoto, Norihisa

    2015-10-01

    We describe a 4-K-cryocooled dual-band terahertz (THz) photoconductive detector system with background-limited performance. The detector system comprises two THz photoconductive detectors covering a response in a wide frequency range from 1.5 to 4 THz, low noise amplifiers, optical low-pass filters to eliminate input radiation of higher frequencies, and a mechanical 4 K Gifford-McMahon refrigerator that provides practical and convenient operation without a liquid He container. The electrical and optical performances of the THz detector system were evaluated at a detector temperature of 4 K under 300 K background radiation. We proved that the detector system can achieve background-limited noise-equivalent-power on the order of 10(-14) W/Hz(1/2) in the frequency range from 1.5 to 4 THz even if the vibration noise of the mechanical refrigerator is present.

  11. A new data acquisition system for the CMS Phase 1 pixel detector

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-12-01

    A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ system, integration tests and gives an outline for the activities up to commissioning the final system at CMS in 2017.

  12. Single Microwave-Photon Detector using an Artificial Lambda-type Three-Level System

    DTIC Science & Technology

    2016-01-11

    Single microwave-photon detector using an artificial Λ-type three- level system Kunihiro Inomata,1∗†, Zhirong Lin,1†, Kazuki Koshino,2, William D...three- level system Kunihiro Inomata,1∗† Zhirong Lin,1† Kazuki Koshino,2 William D. Oliver,3,4 Jaw-Shen Tsai,1 Tsuyoshi Yamamoto,5 Yasunobu Nakamura...single-microwave-photon detector based on the deterministic switching in an artificial Λ-type three- level system implemented using the dressed states of a

  13. Photon counting detector for the personal radiography inspection system "SIBSCAN"

    NASA Astrophysics Data System (ADS)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.

    2017-02-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  14. Infrared Detector System with Controlled Thermal Conductance

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor)

    2000-01-01

    A thermal infrared detector system includes a heat sink, a support member, a connection support member connecting the support member to the heat sink and including a heater unit is reviewed. An infrared detector element is mounted on the support member and a temperature signal representative of the infrared energy contacting the support member can then be derived by comparing the temperature of the support member and the heat sink. The temperature signal from a support member and a temperature signal from the connection support member can then be used to drive a heater unit mounted on the connection support member to thereby control the thermal conductance of the support member. Thus, the thermal conductance can be controlled so that it can be actively increased or decreased as desired.

  15. Active noise canceling system for mechanically cooled germanium radiation detectors

    DOEpatents

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  16. High-throughput SANS experiment on two-detector system of YuMO spectrometer

    NASA Astrophysics Data System (ADS)

    Kuklin, A. I.; Ivankov, A. I.; Soloviov, D. V.; Rogachev, A. V.; Kovalev, Yu S.; Soloviev, A. G.; Islamov, A. Kh; Balasoiu, M.; Vlasov, A. V.; Kutuzov, S. A.; Sirotin, A. P.; Kirilov, A. S.; Skoi, V. V.; Rulev, M. I.; Gordeliy, V. I.

    2018-03-01

    Using a multidetector system on the YuMO spectrometer allows shortening the time of measurements. The quantitative comparison of the measurement time using one and two-detector mode is done. The time range for experiments was from several minutes up to 12 hours. It was shown that two-detector system shortens more than twice the time of the measurement. While making a structural investigation using advanced software the two-detector system allows to treat the data at a qualitatively new level. An example illustrating the features of the channels choice and measurement time on the spectrometer was shown. The results of this paper could be used when planning the experiments on the YuMO spectrometer, for modernization of the installation and for equipment using time-of-flight method.

  17. The laser calibration system of the TOP detector

    NASA Astrophysics Data System (ADS)

    Tamponi, Umberto

    2017-12-01

    The TOP detector of the Belle II Experiment at KEK is a particle identification detector, devoted mainly to the separation of charged pions and kaons. The Cherenkov photons produced in fused silica bars are detected by an array of micro-cannel plate photomultipliers, and the position and time of arrival of the photoelectrons are used to identify the particle. In order to achieve a time resolution of less than 100 ps, the performance of electronics and PMTs must be continuously monitored by a high resolution laser calibration system. Here we report about the design, characterization, construction and installation of this light distribution system consisting of a picosecond laser source, a printed light circuit (PLC), long single mode fibers coupled to bundles of multimode fibers terminated with graded index microlenses, to provide illumination of all the PMT pixels with time jitter less than 50 ps.

  18. Contour Detector and Data Acquisition System for the Left Ventricular Outline

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C. (Inventor)

    1978-01-01

    A real-time contour detector and data acquisition system is described for an angiographic apparatus having a video scanner for converting an X-ray image of a structure characterized by a change in brightness level compared with its surrounding into video format and displaying the X-ray image in recurring video fields. The real-time contour detector and data acqusition system includes track and hold circuits; a reference level analog computer circuit; an analog compartor; a digital processor; a field memory; and a computer interface.

  19. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having

  20. Accurate and efficient modeling of the detector response in small animal multi-head PET systems.

    PubMed

    Cecchetti, Matteo; Moehrs, Sascha; Belcari, Nicola; Del Guerra, Alberto

    2013-10-07

    In fully three-dimensional PET imaging, iterative image reconstruction techniques usually outperform analytical algorithms in terms of image quality provided that an appropriate system model is used. In this study we concentrate on the calculation of an accurate system model for the YAP-(S)PET II small animal scanner, with the aim to obtain fully resolution- and contrast-recovered images at low levels of image roughness. For this purpose we calculate the system model by decomposing it into a product of five matrices: (1) a detector response component obtained via Monte Carlo simulations, (2) a geometric component which describes the scanner geometry and which is calculated via a multi-ray method, (3) a detector normalization component derived from the acquisition of a planar source, (4) a photon attenuation component calculated from x-ray computed tomography data, and finally, (5) a positron range component is formally included. This system model factorization allows the optimization of each component in terms of computation time, storage requirements and accuracy. The main contribution of this work is a new, efficient way to calculate the detector response component for rotating, planar detectors, that consists of a GEANT4 based simulation of a subset of lines of flight (LOFs) for a single detector head whereas the missing LOFs are obtained by using intrinsic detector symmetries. Additionally, we introduce and analyze a probability threshold for matrix elements of the detector component to optimize the trade-off between the matrix size in terms of non-zero elements and the resulting quality of the reconstructed images. In order to evaluate our proposed system model we reconstructed various images of objects, acquired according to the NEMA NU 4-2008 standard, and we compared them to the images reconstructed with two other system models: a model that does not include any detector response component and a model that approximates analytically the depth of interaction

  1. Accurate and efficient modeling of the detector response in small animal multi-head PET systems

    NASA Astrophysics Data System (ADS)

    Cecchetti, Matteo; Moehrs, Sascha; Belcari, Nicola; Del Guerra, Alberto

    2013-10-01

    In fully three-dimensional PET imaging, iterative image reconstruction techniques usually outperform analytical algorithms in terms of image quality provided that an appropriate system model is used. In this study we concentrate on the calculation of an accurate system model for the YAP-(S)PET II small animal scanner, with the aim to obtain fully resolution- and contrast-recovered images at low levels of image roughness. For this purpose we calculate the system model by decomposing it into a product of five matrices: (1) a detector response component obtained via Monte Carlo simulations, (2) a geometric component which describes the scanner geometry and which is calculated via a multi-ray method, (3) a detector normalization component derived from the acquisition of a planar source, (4) a photon attenuation component calculated from x-ray computed tomography data, and finally, (5) a positron range component is formally included. This system model factorization allows the optimization of each component in terms of computation time, storage requirements and accuracy. The main contribution of this work is a new, efficient way to calculate the detector response component for rotating, planar detectors, that consists of a GEANT4 based simulation of a subset of lines of flight (LOFs) for a single detector head whereas the missing LOFs are obtained by using intrinsic detector symmetries. Additionally, we introduce and analyze a probability threshold for matrix elements of the detector component to optimize the trade-off between the matrix size in terms of non-zero elements and the resulting quality of the reconstructed images. In order to evaluate our proposed system model we reconstructed various images of objects, acquired according to the NEMA NU 4-2008 standard, and we compared them to the images reconstructed with two other system models: a model that does not include any detector response component and a model that approximates analytically the depth of interaction

  2. Physiological sodium concentrations enhance the iodide affinity of the Na+/I- symporter

    NASA Astrophysics Data System (ADS)

    Nicola, Juan P.; Carrasco, Nancy; Mario Amzel, L.

    2014-06-01

    The Na+/I- symporter (NIS) mediates active I- transport—the first step in thyroid hormonogenesis—with a 2Na+:1I- stoichiometry. NIS-mediated 131I- treatment of thyroid cancer post-thyroidectomy is the most effective targeted internal radiation cancer treatment available. Here to uncover mechanistic information on NIS, we use statistical thermodynamics to obtain Kds and estimate the relative populations of the different NIS species during Na+/anion binding and transport. We show that, although the affinity of NIS for I- is low (Kd=224 μM), it increases when Na+ is bound (Kd=22.4 μM). However, this Kd is still much higher than the submicromolar physiological I- concentration. To overcome this, NIS takes advantage of the extracellular Na+ concentration and the pronounced increase in its own affinity for I- and for the second Na+ elicited by binding of the first. Thus, at physiological Na+ concentrations, ~79% of NIS molecules are occupied by two Na+ ions and ready to bind and transport I-.

  3. Mechanism of anion selectivity and stoichiometry of the Na+/I- symporter (NIS).

    PubMed

    Paroder-Belenitsky, Monika; Maestas, Matthew J; Dohán, Orsolya; Nicola, Juan Pablo; Reyna-Neyra, Andrea; Follenzi, Antonia; Dadachova, Ekaterina; Eskandari, Sepehr; Amzel, L Mario; Carrasco, Nancy

    2011-11-01

    I(-) uptake in the thyroid, the first step in thyroid hormone biosynthesis, is mediated by the Na(+)/I(-) symporter (NIS) with an electrogenic 2Na(+):1I(-) stoichiometry. We have obtained mechanistic information on NIS by characterizing the congenital I(-) transport defect-causing NIS mutant G93R. This mutant is targeted to the plasma membrane but is inactive. Substitutions at position 93 show that the longer the side chain of the neutral residue at this position, the higher the K(m) for the anion substrates. Unlike WT NIS, which mediates symport of Na(+) and the environmental pollutant perchlorate electroneutrally, G93T/N/Q/E/D NIS, strikingly, do it electrogenically with a 21 stoichiometry. Furthermore, G93E/Q NIS discriminate between anion substrates, a discovery with potential clinical relevance. A 3D homology model of NIS based on the structure of the bacterial Na(+)/galactose transporter identifies G93 as a critical player in the mechanism of the transporter: the changes from an outwardly to an inwardly open conformation during the transport cycle use G93 as a pivot.

  4. In-Flight Performance of the Soft X-Ray Spectrometer Detector System on ASTRO-H

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.; Boyce, Kevin R.; Chiao, Meng P.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kelley, Richard L.; Kilbourne, Carolina A.; Leutenegger, Maurice A.; McCammon, Dan; hide

    2016-01-01

    The SXS instrument was launched aboard the Astro-H observatory on February 17, 2016. The SXS spectrometer is based on a high sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and sub-orbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In pre-flight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous band-pass from below 0.3 keV to above 12 keV with a timing precision better than 100 microsecond. In addition, a solid-state anti-coincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain-stability, and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7 eV FWHM at 6 keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in pre-flight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.

  5. In-flight performance of the soft x-ray spectrometer detector system on Astro-H

    NASA Astrophysics Data System (ADS)

    Porter, Frederick S.; Boyce, Kevin R.; Chiao, Meng P.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kilbourne, Caroline Anne; Leutenegger, Maurice A.; McCammon, Daniel; Mitsuda, Kazuhisa; Sato, Kosuke; Seta, Hiromi; Sawada, Makoto; Sneiderman, Gary A.; Szymkowiak, Andrew E.; Takei, Yoh; Tashiro, Makoto S.; Tsujimoto, Masahiro; Watanabe, Tomomi; Yamada, Shinya

    2018-01-01

    The soft x-ray spectrometer (SXS) instrument was launched aboard the Astro-H (Hitomi) observatory on February 17, 2016. The SXS is based on a high-sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and suborbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In preflight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous bandpass from below 0.3 keV to above 12 keV with a timing precision better than 100 μs. In addition, a solid-state anticoincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain stability and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7-eV FWHM at 6-keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here, we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in preflight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.

  6. Applications of a Fast Neutron Detector System to Verification of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Mayo, Douglas R.; Byrd, Roger C.; Ensslin, Norbert; Krick, Merlyn S.; Mercer, David J.; Miller, Michael C.; Prettyman, Thomas H.; Russo, Phyllis A.

    1998-04-01

    An array of boron-loaded plastic optically coupled to bismuth germanate scintillators has been developed to detect neutrons for measurement of special nuclear materials. The phoswiched detection system has the advantage of a high neutron detection efficiency and short die-away time. This is achieved by mixing the moderator (plastic) and the detector (^10B) at the molecular level. Simulations indicate that the neutron capture probabilities equal or exceed those of the current thermal neutron multiplicity techniques which have the moderator (polyethylene) and detectors (^3He gas proportional tubes) macroscopically separate. Experiments have been performed to characterize the response of these detectors and validate computer simulations. The fast neutron detection system may be applied to the quantitative assay of plutonium in high (α,n) backgrounds, with emphasis on safeguards and enviromental scenarios. Additional applications of the insturment, in a non-quantative mode, has been tested for possible verification activities involving dismantlement of nuclear weapons. A description of the detector system, simulations and preliminary data will be presented.

  7. Controller and data acquisition system for SIDECAR ASIC driven HAWAII detectors

    NASA Astrophysics Data System (ADS)

    Ramaprakash, Anamparambu; Burse, Mahesh; Chordia, Pravin; Chillal, Kalpesh; Kohok, Abhay; Mestry, Vilas; Punnadi, Sujit; Sinha, Sakya

    2010-07-01

    SIDECAR is an Application Specific Integrated Circuit (ASIC), which can be used for control and data acquisition from near-IR HAWAII detectors offered by Teledyne Imaging Sensors (TIS), USA. The standard interfaces provided by Teledyne are COM API and socket servers running under MS Windows platform. These interfaces communicate to the ASIC (and the detector) through an intermediate card called JWST ASIC Drive Electronics (JADE2). As part of an ongoing programme of several years, for developing astronomical focal plane array (CCDs, CMOS and Hybrid) controllers and data acquisition systems (CDAQs), IUCAA is currently developing the next generation controllers employing Virtex-5 family FPGA devices. We present here the capabilities which are built into these new CDAQs for handling HAWAII detectors. In our system, the computer which hosts the application programme, user interface and device drivers runs on a Linux platform. It communicates through a hot-pluggable USB interface (with an optional optical fibre extender) to the FPGA-based card which replaces the JADE2. The FPGA board in turn, controls the SIDECAR ASIC and through it a HAWAII-2RG detector, both of which are located in a cryogenic test Dewar set up which is liquid nitrogen cooled. The system can acquire data over 1, 4, or 32 readout channels, with or without binning, at different speeds, can define sub-regions for readout, offers various readout schemes like Fowler sampling, up-theramp etc. In this paper, we present the performance results obtained from a prototype system.

  8. Electron multiplier-ion detector system

    DOEpatents

    Dietz, L.A.

    1975-08-01

    This patent relates to an improved ion detector for use in mass spectrometers for pulse counting signal ions which may have a positive or a negative charge. The invention combines a novel electron multiplier with a scintillator type of ion detector. It is a high vacuum, high voltage device intended for use in ion microprobe mass spectrometers. (auth)

  9. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    NASA Astrophysics Data System (ADS)

    Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.

    1999-02-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min [1, 2]. This paper presents the design features, operational methods, calibration, and detector applications.

  10. Observation of Air Shower in Uijeongbu Area using the COREA Prototype Detector System

    NASA Astrophysics Data System (ADS)

    Cho, Wooram; Shin, Jae-ik; Kwon, Youngjoon; Yang, Jongmann; Nam, Shinwoo; Park, Il H.; Cheon, ByungGu; Kim, Hang Bae; Bhang, Hyoung Chan; Park, Cheolyoung; Kim, Gyhyuk; Choi, Wooseok; Hwang, MyungJin; Shin, Gwangsik

    2018-06-01

    We report the study of high energy cosmic rays in Uijeongbu area using a cosmic-ray detector array system. The array consists of three detector stations, each of which contains a set of three scintillators and PMTs, a GPS antenna along with data acquisition system. To identify air shower signals originating from a single cosmic ray, time coincidence information is used. We devised a method for estimating the energy range of air shower data detected by an array of only three detectors, using air shower simulation and citing already known energy spectrum. Also, Fast Fourier Transform(FFT) was applied to study isotropy.

  11. Efficiency study of a big volume well type NaI(Tl) detector by point and voluminous sources and Monte-Carlo simulation.

    PubMed

    Hansman, Jan; Mrdja, Dusan; Slivka, Jaroslav; Krmar, Miodrag; Bikit, Istvan

    2015-05-01

    The activity of environmental samples is usually measured by high resolution HPGe gamma spectrometers. In this work a set-up with a 9in.x9in. NaI well-detector with 3in. thickness and a 3in.×3in. plug detector in a 15-cm-thick lead shielding is considered as an alternative (Hansman, 2014). In spite of its much poorer resolution, it requires shorter measurement times and may possibly give better detection limits. In order to determine the U-238, Th-232, and K-40 content in the samples by this NaI(Tl) detector, the corresponding photopeak efficiencies must be known. These efficiencies can be found for certain source matrix and geometry by Geant4 simulation. We found discrepancy between simulated and experimental efficiencies of 5-50%, which can be mainly due to effects of light collection within the detector volume, an effect which was not taken into account by simulations. The influence of random coincidence summing on detection efficiency for radionuclide activities in the range 130-4000Bq, was negligible. This paper describes also, how the efficiency in the detector depends on the position of the radioactive point source. To avoid large dead time, relatively weak Mn-54, Co-60 and Na-22 point sources of a few kBq were used. Results for single gamma lines and also for coincidence summing gamma lines are presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Position detectors, methods of detecting position, and methods of providing positional detectors

    DOEpatents

    Weinberg, David M.; Harding, L. Dean; Larsen, Eric D.

    2002-01-01

    Position detectors, welding system position detectors, methods of detecting various positions, and methods of providing position detectors are described. In one embodiment, a welding system positional detector includes a base that is configured to engage and be moved along a curved surface of a welding work piece. At least one position detection apparatus is provided and is connected with the base and configured to measure angular position of the detector relative to a reference vector. In another embodiment, a welding system positional detector includes a weld head and at least one inclinometer mounted on the weld head. The one inclinometer is configured to develop positional data relative to a reference vector and the position of the weld head on a non-planar weldable work piece.

  13. Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.

    PubMed

    Tanguay, Jesse; Cunningham, Ian A

    2018-05-01

    Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded

  14. Real-time operating system for a multi-laser/multi-detector system

    NASA Technical Reports Server (NTRS)

    Coles, G.

    1980-01-01

    The laser-one hazard detector system, used on the Rensselaer Mars rover, is reviewed briefly with respect to the hardware subsystems, the operation, and the results obtained. A multidetector scanning system was designed to improve on the original system. Interactive support software was designed and programmed to implement real time control of the rover or platform with the elevation scanning mast. The formats of both the raw data and the post-run data files were selected. In addition, the interface requirements were selected and some initial hardware-software testing was completed.

  15. RESONEUT: A detector system for spectroscopy with (d,n) reactions in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Baby, L. T.; Kuvin, S. A.; Wiedenhöver, I.; Anastasiou, M.; Caussyn, D.; Colbert, K.; Quails, N.; Gay, D.

    2018-01-01

    The RESONEUT detector setup is described, which was developed for resonance spectroscopy using (d,n) reactions with radioactive beams in inverse kinematics and at energies around the Coulomb barrier. The goal of experiments with this setup is to determine the spectrum and proton-transfer strengths of the low-lying resonances, which have an impact on astrophysical reaction rates. The setup is optimized for l = 0 proton transfers in inverse kinematics, for which most neutrons are emitted at backward angles with energies in the 80-300 keV range. The detector system is comprised of 9 p-terphenyl scintillators as neutron detectors, two annular silicon-strip detectors for light charged particles, one position-resolving gas ionization chamber for heavy ion detection, and a barrel of NaI-detectors for the detection of γ-rays. The detector commissioning and performance characteristics are described with an emphasis on the neutron-detector components.

  16. Cryocooled terahertz photoconductive detector system with background-limited performance in 1.5–4 THz frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Makoto; Hiromoto, Norihisa, E-mail: dnhirom@ipc.shizuoka.ac

    2015-10-15

    We describe a 4-K-cryocooled dual-band terahertz (THz) photoconductive detector system with background-limited performance. The detector system comprises two THz photoconductive detectors covering a response in a wide frequency range from 1.5 to 4 THz, low noise amplifiers, optical low-pass filters to eliminate input radiation of higher frequencies, and a mechanical 4 K Gifford-McMahon refrigerator that provides practical and convenient operation without a liquid He container. The electrical and optical performances of the THz detector system were evaluated at a detector temperature of 4 K under 300 K background radiation. We proved that the detector system can achieve background-limited noise-equivalent-power onmore » the order of 10{sup −14} W/Hz{sup 1/2} in the frequency range from 1.5 to 4 THz even if the vibration noise of the mechanical refrigerator is present.« less

  17. 3D sensors and micro-fabricated detector systems

    NASA Astrophysics Data System (ADS)

    Da Vià, Cinzia

    2014-11-01

    Micro-systems based on the Micro Electro Mechanical Systems (MEMS) technology have been used in miniaturized low power and low mass smart structures in medicine, biology and space applications. Recently similar features found their way inside high energy physics with applications in vertex detectors for high-luminosity LHC Upgrades, with 3D sensors, 3D integration and efficient power management using silicon micro-channel cooling. This paper reports on the state of this development.

  18. A front-end readout Detector Board for the OpenPET electronics system

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.

    2015-08-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  19. A front-end readout Detector Board for the OpenPET electronics system

    DOE PAGES

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...

    2015-08-12

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less

  20. Normalization of energy-dependent gamma survey data.

    PubMed

    Whicker, Randy; Chambers, Douglas

    2015-05-01

    Instruments and methods for normalization of energy-dependent gamma radiation survey data to a less energy-dependent basis of measurement are evaluated based on relevant field data collected at 15 different sites across the western United States along with a site in Mongolia. Normalization performance is assessed relative to measurements with a high-pressure ionization chamber (HPIC) due to its "flat" energy response and accurate measurement of the true exposure rate from both cosmic and terrestrial radiation. While analytically ideal for normalization applications, cost and practicality disadvantages have increased demand for alternatives to the HPIC. Regression analysis on paired measurements between energy-dependent sodium iodide (NaI) scintillation detectors (5-cm by 5-cm crystal dimensions) and the HPIC revealed highly consistent relationships among sites not previously impacted by radiological contamination (natural sites). A resulting generalized data normalization factor based on the average sensitivity of NaI detectors to naturally occurring terrestrial radiation (0.56 nGy hHPIC per nGy hNaI), combined with the calculated site-specific estimate of cosmic radiation, produced reasonably accurate predictions of HPIC readings at natural sites. Normalization against two to potential alternative instruments (a tissue-equivalent plastic scintillator and energy-compensated NaI detector) did not perform better than the sensitivity adjustment approach at natural sites. Each approach produced unreliable estimates of HPIC readings at radiologically impacted sites, though normalization against the plastic scintillator or energy-compensated NaI detector can address incompatibilities between different energy-dependent instruments with respect to estimation of soil radionuclide levels. The appropriate data normalization method depends on the nature of the site, expected duration of the project, survey objectives, and considerations of cost and practicality.

  1. Electronic readout system for the Belle II imaging Time-Of-Propagation detector

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-07-01

    The imaging Time-Of-Propagation (iTOP) detector, constructed for the Belle II experiment at the SuperKEKB e+e- collider, is an 8192-channel high precision Cherenkov particle identification detector with timing resolution below 50 ps. To acquire data from the iTOP, a novel front-end electronic readout system was designed, built, and integrated. Switched-capacitor array application-specific integrated circuits are used to sample analog signals. Triggering, digitization, readout, and data transfer are controlled by Xilinx Zynq-7000 system on a chip devices.

  2. MAMA detector systems - A status report

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Morgan, Jeffrey S.; Slater, David C.; Kasle, David B.; Bybee, Richard L.

    1989-01-01

    Third-generation, 224 x 960 and 360 x 1024-pixel multianode microchannel (MAMA) detectors are under development for satellite-borne FUV and EUV observations, using pixel dimensions of 25 x 25 microns. An account is presently given of the configurations, modes of operation, and recent performance data of these systems. At UV and visible wavelengths, these MAMAs employ a semitransparent, proximity-focused photocathode structure. At FUV and EUV wavelengths below about 1500 A, opaque alkali-halide photocathodes deposited directly on the front surface of the MCP furnish the best detective quantum efficiencies.

  3. Wideband 1.064 micrometer detector evaluation. [for application to space laser communication systems

    NASA Technical Reports Server (NTRS)

    Green, S. I.

    1977-01-01

    Several types of communications detectors for use in a 400 Mbps 1.064 micrometer laser communication system were evaluated and characterized. The communication system Bit Error Rate (BER) performance was measured, and test results for the best detector of each type are summarized. The complete BER curves are presented. The 400 Mbps 1.064 micrometer communication system receiver test bed is described. The best performance levels which can be achieved by focusing the signal to diffraction limited spots on the photosensitive area are cited.

  4. Optimization of the microcable and detector parameters towards low noise in the STS readout system

    NASA Astrophysics Data System (ADS)

    Kasinski, Krzysztof; Kleczek, Rafal; Schmidt, Christian J.

    2015-09-01

    Successful operation of the Silicon Tracking System requires charge measurement of each hit with equivalent noise charge lower than 1000 e- rms. Detector channels will not be identical, they will be constructed accordingly to the estimated occupancy, therefore for the readout electronics, detector system will exhibit various parameters. This paper presents the simulation-based study on the required microcable (trace width, dielectric material), detector (aluminum strip resistance) and external passives' (decoupling capacitors) parameters in the Silicon Tracking System. Studies will be performed using a front-end electronics (charge sensitive amplifier with shaper) designed for the power budget of 10 mA/channel.

  5. Managing operational documentation in the ALICE Detector Control System

    NASA Astrophysics Data System (ADS)

    Lechman, M.; Augustinus, A.; Bond, P.; Chochula, P.; Kurepin, A.; Pinazza, O.; Rosinsky, P.

    2012-12-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneve, Switzerland. The experiment is composed of 18 sub-detectors controlled by an integrated Detector Control System (DCS) that is implemented using the commercial SCADA package PVSSII. The DCS includes over 1200 network devices, over 1,000,000 monitored parameters and numerous custom made software components that are prepared by over 100 developers from all around the world. This complex system is controlled by a single operator via a central user interface. One of his/her main tasks is the recovery of anomalies and errors that may occur during operation. Therefore, clear, complete and easily accessible documentation is essential to guide the shifter through the expert interfaces of different subsystems. This paper describes the idea of the management of the operational documentation in ALICE using a generic repository that is built on a relational database and is integrated with the control system. The experience gained and the conclusions drawn from the project are also presented.

  6. Mechanism of anion selectivity and stoichiometry of the Na+/I- symporter (NIS)

    PubMed Central

    Paroder-Belenitsky, Monika; Maestas, Matthew J.; Dohán, Orsolya; Nicola, Juan Pablo; Reyna-Neyra, Andrea; Follenzi, Antonia; Dadachova, Ekaterina; Eskandari, Sepehr; Amzel, L. Mario; Carrasco, Nancy

    2011-01-01

    I- uptake in the thyroid, the first step in thyroid hormone biosynthesis, is mediated by the Na+/I- symporter (NIS) with an electrogenic 2Na+ : 1I- stoichiometry. We have obtained mechanistic information on NIS by characterizing the congenital I- transport defect-causing NIS mutant G93R. This mutant is targeted to the plasma membrane but is inactive. Substitutions at position 93 show that the longer the side chain of the neutral residue at this position, the higher the Km for the anion substrates. Unlike WT NIS, which mediates symport of Na+ and the environmental pollutant perchlorate electroneutrally, G93T/N/Q/E/D NIS, strikingly, do it electrogenically with a 2∶1 stoichiometry. Furthermore, G93E/Q NIS discriminate between anion substrates, a discovery with potential clinical relevance. A 3D homology model of NIS based on the structure of the bacterial Na+/galactose transporter identifies G93 as a critical player in the mechanism of the transporter: the changes from an outwardly to an inwardly open conformation during the transport cycle use G93 as a pivot. PMID:22011571

  7. Unattended Sensor System With CLYC Detectors

    NASA Astrophysics Data System (ADS)

    Myjak, Mitchell J.; Becker, Eric M.; Gilbert, Andrew J.; Hoff, Jonathan E.; Knudson, Christa K.; Landgren, Peter C.; Lee, Samantha F.; McDonald, Benjamin S.; Pfund, David M.; Redding, Rebecca L.; Smart, John E.; Taubman, Matthew S.; Torres-Torres, Carlos R.; Wiseman, Clinton G.

    2016-06-01

    We have developed an unattended sensor for detecting anomalous radiation sources. The system combines several technologies to reduce size and weight, increase battery lifetime, and improve decision-making capabilities. Sixteen Cs2LiYCl6:Ce (CLYC) scintillators allow for gamma-ray spectroscopy and neutron detection in the same volume. Low-power electronics for readout, high voltage bias, and digital processing reduce the total operating power to 1.7 W. Computationally efficient analysis algorithms perform spectral anomaly detection and isotope identification. When an alarm occurs, the system transmits alarm information over a cellular modem. In this paper, we describe the overall design of the unattended sensor, present characterization results, and compare the performance to stock NaI:Tl and 3He detectors.

  8. Space imaging measurement system based on fixed lens and moving detector

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Doshida, Minoru; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2006-08-01

    We have developed the Space Imaging Measurement System based on the fixed lens and fast moving detector to the control of the autonomous ground vehicle. The space measurement is the most important task in the development of the autonomous ground vehicle. In this study we move the detector back and forth along the optical axis at the fast rate to measure the three-dimensional image data. This system is just appropriate to the autonomous ground vehicle because this system does not send out any optical energy to measure the distance and keep the safety. And we use the digital camera of the visible ray range. Therefore it gives us the cost reduction of the three-dimensional image data acquisition with respect to the imaging laser system. We can combine many pieces of the narrow space imaging measurement data to construct the wide range three-dimensional data. This gives us the improvement of the image recognition with respect to the object space. To develop the fast movement of the detector, we build the counter mass balance in the mechanical crank system of the Space Imaging Measurement System. And then we set up the duct to prevent the optical noise due to the ray not coming through lens. The object distance is derived from the focus distance which related to the best focused image data. The best focused image data is selected from the image of the maximum standard deviation in the standard deviations of series images.

  9. Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons

    NASA Astrophysics Data System (ADS)

    Wuestling, Sascha; Fraenkle, F.; Habermehl, F.; Renschler, P.; Steidl, M.

    2010-12-01

    The KATRIN neutrino mass experiment is based on a precise energy measurement (Δ E/ E=5×10 -5) of electrons emerging from tritium beta decay ( Emax=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area (˜80 cm 2), a certain energy resolution (Δ E=600 eV @ 18.6 keV) but also a certain spatial resolution (˜3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm 2) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. [6], this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement [7]. The detector allows for background searches with a sensitivity as low as 1.3×10 -3 cps/cm 2 in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10 5 and the search for ultra low Penning discharge emissions.

  10. Laser system for testing radiation imaging detector circuits

    NASA Astrophysics Data System (ADS)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  11. Sub-micro-liter Electrochemical Single-Nucleotide-Polymorphism Detector for Lab-on-a-Chip System

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Fiorini, Paolo; Peeters, Sara; Majeed, Bivragh; Sterken, Tom; de Beeck, Maaike Op; Hayashi, Miho; Yaku, Hidenobu; Yamashita, Ichiro

    2012-04-01

    A sub-micro-liter single-nucleotide-polymorphism (SNP) detector for lab-on-a-chip applications is developed. This detector enables a fast, sensitive, and selective SNP detection directly from human blood. The detector is fabricated on a Si substrate by a standard complementary metal oxide semiconductor/micro electro mechanical systems (CMOS/MEMS) process and Polydimethylsiloxane (PDMS) molding. Stable and reproducible measurements are obtained by implementing an on-chip Ag/AgCl electrode and encapsulating the detector. The detector senses the presence of SNPs by measuring the concentration of pyrophosphoric acid generated during selective DNA amplification. A 0.5-µL-volume detector enabled the successful performance of the typing of a SNP within the ABO gene using human blood. The measured sensitivity is 566 pA/µM.

  12. Liquid scintillator composition optimization for use in ultra-high energy cosmic ray detector systems

    NASA Astrophysics Data System (ADS)

    Beznosko, Dmitriy; Batyrkhanov, Ayan; Iakovlev, Alexander; Yelshibekov, Khalykbek

    2017-06-01

    The Horizon-T (HT) detector system and the currently under R&D HT-KZ detector system are designed for the detection of Extensive Air Showers (EAS) with energies above ˜1016 eV (˜1017 eV for HT-KZ). The main challenges in both detector systems are the fast time resolutions needed for studying the temporary structure of EAS, and the extremely wide dynamic range needed to study the spatial distribution of charged particles in EAS disks. In order to detect the low-density of charged particles far from the EAS axis, a large-area detector is needed. Liquid scintillator with low cost would be a possible solution for such a detector, including the recently developed safe and low-cost water-based liquid scintillators. Liquid organic scintillators give a fast and high light yield (LY) for charged particle detection. It is similar to plastic scintillator in properties but is cost effective for large volumes. With liquid scintillator, one can create detection volumes that are symmetric and yet retain high LY detection. Different wavelength shifters affect the scintillation light by changing the output spectrum into the best detection region. Results of the latest studies of the components optimization in the liquid scintillator formulae are presented.

  13. Techniques employed for detection of hot particles in the marine environment.

    PubMed

    Pillsbury, G D

    2007-09-01

    During the decommissioning of the Maine Yankee nuclear plant, several methods were developed and employed to survey for hot particles in the marine environment surrounding the site. The methods used and the sensitivities achieved in the search for environmentally dispersed particles during the various decommissioning activities performed are described in detail. Surveys were performed on dry soil, exposed marine sediment and submerged marine sediment. Survey techniques ranged from the use of the basic NaI detector coupled to a count rate meter to an intrinsic germanium detector deployed in a submarine housing coupled to a multi-channel analyser. The initial surveys consisted of collecting samples of marine sediment, spreading them out over a 1 m2 surface in a thin layer, and scanning the deposited sediment by hand using a 5 cm by 5 cm NaI detector coupled to a standard count rate meter. This technique was later replaced by walkover scans with the 5 cm by 5 cm NaI detector moved in a serpentine pattern over the sediment surface. By coupling the detector to a 'smart meter', an alarm set point could be used to alert the surveyor to the presence of a particle within the instrument's field of view. A similar technique, with the detector mounted in a watertight housing secured to the end of a pole, was also employed to scan underwater locations. The most sensitive method developed for performing underwater surveys was the use of the intrinsic germanium detector placed in a submarine housing. Detailed descriptions of the methods employed and the results obtained are presented. This work demonstrates that there are several approaches to surveying for discrete particles in the marine environment and the relative merits of each are considered.

  14. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    NASA Astrophysics Data System (ADS)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  15. Improvements in Calibration and Analysis of the CTBT-relevant Radioxenon Isotopes with High Resolution SiPIN-based Electron Detectors

    NASA Astrophysics Data System (ADS)

    Khrustalev, K.

    2016-12-01

    Current process for the calibration of the beta-gamma detectors used for radioxenon isotope measurements for CTBT purposes is laborious and time consuming. It uses a combination of point sources and gaseous sources resulting in differences between energy and resolution calibrations. The emergence of high resolution SiPIN based electron detectors allows improvements in the calibration and analysis process to be made. Thanks to high electron resolution of SiPIN detectors ( 8-9 keV@129 keV) compared to plastic scintillators ( 35 keV@129keV) there are a lot more CE peaks (from radioxenon and radon progenies) can be resolved and used for energy and resolution calibration in the energy range of the CTBT-relevant radioxenon isotopes. The long term stability of the SiPIN energy calibration allows one to significantly reduce the time of the QC measurements needed for checking the stability of the E/R calibration. The currently used second order polynomials for the E/R calibration fitting are unphysical and shall be replaced by a linear energy calibration for NaI and SiPIN, owing to high linearity and dynamic range of the modern digital DAQ systems, and resolution calibration functions shall be modified to reflect the underlying physical processes. Alternatively, one can completely abandon the use of fitting functions and use only point-values of E/R (similar to the efficiency calibration currently used) at the energies relevant for the isotopes of interest (ROI - Regions Of Interest ). Current analysis considers the detector as a set of single channel analysers, with an established set of coefficients relating the positions of ROIs with the positions of the QC peaks. The analysis of the spectra can be made more robust using peak and background fitting in the ROIs with a single free parameter (peak area) of the potential peaks from the known isotopes and a fixed E/R calibration values set.

  16. A 90GHz Bolometer Camera Detector System for the Green

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  17. Unattended Sensor System With CLYC Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myjak, Mitchell J.; Becker, Eric M.; Gilbert, Andrew J.

    2016-06-01

    We have developed a next-generation unattended sensor for detecting anomalous radiation sources. The system combines several technologies to reduce size and weight, increase battery lifetime, and improve decision-making capabilities. Sixteen Cs2LiYCl6:Ce (CLYC) scintillators allow for gamma-ray spectroscopy and neutron detection in the same volume. Low-power electronics for readout, high voltage bias, and digital processing reduce the total operating power to 1.3 W. Computationally efficient analysis algorithms perform spectral anomaly detection and isotope identification. When an alarm occurs, the system transmits alarm information over a cellular modem. In this paper, we describe the overall design of the unattended sensor, present characterizationmore » results, and compare the performance to stock NaI:Tl and 3He detectors.« less

  18. Efficient scalable solid-state neutron detector.

    PubMed

    Moses, Daniel

    2015-06-01

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a (6)Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m(2), is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.

  19. Prototype readout electronics and silicon strip detector study for the silicon tracking system at compressed baryonic matter experiment

    NASA Astrophysics Data System (ADS)

    Kasiński, Krzysztof; Szczygieł, Robert; Gryboś, Paweł

    2011-10-01

    This paper presents the prototype detector readout electronics for the STS (Silicon Tracking System) at CBM (Compressed Baryonic Matter) experiment at FAIR, GSI (Helmholtzzentrum fuer Schwerionenforschung GmbH) in Germany. The emphasis has been put on the strip detector readout chip and its interconnectivity with detector. Paper discusses the impact of the silicon strip detector and interconnection cable construction on the overall noise of the system and architecture of the TOT02 readout ASIC. The idea and problems of the double-sided silicon detector usage are also presented.

  20. Readout systems for inner detectors at the LHC and SLHC

    NASA Astrophysics Data System (ADS)

    Issever, Cigdem

    2006-12-01

    A general overview of the optoelectronic readout and control systems of the ATLAS and CMS inner detectors is given. The talk will also cover challenges and issues of future optoelectronic readout systems at the upgraded LHC (SLHC). First results of radiation tests of VCSELs and optical fibres which were irradiated up to SLHC fluences will be presented.

  1. Widefield TSCSPC-systems with large-area-detectors: application in simultaneous multi-channel-FLIM

    NASA Astrophysics Data System (ADS)

    Stepanov, Sergei; Bakhlanov, Sergei; Drobchenko, Evgeny; Eckert, Hann-Jörg; Kemnitz, Klaus

    2010-11-01

    Novel proximity-type Time- and Space-Correlated Single Photon Counting (TSCSPC) crossed-delay-line (DL)- and multi-anode (MA)-systems of outstanding performance and homogeneity were developed, using large-area detector heads of 25 and 40 mm diameter. Instrument response functions IRF(space) = (60 +/- 5) μm FWHM and IRF(time) = (28 +/- 3) ps FWHM were achieved over the full 12 cm2 area of the detector. Deadtime at throughput of 105 cps is 10% for "high-resolution" system and 5% in the "video"-system at 106 cps, at slightly reduced time- and space resolution. A fluorescence lifetime of (3.5 +/- 1) ps can be recovered from multi-exponential dynamics of a single living cyanobacterium (Acaryochloris marina). The present large-area detectors are particularly useful in simultaneous multichannel applications, such as 2-colour anisotropy or 4-colour lifetime imaging, utilizing dual- or quad-view image splitters. The long-term stability, low- excitation-intensity (< 100 mW/cm2) widefield systems enable minimal-invasive observation, without significant bleaching or photodynamic reactions, thus allowing long-period observation of up to several hours in living cells.

  2. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  3. Superlinear threshold detectors in quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydersen, Lars; Maroey, Oystein; Skaar, Johannes

    2011-09-15

    We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our own measurements. The analysis shows that quantum key distribution systemsmore » using detector(s) of either type can be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear toward the end of the gate. For systems expecting substantial loss, or for systems not monitoring loss, this would allow eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to catch with an optical power meter at the receiver entrance.« less

  4. Optimization and performance of the Robert Stobie Spectrograph Near-InfraRed detector system

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory; Indahl, Briana; Eggen, Nathan; Wolf, Marsha; Hooper, Eric; Jaehnig, Kurt; Thielman, Don; Burse, Mahesh

    2018-01-01

    At the University of Wisconsin-Madison, we are building and testing the near-infrared (NIR) spectrograph for the Southern African Large Telescope-RSS-NIR. RSS-NIR will be an enclosed cooled integral field spectrograph. The RSS-NIR detector system uses a HAWAII-2RG (H2RG) HgCdTe detector from Teledyne controlled by the SIDECAR ASIC and an Inter-University Centre for Astronomy and Astrophysics (IUCCA) ISDEC card. We have successfully characterized and optimized the detector system and report on the optimization steps and performance of the system. We have reduced the CDS read noise to ˜20 e- for 200 kHz operation by optimizing ASIC settings. We show an additional factor of 3 reduction of read noise using Fowler sampling techniques and a factor of 2 reduction using up-the-ramp group sampling techniques. We also provide calculations to quantify the conditions for sky-limited observations using these sampling techniques.

  5. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, William H.; Berliner, Ronald R.

    1994-01-01

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

  6. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, W.H.; Berliner, R.R.

    1994-09-13

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

  7. Radiation detection system using semiconductor detector with differential carrier trapping and mobility

    DOEpatents

    Whited, Richard C.

    1981-01-01

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI.sub.2, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  8. Detector system dose verification comparisons for arc therapy: couch vs. gantry mount

    PubMed Central

    Manikandan, Arjunan; Nandy, Maitreyee; Sureka, Chandra Sekaran; Gossman, Michael S.; Sujatha, Nadendla; Rajendran, Vivek Thirupathur

    2014-01-01

    The aim of this study was to assess the performance of a gantry‐mounted detector system and a couch set detector system using a systematic multileaf collimator positional error manually introduced for volumetric‐modulated arc therapy. Four head and neck and esophagus VMAT plans were evaluated by measurement using an electronic portal imaging device and an ion chamber array. Each plan was copied and duplicated with a 1 mm systematic MLC positional error in the left leaf bank. Direct comparison of measurements for plans with and without the error permitted observational characteristics for quality assurance performance between detectors. A total of 48 different plans were evaluated for this testing. The mean percentage planar dose differences required to satisfy a 95% match between plans with and without the MLCPE were 5.2% ± 0.5% for the chamber array with gantry motion, 8.12% ± 1.04% for the chamber array with a static gantry at 0°, and 10.9% ± 1.4% for the EPID with gantry motion. It was observed that the EPID was less accurate due to overresponse of the MLCPE in the left leaf bank. The EPID always images bank‐A on the ipsilateral side of the detector, whereas for a chamber array or for a patient, that bank changes as it crosses the ‐90° or +90° position. A couch set detector system can reproduce the TPS calculated values most consistently. We recommend it as the most reliable patient specific QA system for MLC position error testing. This research is highlighted by the finding of up to 12.7% dose variation for H/N and esophagus cases for VMAT delivery, where the mere source of error was the stated clinically acceptability of 1 mm MLC position deviation of TG‐142. PACS numbers: 87.56.‐v, 87.55.‐x, 07.57.KP, 29.40.‐n, 85.25.Pb PMID:24892330

  9. A hard X-ray and gamma ray observation of the 22 November 1977 solar flare. [experimental design

    NASA Technical Reports Server (NTRS)

    Chambon, G.; Hurley, K.; Niel, M.; Talon, R.; Vedrenne, G.; Likine, O. B.; Kouznetsov, A. V.; Estouline, I. V.

    1978-01-01

    The Franco-Soviet experiment package Signe 2 MP for solar and cosmic X and gamma ray observations, launched aboard a Soviet Prognoz satellite into a highly eccentric earth orbit is described. An uncollimated NaI detector 37 mm thick by 90 mm diameter, placed on the upper surface of the satellite faced the sun. A collimated lateral NaI detector 14 mm thick by 38 mm diameter also faced the sun, and a similar lateral detector faced the anti-solar direction. Data tapes reveal an intense solar flare up to energies of up to 5 MeV, with evidence for line emission at 2.23 MeV and possibly 4.4 MeV. The event observed was associated with the Mc Math Plage Region 15031, and an H-alpha flare of importance 2B. It is not yet clear what radio emission is associated with the X-ray observation.

  10. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.

    2008-12-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  11. Admittance detector for high impedance systems: design and applications.

    PubMed

    Zhang, Min; Stamos, Brian N; Dasgupta, Purnendu K

    2014-12-02

    We describe an admittance detector for high impedance systems (small capillary bore and/or low solution specific conductance). Operation in the low frequency range (≤1 kHz, much lower than most relevant publications) provides optimum response to conductance changes in capillaries ≤20 μm in bore. The detector design was based on studies described in a preceding companion paper ( Zhang, M.; Stamos, B. N.; Amornthammarong, N.; Dasgupta, P. K. Anal. Chem. 2014, 8 , DOI 10.1021/ac503245a.). The highest S/N for detecting 100 μM KCl (5.5 μM peak concentration, ∼0.8 μS/cm) injected into water flowing through a capillary of 7.5 μm inner radius (r) was observed at 500-750 Hz. A low bias current operational amplifier in the transimpedance configuration permitted high gain (1 V/nA) to measure pA-nA level currents in the detection cell. Aside from an oscillator, an offset-capable RMS-DC converter formed the complete detection circuitry. Limits of detection (LODs) of KCl scaled inversely with the capillary cross section and were 2.1 and 0.32 μM injected KCl for r = 1 and 2.5 μm capillaries, respectively. When used as a detector on an r = 8 μm bore poly(methyl methacrylate) capillary in a split effluent stream from a suppressed ion chromatograph, the LOD was 27 nM bromide (Vex 22 V p-p), compared to 14 nM observed with a commercial bipolar pulse macroscale conductivity detector with an actively thermostated cell. We also show applications of the detector in electrophoresis in capillaries with r = 1 and 2.5 μm. Efficient heat dissipation permits high concentrations of the background electrolyte and sensitive detection because of efficient electrostacking.

  12. Medical isotope identification with large mobile detection systems

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard

    2012-10-01

    The Remote Sensing laboratory (RSL) of National Security Technologies Inc. has built an array of large (5.08 - cm x 10.16 - cm x 40.6 - cm) thallium doped sodium iodide (NaI: Tl) scintillators to locate and screen gamma-ray emitting radioisotopes that are of interests to radiological emergency responders [1]. These vehicle mounted detectors provide the operators with rapid, simple, specific information for radiological threat assessment. Applications include large area inspection, customs inspection, border protection, emergency response, and monitoring of radiological facilities. These RSL mobile units are currently being upgraded to meet the Defense Threat Reduction Agency mission requirements for a next-generation system capable of detecting and identifying nuclear threat materials. One of the challenging problems faced by these gamma-ray detectors is the unambiguous identification of medical isotopes like 131I (364.49 keV [81.7%], 636.99 keV [7.17%]), 99Tcm (140.51 keV [89.1%]) and 67Ga (184.6 keV [19.7%], 300.2 [16.0%], 393.5 [4.5%] that are used in radionuclide therapy and often have overlapping gamma-ray energy regions of interest (ROI). The problem is made worse by short (about 5 seconds) acquisition time of the spectral data necessary for dynamic mobile detectors. This article describes attempts to identify medical isotopes from data collected from this mobile detection system in a short period of time (not exceeding 5 secs) and a large standoff distance (typically 10 meters) The mobile units offer identification capabilities that are based on hardware auto stabilization of the amplifier gain. The 1461 keV gamma-energy line from 40K is tracked. It uses gamma-ray energy windowing along with embedded mobile Gamma Detector Response and Analysis Software (GADRAS) [2] simultaneously to deconvolve any overlapping gamma-energy ROIs. These high sensitivity detectors are capable of resolving complex masking scenarios and exceed all ANSI N42.34 (2006) requirements

  13. A Hybrid Multiuser Detector Based on MMSE and AFSA for TDRS System Forward Link

    PubMed Central

    Yin, Zhendong; Liu, Xiaohui

    2014-01-01

    This study mainly focuses on multiuser detection in tracking and data relay satellite (TDRS) system forward link. Minimum mean square error (MMSE) is a low complexity multiuser detection method, but MMSE detector cannot achieve satisfactory bit error ratio and near-far resistance, whereas artificial fish swarm algorithm (AFSA) is expert in optimization and it can realize the global convergence efficiently. Therefore, a hybrid multiuser detector based on MMSE and AFSA (MMSE-AFSA) is proposed in this paper. The result of MMSE and its modified formations are used as the initial values of artificial fishes to accelerate the speed of global convergence and reduce the iteration times for AFSA. The simulation results show that the bit error ratio and near-far resistance performances of the proposed detector are much better, compared with MF, DEC, and MMSE, and are quite close to OMD. Furthermore, the proposed MMSE-AFSA detector also has a large system capacity. PMID:24883418

  14. On-ground calibration of the ART-XC/SRG mirror system and detector unit at IKI. Part I

    NASA Astrophysics Data System (ADS)

    Pavlinsky, M.; Tkachenko, A.; Levin, V.; Krivchenko, A.; Rotin, A.; Kuznetsova, M.; Lapshov, I.; Krivonos, R.; Semena, A.; Semena, N.; Serbinov, D.; Shtykovsky, A.; Yaskovich, A.; Oleinikov, V.; Glushenko, A.; Mereminskiy, I.; Molkov, S.; Sazonov, S.; Arefiev, V.

    2018-05-01

    From October 2016 to September 2017, we performed tests of the ART-XC /SRG spare mirror system and detector unit at the 60-m-long IKI X-ray test facility. We describe some technical features of this test facility. We also present a brief description of the ART-XC mirror system and focal detectors. The nominal focal length of the ART-XC optics is 2700 mm. The field of view is determined by the combination of the mirror system and the detector unit and is equal to ˜0.31 square degrees. The declared operating energy range is 5-30 keV. During the tests, we illuminated the detector with a 55Fe+241 Am calibration source and also with a quasi-parallel X-ray beam. The calibration source is integrated into the detector's collimator. The X-ray beam was generated by a set of Oxford Instruments X-ray tubes with Cr, Cu and Mo targets and an Amptek miniature X-ray tube (Mini-X) with Ag transmission target. The detector was exposed to the X-ray beam either directly or through the mirror system. We present the obtained results on the detector's energy resolution, the muon on-ground background level and the energy dependence of the W90 value. The accuracy of a mathematical model of the ART-XC mirror system, based on ray-tracing simulations, proves to be within 3.5% in the main energy range of 4-20 keV and 5.4% in the "hard" energy range of 20-40 keV.

  15. The Litho-Density tool calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, D.; Flaum, C.; Marienbach, E.

    1983-10-01

    The Litho-Density tool (LDT) uses a gamma ray source and two NaI scintillator detectors for borehole measurement of electron density, p/SUB e/, and a quantity, P/SUB e/, which is related to the photoelectric cross section at 60 keV and therefore to the lithology of the formation. An active stabilization system controls the gains of the two detectors which permits selective gamma-ray detection. Spectral analysis is performed in the near detector (2 energy windows) and in the detector farther away from the source (3 energy windows). This paper describes the results of laboratory measurements undertaken to define the basic tool response.more » The tool is shown to provide reliable measurements of formation density and lithology under a variety of environmental conditions.« less

  16. Binary selectable detector holdoff circuit: Design, testing, and application. [to laser radar data acquisition system

    NASA Technical Reports Server (NTRS)

    Kadrmas, K. A.

    1973-01-01

    A very high speed switching circuit, part of a laser radar data acquisition system, has been designed and tested. The primary function of this circuit was to provide computer controlled switching of photodiode detector preamplifier power supply voltages, typically less than plus or minus 20 volts, in approximately 10 nanoseconds. Thus, in actual use, detector and/or detector preamplifier damage can be avoided as a result of sudden extremely large values of backscattered radiation being detected, such as might be due to short range, very thin atmospheric dust layers. Switching of the power supply voltages was chosen over direct switching the photodiode detector input to the preamplifier, based on system noise considerations. Also, the circuit provides a synchronized trigger pulse output for triggering devices such as the Biomation Model 8100 100 MHz analog to digital converter.

  17. Photon Detector System Timing Performance in the DUNE 35-ton Prototype Liquid Argon Time Projection Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, D.L.; et al.

    The 35-ton prototype for the Deep Underground Neutrino Experiment far detector was a single-phase liquid argon time projection chamber with an integrated photon detector system, all situated inside a membrane cryostat. The detector took cosmic-ray data for six weeks during the period of February 1, 2016 to March 12, 2016. The performance of the photon detection system was checked with these data. An installed photon detector was demonstrated to measure the arrival times of cosmic-ray muons with a resolution better than 32 ns, limited by the timing of the trigger system. A measurement of the timing resolution using closely-spaced calibration pulses yielded a resolution of 15 ns for pulses at a level of 6 photo-electrons. Scintillation light from cosmic-ray muons was observed to be attenuated with increasing distance with a characteristic length ofmore » $$155 \\pm 28$$ cm.« less

  18. Scanning Seismic Intrusion Detector

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1982-01-01

    Scanning seismic intrusion detector employs array of automatically or manually scanned sensors to determine approximate location of intruder. Automatic-scanning feature enables one operator to tend system of many sensors. Typical sensors used with new system are moving-coil seismic pickups. Detector finds uses in industrial security systems.

  19. Confocal laser-induced fluorescence detector for narrow capillary system with yoctomole limit of detection.

    PubMed

    Weaver, Mitchell T; Lynch, Kyle B; Zhu, Zaifang; Chen, Huang; Lu, Joann J; Pu, Qiaosheng; Liu, Shaorong

    2017-04-01

    Laser-induced fluorescence (LIF) detectors for low-micrometer and sub-micrometer capillary on-column detection are not commercially available. In this paper, we describe in details how to construct a confocal LIF detector to address this issue. We characterize the detector by determining its limit of detection (LOD), linear dynamic range (LDR) and background signal drift; a very low LOD (~70 fluorescein molecules or 12 yoctomole fluorescein), a wide LDR (greater than 3 orders of magnitude) and a small background signal drift (~1.2-fold of the root mean square noise) are obtained. For detecting analytes inside a low-micrometer and sub-micrometer capillary, proper alignment is essential. We present a simple protocol to align the capillary with the optical system and use the position-lock capability of a translation stage to fix the capillary in position during the experiment. To demonstrate the feasibility of using this detector for narrow capillary systems, we build a 2-μm-i.d. capillary flow injection analysis (FIA) system using the newly developed LIF prototype as a detector and obtain an FIA LOD of 14 zeptomole fluorescein. We also separate a DNA ladder sample by bare narrow capillary - hydrodynamic chromatography and use the LIF prototype to monitor the resolved DNA fragments. We obtain not only well-resolved peaks but also the quantitative information of all DNA fragments. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems.

    PubMed

    Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long

    2016-12-23

    This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance R SS = 10 kΩ and environmental temperatures from 25 °C to 85 °C.

  1. High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems

    PubMed Central

    Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long

    2016-01-01

    This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance RSS = 10 kΩ and environmental temperatures from 25 °C to 85 °C. PMID:28025530

  2. Measurement of the Energy-Dependent Angular Response of the ARES Detector System and Application to Aerial Imaging

    NASA Astrophysics Data System (ADS)

    Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen

    2017-07-01

    The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.

  3. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology.

    PubMed

    Akselrod, M S; Fomenko, V V; Bartz, J A; Haslett, T L

    2014-10-01

    For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Data processing and analysis for 2D imaging GEM detector system

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Kolasinski, P.; Linczuk, M.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.

    2014-11-01

    The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector for high-resolution X-ray diagnostics of magnetic confinement fusion plasmas [1]. Multi-channel measurement system and essential data processing for X-ray energy and position recognition is consider. Several modes of data acquisition are introduced depending on processing division for hardware and software components. Typical measuring issues aredeliberated for enhancement of data quality. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference X-ray source and tokamak plasma are demonstrated.

  5. Control electronics for a multi-laser/multi-detector scanning system

    NASA Technical Reports Server (NTRS)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  6. The vertex and large angle detectors of a spectrometer system for high energy muon physics

    NASA Astrophysics Data System (ADS)

    Albanese, J. P.; Allkofer, O. C.; Arneodo, M.; Aubert, J. J.; Becks, K. H.; Bee, C.; Benchouk, C.; Bernaudin, B.; Bertsch, Y.; Bianchi, F.; Bibby, J.; Bird, I.; Blum, D.; Böhm, E.; Botterill, D.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Callebaut, D.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Davis, A.; Dengler, F.; Derado, I.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Dumont, J. J.; Eckardt, V.; Edwards, A.; Edwards, M.; Falley, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gebauer, H. J.; Gössling, C.; Haas, J.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kahl, T.; Kellner, G.; Koll, J.; Korbel, V.; Krüger, J.; Landgraf, U.; Lanske, D.; Lebeau, M.; Loken, J.; Maire, M.; Manz, A.; Mermet-Guyennet, M.; Minssieux, H.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Moynot, M.; Müller, H.; Nagy, E.; Nassalski, J.; Noppe, J. M.; Norton, P. R.; Osborne, A. M.; Pascaud, C.; Paul, L.; Payre, P.; Peroni, C.; Perrot, G.; Pessard, H.; Pettingale, J.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Röhner, F.; Rondio, E.; Rousseau, M. D.; Schlagböhmer, A.; Schmitz, N.; Scaramelli, A.; Schneegans, M.; Schultze, K.; Scory, M.; Shiers, J.; Singer, G.; Sloan, T.; Smith, R.; Sproston, M.; Stier, H. E.; Stockhausen, W.; Studt, M.; Thénard, J. M.; Thiele, K.; Thompson, J. C.; De La Torre, A.; Wahlen, H.; Wallucks, W.; Watson, E.; Whalley, M.; Williams, D. A.; Williams, W. S. C.; Wimpenny, S.; Windmolders, R.; Winklmüller, G.; Wolf, G.; Zank, P.; European Muon Collaboration

    1983-07-01

    A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons.

  7. Monitoring System for the Gold Target by Radiation Detectors in Hadron Experimental Facility at J-PARC

    NASA Astrophysics Data System (ADS)

    Muto, Ryotaro; Agari, Keizo; Aoki, Kazuya; Bessho, Kotaro; Hagiwara, Masayuki; Hirose, Erina; Ieiri, Masaharu; Iwasaki, Ruri; Katoh, Yohji; Kitagawa, Jun-ichi; Minakawa, Michifumi; Morino, Yuhei; Saito, Kiwamu; Sato, Yoshinori; Sawada, Shin'ya; Shirakabe, Yoshihisa; Suzuki, Yoshihiro; Takahashi, Hitoshi; Tanaka, Kazuhiro; Toyoda, Akihisa; Watanabe, Hiroaki; Yamanoi, Yutaka

    2017-09-01

    At the Hadron Experimental Facility in J-PARC, we inject a 30-GeV proton beam into a gold target to produce secondary particle beams required for various particle and nuclear physics experiments. The gold target is placed in a hermetic chamber, and helium gas is circulated in the chamber to monitor the soundness of the target. The radioactivity in helium gas is continuously monitored by gamma-ray detectors such as a germanium detector and a NaI(Tl) detector. Beam operations with those target-monitoring systems were successfully performed from April to June and October to December 2015, and from May to June 2016. In this paper, the details of the helium gas circulation system and gamma-ray detectors and the analysis results of the obtained gamma-ray spectra are reported.

  8. Pendulum detector testing device

    DOEpatents

    Gonsalves, John M.

    1997-01-01

    A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

  9. Experiment Management System for the SND Detector

    NASA Astrophysics Data System (ADS)

    Pugachev, K.

    2017-10-01

    We present a new experiment management system for the SND detector at the VEPP-2000 collider (Novosibirsk). An important part to report about is access to experimental databases (configuration, conditions and metadata). The system is designed in client-server architecture. User interaction comes true using web-interface. The server side includes several logical layers: user interface templates; template variables description and initialization; implementation details. The templates are meant to involve as less IT knowledge as possible. Experiment configuration, conditions and metadata are stored in a database. To implement the server side Node.js, a modern JavaScript framework, has been chosen. A new template engine having an interesting feature is designed. A part of the system is put into production. It includes templates dealing with showing and editing first level trigger configuration and equipment configuration and also showing experiment metadata and experiment conditions data index.

  10. Ultra-wide Range Gamma Detector System for Search and Locate Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odell, D. Mackenzie Odell; Harpring, Larry J.; Moore, Frank S. Jr.

    2005-10-26

    Collecting debris samples following a nuclear event requires that operations be conducted from a considerable stand-off distance. An ultra-wide range gamma detector system has been constructed to accomplish both long range radiation search and close range hot sample collection functions. Constructed and tested on a REMOTEC Andros platform, the system has demonstrated reliable operation over six orders of magnitude of gamma dose from 100's of uR/hr to over 100 R/hr. Functional elements include a remotely controlled variable collimator assembly, a NaI(Tl)/photomultiplier tube detector, a proprietary digital radiation instrument, a coaxially mounted video camera, a digital compass, and both local andmore » remote control computers with a user interface designed for long range operations. Long range sensitivity and target location, as well as close range sample selection performance are presented.« less

  11. Embedded controller for GEM detector readout system

    NASA Astrophysics Data System (ADS)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek

    2013-10-01

    This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.

  12. Focal Plane Array Shutter Mechanism of the JWST NIRSpec Detector System

    NASA Technical Reports Server (NTRS)

    Hale, Kathleen; Sharma, Rajeev

    2006-01-01

    This viewgraph presentation reviews the requirements, chamber location, shutter system design, stepper motor specifications, dry lubrication, control system, the environmental cryogenic function testing and the test results of the Focal Plane Array Shutter mechanism for the James Webb Space Telescope Near Infrared Spectrum Detector system. Included are design views of the location for the Shutter Mechanism, lubricant (lubricated with Molybdenum Di Sulfide) thickness, and information gained from the cryogenic testing.

  13. A 90GHz Bolometer Camera Detector System for the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest D.; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3mm) for the 100 m Green Bank Telescope (GBT) This system will provide high sensitivity (<1mjy in 1s rapid imaging (15'x15' to 250 microJy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close packed, Nyquist-sampled array of superconducting transition edge sensor bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approx. 2.10(exp 17) W/square root Hz, the TES bolometers will provide fast linear sensitive response for high performance imaging. The detectors are read out by and 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  14. Fast modular data acquisition system for GEM-2D detector

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.

    2014-11-01

    A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.

  15. Performance of the NOνA Data Acquisition and Trigger Systems for the full 14 kT Far Detector

    NASA Astrophysics Data System (ADS)

    Norman, A.; Davies, G. S.; Ding, P. F.; Dukes, E. C.; Duyan, H.; Frank, M. J.; R. C. Group; Habig, A.; Henderson, W.; Niner, E.; Mina, R.; Moren, A.; Mualem, L.; Oksuzian, Y.; Rebel, B.; Shanahan, P.; Sheshukov, A.; Tamsett, M.; Tomsen, K.; Vinton, L.; Wang, Z.; Zamorano, B.; Zirnstien, J.

    2015-12-01

    The NOvA experiment uses a continuous, free-running, dead-timeless data acquisition system to collect data from the 14 kT far detector. The DAQ system readouts the more than 344,000 detector channels and assembles the information into an raw unfiltered high bandwidth data stream. The NOvA trigger systems operate in parallel to the readout and asynchronously to the primary DAQ readout/event building chain. The data driven triggering systems for NOvA are unique in that they examine long contiguous time windows of the high resolution readout data and enable the detector to be sensitive to a wide range of physics interactions from those with fast, nanosecond scale signals up to processes with long delayed coincidences between hits which occur at the tens of milliseconds time scale. The trigger system is able to achieve a true 100% live time for the detector, making it sensitive to both beam spill related and off-spill physics.

  16. Wideband 1.064 micrometer detector evaluation

    NASA Technical Reports Server (NTRS)

    Green, S. I.

    1975-01-01

    The performance of several candidate detectors for use as communications detectors in a 400 Mbps 1.064 micrometers laser communication system was evaluated. The results of communication system Bit Error Rate (BER) testing for the best detector of each type are summarized. Complete testing data of each type detector is presented. The 400 Mbps 1.064 micrometers communication system receiver test bed is described. The best communication system results for each detector type are included. Performance comparisons are made at 0.000001 BER, the specification level chosen for satellite laser communication links. The data is presented in two groups. The first indicates the best performance levels that can be expected on normal space laser communication system operation. The second cites the best performance levels which can be achieved by focusing the signal to diffraction limited spots on the photosensitive area.

  17. Pendulum detector testing device

    DOEpatents

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  18. An optical fiber-based flexible readout system for micro-pattern gas detectors

    NASA Astrophysics Data System (ADS)

    Li, C.; Feng, C. Q.; Zhu, D. Y.; Liu, S. B.; An, Q.

    2018-04-01

    This paper presents an optical fiber-based readout system that is intended to provide a general purpose multi-channel readout solution for various Micro-Pattern Gas Detectors (MPGDs). The proposed readout system is composed of several front-end cards (FECs) and a data collection module (DCM). The FEC exploits the capability of an existing 64-channel generic TPC readout ASIC chip, named AGET, to implement 256 channels readout. AGET offers FEC a large flexibility in gain range (4 options from 120 fC to 10 pC), peaking time (16 options from 50 ns to 1 us) and sampling freqency (100 MHz max.). The DCM contains multiple 1 Gbps optical fiber serial link interfaces that allow the system scaling up to 1536 channels with 6 FECs and 1 DCM. Further scaling up is possible through cascading of multiple DCMs, by configuring one DCM as a master while other DCMs in slave mode. This design offers a rapid readout solution for different application senario. Tests indicate that the nonlinearity of each channel is less than 1%, and the equivalent input noise charge is typically around 0.7 fC in RMS (root mean square), with a noise slope of about 0.01 fC/pF. The system level trigger rate limit is about 700 Hz in all channel readout mode. When in hit channel readout mode, supposing that typically 10 percent of channels are fired, trigger rate can go up to about 7 kHz. This system has been tested with Micromegas detector and GEM detector, confirming its capability in MPGD readout. Details of hardware and FPGA firmware design, as well as system performances, are described in the paper.

  19. Assembly and Commissioning of a Liquid Argon Detector and Development of a Slow Control System for the COHERENT Experiment

    NASA Astrophysics Data System (ADS)

    Kaemingk, Michael; Cooper, Robert; Coherent Collaboration

    2016-09-01

    COHERENT is a collaboration whose goal is to measure coherent elastic neutrino-nucleus scattering (CEvNS). COHERENT plans to deploy a suite of detectors to measure the expected number-of-neutrons squared dependence of CEvNS at the Spallation Neutron Source at Oak Ridge National Laboratory. One of these detectors is a liquid argon detector which can measure these low energy nuclear recoil interactions. Ensuring optimal functionality requires the development of a slow control system to monitor and control various aspects, such as the temperature and pressure, of these detectors. Electronics manufactured by Beckhoff, Digilent, and Arduino among others are being used to create these slow control systems. This poster will generally discuss the assembly and commissioning of this CENNS-10 liquid argon detector at Indiana University and will feature work on the slow control systems.

  20. The development and test of multi-anode microchannel array detector systems. 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1983-01-01

    The techniques and procedures for producing very-large-format pulse-counting array detector systems for use in forthcoming high-energy astrophysics facilities were defined, and the structures and performance characteristics of high-sensitivity photocathodes for use at soft X-ray wavelengths between 100 and 1 A were determined. The progress made to date in each of these areas are described and the tasks that will be undertaken when the program is continued are summarized.

  1. Lightweight biometric detection system for human classification using pyroelectric infrared detectors.

    PubMed

    Burchett, John; Shankar, Mohan; Hamza, A Ben; Guenther, Bob D; Pitsianis, Nikos; Brady, David J

    2006-05-01

    We use pyroelectric detectors that are differential in nature to detect motion in humans by their heat emissions. Coded Fresnel lens arrays create boundaries that help to localize humans in space as well as to classify the nature of their motion. We design and implement a low-cost biometric tracking system by using off-the-shelf components. We demonstrate two classification methods by using data gathered from sensor clusters of dual-element pyroelectric detectors with coded Fresnel lens arrays. We propose two algorithms for person identification, a more generalized spectral clustering method and a more rigorous example that uses principal component regression to perform a blind classification.

  2. Commissioning and validation of fluence-based 3D VMAT dose reconstruction system using new transmission detector.

    PubMed

    Nakaguchi, Yuji; Oono, Takeshi; Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai; Nakamura, Yuya

    2018-06-01

    In this study, we evaluated the basic performance of the three-dimensional dose verification system COMPASS (IBA Dosimetry). This system is capable of reconstructing 3D dose distributions on the patient anatomy based on the fluence measured using a new transmission detector (Dolphin, IBA Dosimetry) during treatment. The stability of the absolute dose and geometric calibrations of the COMPASS system with the Dolphin detector were investigated for fundamental validation. Furthermore, multileaf collimator (MLC) test patterns and a complicated volumetric modulated arc therapy (VMAT) plan were used to evaluate the accuracy of the reconstructed dose distributions determined by the COMPASS. The results from the COMPASS were compared with those of a Monte Carlo simulation (MC), EDR2 film measurement, and a treatment planning system (TPS). The maximum errors for the absolute dose and geometrical position were - 0.28% and 1.0 mm for 3 months, respectively. The Dolphin detector, which consists of ionization chamber detectors, was firmly mounted on the linear accelerator and was very stable. For the MLC test patterns, the TPS showed a > 5% difference at small fields, while the COMPASS showed good agreement with the MC simulation at small fields. However, the COMPASS produced a large error for complex small fields. For a clinical VMAT plan, COMPASS was more accurate than TPS. COMPASS showed real delivered-dose distributions because it uses the measured fluence, a high-resolution detector, and accurate beam modeling. We confirm here that the accuracy and detectability of the delivered dose of the COMPASS system are sufficient for clinical practice.

  3. Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Bo; Zhao Wei

    2008-05-15

    In breast tomosynthesis a rapid sequence of N images is acquired when the x-ray tube sweeps through different angular views with respect to the breast. Since the total dose to the breast is kept the same as that in regular mammography, the exposure used for each image of tomosynthesis is 1/N. The low dose and high frame rate pose a tremendous challenge to the imaging performance of digital mammography detectors. The purpose of the present work is to investigate the detector performance in different operational modes designed for tomosynthesis acquisition, e.g., binning or full resolution readout, the range of viewmore » angles, and the number of views N. A prototype breast tomosynthesis system with a nominal angular range of {+-}25 deg. was used in our investigation. The system was equipped with an amorphous selenium (a-Se) full field digital mammography detector with pixel size of 85 {mu}m. The detector can be read out in full resolution or 2x1 binning (binning in the tube travel direction). The focal spot blur due to continuous tube travel was measured for different acquisition geometries, and it was found that pixel binning, instead of focal spot blur, dominates the detector modulation transfer function (MTF). The noise power spectrum (NPS) and detective quantum efficiency (DQE) of the detector were measured with the exposure range of 0.4-6 mR, which is relevant to the low dose used in tomosynthesis. It was found that DQE at 0.4 mR is only 20% less than that at highest exposure for both detector readout modes. The detector temporal performance was categorized as lag and ghosting, both of which were measured as a function of x-ray exposure. The first frame lags were 8% and 4%, respectively, for binning and full resolution mode. Ghosting is negligible and independent of the frame rate. The results showed that the detector performance is x-ray quantum noise limited at the low exposures used in each view of tomosynthesis, and the temporal performance at high frame

  4. Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahasi, Kiyomi; Sato, Shigehiro; Ogawae, Akira; Onagawa, Jun

    2010-07-01

    An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  5. FELIX: The new detector readout system for the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Ryu, Soo; ATLAS TDAQ Collaboration

    2017-10-01

    After the Phase-I upgrades (2019) of the ATLAS experiment, the Front-End Link eXchange (FELIX) system will be the interface between the data acquisition system and the detector front-end and trigger electronics. FELIX will function as a router between custom serial links and a commodity switch network using standard technologies (Ethernet or Infiniband) to communicate with commercial data collecting and processing components. The system architecture of FELIX will be described and the status of the firmware implementation and hardware development currently in progress will be presented.

  6. A Novel Cosmic Ray Tagger System for Liquid Argon TPC Neutrino Detectors

    DOE PAGES

    Auger, Martin; Del Tutto, Marco; Ereditato, Antonio; ...

    2017-02-22

    The Fermilab Short Baseline Neutrino (SBN) program aims to observe and reconstruct thousands of neutrino-argon interactions with its three detectors (SBND, MicroBooNE and ICARUS-T600), using their hundred of tonnes Liquid Argon Time Projection Chambers to perform a rich physics analysis program, in particular focused in the search for sterile neutrinos. Given the relatively shallow depth of the detectors, the continuos flux of cosmic ray particles which crossing their volumes introduces a constant background which can be falsely identified as part of the event of interest. Here in this paper we present the Cosmic Ray Tagger (CRT) system, a novel techniquemore » to tag and identify these crossing particles using scintillation modules which measure their time and coordinates relative to events internal to the neutrino detector, mitigating therefore their effect in the event tracking reconstruction.« less

  7. Solid-state detector system for measuring concentrations of tritiated water vapour and other radioactive gases

    NASA Astrophysics Data System (ADS)

    Nunes, J. C.; Surette, R. A.; Wood, M. J.

    1999-08-01

    A detector system was built using a silicon photodiode plus preamplifier and a cesium iodide scintillator plus preamplifier that were commercially available. The potential of the system for measuring concentrations of tritiated water vapour in the presence of other radioactive sources was investigated. For purposes of radiation protection, the sensitivity of the detector system was considered too low for measuring tritiated water vapour concentrations in workplaces such as nuclear power plants. Nevertheless, the spectrometry capability of the system was used successfully to differentiate amongst some radioactive gases in laboratory tests. Although this relatively small system can measure radioactive noble gases as well as tritiated water vapour concentrations, its response to photons remains an issue.

  8. Separation system with a sheath-flow supported electrochemical detector

    DOEpatents

    Mathies, Richard A [Moraga, CA; Emrich, Charles A [Berkeley, CA; Singhal, Pankaj [Pasadena, CA; Ertl, Peter [Styria, AT

    2008-10-21

    An electrochemical detector including side channels associated with a separation channel of a sample component separation apparatus is provided. The side channels of the detector, in one configuration, provide a sheath-flow for an analyte exiting the separation channel which directs the analyte to the electrically developed electrochemical detector.

  9. Fire Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.

  10. Design of the cryogenic systems for the Near and Far LAr-TPC detectors of the Short-Baseline Neutrino program (SBN) at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geynisman, M.; Bremer, J.; Chalifour, M.

    The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements formore » the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.« less

  11. Design of the cryogenic systems for the Near and Far LAr-TPC detectors of the Short-Baseline Neutrino program (SBN) at Fermilab

    NASA Astrophysics Data System (ADS)

    Geynisman, M.; Bremer, J.; Chalifour, M.; Delaney, M.; Dinnon, M.; Doubnik, R.; Hentschel, S.; Kim, M. J.; Montanari, C.; Montanari, D.; Nichols, T.; Norris, B.; Sarychev, M.; Schwartz, F.; Tillman, J.; Zuckerbrot, M.

    2017-12-01

    The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ∼260 tons) and SBN’s Far Detector (SBN-FD, ∼760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.

  12. Positional glow curve simulation for thermoluminescent detector (TLD) system design

    NASA Astrophysics Data System (ADS)

    Branch, C. J.; Kearfott, K. J.

    1999-02-01

    Multi- and thin element dosimeters, variable heating rate schemes, and glow-curve analysis have been employed to improve environmental and personnel dosimetry using thermoluminescent detectors (TLDs). Detailed analysis of the effects of errors and optimization of techniques would be highly desirable. However, an understanding of the relationship between TL light production, light attenuation, and precise heating schemes is made difficult because of experimental challenges involved in measuring positional TL light production and temperature variations as a function of time. This work reports the development of a general-purpose computer code, thermoluminescent detector simulator, TLD-SIM, to simulate the heating of any TLD type using a variety of conventional and experimental heating methods including pulsed focused or unfocused lasers with Gaussian or uniform cross sections, planchet, hot gas, hot finger, optical, infrared, or electrical heating. TLD-SIM has been used to study the impact on the TL light production of varying the input parameters which include: detector composition, heat capacity, heat conductivity, physical size, and density; trapped electron density, the frequency factor of oscillation of electrons in the traps, and trap-conduction band potential energy difference; heating scheme source terms and heat transfer boundary conditions; and TL light scatter and attenuation coefficients. Temperature profiles and glow curves as a function of position time, as well as the corresponding temporally and/or spatially integrated glow values, may be plotted while varying any of the input parameters. Examples illustrating TLD system functions, including glow curve variability, will be presented. The flexible capabilities of TLD-SIM promises to enable improved TLD system design.

  13. RESPONSE OF THE GREEK EARLY WARNING SYSTEM REUTER-STOKES IONIZATION CHAMBERS TO TERRESTRIAL AND COSMIC RADIATION EVALUATED IN COMPARISON WITH SPECTROSCOPIC DATA AND TIME SERIES ANALYSIS.

    PubMed

    Leontaris, F; Clouvas, A; Xanthos, S; Maltezos, A; Potiriadis, C; Kiriakopoulos, E; Guilhot, J

    2018-02-01

    The Telemetric Early Warning System Network of the Greek Atomic Energy Commission consists mainly of a network of 24 Reuter-Stokes high-pressure ionization chambers (HPIC) for gamma dose rate measurements and covers all Greece. In the present work, the response of the Reuter-Stokes HPIC to terrestrial and cosmic radiation was evaluated in comparison with spectroscopic data obtained by in situ gamma spectrometry measurements with portable hyper pure Germanium detectors (HPGe), near the Reuter-Stokes detectors and time series analysis. For the HPIC detectors, a conversion factor for the measured absorbed dose rate in air (in nGy h-1) to the total ambient dose equivalent rate Ḣ*(10), due to terrestrial and cosmic component, was deduced by the field measurements. Time series analysis of the mean monthly dose rate (measured by the Reuter-Stokes detector in Thessaloniki, northern Greece, from 2001 to 2016) was performed with advanced statistical methods (Fast Fourier Analysis and Zhao Atlas Marks Transform). Fourier analysis reveals several periodicities (periodogram). The periodogram of the absorbed dose rate in air values was compared with the periodogram of the values measured for the same period (2001-16) and in the same location with a NaI (Tl) detector which in principle is not sensitive to cosmic radiation. The obtained results are presented and discussed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors.

    PubMed

    Jungmann, Julia H; Heeren, Ron M A

    2013-01-15

    Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Gamma-ray background induced by atmospheric neutrons

    NASA Astrophysics Data System (ADS)

    Ma, Y.-Q.

    1984-03-01

    A small piggyback detector system is used to study the reduction of gamma-ray background induced by atmospheric neutrons in the type of actively shielded gamma-ray spectroscopes. The system consists of two 1.5 x 1.5 arcsec NaI crystal units, one of which is surrounded by some neutron shield material. The results of a balloon flight in 1981 are presented. The data show that a shield of 3 cm-thick pure paraffin cannot reduce the gamma-ray background. On the contrary, it may even cause some enhancement.

  16. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2004-04-27

    A radiation detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  17. Low-mass materials and vertex detector systems

    DOE PAGES

    Cooper, William E.

    2014-01-01

    Physics requirements set the material budget and the precision and stability necessary in low-mass vertex detector systems. Operational considerations, along with physics requirements, set the operating environment to be provided and determine the heat to be removed. Representative materials for fulfilling those requirements are described and properties of the materials are tabulated. A figure of merit is proposed to aid in material selection. Multi-layer structures are examined as a method to allow material to be used effectively, thereby reducing material contributions. Lastly, comments are made on future directions to be considered in using present materials effectively and in developing newmore » materials.« less

  18. Explosives detection using photoneutrons produced by X-rays

    NASA Astrophysics Data System (ADS)

    Yang, Yigang; Li, Yuanjing; Wang, Haidong; Li, Tiezhu; Wu, Bin

    2007-08-01

    The detection of explosives has become a critical issue after recent terrorist attacks. This paper describes research on explosives detection using photoneutrons from a photoneutron convertor that consists of 20 kg heavy water in an aluminum container whose shape was optimized to most effectively convert X-rays to photoneutrons. The X-rays were produced by a 9 MeV electron accelerator with an average electron current of 100 μA, resulted in a photoneutron yield of >10 11 n/s. Monte-Carlo simulations show that the radiation field is composed of X-ray pulses, fast neutron pulses and thermal neutrons. Both the X-ray and fast neutron pulses are 5 μs wide with a 300 Hz repetition frequency. The thermal neutron flux, which is higher than 10 4 n/cm 2/s, is essentially time invariant. A time shielding circuit was developed for the spectrometry system to halt the sampling process during the intense X-ray pulses. Paraffin, boron carbide and lead were used to protect the detector from interference from the X-rays, fast neutrons, thermal neutrons and background γ-rays coming from the system materials induced by photoneutrons. 5″×5″ NaI (Tl) scintillators were chosen as the detectors to detect the photoneutrons induced γ-rays from the inspected explosive simulant. Nitrogen (6.01 cps) 10.828 MeV γ-rays were detected with one detector from a 50 kg carbamide block placed 60 cm in front of the detector. A collimator was used to reduce the number of background 10.828 MeV γ-rays coming from the nitrogen in the air to improve the signal to background ratio from 0.136 to 1.81. A detector array of seven 5″×5″ NaI (Tl) detectors was used to measure the 2-D distributions of N and H in the sample. The combination of photoneutron analysis and X-ray imaging shows promise for enhancing explosives detection capabilities.

  19. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector.

    PubMed

    Ovejero, M C; Pérez Vega-Leal, A; Gallardo, M I; Espino, J M; Selva, A; Cortés-Giraldo, M A; Arráns, R

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  20. Neutron detection using a crystal ball calorimeter

    NASA Astrophysics Data System (ADS)

    Martem'yanov, M. A.; Kulikov, V. V.; Krutenkova, A. P.

    2015-12-01

    The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describe the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.

  1. A feasibility study of a data acquisition system for a silicon strip detector with a digital readout scheme

    NASA Astrophysics Data System (ADS)

    Ikeda, Hirokazu; Ikeda, Mitsuo; Inaba, Susumu; Tanaka, Manobu

    1993-06-01

    We describe a prototype data acquisition system for a silicon strip detector, which has been developed in terms of a digital readout scheme. The system consists of a master timing generator, readout controller, and a detector emulator card on which we use custom VLSI shift registers with operating clock frequency of 30 MHz.

  2. Preventive maintenance system for the photomultiplier detector blocks of PET scanners

    DOEpatents

    Levy, A.V.; Warner, D.

    1995-01-24

    A system including a method and apparatus for preventive maintenance of PET scanner photomultiplier detector blocks is disclosed. The qualitative comparisons used in the method of the present invention to provide an indication in the form of a display or printout advising the user that the photomultiplier block is stable, intermittently unstable, or drifting unstable, and also advising of the expected date of failure of a photomultiplier block in the PET scanner. The system alerts the user to replace the defective photomultiplier block prior to catastrophic failure in a scheduled preventative maintenance program, thus eliminating expensive and unscheduled downtime of the PET scanner due to photomultiplier failure. The apparatus for carrying out the method of the present invention preferably resides in the host computer controlling a PET scanner. It includes a memory adapted for storing a record of a number of iterative adjustments that are necessary to calibrate the gain of a photomultiplier detector block i at a time t[sub 0], a time t[sub 1] and a time T, where T>t[sub 1]>t[sub 0], which is designated as Histo(i,j(t)). The apparatus also includes a processor configured by a software program or a combination of programmed RAM and ROM devices to perform a number of calculations and operations on these values, and also includes a counter for analyzing each photomultiplier detector block i=1 through I of a PET scanner. 40 figures.

  3. Preventive maintenance system for the photomultiplier detector blocks of pet scanners

    DOEpatents

    Levy, Alejandro V.; Warner, Donald

    1995-01-24

    A system including a method and apparatus for preventive maintenance of PET scanner photomultiplier detector blocks is disclosed. The quantitive comparisons used in the method of the present invention to provide an indication in the form of a display or printout advising the user that the photomultiplier block is stable, intermittently unstable, or drifting unstable, and also advising of the expected date of failure of a photomultiplier block in the PET scanner. The system alerts the user to replace the defective photomultiplier block prior to catastrophic failure in a scheduled preventative maintenance program, thus eliminating expensive and unscheduled downtime of the PET scanner due to photomultiplier failure. The apparatus for carrying out the method of the present invention preferably resides in the host computer controlling a PET scanner. It includes a memory adapted for storing a record of a number of iterative adjustments that are necessary to calibrate the gain of a photomultiplier detector block i at a time t.sub.0, a time t.sub.1 and a time T, where T>t.sub.1 >t.sub.0, which is designated as Histo(i,j(t)). The apparatus also includes a processor configured by a software program or a combination of programmed RAM and ROM devices to perform a number of calculations and operations on these values, and also includes a counter for analyzing each photomultiplier detector block i=1 through I of a PET scanner.

  4. Chopper-stabilized phase detector

    NASA Technical Reports Server (NTRS)

    Hopkins, P. M.

    1978-01-01

    Phase-detector circuit for binary-tracking loops and other binary-data acquisition systems minimizes effects of drift, gain imbalance, and voltage offset in detector circuitry. Input signal passes simultaneously through two channels where it is mixed with early and late codes that are alternately switched between channels. Code switching is synchronized with polarity switching of detector output of each channel so that each channel uses each detector for half time. Net result is that dc offset errors are canceled, and effect of gain imbalance is simply change in sensitivity.

  5. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  6. CAD tools for detector design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Womersley, J.; DiGiacomo, N.; Killian, K.

    1990-04-01

    Detailed detector design has traditionally been divided between engineering optimization for structural integrity and subsequent physicist evaluation. The availability of CAD systems for engineering design enables the tasks to be integrated by providing tools for particle simulation within the CAD system. We believe this will speed up detector design and avoid problems due to the late discovery of shortcomings in the detector. This could occur because of the slowness of traditional verification techniques (such as detailed simulation with GEANT). One such new particle simulation tool is described. It is being used with the I-DEAS CAD package for SSC detector designmore » at Martin-Marietta Astronautics and is to be released through the SSC Laboratory.« less

  7. Surgical guidance system using hand-held probe with accompanying positron coincidence detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Stanislaw; Weisenberger, Andrew G.

    A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.

  8. Minefield reconnaissance and detector system

    DOEpatents

    Butler, Millard T.; Cave, Steven P.; Creager, James D.; Johnson, Charles M.; Mathes, John B.; Smith, Kirk J.

    1994-01-01

    A multi-sensor system (10) for detecting the presence of objects on the surface of the ground or buried just under the surface, such as anti-personnel or anti-tank mines or the like. A remote sensor platform (12) has a plurality of metal detector sensors (22) and a plurality of short pulse radar sensors (24). The remote sensor platform (12) is remotely controlled from a processing and control unit (14) and signals from the remote sensor platform (12) are sent to the processing and control unit (14) where they are individually evaluated in separate data analysis subprocess steps (34, 36) to obtain a probability "score" for each of the pluralities of sensors (22, 24). These probability scores are combined in a fusion subprocess step (38) by comparing score sets to a probability table (130) which is derived based upon the historical incidence of object present conditions given that score set. A decision making rule is applied to provide an output which is optionally provided to a marker subprocess (40) for controlling a marker device (76) to mark the location of found objects.

  9. Minefield reconnaissance and detector system

    DOEpatents

    Butler, M.T.; Cave, S.P.; Creager, J.D.; Johnson, C.M.; Mathes, J.B.; Smith, K.J.

    1994-04-26

    A multi-sensor system is described for detecting the presence of objects on the surface of the ground or buried just under the surface, such as anti-personnel or anti-tank mines or the like. A remote sensor platform has a plurality of metal detector sensors and a plurality of short pulse radar sensors. The remote sensor platform is remotely controlled from a processing and control unit and signals from the remote sensor platform are sent to the processing and control unit where they are individually evaluated in separate data analysis subprocess steps to obtain a probability score for each of the pluralities of sensors. These probability scores are combined in a fusion subprocess step by comparing score sets to a probability table which is derived based upon the historical incidence of object present conditions given that score set. A decision making rule is applied to provide an output which is optionally provided to a marker subprocess for controlling a marker device to mark the location of found objects. 7 figures.

  10. Comparison of Detector Technologies for CAPS

    NASA Technical Reports Server (NTRS)

    Stockum, Jana L.

    2005-01-01

    In this paper, several different detectors are examined for use in a Comet/Asteroid Protection System (CAPS), a conceptual study for a possible future space-based system. Each detector will be examined for its future (25 years or more in the future) ability to find and track near-Earth Objects (NEOs) from a space-based detection platform. Within the CAPS study are several teams of people who each focus on different aspects of the system concept. This study s focus is on detection devices. In particular, evaluations on the following devices have been made: charge-coupled devices (CCDs), charge-injected devices (CIDs), superconducting tunneling junctions (STJs), and transition edge sensors (TESs). These devices can be separated into two main categories; the first category includes detectors that are currently being widely utilized, such as CCDs and CIDs. The second category includes experimental detectors, such as STJs and TESs. After the discussion of the detectors themselves, there will be a section devoted to the explicit use of these detectors with CAPS.

  11. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-05-01

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average detector sensitivity < NEPdet> =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.

  12. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detectormore » materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  13. Tomography of quantum detectors

    NASA Astrophysics Data System (ADS)

    Lundeen, J. S.; Feito, A.; Coldenstrodt-Ronge, H.; Pregnell, K. L.; Silberhorn, Ch.; Ralph, T. C.; Eisert, J.; Plenio, M. B.; Walmsley, I. A.

    2009-01-01

    Measurement connects the world of quantum phenomena to the world of classical events. It has both a passive role-in observing quantum systems-and an active one, in preparing quantum states and controlling them. In view of the central status of measurement in quantum mechanics, it is surprising that there is no general recipe for designing a detector that measures a given observable. Compounding this, the characterization of existing detectors is typically based on partial calibrations or elaborate models. Thus, experimental specification (that is, tomography) of a detector is of fundamental and practical importance. Here, we present the realization of quantum detector tomography. We identify the positive-operator-valued measure describing the detector, with no ancillary assumptions. This result completes the triad, state, process and detector tomography, required to fully specify an experiment. We characterize an avalanche photodiode and a photon-number-resolving detector capable of detecting up to eight photons. This creates a new set of tools for accurately detecting and preparing non-classical light.

  14. Merger of the DIAMANT Light Charge Particle Detector into the AFRODITE Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Murray, S. H. T.; Mullins, S. M.; Bark, R. A.; Gál, J.; Gueorguieva, E.; Hlatshwayo, T.; Juhász, K.; Kalinka, G.; Komati, F. S.; Krasznahorkay, A.; Lawrie, J. J.; Malwela, T.; Molnár, L.; Ntshangase, S.; Nyakó, B. M.; Pilcher, J. V.; Pucknell, V. F.; Sharpey-Schafer, J. F.; Scheurer, J. N.; Shirinda, O.; Timár, J.; Zolnai, L.

    2005-11-01

    The Chessboard section of the DIAMANT CsI detector array has been merged into the AFRODITE γ-ray spectrometer acquisition system. The details of the data acquisition merging is explained together with how consistency is maintained and ensured between the two distinct systems.

  15. Performance Evaluation of a Bedside Cardiac SPECT System

    NASA Astrophysics Data System (ADS)

    Studenski, Matthew T.; Gilland, David R.; Parker, Jason G.; Hammond, B.; Majewski, Stan; Weisenberger, Andrew G.; Popov, Vladimir

    2009-06-01

    This paper reports on the initial performance evaluation of a bedside cardiac PET/SPECT system. The system was designed to move within a hospital to image critically-ill patients, for example, those in intensive care unit (ICU) or emergency room settings, who cannot easily be transported to a conventional SPECT or PET facility. The system uses two compact (25 cm times 25 cm) detectors with pixilated NaI crystals and position sensitive PMTs. The performance is evaluated for both 140 keV (Tc-99m) and 511 keV (F-18) emitters with the system operating in single photon counting (SPECT) mode. The imaging performance metrics for both 140 keV and 511 keV included intrinsic energy resolution, spatial resolution (intrinsic, system, and reconstructed SPECT), detection sensitivity, count rate capability, and uniformity. Results demonstrated an intrinsic energy resolution of 31% at 140 keV and 23% at 511 keV, a planar intrinsic spatial resolution of 5.6 mm full width half-maximum (FWHM) at 140 keV and 6.3 mm FWHM at 511 keV, and a sensitivity of 4.15 countsmiddotmuCi-1 ldr s-1 at 140 keV and 0.67 counts ldr muCi-1 ldr s-1 at 511 keV. To further the study, a SPECT acquisition using a dynamic cardiac phantom was performed, and the resulting reconstructed images are presented.

  16. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  17. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, G.R.

    1997-12-30

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  18. Toward a real-time in vivo dosimetry system using plastic scintillation detectors

    PubMed Central

    Archambault, Louis; Briere, Tina M.; Pönisch, Falk; Beaulieu, Luc; Kuban, Deborah A.; Lee, Andrew; Beddar, Sam

    2010-01-01

    Purpose In this work, we present and validate a plastic scintillation detector (PSD) system designed for real-time multi-probe in vivo measurements. Methods and Materials The PSDs were built with a dose-sensitive volume of 0.4 mm3. PSDs were assembled into modular detector patches, each containing 5 closely packed PSDs. Continuous dose readings were performed every 150 ms, with a gap between consecutive readings of less than 0.3 ms. We first studied the effect of electron multiplication. We then assessed system performance in acrylic and anthropomorphic pelvic phantoms. Results The PSDs are compatible with clinical rectal balloons and are easily inserted into the anthropomorphic phantom. With an electron multiplication average gain factor of 40, a twofold increase in the signal-to-noise ratio was observed, making near real-time dosimetry feasible. Under calibration conditions, the PSDs agreed with ion chamber measurements to 0.08%. Precision, evaluated as a function of the total dose delivered, ranged from 2.3% at 2 cGy to 0.4% at 200 cGy. Conclusion Real-time PSD measurements are highly accurate and precise. These PSDs can be mounted onto rectal balloons, transforming these clinical devices into in vivo dose detectors without modifying current clinical practice. Real-time monitoring of the dose delivered near the rectum during prostate radiation therapy should help radiation oncologists protect this sensitive normal structure. PMID:20231074

  19. IR detector system based on high-Tc superconducting bolometer on SI membrane

    NASA Astrophysics Data System (ADS)

    Burnus, M.; Hefle, G.; Heidenblut, T.; Khrebtov, Igor A.; Laukemper, J.; Michalke, W.; Neff, H.; Schwierzi, B.; Semtchinova, O. K.; Steinbeiss, E.; Tkachenko, A. D.

    1996-06-01

    An infrared detector system based on high-T(subscript c) superconducting (HTS) membrane bolometer is reported. Superconducting transition-edge bolometer has been manufactured by silicon micromachining using an epitaxial GdBa(subscript 2)Cu(subscript 3)O(subscript 7-x) film on an epitaxial yttria- stabilized zirconia buffer layer on silicon. The active area of the element is 0.85 X 0.85 mm(superscript 2). The membrane thickness is 1 micrometers , those of the buffer layer and HTS films are 50 nm. The detectivity of bolometer, D(superscript *), is 3.8 X 10(superscript 9) cm Hz(superscript 1/2) W(superscript -1) at 84.5 K and within the frequency regime 100 < f < 300 Hz. The optical response is 580 V/W at time constant 0.4 ms. This is one of the fastest composite type HTS-bolometer ever reported. The bolometer is mounted on a metal N(subscript 2)-liquid cryostat, which fits the preamplifier. With the volume of N(subscript 2)-reservoir being 0.1 liter, the cryostat holds nitrogen for about 8 hours. Using only wire heater with constant current, the temperature stability of about 0.03 K/h is achieved. The detector system can be used in IR- Fourier spectroscopy at wavelengths longer than the typical operating range of semiconductor detectors (wavelength greater than about 20 micrometers ).

  20. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    PubMed Central

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128

  1. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

    PubMed

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-03-02

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  2. A new scintillator detector system for the quality assurance of 60Co and high-energy therapy machines.

    PubMed

    Beddar, A S

    1994-02-01

    A new single-channel detector system has been developed to perform routine quality assurance of 60Co and high-energy therapy machines. This detector is composed of an orange plastic scintillator, optically coupled to a radiation-resistant polycarbonate light pipe and a shielded silicon photodiode imbedded in a hollow solid water phantom block. No temperature and pressure corrections are required. Stability results were consistent with standard deviations fluctuating from 0.03% up to 0.09% for 60Co and from 0.05% up to 0.18% for other high energies. This device provides a quick, easy and reliable beam output check remotely, using an automatic reset based on a radiation triggering system device, storing multiple sequential readings. The reproducibility of this detector was checked on a daily and weekly basis at different energies (60Co, 6 MV and 18 MV x-rays and 6, 9, 12, 16 and 20 MeV electron beams). These results were found to be consistent with those obtained using an ion chamber. Other characteristics of this detector, including the consequences of the radiation-induced light in the light pipe (stem effect) and the radiation damage on this system are briefly discussed.

  3. Position sensitive and energy dispersive x-ray detector based on silicon strip detector technology

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.; Fink, J.; Fiutowski, T.; Krane, H.-G.; Loyer, F.; Schwamberger, A.; Świentek, K.; Venanzi, C.

    2015-04-01

    A new position sensitive detector with a global energy resolution for the entire detector of about 380 eV FWHM for 8.04 keV line at ambient temperature is presented. The measured global energy resolution is defined by the energy spectra summed over all strips of the detector, and thus it includes electronic noise of the front-end electronics, charge sharing effects, matching of parameters across the channels and other system noise sources. The target energy resolution has been achieved by segmentation of the strips to reduce their capacitance and by careful optimization of the front-end electronics. The key design aspects and parameters of the detector are discussed briefly in the paper. Excellent noise and matching performance of the readout ASIC and negligible system noise allow us to operate the detector with a discrimination threshold as low as 1 keV and to measure fluorescence radiation lines of light elements, down to Al Kα of 1.49 keV, simultaneously with measurements of the diffraction patterns. The measurement results that demonstrate the spectrometric and count rate performance of the developed detector are presented and discussed in the paper.

  4. The Underwater Spectrometric System Based on CZT Detector for Survey of the Bottom of MR Reactor Pool - 13461

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potapov, Victor; Safronov, Alexey; Ivanov, Oleg

    2013-07-01

    The underwater spectrometer system for detection of irradiated nuclear fuel on the pool bottom of the reactor was elaborated. During the development process metrological studies of CdZnTe (CZT) detectors were conducted. These detectors are designed for spectrometric measurements in high radiation fields. A mathematical model based on the Monte Carlo method was created to evaluate the capability of such a system. A few experimental models were realized and the characteristics of the spectrometric system are represented. (authors)

  5. Pulse pile-up in hard X-ray detector systems. [for solar X-rays

    NASA Technical Reports Server (NTRS)

    Datlowe, D. W.

    1975-01-01

    When pulse-height spectra are measured by a nuclear detection system at high counting rates, the probability that two or more pulses will arrive within the resolving time of the system is significant. This phenomenon, pulse pile-up, distorts the pulse-height spectrum and must be considered in the interpretation of spectra taken at high counting rates. A computational technique for the simulation of pile-up is developed. The model is examined in the three regimes where (1) the time between pulses is long compared to the detector-system resolving time, (2) the time between pulses is comparable to the resolving time, and (3) many pulses occur within the resolving time. The technique is used to model the solar hard X-ray experiment on the OSO-7 satellite; comparison of the model with data taken during three large flares shows excellent agreement. The paper also describes rule-of-thumb tests for pile-up and identifies the important detector design factors for minimizing pile-up, i.e., thick entrance windows and short resolving times in the system electronics.

  6. WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera, J; Dooley, J; Chang, S

    2015-06-15

    Purpose: Microbeam Radiation Therapy (MRT) is an experimental radiation therapy that has demonstrated a higher therapeutic ratio than conventional radiation therapy in animal studies. There are several roadblocks in translating the promising treatment technology to clinical application, one of which is the lack of a real-time, high-resolution dosimeter. Current clinical radiation detectors have poor spatial resolution and, as such, are unsuitable for measuring microbeams with submillimeter-scale widths. Although GafChromic film has high spatial resolution, it lacks the real-time dosimetry capability necessary for MRT preclinical research and potential clinical use. In this work we have demonstrated the feasibility of using amore » nanoscintillator fiber-optic detector (nanoFOD) system for real-time MRT dosimetry. Methods: A microplanar beam array is generated using a x-ray research irradiator and a custom-made, microbeam-forming collimator. The newest generation nanoFOD has an effective size of 70 µm in the measurement direction and was calibrated against a kV ion chamber (RadCal Accu-Pro) in open field geometry. We have written a computer script that performs automatic data collection with immediate background subtraction. A computer-controlled detector positioning stage is used to precisely measure the microbeam peak dose and beam profile by translating the stage during data collection. We test the new generation nanoFOD system, with increased active scintillation volume, against the previous generation system. Both raw and processed data are time-stamped and recorded to enable future post-processing. Results: The real-time microbeam dosimetry system worked as expected. The new generation dosimeter has approximately double the active volume compared to the previous generation resulting in over 900% increase in signal. The active volume of the dosimeter still provided the spatial resolution that meets the Nyquist criterion for our microbeam widths. Conclusion

  7. Cherenkov water detector NEVOD

    NASA Astrophysics Data System (ADS)

    Petrukhin, A. A.

    2015-05-01

    A unique multipurpose Cherenkov water detector, the NEVOD facility, uses quasispherical measuring modules to explore all the basic components of cosmic rays on Earth's surface, including neutrinos. Currently, the experimental complex includes the Cherenkov water detector, a calibration telescope system, and a coordinate detector. This paper traces the basic development stages of NEVOD, examines research directions, presents the results obtained, including the search for the solution to the 'muon puzzle', and discusses possible future development prospects.

  8. JSATS Detector Field Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Eric Y.; Flory, Adam E.; Lamarche, Brian L.

    2014-06-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software.more » The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values« less

  9. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  10. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  11. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  12. Fast data transmission from serial data acquisition for the GEM detector system

    NASA Astrophysics Data System (ADS)

    Kolasinski, Piotr; Pozniak, Krzysztof T.; Czarski, Tomasz; Byszuk, Adrian; Chernyshova, Maryna; Kasprowicz, Grzegorz; Krawczyk, Rafal D.; Wojenski, Andrzej; Zabolotny, Wojciech

    2015-09-01

    This article proposes new method of storing data and transferring it to PC in the X-ray GEM detector system. The whole process is performed by FPGA chips (Spartan-6 series from Xilinx). Comparing to previous methods, new approach allows to store much more data in the system. New, improved implementation of the communication algorithm significantly increases transfer rate between system and PC. In PC data is merged and processed by MATLAB. The structure of firmware implemented in the FPGAs is described.

  13. The design and performance of the ZEUS Central Tracking Detector z-by-timing system

    NASA Astrophysics Data System (ADS)

    Bailey, D. S.; Foster, B.; Heath, G. P.; Morgado, C. J. S.; Harnew, N.; Khatri, T.; Lancaster, M.; McArthur, I. C.; McFall, J. D.; Nash, J.; Shield, P. D.; Topp-Jorgensen, S.; Wilson, F. F.; Carter, R. C.; Jeffs, M. D.; Milborrow, R.; Morrissey, M. C.; Phillips, D. A.; Quinton, S. P. H.; Westlake, G.; White, D. J.; Lane, J. B.; Nixon, G.; Postranecky, M.

    1997-02-01

    The ZEUS Central Tracking Detector utilizes a time difference measurement to provide a fast determination of the z coordinate of each hit. The z-by-timing measurement is achieved by using a Time-to-Amplitude Converter which has an intrinsic timing resolution of 36 ps, has pipelined readout, and has a multihit capability of 48 ns. In order to maintain the required sub-nanosecond timing accuracy, the technique incorporates an automated self-calibration system. The readout of the z-by-timing data utilizes a fully customized timing control system which runs synchronously with the HERA beam-crossing clock, and a data acquisition system implemented on a network of Transputers. Three dimensional space-points provided by the z-by-timing system are used as input to all three levels of the ZEUS trigger and for offline track reconstruction. The average z resolution is determined to be 4.4 cm for multi-track events from positron-proton collisions in the ZEUS detector.

  14. A Multiuser Detector Based on Artificial Bee Colony Algorithm for DS-UWB Systems

    PubMed Central

    Liu, Xiaohui

    2013-01-01

    Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD) is proposed and implemented in direct-sequence ultra-wideband (DS-UWB) systems under the additive white Gaussian noise (AWGN) channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD) while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity. PMID:23983638

  15. Neutron detection using a crystal ball calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martem’yanov, M. A., E-mail: mmartemi@gmail.com; Kulikov, V. V.; Krutenkova, A. P.

    2015-12-15

    The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describemore » the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.« less

  16. Development of a real-time digital radiography system using a scintillator-type flat-panel detector

    NASA Astrophysics Data System (ADS)

    Ikeda, Shigeyuki; Suzuki, Katsumi; Ishikawa, Ken; Okajima, Kenichi

    2001-06-01

    In order to study the advantage and remaining problems of FPD (flat panel detector) for clinical use by the real-time DR (digital radiography) system, we developed a prototype system using a scintillator type FPD and which was compared with previous I.I.-CCD type real-time DR. We replaced the X- ray detector of DR-2000X from I.I.-4M (4 million pixels)-CCD camera to the scintillator type dynamic FPD(7' X 9', 127 micrometers ), which can take both radiographic and fluoroscopic images. We obtained the images of head and stomach phantoms, and discussed about the image quality with medical doctors.

  17. Development of FARICH detector for particle identification system at accelerators

    NASA Astrophysics Data System (ADS)

    Finogeev, D. A.; Kurepin, A. B.; Razin, V. I.; Reshetin, A. I.; Usenko, E. A.; Barnyakov, A. Yu.; Barnyakov, M. Yu.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kasyanenko, P. V.; Kononov, S. A.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Ovtin, I. V.; Podgornov, N. A.; Talyshev, A. A.; Danilyuk, A. F.

    2018-01-01

    Aerogel has been successfully used as a radiator in Cherenkov detectors. In 2004, a multilayer aerogel providing Cherenkov ring focusing was proposed and produced. FARICH (Focusing Aerogel Rich Imaging CHerenkov) detectors such as ARICH for Belle-II (KEK, Japan), Forward RICH for PANDA detector (FAIR, Germany), and FARICH for the Super Charm-Tau factory project (BINP, Novosibirsk) have been developed based on this aerogel. Prototypes of FARICH detector based on MRS APD and Philips DPC photosensors were developed and tested in the framework of this project. An angular resolution for Cherenkov rings of 3.6 mrad was achieved.

  18. Probing infrared detectors through energy-absorption interferometry

    NASA Astrophysics Data System (ADS)

    Moinard, Dan; Withington, Stafford; Thomas, Christopher N.

    2017-08-01

    We describe an interferometric technique capable of fully characterizing the optical response of few-mode and multi-mode detectors using only power measurements, and its implementation at 1550 nm wavelength. EnergyAbsorption Interferometry (EAI) is an experimental procedure where the system under test is excited with two coherent, phase-locked sources. As the relative phase between the sources is varied, a fringe is observed in the detector output. Iterating over source positions, the fringes' complex visibilities allow the two-point detector response function to be retrieved: this correlation function corresponds to the state of coherence to which the detector is maximally sensitive. This detector response function can then be decomposed into a set of natural modes, in which the detector is incoherently sensitive to power. EAI therefore allows the reconstruction of the individual degrees of freedom through which the detector can absorb energy, including their relative sensitivities and full spatial forms. Coupling mechanisms into absorbing structures and their underlying solidstate phenomena can thus be studied, with direct applications in improving current infrared detector technology. EAI has previously been demonstrated for millimeter wavelength. Here, we outline the theoretical basis of EAI, and present a room-temperature 1550 nm wavelength infrared experiment we have constructed. Finally, we discuss how this experimental system will allow us to study optical coupling into fiber-based systems and near-infrared detectors.

  19. Far-Infrared Blocked Impurity Band Detector Development

    NASA Technical Reports Server (NTRS)

    Hogue, H. H.; Guptill, M. T.; Monson, J. C.; Stewart, J. W.; Huffman, J. E.; Mlynczak, M. G.; Abedin, M. N.

    2007-01-01

    DRS Sensors & Targeting Systems, supported by detector materials supplier Lawrence Semiconductor Research Laboratory, is developing far-infrared detectors jointly with NASA Langley under the Far-IR Detector Technology Advancement Partnership (FIDTAP). The detectors are intended for spectral characterization of the Earth's energy budget from space. During the first year of this effort we have designed, fabricated, and evaluated pilot Blocked Impurity Band (BIB) detectors in both silicon and germanium, utilizing pre-existing customized detector materials and photolithographic masks. A second-year effort has prepared improved silicon materials, fabricated custom photolithographic masks for detector process, and begun detector processing. We report the characterization results from the pilot detectors and other progress.

  20. A new-speckle interferometry system for the MAMA detector

    NASA Technical Reports Server (NTRS)

    Horch, E.; Morgan, J. S.; Giaretta, G.; Kasle, D. B.

    1992-01-01

    We have developed a new system for making speckle observations with the multianode microchannel array (MAMA) detector. This system is a true photon-counting imaging device which records the arrival time of every detected photon and allows for reconstruction of image features near the diffraction limit of the telescope. We present a description of the system and summary of observational results obtained at the Lick Observatory 1-m reflector in 1991 September. The diffraction limit of the 1-m telescope at 5029 A is about 0.125 arcsec and we have successfully resolved the catalogued interferometric binary HD 202582 with a separation of 0.157 +/- 0.031 arcsec. A pair of stars in the open cluster Chi Persei separated by 2.65 +/- 0.22 arcsec with approximate V magnitudes 8.6 and 11.5 has also been successfully analyzed with the speckle technique.

  1. The design of high precision temperature control system for InGaAs short-wave infrared detector

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-yun; Hu, Yadong; Ni, Chen; Huang, Lin; Zhang, Aiwen; Sun, Xiao-bing; Hong, Jin

    2018-02-01

    The InGaAs Short-wave infrared detector is a temperature-sensitive device. Accurate temperature control can effectively reduce the background signal and improve detection accuracy, detection sensitivity, and the SNR of the detection system. Firstly, the relationship between temperature and detection background, NEP is analyzed, the principle of TEC and formula between cooling power, cooling current and hot-cold interface temperature difference are introduced. Then, the high precision constant current drive circuit based on triode voltage control current, and an incremental algorithm model based on deviation tracking compensation and PID control are proposed, which effectively suppresses the temperature overshoot, overcomes the temperature inertia, and has strong robustness. Finally, the detector and temperature control system are tested. Results show that: the lower of detector temperature, the smaller the temperature fluctuation, the higher the detection accuracy and the detection sensitivity. The temperature control system achieves the high temperature control with the temperature control rate is 7 8°C/min and the temperature fluctuation is better than +/-0. 04°C.

  2. Interior micro-CT with an offset detector

    PubMed Central

    Sharma, Kriti Sen; Gong, Hao; Ghasemalizadeh, Omid; Yu, Hengyong; Wang, Ge; Cao, Guohua

    2014-01-01

    Purpose: The size of field-of-view (FOV) of a microcomputed tomography (CT) system can be increased by offsetting the detector. The increased FOV is beneficial in many applications. All prior investigations, however, have been focused to the case in which the increased FOV after offset-detector acquisition can cover the transaxial extent of an object fully. Here, the authors studied a new problem where the FOV of a micro-CT system, although increased after offset-detector acquisition, still covers an interior region-of-interest (ROI) within the object. Methods: An interior-ROI-oriented micro-CT scan with an offset detector poses a difficult reconstruction problem, which is caused by both detector offset and projection truncation. Using the projection completion techniques, the authors first extended three previous reconstruction methods from offset-detector micro-CT to offset-detector interior micro-CT. The authors then proposed a novel method which combines two of the extended methods using a frequency split technique. The authors tested the four methods with phantom simulations at 9.4%, 18.8%, 28.2%, and 37.6% detector offset. The authors also applied these methods to physical phantom datasets acquired at the same amounts of detector offset from a customized micro-CT system. Results: When the detector offset was small, all reconstruction methods showed good image quality. At large detector offset, the three extended methods gave either visible shading artifacts or high deviation of pixel value, while the authors’ proposed method demonstrated no visible artifacts and minimal deviation of pixel value in both the numerical simulations and physical experiments. Conclusions: For an interior micro-CT with an offset detector, the three extended reconstruction methods can perform well at a small detector offset but show strong artifacts at a large detector offset. When the detector offset is large, the authors’ proposed reconstruction method can outperform the three

  3. Benchmark Gamma Spectroscopy Measurements of Uranium Hexafluoride in Aluminmum Pipe with a Sodium Iodide Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March-Leuba, Jose A; Uckan, Taner; Gunning, John E

    2010-01-01

    monitor (FM) and an enrichment monitor (EM). Development of the FM is primarily the responsibility of Oak Ridge National Laboratory, and development of the EM is primarily the responsibility of Los Alamos National Laboratory. The FM will measure {sup 235}U mass flow rate by combining information from measuring the UF{sub 6} volumetric flow rate and the {sup 235}U density. The UF{sub 6} flow rate will be measured using characteristics of the process pumps used in product and tail UF{sub 6} header process lines of many GCEPs, and the {sup 235}U density will be measured using commercially available sodium iodide (NaI) gamma ray scintillation detectors. This report describes the calibration of the portion of the FM that measures the {sup 235}U density. Research has been performed to define a methodology and collect data necessary to perform this calibration without the need for plant declarations. The {sup 235}U density detector is a commercially available system (GammaRad made by Amptek, www.amptek.com) that contains the NaI crystal, photomultiplier tube, signal conditioning electronics, and a multichannel analyzer (MCA). Measurements were made with the detector system installed near four {sup 235}U sources. Two of the sources were made of solid uranium, and the other two were in the form of UF{sub 6} gas in aluminum piping. One of the UF{sub 6} gas sources was located at ORNL and the other at LANL. The ORNL source consisted of two pipe sections (schedule 40 aluminum pipe of 4-inch and 8-inch outside diameter) with 5.36% {sup 235}U enrichment, and the LANL source was a 4-inch schedule 40 aluminum pipe with 3.3% {sup 235}U enrichment. The configurations of the detector on these test sources, as well as on long straight pipe configurations expected to exist at GCEPs, were modeled using the computer code MCNP. The results of the MCNP calculations were used to define geometric correction factors between the test source and the GCEP application. Using these geometric correction

  4. A bench-top megavoltage fan-beam CT using CdWO4-photodiode detectors. I. System description and detector characterization.

    PubMed

    Rathee, S; Tu, D; Monajemi, T T; Rickey, D W; Fallone, B G

    2006-04-01

    We describe the components of a bench-top megavoltage computed tomography (MVCT) scanner that uses an 80-element detector array consisting of CdWO4 scintillators coupled to photodiodes. Each CdWO4 crystal is 2.75 x 8 x 10 mm3. The detailed design of the detector array, timing control, and multiplexer are presented. The detectors show a linear response to dose (dose rate was varied by changing the source to detector distance) with a correlation coefficient (R2) nearly unity with the standard deviation of signal at each dose being less than 0.25%. The attenuation of a 6 MV beam by solid water measured by this detector array indicates a small, yet significant spectral hardening that needs to be corrected before image reconstruction. The presampled modulation transfer function is strongly affected by the detector's large pitch and a large improvement can be obtained by reducing the detector pitch. The measured detective quantum efficiency at zero spatial frequency is 18.8% for 6 MV photons which will reduce the dose to the patient in MVCT applications. The detector shows a less than a 2% reduction in response for a dose of 24.5 Gy accumulated in 2 h; however, the lost response is recovered on the following day. A complete recovery can be assumed within the experimental uncertainty (standard deviation <0.5%); however, any smaller permanent damage could not be assessed.

  5. Environmental testing of high Tc superconductive thermal isolators for space-borne cryogenic detector systems

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Buckley, John D.; Randolf, Henry W.; Verbelyi, Darren; Haertling, Gene H.; Hooker, Matthew W.; Selim, Raouf; Caton, Randall

    1992-01-01

    Thick films of superconductive material on low thermal conductivity substrates (e.g., yttria-stabilized zirconia and fused silica) are considered as a replacement for the existing electrical connections between the detector array and data acquisition and storage electronics in the cryogenic detector systems being developed by NASA. The paper describes some of the design constraints on the superconducting device and presents results of a preliminary analysis of the effects of vibration, gamma irradiation, and long-term exposure to high vacuum and liquid nitrogen encountered in operating such a device in space.

  6. Simulation Model of Mobile Detection Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunds, T; Faissol, D; Yao, Y

    2009-01-27

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped withmore » 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector

  7. Directional radiation detectors

    DOEpatents

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  8. Microwave life detector for buried victims using neutrodyning loop based system

    NASA Astrophysics Data System (ADS)

    Tahar J., Bel Hadj

    2009-07-01

    This paper describes a new design of an electromagnetic life detector for the detection of buried victims. The principle of the microwave life sensor is based on the detection of the modulated part of a scattered wave which is generated by the breathing activity of the victim. Those movements generate a spectral component located in the low frequency range, which for most of the cases, is located in a spectrum extending from 0.18 Hz to 0.34 Hz. The detection process requires high sensitivity with respect to breathing movements and, simultaneously, a relative insensitivity for other non-modulated or modulated parasitic signals. Developed microwave system, generating a frequency adjustable between 500 MHz and 1 GHz, is based on a neutrodyning loop required to cancel any non-modulated background and reflected signals in order to get better receiver sensitivity without introducing supplementary distortions on the received signal. Life signal is considered practically periodic that facilitates the extraction of this spectral component using several processing techniques, such as adaptive filtering and correlation permitting to ameliorate the detection range to be more than 15 m in low-loss medium. Detection range is a fundamental parameter for a microwave life detector. A range around 1 m doesn't have a large interest for this application. To attain a range more than 15 m, while guaranteeing professional performances, the technology has to optimize the system parameters as well as the involved signal processing for the purpose of overcoming the presence of obstacles, attenuation, and noise perturbation. This constitutes the main contribution of the present work. Experimental measurements have confirmed the potentiality of this microwave technique for life detector with best space covering detection.

  9. X-ray and gamma ray detector readout system

    DOEpatents

    Tumer, Tumay O; Clajus, Martin; Visser, Gerard

    2010-10-19

    A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.

  10. Tracking the NOvA Detectors' Performance

    NASA Astrophysics Data System (ADS)

    Psihas, Fernanda; NOvA Collaboration

    2016-03-01

    The NOvA experiment measures long baseline νμ -->νe oscillations in Fermilab's NuMI beam. We employ two detectors equipped with over 10 thousand sets of data-taking electronics; avalanche photo diodes and front end boards which collect and process the scintillation signal from particle interactions within the detectors. These sets of electronics -as well as the systems which power and cool them- must be monitored and maintained at precise working conditions to ensure maximal data-taking uptime, good data quality and a lasting life for our detectors. This poster describes the automated systems used on NOvA to simultaneously monitor our data quality, diagnose hardware issues, track our performance and coordinate maintenance for the detectors.

  11. Stressed detector arrays for airborne astronomy

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.

    1989-01-01

    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.

  12. A Low-Cost Liquid-Chromatography System Using a Spectronic 20-Based Detector.

    ERIC Educational Resources Information Center

    Jezorek, John R.; And Others

    1986-01-01

    Describes the design and evaluation of a Spectronic 20-based detector as well as a simple system for postcolumn derivatization useful for metal-ion chromatographic detection. Both detection and derivatization can be performed in the ultra-violet (UV) mode using a low-cost UV-visible spectrophotometer and UV-region derivatization reagents. (JN)

  13. Topological detector: measuring continuous dosimetric quantities with few-element detector array.

    PubMed

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-21

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  14. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Aquaculture Thesaurus: Descriptors Used in the National Aquaculture Information System.

    ERIC Educational Resources Information Center

    Lanier, James A.; And Others

    This document provides a listing of descriptors used in the National Aquaculture Information System (NAIS), a computer information storage and retrieval system on marine, brackish, and freshwater organisms. Included are an explanation of how to use the document, subject index terms, and a brief bibliography of the literature used in developing the…

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinmann-Smith, Robert

    The identiFINDER2 is an easily portable handheld NaI gamma detector. The IAEA uses the safeguards version of the identiFINDER2 and calls it the HM-5. The HM-5 has built in software to analyze the detection signal specifically for IAEA verification applications.

  17. Progress in the development of a S-RETGEM-based detector for an early forest fire warning system

    NASA Astrophysics Data System (ADS)

    Charpak, G.; Benaben, P.; Breuil, P.; Martinengo, P.; Nappi, E.; Peskov, V.

    2009-12-01

    We present a prototype of a Strip Resistive Thick GEM (S-RETGEM) photosensitive gaseous detector filled with Ne and ethylferrocene (EF) vapours at a total pressure of 1 atm for an early forest fire detection system. Measurements show that it is one hundred times more sensitive than the best commercial ultraviolet (UV) flame detectors; and therefore, it is able to reliably detect a flame of ~ 1.5 × 1.5 × 1.5 m3 at a distance of about 1 km. An additional and unique feature of this detector is its imaging capability, which in combination with other techniques, may significantly reduce false fire alarms rate when operating in an automatic mode. Preliminary results conducted with air-filled photosensitive gaseous detectors are also presented. The main advantages of this approach include both the simplicity of manufacturing and affordability of construction materials such as plastics and glues specifically reducing detector production cost. The sensitivity of these air-filled detectors at certain conditions may be as high as those filled with Ne and EF. Long-term tests of such sealed detectors indicate a significant progress in this direction. We believe that our detectors utilized in addition to other flame and smoke sensors will exceptionally increase the capability to detect forest fire at a very early stage of development. Our future efforts will be focused on attempts to commercialize such detectors utilizing our aforementioned findings.

  18. Prototype readout system for a multi Mpixels UV single-photon imaging detector capable of space flight operation

    NASA Astrophysics Data System (ADS)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2018-02-01

    Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.

  19. Generalized two-dimensional (2D) linear system analysis metrics (GMTF, GDQE) for digital radiography systems including the effect of focal spot, magnification, scatter, and detector characteristics.

    PubMed

    Jain, Amit; Kuhls-Gilcrist, Andrew T; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen

    2010-03-01

    The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks.

  20. A novel pixellated solid-state photon detector for enhancing the Everhart-Thornley detector.

    PubMed

    Chuah, Joon Huang; Holburn, David

    2013-06-01

    This article presents a pixellated solid-state photon detector designed specifically to improve certain aspects of the existing Everhart-Thornley detector. The photon detector was constructed and fabricated in an Austriamicrosystems 0.35 µm complementary metal-oxide-semiconductor process technology. This integrated circuit consists of an array of high-responsivity photodiodes coupled to corresponding low-noise transimpedance amplifiers, a selector-combiner circuit and a variable-gain postamplifier. Simulated and experimental results show that the photon detector can achieve a maximum transimpedance gain of 170 dBΩ and minimum bandwidth of 3.6 MHz. It is able to detect signals with optical power as low as 10 nW and produces a minimum signal-to-noise ratio (SNR) of 24 dB regardless of gain configuration. The detector has been proven to be able to effectively select and combine signals from different pixels. The key advantages of this detector are smaller dimensions, higher cost effectiveness, lower voltage and power requirements and better integration. The photon detector supports pixel-selection configurability which may improve overall SNR and also potentially generate images for different analyses. This work has contributed to the future research of system-level integration of a pixellated solid-state detector for secondary electron detection in the scanning electron microscope. Copyright © 2013 Wiley Periodicals, Inc.

  1. Closed-loop pulsed helium ionization detector

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  2. Gaseous leak detector

    DOEpatents

    Juravic, Jr., Frank E.

    1988-01-01

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  3. OSIRIS-REx OCAMS detector assembly characterization

    NASA Astrophysics Data System (ADS)

    Hancock, J.; Crowther, B.; Whiteley, M.; Burt, R.; Watson, M.; Nelson, J.; Fellows, C.; Rizk, B.; Kinney-Spano, E.; Perry, M.; Hunten, M.

    2013-09-01

    The OSIRIS-REx asteroid sample return mission carries a suite of three cameras referred to as OCAMS. The Space Dynamics Laboratory (SDL) at Utah State University is providing the CCD-based detector assemblies for OCAMS to the Lunar Planetary Lab (LPL) at the University of Arizona. Working with the LPL, SDL has designed the electronics to operate a 1K by 1K frame transfer Teledyne DALSA Multi-Pinned Phase (MPP) CCD. The detector assembly electronics provides the CCD clocking, biasing, and digital interface with the OCAMS payload Command Control Module (CCM). A prototype system was built to verify the functionality of the detector assembly design and to characterize the detector system performance at the intended operating temperatures. The characterization results are described in this paper.

  4. A balloon-borne instrument for high-resolution astrophysical spectroscopy in the 20-8000 keV energy range

    NASA Technical Reports Server (NTRS)

    Paciesas, W. S.; Baker, R.; Boclet, D.; Brown, S.; Cline, T.; Costlow, H.; Durouchoux, P.; Ehrmann, C.; Gehrels, N.; Hameury, J. M.

    1983-01-01

    The Low Energy Gamma ray Spectrometer (LEGS) is designed to perform fine energy resolution measurements of astrophysical sources. The instrument is configured for a particular balloon flight with either of two sets of high purity germanium detectors. In one configuration, the instrument uses an array of three coaxial detectors (effective volume equal to or approximately 230 cubic cm) inside an NaI (T1) shield and collimator (field of view equal to or approximately 16 deg FWHM) and operates in the 80 to 8000 keV energy range. In the other configuration, three planar detectors (effective area equal to or approximately square cm) surrounded by a combination of passive Fe and active NaI for shielding and collimation (field of view equal to or approximately 5 deg x 10 deg FWHM) are optimized for the 20 to 200 keV energy range. In a typical one day balloon flight, LEGS sensitivity limit (3 sigma) for narrow line features is less than or approximately .0008 ph/cm/s square (coaxial array: 80 to 2000 keV) and less than or approximately .0003 ph/square cm/s (planar array: 50 to 150 keV).

  5. Predicted performance of a PG-SPECT system using CZT primary detectors and secondary Compton-suppression anti-coincidence detectors under near-clinical settings for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Hales, Brian; Katabuchi, Tatsuya; Igashira, Masayuki; Terada, Kazushi; Hayashizaki, Noriyosu; Kobayashi, Tooru

    2017-12-01

    A test version of a prompt-gamma single photon emission computed tomography (PG-SPECT) system for boron neutron capture therapy (BNCT) using a CdZnTe (CZT) semiconductor detector with a secondary BGO anti-Compton suppression detector has been designed. A phantom with healthy tissue region of pure water, and 2 tumor regions of 5 wt% borated polyethylene was irradiated to a fluence of 1.3 × 109 n/cm2. The number of 478 keV foreground, background, and net counts were measured for each detector position and angle. Using only experimentally measured net counts, an image of the 478 keV production from the 10B(n , α) 7Li* reaction was reconstructed. Using Monte Carlo simulation and the experimentally measured background counts, the reliability of the system under clinically accurate parameters was extrapolated. After extrapolation, it was found that the value of the maximum-value pixel in the reconstructed 478 keV γ-ray production image overestimates the simulated production by an average of 9.2%, and that the standard deviation associated with the same value is 11.4%.

  6. Centroid measurement error of CMOS detector in the presence of detector noise for inter-satellite optical communications

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Shihong; Ma, Jing; Tan, Liying; Shen, Tao

    2013-08-01

    CMOS is a good candidate tracking detector for satellite optical communications systems with outstanding feature of sub-window for the development of APS (Active Pixel Sensor) technology. For inter-satellite optical communications it is critical to estimate the direction of incident laser beam precisely by measuring the centroid position of incident beam spot. The presence of detector noise results in measurement error, which degrades the tracking performance of systems. In this research, the measurement error of CMOS is derived taking consideration of detector noise. It is shown that the measurement error depends on pixel noise, size of the tracking sub-window (pixels number), intensity of incident laser beam, relative size of beam spot. The influences of these factors are analyzed by numerical simulation. We hope the results obtained in this research will be helpful in the design of CMOS detector satellite optical communications systems.

  7. Compact Full-Field Ion Detector System for SmallSats Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.; McNeil, Roger R.

    2014-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide multi-directional, comprehensive (composition, velocity, and direction) in-situ measurements of heavy ions in space plasma environments.

  8. Electronics of the data acquisition system of the DANSS detector based on silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Svirida, D.

    2018-01-01

    The electronics of the data acquisition system based on silicon photomultipliers is briefly described. The elements and modules of the system were designed and constructed at ITEP especially for the DANSS detector. Examples of digitized signals obtained with the presented electronic modules and selected results on processing of the DANSS engineering data-taking run in spring 2016 are given.

  9. Improved LabPET Detectors Using Lu1.8Gd0.2SiO5:Ce (LGSO) Scintillator Blocks

    NASA Astrophysics Data System (ADS)

    Bergeron, Mélanie; Pepin, Catherine M.; Cadorette, Jules; Loignon-Houle, Francis; Fontaine, Réjean; Lecomte, Roger

    2015-02-01

    The scintillator is one of the key building blocks that critically determine the physical performance of PET detectors. The quest for scintillation crystals with improved characteristics has been crucial in designing scanners with superior imaging performance. Recently, it was shown that the decay time constant of high lutetium content Lu1.8Gd0.2SiO5: Ce (LGSO) scintillators can be adjusted by varying the cerium concentration from 0.025 mol% to 0.75 mol%, thus providing interesting characteristics for phoswich detectors. The high light output (90%-120% NaI) and the improved spectral match of these scintillators with avalanche photodiode (APD) readout promise superior energy and timing resolutions. Moreover, their improved mechanical properties, as compared to conventional LGSO ( Lu0.4Gd1.6SiO5: Ce), make block array manufacturing readily feasible. To verify these assumptions, new phoswich block arrays made of LGSO-90%Lu with low and high mol% Ce concentrations were fabricated and assembled into modules dedicated to the LabPET scanner. Typical crystal decay time constants were 31 ns and 47 ns, respectively. Phoswich crystal identification performed using a digital pulse shape discrimination algorithm yielded an average 8% error. At 511 keV, an energy resolution of 17-21% was obtained, while coincidence timing resolution between 4.6 ns and 5.2 ns was achieved. The characteristics of this new LGSO-based phoswich detector module are expected to improve the LabPET scanner performance. The higher stopping power would increase the detection efficiency. The better timing resolution would also allow the use of a narrower coincidence window, thus minimizing the random event rate. Altogether, these two improvements will significantly enhance the noise equivalent count rate performance of an all LGSO-based LabPET scanner.

  10. Conversion of mammographic images to appear with the noise and sharpness characteristics of a different detector and x-ray system.

    PubMed

    Mackenzie, Alistair; Dance, David R; Workman, Adam; Yip, Mary; Wells, Kevin; Young, Kenneth C

    2012-05-01

    Undertaking observer studies to compare imaging technology using clinical radiological images is challenging due to patient variability. To achieve a significant result, a large number of patients would be required to compare cancer detection rates for different image detectors and systems. The aim of this work was to create a methodology where only one set of images is collected on one particular imaging system. These images are then converted to appear as if they had been acquired on a different detector and x-ray system. Therefore, the effect of a wide range of digital detectors on cancer detection or diagnosis can be examined without the need for multiple patient exposures. Three detectors and x-ray systems [Hologic Selenia (ASE), GE Essential (CSI), Carestream CR (CR)] were characterized in terms of signal transfer properties, noise power spectra (NPS), modulation transfer function, and grid properties. The contributions of the three noise sources (electronic, quantum, and structure noise) to the NPS were calculated by fitting a quadratic polynomial at each spatial frequency of the NPS against air kerma. A methodology was developed to degrade the images to have the characteristics of a different (target) imaging system. The simulated images were created by first linearizing the original images such that the pixel values were equivalent to the air kerma incident at the detector. The linearized image was then blurred to match the sharpness characteristics of the target detector. Noise was then added to the blurred image to correct for differences between the detectors and any required change in dose. The electronic, quantum, and structure noise were added appropriate to the air kerma selected for the simulated image and thus ensuring that the noise in the simulated image had the same magnitude and correlation as the target image. A correction was also made for differences in primary grid transmission, scatter, and veiling glare. The method was validated by

  11. Mobile, hybrid Compton/coded aperture imaging for detection, identification and localization of gamma-ray sources at stand-off distances

    NASA Astrophysics Data System (ADS)

    Tornga, Shawn R.

    The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as

  12. Radioisotope measurement of selected parameters of liquid-gas flow using single detector system

    NASA Astrophysics Data System (ADS)

    Zych, Marcin; Hanus, Robert; Jaszczur, Marek; Mosorov, Volodymyr; Świsulski, Dariusz

    2018-06-01

    To determine the parameters of two-phase flows using radioisotopes, usually two detectors are used. Knowing the distance between them, the velocity of the dispersed phase is calculated based on time delay estimation. Such a measurement system requires the use of two gamma-ray sealed sources. But in some situations it is also possible to determine velocity of dispersed phase using only one scintillation probe and one gamma-ray source. However, this requires proper signal analysis and prior calibration. This may also cause larger measurement errors. On the other hand, it allows measurements in hard to reach areas where there is often no place for the second detector. Additionally, by performing a previous calibration, it is possible to determine the void fraction or concentration of the selected phase. In this work an autocorrelation function was used to analyze the signal from the scintillation detector, which allowed for the determination of air velocities in slug and plug flows with an accuracy of 8.5%. Based on the analysis of the same signal, a void fraction with error of 15% was determined.

  13. Influence of detector noise and background noise on detection-system

    NASA Astrophysics Data System (ADS)

    Song, Yiheng; Wang, Zhiyong

    2018-02-01

    Study the noise by detectors and background light ,we find that the influence of background noise on the detection is more than that of itself. Therefore, base on the fiber coupled beam splitting technique, the small area detector is used to replace the large area detector. It can achieve high signal-to-noise ratio (SNR) and reduce the speckle interference of the background light. This technique is expected to solve the bottleneck of large field of view and high sensitivity.

  14. A portable gas recirculation unit for gaseous detectors

    NASA Astrophysics Data System (ADS)

    Guida, R.; Mandelli, B.

    2017-10-01

    The use of greenhouse gases (usually C2H2F4, CF4 and SF6) is sometimes necessary to achieve the required performance for some gaseous detectors. The consumption of these gases in the LHC systems is reduced by recycling the gas mixture thanks to a complex gas recirculation system. Beyond greenhouse gas consumption due to LHC systems, a considerable contribution is generated by setups used for LHC detector upgrade projects, R&D activities, detector quality assurance or longevity tests. In order to minimise this emission, a new flexible and portable gas recirculation unit has been developed. Thanks to its low price, flexibility and user-friendly operation it can be easily adapted for the different types of detector systems and set-ups.

  15. Evaluation of detector dynamic range in the x-ray exposure domain in mammography: a comparison between film-screen and flat panel detector systems.

    PubMed

    Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V

    2003-10-01

    Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.

  16. Suspension-thermal noise in spring–antispring systems for future gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Harms, Jan; Mow-Lowry, Conor M.

    2018-01-01

    Spring–antispring systems have been investigated in the context of low-frequency seismic isolation in high-precision optical experiments. These systems provide the possibility to tune the fundamental resonance frequency to, in principle, arbitrarily low values, and at the same time maintain a compact design. It was argued though that thermal noise in spring–antispring systems would not be as small as one may naively expect from lowering the fundamental resonance frequency. In this paper, we present calculations of suspension-thermal noise for spring–antispring systems potentially relevant in future gravitational-wave detectors, i.e. the beam-balance tiltmeter, and the Roberts linkage. We find a concise expression of the suspension-thermal noise spectrum, which assumes a form very similar to the well-known expression for a simple pendulum. For systems such as the Roberts linkage foreseen as passive seismic isolation, we find that while they can provide strong seismic isolation due to a very low fundamental resonance frequency, their thermal noise is determined by the dimension of the system and is insensitive to fine-tunings of the geometry that can strongly influence the resonance frequency. By analogy, i.e. formal similarity of the equations of motion, this is true for all horizontal mechanical isolation systems with spring–antispring dynamics. This imposes strict requirements on mechanical spring–antispring systems for seismic isolation in potential future low-frequency gravitational-wave detectors as we discuss for the four main concepts, atom-interferometric, superconducting, torsion-bars, and conventional laser interferometer, and generally suggests that thermal noise needs to be evaluated carefully for high-precision experiments implementing spring–antispring dynamics.

  17. Multi-detector system approach for unattended uranium enrichment monitoring at gas centrifuge enrichment plants

    NASA Astrophysics Data System (ADS)

    Favalli, A.; Lombardi, M.; MacArthur, D. W.; McCluskey, C.; Moss, C. E.; Paffett, M. T.; Ianakiev, K. D.

    2018-01-01

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. We describe our research to develop such a passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. We present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.

  18. Performance Evaluation of a Bedside Cardiac SPECT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.T. Studenski, D.R. Gilland, J.G. Parker, B. Hammond, S. Majewski, A.G. Weisenberger, V. Popov

    This paper reports on the initial performance evaluation of a bedside cardiac PET/SPECT system. The system was designed to move within a hospital to image critically-ill patients, for example, those in intensive care unit (ICU) or emergency room settings, who cannot easily be transported to a conventional SPECT or PET facility. The system uses two compact (25 cm times 25 cm) detectors with pixilated NaI crystals and position sensitive PMTs. The performance is evaluated for both 140 keV (Tc-99m) and 511 keV (F-18) emitters with the system operating in single photon counting (SPECT) mode. The imaging performance metrics for bothmore » 140 keV and 511 keV included intrinsic energy resolution, spatial resolution (intrinsic, system, and reconstructed SPECT), detection sensitivity, count rate capability, and uniformity. Results demonstrated an intrinsic energy resolution of 31% at 140 keV and 23% at 511 keV, a planar intrinsic spatial resolution of 5.6 mm full width half-maximum (FWHM) at 140 keV and 6.3 mm FWHM at 511 keV, and a sensitivity of 4.15 countsmiddotmuCi-1 ldr s-1 at 140 keV and 0.67 counts ldr muCi-1 ldr s-1 at 511 keV. To further the study, a SPECT acquisition using a dynamic cardiac phantom was performed, and the resulting reconstructed images are presented.« less

  19. Towards monolithic scintillator based TOF-PET systems: practical methods for detector calibration and operation.

    PubMed

    Borghi, Giacomo; Tabacchini, Valerio; Schaart, Dennis R

    2016-07-07

    Gamma-ray detectors based on thick monolithic scintillator crystals can achieve spatial resolutions  <2 mm full-width-at-half-maximum (FWHM) and coincidence resolving times (CRTs) better than 200 ps FWHM. Moreover, they provide high sensitivity and depth-of-interaction (DOI) information. While these are excellent characteristics for clinical time-of-flight (TOF) positron emission tomography (PET), the application of monolithic scintillators has so far been hampered by the lengthy and complex procedures needed for position- and time-of-interaction estimation. Here, the algorithms previously developed in our group are revised to make the calibration and operation of a large number of monolithic scintillator detectors in a TOF-PET system practical. In particular, the k-nearest neighbor (k-NN) classification method for x,y-position estimation is accelerated with an algorithm that quickly preselects only the most useful reference events, reducing the computation time for position estimation by a factor of ~200 compared to the previously published k-NN 1D method. Also, the procedures for estimating the DOI and time of interaction are revised to enable full detector calibration by means of fan-beam or flood irradiations only. Moreover, a new technique is presented to allow the use of events in which some of the photosensor pixel values and/or timestamps are missing (e.g. due to dead time), so as to further increase system sensitivity. The accelerated methods were tested on a monolithic scintillator detector specifically developed for clinical PET applications, consisting of a 32 mm  ×  32 mm  ×  22 mm LYSO : Ce crystal coupled to a digital photon counter (DPC) array. This resulted in a spatial resolution of 1.7 mm FWHM, an average DOI resolution of 3.7 mm FWHM, and a CRT of 214 ps. Moreover, the possibility of using events missing the information of up to 16 out of 64 photosensor pixels is shown. This results in only a small

  20. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  1. Implementing metal detector technology and a navigation system in the removal of shrapnel.

    PubMed

    Peleg, Eran; Harari, Meytal; Liebergall, Meir; Mosheiff, Rami

    2009-01-01

    The removal of metal shrapnel in the sub-acute phase of casualty treatment requires the utmost accuracy in detection and removal, especially when there is proximity to major neurovascular structures. Inability to successfully locate and remove retained fragments may lead to a variety of complications due to fragment migration. In this study we prove the feasibility of a new technique which uses metal detector technology combined with a surgical navigation system, resulting in improved accuracy and decreased operating time. In each of the experiments, 6 metal nuts were inserted into a dummy leg to simulate shrapnel wounds. Two major experiments were then conducted. Experiment 1 was a comparison of two methods: (a) localization of the nuts using surgical navigation alone, and (b) localization by means of metal detector technology combined with a surgical navigation system (StealthStation® TREON® plus). Experiment 2 employed the same two methods, but this time migration of the metal fragments was introduced. The localization time was measured from incision of the dummy skin to the moment the metal fragment was touched by the searching device. In experiment 1 the results showed no significant differences between the two approaches. In experiment 2 the new technique was found to significantly decrease the mean fragment localization time, taking 9.6 seconds (±7.2 seconds) as compared to 26.4 seconds (±13.8 seconds) when using the regular technique. Combining a metal detector probe and a surgical navigation system was found to significantly decrease operating time and increase the surgeon's confidence, especially in cases where migration of the metal fragment occurred during searching and extraction.

  2. Preliminary Experiments with a Triple-Layer Phoswich Detector for Radioxenon Detection

    DTIC Science & Technology

    2008-09-01

    Figure 7b; with a significant attenuation which was predicted by our MCNP modeling (Farsoni et al., 2007). The 81 keV peak in the NaI spectrum has a...analysis technique and confirmed our previous MCNP modeling. Our future work includes use of commercially available radioxenon gas (133Xe) to test

  3. The Maia Spectroscopy Detector System: Engineering for Integrated Pulse Capture, Low-Latency Scanning and Real-Time Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkham, R.; Siddons, D.; Dunn, P.A.

    2010-06-23

    The Maia detector system is engineered for energy dispersive x-ray fluorescence spectroscopy and elemental imaging at photon rates exceeding 10{sup 7}/s, integrated scanning of samples for pixel transit times as small as 50 {micro}s and high definition images of 10{sup 8} pixels and real-time processing of detected events for spectral deconvolution and online display of pure elemental images. The system developed by CSIRO and BNL combines a planar silicon 384 detector array, application-specific integrated circuits for pulse shaping and peak detection and sampling and optical data transmission to an FPGA-based pipelined, parallel processor. This paper describes the system and themore » underpinning engineering solutions.« less

  4. Challenges of small-pixel infrared detectors: a review.

    PubMed

    Rogalski, A; Martyniuk, P; Kopytko, M

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology-HgCdTe material systems and III-V materials (mainly barrier detectors)-have been investigated.

  5. Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector

    DOE PAGES

    Hasegawa, S.

    2016-04-23

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less

  6. 30 CFR 27.22 - Methane detector component.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane detector component. 27.22 Section 27.22... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.22 Methane detector component. (a) A methane detector component shall be suitably constructed for incorporation in or...

  7. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  8. 14 CFR 23.1203 - Fire detector system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in— (1) An engine compartment of— (i) Multiengine turbine powered airplanes; (ii) Multiengine... may be subjected in operation. (c) No fire detector may be affected by any oil, water, other fluids...

  9. 14 CFR 23.1203 - Fire detector system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in— (1) An engine compartment of— (i) Multiengine turbine powered airplanes; (ii) Multiengine... may be subjected in operation. (c) No fire detector may be affected by any oil, water, other fluids...

  10. 14 CFR 23.1203 - Fire detector system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in— (1) An engine compartment of— (i) Multiengine turbine powered airplanes; (ii) Multiengine... may be subjected in operation. (c) No fire detector may be affected by any oil, water, other fluids...

  11. 14 CFR 23.1203 - Fire detector system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in— (1) An engine compartment of— (i) Multiengine turbine powered airplanes; (ii) Multiengine... may be subjected in operation. (c) No fire detector may be affected by any oil, water, other fluids...

  12. 14 CFR 23.1203 - Fire detector system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in— (1) An engine compartment of— (i) Multiengine turbine powered airplanes; (ii) Multiengine... may be subjected in operation. (c) No fire detector may be affected by any oil, water, other fluids...

  13. Humidity compensation of bad-smell sensing system using a detector tube and a built-in camera

    NASA Astrophysics Data System (ADS)

    Hirano, Hiroyuki; Nakamoto, Takamichi

    2011-09-01

    We developed a low-cost sensing system robust against humidity change for detecting and estimating concentration of bad smell, such as hydrogen sulfide and ammonia. In the previous study, we developed automated measurement system for a gas detector tube using a built-in camera instead of the conventional manual inspection of the gas detector tube. Concentration detectable by the developed system ranges from a few tens of ppb to a few tens of ppm. However, we previously found that the estimated concentration depends not only on actual concentration, but on humidity. Here, we established the method to correct the influence of humidity by creating regression function with its inputs of discoloration rate and humidity. We studied 2 methods (Backpropagation, Radial basis function network) to get regression function and evaluated them. Consequently, the system successfully estimated the concentration on a practical level even when humidity changes.

  14. Method of Minimizing Size of Heat Rejection Systems for Thermoelectric Coolers to Cool Detectors in Space

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2014-01-01

    A thermal design concept of attaching the thermoelectric cooler (TEC) hot side directly to the radiator and maximizing the number of TECs to cool multiple detectors in space is presented. It minimizes the temperature drop between the TECs and radiator. An ethane constant conductance heat pipe transfers heat from the detectors to a TEC cold plate which the cold side of the TECs is attached to. This thermal design concept minimizes the size of TEC heat rejection systems. Hence it reduces the problem of accommodating the radiator within a required envelope. It also reduces the mass of the TEC heat rejection system. Thermal testing of a demonstration unit in vacuum verified the thermal performance of the thermal design concept.

  15. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

    1996-10-22

    An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

  16. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  17. ALICE detector in construction phase

    NASA Astrophysics Data System (ADS)

    Peryt, Wiktor S.

    2005-09-01

    ALICE1 collaboration, which prepares one of the biggest physics experiments in the history, came into production phase of its detector. The experiment will start at LHC2 at CERN in 2007/2008. In the meantime about 1000 people from ~70 institutions are involved in this enterprise. ALICE detector consists of many sub-detectors, designed and manufactured in many laboratories and commercial firms, located mainly in Europe, but also in U.S., India, China and Korea. To assure appropriate working environment for such a specific task, strictly related to tests of particular components, measurements and assembly procedures Detector Construction Database system has been designed and implemented at CERN and at some labs involved in these activities. In this paper special attention is paid to this topic not only due to fact of innovative approach to the problem. Another reason is the group of young computer scientists (mainly students) from the Warsaw University of Technology, leaded by the author, has designed and developed the system for the whole experiment3. Another very interesting subject is the Data Acquisition System which has to fulfill very hard requirements concerning speed and high bandwidth. Required technical performance is achieved thanks to using PCI bus (usually in previous high energy physics experiments VME standard has been used) and optical links. Very general overview of the whole detector and physics goals of ALICE experiment will also be given.

  18. A Charrelation Matrix-Based Blind Adaptive Detector for DS-CDMA Systems

    PubMed Central

    Luo, Zhongqiang; Zhu, Lidong

    2015-01-01

    In this paper, a blind adaptive detector is proposed for blind separation of user signals and blind estimation of spreading sequences in DS-CDMA systems. The blind separation scheme exploits a charrelation matrix for simple computation and effective extraction of information from observation signal samples. The system model of DS-CDMA signals is modeled as a blind separation framework. The unknown user information and spreading sequence of DS-CDMA systems can be estimated only from the sampled observation signals. Theoretical analysis and simulation results show that the improved performance of the proposed algorithm in comparison with the existing conventional algorithms used in DS-CDMA systems. Especially, the proposed scheme is suitable for when the number of observation samples is less and the signal to noise ratio (SNR) is low. PMID:26287209

  19. A Charrelation Matrix-Based Blind Adaptive Detector for DS-CDMA Systems.

    PubMed

    Luo, Zhongqiang; Zhu, Lidong

    2015-08-14

    In this paper, a blind adaptive detector is proposed for blind separation of user signals and blind estimation of spreading sequences in DS-CDMA systems. The blind separation scheme exploits a charrelation matrix for simple computation and effective extraction of information from observation signal samples. The system model of DS-CDMA signals is modeled as a blind separation framework. The unknown user information and spreading sequence of DS-CDMA systems can be estimated only from the sampled observation signals. Theoretical analysis and simulation results show that the improved performance of the proposed algorithm in comparison with the existing conventional algorithms used in DS-CDMA systems. Especially, the proposed scheme is suitable for when the number of observation samples is less and the signal to noise ratio (SNR) is low.

  20. Training Sessions Provide Working Knowledge of National Animal Identification System

    ERIC Educational Resources Information Center

    Glaze, J. Benton, Jr.; Ahola, Jason K.

    2010-01-01

    One in-service and two train-the-trainer workshops were conducted by University of Idaho Extension faculty, Idaho State Department of Agriculture personnel, and allied industry representatives to increase Extension educators' knowledge and awareness of the National Animal Identification System (NAIS) and related topics. Training sessions included…

  1. TU-F-CAMPUS-I-05: Investigation of An EMCCD Detector with Variable Gain in a Micro-CT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnakumar, S Bysani; Ionita, C; Rudin, S

    Purpose: To investigate the performance of a newly built Electron Multiplying Charged Coupled Device (EMCCD) based Micro-CT system, with variable detector gain, using a phantom containing contrast agent of different concentrations. Methods: We built a micro- CT system with an EMCCD having 8 microns pixels and on-chip variable gain. We tested the system using a phantom containing five tubes filled with different iodine contrast solutions (30% to 70%). First, we scanned the phantom using various x-ray exposures values at 40 kVp and constant detector gain. Next, for the same tube currents, the detector gain was increased to maintain the airmore » value of the projection image constant. A standard FDK algorithm was used to reconstruct the data. Performance was analyzed by comparing the signal-to-noise ratio (SNR) measurements for increased gain with those for the low constant gain at each exposure. Results: The high detector gain reconstructed data SNR was always greater than the low gain data SNR for all x-ray settings and for all iodine features. The largest increases were observed for low contrast features, 30% iodine concentration, where the SNR improvement approached 2. Conclusion: One of the first implementations of an EMCCD based micro- CT system was presented and used to image a phantom with various iodine solution concentrations. The analysis of the reconstructed volumes showed a significant improvement of the SNR especially for low contrast features. The unique on-chip gain feature is a substantial benefit allowing the use of the system at very low x-ray exposures per frame.Partial support: NIH grant R01EB002873 and Toshiba Medical Systems Corp. Partial support: NIH grant R01EB002873 and Toshiba Medical Systems Corp.« less

  2. BTDI detector technology for reconnaissance application

    NASA Astrophysics Data System (ADS)

    Hilbert, Stefan; Eckardt, Andreas; Krutz, David

    2017-11-01

    The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design in a BTDI (Bidirectional Time Delay and Integration) architecture. This project demonstrates an approved technological design for high or multi-spectral resolution spaceborne instruments. DLR OS and BAE Systems were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy in order to keep pace with ambitious scientific and user requirements. Resulting from customer requirements and available technologies the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high-spectral resolution with intelligent control applications and new focal plane concepts opens the door to new remote sensing and smart deep space instruments. The paper gives an overview of the detector development and verification program at DLR on detector module level and key parameters like SNR, linearity, spectral response, quantum efficiency, PRNU, DSNU and MTF.

  3. 14 CFR 25.1203 - Fire detector system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... fire zone, and in the combustion, turbine, and tailpipe sections of turbine engine installations, in... short circuit. (c) No fire or overheat detector may be affected by any oil, water, other fluids or fumes...

  4. 14 CFR 25.1203 - Fire detector system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... fire zone, and in the combustion, turbine, and tailpipe sections of turbine engine installations, in... short circuit. (c) No fire or overheat detector may be affected by any oil, water, other fluids or fumes...

  5. 14 CFR 25.1203 - Fire detector system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... fire zone, and in the combustion, turbine, and tailpipe sections of turbine engine installations, in... short circuit. (c) No fire or overheat detector may be affected by any oil, water, other fluids or fumes...

  6. 14 CFR 25.1203 - Fire detector system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... fire zone, and in the combustion, turbine, and tailpipe sections of turbine engine installations, in... short circuit. (c) No fire or overheat detector may be affected by any oil, water, other fluids or fumes...

  7. Simultaneous Scanning Electron Microscope Imaging of Topographical and Chemical Contrast Using In-Lens, In-Column, and Everhart-Thornley Detector Systems.

    PubMed

    Zhang, Xinming; Cen, Xi; Ravichandran, Rijuta; Hughes, Lauren A; van Benthem, Klaus

    2016-06-01

    The scanning electron microscope provides a platform for subnanometer resolution characterization of material morphology with excellent topographic and chemical contrast dependent on the used detectors. For imaging applications, the predominantly utilized signals are secondary electrons (SEs) and backscattered electrons (BSEs) that are emitted from the sample surface. Recent advances in detector technology beyond the traditional Everhart-Thornley geometry have enabled the simultaneous acquisition and discrimination of SE and BSE signals. This study demonstrates the imaging capabilities of a recently introduced new detector system that consists of the combination of two in-lens (I-L) detectors and one in-column (I-C) detector. Coupled with biasing the sample stage to reduce electron-specimen interaction volumes, this trinity of detector geometry allows simultaneous acquisition of signals to distinguish chemical contrast from topographical changes of the sample, including the identification of surface contamination. The I-C detector provides 4× improved topography, whereas the I-L detector closest to the sample offers excellent simultaneous chemical contrast imaging while not limiting the minimization of working distance to obtain optimal lateral resolution. Imaging capabilities and contrast mechanisms for all three detectors are discussed quantitatively in direct comparison to each other and the conventional Everhart-Thornley detector.

  8. LWIR detector requirements for low-background space applications

    NASA Technical Reports Server (NTRS)

    Deluccia, Frank J.

    1990-01-01

    Detection of cold bodies (200 to 300 K) against space backgrounds has many important applications, both military and non-military. The detector performance and design characteristics required to support low-background applications are discussed, with particular emphasis on those characteristics required for space surveillance. The status of existing detector technologies under active development for these applications is also discussed. In order to play a role in future systems, new, potentially competing detector technologies such as multiple quantum well detectors must not only meet system-derived requirements, but also offer distinct performance or other advantages over these incumbent technologies.

  9. 14 CFR 1260.9 - Synopses requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... funding opportunities shall be synopsized. Synopses shall be prepared in the NASA Acquisition Internet Service (NAIS), located at: http://prod.nais.nasa.gov/cgi-bin/nais/index.cgi; by using the Electronic Posting System (EPS), and transmitted to http://www.Fedgrants.gov. Synopses shall be electronically posted...

  10. 14 CFR § 1260.9 - Synopses requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... funding opportunities shall be synopsized. Synopses shall be prepared in the NASA Acquisition Internet Service (NAIS), located at: http://prod.nais.nasa.gov/cgi-bin/nais/index.cgi; by using the Electronic Posting System (EPS), and transmitted to http://www.Fedgrants.gov. Synopses shall be electronically posted...

  11. 14 CFR 1260.9 - Synopses requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... funding opportunities shall be synopsized. Synopses shall be prepared in the NASA Acquisition Internet Service (NAIS), located at: http://prod.nais.nasa.gov/cgi-bin/nais/index.cgi; by using the Electronic Posting System (EPS), and transmitted to http://www.Fedgrants.gov. Synopses shall be electronically posted...

  12. HgCdTe barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Rogalski, A.

    2016-05-01

    In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.

  13. A cosmic and solar X-ray and gamma-ray instrument for a scout launch

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.

    1988-01-01

    An overview is presented for a set of simple and robust X-ray and gamma ray instruments which have both cosmic and solar objectives. The primary solar scientific objective is the study of the beaming of energetic electrons and ions in solar flares. The instrument will measure spectra and polarization of flare emissions up to 10 MeV. At X-ray energies both the directly emitted flux and the reflected albedo flux will be measured with a complement of six X-ray sensors. Each of these detectors will have a different high Z filter selected to optimize both the energy resolution and high rate capabilities in the energy band 10 to 300 keV. At energies greater than 100 keV seven 7.6 x 7.6 cm NaI and a set of 30 concentric plastic scattering detectors will record the spectra and polarization of electron bremsstrahlung and nuclear gamma rays. All of the components of the instrument are in existence and have passed flight tests for earlier space missions. The instrument will use a spinning solar oriented Scout spacecraft. The NaI detectors will act as a self-modulating gamma ray detector for cosmic sources in a broad angular band which lies at 90 degrees to the Sun-Earth vector and hence will scan the entire sky in 6 months.

  14. Production and relevance of cosmogenic radionuclides in NaI(Tl) crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaré, J.; Cebrián, S.; Cuesta, C.

    2015-08-17

    The cosmogenic production of long-lived radioactive isotopes in materials is an hazard for experiments demanding ultra-low background conditions. Although NaI(Tl) scintillators have been used in this context for a long time, very few activation data were available. We present results from two 12.5 kg NaI(Tl) detectors, developed within the ANAIS project and installed at the Canfranc Underground Laboratory. The prompt data taking starting made possible a reliable quantification of production of some I, Te and Na isotopes with half-lives larger than ten days. Tnitial activities underground were measured and then production rates at sea level were estimated following the history ofmore » detectors; a comparison of these rates with calculations using typical cosmic neutron flux at sea level and a selected description of excitation functions was also carried out. After including the contribution from the identified cosmogenic products in the detector background model, we found that the presence of {sup 3}H in the crystal bulk would help to fit much better our background model and experimental data. We have analyzed the cosmogenic production of {sup 3}H in NaI, and although precise quantification has not been attempted, we can conclude that it could imply a very relevant contribution to the total background below 15 ke in NaI detectors.« less

  15. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection.

    PubMed

    Kojima, Akihiro; Gotoh, Kumiko; Shimamoto, Masako; Hasegawa, Koki; Okada, Seiji

    2016-02-01

    Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV). The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned. Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image. We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.

  16. Experience of using MOSFET detectors for dose verification measurements in an end-to-end 192Ir brachytherapy quality assurance system.

    PubMed

    Persson, Maria; Nilsson, Josef; Carlsson Tedgren, Åsa

    Establishment of an end-to-end system for the brachytherapy (BT) dosimetric chain could be valuable in clinical quality assurance. Here, the development of such a system using MOSFET (metal oxide semiconductor field effect transistor) detectors and experience gained during 2 years of use are reported with focus on the performance of the MOSFET detectors. A bolus phantom was constructed with two implants, mimicking prostate and head & neck treatments, using steel needles and plastic catheters to guide the 192 Ir source and house the MOSFET detectors. The phantom was taken through the BT treatment chain from image acquisition to dose evaluation. During the 2-year evaluation-period, delivered doses were verified a total of 56 times using MOSFET detectors which had been calibrated in an external 60 Co beam. An initial experimental investigation on beam quality differences between 192 Ir and 60 Co is reported. The standard deviation in repeated MOSFET measurements was below 3% in the six measurement points with dose levels above 2 Gy. MOSFET measurements overestimated treatment planning system doses by 2-7%. Distance-dependent experimental beam quality correction factors derived in a phantom of similar size as that used for end-to-end tests applied on a time-resolved measurement improved the agreement. MOSFET detectors provide values stable over time and function well for use as detectors for end-to-end quality assurance purposes in 192 Ir BT. Beam quality correction factors should address not only distance from source but also phantom dimensions. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  17. Physical characterization of a scanning photon counting digital mammography system based on Si-strip detectors.

    PubMed

    Aslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2007-06-01

    The physical performance of a scanning multislit full field digital mammography system was determined using basic image quality parameters. The system employs a direct detection detector comprised of linear silicon strip sensors in an edge-on geometry connected to photon counting electronics. The pixel size is 50 microm and the field of view 24 x 26 cm2. The performance was quantified using the presampled modulation transfer function, the normalized noise power spectrum and the detective quantum efficiency (DQE). Compared to conventional DQE methods, the scanning geometry with its intrinsic scatter rejection poses additional requirements on the measurement setup, which are investigated in this work. The DQE of the photon counting system was found to be independent of the dose level to the detector in the 7.6-206 microGy range. The peak DQE was 72% and 73% in the scan and slit direction, respectively, measured with a 28 kV W-0.5 mm Al anode-filter combination with an added 2 mm Al filtration.

  18. Multi-detector system approach for unattended uranium enrichment monitoring at gas centrifuge enrichment plants

    DOE PAGES

    Favalli, A.; Lombardi, M.; MacArthur, D. W.; ...

    2017-09-14

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. Here, we describe our research to develop such amore » passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. Finally, we present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.« less

  19. Multi-detector system approach for unattended uranium enrichment monitoring at gas centrifuge enrichment plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, A.; Lombardi, M.; MacArthur, D. W.

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. Here, we describe our research to develop such amore » passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. Finally, we present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.« less

  20. Detectors for optical communications: A review

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    Detectors for optical communications in the visible and near infrared regions of the spectrum are reviewed. The three generic types of detectors described are: photomultipliers, photodiodes and avalanche photodiodes. Most of the information is applicable to other optical communications systems.

  1. A Weibull distribution accrual failure detector for cloud computing.

    PubMed

    Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.

  2. A Weibull distribution accrual failure detector for cloud computing

    PubMed Central

    Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229

  3. Ultratrace detector for hand-held gas chromatography

    DOEpatents

    Andresen, Brian D.; Miller, Fred S.

    1999-01-01

    An ultratrace detector system for hand-held gas chromatography having high sensitivity, for example, to emissions generated during production of weapons, biological compounds, drugs, etc. The detector system is insensitive to water, air, helium, argon, oxygen, and C0.sub.2. The detector system is basically composed of a hand-held capillary gas chromatography (GC), an insulated heated redox-chamber, a detection chamber, and a vapor trap. For example, the detector system may use gas phase redox reactions and spectral absorption of mercury vapor. The gas chromatograph initially separates compounds that percolate through a bed of heated mercuric oxide (HgO) in a silica--or other metal--aerogel material which acts as an insulator. Compounds easily oxidized by HgO liberate atomic mercury that subsequently pass through a detection chamber which includes a detector cell, such as quartz, that is illuminated with a 254 nm ultra-violet (UV) mercury discharge lamp which generates the exact mercury absorption bands that are used to detect the liberated mercury atoms. Atomic mercury strongly absorbs 254 nm energy is therefore a specific signal for reducing compounds eluting from the capillary GC, whereafter the atomic mercury is trapped for example, in a silicon-aerogel trap.

  4. The New Maia Detector System: Methods For High Definition Trace Element Imaging Of Natural Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, C. G.; School of Physics, University of Melbourne, Parkville VIC; CODES Centre of Excellence, University of Tasmania, Hobart TAS

    2010-04-06

    Motivated by the need for megapixel high definition trace element imaging to capture intricate detail in natural material, together with faster acquisition and improved counting statistics in elemental imaging, a large energy-dispersive detector array called Maia has been developed by CSIRO and BNL for SXRF imaging on the XFM beamline at the Australian Synchrotron. A 96 detector prototype demonstrated the capacity of the system for real-time deconvolution of complex spectral data using an embedded implementation of the Dynamic Analysis method and acquiring highly detailed images up to 77 M pixels spanning large areas of complex mineral sample sections.

  5. The New Maia Detector System: Methods For High Definition Trace Element Imaging Of Natural Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, C.G.; Siddons, D.P.; Kirkham, R.

    2010-05-25

    Motivated by the need for megapixel high definition trace element imaging to capture intricate detail in natural material, together with faster acquisition and improved counting statistics in elemental imaging, a large energy-dispersive detector array called Maia has been developed by CSIRO and BNL for SXRF imaging on the XFM beamline at the Australian Synchrotron. A 96 detector prototype demonstrated the capacity of the system for real-time deconvolution of complex spectral data using an embedded implementation of the Dynamic Analysis method and acquiring highly detailed images up to 77 M pixels spanning large areas of complex mineral sample sections.

  6. Recent developments in PET detector technology

    PubMed Central

    Lewellen, Tom K

    2010-01-01

    Positron emission tomography (PET) is a tool for metabolic imaging that has been utilized since the earliest days of nuclear medicine. A key component of such imaging systems is the detector modules—an area of research and development with a long, rich history. Development of detectors for PET has often seen the migration of technologies, originally developed for high energy physics experiments, into prototype PET detectors. Of the many areas explored, some detector designs go on to be incorporated into prototype scanner systems and a few of these may go on to be seen in commercial scanners. There has been a steady, often very diverse development of prototype detectors, and the pace has accelerated with the increased use of PET in clinical studies (currently driven by PET/CT scanners) and the rapid proliferation of pre-clinical PET scanners for academic and commercial research applications. Most of these efforts are focused on scintillator-based detectors, although various alternatives continue to be considered. For example, wire chambers have been investigated many times over the years and more recently various solid-state devices have appeared in PET detector designs for very high spatial resolution applications. But even with scintillators, there have been a wide variety of designs and solutions investigated as developers search for solutions that offer very high spatial resolution, fast timing, high sensitivity and are yet cost effective. In this review, we will explore some of the recent developments in the quest for better PET detector technology. PMID:18695301

  7. Efficiency of whole-body counter for various body size calculated by MCNP5 software.

    PubMed

    Krstic, D; Nikezic, D

    2012-11-01

    The efficiency of a whole-body counter for (137)Cs and (40)K was calculated using the MCNP5 code. The ORNL phantoms of a human body of different body sizes were applied in a sitting position in front of a detector. The aim was to investigate the dependence of efficiency on the body size (age) and the detector position with respect to the body and to estimate the accuracy of real measurements. The calculation work presented here is related to the NaI detector, which is available in the Serbian Whole-body Counter facility in Vinca Institute.

  8. Tomographic imaging using poissonian detector data

    DOEpatents

    Aspelmeier, Timo; Ebel, Gernot; Hoeschen, Christoph

    2013-10-15

    An image reconstruction method for reconstructing a tomographic image (f.sub.j) of a region of investigation within an object (1), comprises the steps of providing detector data (y.sub.i) comprising Poisson random values measured at an i-th of a plurality of different positions, e.g. i=(k,l) with pixel index k on a detector device and angular index l referring to both the angular position (.alpha..sub.l) and the rotation radius (r.sub.l) of the detector device (10) relative to the object (1), providing a predetermined system matrix A.sub.ij assigning a j-th voxel of the object (1) to the i-th detector data (y.sub.i), and reconstructing the tomographic image (f.sub.j) based on the detector data (y.sub.i), said reconstructing step including a procedure of minimizing a functional F(f) depending on the detector data (y.sub.i) and the system matrix A.sub.ij and additionally including a sparse or compressive representation of the object (1) in an orthobasis T, wherein the tomographic image (f.sub.j) represents the global minimum of the functional F(f). Furthermore, an imaging method and an imaging device using the image reconstruction method are described.

  9. Photodisintegration cross section of the reaction 4He(γ,n)3He at the giant dipole resonance peak

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Kelley, J. H.; Raut, R.; Rusev, G.; Tonchev, A. P.; Ahmed, M. W.; Crowell, A. S.; Stave, S. C.

    2012-06-01

    The photodisintegration cross section of 4He into a neutron and helion was measured at incident photon energies of 27.0, 27.5, and 28.0 MeV. A high-pressure 4He-Xe gas scintillator served as target and detector while a pure Xe gas scintillator was used for background measurements. A NaI detector in combination with the standard HIγS scintillator paddle system was employed for absolute photon-flux determination. Our data are in good agreement with the theoretical prediction of the Trento group and the recent data of Nilsson [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.75.014007 75, 014007 (2007)] but deviate considerably from the high-precision data of Shima [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.72.044004 72, 044004 (2005)].

  10. Comparative evaluation of image quality among different detector configurations using area detector computed tomography.

    PubMed

    Miura, Yohei; Ichikawa, Katsuhiro; Fujimura, Ichiro; Hara, Takanori; Hoshino, Takashi; Niwa, Shinji; Funahashi, Masao

    2018-03-01

    The 320-detector row computed tomography (CT) system, i.e., the area detector CT (ADCT), can perform helical scanning with detector configurations of 4-, 16-, 32-, 64-, 80-, 100-, and 160-detector rows for routine CT examinations. This phantom study aimed to compare the quality of images obtained using helical scan mode with different detector configurations. The image quality was measured using modulation transfer function (MTF) and noise power spectrum (NPS). The system performance function (SP), based on the pre-whitening theorem, was calculated as MTF 2 /NPS, and compared between configurations. Five detector configurations, i.e., 0.5 × 16 mm (16 row), 0.5 × 64 mm (64 row), 0.5 × 80 mm (80 row), 0.5 × 100 mm (100 row), and 0.5 × 160 mm (160 row), were compared using a constant volume CT dose index (CTDI vol ) of 25 mGy, simulating the scan of an adult abdomen, and with a constant effective mAs value. The MTF was measured using the wire method, and the NPS was measured from images of a 20-cm diameter phantom with uniform content. The SP of 80-row configuration was the best, for the constant CTDI vol , followed by the 64-, 160-, 16-, and 100-row configurations. The decrease in the rate of the 100- and 160-row configurations from the 80-row configuration was approximately 30%. For the constant effective mAs, the SPs of the 100-row and 160-row configurations were significantly lower, compared with the other three detector configurations. The 80- and 64-row configurations were adequate in cases that required dose efficiency rather than scan speed.

  11. Validation of Harris Detector and Eigen Features Detector

    NASA Astrophysics Data System (ADS)

    Kok, K. Y.; Rajendran, P.

    2018-05-01

    Harris detector is one of the most common features detection for applications such as object recognition, stereo matching and target tracking. In this paper, a similar Harris detector algorithm is written using MATLAB and the performance is compared with MATLAB built in Harris detector for validation. This is to ensure that rewritten version of Harris detector can be used for Unmanned Aerial Vehicle (UAV) application research purpose yet can be further improvised. Another corner detector close to Harris detector, which is Eigen features detector is rewritten and compared as well using same procedures with same purpose. The simulation results have shown that rewritten version for both Harris and Eigen features detectors have the same performance with MATLAB built in detectors with not more than 0.4% coordination deviation, less than 4% & 5% response deviation respectively, and maximum 3% computational cost error.

  12. Requirements on high resolution detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, A.

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  13. Detector Design Considerations in High-Dimensional Artificial Immune Systems

    DTIC Science & Technology

    2012-03-22

    a method known as randomized RNS [15]. In this approach, Monte Carlo integration is used to determine the size of self and non-self within the given...feature space, then a number of randomly placed detectors are chosen according to Monte Carlo integration calculations. Simulated annealing is then...detector is only counted once). This value is termed ‘actual content’ because it does not including overlapping content, but only that content that is

  14. 14 CFR 1260.9 - Synopses requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... opportunities shall be synopsized. Synopses shall be prepared in the NASA Acquisition Internet Service (NAIS), located at: http://prod.nais.nasa.gov/cgi-bin/nais/index.cgi; by using the Electronic Posting System (EPS), and transmitted to http://www.Fedgrants.gov. Synopses shall be electronically posted to: http://www...

  15. The H1 detector at HERA

    NASA Astrophysics Data System (ADS)

    Abt, I.; Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R. D.; Arnault, C.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Banas, E.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Basti, F.; Baynham, D. E.; Baze, J.-M.; Beck, G. A.; Beck, H. P.; Bederede, D.; Behrend, H.-J.; Beigbeder, C.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernard, R.; Bernardi, G.; Bernet, R.; Bernier, R.; Berthon, U.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biasci, J.-C.; Biddulph, P.; Bidoli, V.; Binder, E.; Binko, P.; Bizot, J.-C.; Blobel, V.; Blouzon, F.; Blume, H.; Borras, K.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braunschweig, W.; Breton, D.; Brettel, H.; Brisson, V.; Bruncko, D.; Brune, C.; Buchner, U.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burmeister, P.; Busata, A.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Chase, R.; Clarke, D.; Clegg, A. B.; Colombo, M.; Commichau, V.; Connolly, J. F.; Cornett, U.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Coutures, Ch.; Coville, A.; Cozzika, G.; Cragg, D. A.; Criegee, L.; Cronström, H. I.; Cunliffe, N. H.; Cvach, J.; Cyz, A.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Darvill, D.; Dau, W. D.; David, J.; David, M.; Day, R. J.; Deffur, E.; Delcourt, B.; Del Buono, L.; Descamps, F.; Devel, M.; Dewulf, J. P.; De Roeck, A.; Dingus, P.; Djidi, K.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Dretzler, U.; Duboc, J.; Ducorps, A.; Düllmann, D.; Dünger, O.; Duhm, H.; Dulny, B.; Dupont, F.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Edwards, B. W. H.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Epifantsev, A.; Erdmann, M.; Erdmann, W.; Ernst, G.; Evrard, E.; Falley, G.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Z. Y.; Fensome, I. F.; Fent, J.; Ferencei, J.; Ferrarotto, F.; Finke, K.; Flamm, K.; Flauger, W.; Fleischer, M.; Flieser, M.; Flower, P. S.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fröchtenicht, W.; Fuhrmann, P.; Gabathuler, E.; Gabathuler, K.; Gadow, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gažo, E.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Geske, K.; Giesgen, I.; Gillespie, D.; Glasgow, W.; Godfrey, L.; Godlewski, J.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Gosset, L.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Gregory, C.; Greif, H.; Grewe, M.; Grindhammer, G.; Gruber, A.; Gruber, C.; Günther, S.; Haack, J.; Haguenauer, M.; Haidt, D.; Hajduk, L.; Hammer, D.; Hamon, O.; Hampel, M.; Handschuh, D.; Hangarter, K.; Hanlon, E. M.; Hapke, M.; Harder, U.; Harjes, J.; Hartz, P.; Hatton, P. E.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Hedgecock, C. R.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hill, D. L.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Hopes, R. B.; Horisberger, R.; Hrisoho, A.; Huber, J.; Huet, Ph.; Hufnagel, H.; Huot, N.; Huppert, J.-F.; Ibbotson, M.; Imbault, D.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffré, M.; Jansen, T.; Jean, P.; Jeanjean, J.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jovanovic, P.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kantel, G.; Karstensen, S.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kemmerling, G.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Kobler, T.; Koch, J.; Köhler, T.; Köhne, J.; Kolander, M.; Kolanoski, H.; Kole, F.; Koll, J.; Kolya, S. D.; Koppitz, B.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krivan, F.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubantsev, M.; Kubenka, J. P.; Külper, T.; Küsel, H.-J.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Laforge, B.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J.-F.; Laptin, L.; Laskus, H.; Lebedev, A.; Lemler, M.; Lenhardt, U.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Liss, B.; Loch, P.; Lodge, A. B.; Lohmander, H.; Lopez, G. C.; Lottin, J.-P.; Lubimov, V.; Ludwig, K.; Lüers, D.; Lugetski, N.; Lundberg, B.; Maeshima, K.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, F.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masbender, V.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Meissner, J.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Mills, J. L.; Milone, V.; Möck, J.; Monnier, E.; Montés, B.; Moreau, F.; Moreels, J.; Morgan, B.; Morris, J. V.; Morton, J. M.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Nayman, P.; Nepeipivo, A.; Newman, P.; Newman-Coburn, D.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Novák, T.; Nováková, H.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Olszowska, J.; Orenstein, S.; Ould-Saada, F.; Pailler, P.; Palanque, S.; Panaro, E.; Panitch, A.; Parey, J.-Y.; Pascaud, C.; Patel, G. D.; Patoux, A.; Paulot, C.; Pein, U.; Peppel, E.; Perez, E.; Perrodo, P.; Perus, A.; Peters, S.; Pharabod, J.-P.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pieuchot, A.; Pimpl, W.; Pitzl, D.; Porrovecchio, A.; Prell, S.; Prosi, R.; Quehl, H.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reboux, A.; Reimer, P.; Reinmuth, G.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riege, H.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Röpnack, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Royon, C.; Rudge, A.; Rüter, K.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rusinov, V.; Rybicki, K.; Sacton, J.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitski, M.; Schacht, P.; Schiek, S.; Schirm, N.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schmitz, W.; Schmücker, H.; Schröder, V.; Schütt, J.; Schuhmann, E.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sefkow, F.; Sell, R.; Seman, M.; Semenov, A.; Shatalov, P.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Sirous, A.; Skillicorn, I. O.; Škvařil, P.; Smirnov, P.; Smith, J. R.; Smolik, L.; Sole, D.; Soloviev, Y.; Špalek, J.; Spitzer, H.; von Staa, R.; Staeck, J.; Staroba, P.; Šťastný, J.; Steenbock, M.; Štefan, P.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Strowbridge, A.; Struczinski, W.; Sutton, J. P.; Szkutnik, Z.; Tappern, G.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Tchudakov, V.; Thiebaux, C.; Thiele, K.; Thompson, G.; Thompson, R. J.; Tichomirov, I.; Trenkel, C.; Tribanek, W.; Tröger, K.; Truöl, P.; Turiot, M.; Turnau, J.; Tutas, J.; Urban, L.; Urban, M.; Usik, A.; Valkár, Š.; Valkárová, A.; Vallée, C.; Van Beek, G.; Vanderkelen, M.; Van Lancker, L.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Weissbach, P.; Wellisch, H. P.; West, L.; White, D.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wünsch, E.; Wulff, N.; Wyborn, B. E.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Závada, P.; Zeitnitz, C.; Zhang, Z.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1997-02-01

    General aspects of the H1 detector at the electron-proton storage ring HERA as well as technical descriptions of the magnet, luminosity system, trigger, slow-control, data acquisition and off-line data handling are given. The three major components of the detector, the tracking, calorimeter and muon detectors, will be described in a forthcoming article. The present paper describes the detector that was used from 1992 to the end of 1994. After this a major upgrade of some components was undertaken. Some performance figures from luminosity runs at HERA during 1993 and 1994 are given.

  16. Mount makes liquid nitrogen-cooled gamma ray detector portable

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1966-01-01

    Liquid nitrogen-cooled gamma ray detector system is made portable by attaching the detector to a fixture which provides a good thermal conductive path between the detector and the liquid nitrogen in a dewar flask and a low heat leak path between the detector and the external environment.

  17. Overhead traffic detector mounting system (Phase 2).

    DOT National Transportation Integrated Search

    2007-04-01

    Caltrans has funded the development of a new family of out-of-pavement electronic sensing devices for the purpose of monitoring certain characteristics of highway traffic. One promising example is a laser based overhead detector recently developed at...

  18. Going bananas in the radiation laboratory

    NASA Astrophysics Data System (ADS)

    Hoeling, Barbara; Reed, Douglas; Siegel, P. B.

    1999-05-01

    A simple setup for measuring the amount of potassium in foods is described. A 3-in. NaI detector is used to measure samples that are 3000 cm3 in size. With moderate shielding, the potassium content can be measured down to a detection limit of a few parts per 10 000.

  19. A multi-view face recognition system based on cascade face detector and improved Dlib

    NASA Astrophysics Data System (ADS)

    Zhou, Hongjun; Chen, Pei; Shen, Wei

    2018-03-01

    In this research, we present a framework for multi-view face detect and recognition system based on cascade face detector and improved Dlib. This method is aimed to solve the problems of low efficiency and low accuracy in multi-view face recognition, to build a multi-view face recognition system, and to discover a suitable monitoring scheme. For face detection, the cascade face detector is used to extracted the Haar-like feature from the training samples, and Haar-like feature is used to train a cascade classifier by combining Adaboost algorithm. Next, for face recognition, we proposed an improved distance model based on Dlib to improve the accuracy of multiview face recognition. Furthermore, we applied this proposed method into recognizing face images taken from different viewing directions, including horizontal view, overlooks view, and looking-up view, and researched a suitable monitoring scheme. This method works well for multi-view face recognition, and it is also simulated and tested, showing satisfactory experimental results.

  20. Modulation transfer function of a triangular pixel array detector.

    PubMed

    Karimzadeh, Ayatollah

    2014-07-01

    The modulation transfer function (MTF) is the main parameter that is used to evaluate image quality in electro-optical systems. Detector sampling MTF in most electro-optical systems determines the cutoff frequency of the system. The MTF of the detector depends on its pixel shape. In this work, we calculated the MTF of a detector with an equilateral triangular pixel shape. Some new results were found in deriving the MTF for the equilateral triangular pixel shape.

  1. Advanced testing of the DEPFET minimatrix particle detector

    NASA Astrophysics Data System (ADS)

    Andricek, L.; Kodyš, P.; Koffmane, C.; Ninkovic, J.; Oswald, C.; Richter, R.; Ritter, A.; Rummel, S.; Scheirich, J.; Wassatsch, A.

    2012-01-01

    The DEPFET (DEPleted Field Effect Transistor) is an active pixel particle detector with a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) integrated in each pixel, providing first amplification stage of readout electronics. Excellent signal over noise performance is gained this way. The DEPFET sensor will be used as a vertex detector in the Belle II experiment at SuperKEKB, electron-positron collider in Japan. The vertex detector will be composed of two layers of pixel detectors (DEPFET) and four layers of strip detectors. The DEPFET sensor requires switching and current readout circuits for its operation. These circuits have been designed as ASICs (Application Specific Integrated Circuits) in several different versions, but they provide insufficient flexibility for precise detector testing. Therefore, a test system with a flexible control cycle range and minimal noise has been designed for testing and characterizing of small detector prototypes (Minimatrices). Sensors with different design layouts and thicknesses are produced in order to evaluate and select the one with the best performance for the Belle II application. Description of the test system as well as measurement results are presented.

  2. Performance evaluation of a retrofit digital detector-based mammography system.

    PubMed

    Marshall, Nicholas W; van Ongeval, Chantal; Bosmans, Hilde

    2016-02-01

    A retrofit flat panel detector was integrated with a GE DMR+ analog mammography system and characterized using detective quantum efficiency (DQE). Technical system performance was evaluated using the European Guidelines protocol, followed by a limited evaluation of clinical image quality for 20 cases using image quality criteria in the European Guidelines. Optimal anode/filter selections were established using signal difference-to-noise ratio measurements. Only small differences in peak DQE were seen between the three anode/filter settings, with an average value of 0.53. For poly(methyl methacrylate) (PMMA) thicknesses above 60 mm, the Rh/Rh setting was the optimal anode/filter setting. The system required a mean glandular dose of 0.54 mGy at 30 kV Rh/Rh to reach the Acceptable gold thickness limit for 0.1 mm details. Imaging performance of the retrofit unit with the GE DMR+ is notably better than of powder based computed radiography systems and is comparable to current flat panel FFDM systems. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Detector signal correction method and system

    DOEpatents

    Carangelo, Robert M.; Duran, Andrew J.; Kudman, Irwin

    1995-07-11

    Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects.

  4. A Cerenkov-delta E-Cerenkov detector for high energy cosmic ray isotopes and an accelerator study of Ar-40 and Fe-56 fragmentation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lau, K. H.

    1985-01-01

    A high energy cosmic ray detector--the High Energy Isotope Spectrometer Telescope (HEIST) is described. It is a large area (0.25 m(swp 2) SR) balloon borne isotope spectrometer designed to make high resolution measurements of isotopes in the element range from neon to nickel (10 Z 28) at energies of about 2 GeV/nucleon. HEIST determines the mass of individual nuclei by measuring both the change in the Lorentz factor (delta gamma) that results from traversing the NaI stack, and the energy loss (delta E) in the stack. Since the total energy of an isotope is given by E = (gamma M), the mass M can be determined by M = delta E/delta, gamma. The instrument is designed to achieve a typical mass resolution of 0.2 amu. The isotopic composition of the fragments from the breakup of high energy An-40 and Fe-56 nuclei are measured experimentally. Isotope yields are compared with calculated yields based on semi-empirical cross-section formulae.

  5. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  6. A new broadband square law detector. [microwave radiometers

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Gardner, R. A.; Stelzried, C. T.

    1975-01-01

    A broadband constant law detector was developed for precision power measurements, radio metric measurements, and other applications. It has a wide dynamic range and an accurate square law response. Other desirable characteristics, which are all included in a single compact unit, are: (1) high-level dc output with immunity to ground loop problems; (2) fast response times; (3) ability to insert known time constants; and (4) good thermal stability. The detector and its performance are described in detail. The detector can be operated in a programmable system with a ten-fold increase in accuracy. The use and performance of the detector in a noise-adding radiometer system is also discussed.

  7. On the use of positron counting for radio-Assay in nuclear pharmaceutical production.

    PubMed

    Maneuski, D; Giacomelli, F; Lemaire, C; Pimlott, S; Plenevaux, A; Owens, J; O'Shea, V; Luxen, A

    2017-07-01

    Current techniques for the measurement of radioactivity at various points during PET radiopharmaceutical production and R&D are based on the detection of the annihilation gamma rays from the radionuclide in the labelled compound. The detection systems to measure these gamma rays are usually variations of NaI or CsF scintillation based systems requiring costly and heavy lead shielding to reduce background noise. These detectors inherently suffer from low detection efficiency, high background noise and very poor linearity. They are also unable to provide any reasonably useful position information. A novel positron counting technique is proposed for the radioactivity assay during radiopharmaceutical manufacturing that overcomes these limitations. Detection of positrons instead of gammas offers an unprecedented level of position resolution of the radiation source (down to sub-mm) thanks to the nature of the positron interaction with matter. Counting capability instead of charge integration in the detector brings the sensitivity down to the statistical limits at the same time as offering very high dynamic range and linearity from zero to any arbitrarily high activity. This paper reports on a quantitative comparison between conventional detector systems and the proposed positron counting detector. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Mesa, Aliezer; Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm; Saalfrank, Peter

    2015-05-21

    Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the “curse of dimensionality” encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influencemore » of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0{sup +}) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.« less

  9. Improved gaseous leak detector

    DOEpatents

    Juravic, F.E. Jr.

    1983-10-06

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  10. 14 CFR 1260.9 - Synopses requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Service (NAIS), located at: http://prod.nais.nasa.gov/cgi-bin/nais/index.cgi; by using the Electronic Posting System (EPS), and transmitted to http://www.Fedgrants.gov. Synopses shall be electronically posted to: http://www.Fedgrants.gov no later than three business days after release of the full announcement...

  11. Influence of detector collimation and beam pitch for identification and image quality of ground-glass attenuation and nodules on 16- and 64-detector row CT systems: experimental study using chest phantom.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Kono, Astushi; Terada, Mari; Inokawa, Hiroyasu; Matsumoto, Sumiaki; Sugimura, Kazuro

    2007-12-01

    The purpose of the present study was to determine the influence of detector collimation and beam pitch for identification and image quality of ground-glass attenuation (GGA) and nodules on 16- and 64-detector row CTs, by using a commercially available chest phantom. A chest CT phantom including simulated GGAs and nodules was scanned with different detector collimations, beam pitches and tube currents. The probability and image quality of each simulated abnormality was visually assessed with a five-point scoring system. ROC-analysis and ANOVA were then performed to compare the identification and image quality of either protocol with standard values. Detection rates of low-dose CTs were significantly reduced when tube currents were set at 40mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32mmx1.0mm for low pitch, and at 100mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32mmx1.0mm for high pitch (p<0.05). Image qualities of low-dose CTs deteriorated significantly when tube current was set at 100mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32x1.0mm for low pitch, and at 150mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32x1.0mm for high pitch (p<0.05). Detector collimation and beam pitch were important factors for the image quality and identification of GGA and nodules by 16- and 64-detector row CT.

  12. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  13. Cytokine production pattern of T lymphocytes in neonatal arterial ischemic stroke during the first month of life-a case study.

    PubMed

    Bajnok, Anna; Berta, László; Orbán, Csaba; Tulassay, Tivadar; Toldi, Gergely

    2018-06-22

    The perinatal period carries the highest risk for stroke in childhood; however, the pathophysiology is poorly understood and preventive, prognostic, and therapeutic strategies are not available. A new pathophysiological model describes the development of neonatal arterial ischemic stroke (NAIS) as the combined result of prenatal inflammation and hypoxic-ischemic insult. Neuroinflammation and a systemic inflammatory response are also important features of NAIS. Identifying key players of the inflammatory system is in the limelight of current research. We present four NAIS cases, in whom detailed analysis of intracellular and plasma cytokine levels are available from the first month of life. All neonates were admitted with the initial diagnosis of hypoxic ischemic encephalopathy (HIE); however, early MRI examination revealed NAIS. Blood samples were collected between 3 and 6 h of life, at 24 h, 72 h, 1 week, and 1 month of life. Peripheral blood mononuclear cells were assessed with flow cytometry and plasma cytokine levels were measured. Pooled data from the cohort of four NAIS patients were compared to infants with HIE. At 6 and 72 h of age, the prevalence of IL10+ CD8+ lymphocytes remained lower in NAIS. At 6 h, CD8+ lymphocytes in NAIS produced more IL-17. At 72 h, CD8+ cells produced more IL-6 in severe HIE than in NAIS, but IL-6 production remained elevated in CD8 cells at 1 month in NAIS, while it decreased in HIE. At 1 week, the prevalence of TGF-β + lymphocytes prone to enter the CNS was elevated in NAIS. On the other hand, by 1 month of age, the prevalence of TGF-β + CD4+ lymphocytes decreased in NAIS compared to HIE. At 72 h, we found elevated plasma levels of IL-5, MCP-1, and IL-17 in NAIS. By 1 month, plasma levels of IL-4, IL-12, and IL-17 decreased in NAIS but remained elevated in HIE. Differences in the cytokine network are present between NAIS and HIE. CD8 lymphocytes appear to shift towards the pro-inflammatory direction in

  14. Development of an ultrahigh-performance infrared detector platform for advanced spectroscopic sensing systems

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Wicks, Gary; Marshall, Andrew; Craig, Adam; Golding, Terry; Hossain, Khalid; McEwan, Ken; Howle, Chris

    2014-05-01

    Laser-based stand-off sensing of threat agents (e.g. explosives, toxic industrial chemicals or chemical warfare agents), by detection of distinct infrared spectral absorption signature of these materials, has made significant advances recently. This is due in part to the availability of infrared and terahertz laser sources with significantly improved power and tunability. However, there is a pressing need for a versatile, high performance infrared sensor that can complement and enhance the recent advances achieved in laser technology. This work presents new, high performance infrared detectors based on III-V barrier diodes. Unipolar barrier diodes, such as the nBn, have been very successful in the MWIR using InAs(Sb)-based materials, and in the MWIR and LWIR using type-II InAsSb/InAs superlattice-based materials. This work addresses the extension of the barrier diode architecture into the SWIR region, using GaSb-based and InAs-based materials. The program has resulted in detectors with unmatched performance in the 2-3 μm spectral range. Temperature dependent characterization has shown dark currents to be diffusion limited and equal to, or within a factor of 5, of the Rule 07 expression for Auger-limited HgCdTe detectors. Furthermore, D* values are superior to those of existing detectors in the 2-3 μm band. Of particular significance to spectroscopic sensing systems is the ability to have near-background limited performance at operation temperatures compatible with robust and reliable solid state thermoelectric coolers.

  15. The next detectors for gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Miao, HaiXing; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Blair, Carl; Ma, YiQiu; Qin, JiaYi; Page, Michael

    2015-12-01

    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.

  16. The RICH detector of the CBM experiment

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Schetinin, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2017-12-01

    The CBM-RICH detector is designed to identify electrons with momenta up to 8 GeV/c and high purity as this is essential for the CBM physics program. The detector consist of a CO2-gaseous radiator, a spherical mirror system, and Multi-Anode PhotoMultiplier Tubes (MAPMT) of type H12700 from Hamamatsu as photon detectors. The detector concept was verified through R&D studies and a laterally scaled prototype. The results were summarized in a TDR, in which open issues were defined concerning the readout electronics, the shielding of the magnetic stray field in the MAPMT region, the radiation hardness of the MAPMT sensors, and the mechanical holding structure of the mirror system. In this article an overview is given on the CBM RICH development with focus on those open issues.

  17. Fiberoptic metal detector capable of profile detection.

    PubMed

    Hua, Wei-Shu; Hooks, Joshua R; Erwin, Nicholas A; Wu, Wen-Jong; Wang, Wei-Chih

    2011-03-31

    The purpose of this paper is to develop a novel ferromagnetic polymeric metal detector system by using a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing device. This ferromagnetic polymeric metal detector system is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is made possible by disrupting the magnetic flux density present on the magnetostrictive sensor. This paper discusses the magnetic properties of the ferromagnetic polymers. In addition, the preliminary results of successful sensing of different geometrical metal shapes will be discussed.

  18. Calibration methods for explosives detectors

    NASA Astrophysics Data System (ADS)

    MacDonald, Stephen J.; Rounbehler, David P.

    1992-05-01

    Airport security has become an important concern to cultures in every corner of the world. Presently, efforts to improve airport security have brought additional technological solutions, in the form of advanced instrumentation for the detection of explosives, into use at airport terminals in many countries. This new generation of explosives detectors is often used to augment existing security measures and provide a more encompassing screening capability for airline passengers. This paper describes two calibration procedures used for the Thermedics' EGIS explosives detectors. The systems were designed to screen people, electronic components, luggage, automobiles, and other objects for the presence of concealed explosives. The detectors have the ability to detect a wide range of explosives in both the vapor state or as surface adsorbed solids, therefore, calibrations were designed to challenge the system with explosives in each form.

  19. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  20. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  1. The Detector and Readout Systems of the Micro-X High Resolution Microcalorimeter X-Ray Imaging Rocket

    NASA Astrophysics Data System (ADS)

    Wikus, P.; Doriese, W. B.; Eckart, M. E.; Adams, J. S.; Bandler, S. R.; Brekosky, R. P.; Chervenak, J. A.; Ewin, A. J.; Figueroa-Feliciano, E.; Finkbeiner, F. M.; Galeazzi, M.; Hilton, G.; Irwin, K. D.; Kelley, R. L.; Kilbourne, C. A.; Leman, S. W.; McCammon, D.; Porter, F. S.; Reintsema, C. D.; Rutherford, J. M.; Trowbridge, S. N.

    2009-12-01

    The Micro-X sounding rocket experiment will deploy an imaging transition-edge-sensor (TES) microcalorimeter spectrometer to observe astrophysical sources in the 0.2-3.0 keV band. The instrument has been designed at a systems level, and the first items of flight hardware are presently being built. In the first flight, planned for January 2011, the spectrometer will observe a recently discovered Silicon knot in the Puppis-A supernova remnant. Here we describe the design of the Micro-X science instrument, focusing on the instrument's detector and detector assembly. The current design of the 2-dimensional spectrometer array contains 128 close-packed pixels with a pitch of 600 μm. The conically approximated Wolter-1 mirror will map each of these pixels to a 0.95 arcmin region on the sky; the field of view will be 11.4 arcmin. Targeted energy resolution of the TESs is about 2 eV over the full observing band. A SQUID time-division multiplexer (TDM) will read out the array. The detector time constants will be engineered to approximately 2 ms to match the TDM, which samples each pixel at 32.6 kHz, limited only by the telemetry system of the rocket. The detector array and two SQUID stages of the TDM readout system are accommodated in a lightweight Mg enclosure, which is mounted to the 50 mK stage of an adiabatic demagnetization refrigerator. A third SQUID amplification stage is located on the 1.6 K liquid He stage of the cryostat. An on-board 55-Fe source will fluoresce a Ca target, providing 3.69 and 4.01 keV calibration lines that will not interfere with the scientifically interesting energy band.

  2. Redesigned β γ radioxenon detector

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew W.; McIntyre, Justin I.; Bowyer, Ted W.; Carman, April J.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; Lidey, Lance; Litke, Kevin E.; Morris, Scott J.; Ripplinger, Michael D.; Suarez, Reynold; Thompson, Robert

    2007-08-01

    The Automated Radio-xenon Sampler/Analyzer (ARSA), designed by Pacific Northwest National Laboratory (PNNL) collects and detects several radioxenon isotopes, and is used to monitor underground nuclear explosions. The ARSA is very sensitive to 133Xe, 131mXe, 133mXe, and 135Xe (<1 mBq/SCM) [M. Auera et al., Wernspergera, Appl. Radiat. 6 (2004) 60] through use of its compact high efficiency β-γ coincidence detector. For this reason, it is an excellent treaty monitoring system and it can be used as an environmental sampling device as well. Field testing of the ARSA has shown it to be both robust and reliable, but the nuclear detector requires a detailed photomultiplier tube (PMT) gain matching regime difficult to implement in a field environment. Complexity is a problem from a maintenance and quality assurance/quality control (QA/QC) standpoint, and efforts to reduce these issues have led to development of a simplified β-γ coincident detector. The new design reduces the number of PMT's and the complexity of the calibration needed in comparison to the old design. New scintillation materials (NaI(Tl), CsI(Na), and CsI(Tl)) were investigated and a comparison of three different gamma sensitive well detectors has been completed. A new plastic-scintillator gas cell was constructed and a new method of forming the scintillator gas cell was developed. The simplified detector system compares favorably with the original ARSA design in spectral resolution and efficiency and is significantly easier to set up and calibrate. The new materials and configuration allow the resulting β-γ coincidence detector to maintain the overall performance of the ARSA type β-γ detector while simplifying the design.

  3. Detector signal correction method and system

    DOEpatents

    Carangelo, R.M.; Duran, A.J.; Kudman, I.

    1995-07-11

    Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects. 5 figs.

  4. Terahertz Systems Engineering: Detectors, Sources, Propagation, Phenomenology, Design and Analysis

    NASA Astrophysics Data System (ADS)

    Suen, Jonathan Ying-Yan

    The terahertz (THz) band, from 300 GHz to 20 THz, is the last remaining frontier of the electromagnetic spectrum. Fundamentally, the frequency is too high to use current electronic technologies, yet the photon energy is too low for optical systems. However, there is a rich set of phenomenology, science, and applications, which are only available with THz radiation. In order to exploit this, the THz engineer who is designing systems must be adept at integrating components with very limited performance into a system. This requires understanding and knowledge of a wide range of fields, including microwaves, infrared optics, material science, software development, atmospheric science, and the overall analysis and design of a system. Any THz system involves the sensing of some phenomena, which can be under the direct control of the engineer, such as in a communication system, or set by the laws of physics, such as in an astronomical telescope, or some variant in between. Thus, the design of such a system is fundamentally related to sensing science. Here, we have to consider detector and source technology, the propagation of radiation, target phenomenology, and the overall design and analysis of the system. This dissertation presents research in all of these areas. Specifically, in the field of THz phenomenology, I conducted a study to show the primary contrast mechanism in reflective biomedical imaging is water concentration. For source technology, I detail the development and characterization of photoconductive switches with record-breaking optical efficiency. In a separate study I developed a model which explains the complex photocarrier dynamics in fast-trapping THz photoconductive materials and show that high-frequency THz generation (>1 THz) is caused by beaching saturation. My work in detectors shows the design of a quasi-optical radar that exploits low 1/f noise Schottky diodes for detection of slow moving objects, useful for biomedical sensing of respiration and

  5. Thermal blinding of gated detectors in quantum cryptography.

    PubMed

    Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim

    2010-12-20

    It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [Nat. Photonics 4, 686 (2010)]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.

  6. Observations of winds with an incoherent lidar detector

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Barnes, John E.; Hays, Paul B.

    1992-01-01

    A Fabry-Perot interferometer and image-plane detector system to be used as a receiver for a Doppler lidar have been developed. This system incorporates the latest technology in multichannel detectors, and it is an important step toward the development of operational wind profiler systems for the atmosphere. The instrumentation includes a stable high-resolution optically contacted plane etalon and a multiring anode detector to scan the image plane of the Fabry-Perot interferometer spatially. The high wavelength resolution provided by the interferometer permits the aerosol and molecular components of the backscattered signal to be distinguished, and the Doppler shift of either component can then be used to determine the wind altitude profile. The receiver performance has been tested by measuring the wind profile in the boundary layer. The Fabry-Perot interferometer and image-plane detector characteristics are described and sample measurements are presented. The potential of the system as a wind profiler in the troposphere, the stratosphere, and the mesosphere is also considered.

  7. A real-time spectrum acquisition system design based on quantum dots-quantum well detector

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Guo, F. M.

    2016-01-01

    In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.

  8. Characterization of silicon detectors through TCT at Delhi University

    NASA Astrophysics Data System (ADS)

    Jain, G.; Lalwani, K.; Dalal, R.; Bhardwaj, A.; Ranjan, K.

    2016-07-01

    Transient Current Technique (TCT) is one of the important methods to characterize silicon detectors and is based on the time evolution of the charge carriers generated when a laser light is shone on it. For red laser, charge is injected only to a small distance from the surface of the detector. For such a system, one of the charge carriers is collected faster than the readout time of the electronics and therefore, the effective signal at the electrodes is decided by the charge carriers that traverse throughout the active volume of the detector, giving insight to the electric field profile, drift velocity, effective doping density, etc. of the detector. Delhi University is actively involved in the silicon detector R&D and has recently installed a TCT setup consisting of a red laser system, a Faraday cage, a SMU (Source Measuring Unit), a bias tee, and an amplifier. Measurements on a few silicon pad detectors have been performed using the developed system, and the results have been found in good agreement with the CERN setup.

  9. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    NASA Astrophysics Data System (ADS)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  10. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  11. MicroCT with energy-resolved photon-counting detectors

    PubMed Central

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, BMW; Patt, B E; Frey, E C

    2011-01-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with Kabsorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  12. MicroCT with energy-resolved photon-counting detectors.

    PubMed

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C

    2011-05-07

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.

  13. Tanlock loop noise reduction using an optimised phase detector

    NASA Astrophysics Data System (ADS)

    Al-kharji Al-Ali, Omar; Anani, Nader; Al-Qutayri, Mahmoud; Al-Araji, Saleh

    2013-06-01

    This article proposes a time-delay digital tanlock loop (TDTL), which uses a new phase detector (PD) design that is optimised for noise reduction making it amenable for applications that require wide lock range without sacrificing the level of noise immunity. The proposed system uses an improved phase detector design which uses two phase detectors; one PD is used to optimise the noise immunity whilst the other is used to control the acquisition time of the TDTL system. Using the modified phase detector it is possible to reduce the second- and higher-order harmonics by at least 50% compared with the conventional TDTL system. The proposed system was simulated and tested using MATLAB/Simulink using frequency step inputs and inputs corrupted with varying levels of harmonic distortion. A hardware prototype of the system was implemented using a field programmable gate array (FPGA). The practical and simulation results indicate considerable improvement in the noise performance of the proposed system over the conventional TDTL architecture.

  14. Integrated detector array technology for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, c. R.; Goebel, J. H.; Mckelvey, M. E.; Stafford, P. S.; Lee, J. H.

    1984-01-01

    The status of laboratory and telescope tests of integrated infrared detector array technology for astronomical applications is described. The devices tested represent a number of extrinsic and intrinsic detector materials and various multiplexer designs. Infrared arrays have now been used in successful astronomical applications. These have shown that device sensitivities can be comparable to those of discrete detector systems and excellent astronomical imagery can be produced.

  15. Compact Full-Field Ion Detector System for CubeSat Science Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.

    2013-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide comprehensive (composition, velocity, and direction) in situ measurements of heavy ions in space plasma environments with higher fidelity, than previously available.

  16. Readout and DAQ for Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Platkevic, Michal

    2010-01-01

    Data readout and acquisition control of pixel detectors demand the transfer of significantly a large amounts of bits between the detector and the computer. For this purpose dedicated interfaces are used which are designed with focus on features like speed, small dimensions or flexibility of use such as digital signal processors, field-programmable gate arrays (FPGA) and USB communication ports. This work summarizes the readout and DAQ system built for state-of-the-art pixel detectors of the Medipix family.

  17. Retrospective analysis of a detector fault for a full field digital mammography system

    NASA Astrophysics Data System (ADS)

    Marshall, N. W.

    2006-11-01

    This paper describes objective and subjective image quality measurements acquired as part of a routine quality assurance (QA) programme for an amorphous selenium (a-Se) full field digital mammography (FFDM) system between August-04 and February-05. During this period, the FFDM detector developed a fault and was replaced. A retrospective analysis of objective image quality parameters (modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE)) is presented to try and gain a deeper understanding of the detector problem that occurred. These measurements are discussed in conjunction with routine contrast-detail (c-d) results acquired with the CDMAM (Artinis, The Netherlands) test object. There was significant reduction in MTF over this period of time indicating an increase in blurring occurring within the a-Se converter layer. This blurring was not isotropic, being greater in the data line direction (left to right across the detector) than in the gate line direction (chest wall to nipple). The initial value of the 50% MTF point was 6 mm-1; for the faulty detector the 50% MTF points occurred at 3.4 mm-1 and 1.0 mm-1 in the gate line and data line directions, respectively. Prior to NNPS estimation, variance images were formed of the detector flat field images. Spatial distribution of variance was not uniform, suggesting that the physical blurring process was not constant across the detector. This change in variance with image position implied that the stationarity of the noise statistics within the image was limited and that care would be needed when performing objective measurements. The NNPS measurements confirmed the results found for the MTF, with a strong reduction in NNPS as a function of spatial frequency. This reduction was far more severe in the data line direction. A somewhat tentative DQE estimate was made; in the gate line direction there was little change in DQE up to 2.5 mm-1 but at the Nyquist

  18. Recent progress in infrared detector technologies

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2011-05-01

    In the paper, fundamental and technological issues associated with the development and exploitation of the most advanced infrared detector technologies are discussed. In this class of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys on silicon, type-II superlattices, uncooled thermal bolometers, and novel uncooled micromechanical cantilever detectors. Despite serious competition from alternative technologies and slower progress than expected, HgCdTe is unlikely to be seriously challenged for high-performance applications, applications requiring multispectral capability and fast response. However, the nonuniformity is a serious problem in the case of LWIR and VLWIR HgCdTe detectors. In this context, it is predicted that type-II superlattice system seems to be an alternative to HgCdTe in long wavelength spectral region. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VO x) or amorphous silicon (α-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement. Attractive alternatives consist of low-resistance α-SiGe monocrystalline SiGe quantum wells or quantum dots. In spite of successful commercialization of uncooled microbolometers, the infrared community is still searching for a platform for thermal imagers that combine affordability, convenience of operation, and excellent performance. Recent advances in MEMS systems have lead to the development of uncooled IR detectors operating as micromechanical thermal detectors. Between them the most important are biomaterial microcantilevers.

  19. Introduction to lead salt infrared detectors

    NASA Astrophysics Data System (ADS)

    Kondas, David A.

    1993-02-01

    This technical report establishes the background necessary to understand how lead sulfide (PbS) and lead selenide (PbSe) infrared detectors operate. Both detectors, which are members of the lead salt family of infrared detectors, use the photoconductive effect to detect energy residing within the infrared region of the electromagnetic spectrum. PbS detectors are useful for detecting energies in the 1 to 3 micrometer region, while PbSe detectors can detect energies in the 1 to 7 micrometer region. They are essentially polycrystalline thin films which are fabricated by chemical deposition techniques in either single element or multi-element array configurations. The significance of the electronic structure of these crystalline films and the effects of temperature on their operation and performance are discussed. The history of the development of lead salt detectors from the early years before World War I to the more recent developments is detailed. In addition, an overview of a typical infrared system is also presented.

  20. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S [Ypsilanti, MI; Rojeski, Ronald A [Pleasanton, CA

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  1. Searching for Dark Matter at the Stawell Underground Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Urquijo, Phillip

    2016-09-01

    facility to be built in 2016, located 1 km below the surface in western Victoria, Australia. I will discuss the status of the proposed SABRE experiment, which will be comprised of a pair of high purity 50-60 kg NaI crystal detectors with active veto shielding to be located in labs in the Northern and Southern Hemispheres respectively. I also discuss projects beyond SABRE, including directional dark matter detectors, which will be used to determine the origin of any true dark matter signals.

  2. Noninvasive Quantum Measurement of Arbitrary Operator Order by Engineered Non-Markovian Detectors

    NASA Astrophysics Data System (ADS)

    Bülte, Johannes; Bednorz, Adam; Bruder, Christoph; Belzig, Wolfgang

    2018-04-01

    The development of solid-state quantum technologies requires the understanding of quantum measurements in interacting, nonisolated quantum systems. In general, a permanent coupling of detectors to a quantum system leads to memory effects that have to be taken into account in interpreting the measurement results. We analyze a generic setup of two detectors coupled to a quantum system and derive a compact formula in the weak-measurement limit that interpolates between an instantaneous (text-book type) and almost continuous—detector dynamics-dependent—measurement. A quantum memory effect that we term "system-mediated detector-detector interaction" is crucial to observe noncommuting observables simultaneously. Finally, we propose a mesoscopic double-dot detector setup in which the memory effect is tunable and that can be used to explore the transition to non-Markovian quantum measurements experimentally.

  3. Thermal design and verification of an instrument cooling system for infrared detectors utilizing the Oxford Stirling cycle refrigerator

    NASA Technical Reports Server (NTRS)

    Werrett, Stephen; Seivold, Alfred L.

    1990-01-01

    A detailed nodal computer model was developed to thermally represent the hardware, and sensitivity studies were performed to evaluate design parameters and orbital environmental effects of an instrument cooling system for IR detectors. Thermal-vacuum testing showed excellent performance of the system and a correspondence with math model predictions to within 3 K. Results show cold stage temperature sensitivity to cold patch backload, outer stage external surface emittance degradation, and cold stage emittance degradation, respectively. The increase in backload on the cold patch over the mission lifetime is anticipated to be less than 3.0 watts, which translates to less than a 3-degree increase in detector temperatures.

  4. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  5. Study of a high-resolution PET system using a Silicon detector probe

    NASA Astrophysics Data System (ADS)

    Brzeziński, K.; Oliver, J. F.; Gillam, J.; Rafecas, M.

    2014-10-01

    A high-resolution silicon detector probe, in coincidence with a conventional PET scanner, is expected to provide images of higher quality than those achievable using the scanner alone. Spatial resolution should improve due to the finer pixelization of the probe detector, while increased sensitivity in the probe vicinity is expected to decrease noise. A PET-probe prototype is being developed utilizing this principle. The system includes a probe consisting of ten layers of silicon detectors, each a 80 × 52 array of 1 × 1 × 1 mm3 pixels, to be operated in coincidence with a modern clinical PET scanner. Detailed simulation studies of this system have been performed to assess the effect of the additional probe information on the quality of the reconstructed images. A grid of point sources was simulated to study the contribution of the probe to the system resolution at different locations over the field of view (FOV). A resolution phantom was used to demonstrate the effect on image resolution for two probe positions. A homogeneous source distribution with hot and cold regions was used to demonstrate that the localized improvement in resolution does not come at the expense of the overall quality of the image. Since the improvement is constrained to an area close to the probe, breast imaging is proposed as a potential application for the novel geometry. In this sense, a simplified breast phantom, adjacent to heart and torso compartments, was simulated and the effect of the probe on lesion detectability, through measurements of the local contrast recovery coefficient-to-noise ratio (CNR), was observed. The list-mode ML-EM algorithm was used for image reconstruction in all cases. As expected, the point spread function of the PET-probe system was found to be non-isotropic and vary with position, offering improvement in specific regions. Increase in resolution, of factors of up to 2, was observed in the region close to the probe. Images of the resolution phantom showed

  6. [Comparison of dignity determination of mammographic microcalcification with two systems for digital full-field mammography with different detector resolution: a retrospective clinical study].

    PubMed

    Schulz-Wendtland, R; Hermann, K-P; Adamietz, B; Meier-Meitinger, M; Wenkel, E; Lell, M; Anders, K; Uder, M

    2011-02-01

    The aim of this retrospective clinical study was to compare the diagnostic accuracy of the novel 50 µm FFDM (full-field digital mammography) system (DR) with an established 70 µm system (DR) in the differential diagnosis between benign and malignant clusters of microcalcification (n=50) (BI-RADS™ classification 4/5) and to assess the possible incremental value of the 50 µm pixel-pitch on specificity. From March 2009 to September 2009, 50 patients underwent full-field digital mammography (FFDM) (detector resolution 70 µm) (Novation, Siemens, Erlangen, Germany). As there were suspicious signs of microcalcification classified with BI-RADS™ 4/5 after diagnosis and preoperative wire localization, control images were made with the new FFDM system (detector: resolution 50 µm) (Amulet, Fujifilm, Tokyo, Japan) with the same exposure parameters. The diagnosis was determined after the operation by five radiologists with different experience in digital mammography from randomly distributed mediolateral views (monitor reading) whose results were correlated with the final histology of all lesions. Histopathology revealed 19 benign and 31 malignant lesions in 50 patients after open biopsy. The results of the five readers showed a higher sensitivity of the new FFDM system (80.0%) in the ability to recognize malignant microcalcification in comparison to the established system (74.8%). The specificity (75.8 versus 71.6%) was slightly higher for the new system but these results were not statistically significant (p<0.001). Considering the diagnostic accuracy, the new system (detector: resolution 50 µm) was also slightly superior to the well-known system (detector: resolution 70 µm) (80.1% versus 76.4%). Our study has shown that the new full-field digital mammography system using the novel detector compared with the already established FFDM system with respect to the assessment of microcalcification is at least equivalent.

  7. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  8. Workshop on detectors for third-generation synchrotron sources: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-01

    The aims of the workshop were (1) to acquaint APS users with current R and D being carried out on detectors, (2) to identify new detector systems possible during the next five years, (3) to identify new detectors theoretically possible in the future, (4) to stimulate interactions between user groups and detector developers, and (5) to obtain recommendations from expert panels on technical issues needing resolution. Development of detectors at ESRF, Spring-8, BNL, CERN and LBL are included.

  9. IXO-XMS LVSID Anti-Coincidence Detector

    NASA Technical Reports Server (NTRS)

    Porter, Scott F.; Kilbourne, Caroline

    2010-01-01

    This document describes a high-TRL backup implementation of the anti-coincidence detector for the IXO/XMS instrument. The backup detector, hereafter referred to as the low-voltage silicon ionization detector (LVSID), has been successfully flown on Astro-E2 (Suzaku)/XRS and is currently being implemented, without significant changes, on the Astro-H/SXS instrument. The LVSID anti-coincidence detector on Astro-E2/XRS operated successfully for almost 2 years, and was not affected by the loss of liquid helium in that instrument. The LVSID continues to operate after almost 5 years on-orbit (LEO, 550 km) but with slightly increased noise following the expected depletion of solid Neon after 22 months. The noise of the device is increased after the loss of sNe due to thermally induced bias and readout noise. No radiation damage, or off-nominal affects have been observed with the LVSID on-orbit during the Astro-E2/XRS program. A detector die from the same fabrication run will be used on the Astro-H/SXS mission. The LVSID technology and cryogenic JFET readout system is thus TRL 9. The technology is described in detail in section 2. The IXO/XMS "backup-up" anti-coincidence detector is a small array of LVSID detectors that are almost identical to those employed for Astro -E2/XRS as described in this document. The readout system is identical and, infact would use the same design as the Astro -E2/XRS JFET amplifier module (19 channels) essentially without changes except for its mechanical mount. The changes required for the IXO/XMS LVSID array are limited to the mounting of the LVSID detectors, and the mechanical mounting of the JFET amplifier sub-assembly. There is no technical development needed for the IXO/XMS implementation and the technology is ready for detailed design-work leading to PDR. The TRL level is thus at least 6, and possibly higher. Characteristics of an IXO/XMS LVSID anti-co detector are given in Table 1 and described in detail in section 3.

  10. System design of a small OpenPET prototype with 4-layer DOI detectors.

    PubMed

    Yoshida, Eiji; Kinouchi, Shoko; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Yamaya, Taiga

    2012-01-01

    We have proposed an OpenPET geometry which consists of two axially separated detector rings. The open gap is suitable for in-beam PET. We have developed the small prototype of the OpenPET especially for a proof of concept of in-beam imaging. This paper presents an overview of the main features implemented in this prototype. We also evaluated the detector performance. This prototype was designed with 2 detector rings having 8 depth-of-interaction detectors. Each detector consisted of 784 Lu(2x)Gd(2(1-x))SiO₅:Ce (LGSO) which were arranged in a 4-layer design, coupled to a position-sensitive photomultiplier tube (PS-PMT). The size of the LGSO array was smaller than the sensitive area of the PS-PMT, so that we could obtain sufficient LGSO identification. Peripheral LGSOs near the open gap directly detect the gamma rays on the side face in the OpenPET geometry. Output signals of two detectors stacked axially were projected onto one 2-dimensional position histogram for reduction of the scale of a coincidence processor. Front-end circuits were separated from the detector head by 1.2-m coaxial cables for the protection of electronic circuits from radiation damage. The detectors had sufficient crystal identification capability. Cross talk between the combined two detectors could be ignored. The timing and energy resolutions were 3.0 ns and 14%, respectively. The coincidence window was set 20 ns, because the timing histogram showed that not only the main peak, but also two small shifted peaks were caused by the coaxial cable. However, the detector offers the promise of sufficient performance, because random coincidences are at a nearly undetectable level for in-beam PET experiments.

  11. Fiber optic inclination detector system having a weighted sphere with reference points

    DOEpatents

    Cwalinski, Jeffrey P.

    1995-01-01

    A fiber optic inclination detector system for determining the angular displacement of an object from a reference surface includes a simple mechanical transducer which requires a minimum number of parts and no electrical components. The system employs a single light beam which is split into two light beams and provided to the transducer. Each light beam is amplitude modulated upon reflecting off the transducer to detect inclination. The power values associated with each of the reflected light beams are converted by a pair of photodetectors into voltage signals, and a microprocessor manipulates the voltage signals to provide a measure of the angular displacement between the object and the reference surface.

  12. Silicon Detector System for High Rate EXAFS Applications.

    PubMed

    Pullia, A; Kraner, H W; Siddons, D P; Furenlid, L R; Bertuccio, G

    1995-08-01

    A multichannel silicon pad detector for EXAFS (Extended X-ray Absorption Fine Structure) applications has been designed and built. The X-ray spectroscopic measurements demonstrate that an adequate energy resolution of 230 eV FWHM (corresponding to 27 rms electrons in silicon) can be achieved reliably at -35 °C. A resolution of 190 eV FWHM (corresponding to 22 rms electrons) has been obtained from individual pads at -35 °C. At room temperature (25 °C) an average energy resolution of 380 eV FWHM is achieved and a resolution of 350 eV FWHM (41 rms electrons) is the best performance. A simple cooling system constituted of Peltier cells is sufficient to reduce the reverse currents of the pads and their related shot noise contribution, in order to achieve resolutions better than 300 eV FWHM which is adequate for the EXAFS applications.

  13. Silicon Detector System for High Rate EXAFS Applications

    PubMed Central

    Pullia, A.; Kraner, H. W.; Siddons, D. P.; Furenlid, L. R.; Bertuccio, G.

    2015-01-01

    A multichannel silicon pad detector for EXAFS (Extended X-ray Absorption Fine Structure) applications has been designed and built. The X-ray spectroscopic measurements demonstrate that an adequate energy resolution of 230 eV FWHM (corresponding to 27 rms electrons in silicon) can be achieved reliably at −35 °C. A resolution of 190 eV FWHM (corresponding to 22 rms electrons) has been obtained from individual pads at −35 °C. At room temperature (25 °C) an average energy resolution of 380 eV FWHM is achieved and a resolution of 350 eV FWHM (41 rms electrons) is the best performance. A simple cooling system constituted of Peltier cells is sufficient to reduce the reverse currents of the pads and their related shot noise contribution, in order to achieve resolutions better than 300 eV FWHM which is adequate for the EXAFS applications. PMID:26538683

  14. Wafer-fused semiconductor radiation detector

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  15. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    PubMed Central

    Quack, Niels; Blunier, Stefan; Dual, Jurg; Felder, Ferdinand; Arnold, Martin; Zogg, Hans

    2008-01-01

    Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED) principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA). PMID:27873824

  16. Delivery of Na/I symporter gene into skeletal muscle using nanobubbles and ultrasound: visualization of gene expression by PET.

    PubMed

    Watanabe, Yukiko; Horie, Sachiko; Funaki, Yoshihito; Kikuchi, Youhei; Yamazaki, Hiromichi; Ishii, Keizo; Mori, Shiro; Vassaux, Georges; Kodama, Tetsuya

    2010-06-01

    The development of nonviral gene delivery systems is essential in gene therapy, and the use of a minimally invasive imaging methodology can provide important clinical endpoints. In the current study, we present a new methodology for gene therapy-a delivery system using nanobubbles and ultrasound as a nonviral gene delivery method. We assessed whether the gene transfer allowed by this methodology was detectable by PET and bioluminescence imaging. Two kinds of reported vectors (luciferase and human Na/I symporter [hNIS]) were transfected or cotransfected into the skeletal muscles of normal mice (BALB/c) using the ultrasound-nanobubbles method. The kinetics of luciferase gene expression were analyzed in vivo using bioluminescence imaging. At the peak of gene transfer, PET of hNIS expression was performed using our recently developed PET scanner, after (124)I injection. The imaging data were confirmed using reverse-transcriptase polymerase chain reaction amplification, biodistribution, and a blocking study. The imaging potential of the 2 methodologies was evaluated in 2 mouse models of human pathology (McH/lpr-RA1 mice showing vascular disease and C57BL/10-mdx Jic mice showing muscular dystrophy). Peak luciferase gene activity was observed in the skeletal muscle 4 d after transfection. On day 2 after hNIS and luciferase cotransfection, the expression of these genes was confirmed by reverse-transcriptase polymerase chain reaction on a muscle biopsy. PET of the hNIS gene, biodistribution, the blocking study, and autoradiography were performed on day 4 after transfection, and it was indicated that hNIS expression was restricted to the site of plasmid administration (skeletal muscle). Similar localized PET and (124)I accumulation were successfully obtained in the disease-model mice. The hNIS gene was delivered into the skeletal muscle of healthy and disease-model mice by the ultrasound-nanobubbles method, and gene expression was successfully visualized with PET. The

  17. Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems.

    PubMed

    da Silva, Thiago Ferreira; Xavier, Guilherme B; Temporão, Guilherme P; von der Weid, Jean Pierre

    2012-08-13

    By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.

  18. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  19. Measurement of the mass attenuation coefficient from 81 keV to 1333 keV for elemental materials Al, Cu and Pb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gjorgieva, Slavica, E-mail: slavicagjorgieva89@gmail.com; Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, POB 162, 1000 Skopje; Barandovski, Lambe, E-mail: lambe@pmf.ukim.mk

    The mass attenuation coefficients (μ/ρ) for 3 high purity elemental materials Al, Cu and Pb were measured in the γ-ray energy range from 81 keV up to 1333 keV using {sup 22}Na, {sup 60}Co {sup 133}Ba and {sup 133}Cs as sources of gamma radiation. Well shielded detector (NaI (Tl) semiconductor detector) was used to measure the intensity of the transmitted beam. The measurements were made under condition of good geometry, assuring that any photon absorbed or deflected appreciably does not reach the detector. The measured values are compared with the theoretical ones obtained by Seltzer (1993).

  20. The GSFC Advanced Compton Telescope (ACT)

    NASA Technical Reports Server (NTRS)

    Hartman, R.; Fichtel, C.; Kniffen, D.; Trombka, J.; Stacy, G.

    1983-01-01

    A new telescope is being developed at GSFC for the study of point sources of gamma rays in the energy range 1-30 MeV. Using the detection principle of a Compton scatter in a 2.5 cm thick NaI(Tl) detector followed by absorption in a 15 cm thick NaI(Tl) detector, the telescope uses a rocking collimator for field-of-view reduction and background subtraction. Background reduction techniques include lead-plastic scintillator shielding, pulse shape discrimination and Anger camera operation to both NaI detectors, as well as a time-of-flight measurement between them. The instrument configuration and status is described.